WO2012111686A1 - Manufacturing method for streptavidin-bonded magnetic particles - Google Patents

Manufacturing method for streptavidin-bonded magnetic particles Download PDF

Info

Publication number
WO2012111686A1
WO2012111686A1 PCT/JP2012/053464 JP2012053464W WO2012111686A1 WO 2012111686 A1 WO2012111686 A1 WO 2012111686A1 JP 2012053464 W JP2012053464 W JP 2012053464W WO 2012111686 A1 WO2012111686 A1 WO 2012111686A1
Authority
WO
WIPO (PCT)
Prior art keywords
streptavidin
magnetic particles
antibody
cross
linked
Prior art date
Application number
PCT/JP2012/053464
Other languages
French (fr)
Japanese (ja)
Inventor
荒井 信之
泰弘 松岡
豪 永井
和樹 守田
Original Assignee
協和メデックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和メデックス株式会社 filed Critical 協和メデックス株式会社
Priority to JP2012557981A priority Critical patent/JPWO2012111686A1/en
Publication of WO2012111686A1 publication Critical patent/WO2012111686A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2446/00Magnetic particle immunoreagent carriers

Definitions

  • the present invention relates to a method for producing streptavidin-coupled magnetic particles and a method for producing protein-coupled magnetic particles.
  • magnetic particles are often used as a solid phase carrier to detect substances to be examined such as hormones, cancer markers, and infectious disease markers.
  • an antibody or an antigen (primary probe) or the like is bound on a magnetic particle, bound to a measurement target substance in a sample, and further labeled with a fluorescent substance, a chemiluminescent substrate, an enzyme, or the like. By binding to the next probe, the substance to be measured is detected qualitatively or quantitatively.
  • a method in which a primary probe and a secondary probe are reacted in a liquid phase and then bonded onto the magnetic particles is often used.
  • a biotin-labeled primary probe in which biotin is bound to a primary probe is reacted with a measurement target component in a sample and a secondary probe to form a biotin-labeled primary probe-measurement target component-secondary probe.
  • a complex is formed, then avidin-bound magnetic particles are allowed to act, and the complex is bound onto the magnetic particles by avidin-biotin interaction.
  • streptavidin-bonded magnetic particles using streptavidin having the same properties as avidin are more useful.
  • streptavidin binds very strongly to biotin and has the property of being more resistant to denaturation than avidin.
  • the isoelectric point is known to have less non-specific binding to other proteins because avidin is basic, whereas streptavidin is weakly acidic or neutral. Streptavidin-coupled magnetic particles using this streptavidin are used in many applications.
  • Patent Document 1 discloses a method for separating a substance to be detected in a specimen, which uses magnetic particles whose surface is modified with a temperature-responsive polymer, and has high temperature responsiveness even for magnetic particles having an average particle diameter of 50 to 1,000 nm.
  • a method is described in which magnetic particles are recovered from an aqueous solution by particle aggregation with molecules. While such particles have merit in the reaction due to the smaller magnetic particles, there are non-specific adsorption due to the particle surface being covered with temperature-responsive polymer, and under special conditions to aggregate There was a process to change.
  • Patent Document 2 describes a method of chemically forming a porous layer on the outer layer of magnetic particles. In this method, an immune reaction between an antigen and an antibody, or between DNAs or between DNA and RNA. In hybridization, the binding ability per surface area was improved, but the reaction efficiency in the pores was poor, and it was difficult to obtain the expected performance.
  • the present inventors prepared a cross-linked product of streptavidin by reacting glutaraldehyde and streptavidin, and obtained cross-linked product of streptavidin and magnetic particles.
  • the present inventors have found that streptavidin-coupled magnetic particles having a high biotin-binding ability can be produced by reacting with. That is, the present invention relates to the following [1] to [4].
  • a method for producing streptavidin-coupled magnetic particles comprising the following steps. (1) reacting glutaraldehyde and streptavidin to prepare a cross-linked product of streptavidin; and (2) A step of reacting the cross-linked streptavidin prepared in step (1) with magnetic particles. [2] The method for producing streptavidin-coupled magnetic particles according to [1], further comprising the following steps. (3) A step of reacting the streptavidin-bound magnetic particles prepared in step (2) with a reducing agent. [3] The method for producing streptavidin-coupled magnetic particles according to [1] or [2], wherein the streptavidin-coupled magnetic particles have a structure in which streptavidin is crosslinked on the magnetic particles. [4] A method for producing protein-bound magnetic particles, comprising reacting streptavidin-bound magnetic particles produced by the production method according to any one of [1] to [3] with a biotinylated protein.
  • the present invention provides a method for producing streptavidin-coupled magnetic particles having a high biotin-binding ability and a method for producing protein-coupled magnetic particles using the streptavidin-coupled magnetic particles.
  • the streptavidin-coupled magnetic particles and protein-coupled magnetic particles produced by the production method of the present invention are useful for clinical diagnosis.
  • FIG. 2 is a graph showing the change over time in the particle size of a cross-linked streptavidin after addition of a glutaraldehyde solution in Example 1.
  • FIG. The horizontal axis represents the reaction time (hr), and the vertical axis represents the particle size (nm) of the cross-linked streptavidin.
  • shows the change over time when using a 0.005% solution of glutaraldehyde
  • shows the change over time when using a 0.0075% solution of glutaraldehyde
  • shows the change over time when using a 0.010% solution of glutaraldehyde
  • Lane 2 is an SDS-PAGE electrophoretic image showing the structure of streptavidin on a magnetic particle in a streptavidin crosslinked product and a streptavidin-coupled magnetic particle produced by the production method of the present invention.
  • Lane 1 is molecular weight marker
  • lane 2 is streptavidin
  • lane 3 is streptavidin crosslinked with a particle size of 13.6 nm
  • lane 4 is streptavidin crosslinked with a particle size of 29.2 nm
  • lane 5 is 63.9 nm in particle size streptavidin crosslinked
  • lane 8 biotin It represents streptavidin-bound magnetic particles with a binding capacity of 5.16 pmol / mm 2 .
  • Band A represents a monomer
  • band B represents a dim
  • the method for producing streptavidin-coupled magnetic particles of the present invention comprises a step of preparing a cross-linked product of streptavidin by reacting glutaraldehyde and streptavidin (primary reaction step), and A step (secondary reaction step) of reacting the cross-linked streptavidin prepared in the primary reaction step with magnetic particles.
  • the streptavidin-coupled magnetic particles produced by the production method of the present invention have a structure in which streptavidin is cross-linked on the magnetic particles. Streptavidin has a tetrameric structure, and monomers are linked by non-covalent bonds.
  • streptavidin-coupled magnetic particles obtained by the method for producing streptavidin-coupled magnetic particles of the present invention streptavidin having this tetrameric structure is covalently bonded via glutaraldehyde on the magnetic particles to form a crosslinked structure. ing. Streptavidin is bound to the amino group of the magnetic particle via glutaraldehyde.
  • a part of the tetrameric streptavidin is bound to the amino group of the magnetic particle via glutaraldehyde.
  • This streptavidin cross-linked structure is obtained by, for example, replacing streptavidin-bound magnetic particles with 1% SDS solution and treating them at 60 ° C. for 1 hour, thereby binding the streptavidin between subunits bound on the magnetic particles. It can be dissociated and confirmed by SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis), gel filtration HPLC or the like. SDS-PAGE is a method for separating proteins by electrophoresis depending on the size.
  • the SDS-PAGE is not particularly limited as long as it is a method capable of confirming the streptavidin cross-linked structure, and includes, for example, the method described in Bio-Experiment Illustrated 5 (Separate volume of Cell Engineering, Shujunsha).
  • the tetrameric structure of streptavidin is unwound by denaturation treatment in the presence of SDS. If streptavidin on the magnetic particles does not have a cross-linked structure, the degradation product obtained by the modification treatment in the presence of SDS is only a monomer derived from streptavidin. On the other hand, if streptavidin on the magnetic particles has a cross-linked structure, a dimer related to the streptavidin cross-linked structure in addition to the streptavidin-derived monomer by modification in the presence of SDS. , Trimers and higher order multimers will be obtained. Therefore, when a band derived from streptavidin-derived monomers, dimers, trimers, and higher-order multimers is observed by SDS-PAGE, the streptavidin cross-links on the magnetic particles. A structure is formed.
  • the streptavidin-coupled magnetic particles produced by the production method of the present invention has a structure in which streptavidin is cross-linked on the magnetic particles, and thus has a high biotin-binding ability.
  • Streptavidin coupled magnetic particles produced by the production method of the present invention biotin-binding capacity is normally 0.5 ⁇ 18 pmol / mm 2, preferably 1 ⁇ 17 pmol / mm 2, 2 ⁇ 16 pmol / mm 2 is Particularly preferred.
  • the streptavidin-coupled magnetic particles produced by the production method of the present invention also have an excellent property that the dispersibility of the streptavidin-coupled magnetic particles is good.
  • the dispersibility of the streptavidin-bonded magnetic particles can be evaluated by, for example, visually checking the state in the cuvette after the streptavidin-bonded magnetic particles stored in a cuvette are mixed by inversion. it can.
  • the biotin-binding ability per particle in the streptavidin-coupled magnetic particles of the present invention can be measured by any method that can measure biotin-binding ability. For example, a certain amount of fluorescently labeled biotin can be measured. After reacting with a certain amount of streptavidin-bound magnetic particles and collecting the streptavidin-bound magnetic particles with a magnet, a certain amount of supernatant is collected, the fluorescence of the collected supernatant is measured, and the measured value obtained is It can be calculated by comparing with a calibration curve prepared in advance showing the relationship between the fluorescence intensity and the biotin concentration.
  • streptavidin may be naturally derived or genetically modified, but is preferably genetically modified.
  • the magnetic particles to which the streptavidin is fixed are not particularly limited as long as they are magnetic particles that enable the production of the streptavidin-coupled magnetic particles of the present invention.
  • Examples include magnetic particles having a core / shell structure made of an organic polymer, magnetic particles having a structure in which a magnetic material is not uniformly dispersed in an organic polymer without including an outer layer, and clustered magnetic particles made of only a magnetic material.
  • Magnetic particles having functional groups such as amino group, carboxyl group, epoxy group, and tosyl group on the surface can also be used.
  • the magnetic substance contained in the magnetic particles is preferably a superparamagnetic fine magnetic particle with little residual magnetization, for example, triiron tetroxide (Fe 3 O 4 ), ⁇ -heavy sesquioxide ( ⁇ -Fe 2 O 3 ). And various metals such as ferrite, iron, manganese, cobalt, and chromium, or alloys of these metals.
  • the content of the magnetic substance in the magnetic particles composed of the organic polymer and the magnetic substance is preferably 10% by weight or more, more preferably 30 to 60% by weight, based on the total weight of the magnetic particles.
  • the shape of the magnetic particle examples include a spherical shape and a needle shape, and a spherical shape is preferable.
  • the particle diameter of the magnetic particles is, for example, 0.1 to 5 ⁇ m, and preferably 0.5 to 3 ⁇ m.
  • Specific examples of magnetic particles include amino group type Estapor magnetic particles (Merck), hydrophobic type Estapor magnetic particles (Merck), and the like.
  • the primary reaction step is a step in which glutaraldehyde and streptavidin are reacted to prepare a streptavidin cross-linked product.
  • streptavidin has a tetramer structure, and monomers are linked by non-covalent bonds.
  • the streptavidin cross-linked body is a structure in which streptavidin having a tetrameric structure is covalently bonded to each other via glutaraldehyde.
  • the reaction between glutaraldehyde and streptavidin can be used under any conditions that can prepare a cross-linked product of streptavidin.
  • streptavidin is obtained by dissolving streptavidin in a dispersion or the like in an aqueous solution of streptavidin.
  • a cross-linked streptavidin can be prepared by adding glutaraldehyde and reacting streptavidin with glutaraldehyde.
  • the dispersion include an aqueous solution containing a surfactant.
  • the pH of the dispersion is usually pH 4.5-7, preferably pH 5-6.
  • Examples of the aqueous medium used for the aqueous solution include distilled water, purified water, and a buffer solution.
  • a buffering agent corresponding to the set pH.
  • the buffer used in the buffer include an acetate buffer, a citrate buffer, a succinate buffer, a phosphate buffer, and Good's buffer.
  • Good buffering agents include, for example, 2-morpholinoethanesulfonic acid (MES), bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane (Bis-Tris), piperazine-N, N′-bis (2-ethanesulfone) Acid) (PIPES), N- (2-acetamido) -2-aminoethanesulfonic acid (ACES), 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO), N, N-bis (2-hydroxyethyl)- 2-aminoethanesulfonic acid (BES), 3-morpholinopropanesulfonic acid (MOPS), N- [tris (hydroxymethyl) methyl] -2-aminoethanesulfonic acid (TES), 2- [4- (2-hydroxy Ethyl) -1-piperazinyl] ethanesulfonic acid (HEPES), 3- [N, N-bis (2-hydroxyethyl) amino] -2
  • the surfactant is not particularly limited as long as it can disperse magnetic particles, and examples thereof include an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant.
  • the concentration of the surfactant in the dispersion is not particularly limited as long as it is a concentration capable of dispersing the magnetic particles, and is, for example, 0.01 to 5.0%.
  • the reaction temperature in the reaction of glutaraldehyde and streptavidin is usually 0 to 40 ° C, preferably 20.0 to 37.5 ° C, particularly preferably 25 ° C.
  • the reaction time is usually 0.5 to 72 hours, preferably 6 to 48 hours, and particularly preferably 18 to 36 hours.
  • the amount of glutaraldehyde is not particularly limited as long as it can prepare a cross-linked streptavidin by reaction with streptavidin.
  • the molar concentration ratio is 0.5 to 5, and 1 to 3 is particularly preferable.
  • the concentration of glutaraldehyde is usually 0.001 to 0.05%, preferably 0.003 to 0.02%, particularly preferably 0.005 to 0.015%.
  • the concentration of streptavidin is usually 2 to 40 mg / mL, preferably 5 to 25 mg / mL, and particularly preferably 10 to 15 mg / mL.
  • the degree of formation of the streptavidin crosslinked product can be monitored by measuring the particle size of the streptavidin crosslinked product.
  • the particle size of the streptavidin crosslinked product can be measured, for example, with a particle size distribution meter.
  • the reaction solution is sampled at regular intervals, and the particle size of the streptavidin crosslinked product can be measured.
  • the secondary reaction step may be performed before the particle size of the streptavidin cross-linked product becomes constant in the primary reaction, or after it becomes constant or at a stage where the degree of change in particle size becomes moderate.
  • the particle size of the cross-linked streptavidin is usually 10 to 300 nm, preferably 20 to 250 nm, particularly preferably 50 to 200 nm.
  • Streptavidin may be naturally derived or genetically modified, preferably genetically modified.
  • the secondary reaction step is a step of binding the cross-linked streptavidin obtained in the primary reaction step to magnetic particles by covalent bonding or physical adsorption.
  • the streptavidin cross-linked product used for the reaction with the magnetic particles may be the reaction mixture itself in the primary reaction step or may be isolated from the reaction mixture in the primary reaction step. The reaction mixture itself in the next reaction step is preferred.
  • a streptavidin cross-linked product is reacted with a magnetic particle having a functional group on the surface in the above-mentioned dispersion to thereby react the streptavidin.
  • Avidin crosslinked can be bonded to magnetic particles.
  • a cross-linked streptavidin and magnetic particles having a functional group on the surface may be reacted in the above dispersion.
  • the functional group include the functional groups described above.
  • the magnetic particles having a functional group include amino group type Estapor magnetic particles (manufactured by Merck).
  • the linker is not particularly limited as long as it is bonded to both the streptavidin cross-linked product and the magnetic particle having a functional group on the surface, and the streptavidin cross-linked product is bonded to the magnetic particle.
  • glutaraldehyde examples thereof include bifunctional crosslinking agents such as imide esters, N-hydroxysuccinimide esters, and compounds having a maleimide group and an N-hydroxysuccinimide active ester in the molecule.
  • the reaction between the streptavidin cross-linked product and the magnetic particles having a functional group on the surface may be performed under any reaction conditions as long as the streptavidin cross-linked product can bind to the magnetic particles.
  • Streptavidin used in the primary reaction step is usually 10-30 mg and preferably 50-100 mg for the magnetic particles.
  • the linker is usually 1 to 20 times mol and preferably 5 to 10 mol (w / w) times mol of the functional group on the magnetic particle surface.
  • the streptavidin cross-linked product is bonded to the magnetic particles by physical adsorption
  • the streptavidin cross-linked product is reacted with the magnetic particles in, for example, the above-mentioned dispersion to convert the streptavidin cross-linked product to the magnetic particles.
  • the magnetic particles used in this reaction include the above-described magnetic particles, and hydrophobic type Estapor magnetic particles (manufactured by Merck) can be used.
  • the reaction between the cross-linked streptavidin and the magnetic particles may be under any conditions as long as the cross-linked streptavidin is capable of binding to the magnetic particles.
  • the reaction temperature for the reaction between the streptavidin crosslinked product and the magnetic particles is usually 15 to 50 ° C, preferably 20 to 40 ° C, and particularly preferably 35 ° C.
  • the reaction time is usually 30 minutes to 6 hours, preferably 1 to 2 hours.
  • the reaction mixture itself obtained in the secondary reaction step can also be used as streptavidin-coupled magnetic particles, but the magnetic particles in the reaction mixture obtained in the secondary reaction step are collected by a magnet, and other than the magnetic particles Magnetic particles obtained by removing the solution and then washing with a washing solution can also be used as streptavidin-coupled magnetic particles.
  • the cleaning liquid is not particularly limited as long as it is a cleaning liquid capable of cleaning substances other than the streptavidin-coupled magnetic particles obtained according to the present invention, and examples thereof include the aforementioned aqueous medium.
  • An aqueous medium containing protein and preservative can also be used as a cleaning liquid.
  • the protein include bovine serum albumin (BSA).
  • Examples of the preservative include sodium azide.
  • the washed magnetic particles can be suspended and stored in a storage solution.
  • the storage solution is not particularly limited as long as it can stably store the streptavidin-bound magnetic particles obtained by the present invention.
  • BSA bovine serum albumin
  • the method for producing streptavidin-coupled magnetic particles of the present invention may further include a reduction reaction step after the secondary reaction step.
  • the reduction reaction step is a reaction step between the streptavidin-coupled magnetic particles generated in the secondary reaction step and the reducing agent.
  • streptavidin having a cross-linked structure is formed on the magnetic particles. Since the streptavidin having the cross-linked structure contains a Schiff base (imine), the Schiff base (imine) is reduced by a reducing agent. By doing so, a more stable crosslinked structure can be obtained.
  • the reaction mixture itself in the secondary reaction step or the washed magnetic particles may be used.
  • the solvent used for the reaction between the streptavidin-bonded magnetic particles and the reducing agent is not particularly limited as long as it is a solvent capable of allowing the reduction reaction to proceed, and examples thereof include the above-described dispersion liquid.
  • a dispersion containing an organic solvent can also be used as a solvent in the reduction reaction.
  • the organic solvent is not particularly limited as long as it is soluble in water and can cause a reduction reaction, and examples thereof include methanol, ethanol, and tetrahydrofuran.
  • the reducing agent is not particularly limited as long as it is a reducing agent that can reduce the Schiff base (imine) and maintain a crosslinked structure, and examples thereof include a borane-based reducing agent.
  • examples of the borane reducing agent include 2-picoline borane and sodium borohydride.
  • the amount of the reducing agent added is usually 0.0001 to 0.1 (w / w)% of the magnetic particles, preferably 0.0005 to 0.05 (w / w)%, and particularly preferably 0.001 (w / w)%.
  • the reaction temperature of the reduction reaction is usually 30 to 50 ° C, preferably 35 to 45 ° C, particularly preferably 40 ° C.
  • the reaction time for the reduction reaction is usually 2 days to 10 days, preferably 5 days to 8 days, and particularly preferably 6 days.
  • the magnetic particles can be separated from solution components other than the magnetic particles by a magnet.
  • the separated magnetic particles are washed with a washing solution, and the washed magnetic particles can be stored in a state of being suspended in a storage solution.
  • the cleaning liquid is not particularly limited as long as it is a cleaning liquid capable of cleaning the solution components in the separated magnetic particles, and examples thereof include the above-described cleaning liquid.
  • the storage solution is not particularly limited as long as it is a solution that can stably store the obtained streptavidin-coupled magnetic particles, and examples thereof include the storage solution described above.
  • Protein-bound magnetic particles can be produced by reacting the streptavidin-coupled magnetic particles produced by the production method of the present invention with a biotinylated protein.
  • the protein binds to the magnetic particle by the interaction between streptavidin on the magnetic particle and biotin that binds to the protein.
  • the reaction between the streptavidin-bound magnetic particles and the biotinylated protein may be performed under any conditions as long as the protein binds on the magnetic particles.
  • the reaction temperature is usually 25 to 50 ° C, preferably 30 to 40 ° C.
  • the reaction time is usually 30 minutes to 24 hours, preferably 2 to 18 hours.
  • Examples of the protein include an antibody that binds to the measurement target component, and a competitive substance that competes with the measurement target component in the antigen-antibody reaction.
  • Examples of the competitive substance include a measurement target component and a substance containing an epitope recognized by an antibody that binds to the measurement target component.
  • proteins include IgG, anti-IgG antibody, IgM, anti-IgM antibody, IgA, anti-IgA antibody, IgE, anti-IgE antibody, apoprotein AI, anti-apoprotein AI antibody, apoprotein AII, anti-apoprotein AII antibody Apoprotein B, anti-apoprotein B antibody, apoprotein E, anti-apoprotein E antibody, rheumatoid factor, anti-rheumatic factor antibody, D-dimer, anti-D-dimer antibody, oxidized LDL, antioxidant LDL antibody, glycated LDL, Anti-glycated LDL antibody, glycoalbumin, anti-glycoalbumin antibody, triiodothyronine (T3), anti-T3 antibody, total thyroxine (T4), anti-T4 antibody, drug (anti-tencan drug, etc.), antibody binding to drug, C -Reactive protein (CRP), anti-CRP antibody, cytokines, antibodies that bind to cytok
  • biotinylated hydrocarbon compounds and biotinylated nucleic acids can also be used.
  • Hydrocarbon compound-bonded magnetic particles can be produced by reacting the streptavidin-bonded magnetic particles of the present invention with a biotinylated hydrocarbon compound.
  • nucleic acid-binding magnetic particles can be produced by reacting the streptavidin-binding magnetic particles of the present invention with biotinylated nucleic acids.
  • hydrocarbon compounds in biotinylated hydrocarbon compounds include mold toxins [deoxynivalenol (DON), nivalenol (NIV), T-2 toxin (T2), etc.], endocrine disruptors [bisphenol A, nonylphenol, Dibutyl phthalate, polychlorinated biphenyls (PCBs), dioxins, p, p'-dichlorodiphenyltrichloroethane, tributyltin, etc.], steroid hormones (aldosterone, testosterone, etc.) and the like.
  • mold toxins deoxynivalenol (DON), nivalenol (NIV), T-2 toxin (T2), etc.
  • endocrine disruptors bisphenol A, nonylphenol, Dibutyl phthalate, polychlorinated biphenyls (PCBs), dioxins, p, p'-dichlorodiphenylt
  • nucleic acid in the biotinylated nucleic acid examples include DNA, RNA, aptamer, and derivatives thereof.
  • the component to be measured in a sample can be measured using the streptavidin-coupled magnetic particles and protein-coupled magnetic particles obtained by the production method of the present invention. Furthermore, the measurement target component in the sample can be measured using the streptavidin-binding magnetic particles obtained by the production method of the present invention and the biotinylated protein.
  • an immunological measurement method using ordinary magnetic particles can be used, and examples thereof include a sandwich method and a competition method.
  • the sample is not particularly limited as long as it enables a method for measuring a component to be measured using streptavidin-coupled magnetic particles and protein-coupled magnetic particles obtained by the production method of the present invention.
  • whole blood, plasma, Serum, cerebrospinal fluid, saliva, amniotic fluid, urine, sweat, pancreatic juice and the like can be mentioned, and plasma, serum and the like are preferable.
  • the component to be measured is not particularly limited as long as it can be measured by a measurement method using streptavidin-coupled magnetic particles and protein-coupled magnetic particles obtained by the production method of the present invention, and examples thereof include the following substances. . IgG, IgM, IgA, IgE, apoprotein AI, apoprotein AII, apoprotein B, apoprotein E, rheumatoid factor, D-dimer, oxidized LDL, glycated LDL, glycoalbumin, triiodothyronine (T3), total thyroxine (T4), drugs (anti-tencan, etc.), C-reactive protein (CRP), cytokines, ⁇ -fetoprotein (AFP), carcinoembryonic antigen (CEA), CA19-9, CA15-3, CA-125 , PIVKA-II, parathyroid hormone (PTH), human chorionic gonadotropin (hCG), thyroid stimulating hormone (TSH), insulin, C-peptide,
  • streptavidin-bound magnetic particles obtained by the production method of the present invention and biotinylated hydrocarbon-based compounds can be used to measure components to be measured in a sample.
  • components to be measured include a hydrocarbon compound constituting a biotinylated hydrocarbon compound, an antibody that binds to the hydrocarbon compound, and the like.
  • hydrocarbon compound include the aforementioned hydrocarbon compounds.
  • the measurement of a measurement target component in a sample using a biotinylated hydrocarbon compound can be performed using a normal immunological measurement method such as a sandwich method or a competitive method.
  • nucleic acid-bound magnetic particles produced using streptavidin-bound magnetic particles obtained by the production method of the present invention and biotinylated nucleic acid or in place of protein-bound magnetic particles
  • the component to be measured in the sample can be measured using the streptavidin-coupled magnetic particles and biotinylated nucleic acid obtained by the production method of the present invention.
  • components to be measured include nucleic acids and proteins that bind to nucleic acids constituting biotin nucleic acids.
  • the protein include the aforementioned proteins.
  • Measurement of a measurement target component in a sample using a biotinylated nucleic acid can be performed using a normal nucleic acid measurement method or a normal immunological measurement method.
  • the prepared solution was transferred to a plastic disposable and dispersed in 0.1% BSA / PBS to a concentration of 0.05 mg / mL.
  • a streptavidin crosslinked product is formed by the reaction of streptavidin and glutaraldehyde, and the particle size of the crosslinked product increases.
  • the particle size of the formed streptavidin crosslinked product was measured under a constant temperature condition of 25 ° C. using a particle size distribution analyzer (manufactured by Sysmex Corporation, ZETASIZERSIZENano-ZS), and the change in particle size with time was followed. The result is shown in FIG.
  • the median particle diameters after adding glutaraldehyde for 22 hours were 190 nm, 82 nm, 37 nm, and 15 nm, respectively. As is apparent from FIG. 1, it was found that the particle diameter of the streptavidin crosslinked body increases with time, particularly when glutaraldehyde 0.0075%, 0.01%, and 0.0125% is used.
  • dispersion A 10 mmol / L acetate buffer
  • the magnetic particles have a core-shell structure, have a particle size of 1.62 ⁇ m, the inner core portion contains a magnetic material with a total mass ratio of 41.2%, and the shell portion made of polystyrene has 97 ⁇ eq of amino groups chemically. Particles modified with / g.
  • washing a series of operations of dispersion of magnetic particles, collection of magnetic particles, and suction removal was referred to as “washing”. (Omitted). The washing was continued 4 times.
  • dispersion A 1.5 ⁇ mL was added to sufficiently disperse the magnetic particles, and then 3.5 ⁇ mL of 25% glutaraldehyde aqueous solution (Nacalai Tesque) was added and shaken incubator (AS-One, SI-300C). Incubated for 2 hours at 37 ° C. with shaking at 1,500 rpm.
  • washing operation was performed 10 times using pH 5.5, 10 mmol / L acetate buffer (hereinafter referred to as dispersion B) containing 0.1% Trimethylstearylammonium Chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) (hereinafter obtained) Magnetic particles are abbreviated as “activated particles”).
  • the activated particles (5 mg) were transferred to 150 ⁇ L of each reaction solution 22 hours after addition of glutaraldehyde and quickly dispersed. This was incubated for 16 hours at 40 ° C. with shaking at 1,500 rpm in a shaking incubator.
  • Streptavidin-bound magnetic particles are dispersed in 0.1% BSA / PBS [PBS: 10 mmol / L ⁇ phosphate buffer (pH 7.2) containing 0.15 mol / L sodium chloride] at 1 mg / mL, and double dilution method is used. Dilute to 6 levels (64-fold dilution) of 0.0156 mg / mL. Each of these 6 samples and blank (0.1% BSA / PBS) was dispensed into a 96-well black plate by 50 ⁇ L.
  • Biotin-Fluorescein® (manufactured by Thermo® Scientific) was diluted to 1 ⁇ g / mL with 0.1% BSA / PBS, and 50 ⁇ L was dispensed into each well into which the sample was dispensed.
  • the plate into which the sample was dispensed was incubated at 37 ° C. for 10 minutes with shaking in a shaker incubator (Amalite), and the fluorescence intensity in the state where particles were dispersed was measured with a fluorescence plate reader “Plate Chameleon V” (manufactured by HIDEX). It was measured.
  • the fluorescently labeled biotin when bound to streptavidin on the magnetic particles, the fluorescently labeled biotin bound to streptavidin exists in close proximity, and fluorescence quenching occurs. Fluorescence quenching increases as the amount of fluorescently labeled biotin bound to streptavidin bound to magnetic particles per unit area increases.
  • the biotin-binding ability of the streptavidin-coupled magnetic particles of the present invention is calculated by preliminarily evaluating the fluorescence reduction rate of this streptavidin using a commercially available magnetic particle with a known biotin-binding ability as a reference. did.
  • the concentration of streptavidin-bound magnetic particles when the fluorescence intensity decreased by 50% was calculated by linear approximation, and compared with the reference streptavidin, biotin binding capacity ( pmol / mm 2 ) was calculated.
  • the streptavidin-coupled magnetic particles obtained in (1) above are compared with commercially available streptavidin-coupled magnetic particles (Dynal Dynabeads T1 and Merck BE-M08 / 10). Thus, it was found to have a high biotin binding ability.
  • streptavidin has a crosslinked structure in the streptavidin-coupled magnetic particles produced by the production method of the present invention.
  • the present invention provides a method for producing streptavidin-coupled magnetic particles having a high biotin-binding ability and a method for producing protein-coupled magnetic particles using the streptavidin-coupled magnetic particles.
  • the streptavidin-coupled magnetic particles and protein-coupled magnetic particles produced by the production method of the present invention are useful for clinical diagnosis.

Abstract

Provided is a manufacturing method for streptavidin-bonded magnetic particles having a high biotin binding capability. A manufacturing method for streptavidin-bonded magnetic particles, said method being characterised by including the following steps. (1) A step for preparing cross-linked streptavidin by reacting glutaraldehyde and streptavidin; (2) a step for reacting magnetic particles with the cross-linked streptavidin prepared in step (1). The streptavidin-bonded magnetic particles manufactured by means of this manufacturing method can be used in clinical diagnosis.

Description

ストレプトアビジン結合磁性粒子の製造方法Method for producing streptavidin-coupled magnetic particles
 本発明は、ストレプトアビジン結合磁性粒子の製造方法、及び、蛋白質結合磁性粒子の製造方法に関する。 The present invention relates to a method for producing streptavidin-coupled magnetic particles and a method for producing protein-coupled magnetic particles.
 診断薬では、ホルモン・癌マーカー・感染症マーカー等の検査対象物質を検出するために固相担体として磁性粒子がしばしば用いられる。このような測定系においては、抗体または抗原(一次プローブ)等が磁性粒子上に結合され、検体中の測定対象物質と結合した後、さらに蛍光物質や化学発光基質、酵素などで標識された二次プローブと結合することにより、定性または定量的に測定対象物質が検出される。 In diagnostic agents, magnetic particles are often used as a solid phase carrier to detect substances to be examined such as hormones, cancer markers, and infectious disease markers. In such a measurement system, an antibody or an antigen (primary probe) or the like is bound on a magnetic particle, bound to a measurement target substance in a sample, and further labeled with a fluorescent substance, a chemiluminescent substrate, an enzyme, or the like. By binding to the next probe, the substance to be measured is detected qualitatively or quantitatively.
 また、近年においては、疾病の早期発見、検査の高精度化、高感度・微量マーカーへの対応等により検査の高感度化が求められている。さらに患者サービスを目的とした検査結果の迅速出力、検査センター化に伴う大量処理化などにより、検査の迅速性も求められるようになってきている。 In recent years, there has been a demand for higher sensitivity of examinations by early detection of diseases, higher precision of examinations, high sensitivity, and support for trace markers. Furthermore, rapid output of examination results for the purpose of patient services and the large amount of processing associated with the establishment of an examination center have led to demand for rapid examination.
 そこで、このような磁性粒子を用いた測定系における高感度化・迅速化を実現する手段として、一次プローブおよび二次プローブを液相中で反応させ、次に磁性粒子上に結合させる方法がよく用いられる。代表的な例では一次プローブにビオチンを結合させたビオチン標識一次プローブを、試料中の測定対象成分、及び、二次プローブと反応させて、ビオチン標識一次プローブ-測定対象成分-二次プローブからなる複合体を形成させ、次いで、アビジン結合磁性粒子を作用させて、アビジン-ビオチン相互作用により、磁性粒子上に当該複合体を結合させる方法がある。 Therefore, as a means to achieve high sensitivity and speed in a measurement system using such magnetic particles, a method in which a primary probe and a secondary probe are reacted in a liquid phase and then bonded onto the magnetic particles is often used. Used. In a typical example, a biotin-labeled primary probe in which biotin is bound to a primary probe is reacted with a measurement target component in a sample and a secondary probe to form a biotin-labeled primary probe-measurement target component-secondary probe. There is a method in which a complex is formed, then avidin-bound magnetic particles are allowed to act, and the complex is bound onto the magnetic particles by avidin-biotin interaction.
 このようなアビジン結合磁性粒子においては、アビジンと同じ性質を持つストレプトアビジンを用いたストレプトアビジン結合磁性粒子の方がより有用である。ストレプトアビジンはアビジンと同様にビオチンと非常に強く結合し、アビジンよりも変性に強いという特性がある。また、等電点はアビジンが塩基性であるのに対して、ストレプトアビジンは弱酸性または中性であるため、他の蛋白質との非特異的結合が少ないという利点が知られている。このストレプトアビジンを利用したストレプトアビジン結合磁性粒子は多くの用途で利用されている。 In such avidin-bonded magnetic particles, streptavidin-bonded magnetic particles using streptavidin having the same properties as avidin are more useful. Like avidin, streptavidin binds very strongly to biotin and has the property of being more resistant to denaturation than avidin. In addition, the isoelectric point is known to have less non-specific binding to other proteins because avidin is basic, whereas streptavidin is weakly acidic or neutral. Streptavidin-coupled magnetic particles using this streptavidin are used in many applications.
 しかしながら、磁性粒子上に結合できるストレプトアビジンの量は限られており、1テストあたりの試薬に必要とされるビオチン結合能を得るためには大量のストレプトアビジン結合磁性粒子を用いらなければならず、製造コストがかかる等の問題点があった。さらに、ストレプトアビジン結合磁性粒子を用いる測定においても以下のような問題点があった。
(1)磁性粒子は静置条件下で沈殿してしまうため使用時には分散させる必要があるが、粒子量が多いと分散させるのに時間と労力がかかる
(2)粒子量が多いと磁石で容器の片側に寄せた際にその体積が大きくなり、B/F分離及び洗浄時に内部に閉じ込められた反応液を洗浄する効率が低下する
(3)測定対象成分を検出する際に磁性粒子量が多いと磁性粒子そのものの着色による濁度が増加し、例えば化学発光や蛍光による検出では光学的な遮蔽によりその感度が低下する。
However, the amount of streptavidin that can be bound on the magnetic particles is limited, and a large amount of streptavidin-bound magnetic particles must be used to obtain the biotin binding capacity required for the reagent per test. There are problems such as high manufacturing costs. Furthermore, there are the following problems in the measurement using streptavidin-coupled magnetic particles.
(1) Since magnetic particles precipitate under standing conditions, it is necessary to disperse them during use. However, if the amount of particles is large, it takes time and labor to disperse.
(2) When the amount of particles is large, the volume increases when the magnet is moved to one side of the container, and the efficiency of cleaning the reaction liquid confined inside during B / F separation and cleaning decreases.
(3) If the amount of magnetic particles is large when detecting the component to be measured, the turbidity due to coloring of the magnetic particles themselves increases, and for example, detection by chemiluminescence or fluorescence decreases the sensitivity due to optical shielding.
 また、ストレプトアビジン結合磁性粒子の量を抑え、ビオチン結合能を必要最小限とした状態においては、検体中に存在するビオチン(ビタミンH)と競合することにより測定における反応が阻害され、正確な検査値を得ることができない可能性が生じる。ビオチンはサプリメントとしての服用、薬剤としての投与があり、しばしばこのような問題が指摘されている。 In addition, when the amount of streptavidin-coupled magnetic particles is reduced and the biotin-binding ability is kept to a minimum, the reaction in the measurement is inhibited by competing with biotin (vitamin H) present in the sample, and an accurate test is performed. There is a possibility that the value cannot be obtained. Biotin has been taken as a supplement and administered as a drug, and such problems are often pointed out.
 一方で、この解決手段としていくつかの方法が提案されてきた。一つは、磁性粒子重量あたりの表面積を大きくするため、粒子の粒径を小さくする方法がある。しかしながら、粒径を小さくすると、磁石で粒子を回収する時間が大幅に長くなったり、洗浄工程における洗浄液の吐出・吸引操作で粒子が流れやすくなったりする等の問題がある。特許文献1には検体中の検出対象物質を分離する方法において、温度応答性高分子により表面が修飾された磁性粒子を用いて、平均粒径50~1,000 nmの磁性粒子においても温度応答性高分子による粒子凝集により、水溶液中から磁性粒子を回収する方法が記載されている。このような粒子は磁性粒子が小さくなることによる反応におけるメリットがある一方、粒子表面が温度応答性高分子により覆われていることによる非特異吸着があり、また凝集させるために特殊な条件下におきかえる工程があった。 On the other hand, several methods have been proposed as means for solving this problem. One method is to reduce the particle size of the particles in order to increase the surface area per magnetic particle weight. However, when the particle size is reduced, there are problems such that the time for collecting the particles with a magnet is significantly increased, and that the particles are easily flown by the discharge / suction operation of the cleaning liquid in the cleaning process. Patent Document 1 discloses a method for separating a substance to be detected in a specimen, which uses magnetic particles whose surface is modified with a temperature-responsive polymer, and has high temperature responsiveness even for magnetic particles having an average particle diameter of 50 to 1,000 nm. A method is described in which magnetic particles are recovered from an aqueous solution by particle aggregation with molecules. While such particles have merit in the reaction due to the smaller magnetic particles, there are non-specific adsorption due to the particle surface being covered with temperature-responsive polymer, and under special conditions to aggregate There was a process to change.
 また、不溶性担体の表面積を大きくするため多孔質化する方法も提案されている。例えば、特許文献2には磁性粒子の外層に多孔質の層を化学的に形成させる方法が記載されているが、この方法では、抗原と抗体との免疫反応やDNA同士またはDNAとRNAとのハイブリダイゼーションにおいて、表面積あたりの結合能は向上するものの、孔内の反応効率が悪く、期待された性能を得ることは難しかった。 In addition, a method of making it porous to increase the surface area of the insoluble carrier has been proposed. For example, Patent Document 2 describes a method of chemically forming a porous layer on the outer layer of magnetic particles. In this method, an immune reaction between an antigen and an antibody, or between DNAs or between DNA and RNA. In hybridization, the binding ability per surface area was improved, but the reaction efficiency in the pores was poor, and it was difficult to obtain the expected performance.
特開2009-28711号公報JP 2009-28711 A 特開2006-307126号公報JP 2006-307126 A
 本発明の目的は、ビオチン結合能の高いストレプトアビジン結合磁性粒子の製造方法を提供することにある。また、本発明の別の目的は、ビオチン結合能の高いストレプトアビジン結合磁性粒子を用いる、蛋白質結合磁性粒子の製造方法を提供することにある。 An object of the present invention is to provide a method for producing streptavidin-coupled magnetic particles having a high biotin-binding ability. Another object of the present invention is to provide a method for producing protein-bound magnetic particles using streptavidin-bound magnetic particles having a high biotin-binding ability.
 本発明者らは本課題を解決すべく鋭意検討を重ねた結果、グルタルアルデヒドとストレプトアビジンとを反応させて、ストレプトアビジンの架橋体を調製し、得られたストレプトアビジンの架橋体と、磁性粒子とを反応させることにより、ビオチン結合能の高いストレプトアビジン結合磁性粒子を製造することができることを見出し、本発明を完成させた。すなわち、本発明は、以下の[1]~[4]に関する。 As a result of intensive studies to solve the problem, the present inventors prepared a cross-linked product of streptavidin by reacting glutaraldehyde and streptavidin, and obtained cross-linked product of streptavidin and magnetic particles. The present inventors have found that streptavidin-coupled magnetic particles having a high biotin-binding ability can be produced by reacting with. That is, the present invention relates to the following [1] to [4].
[1] 以下の工程を含むことを特徴とする、ストレプトアビジン結合磁性粒子の製造方法。
(1)グルタルアルデヒドとストレプトアビジンとを反応させて、ストレプトアビジンの架橋体を調製する工程;及び、
(2)工程(1)で調製したストレプトアビジンの架橋体と、磁性粒子とを反応させる工程。
[2] さらに、以下の工程を含む[1]記載のストレプトアビジン結合磁性粒子の製造方法。
(3)工程(2)で調製したストレプトアビジン結合磁性粒子と還元剤とを反応させる工程。
[3] ストレプトアビジン結合磁性粒子が、磁性粒子上に、ストレプトアビジンどうしが架橋された構造を有する、[1]又は[2]記載のストレプトアビジン結合磁性粒子の製造方法。
[4] [1]~[3]のいずれかに記載の製造方法により製造されるストレプトアビジン結合磁性粒子と、ビオチン化蛋白質とを反応させることを特徴とする、蛋白質結合磁性粒子の製造方法。
[1] A method for producing streptavidin-coupled magnetic particles, comprising the following steps.
(1) reacting glutaraldehyde and streptavidin to prepare a cross-linked product of streptavidin; and
(2) A step of reacting the cross-linked streptavidin prepared in step (1) with magnetic particles.
[2] The method for producing streptavidin-coupled magnetic particles according to [1], further comprising the following steps.
(3) A step of reacting the streptavidin-bound magnetic particles prepared in step (2) with a reducing agent.
[3] The method for producing streptavidin-coupled magnetic particles according to [1] or [2], wherein the streptavidin-coupled magnetic particles have a structure in which streptavidin is crosslinked on the magnetic particles.
[4] A method for producing protein-bound magnetic particles, comprising reacting streptavidin-bound magnetic particles produced by the production method according to any one of [1] to [3] with a biotinylated protein.
 本発明により、ビオチン結合能の高いストレプトアビジン結合磁性粒子の製造方法、及び、当該ストレプトアビジン結合磁性粒子を用いる、蛋白質結合磁性粒子の製造方法が提供される。本発明の製造方法により製造されるストレプトアビジン結合磁性粒子、及び、蛋白質結合磁性粒子は、臨床診断上、有用である。 The present invention provides a method for producing streptavidin-coupled magnetic particles having a high biotin-binding ability and a method for producing protein-coupled magnetic particles using the streptavidin-coupled magnetic particles. The streptavidin-coupled magnetic particles and protein-coupled magnetic particles produced by the production method of the present invention are useful for clinical diagnosis.
実施例1における、グルタルアルデヒド溶液添加後のストレプトアビジンの架橋体の粒径の経時変化を示したグラフである。横軸は反応時間(hr)を、縦軸はストレプトアビジンの架橋体の粒径(nm)を表す。◆はグルタルアルデヒド0.005%溶液を用いた場合の経時変化を、■はグルタルアルデヒド0.0075%溶液を用いた場合の経時変化を、▲はグルタルアルデヒド0.010%溶液を用いた場合の経時変化を、×はグルタルアルデヒド0.0125%溶液を用いた場合の経時変化を表す。2 is a graph showing the change over time in the particle size of a cross-linked streptavidin after addition of a glutaraldehyde solution in Example 1. FIG. The horizontal axis represents the reaction time (hr), and the vertical axis represents the particle size (nm) of the cross-linked streptavidin. ◆ shows the change over time when using a 0.005% solution of glutaraldehyde, ■ shows the change over time when using a 0.0075% solution of glutaraldehyde, ▲ shows the change over time when using a 0.010% solution of glutaraldehyde, It represents the change with time when a glutaraldehyde 0.0125% solution was used.
本発明の製造方法により製造されるストレプトアビジン架橋体とストレプトアビジン結合磁性粒子における、磁性粒子上のストレプトアビジンの構造を表すSDS-PAGEの泳動像である。レーン1は分子量マーカーを、レーン2はストレプトアビンを、レーン3は粒径13.6 nmのストレプトアビジン架橋体を、レーン4は粒径29.2 nmのストレプトアビジン架橋体を、レーン5は粒径63.9 nmのストレプトアビジン架橋体を、レーン6はビオチン結合能が1.96 pmol/mm2のストレプトアビジン結合磁性粒子を、レーン7はビオチン結合能が3.68 pmol/mm2のストレプトアビジン結合磁性粒子を、レーン8はビオチン結合能が5.16 pmol/mm2のストレプトアビジン結合磁性粒子を表す。バンドAは単量体を、バンドBは二量体を、バンドCは三量体を、バンドDは四量体を、バンドEは高次架橋体を表す。2 is an SDS-PAGE electrophoretic image showing the structure of streptavidin on a magnetic particle in a streptavidin crosslinked product and a streptavidin-coupled magnetic particle produced by the production method of the present invention. Lane 1 is molecular weight marker, lane 2 is streptavidin, lane 3 is streptavidin crosslinked with a particle size of 13.6 nm, lane 4 is streptavidin crosslinked with a particle size of 29.2 nm, lane 5 is 63.9 nm in particle size streptavidin crosslinked, lanes 6 streptavidin-conjugated magnetic particles biotin binding capacity 1.96 pmol / mm 2, lanes 7 streptavidin coupled magnetic particles biotin binding capacity 3.68 pmol / mm 2, lane 8 biotin It represents streptavidin-bound magnetic particles with a binding capacity of 5.16 pmol / mm 2 . Band A represents a monomer, band B represents a dimer, band C represents a trimer, band D represents a tetramer, and band E represents a higher-order cross-linked body.
本発明の製造方法により製造されるストレプトアビジン結合磁性粒子の分散性を示す写真である。上は、静置した状態のストレプトアビジン結合磁性粒子を、下は、転倒混和5回後のストレプトアビジン結合磁性粒子の分散状態を表す。It is a photograph which shows the dispersibility of the streptavidin coupling | bonding magnetic particle manufactured by the manufacturing method of this invention. The top shows the streptavidin-coupled magnetic particles in a stationary state, and the bottom shows the dispersed state of the streptavidin-coupled magnetic particles after 5 times of inversion mixing.
1.ストレプトアビジン結合磁性粒子の製造方法
 本発明のストレプトアビジン結合磁性粒子の製造方法は、グルタルアルデヒドとストレプトアビジンとを反応させて、ストレプトアビジンの架橋体を調製する工程(1次反応工程)、及び、1次反応工程で調製したストレプトアビジンの架橋体と、磁性粒子とを反応させる工程(2次反応工程)を含む。
1. Method for Producing Streptavidin-Coupled Magnetic Particles The method for producing streptavidin-coupled magnetic particles of the present invention comprises a step of preparing a cross-linked product of streptavidin by reacting glutaraldehyde and streptavidin (primary reaction step), and A step (secondary reaction step) of reacting the cross-linked streptavidin prepared in the primary reaction step with magnetic particles.
 本発明の製造方法で製造されるストレプトアビジン結合磁性粒子は、磁性粒子上にストレプトアビジンどうしが架橋されている構造を有する。ストレプトアビジンは四量体構造を取っており、単量体どうしは非共有結合により結合している。本発明のストレプトアビジン結合磁性粒子の製造方法により得られるストレプトアビジン結合磁性粒子においては、磁性粒子上で、この四量体構造のストレプトアビジンどうしがグルタルアルデヒドを介して共有結合し、架橋構造を取っている。ストレプトアビジンは、グルタルアルデヒドを介して磁性粒子のアミノ基と結合している。より詳細には、四量体構造のストレプトアビジンのうちの一部が、グルタルアルデヒドを介して磁性粒子のアミノ基と結合している。このストレプトアビジンの架橋構造は、例えばストレプトアビジン結合磁性粒子を1%のSDS溶液に置換し、60℃で1時間処理することによって、磁性粒子上に結合していたストレプトアビジンのサブユニット間結合を解離させ、SDS-PAGE(ドデシル硫酸ナトリウム-ポリアクリルアミドゲル電気泳動)、ゲル濾過HPLC等により確認することができる。SDS-PAGEは、電気泳動により蛋白質を大きさに依存して分離する方法であり、試料をSDSで変性させた後、変性した蛋白質をポリアクリルアミドゲル電気泳動に供して、得られた泳動像から、蛋白質の分離、同定を行う方法である。SDS-PAGEとしては、ストレプトアビジンの架橋構造を確認できる方法であれば特に制限はなく、例えばバイオ実験イラストレイテッド5(細胞工学別冊 秀潤社)に記載されている方法等が挙げられる。 The streptavidin-coupled magnetic particles produced by the production method of the present invention have a structure in which streptavidin is cross-linked on the magnetic particles. Streptavidin has a tetrameric structure, and monomers are linked by non-covalent bonds. In the streptavidin-coupled magnetic particles obtained by the method for producing streptavidin-coupled magnetic particles of the present invention, streptavidin having this tetrameric structure is covalently bonded via glutaraldehyde on the magnetic particles to form a crosslinked structure. ing. Streptavidin is bound to the amino group of the magnetic particle via glutaraldehyde. More specifically, a part of the tetrameric streptavidin is bound to the amino group of the magnetic particle via glutaraldehyde. This streptavidin cross-linked structure is obtained by, for example, replacing streptavidin-bound magnetic particles with 1% SDS solution and treating them at 60 ° C. for 1 hour, thereby binding the streptavidin between subunits bound on the magnetic particles. It can be dissociated and confirmed by SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis), gel filtration HPLC or the like. SDS-PAGE is a method for separating proteins by electrophoresis depending on the size. After denaturing a sample with SDS, the denatured protein is subjected to polyacrylamide gel electrophoresis, and the obtained electrophoresis image is used. This is a method for separating and identifying proteins. The SDS-PAGE is not particularly limited as long as it is a method capable of confirming the streptavidin cross-linked structure, and includes, for example, the method described in Bio-Experiment Illustrated 5 (Separate volume of Cell Engineering, Shujunsha).
 SDS-PAGEにおいて、四量体構造のストレプトアビジンは、SDS存在下での変性処理により、その四量体構造がほどかれる。もしも磁性粒子上のストレプトアビジンどうしが架橋構造を取っていないのであれば、SDS存在下での変性処理により得られる分解物は、ストレプトアビジン由来の単量体のみとなる。一方、磁性粒子上のストレプトアビジンどうしが架橋構造を取っているのであれば、SDS存在下での変性処理により、ストレプトアビジン由来の単量体に加え、ストレプトアビジンの架橋構造に関わった二量体、三量体、さらには高次の多量体が得られることになる。従って、SDS-PAGEにより、ストレプトアビジン由来の単量体、二量体、三量体、及び、高次の多量体に起因するバンドが見られる場合には、磁性粒子上に、ストレプトアビジンの架橋構造が形成されていることになる。 In SDS-PAGE, the tetrameric structure of streptavidin is unwound by denaturation treatment in the presence of SDS. If streptavidin on the magnetic particles does not have a cross-linked structure, the degradation product obtained by the modification treatment in the presence of SDS is only a monomer derived from streptavidin. On the other hand, if streptavidin on the magnetic particles has a cross-linked structure, a dimer related to the streptavidin cross-linked structure in addition to the streptavidin-derived monomer by modification in the presence of SDS. , Trimers and higher order multimers will be obtained. Therefore, when a band derived from streptavidin-derived monomers, dimers, trimers, and higher-order multimers is observed by SDS-PAGE, the streptavidin cross-links on the magnetic particles. A structure is formed.
 本発明の製造方法で製造されるストレプトアビジン結合磁性粒子は、磁性粒子上にストレプトアビジンどうしが架橋されている構造を有しているため、ビオチン結合能が高い。本発明の製造方法で製造されるストレプトアビジン結合磁性粒子の、ビオチン結合能は、通常0.5~18 pmol/mm2であり、1~17 pmol/mm2が好ましく、2~16 pmol/mm2が特に好ましい。本発明の製造方法で製造されるストレプトアビジン結合磁性粒子は、また、ストレプトアビジン結合磁性粒子の分散性が良いという優れた性質を有する。ストレプトアビジン結合磁性粒子の分散性は、例えばキュベットに保存し、沈降させた状態のストレプトアビジン結合磁性粒子を転倒混和させた後のキュベット内の状態を目視で確認すること等により、評価することができる。 The streptavidin-coupled magnetic particles produced by the production method of the present invention has a structure in which streptavidin is cross-linked on the magnetic particles, and thus has a high biotin-binding ability. Streptavidin coupled magnetic particles produced by the production method of the present invention, biotin-binding capacity is normally 0.5 ~ 18 pmol / mm 2, preferably 1 ~ 17 pmol / mm 2, 2 ~ 16 pmol / mm 2 is Particularly preferred. The streptavidin-coupled magnetic particles produced by the production method of the present invention also have an excellent property that the dispersibility of the streptavidin-coupled magnetic particles is good. The dispersibility of the streptavidin-bonded magnetic particles can be evaluated by, for example, visually checking the state in the cuvette after the streptavidin-bonded magnetic particles stored in a cuvette are mixed by inversion. it can.
 本発明のストレプトアビジン結合磁性粒子における、粒子あたりのビオチン結合能は、ビオチン結合能を測定し得る方法であれば、いかなる方法によっても測定することができ、例えば一定量の蛍光標識されたビオチンを一定量のストレプトアビジン結合磁性粒子と反応させ、磁石でストレプトアビジン結合磁性粒子を収集した後に、一定量の上清を採取し、採取された上清の蛍光を測定し、得られた測定値を、予め作成された蛍光強度とビオチン濃度との関係を示す検量線に照らし合わせることにより算出することができる。 The biotin-binding ability per particle in the streptavidin-coupled magnetic particles of the present invention can be measured by any method that can measure biotin-binding ability. For example, a certain amount of fluorescently labeled biotin can be measured. After reacting with a certain amount of streptavidin-bound magnetic particles and collecting the streptavidin-bound magnetic particles with a magnet, a certain amount of supernatant is collected, the fluorescence of the collected supernatant is measured, and the measured value obtained is It can be calculated by comparing with a calibration curve prepared in advance showing the relationship between the fluorescence intensity and the biotin concentration.
 本発明のストレプトアビジン結合磁性粒子において、ストレプトアビジンは、天然由来のものでも、遺伝子組み換え体でもよいが、遺伝子組み換え体が好ましい。 In the streptavidin-coupled magnetic particles of the present invention, streptavidin may be naturally derived or genetically modified, but is preferably genetically modified.
 本発明において、ストレプトアビジンが固定される磁性粒子は、本発明のストレプトアビジン結合磁性粒子の製造を可能とする磁性粒子であれば特に制限はなく、例えば粒子の内部に磁性体を含有し、外層が有機ポリマーなどから成るコア・シェル構造の磁性粒子、外層を含まず磁性体が有機ポリマーに不均一に分散した構造の磁性粒子、磁性体のみから成るクラスター状の磁性粒子等が挙げられる。また、表面にアミノ基、カルボキシル基、エポキシ基、トシル基等の官能基を有する磁性粒子も用いることができる。 In the present invention, the magnetic particles to which the streptavidin is fixed are not particularly limited as long as they are magnetic particles that enable the production of the streptavidin-coupled magnetic particles of the present invention. Examples include magnetic particles having a core / shell structure made of an organic polymer, magnetic particles having a structure in which a magnetic material is not uniformly dispersed in an organic polymer without including an outer layer, and clustered magnetic particles made of only a magnetic material. Magnetic particles having functional groups such as amino group, carboxyl group, epoxy group, and tosyl group on the surface can also be used.
 磁性粒子中に含まれる磁性体は、残留磁化が少なく、超常磁性の磁性体微粒子が好ましく、例えば四三酸化鉄(Fe3O4)、γ-重三二酸化鉄(γ-Fe2O3)等の各種フェライト、鉄、マンガン、コバルト、クロムなどの金属またはこれら金属の合金等が用いられる。 The magnetic substance contained in the magnetic particles is preferably a superparamagnetic fine magnetic particle with little residual magnetization, for example, triiron tetroxide (Fe 3 O 4 ), γ-heavy sesquioxide (γ-Fe 2 O 3 ). And various metals such as ferrite, iron, manganese, cobalt, and chromium, or alloys of these metals.
 有機ポリマーと磁性体から成る磁性粒子中の磁性体の含有量は、磁性粒子全体の重量に占める割合が10重量%以上であるのが好ましく、30~60重量%であることがより好ましい。 The content of the magnetic substance in the magnetic particles composed of the organic polymer and the magnetic substance is preferably 10% by weight or more, more preferably 30 to 60% by weight, based on the total weight of the magnetic particles.
 磁性粒子の形状としては、例えば球状、針状等が挙げられ、球状が好ましい。磁性粒子の粒径は、例えば0.1~5μm等が挙げられ、好ましくは0.5~3μmである。
 磁性粒子の具体例(市販品)としては、例えばアミノ基タイプEstapor磁性粒子(メルク社製)、疎水タイプEstapor磁性粒子(メルク社製)等が挙げられる。
Examples of the shape of the magnetic particle include a spherical shape and a needle shape, and a spherical shape is preferable. The particle diameter of the magnetic particles is, for example, 0.1 to 5 μm, and preferably 0.5 to 3 μm.
Specific examples of magnetic particles (commercially available) include amino group type Estapor magnetic particles (Merck), hydrophobic type Estapor magnetic particles (Merck), and the like.
(1)1次反応工程
 1次反応工程は、グルタルアルデヒドとストレプトアビジンとを反応させ、ストレプトアビジンの架橋体を調製する工程である。上述のようにストレプトアビジンは四量体構造を取っており、単量体どうしは非共有結合により結合している。このストレプトアビジンの架橋体とは、四量体構造のストレプトアビジンどうしがグルタルアルデヒドを介して共有結合し、架橋構造を取っているものである。
(1) Primary reaction step The primary reaction step is a step in which glutaraldehyde and streptavidin are reacted to prepare a streptavidin cross-linked product. As described above, streptavidin has a tetramer structure, and monomers are linked by non-covalent bonds. The streptavidin cross-linked body is a structure in which streptavidin having a tetrameric structure is covalently bonded to each other via glutaraldehyde.
 グルタルアルデヒドとストレプトアビジンとの反応は、ストレプトアビジンの架橋体を調製できる条件であれば如何なる条件でも用いることができ、例えばストレプトアビジンを、分散液等に溶解して得られるストレプトアビジンの水溶液に、グルタルアルデヒドを添加して、ストレプトアビジンとグルタルアルデヒドとを反応させて、ストレプトアビジンの架橋体を調製することができる。分散液としては、例えば界面活性剤を含む水溶液等が挙げられる。分散液のpHとしては、通常pH4.5~7であり、pH5~6が好ましい。水溶液に使用される水性媒体としては、例えば蒸留水、精製水、緩衝液等が挙げられる。水性媒体として緩衝液を用いる場合には、設定するpHに応じた緩衝剤を用いることが望ましい。緩衝液に用いる緩衝剤としては、例えば、酢酸緩衝剤、クエン酸緩衝剤、コハク酸緩衝剤、リン酸緩衝剤、グッドの緩衝剤等が挙げられる。 The reaction between glutaraldehyde and streptavidin can be used under any conditions that can prepare a cross-linked product of streptavidin.For example, streptavidin is obtained by dissolving streptavidin in a dispersion or the like in an aqueous solution of streptavidin. A cross-linked streptavidin can be prepared by adding glutaraldehyde and reacting streptavidin with glutaraldehyde. Examples of the dispersion include an aqueous solution containing a surfactant. The pH of the dispersion is usually pH 4.5-7, preferably pH 5-6. Examples of the aqueous medium used for the aqueous solution include distilled water, purified water, and a buffer solution. When a buffer solution is used as the aqueous medium, it is desirable to use a buffering agent corresponding to the set pH. Examples of the buffer used in the buffer include an acetate buffer, a citrate buffer, a succinate buffer, a phosphate buffer, and Good's buffer.
 グッドの緩衝剤としては、例えば2-モルホリノエタンスルホン酸(MES)、ビス(2-ヒドロキシエチル)イミノトリス(ヒドロキシメチル)メタン(Bis-Tris)、ピペラジン-N,N’-ビス(2-エタンスルホン酸)(PIPES)、N-(2-アセトアミド)-2-アミノエタンスルホン酸(ACES)、3-モルホリノ-2-ヒドロキシプロパンスルホン酸(MOPSO)、N,N-ビス(2-ヒドロキシエチル)-2-アミノエタンスルホン酸(BES)、3-モルホリノプロパンスルホン酸(MOPS)、N-〔トリス(ヒドロキシメチル)メチル〕-2-アミノエタンスルホン酸(TES)、2-〔4-(2-ヒドロキシエチル)-1-ピペラジニル〕エタンスルホン酸(HEPES)、3-〔N,N-ビス(2-ヒドロキシエチル)アミノ〕-2-ヒドロキシプロパンスルホン酸(DIPSO)、N-〔トリス(ヒドロキシメチル)メチル〕-2-ヒドロキシ-3-アミノプロパンスルホン酸(TAPSO)等が挙げられる。 Good buffering agents include, for example, 2-morpholinoethanesulfonic acid (MES), bis (2-hydroxyethyl) iminotris (hydroxymethyl) methane (Bis-Tris), piperazine-N, N′-bis (2-ethanesulfone) Acid) (PIPES), N- (2-acetamido) -2-aminoethanesulfonic acid (ACES), 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO), N, N-bis (2-hydroxyethyl)- 2-aminoethanesulfonic acid (BES), 3-morpholinopropanesulfonic acid (MOPS), N- [tris (hydroxymethyl) methyl] -2-aminoethanesulfonic acid (TES), 2- [4- (2-hydroxy Ethyl) -1-piperazinyl] ethanesulfonic acid (HEPES), 3- [N, N-bis (2-hydroxyethyl) amino] -2-hydroxypropanesulfonic acid (DIPSO), N- [ Squirrel (hydroxymethyl) methyl] -2-hydroxy-3-amino propane sulfonic acid (TAPSO), and the like.
 界面活性剤は、磁性粒子を分散し得るものであれば特に制限はなく、例えば陰イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤等が挙げられる。界面活性剤の分散液中の濃度は、磁性粒子を分散し得る濃度であれば特に制限はなく、例えば0.01~5.0%である。 The surfactant is not particularly limited as long as it can disperse magnetic particles, and examples thereof include an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant. . The concentration of the surfactant in the dispersion is not particularly limited as long as it is a concentration capable of dispersing the magnetic particles, and is, for example, 0.01 to 5.0%.
 グルタルアルデヒドとストレプトアビジンとの反応における反応温度は、通常0~40℃で、20.0~37.5℃が好ましく、25℃が特に好ましい。反応時間は、通常0.5~72時間で、6~48時間が好ましく、18~36時間が特に好ましい。グルタルアルデヒドの量は、ストレプトアビジンとの反応によりストレプトアビジンの架橋体を調製し得る量であれば特に制限はなく、例えばモル濃度比で、0.5~5であり、1~3が特に好ましい。グルタルアルデヒドの濃度は、通常0.001~0.05%で、0.003~0.02%が好ましく、0.005~0.015%が特に好ましい。ストレプトアビジンの濃度は、通常2~40 mg/mLで、5~25 mg/mLが好ましく、10~15 mg/mLが特に好ましい。 The reaction temperature in the reaction of glutaraldehyde and streptavidin is usually 0 to 40 ° C, preferably 20.0 to 37.5 ° C, particularly preferably 25 ° C. The reaction time is usually 0.5 to 72 hours, preferably 6 to 48 hours, and particularly preferably 18 to 36 hours. The amount of glutaraldehyde is not particularly limited as long as it can prepare a cross-linked streptavidin by reaction with streptavidin. For example, the molar concentration ratio is 0.5 to 5, and 1 to 3 is particularly preferable. The concentration of glutaraldehyde is usually 0.001 to 0.05%, preferably 0.003 to 0.02%, particularly preferably 0.005 to 0.015%. The concentration of streptavidin is usually 2 to 40 mg / mL, preferably 5 to 25 mg / mL, and particularly preferably 10 to 15 mg / mL.
 次反応工程においてストレプトアビジンの架橋体の形成の程度はストレプトアビジンの架橋体の粒径を測定することにより追跡することができる。ストレプトアビジンの架橋体の粒径は、例えば粒度分布計で測定することができる。グルタルアルデヒドをストレプトアビジンの水溶液に添加した後、一定間隔で反応液をサンプリングして、ストレプトアビジンの架橋体の粒径を測定することができる。2次反応工程は、1次反応においてストレプトアビジンの架橋体の粒径が一定になる前に行っても、一定になった後又は粒径の変化の程度が緩やかになった段階で行ってもよいが、一定になった後又は粒径の変化の程度が緩やかになった段階で行うことが好ましい。ストレプトアビジンの架橋体の粒径は、通常10~300 nmであり、20~250 nmが好ましく、50~200 nmが特に好ましい。 In the next reaction step, the degree of formation of the streptavidin crosslinked product can be monitored by measuring the particle size of the streptavidin crosslinked product. The particle size of the streptavidin crosslinked product can be measured, for example, with a particle size distribution meter. After adding glutaraldehyde to the aqueous solution of streptavidin, the reaction solution is sampled at regular intervals, and the particle size of the streptavidin crosslinked product can be measured. The secondary reaction step may be performed before the particle size of the streptavidin cross-linked product becomes constant in the primary reaction, or after it becomes constant or at a stage where the degree of change in particle size becomes moderate. Although it is good, it is preferable to carry out after it becomes constant or at a stage where the degree of change in particle size becomes moderate. The particle size of the cross-linked streptavidin is usually 10 to 300 nm, preferably 20 to 250 nm, particularly preferably 50 to 200 nm.
 ストレプトアビジンは、天然由来のものでも、遺伝子組み換え体でもよく、遺伝子組み換え体が好ましい。 Streptavidin may be naturally derived or genetically modified, preferably genetically modified.
(2)2次反応工程
 2次反応工程は、1次反応工程で得られたストレプトアビジンの架橋体を、共有結合又は物理吸着により、磁性粒子に結合させる工程である。2次反応工程において、磁性粒子との反応に使用されるストレプトアビジンの架橋体は、1次反応工程での反応混合物そのものでも、1次反応工程の反応混合物より単離されたものでもよく、1次反応工程での反応混合物そのものが好ましい。
(2) Secondary reaction step The secondary reaction step is a step of binding the cross-linked streptavidin obtained in the primary reaction step to magnetic particles by covalent bonding or physical adsorption. In the secondary reaction step, the streptavidin cross-linked product used for the reaction with the magnetic particles may be the reaction mixture itself in the primary reaction step or may be isolated from the reaction mixture in the primary reaction step. The reaction mixture itself in the next reaction step is preferred.
 ストレプトアビジンの架橋体を、共有結合により、磁性粒子に結合させる場合、例えば、ストレプトアビジンの架橋体と、表面に官能基を有する磁性粒子とを、前述の分散液中で反応させることにより、ストレプトアビジンの架橋体を磁性粒子に結合させることができる。また、リンカー共存下に、ストレプトアビジンの架橋体と、表面に官能基を有する磁性粒子とを、前述の分散液中で反応させてもよい。官能基としては、前述の官能基等が挙げられる。官能基を有する磁性粒子としては、例えばアミノ基タイプEstapor磁性粒子(メルク社製)等が挙げられる。リンカーとしては、ストレプトアビジンの架橋体と、表面に官能基を有する磁性粒子との両者に結合し、ストレプトアビジンの架橋体を磁性粒子に結合させるものであれば特に制限はなく、例えばグルタルアルデヒド、イミドエステル類、N-ヒドロキシスクシンイミドエステル類、分子内にマレイミド基とN-ヒドロキシスクシンイミド活性エステルとを有する化合物等の二価性架橋剤等が挙げられる。市販の二価性架橋剤としては、例えばThermo Fisher Scientific社のサイト(http://www.piercenet.com/products/browse.cfm?fldID=43238248-EE54-4070-A6DF-F037FBFCABCA)、株式会社同仁化学研究所の第27版総合カタログ等に記載されている化合物等が挙げられる。 When a cross-linked streptavidin is bound to a magnetic particle by a covalent bond, for example, a streptavidin cross-linked product is reacted with a magnetic particle having a functional group on the surface in the above-mentioned dispersion to thereby react the streptavidin. Avidin crosslinked can be bonded to magnetic particles. In the presence of a linker, a cross-linked streptavidin and magnetic particles having a functional group on the surface may be reacted in the above dispersion. Examples of the functional group include the functional groups described above. Examples of the magnetic particles having a functional group include amino group type Estapor magnetic particles (manufactured by Merck). The linker is not particularly limited as long as it is bonded to both the streptavidin cross-linked product and the magnetic particle having a functional group on the surface, and the streptavidin cross-linked product is bonded to the magnetic particle. For example, glutaraldehyde, Examples thereof include bifunctional crosslinking agents such as imide esters, N-hydroxysuccinimide esters, and compounds having a maleimide group and an N-hydroxysuccinimide active ester in the molecule. Examples of commercially available divalent cross-linking agents include, for example, the site of Thermo Fisher Scientific (http://www.piercenet.com/products/browse.cfm?fldID=43238248-EE54-4070-A6DF-F037FBFCABCA), Dojin Corporation Examples include the compounds described in the 27th edition general catalog of the Chemical Research Laboratory.
 ストレプトアビジンの架橋体と、表面に官能基を有する磁性粒子との反応は、ストレプトアビジンの架橋体が磁性粒子に結合し得る反応条件であれば如何なる反応条件でもよい。1次反応工程で使用されたストレプトアビジンは磁性粒子に対して、通常10~30 mgであり50~100 mgが好ましい。リンカーは、磁性粒子表面の官能基に対して、通常1~20倍モルであり、5~10 (w/w)倍モルが好ましい。 The reaction between the streptavidin cross-linked product and the magnetic particles having a functional group on the surface may be performed under any reaction conditions as long as the streptavidin cross-linked product can bind to the magnetic particles. Streptavidin used in the primary reaction step is usually 10-30 mg and preferably 50-100 mg for the magnetic particles. The linker is usually 1 to 20 times mol and preferably 5 to 10 mol (w / w) times mol of the functional group on the magnetic particle surface.
 ストレプトアビジンの架橋体を、物理吸着により、磁性粒子に結合させる場合、ストレプトアビジンの架橋体と磁性粒子とを、例えば前述の分散液中で反応させることにより、ストレプトアビジンの架橋体を磁性粒子に結合させることができる。本反応で使用される磁性粒子としては、前述の磁性粒子等が挙げられ、疎水タイプEstapor磁性粒子(メルク社製)などを用いることができる。ストレプトアビジンの架橋体と磁性粒子との反応は、ストレプトアビジンの架橋体が磁性粒子に結合し得る条件であれば如何なる条件でもよい。ストレプトアビジンの架橋体と磁性粒子との反応の反応温度は、通常15~50℃であり、20~40℃が好ましく、35℃が特に好ましい。反応時間は、通常30分間~6時間であり、1~2時間が好ましい。 When the streptavidin cross-linked product is bonded to the magnetic particles by physical adsorption, the streptavidin cross-linked product is reacted with the magnetic particles in, for example, the above-mentioned dispersion to convert the streptavidin cross-linked product to the magnetic particles. Can be combined. Examples of the magnetic particles used in this reaction include the above-described magnetic particles, and hydrophobic type Estapor magnetic particles (manufactured by Merck) can be used. The reaction between the cross-linked streptavidin and the magnetic particles may be under any conditions as long as the cross-linked streptavidin is capable of binding to the magnetic particles. The reaction temperature for the reaction between the streptavidin crosslinked product and the magnetic particles is usually 15 to 50 ° C, preferably 20 to 40 ° C, and particularly preferably 35 ° C. The reaction time is usually 30 minutes to 6 hours, preferably 1 to 2 hours.
 2次反応工程で得られた反応混合物そのものも、ストレプトアビジン結合磁性粒子として使用することができるが、2次反応工程で得られた反応混合物中の磁性粒子を磁石により収集し、磁性粒子以外の溶液を除去した後、洗浄液により洗浄して得られる磁性粒子も、ストレプトアビジン結合磁性粒子として使用することができる。洗浄液としては、本発明により得られるストレプトアビジン結合磁性粒子以外の物質を洗浄し得る洗浄液であれば特に制限はなく、例えば前述の水性媒体等が挙げられる。また、蛋白質や防腐剤を含む水性媒体も洗浄液として使用することができる。蛋白質としては、例えば牛血清アルブミン(BSA)等が挙げられる。防腐剤としては、例えばアジ化ナトリウム等が挙げられる。 The reaction mixture itself obtained in the secondary reaction step can also be used as streptavidin-coupled magnetic particles, but the magnetic particles in the reaction mixture obtained in the secondary reaction step are collected by a magnet, and other than the magnetic particles Magnetic particles obtained by removing the solution and then washing with a washing solution can also be used as streptavidin-coupled magnetic particles. The cleaning liquid is not particularly limited as long as it is a cleaning liquid capable of cleaning substances other than the streptavidin-coupled magnetic particles obtained according to the present invention, and examples thereof include the aforementioned aqueous medium. An aqueous medium containing protein and preservative can also be used as a cleaning liquid. Examples of the protein include bovine serum albumin (BSA). Examples of the preservative include sodium azide.
 洗浄された磁性粒子は、保存用溶液に懸濁されて保存することができる。保存用溶液としては、本発明により得られるストレプトアビジン結合磁性粒子を安定に保存することができる溶液であれば特に制限はなく、例えば中性から弱酸性の緩衝液中に、牛血清アルブミン(BSA)等の蛋白質を含む水溶液等が挙げられる。
 本発明のストレプトアビジン結合磁性粒子の製造方法においては、2次反応工程後に、さらに還元反応工程を含んでもよい。還元反応工程は、2次反応工程で生成したストレプトアビジン結合磁性粒子と還元剤との反応の工程である。2次反応工程により、磁性粒子上に架橋構造のストレプトアビジンが形成されるが、形成された架橋構造のストレプトアビジンはシッフ塩基(イミン)を含むため、このシッフ塩基(イミン)を還元剤により還元することにより、より安定な架橋構造とすることができる。
The washed magnetic particles can be suspended and stored in a storage solution. The storage solution is not particularly limited as long as it can stably store the streptavidin-bound magnetic particles obtained by the present invention.For example, in a neutral to weakly acidic buffer, bovine serum albumin (BSA An aqueous solution containing a protein such as
The method for producing streptavidin-coupled magnetic particles of the present invention may further include a reduction reaction step after the secondary reaction step. The reduction reaction step is a reaction step between the streptavidin-coupled magnetic particles generated in the secondary reaction step and the reducing agent. In the secondary reaction step, streptavidin having a cross-linked structure is formed on the magnetic particles. Since the streptavidin having the cross-linked structure contains a Schiff base (imine), the Schiff base (imine) is reduced by a reducing agent. By doing so, a more stable crosslinked structure can be obtained.
 還元反応工程におけるストレプトアビジン結合磁性粒子として、2次反応工程の反応混合物そのものを用いても、洗浄された磁性粒子を用いてもよい。ストレプトアビジン結合磁性粒子と還元剤との反応に用いられる溶媒は、還元反応を進行させ得る溶媒であれば特に制限はなく、例えば前述の分散液等が挙げられる。また、有機溶媒を含む分散液も還元反応における溶媒として用いることができる。有機溶媒としては、水に可溶性で、還元反応を進行させ得る有機溶媒であれば特に制限はなく、例えばメタノール、エタノール、テトラヒドロフラン等が挙げられる。還元剤としては、シッフ塩基(イミン)を還元し、架橋構造を保持し得る還元剤であれば特に制限はなく、例えばボラン系の還元剤等が挙げられる。ボラン系の還元剤としては、例えば2-ピコリンボラン、水素化ホウ素ナトリウム等が挙げられる。還元剤の添加量は、通常磁性粒子の0.0001~0.1(w/w)%であり、0.0005~0.05(w/w)%が好ましく、0.001(w/w)%が特に好ましい。 As the streptavidin-coupled magnetic particles in the reduction reaction step, the reaction mixture itself in the secondary reaction step or the washed magnetic particles may be used. The solvent used for the reaction between the streptavidin-bonded magnetic particles and the reducing agent is not particularly limited as long as it is a solvent capable of allowing the reduction reaction to proceed, and examples thereof include the above-described dispersion liquid. A dispersion containing an organic solvent can also be used as a solvent in the reduction reaction. The organic solvent is not particularly limited as long as it is soluble in water and can cause a reduction reaction, and examples thereof include methanol, ethanol, and tetrahydrofuran. The reducing agent is not particularly limited as long as it is a reducing agent that can reduce the Schiff base (imine) and maintain a crosslinked structure, and examples thereof include a borane-based reducing agent. Examples of the borane reducing agent include 2-picoline borane and sodium borohydride. The amount of the reducing agent added is usually 0.0001 to 0.1 (w / w)% of the magnetic particles, preferably 0.0005 to 0.05 (w / w)%, and particularly preferably 0.001 (w / w)%.
 還元反応の反応温度は、通常30~50℃であり、35~45℃が好ましく、40℃が特に好ましい。還元反応の反応時間は、通常2日間~10日間であり、5日間~8日間が好ましく、6日間が特に好ましい。 The reaction temperature of the reduction reaction is usually 30 to 50 ° C, preferably 35 to 45 ° C, particularly preferably 40 ° C. The reaction time for the reduction reaction is usually 2 days to 10 days, preferably 5 days to 8 days, and particularly preferably 6 days.
 還元反応後、磁性粒子は磁石により、磁性粒子以外の溶液成分と分離することができる。分離された磁性粒子は、洗浄液により洗浄され、さらに、洗浄された磁性粒子は保存用溶液中に懸濁されて保存することができる。洗浄液としては、分離された磁性粒子中の溶液成分を洗浄し得る洗浄液であれば特に制限はなく、例えば前述の洗浄液等が挙げられる。また、保存用溶液としては、得られたストレプトアビジン結合磁性粒子を安定に保存し得る溶液であれば特に制限はなく、例えば前述の保存用溶液等が挙げられる。 After the reduction reaction, the magnetic particles can be separated from solution components other than the magnetic particles by a magnet. The separated magnetic particles are washed with a washing solution, and the washed magnetic particles can be stored in a state of being suspended in a storage solution. The cleaning liquid is not particularly limited as long as it is a cleaning liquid capable of cleaning the solution components in the separated magnetic particles, and examples thereof include the above-described cleaning liquid. The storage solution is not particularly limited as long as it is a solution that can stably store the obtained streptavidin-coupled magnetic particles, and examples thereof include the storage solution described above.
2.蛋白質結合磁性粒子の製造方法
 本発明の製造方法で製造されるストレプトアビジン結合磁性粒子と、ビオチン化蛋白質とを反応させることにより蛋白質結合磁性粒子を製造することができる。磁性粒子上のストレプトアビジンと蛋白質に結合するビオチンとの相互作用により、蛋白質が磁性粒子上に結合する。
2. Method for Producing Protein-Binding Magnetic Particles Protein-bound magnetic particles can be produced by reacting the streptavidin-coupled magnetic particles produced by the production method of the present invention with a biotinylated protein. The protein binds to the magnetic particle by the interaction between streptavidin on the magnetic particle and biotin that binds to the protein.
 ストレプトアビジン結合磁性粒子と、ビオチン化蛋白質との反応は、蛋白質が磁性粒子上に結合する条件であれば如何なる条件でもよい。反応温度は、通常25~50℃であり、30~40℃が好ましい。反応時間は、通常30分間~24時間であり、2~18時間が好ましい。 The reaction between the streptavidin-bound magnetic particles and the biotinylated protein may be performed under any conditions as long as the protein binds on the magnetic particles. The reaction temperature is usually 25 to 50 ° C, preferably 30 to 40 ° C. The reaction time is usually 30 minutes to 24 hours, preferably 2 to 18 hours.
 蛋白質としては、測定対象成分に結合する抗体、抗原抗体反応において測定対象成分と競合する競合物質等が挙げられる。競合物質としては、例えば測定対象成分や、測定対象成分に結合する抗体が認識するエピトープを含む物質等が挙げられる。蛋白質の具体例としては、IgG、抗IgG抗体、IgM、抗IgM抗体、IgA、抗IgA抗体、IgE、抗IgE抗体、アポ蛋白AI、抗アポ蛋白AI抗体、アポ蛋白AII、抗アポ蛋白AII抗体、アポ蛋白B、抗アポ蛋白B抗体、アポ蛋白E、抗アポ蛋白E抗体、リウマチファクター、抗リウマチファクター抗体、D-ダイマー、抗D-ダイマー抗体、酸化LDL、抗酸化LDL抗体、糖化LDL、抗糖化LDL抗体、グリコアルブミン、抗グリコアルブミン抗体、トリヨードサイロニン(T3)、抗T3抗体、総サイロキシン(T4)、抗T4抗体、薬剤(抗テンカン剤等)、薬剤に結合する抗体、C-反応性蛋白(CRP)、抗CRP抗体、サイトカイン類、サイトカイン類に結合する抗体、α-フェトプロテイン(AFP)、抗AFP抗体、癌胎児性抗原(CEA)、抗CEA抗体、CA19-9、抗CA19-9抗体、CA15-3、抗CA15-3抗体、CA-125、抗CA-125抗体、PIVKA-II、抗PIVKA-II抗体、副甲状腺ホルモン(PTH)、抗PTH抗体、ヒト絨毛性ゴナドトロピン(hCG)、抗hCG抗体、甲状腺刺激ホルモン(TSH)、抗TSH抗体、インスリン、抗インスリン抗体、C-ペプタイド、抗C-ペプタイド抗体、エストロゲン、抗エストロゲン抗体、線維芽細胞増殖因子-23(FGF-23)、抗FGF-23抗体、グルタミン酸脱炭酸酵素(GAD)、抗GAD抗体、ペプシノーゲン、抗ペプシノーゲン抗体、B型肝炎ウイルス(HBV)抗原、抗HBV抗体、C型肝炎ウイルス(HCV)抗原、抗HCV抗体、成人T細胞性白血病ウイルス1型(HTLV-I)抗原、抗HTLV-I抗体、ヒト免疫不全ウイルス(HIV)抗原、抗HIV抗体、インフルエンザウイルス抗原、抗インフルエンザウイルス抗体、結核菌抗原(TBGL)、抗結核菌抗体、マイコプラズマ抗原、抗マイコプラズマ抗体、ヘモグロビンA1c、抗ヘモグロビンA1c抗体、心房性ナトリウム利尿ペプチド(ANP)、抗ANP抗体、脳性ナトリウム利尿ペプチド(BNP)、抗BNP抗体、トロポニンT、抗トロポニンT抗体、トロポニンI、抗トロポニンI抗体、クレアチニンキナーゼ-MB(CK-MB)、抗CK-MB抗体、ミオグロビン、抗ミオグロビン抗体、L-FABP、抗L-FABP抗体、H-FABP、抗H-FABP抗体、CCP抗原、抗CCP抗体、SP-D、抗SP-D抗体、カビ毒類[デオキシニバレノール(DON)、ニバレノール(NIV)、T-2トキシン(T2)等]に結合する抗体、内分泌撹乱物質類[ビスフェノールA、ノニルフェノール、フタル酸ジブチル、ポリ塩素化ビフェニル(PCB)類、ダイオキシン類、p,p’-ジクロロジフェニルトリクロロエタン、トリブチルスズ等]に結合する抗体、ステロイドホルモン類(アルドステロン、テストステロン等)に結合する抗体、大腸菌等の菌類、菌類に結合する抗体、食物アレルギー物質ダニ類等のアレルギー物質、抗アレルギー物質抗体等が挙げられる。 Examples of the protein include an antibody that binds to the measurement target component, and a competitive substance that competes with the measurement target component in the antigen-antibody reaction. Examples of the competitive substance include a measurement target component and a substance containing an epitope recognized by an antibody that binds to the measurement target component. Specific examples of proteins include IgG, anti-IgG antibody, IgM, anti-IgM antibody, IgA, anti-IgA antibody, IgE, anti-IgE antibody, apoprotein AI, anti-apoprotein AI antibody, apoprotein AII, anti-apoprotein AII antibody Apoprotein B, anti-apoprotein B antibody, apoprotein E, anti-apoprotein E antibody, rheumatoid factor, anti-rheumatic factor antibody, D-dimer, anti-D-dimer antibody, oxidized LDL, antioxidant LDL antibody, glycated LDL, Anti-glycated LDL antibody, glycoalbumin, anti-glycoalbumin antibody, triiodothyronine (T3), anti-T3 antibody, total thyroxine (T4), anti-T4 antibody, drug (anti-tencan drug, etc.), antibody binding to drug, C -Reactive protein (CRP), anti-CRP antibody, cytokines, antibodies that bind to cytokines, α-fetoprotein (AFP), anti-AFP antibody, carcinoembryonic antigen (CEA), anti-CEA antibody, CA19-9, anti CA19-9 antibody, CA15-3, anti-CA15-3 antibody, CA-125, anti-CA-125 antibody, PIVKA-II, anti-PIVKA-II anti , Parathyroid hormone (PTH), anti-PTH antibody, human chorionic gonadotropin (hCG), anti-hCG antibody, thyroid stimulating hormone (TSH), anti-TSH antibody, insulin, anti-insulin antibody, C-peptide, anti-C-peptide antibody , Estrogen, anti-estrogen antibody, fibroblast growth factor-23 (FGF-23), anti-FGF-23 antibody, glutamate decarboxylase (GAD), anti-GAD antibody, pepsinogen, anti-pepsinogen antibody, hepatitis B virus (HBV ) Antigen, anti-HBV antibody, hepatitis C virus (HCV) antigen, anti-HCV antibody, adult T-cell leukemia virus type 1 (HTLV-I) antigen, anti-HTLV-I antibody, human immunodeficiency virus (HIV) antigen, Anti-HIV antibody, influenza virus antigen, anti-influenza virus antibody, tuberculosis antigen (TBGL), anti-tuberculosis antibody, mycoplasma antigen, anti-mycoplasma antibody, hemoglobin A1c, anti-hemoglobin A1c antibody, atrial natriuretic peptide Tide (ANP), anti-ANP antibody, brain natriuretic peptide (BNP), anti-BNP antibody, troponin T, anti-troponin T antibody, troponin I, anti-troponin I antibody, creatinine kinase-MB (CK-MB), anti-CK- MB antibody, myoglobin, anti-myoglobin antibody, L-FABP, anti-L-FABP antibody, H-FABP, anti-H-FABP antibody, CCP antigen, anti-CCP antibody, SP-D, anti-SP-D antibody, mold venom [ Antibodies that bind to deoxynivalenol (DON), nivalenol (NIV), T-2 toxin (T2), etc., endocrine disruptors [bisphenol A, nonylphenol, dibutyl phthalate, polychlorinated biphenyls (PCBs), dioxins , P, p'-dichlorodiphenyltrichloroethane, tributyltin, etc.], antibodies that bind to steroid hormones (aldosterone, testosterone, etc.), fungi such as E. coli, antibodies that bind to fungi, food alleles It allergens over material mites such as antiallergic agent antibodies, and the like.
 また、ビオチン化蛋白質の他に、ビオチン化炭化水素系化合物やビオチン化核酸も用いることができる。本発明のストレプトアビジン結合磁性粒子と、ビオチン化炭化水素系化合物とを反応させることにより、炭化水素系化合物結合磁性粒子を製造することができる。また、本発明のストレプトアビジン結合磁性粒子と、ビオチン化核酸とを反応させることにより、核酸結合磁性粒子を製造することができる。 In addition to biotinylated proteins, biotinylated hydrocarbon compounds and biotinylated nucleic acids can also be used. Hydrocarbon compound-bonded magnetic particles can be produced by reacting the streptavidin-bonded magnetic particles of the present invention with a biotinylated hydrocarbon compound. In addition, nucleic acid-binding magnetic particles can be produced by reacting the streptavidin-binding magnetic particles of the present invention with biotinylated nucleic acids.
 ビオチン化炭化水素系化合物における炭化水素系化合物としては、例えばカビ毒類[デオキシニバレノール(DON)、ニバレノール(NIV)、T-2トキシン(T2)等]、内分泌撹乱物質類[ビスフェノールA、ノニルフェノール、フタル酸ジブチル、ポリ塩素化ビフェニル(PCB)類、ダイオキシン類、p,p’-ジクロロジフェニルトリクロロエタン、トリブチルスズ等]、ステロイドホルモン類(アルドステロン、テストステロン等)等が挙げられる。 Examples of hydrocarbon compounds in biotinylated hydrocarbon compounds include mold toxins [deoxynivalenol (DON), nivalenol (NIV), T-2 toxin (T2), etc.], endocrine disruptors [bisphenol A, nonylphenol, Dibutyl phthalate, polychlorinated biphenyls (PCBs), dioxins, p, p'-dichlorodiphenyltrichloroethane, tributyltin, etc.], steroid hormones (aldosterone, testosterone, etc.) and the like.
 ビオチン化核酸における核酸としては、例えばDNA、RNA、アプタマー、これらの誘導体等が挙げられる。 Examples of the nucleic acid in the biotinylated nucleic acid include DNA, RNA, aptamer, and derivatives thereof.
 本発明の製造方法により得られるストレプトアビジン結合磁性粒子及び蛋白質結合磁性粒子を用いて、試料中の測定対象成分を測定することができる。さらに、本発明の製造方法により得られるストレプトアビジン結合磁性粒子と、ビオチン化蛋白質とを用いて、試料中の測定対象成分を測定することもできる。当該測定方法は、通常の磁性粒子を用いる免疫学的測定方法が用いることができ、サンドイッチ法、競合法等が挙げられる。試料としては、本発明の製造方法により得られるストレプトアビジン結合磁性粒子及び蛋白質結合磁性粒子を用いた測定対象成分の測定方法を可能とする試料であれば特に制限はなく、例えば全血、血漿、血清、髄液、唾液、羊水、尿、汗、膵液等が挙げられるが、血漿、血清等が好ましい。 The component to be measured in a sample can be measured using the streptavidin-coupled magnetic particles and protein-coupled magnetic particles obtained by the production method of the present invention. Furthermore, the measurement target component in the sample can be measured using the streptavidin-binding magnetic particles obtained by the production method of the present invention and the biotinylated protein. As the measurement method, an immunological measurement method using ordinary magnetic particles can be used, and examples thereof include a sandwich method and a competition method. The sample is not particularly limited as long as it enables a method for measuring a component to be measured using streptavidin-coupled magnetic particles and protein-coupled magnetic particles obtained by the production method of the present invention. For example, whole blood, plasma, Serum, cerebrospinal fluid, saliva, amniotic fluid, urine, sweat, pancreatic juice and the like can be mentioned, and plasma, serum and the like are preferable.
 測定対象成分としては、本発明の製造方法により得られるストレプトアビジン結合磁性粒子及び蛋白質結合磁性粒子を用いた測定方法により測定され得るものであれば特に制限はなく、例えば以下の物質等が挙げられる。IgG、IgM、IgA、IgE、アポ蛋白AI、アポ蛋白AII、アポ蛋白B、アポ蛋白E、リウマチファクター、D-ダイマー、酸化LDL、糖化LDL、グリコアルブミン、トリヨードサイロニン(T3)、総サイロキシン(T4)、薬剤(抗テンカン剤等)、C-反応性蛋白(CRP)、サイトカイン類、α-フェトプロテイン(AFP)、癌胎児性抗原(CEA)、CA19-9、CA15-3、CA-125、PIVKA-II、副甲状腺ホルモン(PTH)、ヒト絨毛性ゴナドトロピン(hCG)、甲状腺刺激ホルモン(TSH)、インスリン、C-ペプタイド、エストロゲン、線維芽細胞増殖因子-23(FGF-23)、抗グルタミン酸脱炭酸酵素(GAD)抗体、ペプシノーゲン、B型肝炎ウイルス(HBV)抗原、抗HBV抗体、C型肝炎ウイルス(HCV)抗原、抗HCV抗体、成人T細胞性白血病ウイルス1型(HTLV-I)抗原、抗HTLV-I抗体、ヒト免疫不全ウイルス(HIV)抗体、インフルエンザウイルス抗原、抗インフルエンザウイルス抗体、抗結核菌抗体、結核菌抗原(TBGL)マイコプラズマ抗体、ヘモグロビンA1c、心房性ナトリウム利尿ペプチド(ANP)、脳性ナトリウム利尿ペプチド(BNP)、トロポニンT、トロポニンI、クレアチニンキナーゼ-MB(CK-MB)、ミオグロビン、L-FABP、H-FABP、抗CCP抗体、SP-D、カビ毒類[デオキシニバレノール(DON)、ニバレノール(NIV)、T-2トキシン(T2)等]、内分泌撹乱物質類[ビスフェノールA、ノニルフェノール、フタル酸ジブチル、ポリ塩素化ビフェニル(PCB)類、ダイオキシン類、p,p’-ジクロロジフェニルトリクロロエタン、トリブチルスズ等]、ステロイドホルモン類(アルドステロン、テストステロン等)、大腸菌等の菌類、食物アレルギー物質ダニ類等のアレルギー物質、抗アレルギー物質抗体等が挙げられる。 The component to be measured is not particularly limited as long as it can be measured by a measurement method using streptavidin-coupled magnetic particles and protein-coupled magnetic particles obtained by the production method of the present invention, and examples thereof include the following substances. . IgG, IgM, IgA, IgE, apoprotein AI, apoprotein AII, apoprotein B, apoprotein E, rheumatoid factor, D-dimer, oxidized LDL, glycated LDL, glycoalbumin, triiodothyronine (T3), total thyroxine (T4), drugs (anti-tencan, etc.), C-reactive protein (CRP), cytokines, α-fetoprotein (AFP), carcinoembryonic antigen (CEA), CA19-9, CA15-3, CA-125 , PIVKA-II, parathyroid hormone (PTH), human chorionic gonadotropin (hCG), thyroid stimulating hormone (TSH), insulin, C-peptide, estrogen, fibroblast growth factor-23 (FGF-23), anti-glutamic acid Decarboxylase (GAD) antibody, pepsinogen, hepatitis B virus (HBV) antigen, anti-HBV antibody, hepatitis C virus (HCV) antigen, anti-HCV antibody, adult T-cell leukemia virus type 1 (HTLV-I) antigen Anti-HTLV-I antibody, human immunodeficiency virus (HIV) antibody, influenza virus antigen, anti-in Luenza virus antibody, anti-tuberculosis antibody, tuberculosis antigen (TBGL) mycoplasma antibody, hemoglobin A1c, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), troponin T, troponin I, creatinine kinase-MB (CK -MB), myoglobin, L-FABP, H-FABP, anti-CCP antibody, SP-D, mold toxins [deoxynivalenol (DON), nivalenol (NIV), T-2 toxin (T2), etc.], endocrine disruptors [Bisphenol A, nonylphenol, dibutyl phthalate, polychlorinated biphenyls (PCBs), dioxins, p, p'-dichlorodiphenyltrichloroethane, tributyltin, etc.], steroid hormones (aldosterone, testosterone, etc.), fungi such as Escherichia coli And allergic substances such as food allergen mites, anti-allergic substance antibodies and the like.
 また、蛋白質結合磁性粒子の代わりに、本発明の製造方法により得られるストレプトアビジン結合磁性粒子とビオチン化炭化水素系化合物とを用いて製造される炭化水素系化合物結合磁性粒子を用いて、又は、蛋白質結合磁性粒子の代わりに、本発明の製造方法により得られるストレプトアビジン結合磁性粒子とビオチン化炭化水素系化合物とを用いて、試料中の測定対象成分を測定することができる。測定対象成分としては、例えばビオチン化炭化水素系化合物を構成する炭化水素系化合物や当該炭化水素系化合物に結合する抗体等が挙げられる。炭化水素系化合物としては、例えば前述の炭化水素系化合物等が挙げられる。ビオチン化炭化水素系化合物を用いた試料中の測定対象成分の測定は、例えばサンドイッチ法や競合法等の通常の免疫学的測定方法を用いて行うことができる。 Further, instead of protein-bound magnetic particles, using hydrocarbon compound-bound magnetic particles produced using streptavidin-bound magnetic particles obtained by the production method of the present invention and biotinylated hydrocarbon-based compounds, or Instead of protein-bound magnetic particles, streptavidin-bound magnetic particles obtained by the production method of the present invention and biotinylated hydrocarbon compounds can be used to measure components to be measured in a sample. Examples of components to be measured include a hydrocarbon compound constituting a biotinylated hydrocarbon compound, an antibody that binds to the hydrocarbon compound, and the like. Examples of the hydrocarbon compound include the aforementioned hydrocarbon compounds. The measurement of a measurement target component in a sample using a biotinylated hydrocarbon compound can be performed using a normal immunological measurement method such as a sandwich method or a competitive method.
 さらに、蛋白質結合磁性粒子の代わりに、本発明の製造方法により得られるストレプトアビジン結合磁性粒子とビオチン化核酸とを用いて製造される核酸結合磁性粒子を用いて、又は、蛋白質結合磁性粒子の代わりに、本発明の製造方法により得られるストレプトアビジン結合磁性粒子とビオチン化核酸とを用いて、試料中の測定対象成分を測定することができる。測定対象成分としては、例えばビオチン核酸を構成する核酸に結合する核酸や蛋白質等が挙げられる。蛋白質としては、例えば前述の蛋白質等が挙げられる。ビオチン化核酸を用いた試料中の測定対象成分の測定は、通常の核酸測定方法や、通常の免疫学的測定方法を用いて行うことができる。 Further, in place of protein-bound magnetic particles, nucleic acid-bound magnetic particles produced using streptavidin-bound magnetic particles obtained by the production method of the present invention and biotinylated nucleic acid, or in place of protein-bound magnetic particles In addition, the component to be measured in the sample can be measured using the streptavidin-coupled magnetic particles and biotinylated nucleic acid obtained by the production method of the present invention. Examples of components to be measured include nucleic acids and proteins that bind to nucleic acids constituting biotin nucleic acids. Examples of the protein include the aforementioned proteins. Measurement of a measurement target component in a sample using a biotinylated nucleic acid can be performed using a normal nucleic acid measurement method or a normal immunological measurement method.
 以下、実施例により本発明をより詳細に説明するが、これらは本発明の範囲を何ら限定するものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but these do not limit the scope of the present invention.
(1)ストレプトアビジン結合磁性粒子の製造
 遺伝子組み換え体のストレプトアビジン(ロシュ社製)を、pH5.5、10 mmol/L酢酸緩衝液に24.5 mg/mLとなるように溶解し、氷冷で1時間以上静置した。このストレプトアビジン溶液75μLに、25%グルタルアルデヒド水溶液(ナカライテスク社製)をpH5.5、10 mmol/L酢酸緩衝液で希釈し、0.0125%としたグルタルアルデヒド溶液75μLを添加した。同様に0.010%、0.0075%、0.005%のグルタルアルデヒド溶液を添加した溶液を調製した。
(1) Production of Streptavidin-Binding Magnetic Particles A genetically modified streptavidin (manufactured by Roche) is dissolved in pH 5.5, 10 mmol / L acetic acid buffer solution to 24.5 mg / mL, and ice-cooled to 1 Let stand for more than an hour. To 75 μL of this streptavidin solution, a 25% glutaraldehyde aqueous solution (manufactured by Nacalai Tesque) was diluted with pH 5.5, 10 mmol / L acetic acid buffer solution, and 75 μL of a glutaraldehyde solution adjusted to 0.0125% was added. Similarly, a solution to which 0.010%, 0.0075%, and 0.005% glutaraldehyde solution was added was prepared.
 調製した溶液をプラスチック製ディスポセルに移し、0.1%BSA・PBSに、0.05 mg/mL濃度となるように分散させた。時間の経過と共に、ストレプトアビジンとグルタルアルデヒドとの反応によりストレプトアビジンの架橋体が形成され、架橋体の粒径が大きくなる。形成されたストレプトアビジンの架橋体の粒径を、粒度分布計(シスメックス社製、ZETASIZER Nano-ZS)を用いて、25℃の恒温条件下で測定し、粒径の経時変化を追跡した。その結果を図1に示す。 The prepared solution was transferred to a plastic disposable and dispersed in 0.1% BSA / PBS to a concentration of 0.05 mg / mL. With the passage of time, a streptavidin crosslinked product is formed by the reaction of streptavidin and glutaraldehyde, and the particle size of the crosslinked product increases. The particle size of the formed streptavidin crosslinked product was measured under a constant temperature condition of 25 ° C. using a particle size distribution analyzer (manufactured by Sysmex Corporation, ZETASIZERSIZENano-ZS), and the change in particle size with time was followed. The result is shown in FIG.
 グルタルアルデヒド添加22時間後の粒径の中央値はそれぞれ190 nm、82 nm、37 nm、15 nmであった。図1より明らかなように、特にグルタルアルデヒド0.0075%、0.01%、0.0125%を用いた場合には、ストレプトアビジンの架橋体の粒径が時間の経過と共に、大きくなることが判明した。 The median particle diameters after adding glutaraldehyde for 22 hours were 190 nm, 82 nm, 37 nm, and 15 nm, respectively. As is apparent from FIG. 1, it was found that the particle diameter of the streptavidin crosslinked body increases with time, particularly when glutaraldehyde 0.0075%, 0.01%, and 0.0125% is used.
 次に、磁性粒子として、アミノ基タイプEstapor磁性粒子 EM2-100/40(メルク社製)を用いて、当該磁性粒子20 mgを、1.0%のTrimethylstearylammonium Chloride(東京化成社製)を含むpH5.5、10 mmol/L酢酸緩衝液(以下、分散液Aという)4 mLに分散させた。当該磁性粒子は、コア・シェル構造から成り、粒径が1.62μmであり、内部コア部分には全質量比41.2%の磁性体を含み、ポリスチレンからなるシェル部分には化学的にアミノ基が97μeq/gで修飾されている粒子である。続いて、容器横に強力磁石を配することで磁性粒子を収集し、分散液Aを吸引除去した(以下、磁性粒子の分散、磁性粒子の収集、吸引除去の一連の操作を「洗浄」と略す)。該洗浄を続けて4回行った。 Next, as magnetic particles, amino group type Estapor magnetic particles EM2-100 / 40 (made by Merck & Co., Inc.) are used, 20 mg of the magnetic particles are added, and pH 5.5 containing 1.0% Trimethylstearylammonium Chloride (Tokyo Chemical Co., Ltd.) Then, it was dispersed in 4 mL of 10 mmol / L acetate buffer (hereinafter referred to as dispersion A). The magnetic particles have a core-shell structure, have a particle size of 1.62 μm, the inner core portion contains a magnetic material with a total mass ratio of 41.2%, and the shell portion made of polystyrene has 97 μeq of amino groups chemically. Particles modified with / g. Subsequently, magnetic particles were collected by arranging a strong magnet beside the container, and the dispersion A was removed by suction (hereinafter, a series of operations of dispersion of magnetic particles, collection of magnetic particles, and suction removal was referred to as “washing”. (Omitted). The washing was continued 4 times.
 次に、分散液Aを1.5 mL加え、磁性粒子を十分に分散させた後、25%グルタルアルデヒド水溶液(ナカライテスク社製)を3.5 mL加え、シェーキングインキュベーター(アズワン社製、SI-300C)により1,500 rpmで振盪しながら37℃で2時間インキュベートした。 Next, 1.5 μmL of dispersion A was added to sufficiently disperse the magnetic particles, and then 3.5 μmL of 25% glutaraldehyde aqueous solution (Nacalai Tesque) was added and shaken incubator (AS-One, SI-300C). Incubated for 2 hours at 37 ° C. with shaking at 1,500 rpm.
 さらに0.1%のTrimethylstearylammonium Chloride(東京化成社製)を含むpH5.5、10 mmol/L酢酸緩衝液(以下、分散液Bという)を用いて、洗浄操作を10回行った(以後、得られた磁性粒子を「活性化粒子」と略す)。 Furthermore, the washing operation was performed 10 times using pH 5.5, 10 mmol / L acetate buffer (hereinafter referred to as dispersion B) containing 0.1% Trimethylstearylammonium Chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) (hereinafter obtained) Magnetic particles are abbreviated as “activated particles”).
 この活性化粒子5 mgを、グルタルアルデヒド添加22時間後の各反応溶液150μLに移し、すばやく分散させた。このままシェーキングインキュベーターにより1,500 rpmで振盪しながら40℃で16時間インキュベートした。 The activated particles (5 mg) were transferred to 150 μL of each reaction solution 22 hours after addition of glutaraldehyde and quickly dispersed. This was incubated for 16 hours at 40 ° C. with shaking at 1,500 rpm in a shaking incubator.
 次に、2-ピコリンボラン(純正化学社製)の0.53 mg/mLメタノール溶液(200μL)を添加し、シェーキングインキュベーターにより1,500 rpmで振盪しながら40℃で6日間インキュベートした。得られた反応混合物から、磁石により磁性粒子とそれ以外の溶液成分とに分離し、分離された磁性粒子を1.0%のBSA、0.09%のアジ化ナトリウムを含む50 mmmol/LのMES緩衝液(pH6.5)で10回洗浄し、ストレプトアビジン結合磁性粒子を得た。 Next, a 0.53 mg / mL methanol solution (200 μL) of 2-picoline borane (manufactured by Junsei Chemical Co., Ltd.) was added, and the mixture was incubated at 40 ° C. for 6 days while shaking at 1,500 rpm in a shaking incubator. The obtained reaction mixture was separated into magnetic particles and other solution components by a magnet, and the separated magnetic particles were separated into 50 μmmmol / L MES buffer containing 1.0% BSA and 0.09% sodium azide ( Washed 10 times with pH 6.5) to obtain streptavidin-bound magnetic particles.
(2)ストレプトアビジン結合磁性粒子のビオチン結合能の測定
 上記(1)で得られたストレプトアビジン結合磁性粒子、及び、市販のストレプトアビジン結合磁性粒子について、以下の方法により、ビオチン結合能を測定した。
(2) Measurement of biotin-binding ability of streptavidin-coupled magnetic particles Biotin-binding ability of the streptavidin-coupled magnetic particles obtained in (1) and commercially available streptavidin-coupled magnetic particles was measured by the following method. .
 ストレプトアビジン結合磁性粒子を0.1%BSA・PBS[PBS:0.15 mol/L 塩化ナトリウムを含有する10 mmol/L リン酸緩衝液(pH7.2)]に1 mg/mLで分散させ、倍々希釈法で0.0156 mg/mLの6段階(64倍希釈)まで希釈した。この6サンプルとブランク(0.1%BSA・PBS)それぞれを96穴ブラックプレートに50μLずつ分注した。次にBiotin-Fluorescein (Thermo Scientific社製)を0.1%BSA・PBSで1μg/mLに希釈し、サンプルを分注したウエルに50μLずつ分注した。サンプルを分注したプレートはシェーカーインキュベーター(アマライト社製)で振盪しながら37℃で10分間インキュベートし、粒子が分散した状態での蛍光強度を蛍光プレートリーダー“プレートカメレオンV”(HIDEX社製)で測定した。 Streptavidin-bound magnetic particles are dispersed in 0.1% BSA / PBS [PBS: 10 mmol / L 緩衝 phosphate buffer (pH 7.2) containing 0.15 mol / L sodium chloride] at 1 mg / mL, and double dilution method is used. Dilute to 6 levels (64-fold dilution) of 0.0156 mg / mL. Each of these 6 samples and blank (0.1% BSA / PBS) was dispensed into a 96-well black plate by 50 μL. Next, Biotin-Fluorescein® (manufactured by Thermo® Scientific) was diluted to 1 μg / mL with 0.1% BSA / PBS, and 50 μL was dispensed into each well into which the sample was dispensed. The plate into which the sample was dispensed was incubated at 37 ° C. for 10 minutes with shaking in a shaker incubator (Amalite), and the fluorescence intensity in the state where particles were dispersed was measured with a fluorescence plate reader “Plate Chameleon V” (manufactured by HIDEX). It was measured.
 ここで磁性粒子上のストレプトアビジンに蛍光標識ビオチンが結合すると、ストレプトアビジンに結合した蛍光標識ビオチンどうしが近接して存在することになり、蛍光の消光が起こる。蛍光の消光は単位面積当たりの磁性粒子に結合したストレプトアビジンへの蛍光標識ビオチンの結合量が大きくなるほど高くなる。この性質を利用し、ビオチン結合能が既知の市販の磁性粒子をレファレンスとして、このストレプトアビジンの蛍光減少率をあらかじめ評価しておくことにより、本発明のストレプトアビジン結合磁性粒子のビオチン結合能を算出した。本実施例ではストレプトアビジン結合磁性粒子の希釈サンプルから、蛍光強度が50%減少した時のストレプトアビジン結合磁性粒子濃度を直線近似で算出し、レファレンスのストレプトアビジンと比較することで、ビオチン結合能(pmol/mm2)を算出した。 Here, when the fluorescently labeled biotin is bound to streptavidin on the magnetic particles, the fluorescently labeled biotin bound to streptavidin exists in close proximity, and fluorescence quenching occurs. Fluorescence quenching increases as the amount of fluorescently labeled biotin bound to streptavidin bound to magnetic particles per unit area increases. Using this property, the biotin-binding ability of the streptavidin-coupled magnetic particles of the present invention is calculated by preliminarily evaluating the fluorescence reduction rate of this streptavidin using a commercially available magnetic particle with a known biotin-binding ability as a reference. did. In this example, from the diluted sample of streptavidin-bound magnetic particles, the concentration of streptavidin-bound magnetic particles when the fluorescence intensity decreased by 50% was calculated by linear approximation, and compared with the reference streptavidin, biotin binding capacity ( pmol / mm 2 ) was calculated.
 測定結果を第1表に示す。 The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 第1表から明らかな様に、上記(1)で得られたストレプトアビジン結合磁性粒子は、市販のストレプトアビジン結合磁性粒子(ダイナル社製 DynabeadsT1、及びメルク社製 BE-M08/10)に比較して、高いビオチン結合能を有することが分かった。 As is clear from Table 1, the streptavidin-coupled magnetic particles obtained in (1) above are compared with commercially available streptavidin-coupled magnetic particles (Dynal Dynabeads T1 and Merck BE-M08 / 10). Thus, it was found to have a high biotin binding ability.
 磁性粒子上のストレプトアビジンの架橋構造の分析
 実施例1の方法と同様の方法により得られたビオチン結合能が1.96 pmol/mm2、3.68 pmol/mm2、5.16 pmol/mm2であるストレプトアビジン結合磁性粒子について、それぞれのストレプトアビジン結合磁性粒子を4 mLのPBSで10回洗浄し、1%SDS/PBSに置換した後、60℃で1時間インキュベートした。次に磁性粒子を磁石で集磁し、上清の蛋白質溶液を回収した後、SDS-PAGEで分析した。同様の操作を、市販のストレプトアビジン結合磁性粒子に対しても行った。SDS-PAGEの結果を図2に示す。
Analysis of streptavidin cross-linked structure on magnetic particles Streptavidin binding obtained by the same method as in Example 1 with biotin binding capacities of 1.96 pmol / mm 2 , 3.68 pmol / mm 2 and 5.16 pmol / mm 2 For the magnetic particles, each streptavidin-bound magnetic particle was washed 10 times with 4 mL of PBS, replaced with 1% SDS / PBS, and then incubated at 60 ° C. for 1 hour. Next, the magnetic particles were collected with a magnet, and the protein solution in the supernatant was collected and analyzed by SDS-PAGE. The same operation was performed on commercially available streptavidin-coupled magnetic particles. The results of SDS-PAGE are shown in FIG.
 図2から明らかな様に、ストレプトアビジンについては、ストレプトアビジンを構成する単量体のみが認められたのに対して、本発明の製造方法によって製造されるストレプトアビジン結合磁性粒子においては、単量体に加え、二量体、三量体、四量体及びさらに高次のバンドが認められた(レーン6~8参照)。また、磁性粒子に結合させる前のストレプトアビジンの架橋体についても、単量体に加え、二量体、三量体、四量体及びさらに高次のバンドが認められた(レーン3~5参照)。これにより、本発明の製造方法によって製造されるストレプトアビジン結合磁性粒子においては、ストレプトアビジンが架橋構造を取っていることが判明した。 As is clear from FIG. 2, for streptavidin, only the monomer constituting streptavidin was observed, whereas in the streptavidin-coupled magnetic particles produced by the production method of the present invention, In addition to the body, dimer, trimer, tetramer and higher order bands were observed (see lanes 6-8). In addition to the monomer, dimer, trimer, tetramer and higher-order bands were also observed in the cross-linked streptavidin before binding to the magnetic particles (see lanes 3-5). ). Thus, it was found that streptavidin has a crosslinked structure in the streptavidin-coupled magnetic particles produced by the production method of the present invention.
[試験例1] ストレプトアビジン結合磁性粒子の分散性の評価
 実施例1と同様の方法により調製した、ビオチン結合能が5.22 pmol/mm2であるストレプトアビジン結合磁性粒子について、当該ストレプトアビジン結合磁性粒子を0.1%BSAを含むPBSに0.1 mg/mLで分散させ、冷暗所で24時間静置した。これを転倒混和で、5回攪拌し、その分散度合いを比較した。その結果を図3に示す。図3の上は、静置した状態のストレプトアビジン結合磁性粒子を、下は、転倒混和5回後のストレプトアビジン結合磁性粒子の分散状態を表す。
[Test Example 1] Evaluation of dispersibility of streptavidin-coupled magnetic particles About streptavidin-coupled magnetic particles having a biotin-binding ability of 5.22 pmol / mm 2 prepared by the same method as in Example 1, the streptavidin-coupled magnetic particles Was dispersed in PBS containing 0.1% BSA at a concentration of 0.1 mg / mL and allowed to stand for 24 hours in a cool dark place. This was mixed by inversion and stirred 5 times, and the degree of dispersion was compared. The result is shown in FIG. The top of FIG. 3 represents the streptavidin-coupled magnetic particles in a stationary state, and the bottom represents the dispersed state of the streptavidin-coupled magnetic particles after 5 times of inversion mixing.
 図3から明らかなように、本発明の製造方法によって製造されるストレプトアビジン結合磁性粒子は、分散性が非常に良いことが判明した。 As apparent from FIG. 3, it was found that the streptavidin-bonded magnetic particles produced by the production method of the present invention have very good dispersibility.
 本発明により、ビオチン結合能の高いストレプトアビジン結合磁性粒子の製造方法、及び、当該ストレプトアビジン結合磁性粒子を用いる、蛋白質結合磁性粒子の製造方法が提供される。本発明の製造方法により製造されるストレプトアビジン結合磁性粒子、及び、蛋白質結合磁性粒子は、臨床診断上、有用である。 The present invention provides a method for producing streptavidin-coupled magnetic particles having a high biotin-binding ability and a method for producing protein-coupled magnetic particles using the streptavidin-coupled magnetic particles. The streptavidin-coupled magnetic particles and protein-coupled magnetic particles produced by the production method of the present invention are useful for clinical diagnosis.

Claims (4)

  1.  以下の工程を含むことを特徴とする、ストレプトアビジン結合磁性粒子の製造方法。
    (1)グルタルアルデヒドとストレプトアビジンとを反応させて、ストレプトアビジンの架橋体を調製する工程;及び、
    (2)工程(1)で調製したストレプトアビジンの架橋体と、磁性粒子とを反応させる工程。
    A method for producing streptavidin-coupled magnetic particles, comprising the following steps.
    (1) reacting glutaraldehyde and streptavidin to prepare a cross-linked product of streptavidin; and
    (2) A step of reacting the cross-linked streptavidin prepared in step (1) with magnetic particles.
  2.  さらに、以下の工程を含む請求項1記載のストレプトアビジン結合磁性粒子の製造方法。
    (3)工程(2)で調製したストレプトアビジン結合磁性粒子と還元剤とを反応させる工程。
    Furthermore, the manufacturing method of the streptavidin coupling | bonding magnetic particle of Claim 1 including the following processes.
    (3) A step of reacting the streptavidin-bound magnetic particles prepared in step (2) with a reducing agent.
  3.  ストレプトアビジン結合磁性粒子が、磁性粒子上に、ストレプトアビジンどうしが架橋された構造を有する、請求項1又は2記載のストレプトアビジン結合磁性粒子の製造方法。 The method for producing streptavidin-coupled magnetic particles according to claim 1 or 2, wherein the streptavidin-coupled magnetic particles have a structure in which streptavidin is cross-linked on the magnetic particles.
  4.  請求項1~3のいずれかに記載の製造方法により製造されるストレプトアビジン結合磁性粒子と、ビオチン化蛋白質とを反応させることを特徴とする、蛋白質結合磁性粒子の製造方法。 A method for producing protein-bound magnetic particles, comprising reacting streptavidin-bound magnetic particles produced by the production method according to any one of claims 1 to 3 and biotinylated protein.
PCT/JP2012/053464 2011-02-15 2012-02-15 Manufacturing method for streptavidin-bonded magnetic particles WO2012111686A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012557981A JPWO2012111686A1 (en) 2011-02-15 2012-02-15 Method for producing streptavidin-coupled magnetic particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-029331 2011-02-15
JP2011029331 2011-02-15

Publications (1)

Publication Number Publication Date
WO2012111686A1 true WO2012111686A1 (en) 2012-08-23

Family

ID=46672602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053464 WO2012111686A1 (en) 2011-02-15 2012-02-15 Manufacturing method for streptavidin-bonded magnetic particles

Country Status (2)

Country Link
JP (1) JPWO2012111686A1 (en)
WO (1) WO2012111686A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10481158B2 (en) 2015-06-01 2019-11-19 California Institute Of Technology Compositions and methods for screening T cells with antigens for specific populations
CN115356477A (en) * 2022-10-20 2022-11-18 苏州纳微生命科技有限公司 Streptavidin magnetic bead and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209166A (en) * 1993-12-13 1995-08-11 Hewlett Packard Co <Hp> Bonding of specimen to surface of base body, determination of specimen having low molecular weight and biotin-specimen composite
JP2000146965A (en) * 1998-11-06 2000-05-26 Iatron Lab Inc Reagent and kit for immunological analysis and immunological analyzing method
JP2005523027A (en) * 2002-04-22 2005-08-04 ユニヴァーシティ オヴ フロリダ Functionalized nanoparticles and methods of use
JP2006042654A (en) * 2004-08-03 2006-02-16 Onchip Cellomics Consortium Method for separating and collecting cell, cell separation chip and cell separator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07209166A (en) * 1993-12-13 1995-08-11 Hewlett Packard Co <Hp> Bonding of specimen to surface of base body, determination of specimen having low molecular weight and biotin-specimen composite
JP2000146965A (en) * 1998-11-06 2000-05-26 Iatron Lab Inc Reagent and kit for immunological analysis and immunological analyzing method
JP2005523027A (en) * 2002-04-22 2005-08-04 ユニヴァーシティ オヴ フロリダ Functionalized nanoparticles and methods of use
JP2006042654A (en) * 2004-08-03 2006-02-16 Onchip Cellomics Consortium Method for separating and collecting cell, cell separation chip and cell separator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10481158B2 (en) 2015-06-01 2019-11-19 California Institute Of Technology Compositions and methods for screening T cells with antigens for specific populations
CN115356477A (en) * 2022-10-20 2022-11-18 苏州纳微生命科技有限公司 Streptavidin magnetic bead and preparation method and application thereof
CN115356477B (en) * 2022-10-20 2023-02-10 苏州纳微生命科技有限公司 Streptavidin magnetic bead and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2012111686A1 (en) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5980127B2 (en) Streptavidin-coupled magnetic particles and method for producing the same
Hempen et al. Labeling strategies for bioassays
Otieno et al. Bioconjugation of antibodies and enzyme labels onto magnetic beads
RU2444736C2 (en) Target molecule detection in sample
Ta et al. Magnetic separation of elastin-like polypeptide receptors for enrichment of cellular and molecular targets
JP2009517652A (en) Sensitive magnetic capture analysis by construction of strong binding pairs
JP7041491B2 (en) Detection agent for bioassay and signal amplification method using it
WO2012111687A1 (en) Manufacturing method for streptavidin-bonded magnetic particles
AU682478B2 (en) Two-site immunoassay for an antibody with chemiluminescent label and biotin bound ligand
JP6386591B2 (en) Novel detection method for detection object in sample and detection kit using the same
WO2012111686A1 (en) Manufacturing method for streptavidin-bonded magnetic particles
WO2021157576A1 (en) METHOD FOR DETECTING OXIDIZED LDL/β2GPI COMPLEX, AND DETECTION KIT
JP2007147494A (en) Simultaneous substance measuring method, and support for measurement used in for same
RU2543631C2 (en) Method for functionalising surface of magnetic nanoparticles
JPH10239317A (en) Method and reagent for restrainedly measuring zone phenomenon suppression and measuring reagent
CN113341131B (en) Kit for detecting fumonisin B1 and detection method
JP4881077B2 (en) Immunochromatography
JP2010002393A (en) Detection method of target material
JP5137880B2 (en) Method for producing dry particles with immobilized binding substance
JP4246009B2 (en) Method for producing a carrier carrying a ligand
JP4246012B2 (en) Method for producing carrier carrying ligand and method for immunoassay using said carrier
JP2005338052A (en) Simultaneous substance measuring method and support body for measurement used for the same
JP2001330613A (en) Immunoassay reagent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012557981

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12746924

Country of ref document: EP

Kind code of ref document: A1