WO2012111436A1 - Method for manufacturing optical fibers - Google Patents

Method for manufacturing optical fibers Download PDF

Info

Publication number
WO2012111436A1
WO2012111436A1 PCT/JP2012/052303 JP2012052303W WO2012111436A1 WO 2012111436 A1 WO2012111436 A1 WO 2012111436A1 JP 2012052303 W JP2012052303 W JP 2012052303W WO 2012111436 A1 WO2012111436 A1 WO 2012111436A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
base material
glass base
hole
ratio
Prior art date
Application number
PCT/JP2012/052303
Other languages
French (fr)
Japanese (ja)
Inventor
下高原 巌
治巳 稲葉
熊野 尚美
杉崎 隆一
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Publication of WO2012111436A1 publication Critical patent/WO2012111436A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02781Hollow fibres, e.g. holey fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02357Property of longitudinal structures or background material varies radially and/or azimuthally in the cladding, e.g. size, spacing, periodicity, shape, refractive index, graded index, quasiperiodic, quasicrystals

Definitions

  • the present invention relates to a method for manufacturing an optical fiber having a plurality of holes extending along a longitudinal axis.
  • a so-called holey fiber (Holey Fiber: HF) or photonic crystal fiber (Photonic Crystal Fiber: PCF), or a photonic band gap is used.
  • fiber Photonic BandGap Fiber: PBGF
  • hole assist fiber Hole Assisted Fiber: HAF
  • HF is an optical fiber of a type in which holes are regularly arranged in the cladding around the core to lower the average refractive index of the cladding and realize light confinement using the principle of total reflection.
  • PBGF forms photonic band gaps by arranging vacancies in the cladding part so as to form a photonic crystal, and introduces a core part as a crystal defect therein to realize light confinement.
  • a core part may be formed of a void
  • HAF is formed from a solid core portion doped with germanium (Ge) or the like and a cladding portion, as in a normal solid optical fiber, and light confinement is realized mainly by the principle of total reflection.
  • This is an optical fiber of a type in which holes are further provided in the cladding part to lower the average refractive index of the cladding part and to improve the light confinement characteristics in the core part.
  • HAF can improve the light confinement characteristics by providing holes near the core, bending loss can be significantly reduced.
  • HAF not only the fundamental mode but also higher-order mode light is easily confined, so that it is easy to make a multimode.
  • HAF in order to realize single mode propagation by confining only fundamental mode light and to reduce bending loss of single mode propagation, optimization of hole diameter, number of holes, core-hole distance, etc. Will be needed. Recently, from these viewpoints, a design in which the hole diameter is reduced and the number of holes is increased to about 10 has been proposed (see Non-Patent Document 1).
  • the present invention has been made in view of the above, and an object thereof is to provide an optical fiber manufacturing method capable of realizing a reduction in manufacturing cost.
  • an optical fiber manufacturing method is a glass base material having a plurality of holes extending along a longitudinal axis.
  • the ratio with the diameter is the second ratio
  • the pressure in the at least one hole of the glass base material is such that the ratio between the second ratio and the first ratio is less than 1.0.
  • the line drawing is performed by adjusting.
  • the optical fiber manufacturing method according to the present invention is characterized in that, in the above invention, the ratio of the second ratio to the first ratio is 0.5 or more.
  • the optical fiber manufacturing method according to the present invention is characterized in that, in the above invention, the plurality of pores of the glass base material are pressurized with different pressures.
  • the optical fiber manufacturing method according to the present invention is characterized in that, in the above invention, the diameter of the plurality of holes in the glass base material is 3 mm or more.
  • FIG. 1 is a schematic cross-sectional view of an optical fiber manufactured by the manufacturing method according to the first embodiment.
  • FIG. 2 is a schematic perspective view of a glass preform for manufacturing the optical fiber shown in FIG.
  • FIG. 3 is a diagram for explaining a drawing process.
  • FIG. 4 is a diagram showing the relationship between the dimensionless in-hole pressurization amount and the ratio (X / Y).
  • FIG. 5 is a diagram showing the relationship between the ratio (X / Y) and the dimensionless pore diameter variation.
  • FIG. 6 is a schematic cross-sectional view of an optical fiber manufactured by the manufacturing method according to the second embodiment.
  • FIG. 7 is a schematic perspective view of a glass preform for manufacturing the optical fiber shown in FIG.
  • FIG. 8 is a schematic diagram of a pressure mechanism used in the manufacturing method according to the second embodiment.
  • FIG. 9 is a schematic cross-sectional view of another optical fiber that can be manufactured by the manufacturing method according to the second embodiment.
  • the cutoff wavelength is ITU-T (International Telecommunication Union) This refers to the fiber cutoff wavelength defined in 650.1.
  • ITU-T G.A. 650.1 and G.I. It shall follow the definition and measurement method in 650.2.
  • FIG. 1 is a schematic cross-sectional view of an optical fiber manufactured by the manufacturing method according to Embodiment 1 of the present invention.
  • the optical fiber 1 is a HAF and includes a core portion 1a and a clad portion 1b formed on the outer periphery of the core portion 1a.
  • the core portion 1a is made of quartz glass to which a dopant for increasing the refractive index such as germanium (Ge) is added.
  • the clad part 1b is made of quartz glass having a lower refractive index than that of the core part 1a, for example, pure silica glass not containing a dopant for adjusting the refractive index.
  • the cross-sectional refractive index distribution shape around the core portion 1a is a rectangle (step index), a pseudo rectangle (pseudo step index) with a skirt at the boundary with the cladding portion 1b, and a Gaussian distribution shape (refractive index distribution coefficient ⁇ is approximately 2. Graded index) may be used.
  • the clad portion 1b has ten holes 1c formed so as to surround the core portion 1a and extending along the longitudinal axis.
  • Two holes 1c are formed when the center point of the core portion 1a is connected to each of the center points of any two adjacent holes 1c in a cross section perpendicular to the longitudinal direction of the optical fiber 1. Are formed at positions where the angles (center angles) formed by the line segments are equal.
  • the holes 1c have the same diameter (hereinafter referred to as the hole diameter).
  • the hole diameter of the hole 1c is d1.
  • the outer diameter of the optical fiber 1 is D1.
  • X1 d1 / D1.
  • FIG. 2 is a schematic perspective view of a glass base material for manufacturing the optical fiber 1.
  • the glass base material 2 is a columnar shape made of quartz glass, and a core portion 2a for forming each of the core portion 1a, the cladding portion 1b, and the hole 1c of the optical fiber 1, It has a clad portion 2b and a hole 2c.
  • the air holes 2 c extend along the longitudinal axis of the glass base material 2.
  • the holes 2c have the same hole diameter.
  • the hole diameter of the hole 2c is d2.
  • the outer diameter of the glass base material 2 is D2.
  • Y1 d2 / D2.
  • the length of the glass base material 2 is L1.
  • the glass base material 2 can be prepared as follows, for example. First, using a known method such as a VAD (Vapor phase Axial Deposition) method, an OVD (Outside Vapor Deposition) method, or an MCVD (Modified Chemical Vapor Deposition) method, a glass base material having a core portion 2a and a cladding portion 2b is formed. Form. Thereafter, holes 2c are formed along the longitudinal axis of the glass base material using a drill. Thereby, the glass base material 2 shown in FIG. 2 can be prepared.
  • VAD Very phase Axial Deposition
  • OVD Outside Vapor Deposition
  • MCVD Modified Chemical Vapor Deposition
  • FIG. 3 is a diagram for explaining a drawing process.
  • a drawing apparatus 100 shown in FIG. 3 includes a drawing heating furnace 101 having a heater 101a, a pressurizing mechanism 102, an outer diameter measuring device 103, a coating resin coating apparatus 104, a resin curing apparatus 105, and a capstan roller. 106, a guide roll 107, and a controller C.
  • the pressurizing mechanism 102 includes a pressurizing connector 102a, a gas supply path 102b connected to the pressurizing connector 102a, and a pressure adjusting unit 102c connected to the gas supply path 102b.
  • the pressure adjusting unit 102c is configured by, for example, a mass flow controller (MFC).
  • MFC mass flow controller
  • the drawing process of the optical fiber 1 will be described together with the operation of each component.
  • the glass base material 2 shown in FIG. 2 is set in the drawing heating furnace 101, and the pressure connector 102 a is connected to the upper end of the glass base material 2.
  • the lower end of the glass base material 2 is heated and melted by the heater 101a, and the lower end is drawn.
  • the optical fiber 1 shown in FIG. 1 is drawn from the glass preform 2.
  • gas G is supplied into the air holes 2c of the glass base material 2 and pressurized.
  • the gas G is supplied from the pressurizing connector 102a into the hole 2c through the gas supply path 102b.
  • the pressure of the gas G in the hole 2c is controlled by the pressure adjusting unit 102c controlled by the controller C so that the hole diameter of the hole 1c of the optical fiber 1 becomes d1.
  • the gas G is, for example, argon gas, but may be other inert gas such as helium gas or nitrogen gas.
  • the drawn optical fiber 1 is coated with a known coating resin coating device 104 and resin curing device 105, sent by a capstan roller 106 and a guide roll 107, and wound on a winder (not shown). .
  • the controller C controls the rotational speed of the capstan roller 106 (that is, the drawing speed of the optical fiber 1) so that the outer diameter of the optical fiber 1 measured by the outer diameter measuring device 103 becomes D1.
  • (X1 / Y1) (d1 / D1) / (d2 / D2) ⁇ 1.0.
  • the ratio X1 is 0.028.
  • the hole diameter d2 of the glass base material 2 is 3 mm and the outer diameter D2 is 70 mm
  • the ratio Y1 is 0.043, so X1 / Y1 is 0.65, and (X1 / Y1) ⁇ 1.0 holds.
  • the hole diameter of the holes formed in the glass base material must be reduced to about 2 mm. I must.
  • (X1 / Y1) ⁇ 1.0 is established.
  • the hole diameter d2 of the glass base material 2 is, for example, 3 mm, which is larger than 2 mm, and the hole diameter d2 can be made relatively large.
  • the length can be increased. Therefore, the length L1 of the glass base material 2 can be increased.
  • a hole 2c having a large hole diameter d2 is previously formed in the glass preform 2 with respect to the ratio X1 between the hole diameter d1 and the outer diameter D1 of the optical fiber 1 to be manufactured. I have to. Then, by adjusting the pressure of the gas G in the hole 2c during the subsequent drawing, the ratio of the hole diameter d1 and the outer diameter D1 is adjusted to a desired ratio X1. As a result, since the length of the drill that can be used for forming the hole 2c can be increased while maintaining the mechanical strength, the length of the glass base material 2 can also be increased. Accordingly, the length of the optical fiber 1 that can be manufactured from one glass base material 2 is increased, and thus the manufacturing cost is reduced.
  • the ratio ⁇ (optical fiber hole diameter) / (optical fiber outer diameter) ⁇ between the hole diameter and the outer diameter of the optical fiber is set to X
  • the ratio ⁇ (glass base material) between the hole diameter and the outer diameter of the glass base material is set to X
  • the ratio ⁇ (glass base material) between the hole diameter and the outer diameter of the glass base material is set to X
  • the relationship between the pressure in the pores of the glass base material and the ratio (X / Y) will be described where Y is (hole diameter) / (glass base material outer diameter) ⁇ .
  • a glass base material having an outer diameter of 60 mm having the same structure as the glass base material 2 shown in FIG. 2 and having 10 holes having a hole diameter of 3.5 mm was prepared.
  • an experiment was carried out in which an optical fiber having an outer diameter (cladding diameter) of 125 ⁇ m was drawn from the prepared glass base material with various pressure settings in the glass base material.
  • the pressure in the hole is defined by the dimensionless pressure in the hole.
  • the dimensionless vacancy pressure is the difference between the pressure in the cavities and the atmospheric pressure (hereinafter, this pressure difference is referred to as the vacancy pressure) and the ratio (X / Y) is 1. It is defined as the value divided by the amount of pressurization in the hole.
  • FIG. 4 is a diagram showing the relationship between the dimensionless in-hole pressurization amount and the ratio (X / Y). As shown in FIG. 4, when the amount of pressurization in dimensionless holes is increased, the ratio (X / Y) is increased accordingly. Therefore, a desired ratio (X / Y) can be realized by controlling the pressure in the holes in accordance with the relationship between the dimensionless pressure in the holes and the ratio (X / Y) as shown in FIG. it can.
  • the fluctuation of the hole diameter is defined by the dimensionless hole diameter fluctuation.
  • the dimensionless hole diameter variation is the fluctuation amount per 1 km of optical fiber (maximum value and minimum value) of the average hole diameter (unit: ⁇ m) of 10 holes when the ratio (X / Y) is a certain value. (Hereinafter referred to as pore diameter fluctuation) is divided by the hole diameter fluctuation where the ratio (X / Y) is 1.
  • FIG. 5 is a diagram showing the relationship between the ratio (X / Y) and the dimensionless pore diameter variation. As shown in FIG. 5, it is preferable that X / Y is 0.5 or more because the dimensionless pore diameter variation is smaller than 1.5, and the variation in the longitudinal direction of the pore diameter is reduced.
  • the ratio (X / Y) is smaller than 1.0, the length of the glass base material can be increased. However, if the ratio (X / Y) is 0.7 or less, the effect is remarkable. This is more preferable.
  • Example 1 Comparative Example 1
  • a glass base material having a core portion containing Ge in the center portion and a cladding portion around the core portion was obtained. Furthermore, this glass base material was extended
  • stretched with the oxyhydrogen flame burner the method by the heating with an electric furnace may be used.
  • the cross-sectional refractive index distribution shape of this glass base material was a substantially rectangular shape (step index) with a relative refractive index difference of 0.35%.
  • a drilling process was performed on one of the prepared glass base materials to form ten holes having a diameter of 1.9 mm along the longitudinal axis.
  • the length of the glass base material was set to 350 mm because of the mechanical strength of the drill used at this time.
  • the glass base material of the comparative example 1 was prepared.
  • the glass base material of Example 1 was prepared. The distance between the center of the core portion and the center of the hole in the glass base material of Example 1 and the distance in the glass base material of Comparative Example 1 were the same.
  • the optical fiber is drawn while pressurizing the pores of the glass base material of Example 1 and Comparative Example 1, and Examples 1 and 1 of Comparative Example 1 are drawn.
  • An optical fiber was manufactured.
  • Argon gas was used as the pressurized gas.
  • the amount of pressurization in the holes was adjusted so that the average hole diameter of the ten holes was 3.5 ⁇ m.
  • the average hole diameter of the manufactured optical fiber was 3.55 ⁇ m in Example 1, and 3.51 ⁇ m in Comparative Example 1.
  • the outer diameter of each of the optical fibers of Example 1 and Comparative Example 1 was set to 125 ⁇ m. Therefore, in the case of Example 1, the ratio (X / Y) was 0.57, and in the case of Comparative Example 1, the ratio (X / Y) was 1.
  • the transmission loss of the optical fiber of Example 1 was 0.197 dB / km
  • the transmission loss of the optical fiber of Comparative Example 1 was 0.198 dB / km, which was substantially the same.
  • the difference in the values of the optical fibers of Example 1 and Comparative Example 1 was within 10%. Therefore, the optical fibers of Example 1 and Comparative Example 1 had substantially the same characteristics.
  • the glass base material of Example 1 is twice or more longer than the glass base material of Comparative Example 1, the optical fiber of Example 1 is longer than the optical fiber of Comparative Example 1 from each glass base material. Even a long optical fiber was obtained. Therefore, the manufacturing cost of the optical fiber of Example 1 was lower.
  • Example 2 A glass base material having an outer diameter of 70 mm having the same structure as in Example 1 and Comparative Example 1 is prepared, and drilling is performed using a drill to form a hole having a diameter of 3.0 mm along the longitudinal axis. Ten were formed. The drill used at this time had a diameter larger than that of Comparative Example 1 and the drill had higher rigidity, so that the length of the glass base material could be 850 mm. Thereby, the glass base material of Example 2 was prepared.
  • Example 2 the optical fiber was drawn while pressurizing the inside of the glass base material of Example 2 to produce the optical fiber of Example 2.
  • the pressurization amount in the holes was adjusted so that the average hole diameter of the ten holes of the optical fiber was 3.5 ⁇ m.
  • the average hole diameter of the manufactured optical fiber was 3.53 ⁇ m.
  • the outer diameter of the optical fiber was set to 125 ⁇ m. Therefore, in the case of Example 2, the ratio (X / Y) was 0.65.
  • the transmission loss of the optical fiber of Example 2 was 0.196 dB / km, which was substantially the same as Example 1 and Comparative Example 1.
  • the difference in values between the optical fiber of Example 2 and the optical fibers of Example 1 and Comparative Example 1 was within 10%. Therefore, the optical fiber of Example 2 had substantially the same characteristics as those of Example 1 and Comparative Example 1.
  • the glass base material of Example 2 is also twice or more longer than the glass base material of Comparative Example 1, a longer optical fiber was obtained from one glass base material. Therefore, the manufacturing cost of the optical fiber of Example 2 was lower. Further, in the case of the optical fiber of Example 2, the ratio (X / Y) is made larger than that of the optical fiber of Example 1, so that the hole diameter variation in the longitudinal direction of the optical fiber is suppressed to be smaller than that of Example 1. It was done.
  • Example 3 One glass base material having an outer diameter of 70 mm having the same structure as in Example 1 and Comparative Example 1 is prepared, drilling is performed using a drill, and a hole having a diameter of 5.0 mm is formed along the longitudinal axis. Ten were formed. The drill used at this time had a larger diameter than in the case of Examples 1 and 2, and the rigidity of the drill was further increased, so that the length of the glass base material could be 920 mm. Thereby, the glass base material of Example 3 was prepared.
  • Example 3 the optical fiber was drawn while pressurizing the pores of the glass base material of Example 3 to produce the optical fiber of Example 3.
  • the pressurization amount in the holes was adjusted so that the average hole diameter of the ten holes of the optical fiber was 3.5 ⁇ m.
  • the average hole diameter of the manufactured optical fiber was 3.54 ⁇ m.
  • the outer diameter of the optical fiber was set to 125 ⁇ m. Therefore, in the case of Example 3, the ratio (X / Y) was 0.39.
  • the optical fiber of Example 3 had substantially the same characteristics as the optical fibers of Examples 1 and 2 and Comparative Example 1.
  • Example 3 Since the glass base material of Example 3 is longer than the glass base materials of Examples 1 and 2, an optical fiber longer than that of Examples 1 and 2 was obtained from one glass base material. Therefore, the manufacturing cost of the optical fiber of Example 3 was further reduced.
  • the ratio (X / Y) is made smaller than those of Examples 1 and 2, and the hole diameter variation in the longitudinal direction of the optical fiber is the same as that of Comparative Example 1. Although it was about twice as much as the case, it was a value with no problem in use.
  • the hole diameter formed in the glass base material is 3 mm or more because the length of the glass base material can be sufficiently increased and the manufacturing cost can be sufficiently reduced.
  • Example 4 A glass base material having an outer diameter of 70 mm having the same structure as that of Example 1 and Comparative Example 1 was produced, and a drilling process was performed using a drill to form a hole having a diameter of 2.5 mm along the longitudinal axis. Ten were formed. Since the diameter of the drill used at this time was larger than that of Comparative Example 1 and the rigidity of the drill was high, the length of the glass base material was made 480 mm. Thereby, the glass base material of Example 4 was prepared.
  • Example 4 the optical fiber was drawn while pressurizing the pores of the glass base material of Example 4 to produce the optical fiber of Example 4.
  • the pressurization amount in the holes was adjusted so that the average hole diameter of the ten holes of the optical fiber was 3.5 ⁇ m.
  • the average hole diameter of the manufactured optical fiber was 3.54 ⁇ m.
  • the outer diameter of the optical fiber was set to 125 ⁇ m. Therefore, in the case of Example 4, the ratio (X / Y) was 0.79.
  • the transmission loss of the optical fiber of Example 4 was 0.195 dB / km, which was substantially the same as Example 1 and Comparative Example 1. Further, regarding other characteristics such as cutoff wavelength and wavelength dispersion, the difference in values between the optical fiber of Example 4 and the optical fibers of Example 1 and Comparative Example 1 was within 10%. Therefore, the optical fiber of Example 4 had substantially the same characteristics as those of Example 1 and Comparative Example 1.
  • Example 4 Since the glass base material of Example 4 is also longer than the glass base material of Comparative Example 1, a longer optical fiber was obtained from one glass base material. Therefore, the manufacturing cost of the optical fiber of Example 4 was lower. Further, in the case of the optical fiber of Example 4, the ratio (X / Y) was made larger than that of the optical fiber of Example 2, so that the hole diameter variation in the longitudinal direction of the optical fiber was even smaller than that of Example 2. It was suppressed.
  • FIG. 6 is a schematic cross-sectional view of an optical fiber manufactured by the manufacturing method according to the second embodiment. As shown in FIG. 6, the optical fiber 3 has holes 3a and 3b extending along the longitudinal axis.
  • the optical fiber 3 is made of a material such as pure quartz glass.
  • the holes 3 a and 3 b are regularly arranged in a triangular lattice pattern in a cross section perpendicular to the longitudinal axis of the optical fiber 3. However, there is a region where there is no hole in the region where the holes 3a and 3b are arranged.
  • hole functions as the core part 3c, and the circumference
  • the two holes 3b are located on both sides of the core portion 3c.
  • the 16 holes 3a have the same hole diameter.
  • the hole diameter of the hole 3a is d31.
  • the two holes 3b have the same hole diameter.
  • the hole diameter of the hole 3b is d32.
  • the hole diameter d32 is set larger than the hole diameter d31.
  • the outer diameter of the optical fiber 3 is D3.
  • the optical fiber 3 can be used as a polarization-maintaining optical fiber because anisotropy occurs in the refractive index distribution of the core 3c due to the holes 3b.
  • FIG. 7 is a schematic perspective view of a glass base material for manufacturing the optical fiber 3.
  • the glass base material 4 has a cylindrical shape made of quartz glass and has holes 4 a for forming the holes 3 a and 3 b of the optical fiber 3.
  • the air holes 4 a extend along the longitudinal axis of the glass base material 4.
  • the hole diameter of the hole 4a is d4.
  • the outer diameter of the glass base material 4 is D4.
  • the length of the glass base material 4 is L2.
  • the holes 4a having the same hole diameter are formed. is doing. As a result, only one type of drill is required for forming the holes 4a in the drilling process, and the work of replacing the drills with different thicknesses is not necessary. Therefore, since the drilling process is simplified, the manufacturing cost can be reduced.
  • the length of the drill for forming the hole having the smallest hole diameter is the shortest.
  • the length of the glass base material is also limited by the length of the shortest drill.
  • the length L2 of the glass base material 4 can be increased without being restricted as described above.
  • a glass base material is formed using a known method such as the VAD method, and then a glass base material is used using a drill. Holes 4a are formed along the longitudinal axis. Thereby, the glass base material 4 shown in FIG. 7 can be prepared.
  • the optical fiber 3 is drawn from the glass base material 4 using a drawing apparatus 100 as shown in FIG.
  • a drawing apparatus 100 it is necessary to form holes 3 a and 3 b having different hole diameters of the optical fiber 3 from the holes 4 a having the same hole diameter of the glass base material 4. Therefore, it is preferable to control the internal pressure separately for the hole 4a for forming the hole 3a and the hole 4a for forming the hole 3b.
  • FIG. 8 is a schematic diagram of a pressurizing mechanism used in the manufacturing method according to the second embodiment.
  • a pressurizing mechanism 110 shown in FIG. 8 is used instead of the pressurizing mechanism 102 shown in FIG.
  • the pressurization mechanism 110 includes a pressurization connector 111, gas supply paths 112 and 113 connected to the pressurization connector 111, and pressure adjustment units 114 connected to the gas supply paths 112 and 113, respectively. 115.
  • the pressure adjusting units 114 and 115 are connected to the controller C.
  • a gas G is supplied to the pressure adjusting units 114 and 115.
  • the pressure connector 111 includes a first pressure part 111a and a second pressure part 111b.
  • the first pressurizing unit 111 a is configured to supply the gas G only to the hole 4 a for forming the hole 3 a of the optical fiber 3 among the holes 4 a of the glass base material 4.
  • the second pressurizing part 111b is configured to supply the gas G only to the hole 4a for forming the hole 3b.
  • the gas G supplied to the hole 4a for forming the hole 3a is supplied to the first pressurizing unit 111a through the gas supply path 112 and is pressured by the pressure adjusting unit 114 controlled by the controller C. Is adjusted.
  • the gas G supplied to the hole 4a for forming the hole 3b is supplied to the second pressurizing unit 111b through the gas supply path 113 and is pressured by the pressure adjusting unit 115 controlled by the controller C. Is adjusted. Therefore, by using the pressurizing mechanism 110, the pressure in each hole 4a can be controlled separately. Specifically, the pressure in each hole 4a is set so that the pressure in the hole 4a for forming the hole 3b is higher than the pressure in the hole 4a for forming the hole 3a. Be controlled.
  • the ratio (X2 / Y2) is set to be smaller than 1.0, and the ratio (X3 / Y2) is set to 1.0.
  • both the ratio (X2 / Y2) and the ratio (X3 / Y2) may be made smaller than 1.0. By making both smaller than 1.0, the glass base material can be made longer.
  • FIG. 9 is a schematic cross-sectional view of another optical fiber that can be manufactured by the manufacturing method according to the second embodiment. As shown in FIG. 9, the optical fiber 5 has holes 5a and 5b extending along the longitudinal axis.
  • the optical fiber 5 is made of a material such as pure quartz glass.
  • the holes 5a and 5b are regularly arranged in a triangular lattice pattern in a cross section perpendicular to the longitudinal axis of the optical fiber 5.
  • region where the hole 5a, 5b is arranged functions as the core part 5c, and the circumference
  • the six holes 5b are positioned so as to surround the core portion 5c.
  • the 12 holes 5a have the same hole diameter.
  • the hole diameter of the hole 5a is d51.
  • the six holes 5b have the same hole diameter.
  • the hole diameter of the hole 5b is d52.
  • the hole diameter d52 is set larger than the hole diameter d51.
  • this optical fiber 5 a region having a low refractive index is formed around the core portion 5c by the hole 5b having a large hole diameter, and a so-called W-shaped cross-sectional refractive index profile is formed.
  • the optical fiber 5 is also controlled to have a different internal pressure depending on each hole 4a from the glass base material 4 having the holes 4a having the same hole diameter shown in FIG. 7 using the manufacturing method according to the second embodiment. However, it can be manufactured by drawing while drawing. Specifically, the pressure in the hole 4a of the glass base material 4 for forming the hole 5b of the optical fiber 5 is higher than the pressure in the hole 4a for forming the hole 5a. The pressure in each hole 4a may be controlled.
  • the glass base material has holes formed by a drill.
  • the present invention can also be applied to a case where a base material is prepared using a glass tube that becomes a hole.
  • the glass tube can be lengthened. Therefore, a longer and larger glass base material can be prepared using a longer glass tube.
  • pressure control is performed so that the ratio (X / Y) ⁇ 1.0 is satisfied for some or all of the plurality of holes in the glass base material.
  • pressure control may be performed so that the ratio (X / Y) ⁇ 1.0 is satisfied with respect to at least one hole.
  • the outer diameter of the glass base material may be adjusted by applying a known jacket method to the glass base material of the above embodiment.
  • the jacket method is a method of forming a glass base material having a larger outer diameter by inserting the glass base material into a quartz glass tube having an inner diameter that is substantially the same as the outer diameter of the glass base material.
  • the present invention can be applied to the manufacture of various optical fibers having a plurality of holes extending along the longitudinal axis such as PBGF.
  • the optical fiber manufacturing method according to the present invention is suitable for use in manufacturing an optical fiber having a plurality of holes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

This method for manufacturing optical fibers comprises: a preparation step for preparing a glass preform, which has multiple holes extending along the longitudinal axis, and for which the ratio between the diameter of the holes and the outer diameter of the glass preform is defined as a first ratio; and a drawing step for heating and melting one end of the glass preform while applying pressure inside the multiple holes of the glass preform, and drawing an optical fiber having multiple holes extending along the longitudinal axis. If the ratio between the diameter of at least one the holes in the optical fiber and the outer diameter of the optical fiber is defined as a second ratio, the optical fiber is drawn after adjusting the pressure inside at least one hole in the glass preform in such a manner that the ratio between the second ratio and the first ratio decreases to less than 1.0. Manufacturing costs can thus be reduced.

Description

光ファイバの製造方法Optical fiber manufacturing method
 本発明は、長手方向の軸に沿って延びる複数の空孔を有する光ファイバの製造方法に関するものである。 The present invention relates to a method for manufacturing an optical fiber having a plurality of holes extending along a longitudinal axis.
 長手方向の軸に沿って延びる複数の空孔を有する空孔構造光ファイバとして、ホーリーファイバ(Holey Fiber:HF)あるいはフォトニッククリスタルファイバ(Photonic Crystal Fiber:PCF)と呼ばれるものや、フォトニックバンドギャップファイバ(Photonic BandGap Fiber:PBGF)や、ホールアシストファイバ(Hole Assisted Fiber:HAF)等がある。 As a hole-structured optical fiber having a plurality of holes extending along the longitudinal axis, a so-called holey fiber (Holey Fiber: HF) or photonic crystal fiber (Photonic Crystal Fiber: PCF), or a photonic band gap is used. There are fiber (Photonic BandGap Fiber: PBGF), hole assist fiber (Hole Assisted Fiber: HAF), and the like.
 HFとは、コア部の周囲のクラッド部に空孔を規則的に配列してクラッド部の平均屈折率を下げ、全反射の原理を用いて光の閉じ込めを実現するタイプの光ファイバである。また、PBGFは、クラッド部に空孔をフォトニック結晶を形成するように配列してフォトニックバンドギャップを形成し、そこに結晶欠陥としてのコア部を導入して、光の閉じ込めを実現するというタイプの光ファイバである。なお、PBGFは、コア部も空孔により形成される場合がある。また、HAFは、通常のソリッド型光ファイバと同じく、ゲルマニウム(Ge)などがドープされた中実のコア部とクラッド部とから形成され、光の閉じ込めは主に全反射の原理で実現するが、クラッド部にさらに空孔を設けてクラッド部の平均屈折率を下げ、コア部への光の閉じ込め特性を向上させたタイプの光ファイバである。 HF is an optical fiber of a type in which holes are regularly arranged in the cladding around the core to lower the average refractive index of the cladding and realize light confinement using the principle of total reflection. In addition, PBGF forms photonic band gaps by arranging vacancies in the cladding part so as to form a photonic crystal, and introduces a core part as a crystal defect therein to realize light confinement. Type of optical fiber. In addition, as for PBGF, a core part may be formed of a void | hole. HAF is formed from a solid core portion doped with germanium (Ge) or the like and a cladding portion, as in a normal solid optical fiber, and light confinement is realized mainly by the principle of total reflection. This is an optical fiber of a type in which holes are further provided in the cladding part to lower the average refractive index of the cladding part and to improve the light confinement characteristics in the core part.
 HAFは、空孔をコア近傍に設けることで、光の閉じ込め特性を向上できるため、曲げ損失を著しく低減できる。しかし、HAFでは、基底モードだけでなく、高次モードの光も閉じ込めやすくなるため、マルチモード化しやすい。HAFにおいて、基底モードの光のみを閉じ込めてシングルモード伝搬を実現し、かつシングルモード伝搬の曲げ損失を低減するためには、空孔径や、空孔数、コア-空孔間距離などの最適化が必要となってくる。最近では、これらの観点から、空孔直径を小さくし、空孔を10個程度に増やした設計も提案されている(非特許文献1参照)。 Since HAF can improve the light confinement characteristics by providing holes near the core, bending loss can be significantly reduced. However, in HAF, not only the fundamental mode but also higher-order mode light is easily confined, so that it is easy to make a multimode. In HAF, in order to realize single mode propagation by confining only fundamental mode light and to reduce bending loss of single mode propagation, optimization of hole diameter, number of holes, core-hole distance, etc. Will be needed. Recently, from these viewpoints, a design in which the hole diameter is reduced and the number of holes is increased to about 10 has been proposed (see Non-Patent Document 1).
 これらの空孔構造光ファイバを製造する方法として以下のようなものがある。まず、ガラス母材にドリル装置などで空孔を形成する(特許文献1参照)か、空孔となる石英ガラス管の周囲をガラス材料で充填して(特許文献2参照)、空孔を有するガラス母材を準備する。そして、この空孔を有するガラス母材の空孔もしくは空孔となる石英ガラス管の内圧を制御しつつ線引きを行い、空孔構造光ファイバを製造する(特許文献3参照)。 There are the following methods for manufacturing these hole-structured optical fibers. First, holes are formed in a glass base material with a drill device or the like (see Patent Document 1), or the periphery of a quartz glass tube serving as a hole is filled with a glass material (see Patent Document 2) to have holes. Prepare a glass base material. Then, drawing is performed while controlling the internal pressure of the glass glass material having the holes or the quartz glass tube serving as the holes, and a hole-structured optical fiber is manufactured (see Patent Document 3).
特開2002-145634号公報JP 2002-145634 A 特開2003-342032号公報JP 2003-342032 A 特開2004-307250号公報JP 2004-307250 A
 しかしながら、特許文献1のようにドリルでガラス母材に空孔を開ける場合、直径に比して長いドリルを使用すると、空孔の穿孔中にドリルの曲がりなどが発生するおそれがある。したがって、ガラス母材に形成すべき空孔の直径が設定されると、使用できるドリルの長さが制限され、これによって空孔を有するガラス母材の長さも制限される場合がある。したがって、1つのガラス母材から製造できる空孔構造光ファイバの長さも制限される場合がある。その結果、空孔構造光ファイバの製造コストの低減が困難な場合があるという問題があった。 However, when a hole is made in a glass base material with a drill as in Patent Document 1, if a drill having a length longer than the diameter is used, the drill may be bent while the hole is drilled. Therefore, when the diameter of the hole to be formed in the glass base material is set, the length of the drill that can be used is limited, and thus the length of the glass base material having the hole may be limited. Therefore, the length of the hole-structured optical fiber that can be manufactured from one glass preform may be limited. As a result, there has been a problem that it may be difficult to reduce the manufacturing cost of the hole-structured optical fiber.
 本発明は、上記に鑑みてなされたものであって、製造コストの低減を実現できる光ファイバの製造方法を提供することを目的とする。 The present invention has been made in view of the above, and an object thereof is to provide an optical fiber manufacturing method capable of realizing a reduction in manufacturing cost.
 上述した課題を解決し、目的を達成するために、本発明に係る光ファイバの製造方法は、長手方向の軸に沿って延びる複数の空孔を有するガラス母材であって、前記空孔の直径と当該ガラス母材の外径との比が第1の比であるガラス母材を準備する準備工程と、前記ガラス母材の前記複数の空孔内を加圧しつつ当該ガラス母材の一端を加熱溶融して、長手方向の軸に沿って延びる複数の空孔を有する光ファイバを線引きする線引き工程と、を含み、前記光ファイバの前記空孔の少なくとも一つの直径と当該光ファイバの外径との比を第2の比とすると、前記第2の比と前記第1の比との比が1.0よりも小さくなるように前記ガラス母材の前記少なくとも一つの空孔内の圧力を調整して前記線引きを行うことを特徴とする。 In order to solve the above-described problems and achieve the object, an optical fiber manufacturing method according to the present invention is a glass base material having a plurality of holes extending along a longitudinal axis. A preparation step of preparing a glass base material in which the ratio of the diameter to the outer diameter of the glass base material is a first ratio; and one end of the glass base material while pressurizing the inside of the plurality of pores of the glass base material And drawing an optical fiber having a plurality of holes extending along a longitudinal axis, and drawing at least one diameter of the holes of the optical fiber and an outside of the optical fiber. When the ratio with the diameter is the second ratio, the pressure in the at least one hole of the glass base material is such that the ratio between the second ratio and the first ratio is less than 1.0. The line drawing is performed by adjusting.
 また、本発明に係る光ファイバの製造方法は、上記の発明において、前記第2の比と前記第1の比との比が0.5以上であることを特徴とする。 The optical fiber manufacturing method according to the present invention is characterized in that, in the above invention, the ratio of the second ratio to the first ratio is 0.5 or more.
 また、本発明に係る光ファイバの製造方法は、上記の発明において、前記ガラス母材の前記複数の空孔を互いに異なる圧力で加圧することを特徴とする。 The optical fiber manufacturing method according to the present invention is characterized in that, in the above invention, the plurality of pores of the glass base material are pressurized with different pressures.
 また、本発明に係る光ファイバの製造方法は、上記の発明において、前記ガラス母材の前記複数の空孔の直径を3mm以上にすることを特徴とする。 The optical fiber manufacturing method according to the present invention is characterized in that, in the above invention, the diameter of the plurality of holes in the glass base material is 3 mm or more.
 本発明によれば、光ファイバの製造コストを低減できるという効果を奏する。 According to the present invention, it is possible to reduce the manufacturing cost of the optical fiber.
図1は、実施の形態1に係る製造方法によって製造する光ファイバの模式的な断面図である。FIG. 1 is a schematic cross-sectional view of an optical fiber manufactured by the manufacturing method according to the first embodiment. 図2は、図1に示す光ファイバを製造するためのガラス母材の模式的な斜視図である。FIG. 2 is a schematic perspective view of a glass preform for manufacturing the optical fiber shown in FIG. 図3は、線引き工程を説明する図である。FIG. 3 is a diagram for explaining a drawing process. 図4は、無次元空孔内加圧量と比(X/Y)との関係を示す図である。FIG. 4 is a diagram showing the relationship between the dimensionless in-hole pressurization amount and the ratio (X / Y). 図5は、比(X/Y)と無次元空孔径変動との関係を示す図である。FIG. 5 is a diagram showing the relationship between the ratio (X / Y) and the dimensionless pore diameter variation. 図6は、実施の形態2に係る製造方法によって製造する光ファイバの模式的な断面図である。FIG. 6 is a schematic cross-sectional view of an optical fiber manufactured by the manufacturing method according to the second embodiment. 図7は、図6に示す光ファイバを製造するためのガラス母材の模式的な斜視図である。FIG. 7 is a schematic perspective view of a glass preform for manufacturing the optical fiber shown in FIG. 図8は、実施の形態2に係る製造方法において用いる加圧機構の模式図である。FIG. 8 is a schematic diagram of a pressure mechanism used in the manufacturing method according to the second embodiment. 図9は、実施の形態2に係る製造方法によって製造できる他の光ファイバの模式的な断面図である。FIG. 9 is a schematic cross-sectional view of another optical fiber that can be manufactured by the manufacturing method according to the second embodiment.
 以下に、図面を参照して本発明に係る光ファイバの製造方法の実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、本明細書においては、カットオフ波長とは、ITU-T(国際電気通信連合)G.650.1で定義するファイバカットオフ波長をいう。その他、本明細書で特に定義しない用語についてはITU-T G.650.1およびG.650.2における定義、測定方法に従うものとする。 Embodiments of an optical fiber manufacturing method according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In this specification, the cutoff wavelength is ITU-T (International Telecommunication Union) This refers to the fiber cutoff wavelength defined in 650.1. For other terms not specifically defined in this specification, ITU-T G.A. 650.1 and G.I. It shall follow the definition and measurement method in 650.2.
(実施の形態1)
 図1は、本発明の実施の形態1に係る製造方法によって製造する光ファイバの模式的な断面図である。図1に示すように、光ファイバ1は、HAFであって、コア部1aと、コア部1aの外周に形成されたクラッド部1bとを備える。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view of an optical fiber manufactured by the manufacturing method according to Embodiment 1 of the present invention. As shown in FIG. 1, the optical fiber 1 is a HAF and includes a core portion 1a and a clad portion 1b formed on the outer periphery of the core portion 1a.
 コア部1aは、ゲルマニウム(Ge)などの屈折率を高めるためのドーパントが添加された石英系ガラスからなる。クラッド部1bは、コア部1aよりも屈折率が低い石英系ガラス、たとえば屈折率調整用のドーパントを含まない純石英ガラスからなる。コア部1a周辺の断面屈折率分布形状は、矩形(ステップインデックス)、クラッド部1bとの境界にすそが有る疑似矩形(疑似ステップインデックス)、ガウス分布形状(屈折率分布係数αが略2であるグレーデッドインデックス)などでも良い。 The core portion 1a is made of quartz glass to which a dopant for increasing the refractive index such as germanium (Ge) is added. The clad part 1b is made of quartz glass having a lower refractive index than that of the core part 1a, for example, pure silica glass not containing a dopant for adjusting the refractive index. The cross-sectional refractive index distribution shape around the core portion 1a is a rectangle (step index), a pseudo rectangle (pseudo step index) with a skirt at the boundary with the cladding portion 1b, and a Gaussian distribution shape (refractive index distribution coefficient α is approximately 2. Graded index) may be used.
 また、クラッド部1bは、コア部1aを囲むように形成された、長手方向の軸に沿って延びている10個の空孔1cを有している。空孔1cは、光ファイバ1の長手方向に垂直な断面において、コア部1aの中心点と、隣接する任意の2つの空孔1cの中心点のそれぞれとを結んだときに形成される2本の線分の成す角度(中心角)が、いずれも等しくなるような位置に形成されている。 Further, the clad portion 1b has ten holes 1c formed so as to surround the core portion 1a and extending along the longitudinal axis. Two holes 1c are formed when the center point of the core portion 1a is connected to each of the center points of any two adjacent holes 1c in a cross section perpendicular to the longitudinal direction of the optical fiber 1. Are formed at positions where the angles (center angles) formed by the line segments are equal.
 空孔1cは同一の直径(以下、空孔径と呼ぶ)を有している。空孔1cの空孔径はd1である。また、光ファイバ1の外径はD1である。空孔1cの直径d1と光ファイバ1の外径D1との比を第2の比X1とすると、X1=d1/D1である。 The holes 1c have the same diameter (hereinafter referred to as the hole diameter). The hole diameter of the hole 1c is d1. The outer diameter of the optical fiber 1 is D1. When the ratio of the diameter d1 of the hole 1c and the outer diameter D1 of the optical fiber 1 is the second ratio X1, X1 = d1 / D1.
 つぎに、本実施の形態1に係る製造方法について具体的に説明する。はじめに、光ファイバ1を製造するためのガラス母材を準備する。図2は、光ファイバ1を製造するためのガラス母材の模式的な斜視図である。図2に示すように、ガラス母材2は、石英系ガラスからなる円柱状であり、光ファイバ1のコア部1a、クラッド部1b、および空孔1cのそれぞれを形成するためのコア部2a、クラッド部2b、および空孔2cを有している。空孔2cはガラス母材2の長手方向の軸に沿って延びている。 Next, the manufacturing method according to the first embodiment will be specifically described. First, a glass base material for manufacturing the optical fiber 1 is prepared. FIG. 2 is a schematic perspective view of a glass base material for manufacturing the optical fiber 1. As shown in FIG. 2, the glass base material 2 is a columnar shape made of quartz glass, and a core portion 2a for forming each of the core portion 1a, the cladding portion 1b, and the hole 1c of the optical fiber 1, It has a clad portion 2b and a hole 2c. The air holes 2 c extend along the longitudinal axis of the glass base material 2.
 空孔2cは同一の空孔径を有している。空孔2cの空孔径はd2である。また、ガラス母材2の外径はD2である。空孔2cの直径d2とガラス母材2の外径D2との比を第1の比Y1とすると、Y1=d2/D2である。本実施の形態1では、所望のX1に対して、X1がY1より小さくなるようにd2、D2を設定する。すなわち、(X1/Y1)=(d1/D1)/(d2/D2)<1.0である。なお、ガラス母材2の長さはL1である。 The holes 2c have the same hole diameter. The hole diameter of the hole 2c is d2. Moreover, the outer diameter of the glass base material 2 is D2. When the ratio of the diameter d2 of the air hole 2c and the outer diameter D2 of the glass base material 2 is the first ratio Y1, Y1 = d2 / D2. In the first embodiment, d2 and D2 are set so that X1 is smaller than Y1 with respect to desired X1. That is, (X1 / Y1) = (d1 / D1) / (d2 / D2) <1.0. The length of the glass base material 2 is L1.
 ガラス母材2は、たとえば以下のようにして準備できる。まず、VAD(Vapor phase Axial Deposition)法、OVD(Outside Vapor Deposition)法、MCVD(Modified Chemical Vapor Deposition)法などの周知の方法を用いて、コア部2aとクラッド部2bとを備えるガラス母材を形成する。その後、ドリルを用いてガラス母材の長手方向の軸に沿って空孔2cを形成する。これによって、図2に示すガラス母材2を準備できる。 The glass base material 2 can be prepared as follows, for example. First, using a known method such as a VAD (Vapor phase Axial Deposition) method, an OVD (Outside Vapor Deposition) method, or an MCVD (Modified Chemical Vapor Deposition) method, a glass base material having a core portion 2a and a cladding portion 2b is formed. Form. Thereafter, holes 2c are formed along the longitudinal axis of the glass base material using a drill. Thereby, the glass base material 2 shown in FIG. 2 can be prepared.
 つぎに、このガラス母材2から光ファイバ1を線引きする。図3は、線引き工程を説明する図である。図3に示す線引装置100は、ヒータ101aを有する線引加熱炉101と、加圧機構102と、外径測定器103と、被覆樹脂塗布装置104と、樹脂硬化装置105と、キャプスタンローラ106と、ガイドロール107と、制御器Cを備える。加圧機構102は、加圧用コネクタ102aと、加圧用コネクタ102aに接続したガス供給路102bと、ガス供給路102bに接続した圧力調整部102cとを備える。圧力調整部102cはたとえばマスフローコントローラ(MFC)で構成される。 Next, the optical fiber 1 is drawn from the glass base material 2. FIG. 3 is a diagram for explaining a drawing process. A drawing apparatus 100 shown in FIG. 3 includes a drawing heating furnace 101 having a heater 101a, a pressurizing mechanism 102, an outer diameter measuring device 103, a coating resin coating apparatus 104, a resin curing apparatus 105, and a capstan roller. 106, a guide roll 107, and a controller C. The pressurizing mechanism 102 includes a pressurizing connector 102a, a gas supply path 102b connected to the pressurizing connector 102a, and a pressure adjusting unit 102c connected to the gas supply path 102b. The pressure adjusting unit 102c is configured by, for example, a mass flow controller (MFC).
 つぎに、各構成の作用とともに光ファイバ1の線引き工程を説明する。
 はじめに、図2に示すガラス母材2を線引加熱炉101にセットし、ガラス母材2の上端に加圧用コネクタ102aを接続する。つぎに、ガラス母材2の下端をヒータ101aにて加熱溶融して、下端を線引きする。これによって、ガラス母材2から図1に示す光ファイバ1が線引きされる。
Next, the drawing process of the optical fiber 1 will be described together with the operation of each component.
First, the glass base material 2 shown in FIG. 2 is set in the drawing heating furnace 101, and the pressure connector 102 a is connected to the upper end of the glass base material 2. Next, the lower end of the glass base material 2 is heated and melted by the heater 101a, and the lower end is drawn. As a result, the optical fiber 1 shown in FIG. 1 is drawn from the glass preform 2.
 線引きの際には、ガラス母材2の空孔2c内にはガスGが供給されて加圧される。ガスGは、加圧用コネクタ102aから、ガス供給路102bを介して空孔2c内に供給される。ガスGの空孔2c内での圧力は、制御器Cによって制御された圧力調整部102cによって、光ファイバ1の空孔1cの空孔径がd1になるように制御される。ガスGは、たとえばアルゴンガスであるが、ヘリウムガスや窒素ガスなどの他の不活性ガスでもよい。 During drawing, gas G is supplied into the air holes 2c of the glass base material 2 and pressurized. The gas G is supplied from the pressurizing connector 102a into the hole 2c through the gas supply path 102b. The pressure of the gas G in the hole 2c is controlled by the pressure adjusting unit 102c controlled by the controller C so that the hole diameter of the hole 1c of the optical fiber 1 becomes d1. The gas G is, for example, argon gas, but may be other inert gas such as helium gas or nitrogen gas.
 線引きされた光ファイバ1は、公知の被覆樹脂塗布装置104と樹脂硬化装置105とによって被覆を形成され、キャプスタンローラ106とガイドロール107とによって送られ、不図示の巻取り器に巻取られる。制御器Cは、外径測定器103によって測定される光ファイバ1の外径がD1になるようにキャプスタンローラ106の回転速度(すなわち光ファイバ1の線引き速度)を制御する。 The drawn optical fiber 1 is coated with a known coating resin coating device 104 and resin curing device 105, sent by a capstan roller 106 and a guide roll 107, and wound on a winder (not shown). . The controller C controls the rotational speed of the capstan roller 106 (that is, the drawing speed of the optical fiber 1) so that the outer diameter of the optical fiber 1 measured by the outer diameter measuring device 103 becomes D1.
 本実施の形態1では、(X1/Y1)=(d1/D1)/(d2/D2)<1.0になるようにしている。たとえば光ファイバ1について、所望の空孔径d1が3.5μm、外径D1が125μmであるとすると、その比X1は0.028である。これに対して、ガラス母材2の空孔径d2を3mm、外径D2を70mmとすれば、その比Y1は0.043となるので、X1/Y1は0.65となり、(X1/Y1)<1.0が成立する。 In the first embodiment, (X1 / Y1) = (d1 / D1) / (d2 / D2) <1.0. For example, regarding the optical fiber 1, if the desired hole diameter d1 is 3.5 μm and the outer diameter D1 is 125 μm, the ratio X1 is 0.028. On the other hand, if the hole diameter d2 of the glass base material 2 is 3 mm and the outer diameter D2 is 70 mm, the ratio Y1 is 0.043, so X1 / Y1 is 0.65, and (X1 / Y1) <1.0 holds.
 ここで、ガラス母材の空孔径と外径との比と、製造する光ファイバの空孔径と外径との比とが同じになるように光ファイバを製造する場合を考える。この場合、当該比が0.028の光ファイバを製造する場合に、外径が70mmのガラス母材を使用する場合は、ガラス母材に形成する空孔の空孔径を約2mmと小さくしなければならない。これに対して、本実施の形態1では、上述したように、(X1/Y1)<1.0が成り立つようにしている。これによって、ガラス母材2の空孔径d2は2mmより大きいたとえば3mmであり、空孔径d2を比較的大きくすることができる。この場合、ガラス母材2に空孔2cを形成するためのドリルとして太いものを使用できるので、長さを長くできる。したがって、ガラス母材2の長さL1も長くできる。 Here, consider a case where an optical fiber is manufactured such that the ratio between the hole diameter and the outer diameter of the glass base material is the same as the ratio between the hole diameter and the outer diameter of the optical fiber to be manufactured. In this case, when manufacturing an optical fiber having a ratio of 0.028, when using a glass base material having an outer diameter of 70 mm, the hole diameter of the holes formed in the glass base material must be reduced to about 2 mm. I must. On the other hand, in the first embodiment, as described above, (X1 / Y1) <1.0 is established. Thereby, the hole diameter d2 of the glass base material 2 is, for example, 3 mm, which is larger than 2 mm, and the hole diameter d2 can be made relatively large. In this case, since a thick drill can be used as the drill for forming the holes 2c in the glass base material 2, the length can be increased. Therefore, the length L1 of the glass base material 2 can be increased.
 すなわち、本実施の形態1では、製造すべき光ファイバ1の空孔径d1と外径D1との比X1に対して、ガラス母材2に、あらかじめ空孔径d2の大きな空孔2cを形成するようにしている。そして、その後の線引きの際の空孔2c内のガスGの圧力の調整によって、空孔径d1と外径D1との比が所望の比X1になるように調整している。その結果、空孔2cの形成に使用することができるドリルの長さを、機械的強度を維持しつつ長くすることができるため、ガラス母材2の長さも長くすることができる。これによって、1つのガラス母材2から製造できる光ファイバ1の長さが長くなるので、製造コストが低減される。 That is, in the first embodiment, a hole 2c having a large hole diameter d2 is previously formed in the glass preform 2 with respect to the ratio X1 between the hole diameter d1 and the outer diameter D1 of the optical fiber 1 to be manufactured. I have to. Then, by adjusting the pressure of the gas G in the hole 2c during the subsequent drawing, the ratio of the hole diameter d1 and the outer diameter D1 is adjusted to a desired ratio X1. As a result, since the length of the drill that can be used for forming the hole 2c can be increased while maintaining the mechanical strength, the length of the glass base material 2 can also be increased. Accordingly, the length of the optical fiber 1 that can be manufactured from one glass base material 2 is increased, and thus the manufacturing cost is reduced.
 つぎに、光ファイバの空孔径と外径との比{(光ファイバ空孔径)/(光ファイバ外径)}をXとし、ガラス母材の空孔径と外径との比{(ガラス母材空孔径)/(ガラス母材外径)}をYとし、ガラス母材の空孔内の圧力と、比(X/Y)との関係について説明する。以下では、図2に示すガラス母材2と同様の構造を有し、空孔径が3.5mmの空孔を10個形成した外径60mmのガラス母材を準備した。そして、ガラス母材の空孔内の圧力の設定を様々な値にして、準備したガラス母材から外径(クラッド径)125μmの光ファイバを線引きする実験を行った。 Next, the ratio {(optical fiber hole diameter) / (optical fiber outer diameter)} between the hole diameter and the outer diameter of the optical fiber is set to X, and the ratio {(glass base material) between the hole diameter and the outer diameter of the glass base material. The relationship between the pressure in the pores of the glass base material and the ratio (X / Y) will be described where Y is (hole diameter) / (glass base material outer diameter)}. In the following, a glass base material having an outer diameter of 60 mm having the same structure as the glass base material 2 shown in FIG. 2 and having 10 holes having a hole diameter of 3.5 mm was prepared. Then, an experiment was carried out in which an optical fiber having an outer diameter (cladding diameter) of 125 μm was drawn from the prepared glass base material with various pressure settings in the glass base material.
 また、以下では、無次元空孔内加圧量によって空孔内の圧力を規定する。無次元空孔内加圧量は、空孔内の圧力と大気圧との圧力差(以下、この圧力差を空孔内加圧量という)を、比(X/Y)が1となる空孔内加圧量で除した値として定義する。 Also, in the following, the pressure in the hole is defined by the dimensionless pressure in the hole. The dimensionless vacancy pressure is the difference between the pressure in the cavities and the atmospheric pressure (hereinafter, this pressure difference is referred to as the vacancy pressure) and the ratio (X / Y) is 1. It is defined as the value divided by the amount of pressurization in the hole.
 図4は、無次元空孔内加圧量と比(X/Y)との関係を示す図である。図4に示すように、無次元空孔内加圧量を大きくするとそれに従って比(X/Y)も大きくなる。したがって、図4に示すような無次元空孔内加圧量と比(X/Y)との関係に従って空孔内の圧力を制御すれば、所望の比(X/Y)を実現することができる。 FIG. 4 is a diagram showing the relationship between the dimensionless in-hole pressurization amount and the ratio (X / Y). As shown in FIG. 4, when the amount of pressurization in dimensionless holes is increased, the ratio (X / Y) is increased accordingly. Therefore, a desired ratio (X / Y) can be realized by controlling the pressure in the holes in accordance with the relationship between the dimensionless pressure in the holes and the ratio (X / Y) as shown in FIG. it can.
 つぎに、比(X/Y)と、製造した光ファイバの空孔径の変動との関係について説明する。以下では、無次元空孔径変動によって空孔径の変動を規定する。無次元空孔径変動は、比(X/Y)が或る値のときの10個の空孔の平均空孔径(単位はμm)の、光ファイバ1km当たりの変動量(最大値と最小値との差。以下、空孔径変動という)を、比(X/Y)が1となる空孔径変動で除した値である。 Next, the relationship between the ratio (X / Y) and fluctuations in the hole diameter of the manufactured optical fiber will be described. In the following, the fluctuation of the hole diameter is defined by the dimensionless hole diameter fluctuation. The dimensionless hole diameter variation is the fluctuation amount per 1 km of optical fiber (maximum value and minimum value) of the average hole diameter (unit: μm) of 10 holes when the ratio (X / Y) is a certain value. (Hereinafter referred to as pore diameter fluctuation) is divided by the hole diameter fluctuation where the ratio (X / Y) is 1.
 図5は、比(X/Y)と無次元空孔径変動との関係を示す図である。図5に示すように、X/Yが0.5以上であれば、無次元空孔径変動が1.5よりも小さくなり、空孔径の長手方向での変動が少なくなるので好ましい。 FIG. 5 is a diagram showing the relationship between the ratio (X / Y) and the dimensionless pore diameter variation. As shown in FIG. 5, it is preferable that X / Y is 0.5 or more because the dimensionless pore diameter variation is smaller than 1.5, and the variation in the longitudinal direction of the pore diameter is reduced.
 なお、比(X/Y)が1.0よりも小さければ、ガラス母材の長さを長くできる効果があるが、比(X/Y)を0.7以下にすればその効果が顕著になるのでより好ましい。 If the ratio (X / Y) is smaller than 1.0, the length of the glass base material can be increased. However, if the ratio (X / Y) is 0.7 or less, the effect is remarkable. This is more preferable.
(実施例1、比較例1)
 本発明の実施例1、比較例1として、図1に示す構造の光ファイバを以下の工程にて製造した。
 周知のVAD法およびOVD法によって、Geを含むコア部を中心部に有し、コア部の周囲にクラッド部を有するガラス母材を得た。さらにこのガラス母材を酸水素バーナにて延伸して、外径70mmのガラス母材を2本作製した。なお、当該ガラス母材の延伸は酸水素火炎バーナで実施したが、電気炉での加熱による方法でも良い。このガラス母材の断面屈折率分布形状は、比屈折率差0.35%の略矩形(ステップインデックス)とした。
(Example 1, Comparative Example 1)
As Example 1 and Comparative Example 1 of the present invention, an optical fiber having the structure shown in FIG.
By a known VAD method and OVD method, a glass base material having a core portion containing Ge in the center portion and a cladding portion around the core portion was obtained. Furthermore, this glass base material was extended | stretched with the oxyhydrogen burner, and two glass base materials with an outer diameter of 70 mm were produced. In addition, although the said glass base material was extended | stretched with the oxyhydrogen flame burner, the method by the heating with an electric furnace may be used. The cross-sectional refractive index distribution shape of this glass base material was a substantially rectangular shape (step index) with a relative refractive index difference of 0.35%.
 作製したガラス母材のうちの1本に、ドリルを用いた穿孔加工を行い、長手方向の軸に沿って直径1.9mmの空孔を10個形成した。このとき用いたドリルの機械的強度の制約上、ガラス母材の長さを350mmとした。このようにして、比較例1のガラス母材を準備した。 A drilling process was performed on one of the prepared glass base materials to form ten holes having a diameter of 1.9 mm along the longitudinal axis. The length of the glass base material was set to 350 mm because of the mechanical strength of the drill used at this time. Thus, the glass base material of the comparative example 1 was prepared.
 一方、作製したガラス母材の別の1本に、ドリルを用いた穿孔加工を行い、長手方向の軸に沿って直径3.5mmの空孔を10個形成した。このとき用いたドリルは、上記の比較例1の場合よりも直径が太く、ドリルの剛性が高いため、ガラス母材の長さを900mmにできた。このようにして、実施例1のガラス母材を準備した。なお、実施例1のガラス母材におけるコア部の中心と空孔の中心との距離と、比較例1のガラス母材における当該距離とは同一とした。 On the other hand, another one of the produced glass base materials was drilled using a drill to form 10 holes having a diameter of 3.5 mm along the longitudinal axis. Since the diameter of the drill used at this time was larger than that in the case of Comparative Example 1 and the rigidity of the drill was high, the length of the glass base material was 900 mm. Thus, the glass base material of Example 1 was prepared. The distance between the center of the core portion and the center of the hole in the glass base material of Example 1 and the distance in the glass base material of Comparative Example 1 were the same.
 つぎに、図3に示す構成の線引装置を用いて、上記実施例1、比較例1のガラス母材の空孔内を加圧しながら光ファイバを線引きし、実施例1、比較例1の光ファイバを製造した。なお、加圧するガスとしてアルゴンガスを使用した。この際、実施例1、比較例1のどちらの光ファイバについても、10個の空孔の平均空孔径が3.5μmになるよう空孔内加圧量の調整をおこなった。製造した光ファイバの平均空孔径は、実施例1では3.55μmであり、比較例1では3.51μmであった。また、実施例1、比較例1のどちらの光ファイバについても、外径が125μmになるようにした。
 したがって、実施例1の場合は比(X/Y)が0.57、比較例1の場合は比(X/Y)が1であった。
Next, using the drawing apparatus having the configuration shown in FIG. 3, the optical fiber is drawn while pressurizing the pores of the glass base material of Example 1 and Comparative Example 1, and Examples 1 and 1 of Comparative Example 1 are drawn. An optical fiber was manufactured. Argon gas was used as the pressurized gas. At this time, in each of the optical fibers of Example 1 and Comparative Example 1, the amount of pressurization in the holes was adjusted so that the average hole diameter of the ten holes was 3.5 μm. The average hole diameter of the manufactured optical fiber was 3.55 μm in Example 1, and 3.51 μm in Comparative Example 1. In addition, the outer diameter of each of the optical fibers of Example 1 and Comparative Example 1 was set to 125 μm.
Therefore, in the case of Example 1, the ratio (X / Y) was 0.57, and in the case of Comparative Example 1, the ratio (X / Y) was 1.
 つぎに、製造した実施例1、比較例1の光ファイバの特性を測定した。波長1550nmにおいて、実施例1の光ファイバの伝送損失は0.197dB/kmであり、比較例1の光ファイバの伝送損失は0.198dB/kmであり、略同一であった。また、その他のカットオフ波長や、波長分散等の特性についても、実施例1、比較例1の光ファイバの値の差は10%以内であった。したがって、実施例1、比較例1の光ファイバは、略同等の特性を有するものであった。 Next, the characteristics of the manufactured optical fibers of Example 1 and Comparative Example 1 were measured. At a wavelength of 1550 nm, the transmission loss of the optical fiber of Example 1 was 0.197 dB / km, and the transmission loss of the optical fiber of Comparative Example 1 was 0.198 dB / km, which was substantially the same. Further, regarding other characteristics such as cutoff wavelength and wavelength dispersion, the difference in the values of the optical fibers of Example 1 and Comparative Example 1 was within 10%. Therefore, the optical fibers of Example 1 and Comparative Example 1 had substantially the same characteristics.
 ただし、実施例1のガラス母材の方が比較例1のガラス母材よりも2倍以上長いので、各ガラス母材からは、実施例1の光ファイバの方が比較例1の光ファイバよりも長い光ファイバを得られた。したがって、実施例1の光ファイバはより製造コストが低いものとなった。 However, since the glass base material of Example 1 is twice or more longer than the glass base material of Comparative Example 1, the optical fiber of Example 1 is longer than the optical fiber of Comparative Example 1 from each glass base material. Even a long optical fiber was obtained. Therefore, the manufacturing cost of the optical fiber of Example 1 was lower.
(実施例2)
 実施例1、比較例1と同様の構造を有する外径70mmのガラス母材を1本作製し、ドリルを用いた穿孔加工を行い、長手方向の軸に沿って直径3.0mmの空孔を10個形成した。このとき用いたドリルは、比較例1の場合よりも直径が太く、ドリルの剛性が高いため、ガラス母材の長さを850mmにできた。これによって、実施例2のガラス母材を準備した。
(Example 2)
A glass base material having an outer diameter of 70 mm having the same structure as in Example 1 and Comparative Example 1 is prepared, and drilling is performed using a drill to form a hole having a diameter of 3.0 mm along the longitudinal axis. Ten were formed. The drill used at this time had a diameter larger than that of Comparative Example 1 and the drill had higher rigidity, so that the length of the glass base material could be 850 mm. Thereby, the glass base material of Example 2 was prepared.
 つぎに、実施例1、比較例1と同様に、上記実施例2のガラス母材の空孔内を加圧しながら光ファイバを線引きし、実施例2の光ファイバを製造した。この際、光ファイバの10個の空孔の平均空孔径が3.5μmになるよう空孔内加圧量の調整をおこなった。製造した光ファイバの平均空孔径は3.53μmであった。また、光ファイバの外径が125μmになるようにした。したがって、実施例2の場合は比(X/Y)が0.65であった。 Next, as in Example 1 and Comparative Example 1, the optical fiber was drawn while pressurizing the inside of the glass base material of Example 2 to produce the optical fiber of Example 2. At this time, the pressurization amount in the holes was adjusted so that the average hole diameter of the ten holes of the optical fiber was 3.5 μm. The average hole diameter of the manufactured optical fiber was 3.53 μm. The outer diameter of the optical fiber was set to 125 μm. Therefore, in the case of Example 2, the ratio (X / Y) was 0.65.
 つぎに、製造した実施例2の光ファイバの特性を測定した。波長1550nmにおいて、実施例2の光ファイバの伝送損失は0.196dB/kmであり、実施例1、比較例1と略同一であった。また、その他のカットオフ波長や、波長分散等の特性についても、実施例2の光ファイバと、実施例1、比較例1の光ファイバとでの値の差は10%以内であった。したがって、実施例2の光ファイバは、実施例1、比較例1の光ファイバと略同等の特性を有するものであった。 Next, the characteristics of the manufactured optical fiber of Example 2 were measured. At a wavelength of 1550 nm, the transmission loss of the optical fiber of Example 2 was 0.196 dB / km, which was substantially the same as Example 1 and Comparative Example 1. In addition, regarding other characteristics such as cutoff wavelength and wavelength dispersion, the difference in values between the optical fiber of Example 2 and the optical fibers of Example 1 and Comparative Example 1 was within 10%. Therefore, the optical fiber of Example 2 had substantially the same characteristics as those of Example 1 and Comparative Example 1.
 実施例2のガラス母材も、比較例1のガラス母材よりも2倍以上長いので、1本のガラス母材から、より長い光ファイバを得られた。したがって、実施例2の光ファイバはより製造コストが低いものとなった。また、実施例2の光ファイバの場合は、比(X/Y)を実施例1の光ファイバよりも大きくしたため、光ファイバの長手方向での空孔径変動が実施例1の場合よりも小さく抑えられていた。 Since the glass base material of Example 2 is also twice or more longer than the glass base material of Comparative Example 1, a longer optical fiber was obtained from one glass base material. Therefore, the manufacturing cost of the optical fiber of Example 2 was lower. Further, in the case of the optical fiber of Example 2, the ratio (X / Y) is made larger than that of the optical fiber of Example 1, so that the hole diameter variation in the longitudinal direction of the optical fiber is suppressed to be smaller than that of Example 1. It was done.
(実施例3)
 実施例1、比較例1と同様の構造を有する外径70mmのガラス母材を1本作製し、ドリルを用いた穿孔加工を行い、長手方向の軸に沿って直径5.0mmの空孔を10個形成した。このとき用いたドリルは、実施例1、2の場合よりもさらに直径が太く、ドリルの剛性がさらに高くなったため、ガラス母材の長さを920mmにできた。これによって、実施例3のガラス母材を準備した。
(Example 3)
One glass base material having an outer diameter of 70 mm having the same structure as in Example 1 and Comparative Example 1 is prepared, drilling is performed using a drill, and a hole having a diameter of 5.0 mm is formed along the longitudinal axis. Ten were formed. The drill used at this time had a larger diameter than in the case of Examples 1 and 2, and the rigidity of the drill was further increased, so that the length of the glass base material could be 920 mm. Thereby, the glass base material of Example 3 was prepared.
 つぎに、実施例1、比較例1と同様に、上記実施例3のガラス母材の空孔内を加圧しながら光ファイバを線引きし、実施例3の光ファイバを製造した。この際、光ファイバの10個の空孔の平均空孔径が3.5μmになるよう空孔内加圧量の調整をおこなった。製造した光ファイバの平均空孔径は3.54μmであった。また、光ファイバの外径が125μmになるようにした。したがって、実施例3の場合は比(X/Y)が0.39であった。 Next, in the same manner as in Example 1 and Comparative Example 1, the optical fiber was drawn while pressurizing the pores of the glass base material of Example 3 to produce the optical fiber of Example 3. At this time, the pressurization amount in the holes was adjusted so that the average hole diameter of the ten holes of the optical fiber was 3.5 μm. The average hole diameter of the manufactured optical fiber was 3.54 μm. The outer diameter of the optical fiber was set to 125 μm. Therefore, in the case of Example 3, the ratio (X / Y) was 0.39.
 つぎに、製造した実施例3の光ファイバの特性を測定した。波長1550nmにおいて、実施例3の光ファイバの伝送損失は0.205dB/kmであり、実施例1、比較例1と同等の問題ない値であった。また、その他のカットオフ波長や、波長分散等の特性についても、実施例3の光ファイバと、実施例1、比較例1の光ファイバとでの値の差は10%以内であった。したがって、実施例3の光ファイバは、実施例1、2、比較例1の光ファイバと略同等の特性を有するものであった。 Next, the characteristics of the manufactured optical fiber of Example 3 were measured. At a wavelength of 1550 nm, the transmission loss of the optical fiber of Example 3 was 0.205 dB / km, which was a value that was not problematic as in Example 1 and Comparative Example 1. In addition, regarding other characteristics such as cutoff wavelength and wavelength dispersion, the difference in values between the optical fiber of Example 3 and the optical fibers of Example 1 and Comparative Example 1 was within 10%. Therefore, the optical fiber of Example 3 had substantially the same characteristics as the optical fibers of Examples 1 and 2 and Comparative Example 1.
 実施例3のガラス母材は、実施例1、2のガラス母材よりもさらに長いので、1本のガラス母材から、実施例1、2よりもより長い光ファイバを得られた。したがって、実施例3の光ファイバはさらに製造コストが低いものとなった。なお、実施例3の光ファイバの場合は、比(X/Y)を実施例1、2の光ファイバよりも小さくしており、光ファイバの長手方向での空孔径変動は、比較例1の場合の2倍程度であったが、使用上は問題ない値であった。 Since the glass base material of Example 3 is longer than the glass base materials of Examples 1 and 2, an optical fiber longer than that of Examples 1 and 2 was obtained from one glass base material. Therefore, the manufacturing cost of the optical fiber of Example 3 was further reduced. In the case of the optical fiber of Example 3, the ratio (X / Y) is made smaller than those of Examples 1 and 2, and the hole diameter variation in the longitudinal direction of the optical fiber is the same as that of Comparative Example 1. Although it was about twice as much as the case, it was a value with no problem in use.
 なお、上記実施例1~3のように、ガラス母材に形成する空孔径を3mm以上とすると、ガラス母材の長さを十分に長くでき、製造コストを十分に低減できるので好ましい。 It is to be noted that, as in Examples 1 to 3, it is preferable that the hole diameter formed in the glass base material is 3 mm or more because the length of the glass base material can be sufficiently increased and the manufacturing cost can be sufficiently reduced.
(実施例4)
 実施例1、比較例1と同様の構造を有する外径70mmのガラス母材を1本作製し、ドリルを用いた穿孔加工を行い、長手方向の軸に沿って直径2.5mmの空孔を10個形成した。このとき用いたドリルは、比較例1の場合よりも直径が太く、ドリルの剛性が高いため、ガラス母材の長さを480mmにできた。これによって、実施例4のガラス母材を準備した。
Example 4
A glass base material having an outer diameter of 70 mm having the same structure as that of Example 1 and Comparative Example 1 was produced, and a drilling process was performed using a drill to form a hole having a diameter of 2.5 mm along the longitudinal axis. Ten were formed. Since the diameter of the drill used at this time was larger than that of Comparative Example 1 and the rigidity of the drill was high, the length of the glass base material was made 480 mm. Thereby, the glass base material of Example 4 was prepared.
 つぎに、実施例1、比較例1と同様に、上記実施例4のガラス母材の空孔内を加圧しながら光ファイバを線引きし、実施例4の光ファイバを製造した。この際、光ファイバの10個の空孔の平均空孔径が3.5μmになるよう空孔内加圧量の調整をおこなった。製造した光ファイバの平均空孔径は3.54μmであった。また、光ファイバの外径が125μmになるようにした。したがって、実施例4の場合は比(X/Y)が0.79であった。 Next, in the same manner as in Example 1 and Comparative Example 1, the optical fiber was drawn while pressurizing the pores of the glass base material of Example 4 to produce the optical fiber of Example 4. At this time, the pressurization amount in the holes was adjusted so that the average hole diameter of the ten holes of the optical fiber was 3.5 μm. The average hole diameter of the manufactured optical fiber was 3.54 μm. The outer diameter of the optical fiber was set to 125 μm. Therefore, in the case of Example 4, the ratio (X / Y) was 0.79.
 つぎに、製造した実施例4の光ファイバの特性を測定した。波長1550nmにおいて、実施例4の光ファイバの伝送損失は0.195dB/kmであり、実施例1、比較例1と略同一であった。また、その他のカットオフ波長や、波長分散等の特性についても、実施例4の光ファイバと、実施例1、比較例1の光ファイバとでの値の差は10%以内であった。したがって、実施例4の光ファイバは、実施例1、比較例1の光ファイバと略同等の特性を有するものであった。 Next, the characteristics of the manufactured optical fiber of Example 4 were measured. At a wavelength of 1550 nm, the transmission loss of the optical fiber of Example 4 was 0.195 dB / km, which was substantially the same as Example 1 and Comparative Example 1. Further, regarding other characteristics such as cutoff wavelength and wavelength dispersion, the difference in values between the optical fiber of Example 4 and the optical fibers of Example 1 and Comparative Example 1 was within 10%. Therefore, the optical fiber of Example 4 had substantially the same characteristics as those of Example 1 and Comparative Example 1.
 実施例4のガラス母材も、比較例1のガラス母材よりも長いので、1本のガラス母材から、より長い光ファイバを得られた。したがって、実施例4の光ファイバはより製造コストが低いものとなった。また、実施例4の光ファイバの場合は、比(X/Y)を実施例2の光ファイバよりも大きくしたため、光ファイバの長手方向での空孔径変動が実施例2の場合よりもさらに小さく抑えられていた。 Since the glass base material of Example 4 is also longer than the glass base material of Comparative Example 1, a longer optical fiber was obtained from one glass base material. Therefore, the manufacturing cost of the optical fiber of Example 4 was lower. Further, in the case of the optical fiber of Example 4, the ratio (X / Y) was made larger than that of the optical fiber of Example 2, so that the hole diameter variation in the longitudinal direction of the optical fiber was even smaller than that of Example 2. It was suppressed.
(実施の形態2)
 つぎに、本発明の実施の形態2について説明する。本実施の形態2に係る製造方法は、光ファイバを線引きする際に、ガラス母材の空孔内の圧力を空孔によって異なる値とし、互いに異なる空孔径を有する空孔を備えた光ファイバを製造するものである。
(Embodiment 2)
Next, a second embodiment of the present invention will be described. In the manufacturing method according to the second embodiment, when drawing an optical fiber, an optical fiber including holes having different hole diameters and different pressures in the holes of the glass base material is used depending on the holes. To manufacture.
 図6は、本実施の形態2に係る製造方法によって製造する光ファイバの模式的な断面図である。図6に示すように、光ファイバ3は、長手方向の軸に沿って延びる空孔3a、3bを有している。 FIG. 6 is a schematic cross-sectional view of an optical fiber manufactured by the manufacturing method according to the second embodiment. As shown in FIG. 6, the optical fiber 3 has holes 3a and 3b extending along the longitudinal axis.
 光ファイバ3はたとえば純石英ガラスなどの材料からなる。空孔3a、3bは光ファイバ3の長手方向の軸に垂直な断面において三角格子状に規則正しく配列している。ただし、空孔3a、3bが配列された領域内に空孔が無い領域がある。この空孔が無い領域がコア部3cとして機能し、コア部3cの周囲がクラッド部として機能する。すなわち、この光ファイバ3はHFである。なお、2個の空孔3bはコア部3cを挟んだ両側に位置している。 The optical fiber 3 is made of a material such as pure quartz glass. The holes 3 a and 3 b are regularly arranged in a triangular lattice pattern in a cross section perpendicular to the longitudinal axis of the optical fiber 3. However, there is a region where there is no hole in the region where the holes 3a and 3b are arranged. The area | region without this void | hole functions as the core part 3c, and the circumference | surroundings of the core part 3c function as a clad part. That is, the optical fiber 3 is HF. The two holes 3b are located on both sides of the core portion 3c.
 16個の空孔3aは同一の空孔径を有している。空孔3aの空孔径はd31である。2個の空孔3bは同一の空孔径を有している。空孔3bの空孔径はd32である。空孔径d32は空孔径d31よりも大きく設定されている。また、光ファイバ3の外径はD3である。空孔3aの直径d31と光ファイバ3の外径D3との比を第2の比X2とすると、X2=d31/D3である。また、空孔3bの直径d32と光ファイバ3の外径D3との比を第2の比X3とすると、X3=d32/D3である。 The 16 holes 3a have the same hole diameter. The hole diameter of the hole 3a is d31. The two holes 3b have the same hole diameter. The hole diameter of the hole 3b is d32. The hole diameter d32 is set larger than the hole diameter d31. The outer diameter of the optical fiber 3 is D3. When the ratio of the diameter d31 of the hole 3a and the outer diameter D3 of the optical fiber 3 is the second ratio X2, X2 = d31 / D3. Further, assuming that the ratio of the diameter d32 of the hole 3b and the outer diameter D3 of the optical fiber 3 is the second ratio X3, X3 = d32 / D3.
 この光ファイバ3は、空孔3bによってコア部3cの屈折率分布に異方性が発生するために、偏波保持光ファイバとして使用できる。 The optical fiber 3 can be used as a polarization-maintaining optical fiber because anisotropy occurs in the refractive index distribution of the core 3c due to the holes 3b.
 つぎに、本実施の形態2に係る製造方法について具体的に説明する。はじめに、光ファイバ3を製造するためのガラス母材を準備する。図7は、光ファイバ3を製造するためのガラス母材の模式的な斜視図である。図7に示すように、ガラス母材4は、石英系ガラスからなる円柱状であり、光ファイバ3の空孔3a、3bを形成するための空孔4aを有している。空孔4aはガラス母材4の長手方向の軸に沿って延びている。 Next, the manufacturing method according to the second embodiment will be specifically described. First, a glass base material for manufacturing the optical fiber 3 is prepared. FIG. 7 is a schematic perspective view of a glass base material for manufacturing the optical fiber 3. As shown in FIG. 7, the glass base material 4 has a cylindrical shape made of quartz glass and has holes 4 a for forming the holes 3 a and 3 b of the optical fiber 3. The air holes 4 a extend along the longitudinal axis of the glass base material 4.
 ここで、空孔4aはいずれも同一の空孔径を有している。空孔4aの空孔径はd4である。また、ガラス母材4の外径はD4である。空孔4aの直径d4とガラス母材4の外径D4との比を第1の比Y2とすると、Y2=d4/D4である。本実施の形態2では、X2がY2より小さくなり、かつX3がY2と等しくなるようにd4、D4を設定する。すなわち、(X2/Y2)=(d31/D3)/(d4/D4)<1.0、かつ(X3/Y2)=(d32/D3)/(d4/D4)=1.0である。なお、ガラス母材4の長さはL2である。 Here, all the holes 4a have the same hole diameter. The hole diameter of the hole 4a is d4. Moreover, the outer diameter of the glass base material 4 is D4. When the ratio of the diameter d4 of the air hole 4a and the outer diameter D4 of the glass base material 4 is the first ratio Y2, Y2 = d4 / D4. In the second embodiment, d4 and D4 are set so that X2 is smaller than Y2 and X3 is equal to Y2. That is, (X2 / Y2) = (d31 / D3) / (d4 / D4) <1.0 and (X3 / Y2) = (d32 / D3) / (d4 / D4) = 1.0. The length of the glass base material 4 is L2.
 本実施の形態2に係る製造方法では、ガラス母材4において、空孔径が互いに異なる光ファイバ3の空孔3aと空孔3bとを形成するために、同一の空孔径の空孔4aを形成している。その結果、穿孔加工において空孔4aの形成に必要なドリルが一種類でよく、またドリル装置に太さの異なるドリルを付け替える作業も不要である。したがって、穿孔加工の作業が簡略化されるので、製造コストを低減できる。 In the manufacturing method according to the second embodiment, in order to form the hole 3a and the hole 3b of the optical fiber 3 having different hole diameters in the glass base material 4, the holes 4a having the same hole diameter are formed. is doing. As a result, only one type of drill is required for forming the holes 4a in the drilling process, and the work of replacing the drills with different thicknesses is not necessary. Therefore, since the drilling process is simplified, the manufacturing cost can be reduced.
 また、ガラス母材に形成する空孔の空孔径が異なる場合は、空孔径が最も小さい空孔を形成するためのドリルの長さが最も短くなる。この場合、ガラス母材の長さも最も短いドリルの長さによって制限される。これに対して、本実施の形態2では、形成する空孔4aの空孔径は同一であるので、上記のような制限を受けることなくガラス母材4の長さL2を長くできる。 Also, when the hole diameters of the holes formed in the glass base material are different, the length of the drill for forming the hole having the smallest hole diameter is the shortest. In this case, the length of the glass base material is also limited by the length of the shortest drill. On the other hand, in Embodiment 2, since the hole diameters of the holes 4a to be formed are the same, the length L2 of the glass base material 4 can be increased without being restricted as described above.
 本実施の形態2に係る製造方法では、はじめに実施の形態1のガラス母材2と同様に、VAD法などの周知の方法を用いてガラス母材を形成し、その後ドリルを用いてガラス母材の長手方向の軸に沿って空孔4aを形成する。これによって、図7に示すガラス母材4を準備できる。 In the manufacturing method according to the second embodiment, first, similarly to the glass base material 2 of the first embodiment, a glass base material is formed using a known method such as the VAD method, and then a glass base material is used using a drill. Holes 4a are formed along the longitudinal axis. Thereby, the glass base material 4 shown in FIG. 7 can be prepared.
 つぎに、このガラス母材4から、図3に示すような線引装置100を用いて光ファイバ3を線引きする。ここで、本実施の形態2では、ガラス母材4の同一の空孔径を有する空孔4aから、光ファイバ3の異なる空孔径を有する空孔3a、3bを形成する必要がある。そのため、空孔3aを形成するための空孔4aと、空孔3bを形成するための空孔4aとで、内部の圧力を別々に制御することが好ましい。 Next, the optical fiber 3 is drawn from the glass base material 4 using a drawing apparatus 100 as shown in FIG. Here, in the second embodiment, it is necessary to form holes 3 a and 3 b having different hole diameters of the optical fiber 3 from the holes 4 a having the same hole diameter of the glass base material 4. Therefore, it is preferable to control the internal pressure separately for the hole 4a for forming the hole 3a and the hole 4a for forming the hole 3b.
 図8は、本実施の形態2に係る製造方法において用いる加圧機構の模式図である。本実施の形態2では、図3に示した加圧機構102に代えて図8に示す加圧機構110を用いる。図8に示すように、加圧機構110は、加圧用コネクタ111と、加圧用コネクタ111に接続したガス供給路112、113と、ガス供給路112、113のそれぞれに接続した圧力調整部114、115とを備える。圧力調整部114、115は制御器Cに接続している。圧力調整部114、115にはガスGが供給される。 FIG. 8 is a schematic diagram of a pressurizing mechanism used in the manufacturing method according to the second embodiment. In the second embodiment, a pressurizing mechanism 110 shown in FIG. 8 is used instead of the pressurizing mechanism 102 shown in FIG. As shown in FIG. 8, the pressurization mechanism 110 includes a pressurization connector 111, gas supply paths 112 and 113 connected to the pressurization connector 111, and pressure adjustment units 114 connected to the gas supply paths 112 and 113, respectively. 115. The pressure adjusting units 114 and 115 are connected to the controller C. A gas G is supplied to the pressure adjusting units 114 and 115.
 加圧用コネクタ111は、第1加圧部111aと第2加圧部111bとを有している。第1加圧部111aは、ガラス母材4の空孔4aのうち、光ファイバ3の空孔3aを形成するための空孔4aにのみガスGを供給するように構成されている。第2加圧部111bは、空孔3bを形成するための空孔4aにのみガスGを供給するように構成されている。空孔3aを形成するための空孔4aに供給されるガスGは、ガス供給路112を介して第1加圧部111aに供給され、かつ制御器Cによって制御された圧力調整部114によって圧力が調整される。空孔3bを形成するための空孔4aに供給されるガスGは、ガス供給路113を介して第2加圧部111bに供給され、かつ制御器Cによって制御された圧力調整部115によって圧力が調整される。したがって、この加圧機構110を使用することによって、各空孔4a内の圧力を別々に制御することができる。具体的には、空孔3bを形成するための空孔4a内の圧力が、空孔3aを形成するための空孔4a内の圧力よりも高くなるように、各空孔4a内の圧力が制御される。 The pressure connector 111 includes a first pressure part 111a and a second pressure part 111b. The first pressurizing unit 111 a is configured to supply the gas G only to the hole 4 a for forming the hole 3 a of the optical fiber 3 among the holes 4 a of the glass base material 4. The second pressurizing part 111b is configured to supply the gas G only to the hole 4a for forming the hole 3b. The gas G supplied to the hole 4a for forming the hole 3a is supplied to the first pressurizing unit 111a through the gas supply path 112 and is pressured by the pressure adjusting unit 114 controlled by the controller C. Is adjusted. The gas G supplied to the hole 4a for forming the hole 3b is supplied to the second pressurizing unit 111b through the gas supply path 113 and is pressured by the pressure adjusting unit 115 controlled by the controller C. Is adjusted. Therefore, by using the pressurizing mechanism 110, the pressure in each hole 4a can be controlled separately. Specifically, the pressure in each hole 4a is set so that the pressure in the hole 4a for forming the hole 3b is higher than the pressure in the hole 4a for forming the hole 3a. Be controlled.
 なお、本実施の形態2では、比(X2/Y2)を1.0より小さくし、比(X3/Y2)は1.0となるようにしている。しかしながら、比(X2/Y2)および比(X3/Y2)の両方を1.0より小さくなるようにしてもよい。両方を1.0よりも小さくすることによって、ガラス母材をより長くすることができる。 In the second embodiment, the ratio (X2 / Y2) is set to be smaller than 1.0, and the ratio (X3 / Y2) is set to 1.0. However, both the ratio (X2 / Y2) and the ratio (X3 / Y2) may be made smaller than 1.0. By making both smaller than 1.0, the glass base material can be made longer.
 図9は、本実施の形態2に係る製造方法によって製造できる他の光ファイバの模式的な断面図である。図9に示すように、光ファイバ5は、長手方向の軸に沿って延びる空孔5a、5bを有している。 FIG. 9 is a schematic cross-sectional view of another optical fiber that can be manufactured by the manufacturing method according to the second embodiment. As shown in FIG. 9, the optical fiber 5 has holes 5a and 5b extending along the longitudinal axis.
 光ファイバ5はたとえば純石英ガラスなどの材料からなる。空孔5a、5bは光ファイバ5の長手方向の軸に垂直な断面において三角格子状に規則正しく配列している。空孔5a、5bが配列された領域内の空孔が無い領域がコア部5cとして機能し、コア部5cの周囲がクラッド部として機能する。すなわち、この光ファイバ5はHFである。なお、6個の空孔5bはコア部5cを囲むように位置している。 The optical fiber 5 is made of a material such as pure quartz glass. The holes 5a and 5b are regularly arranged in a triangular lattice pattern in a cross section perpendicular to the longitudinal axis of the optical fiber 5. The area | region without the void | hole in the area | region where the hole 5a, 5b is arranged functions as the core part 5c, and the circumference | surroundings of the core part 5c function as a clad part. That is, the optical fiber 5 is HF. The six holes 5b are positioned so as to surround the core portion 5c.
 12個の空孔5aは同一の空孔径を有している。空孔5aの空孔径はd51である。6個の空孔5bは同一の空孔径を有している。空孔5bの空孔径はd52である。なお、空孔径d52は空孔径d51よりも大きく設定されている。また、光ファイバ5の外径はD5である。空孔5aの直径d51と光ファイバ5の外径D5との比を第2の比X4とすると、X4=d51/D5である。また、空孔5bの直径d52と光ファイバ5の外径D5との比を第2の比X5とすると、X5=d52/D5である。 The 12 holes 5a have the same hole diameter. The hole diameter of the hole 5a is d51. The six holes 5b have the same hole diameter. The hole diameter of the hole 5b is d52. The hole diameter d52 is set larger than the hole diameter d51. The outer diameter of the optical fiber 5 is D5. Assuming that the ratio of the diameter d51 of the hole 5a and the outer diameter D5 of the optical fiber 5 is the second ratio X4, X4 = d51 / D5. Further, assuming that the ratio of the diameter d52 of the hole 5b and the outer diameter D5 of the optical fiber 5 is the second ratio X5, X5 = d52 / D5.
 この光ファイバ5は、空孔径が大きい空孔5bによってコア部5cの周囲に屈折率が低い領域が形成され、いわゆるW型の断面屈折率分布形状となるため、有効コア断面積が大きい光ファイバとして使用できる。 In this optical fiber 5, a region having a low refractive index is formed around the core portion 5c by the hole 5b having a large hole diameter, and a so-called W-shaped cross-sectional refractive index profile is formed. Can be used as
 この光ファイバ5も、本実施の形態2に係る製造方法を用いて、図7に示した同一の空孔径の空孔4aを有するガラス母材4から、各空孔4aによって異なる内部圧力に制御しながら線引きを行うことによって製造できる。具体的には、光ファイバ5の空孔5bを形成するためのガラス母材4の空孔4a内の圧力が、空孔5aを形成するための空孔4a内の圧力よりも高くなるように、各空孔4a内の圧力を制御すればよい。 The optical fiber 5 is also controlled to have a different internal pressure depending on each hole 4a from the glass base material 4 having the holes 4a having the same hole diameter shown in FIG. 7 using the manufacturing method according to the second embodiment. However, it can be manufactured by drawing while drawing. Specifically, the pressure in the hole 4a of the glass base material 4 for forming the hole 5b of the optical fiber 5 is higher than the pressure in the hole 4a for forming the hole 5a. The pressure in each hole 4a may be controlled.
 なお、上記実施の形態では、ガラス母材はドリルにより空孔を形成したものである。しかしながら、本発明は、空孔となるガラス管を用いて母材を準備する場合にも適用できる。本発明によれば、より外径および内径が大きいガラス管を使用できるので、ガラス管を長くすることができる。したがって、より長いガラス管を用いて、より長い大型のガラス母材を準備することができる。また、空孔径が互いに異なる空孔を有する光ファイバを製造する場合でも、内径が異なるガラス管を準備する必要が無いので、部品コストを低減することができる。 In the above embodiment, the glass base material has holes formed by a drill. However, the present invention can also be applied to a case where a base material is prepared using a glass tube that becomes a hole. According to the present invention, since a glass tube having a larger outer diameter and larger inner diameter can be used, the glass tube can be lengthened. Therefore, a longer and larger glass base material can be prepared using a longer glass tube. Moreover, even when manufacturing optical fibers having holes having different hole diameters, it is not necessary to prepare glass tubes having different inner diameters, and thus the component cost can be reduced.
 また、上記実施の形態では、ガラス母材の複数の空孔の一部または全部に対して、比(X/Y)<1.0が成り立つような圧力制御を行っている。しかしながら、本発明では、少なくとも1つの空孔に対して比(X/Y)<1.0が成り立つような圧力制御を行えばよい。 In the above-described embodiment, pressure control is performed so that the ratio (X / Y) <1.0 is satisfied for some or all of the plurality of holes in the glass base material. However, in the present invention, pressure control may be performed so that the ratio (X / Y) <1.0 is satisfied with respect to at least one hole.
 また、上記実施の形態のガラス母材に公知のジャケット法を適用してガラス母材の外径を調整してもよい。ジャケット法とは、ガラス母材を、内径がガラス母材の外径と略同一である石英ガラス管に挿入し、より外径が大きいガラス母材を形成する方法である。 Further, the outer diameter of the glass base material may be adjusted by applying a known jacket method to the glass base material of the above embodiment. The jacket method is a method of forming a glass base material having a larger outer diameter by inserting the glass base material into a quartz glass tube having an inner diameter that is substantially the same as the outer diameter of the glass base material.
 また、本発明は、PBGF等の長手方向の軸に沿って延びる複数の空孔を有する種々の光ファイバの製造に適用できる。 Also, the present invention can be applied to the manufacture of various optical fibers having a plurality of holes extending along the longitudinal axis such as PBGF.
 また、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。 Further, the present invention is not limited by the above embodiment. What was comprised combining each component mentioned above suitably is also contained in this invention. Further effects and modifications can be easily derived by those skilled in the art. Therefore, the broader aspect of the present invention is not limited to the above-described embodiment, and various modifications can be made.
 以上のように、本発明に係る光ファイバの製造方法は、複数の空孔を有する光ファイバの製造に利用して好適なものである。 As described above, the optical fiber manufacturing method according to the present invention is suitable for use in manufacturing an optical fiber having a plurality of holes.
 1、3、5 光ファイバ
 1a、2a、3c、5c コア部
 1b、2b クラッド部
 1c、2c、3a、3b、4a、5a、5b 空孔
 2、4 ガラス母材
 100 線引装置
 101 線引加熱炉
 101a ヒータ
 102、110 加圧機構
 102a、111 加圧用コネクタ
 102b、112、113 ガス供給路
 102c、114、115 圧力調整部
 103 外径測定器
 104 被覆樹脂塗布装置
 105 樹脂硬化装置
 106 キャプスタンローラ
 107 ガイドロール
 111a 第1加圧部
 111b 第2加圧部
 G ガス
DESCRIPTION OF SYMBOLS 1, 3, 5 Optical fiber 1a, 2a, 3c, 5c Core part 1b, 2b Cladding part 1c, 2c, 3a, 3b, 4a, 5a, 5b Hole 2, 4 Glass base material 100 Drawing apparatus 101 Drawing heating Furnace 101a Heater 102, 110 Pressurization mechanism 102a, 111 Pressurization connector 102b, 112, 113 Gas supply path 102c, 114, 115 Pressure adjustment unit 103 Outer diameter measuring device 104 Coating resin coating device 105 Resin curing device 106 Capstan roller 107 Guide roll 111a 1st pressurizing part 111b 2nd pressurizing part G Gas

Claims (4)

  1.  長手方向の軸に沿って延びる複数の空孔を有するガラス母材であって、前記空孔の直径と当該ガラス母材の外径との比が第1の比であるガラス母材を準備する準備工程と、
     前記ガラス母材の前記複数の空孔内を加圧しつつ当該ガラス母材の一端を加熱溶融して、長手方向の軸に沿って延びる複数の空孔を有する光ファイバを線引きする線引き工程と、
     を含み、前記光ファイバの前記空孔の少なくとも一つの直径と当該光ファイバの外径との比を第2の比とすると、前記第2の比と前記第1の比との比が1.0よりも小さくなるように前記ガラス母材の前記少なくとも一つの空孔内の圧力を調整して前記線引きを行うことを特徴とする光ファイバの製造方法。
    A glass base material having a plurality of holes extending along an axis in the longitudinal direction, wherein a ratio of a diameter of the holes to an outer diameter of the glass base material is a first ratio is prepared. A preparation process;
    A drawing step of drawing an optical fiber having a plurality of holes extending along a longitudinal axis by heating and melting one end of the glass base material while pressurizing the inside of the plurality of holes of the glass base material;
    When the ratio of at least one of the holes of the optical fiber to the outer diameter of the optical fiber is a second ratio, the ratio of the second ratio to the first ratio is 1. The method of manufacturing an optical fiber, wherein the drawing is performed by adjusting a pressure in the at least one hole of the glass base material so as to be smaller than zero.
  2.  前記第2の比と前記第1の比との比が0.5以上であることを特徴とする請求項1に記載の光ファイバの製造方法。 The method of manufacturing an optical fiber according to claim 1, wherein a ratio of the second ratio to the first ratio is 0.5 or more.
  3.  前記ガラス母材の前記複数の空孔を互いに異なる圧力で加圧することを特徴とする請求項1または2に記載の光ファイバの製造方法。 3. The method of manufacturing an optical fiber according to claim 1, wherein the plurality of holes in the glass base material are pressurized with mutually different pressures.
  4.  前記ガラス母材の前記複数の空孔の直径を3mm以上にすることを特徴とする請求項1~3のいずれか一つに記載の光ファイバの製造方法。 The method of manufacturing an optical fiber according to any one of claims 1 to 3, wherein a diameter of the plurality of holes in the glass base material is set to 3 mm or more.
PCT/JP2012/052303 2011-02-14 2012-02-01 Method for manufacturing optical fibers WO2012111436A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011028748A JP2012166975A (en) 2011-02-14 2011-02-14 Method for manufacturing optical fibers
JP2011-028748 2011-02-14

Publications (1)

Publication Number Publication Date
WO2012111436A1 true WO2012111436A1 (en) 2012-08-23

Family

ID=46672368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052303 WO2012111436A1 (en) 2011-02-14 2012-02-01 Method for manufacturing optical fibers

Country Status (2)

Country Link
JP (1) JP2012166975A (en)
WO (1) WO2012111436A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5879842B2 (en) * 2011-09-12 2016-03-08 住友電気工業株式会社 Optical fiber manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191947A (en) * 2002-11-25 2004-07-08 Shin Etsu Chem Co Ltd Holey fiber drawing method
JP2006083037A (en) * 2004-09-17 2006-03-30 Fujikura Ltd Method of manufacturing optical fiber
WO2011052497A1 (en) * 2009-10-26 2011-05-05 株式会社フジクラ Welding method, welding device, and method for manufacturing optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191947A (en) * 2002-11-25 2004-07-08 Shin Etsu Chem Co Ltd Holey fiber drawing method
JP2006083037A (en) * 2004-09-17 2006-03-30 Fujikura Ltd Method of manufacturing optical fiber
WO2011052497A1 (en) * 2009-10-26 2011-05-05 株式会社フジクラ Welding method, welding device, and method for manufacturing optical fiber

Also Published As

Publication number Publication date
JP2012166975A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5636151B2 (en) Multi-wavelength, multimode optical fiber
US9815731B1 (en) Tapered core fiber manufacturing methods
EP1949153B1 (en) Microstructured optical fiber and its manufacturing method
US8020410B2 (en) Methods for making optical fiber preforms and microstructured optical fibers
JP5409928B2 (en) Polarization-maintaining optical fiber
JP2007230862A (en) Manufacture of depressed index optical fiber
US8565566B2 (en) Multi-mode optical fiber
WO2010084964A1 (en) Method of manufacturing optical fiber preform
JP4476900B2 (en) Photonic crystal fiber preform manufacturing method
JP7061628B2 (en) Photonic crystal fiber and its manufacturing method
JP4359183B2 (en) Correction method of ellipticity of optical fiber preform
US8381548B2 (en) Method of manufacturing photonic band gap fiber base material and fiber
WO2012111436A1 (en) Method for manufacturing optical fibers
US6532773B1 (en) Method of modifying the index profile of an optical fiber preform in the longitudinal direction
JP2005289769A (en) Method of forming preform rod for photonic crystal fiber
US11530157B2 (en) Method of manufacturing an optical fiber using axial tension control to reduce axial variations in optical properties
JP4490465B2 (en) Optical fiber manufacturing method
JP2010163339A (en) Method for producing optical fiber
JP4616892B2 (en) Optical fiber manufacturing method
JP6216263B2 (en) Multi-core fiber preform, multi-core fiber using the same, multi-core fiber preform manufacturing method, and multi-core fiber manufacturing method using the same
CN113121104B (en) Optical fiber preform and method for preparing optical fiber preform and optical fiber
Tian et al. Design and fabrication of embedded two elliptical cores hollow fiber
JP2018058719A (en) Manufacturing method of base material for multi-core fiber and manufacturing method of multi-core fiber using the same
JP6623146B2 (en) Method for manufacturing base material for multi-core fiber, and method for manufacturing multi-core fiber using the same
WO2022059699A1 (en) Multicore fiber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12746827

Country of ref document: EP

Kind code of ref document: A1