WO2012111104A1 - Analysis model creation assistance device and analysis model creation assistance program - Google Patents

Analysis model creation assistance device and analysis model creation assistance program Download PDF

Info

Publication number
WO2012111104A1
WO2012111104A1 PCT/JP2011/053235 JP2011053235W WO2012111104A1 WO 2012111104 A1 WO2012111104 A1 WO 2012111104A1 JP 2011053235 W JP2011053235 W JP 2011053235W WO 2012111104 A1 WO2012111104 A1 WO 2012111104A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis
mesh
model
analysis model
control rule
Prior art date
Application number
PCT/JP2011/053235
Other languages
French (fr)
Japanese (ja)
Inventor
東 奥野
一朗 片岡
小野寺 誠
孝志 横張
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2011/053235 priority Critical patent/WO2012111104A1/en
Publication of WO2012111104A1 publication Critical patent/WO2012111104A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the present invention relates to an analysis model creation support apparatus and an analysis model creation support program in a CAE (Computer Aided Engineering) system that numerically analyzes an analysis model using a computer, and particularly supports creation of a mesh used for CAE.
  • CAE Computer Aided Engineering
  • the present invention relates to an analysis model creation support apparatus and an analysis model creation support program suitable for the above.
  • CAE is used to reduce development costs and shorten the design and development period.
  • an analysis model is created from shape data created by a CAD (Computer Aided Design) system, and strength analysis, thermal fluid analysis, or the like is performed using an analysis method such as the finite element method or the boundary element method using this analysis model. Perform vibration analysis.
  • CAD Computer Aided Design
  • Patent Documents 1 and 2 for example, when generating an analysis model
  • an existing analytical model is used.
  • the target shape for creating an analysis model is divided into a portion that is similar to a shape that has already been analyzed and a portion that is not similar.
  • the past mesh data is applied to the part that is present, and a new mesh is created for the part that is not similar.
  • the analysis apparatus described in Patent Document 2 extracts the importance of parts according to the type of analysis and the influence attribute representing the influence between parts based on the analysis conditions including the boundary conditions of the parts. Thereafter, mesh element density control is performed based on the importance and influence attributes of the parts. Thereby, mesh element division in consideration of analysis conditions is possible.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-122205
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-82999
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2007-280129
  • the mesh generation know-how of the model of similar shape can be obtained from the shape of the analysis model so that the mesh considering know-how can be automatically generated when generating the mesh according to the analysis conditions. Has been applied.
  • elements other than the shape such as analysis type, boundary conditions, and physical properties are not considered.
  • the present invention has been made in view of the above-described problems of the prior art, and its purpose is to obtain mesh generation know-how such as orthogonality, regularity, and density from past analysis models with similar analysis types, boundary conditions, physical properties, and shapes. It is to provide a system capable of easily generating a mesh suitable for an analysis phenomenon even by an unskilled person who is not sufficiently familiar with know-how.
  • the analysis model creation of the present invention comprising an input / output device for inputting / outputting data, an arithmetic device for calculating based on the input data, and a storage device attached to the arithmetic device
  • the input / output device has shape data input means for inputting shape data of a numerical analysis object and creating an analysis model, and analysis condition input means for inputting an analysis condition for analyzing the analysis model.
  • the storage device stores a past analysis database in which at least analysis model data, analysis results, and analysis conditions are stored for a plurality of numerical analysis objects analyzed in the past.
  • Similar analysis model retrieval means for extracting a similar analysis model with reference to the analysis model of the analysis object for the database, and the extracted similar analysis model and the previous Correlation degree calculation means for calculating a correlation degree for the analysis model of the analysis object, and a correlation degree calculated by the correlation degree calculation means for a mesh control rule used when creating a mesh model for the analysis model of the numerical analysis object And a mesh model generation means for generating the mesh model according to the created mesh control rule.
  • the input / output device further includes a mesh control rule display unit that displays the mesh control rule generated by the mesh control rule calculation unit, and a mesh model display unit that displays the generated mesh model.
  • the arithmetic unit preferably has a mesh control rule correction unit that corrects the mesh control rule calculated by the mesh control rule calculation unit, and the correlation degree calculation unit includes the extracted similar analysis model and the analysis target.
  • the analysis condition used when calculating the degree of correlation with the analysis model of the object is preferably at least one of analysis type and boundary condition, shape feature amount, position, and physical property.
  • the mesh feature amount used when the correlation calculation means calculates the correlation between the extracted similar analysis model and the analysis model of the analysis object includes the mesh type, interior angle, valence, and size. It is preferable that the similar analysis model retrieval unit extracts the past analysis model data accumulated and the analysis model of the analysis object if the similarity or reliability of the analysis model is a predetermined value or more. Good. Furthermore, it is preferable that the correlation degree calculated by the mesh control rule calculation means is a correlation degree between the analysis condition and the mesh feature amount.
  • an analysis model creation support program uses a computer to input shape data of a numerical analysis object and create an analysis model, and to analyze the analysis model Analysis condition input means for inputting analysis conditions when performing analysis, a past analysis database for accumulating at least a shape model, analysis results, and analysis conditions for a plurality of numerical analysis objects analyzed in the past, and the past analysis database
  • a search means for searching for a similar analysis model with reference to an analysis model of the analysis object, and a correlation degree calculation for calculating a correlation degree of analysis conditions and mesh feature amounts for the extracted similar analysis model and the analysis model of the analysis object
  • a mesh control used when creating a mesh model for the analysis model of the numerical analysis object.
  • Mesh control rule calculating means for generating on the basis of a rule on the correlation degree of the correlation calculating means and calculating, that they appear as a mesh model generating means for generating the mesh model in accordance with the meshing control rules.
  • the program further includes a mesh control rule display means for displaying the mesh control rule generated by the mesh control rule calculation means, and a mesh control for correcting the mesh control rule calculated by the mesh control rule calculation means. It is preferable to function as a rule correction means and a mesh model display means for displaying the generated mesh model.
  • a similar analysis model is extracted from a ready-made analysis model that has already been analyzed, and the similar analysis model is compared with the model to be analyzed. Since a mesh generation rule is determined based on this degree of correlation, even an unskilled person who is not well-versed in mesh generation know-how can easily generate a mesh suitable for the analysis phenomenon. It is done.
  • FIG. 1 is a schematic diagram of a CAE system provided with an analytical model creation support apparatus according to the present invention.
  • FIG. 2 is a schematic diagram of an embodiment of the analytical model creation support apparatus according to the present invention.
  • FIG. 3 is a flowchart showing a processing flow in the analytical model creation support apparatus shown in FIG.
  • FIG. 4 is an example of an operation screen of the analysis model creation support apparatus, and is a diagram illustrating an analysis target.
  • FIG. 5 is an example of an operation screen of the analysis model creation support apparatus, and shows analysis conditions.
  • FIG. 6 is an example of an operation screen of the analysis model creation support apparatus, and is a diagram showing a list of similar analysis models.
  • FIG. 7 is an example of an operation screen of the analysis model creation support apparatus, and is a diagram illustrating the extracted similar analysis model.
  • FIG. 8 is an example of an operation screen of the analysis model creation support apparatus, and is a diagram showing a mesh control rule list.
  • FIG. 9 is an example of the operation screen of the analysis model creation support apparatus, and is a diagram showing the extracted mesh control rules.
  • FIG. 10 is an example of an operation screen of the analysis model creation support apparatus, and is a diagram illustrating an analysis mesh.
  • FIG. 1 is a schematic diagram showing a CAE system provided with an analytical model creation support apparatus according to the present invention.
  • the CAE system 50 includes an input / output device 101 including a keyboard, a mouse, a display, and the like, a computer 100 that is an arithmetic device, an input CAD 102 that stores CAD data, mesh data 103 that stores mesh data of an analysis model, And a past analysis database (past analysis DB) 104 in which data of the analyzed analysis model is stored.
  • the input CAD 102, mesh data 103, and past analysis DB 104 are stored in a storage unit (not shown) provided in the computer 100.
  • the computer 100 stores an arithmetic program, and an input / output unit 105 that inputs and outputs the shape of an analysis model, analysis conditions, mesh control rules, and mesh data, the details of which will be described later, and the input and output data.
  • a display control unit 106 for transmission to the output device 101, a search unit 108 for searching the past analysis DB 104 in which data of analysis models analyzed in the past are stored with reference to CAD data input from the input CAD 102,
  • the display unit 101 for displaying on the similar analysis model extracted according to the search condition, the input / output unit 105 for inputting / outputting between the input CAD 102 and the mesh data 103, and the similar analysis model from the past analysis DB 104
  • a search unit 108 for searching, and a mesh for the similar analysis model extracted by the search And an application section 107 to apply your rules.
  • FIG. 2 schematically shows an embodiment of the analytical model creation support apparatus 200 according to the present invention.
  • the analysis model creation support apparatus 200 is stored in the computing means 100 shown in FIG. 1 in the form of a software program. It may be stored in a large-capacity storage medium.
  • the analysis model creation support apparatus 200 is provided with an input / output device 101 including a keyboard, a pointing device, a display, and the like for the user of the CAE system 50 to input and display data.
  • the shape of the object to be analyzed (model name: M00001) is designated from the shape input unit 202 using the input / output device 101.
  • This shape data includes CAD data and the like.
  • An analysis condition is input from the analysis condition input unit 203 to the shape data of the specified object using the input / output unit 201.
  • analysis conditions include structural analysis, vibration analysis, fluid analysis, electromagnetic field analysis, etc., boundary conditions such as load boundary, constraint boundary, inflow boundary, outflow boundary, and symmetry boundary, and solids, fluids, and gases to be analyzed
  • the physical property values are included.
  • the similar analysis model search unit 205 extracts an analysis model similar to the analysis model of the object using the past analysis DB 104 in which the data of the analysis model already analyzed is accumulated.
  • the past analysis DB is a database storing data of past analysis models (model names: M10001, M10002,..., M20001, M2002,...),
  • the shape data input by the shape input unit 102 and analysis condition input The analysis conditions input by the unit 203, mesh data, analysis results, analysis reliability input by the user at the time of registration in the database, and the like are included. Items for searching for similarity are the shape and analysis type of the analysis model, boundary conditions, physical properties, and the like. A method of calculating the similarity will be described later with reference to FIG.
  • the degree of correlation is calculated in the degree-of-correlation calculation unit 206 with respect to the analysis conditions and mesh features of the analysis model already analyzed and the analysis model of the object.
  • the degree of correlation is obtained using equation (1).
  • is the degree of correlation
  • x is the shape feature quantity and analysis conditions
  • y is the mesh shape feature quantity
  • i is the data number of the database.
  • the shape feature amount is described in, for example, Japanese Patent Application Laid-Open No. 2007-280129 (Patent Document 3), and the centroid distance and normal vector of any two triangular meshes when the shape is divided into triangular meshes. And the sum of the angles formed by the center of gravity line and the sum of the areas.
  • the mesh shape feature value is a value that characterizes the shape and quality of the mesh, such as the type and interior angle, valence, and size of the mesh calculated from the mesh data.
  • the type of mesh is a distinction as to whether the shape of the mesh is a hexahedron or a tetrahedron.
  • the number of meshes is smaller than that of a tetrahedral mesh, and a highly accurate analysis is possible, but it is difficult to generate.
  • a tetrahedral mesh it is easy to generate, but the number of meshes is increased and the accuracy is inferior to that of a hexahedral mesh.
  • the internal angle of the mesh is the internal angle of the surface constituting the hexahedral mesh or tetrahedral mesh, and is related to the orthogonality of the mesh. The closer the interior angle of the mesh is to 90 degrees, the better the orthogonality.
  • the valence of the mesh is a value indicating how many other nodes the tetrahedron or hexahedron mesh is connected to, and relates to the regularity of the mesh. In the case of a hexahedral mesh, 6 indicates the most regular mesh.
  • the size of the mesh is the size (average value) of the ridge lines constituting the hexahedral or tetrahedral mesh, and is related to the mesh density. The smaller the mesh size, the higher the accuracy of the analysis possible. For example, in the case of structural analysis, a portion where stress is concentrated is divided into smaller mesh sizes.
  • the mesh control rule generation unit 207 creates a mesh control rule for each analysis model.
  • the mesh control rule is, for example, a rule that a five-layer mesh is applied to the wall boundary of the fluid analysis, and a regular mesh is generated on the contact surface of the contact analysis.
  • the mesh control rule display unit 208 displays the created mesh control rule to the user.
  • the user corrects the mesh control rule from the mesh control rule correction unit 209 using the input / output device 101 as necessary.
  • the mesh generation unit 210 generates a mesh using a hexahedral mesher and a tetrahedral mesher. Thereby, the mesh control rules such as the designated mesh type and valence, interior angle, and size are reflected in the mesh.
  • the mesh display unit 211 displays the generated mesh on the screen of the input / output device 101 to the user. Thereby, the user can confirm the created mesh shape.
  • a process indicated by a rectangular frame in FIG. 3 is a process automatically executed by the analysis model creation support apparatus 200, and a process indicated by a parallelogram frame indicates a process executed by the user.
  • a solid line represents a flow of processing, and a broken line represents a data flow.
  • the user inputs shape data 102a such as CAD data to the analysis model creation support apparatus 200 (step S301), and also inputs analysis conditions such as an analysis type, boundary conditions, and physical properties (step S302), and sets an analysis model. Registration is performed (step S313).
  • the past analysis DB 104 stores and registers analysis models that have been analyzed in the past, and stores information such as analysis types and boundary conditions, physical properties, mesh data, and analysis reliability for each analysis model. .
  • an analysis model having similar analysis types, boundary conditions, physical properties, and model shapes is searched.
  • step S304 If a similar analysis model is not extracted in step S304, the process proceeds to step S310, where the user manually edits and sets mesh control rules such as the mesh type and size (step S310), and generates a mesh (step S311). ).
  • a mesh control rule is extracted for the retrieved similar analysis model based on the similarity between the similar analysis model and the analysis model of the object and the reliability of the analysis of the similar analysis model.
  • An analysis model is determined (step S305).
  • the analysis type and boundary conditions of the determined analysis model, the analysis conditions such as physical properties, and the degree of correlation of the mesh shape features such as the type and size of the mesh, the valence, and the interior angle are calculated (step S306).
  • a mesh control rule is extracted (step S307).
  • step S308 The user determines what is actually applied from the extracted mesh control rules (step S308), and reflects the mesh control rules in the analysis model of the object (step S309). If necessary, editing for correcting or adding a mesh control rule is executed (step S310), and a mesh is generated (step S311).
  • the user registers the analysis model in the past analysis DB 104 so that the database can be used for the subsequent analysis.
  • the reliability of analysis is registered at the same time so that it can be used as a reference for whether or not it can be used for mesh control rule extraction at the time of subsequent analysis.
  • FIG. 4 shows a display screen (operation screen) of the display included in the input / output device 101 when shape data is input in step S301.
  • a button unit 410 in which a plurality of buttons 401 to 407 are arranged in the vertical direction is arranged on the left side, and an object display unit 420 on which an object 408 to be analyzed is displayed on the right side. Is partitioned.
  • the button unit 40 is for the user to execute the operations described in the buttons 401 to 407 by clicking the buttons 401 to 407.
  • a shape input button 401 is used when bringing in a shape from shape data 102a such as CAD.
  • the condition input button 402 is used to input various conditions used for analysis such as analysis conditions, boundary conditions, and physical properties.
  • the similar analysis model button 403 searches for similar analysis models from the past analysis DB 104, displays a list of similar analysis models that have been searched, and can use mesh control rules that can be used from the similarity and reliability of the extracted similar analysis models It is used to determine whether or not.
  • the mesh control rule display button 404 is used to display the extracted mesh control rule and determine whether to apply the mesh control rule.
  • the mesh control rule edit button 405 is used when correcting and adding an applied mesh control rule. When the necessary data is input by clicking each of the buttons 401 to 405 in order, the mesh control rule is applied to the analysis model, so that mesh generation is possible. Therefore, the mesh generation button 406 is used for mesh generation, and the mesh display button 407 is used for displaying and confirming the generated mesh.
  • the CAD model 408 is displayed in three dimensions on the object display unit 420.
  • the model name is also displayed on the first operation screen 400 as the object identification label 430 along with the shape of the object.
  • step S302 a state in which the analysis condition is given to the analysis model of the object is shown in the first operation screen 400 of FIG.
  • the object is a connecting rod
  • the type of analysis is structural analysis (stress analysis). Since the condition input button 402 is clicked, the model name, the analysis type, and the material name are displayed as the object identification label 430a together with the object 408a on the object display unit. The user selects the analysis type and material, and selects a corresponding shape from the screen, volume, line, and other conditions as boundary conditions on the screen.
  • the constraint condition specified by the user is displayed on the first condition display label 502, the load condition is displayed on the second condition display label 503, and the parts to which the first and second conditions are applied are highlighted. Has been.
  • FIG. 6 shows a second operation screen 600 used in step S305 for determining the contents when a similar analysis model is extracted by searching for a similar analysis model in step S303.
  • a determination list 620 for determining whether or not the similar analysis model can be used is displayed in the upper part, and a button display unit 630 in which various buttons 608 to 614 are arranged in the lower part.
  • a model name field 601 and a similarity field 602, an analysis type field 603, a first classification field 604, a second classification field 605, a reliability field 606, and a determination field 607 are provided on the horizontal axis. Yes. Among them, the model name column 601 to the reliability column 606 are data output as a result of searching by the similar analysis model search. Only the determination column 607 is a user input column.
  • the value in the similarity column 602 is an average value when normalized for each of the analysis type and the first classification, the second classification, and the similarity of the shape.
  • the similarity of the analysis type, the first classification, and the second classification is a target. If it matches the analysis model of the object, 0 is given, and if it does not match, 1 is given.
  • shape similarity for example, a method described in Japanese Patent Application Laid-Open No. 2007-280129 (Patent Document 3) is used. Specifically, the analysis model shape is divided into triangular meshes, and normal vectors are compared with each other.
  • the reliability column 606 is a column that is input by the user when adding the result of the analysis model analyzed in the past to the past analysis DB 104, and inputs the reliability (accuracy) of the analysis. Used to eliminate mesh control rules for analysis models with low reliability.
  • the determination column 607 is for determining whether or not the user uses the analysis model for extracting the mesh control rule in consideration of the similarity and the reliability. In the determination column, “ ⁇ ” indicates that the extracted similar analysis model is used for extracting the mesh control rule, and “X” indicates that it is not used.
  • a reliability lower limit check box 608 and its input field 609, and a similarity lower limit check box 610 and its input field 611 are arranged vertically on the left side.
  • a selection model display button 612, a mesh control rule extraction button 613, and a close button 614 are arranged vertically.
  • the reliability lower limit check box 608 and the similarity lower limit check box 610 are checked, it is possible to input numerical values in the corresponding input fields 609 and 611, and the similarity analysis model that is equal to or lower than the numerical values. Is automatically displayed in the determination column 607. As a result, the similarity analysis model having the input lower limit value or less is automatically excluded from the mesh control function extraction targets.
  • the reliability lower limit check box 608 and the similarity lower limit check box 610 are not checked, the user inputs “x” or “ ⁇ ” in the determination column 607.
  • the selected model display button 612 is for displaying the similar analysis model selected from the list 620.
  • the screen moves to the third operation screen 700 shown in FIG.
  • the mesh control rule extraction button 613 is for shifting to the calculation of the degree of correlation when the user finishes inputting the determination for each similar analysis model in the determination column 607 of the availability determination list 620.
  • the calculation of the degree of correlation is calculated from the above equation (1) for the similar analysis model determined as “ ⁇ ” in the determination column 607.
  • a mesh control rule is extracted.
  • the mesh control rule and the degree of correlation will be described with reference to FIG.
  • a close button 614 is used to close the second operation screen 600. When the second operation screen 600 is closed, the screen moves to the first operation screen 400.
  • FIG. 7 shows a state where the selected model display button 612 has been pressed and moved to the third operation screen 700 displaying the similar analysis model.
  • an analysis condition display unit 710 is partitioned on the left side
  • an analysis mesh display unit 720 is partitioned on the right side.
  • the analysis condition display unit 710 displays the target identification label 430b and the three-dimensional shape of the similar analysis model 409a and the analysis conditions when the similar analysis model 409a is analyzed as a first condition display label and a second condition display label.
  • the object identification label 430b describes the model name, analysis type, and material.
  • a constraint condition is displayed on the first condition display label 701, and a weighting condition is displayed on the second condition display label. Note that boundary conditions such as set constraint conditions and load conditions are highlighted on the screen.
  • the analysis mesh display unit 720 displays the third to fifth condition display labels 704 to 706 together with the mesh model 409b of the similar analysis model.
  • the third condition display label 704 displays a reference size and type of mesh
  • the fourth condition display label 705 displays a coarse / fine setting
  • the fifth condition display label displays a specific mesh type.
  • mesh control is performed using a coarse / dense setting or a hexahedral mesh in a portion where stress is concentrated.
  • the similarity of the similar analysis model is calculated to be high if the constraint conditions and load conditions are similar.
  • step S308 When the mesh control rule extraction button 613 is pressed on the second operation screen 600, the screen shifts to the fourth operation screen 800 shown in FIG. This corresponds to step S308.
  • a mesh control rule availability determination list 820 is formed in the upper part, and a button display unit 830 is formed in the lower part.
  • the horizontal axis of the mesh control rule availability determination list 800 includes a rule number column 801, a correlation degree column 802, an analysis condition column 803, a mesh shape feature column 804, and a determination column 805.
  • the rule number column 801 to the mesh shape feature column 804 are output displays of values and conditions already obtained, and only the determination column 805 is a user input column.
  • the numerical value in the correlation column 802 is calculated from the formula (1) and displayed.
  • the degree of correlation is the degree of correlation between mesh shape feature quantity and analysis condition and mesh data, and is displayed in a list from top to bottom in descending order of correlation degree.
  • the determination column 805 is used to input a determination result of the user as to whether or not the extracted mesh control rule is to be reflected. “ ⁇ ” indicates that the target mesh control rule is reflected in the analysis model, and “ ⁇ ” Indicates no reflection.
  • a check box 806 for the lower limit of correlation and its input field 807 are displayed, and on the right side, a mesh control rule reflection button 8008 and a close button 809 are arranged vertically.
  • a check mark is put in the lower limit check box 806 for the correlation degree, a lower limit value can be input in the input field 807.
  • the mesh control rule whose correlation degree is equal to or lower than the lower limit value input in the input field 807 is automatically determined as “x” and is not used as a mesh control rule.
  • the user can freely modify the contents of the mesh control rule analysis condition field 803 and the mesh shape feature field 804.
  • the mesh control rule reflection button 808 is pressed, the specified mesh control rule is reflected in the analysis model 408a of the object.
  • a close button 809 is used to close the fourth operation screen 800.
  • FIG. 9 shows the operation screen when the process proceeds to step S309.
  • FIG. 9 is a diagram illustrating a state of the first operation screen 400 in which the mesh control rule is reflected in the analysis model. The analysis conditions of the similar analysis model are ported and displayed.
  • the third condition display label 704 has a reference size and reference mesh type
  • the fourth display label 705 has a coarse / fine setting
  • the fifth condition label 706 has a local mesh.
  • the type is displayed. Further, in the analysis model 408b, a portion to which these conditions are added is highlighted. Furthermore, the user can correct the mesh control rule reflected by pressing the mesh control rule edit button 405 or add a new one.
  • FIG. 10 shows the state of the first operation screen 400 when the process proceeds to step S311 and a mesh is created for the analysis model.
  • the mesh model 408c of the analysis model is generated by reflecting the density setting of the stress concentration portion and the hexahedral mesh of the load boundary volume, which are the conditions set on the first operation screen 400 shown in FIG.
  • similar analysis models are searched from the ready-made analysis models stored in the database, and the degree of correlation with the target analysis model is calculated for the analysis conditions and mesh shape features, and the mesh control rule is calculated from the degree of correlation. Is generated and applied to the target analysis model.
  • the mesh control rule is displayed, and the user can generate a mesh suitable for the analysis condition by correcting the mesh control rule.
  • the analysis model mesh whose shape is similar to that of the wrinkle analysis model creation target but also the analysis type, boundary conditions, and physical properties are considered for the analysis model creation target.
  • a mesh suitable for the analysis phenomenon can be generated.
  • the mesh control rules take into consideration not only the mesh density but also the mesh type, orthogonality, and regularity, thereby enabling more accurate analysis.
  • the computer and the input / output device may be connected via an Internet line or a LAN.
  • a plurality of input / output devices may be provided as terminal devices so that the creator of the analysis model and the analyst who actually analyzes can be handled by different persons.
  • CAE system 100 ... computer (arithmetic unit) 101 ... Input / output device 102 ... Input CAD 102a ... shape data 103 ... mesh data 104 ... past analysis database (past analysis DB) 105 ... Input / output unit 106 ... Display control unit 107 ... Application unit 108 ... Similar analysis model search means (unit) 200 ... Analytical model support creation apparatus 202 ... Shape input unit 203 ... Analysis condition input means (unit) 205 ... Similar analysis model retrieval means (part) 206 ... Correlation degree calculation means (part) 207 ... Mesh control rule creation means (part) 208 ... Mesh control rule display means (part) 209 ...
  • Mesh control rule correction means (part) 210 ... mesh generation unit (mesh model creation means) 211 ... Mesh display section (mesh model display means) 400 ... first operation screen 401 ... shape input button 402 ... condition input button 403 ... similar analysis model search button 404 ... mesh control rule display button 405 ... mesh control rule edit button 406 ... mesh generation button 407 ... mesh display buttons 408, 408a 408c (Numerical analysis) Objects 409a, 409b ... Similar model 410 ... Button part 420 ... Object display part 430, 430a, 430b ... Object identification label 502 ... First condition display label 503 ... Second condition display label 600 ... Second operation screen 601 ... Model name field 602 ...
  • rule number column 802 ... correlation degree column 803 ... Analysis condition column 804 ... Mesh shape feature column 805 ... Determination column 806 ... Correlation degree lower limit check box 807 ... Input column 808 ... Mesh control rule reflection button 809 ... Close button 820 ... Mesh control rule availability determination table 830 ... Button display section

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

An analysis model creation assistance device for which a shape data input means inputs shape data for an object undergoing numerical analysis and creates an analysis model, and an analysis conditions input means inputs the analysis conditions at the time of the analysis of an analysis model. In addition, a similar analysis model retrieval means extracts a similar analysis model from a past analysis database by referencing the analysis model for the object being analyzed, and a degree-of-correlation calculation means calculates the degree of correlation of the analysis conditions and the mesh characteristic amount for the extracted similar analysis model and the analysis model for the object being analyzed. Subsequently, on the basis of the degree of correlation calculated by the degree-of-correlation calculation means, a mesh control rule calculation means generates mesh control rules which are used when creating a mesh model for the analysis model of the object undergoing numerical analysis, and a mesh model generation means generates a mesh model in accordance with the generated mesh control rules.

Description

解析用モデル作成支援装置及び解析用モデル作成支援プログラムAnalysis model creation support device and analysis model creation support program
 本発明は、計算機を用いて解析用モデルを数値解析するCAE(Computer Aided Engineering)システムにおける解析用モデル作成支援装置及び解析用モデル作成支援プログラムに係り、特にCAEに用いるメッシュの作成を支援するのに好適な解析用モデル作成支援装置及び解析用モデル作成支援プログラムに関する。 The present invention relates to an analysis model creation support apparatus and an analysis model creation support program in a CAE (Computer Aided Engineering) system that numerically analyzes an analysis model using a computer, and particularly supports creation of a mesh used for CAE. The present invention relates to an analysis model creation support apparatus and an analysis model creation support program suitable for the above.
 製品開発工程においては、CAEを活用して開発コストを低減するとともに設計開発期間を短縮している。CAEでは、CAD(Computer Aided Design)システムで作成した形状データなどから解析モデルを作成し、この解析モデルを用いて例えば有限要素法や境界要素法などの解析手法により、強度解析や熱流体解析あるいは振動解析を実行する。 In the product development process, CAE is used to reduce development costs and shorten the design and development period. In CAE, an analysis model is created from shape data created by a CAD (Computer Aided Design) system, and strength analysis, thermal fluid analysis, or the like is performed using an analysis method such as the finite element method or the boundary element method using this analysis model. Perform vibration analysis.
 CAE解析の際には、解析領域を六面体メッシュや四面体メッシュなどのメッシュに分割する作業が必要になる。解析モデルの作成では、メッシュの形状やサイズあるいは密度の違いで解析精度に大幅な狂いが生じることが経験的に知られており、これらに関しては多くのノウハウが必要になっている。つまり、これらノウハウをどれだけ使いこなせるかが、解析用モデルの品質を大きく左右する。また、これらのノウハウを、解析の種類や境界条件、解析モデルの形状といった解析条件によって使い分ける必要もある。 In the case of CAE analysis, it is necessary to divide the analysis area into meshes such as hexahedral mesh and tetrahedral mesh. In the creation of an analysis model, it is empirically known that analysis accuracy greatly varies due to differences in the shape, size, or density of the mesh. In other words, how well these know-how can be used greatly affects the quality of the analytical model. It is also necessary to use these know-hows according to analysis conditions such as the type of analysis, boundary conditions, and the shape of the analysis model.
 そこで、解析用モデル作成のノウハウに十分精通していない未熟練者でも、品質の高い解析モデルを効率的に作成できるようにするため、例えば特許文献1、2では、解析用モデルを生成する際に、既成の解析用モデルを利用している。 Therefore, in order to enable even an unskilled person who is not well-versed in analytical model creation know-how to efficiently create a high-quality analysis model, in Patent Documents 1 and 2, for example, when generating an analysis model In addition, an existing analytical model is used.
 例えば、特許文献1に記載の解析用モデル作成支援システムでは、解析用モデルを作成する対象形状を、すでに解析した経験のある形状と類似している部分と類似していない部分に分け、類似している部分には過去のメッシュデータを適用し、類似していない部分には新たにメッシュを作成している。そしてそれらメッシュを結合して、解析モデルを作成している。 For example, in the analysis model creation support system described in Patent Document 1, the target shape for creating an analysis model is divided into a portion that is similar to a shape that has already been analyzed and a portion that is not similar. The past mesh data is applied to the part that is present, and a new mesh is created for the part that is not similar. These meshes are combined to create an analysis model.
 また、特許文献2に記載の解析装置では、部品の境界条件を含んだ解析条件に基づいて解析の種類に応じた部品の重要度と部品間の影響を表わす影響属性とを抽出する。その後、部品の重要度および影響属性に基づいてメッシュ要素の疎密制御を実施している。これにより、解析条件を考慮したメッシュ要素分割が可能になっている。 In addition, the analysis apparatus described in Patent Document 2 extracts the importance of parts according to the type of analysis and the influence attribute representing the influence between parts based on the analysis conditions including the boundary conditions of the parts. Thereafter, mesh element density control is performed based on the importance and influence attributes of the parts. Thereby, mesh element division in consideration of analysis conditions is possible.
特許文献1:特開2007-122205号公報
特許文献2:特開2002-82999号公報
特許文献3:特開2007-280129号公報
Patent Document 1: Japanese Patent Application Laid-Open No. 2007-122205 Patent Document 2: Japanese Patent Application Laid-Open No. 2002-82999 Patent Document 3: Japanese Patent Application Laid-Open No. 2007-280129
 解析条件に応じたメッシュを生成する際に、ノウハウを考慮したメッシュを自動で生成できるよう特許文献1に記載の解析用モデル作成支援システムでは、解析モデルの形状から類似形状のモデルのメッシュ生成ノウハウを適用している。しかしながら、解析種類や境界条件、物性などの形状以外の要素までは考慮されていない。 In the analysis model creation support system described in Patent Document 1, the mesh generation know-how of the model of similar shape can be obtained from the shape of the analysis model so that the mesh considering know-how can be automatically generated when generating the mesh according to the analysis conditions. Has been applied. However, elements other than the shape such as analysis type, boundary conditions, and physical properties are not considered.
 また、特許文献2に記載の解析装置では、境界条件を考慮して部品の重要度からメッシュを生成している。しかしながらこの公報に記載の解析装置でも、メッシュ生成のノウハウとして考慮できるのは粗密のみであり、解析の精度に影響する直交性や規則性についてまでは、考慮されていない。 Further, in the analysis apparatus described in Patent Document 2, a mesh is generated from the importance of parts in consideration of boundary conditions. However, even with the analysis device described in this publication, only the density can be considered as know-how for mesh generation, and the orthogonality and regularity that affect the accuracy of analysis are not considered.
 本発明は上記従来技術の不具合に鑑みなされたものであり、その目的は、解析種類や境界条件、物性、形状の類似した過去解析モデルから、直交性および規則性、粗密などのメッシュ生成ノウハウを適用して、ノウハウに十分精通していない未熟練者でも解析の現象に適したメッシュを容易に生成できるシステムを提供することにある。 The present invention has been made in view of the above-described problems of the prior art, and its purpose is to obtain mesh generation know-how such as orthogonality, regularity, and density from past analysis models with similar analysis types, boundary conditions, physical properties, and shapes. It is to provide a system capable of easily generating a mesh suitable for an analysis phenomenon even by an unskilled person who is not sufficiently familiar with know-how.
 上記目的を達成するために、データを入出力する入出力装置と、入力されたデータに基づき演算する演算装置と、この演算装置に付設された記憶装置とを備えた本発明の解析用モデル作成支援装置では、前記入出力装置は数値解析対象物の形状データを入力し解析モデルを作成する形状データ入力手段と前記解析モデルを解析するときの解析条件を入力する解析条件入力手段とを有し、前記記憶装置には、過去に解析した複数の数値解析対象物について少なくとも解析モデルデータと解析結果と解析条件とが蓄積された過去解析データベースが格納されており、前記演算装置は、前記過去解析データベースについて前記解析対象物の解析モデルを参照して類似解析モデルを抽出する類似解析モデル検索手段と、抽出した類似解析モデルと前記解析対象物の解析モデルについて相関度を演算する相関度演算手段と、前記数値解析対象物の解析モデルについてのメッシュモデルを作成するときに用いるメッシュ制御ルールを前記相関度演算手段が演算した相関度に基づいて生成するメッシュ制御ルール演算手段と、作成されたメッシュ制御ルールに従って前記メッシュモデルを生成するメッシュモデル生成手段とを備えることを特徴とする。 In order to achieve the above object, the analysis model creation of the present invention comprising an input / output device for inputting / outputting data, an arithmetic device for calculating based on the input data, and a storage device attached to the arithmetic device In the support device, the input / output device has shape data input means for inputting shape data of a numerical analysis object and creating an analysis model, and analysis condition input means for inputting an analysis condition for analyzing the analysis model. The storage device stores a past analysis database in which at least analysis model data, analysis results, and analysis conditions are stored for a plurality of numerical analysis objects analyzed in the past. Similar analysis model retrieval means for extracting a similar analysis model with reference to the analysis model of the analysis object for the database, and the extracted similar analysis model and the previous Correlation degree calculation means for calculating a correlation degree for the analysis model of the analysis object, and a correlation degree calculated by the correlation degree calculation means for a mesh control rule used when creating a mesh model for the analysis model of the numerical analysis object And a mesh model generation means for generating the mesh model according to the created mesh control rule.
 そしてこの特徴において、前記入出力装置はさらに、前記メッシュ制御ルール演算手段が生成したメッシュ制御ルールを表示するメッシュ制御ルール表示手段と、生成された前記メッシュモデルを表示するメッシュモデル表示手段とを有しており、前記演算装置は前記メッシュ制御ルール演算手段が演算したメッシュ制御ルールを修正するメッシュ制御ルール修正手段を有するのが望ましく、前記相関度演算手段は、抽出した類似解析モデルと前記解析対象物の解析モデルとの相関度を演算するときに用いる解析条件は、解析種類および境界条件、形状特徴量、位置、物性の少なくともいずれかであることが好ましい。 In this aspect, the input / output device further includes a mesh control rule display unit that displays the mesh control rule generated by the mesh control rule calculation unit, and a mesh model display unit that displays the generated mesh model. The arithmetic unit preferably has a mesh control rule correction unit that corrects the mesh control rule calculated by the mesh control rule calculation unit, and the correlation degree calculation unit includes the extracted similar analysis model and the analysis target. The analysis condition used when calculating the degree of correlation with the analysis model of the object is preferably at least one of analysis type and boundary condition, shape feature amount, position, and physical property.
 また上記特徴において、前記相関度演算手段は、抽出した類似解析モデルと前記解析対象物の解析モデルとの相関度を演算するときに用いるメッシュ特徴量は、メッシュの種類および内角、価数、サイズの少なくともいずれかであるのがよく、類似解析モデル検索手段は、蓄積された過去の解析モデルデータと前記解析対象物の解析モデルの類似度あるいは信頼度が所定値以上であれば抽出するのがよい。さらに、前記メッシュ制御ルール演算手段が演算する相関度は、解析条件とメッシュ特徴量の相関度であることが好ましい。 In the above feature, the mesh feature amount used when the correlation calculation means calculates the correlation between the extracted similar analysis model and the analysis model of the analysis object includes the mesh type, interior angle, valence, and size. It is preferable that the similar analysis model retrieval unit extracts the past analysis model data accumulated and the analysis model of the analysis object if the similarity or reliability of the analysis model is a predetermined value or more. Good. Furthermore, it is preferable that the correlation degree calculated by the mesh control rule calculation means is a correlation degree between the analysis condition and the mesh feature amount.
 上記目的を達成する本発明の他の特徴は、解析用モデル作成支援プログラムが、コンピュータを、数値解析対象物の形状データを入力し解析モデルを作成する形状データ入力手段と、前記解析モデルを解析するときの解析条件を入力する解析条件入力手段と、過去に解析した複数の数値解析対象物についての少なくとも形状モデルと解析結果と解析条件とを蓄積する過去解析データベースと、この過去解析データベースについて前記解析対象物の解析モデルを参照して類似解析モデルを検索する検索手段と、抽出した類似解析モデルと前記解析対象物の解析モデルについて、解析条件およびメッシュ特徴量の相関度を演算する相関度演算手段と、前記数値解析対象物の解析モデルについてメッシュモデルを作成するときに用いるメッシュ制御ルールを前記相関度演算手段が演算した相関度に基づいて生成するメッシュ制御ルール演算手段と、作成されたメッシュ制御ルールに従って前記メッシュモデルを生成するメッシュモデル生成手段として機能させるものである。 Another feature of the present invention that achieves the above object is that an analysis model creation support program uses a computer to input shape data of a numerical analysis object and create an analysis model, and to analyze the analysis model Analysis condition input means for inputting analysis conditions when performing analysis, a past analysis database for accumulating at least a shape model, analysis results, and analysis conditions for a plurality of numerical analysis objects analyzed in the past, and the past analysis database A search means for searching for a similar analysis model with reference to an analysis model of the analysis object, and a correlation degree calculation for calculating a correlation degree of analysis conditions and mesh feature amounts for the extracted similar analysis model and the analysis model of the analysis object And a mesh control used when creating a mesh model for the analysis model of the numerical analysis object. Mesh control rule calculating means for generating on the basis of a rule on the correlation degree of the correlation calculating means and calculating, that they appear as a mesh model generating means for generating the mesh model in accordance with the meshing control rules.
 そしてこのプログラムは、前記コンピュータを、さらに、前記メッシュ制御ルール演算手段が生成したメッシュ制御ルールを表示するメッシュ制御ルール表示手段と、前記メッシュ制御ルール演算手段が演算したメッシュ制御ルールを修正するメッシュ制御ルール修正手段と、生成された前記メッシュモデルを表示するメッシュモデル表示手段として機能させるのがよい。 The program further includes a mesh control rule display means for displaying the mesh control rule generated by the mesh control rule calculation means, and a mesh control for correcting the mesh control rule calculated by the mesh control rule calculation means. It is preferable to function as a rule correction means and a mesh model display means for displaying the generated mesh model.
 本発明によれば、すでに解析経験のある既成解析用モデルから類似の解析モデルを抽出し、この類似解析モデルと解析対象のモデルとを比較し、その際、解析条件およびメッシュ形状特徴量について相関度を求め、この相関度に基づいてメッシュ生成ルールを定めるようにしたので、メッシュ生成のノウハウに十分精通していない未熟練者でも、解析の現象に適したメッシュを容易に生成できるシステムが得られる。 According to the present invention, a similar analysis model is extracted from a ready-made analysis model that has already been analyzed, and the similar analysis model is compared with the model to be analyzed. Since a mesh generation rule is determined based on this degree of correlation, even an unskilled person who is not well-versed in mesh generation know-how can easily generate a mesh suitable for the analysis phenomenon. It is done.
図1は、本発明に係る解析用モデル作成支援装置を備えたCAEシステムの模式図である。FIG. 1 is a schematic diagram of a CAE system provided with an analytical model creation support apparatus according to the present invention. 図2は、本発明に係る解析用モデル作成支援装置の一実施例の模式図である。FIG. 2 is a schematic diagram of an embodiment of the analytical model creation support apparatus according to the present invention. 図3は、図2に示した解析用モデル作成支援装置における処理フローを示すフローチャートである。FIG. 3 is a flowchart showing a processing flow in the analytical model creation support apparatus shown in FIG. 図4は、解析用モデル作成支援装置の操作画面の一例であり、解析対象を示す図である。FIG. 4 is an example of an operation screen of the analysis model creation support apparatus, and is a diagram illustrating an analysis target. 図5は、解析用モデル作成支援装置の操作画面の一例であり、解析条件を示す図である。FIG. 5 is an example of an operation screen of the analysis model creation support apparatus, and shows analysis conditions. 図6は、解析用モデル作成支援装置の操作画面の一例であり、類似解析モデル一覧を示す図である。FIG. 6 is an example of an operation screen of the analysis model creation support apparatus, and is a diagram showing a list of similar analysis models. 図7は、解析用モデル作成支援装置の操作画面の一例であり、抽出した類似解析モデルを示す図である。FIG. 7 is an example of an operation screen of the analysis model creation support apparatus, and is a diagram illustrating the extracted similar analysis model. 図8は、解析用モデル作成支援装置の操作画面の一例であり、メッシュ制御ルール一覧を示す図である。FIG. 8 is an example of an operation screen of the analysis model creation support apparatus, and is a diagram showing a mesh control rule list. 図9は、解析用モデル作成支援装置の操作画面の一例であり、抽出したメッシュ制御ルールを示す図である。FIG. 9 is an example of the operation screen of the analysis model creation support apparatus, and is a diagram showing the extracted mesh control rules. 図10は、解析用モデル作成支援装置の操作画面の一例であり、解析用メッシュを示す図である。FIG. 10 is an example of an operation screen of the analysis model creation support apparatus, and is a diagram illustrating an analysis mesh.
 以下、本発明に係る解析用モデル作成支援装置の実施例を、図面を用いて説明する。図1に、本発明に係る解析用モデル作成支援装置を備えたCAEシステムを、模式図で示す。CAEシステム50は、キーボードやマウス、ディスプレイ等からなる入出力装置101と、演算装置であるコンピュータ100と、CADデータを格納する入力CAD102、解析用モデルのメッシュデータを格納するメッシュデータ103と、過去に解析した解析モデルのデータが蓄積されている過去解析データベース(過去解析DB)104とを備える。これら、入力CAD102及びメッシュデータ103、過去解析DB104は、このコンピュータ100が備える図示しない記憶手段に記憶される。 Hereinafter, an embodiment of an analysis model creation support apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing a CAE system provided with an analytical model creation support apparatus according to the present invention. The CAE system 50 includes an input / output device 101 including a keyboard, a mouse, a display, and the like, a computer 100 that is an arithmetic device, an input CAD 102 that stores CAD data, mesh data 103 that stores mesh data of an analysis model, And a past analysis database (past analysis DB) 104 in which data of the analyzed analysis model is stored. The input CAD 102, mesh data 103, and past analysis DB 104 are stored in a storage unit (not shown) provided in the computer 100.
 コンピュータ100は、演算プログラムを格納しており、詳細を後述する解析モデルの形状や解析条件、メッシュ制御ルール、メッシュデータを入力および出力する入出力部105と、これらの入力データおよび出力データを入出力装置101へ送信するための表示制御部106と、過去に解析した解析モデルのデータが蓄積された過去解析DB104を、入力CAD102から入力されたCADデータを参照して検索する検索部108と、検索条件に応じて抽出された類似解析モデルに表示するための表示部101と、入力CAD102およびメッシュデータ103との間で入出力するための入出力部105と、過去解析DB104から類似解析モデルを検索する検索部108と、検索により抽出された類似解析モデルに対してメッシュ制御ルールを適用する適用部107とを有している。 The computer 100 stores an arithmetic program, and an input / output unit 105 that inputs and outputs the shape of an analysis model, analysis conditions, mesh control rules, and mesh data, the details of which will be described later, and the input and output data. A display control unit 106 for transmission to the output device 101, a search unit 108 for searching the past analysis DB 104 in which data of analysis models analyzed in the past are stored with reference to CAD data input from the input CAD 102, The display unit 101 for displaying on the similar analysis model extracted according to the search condition, the input / output unit 105 for inputting / outputting between the input CAD 102 and the mesh data 103, and the similar analysis model from the past analysis DB 104 A search unit 108 for searching, and a mesh for the similar analysis model extracted by the search And an application section 107 to apply your rules.
 図2に、本発明に係る解析用モデル作成支援装置200の一実施例を模式図で示す。解析用モデル作成支援装置200は、ソフトウエアプログラムの形で図1に示した演算手段100内に格納される。なお、大容量の記憶媒体に記憶されていてもよい。解析用モデル作成支援装置200には、CAEシステム50の使用者が、データを入力したり表示したりするためのキーボード、ポインティングデバイス、ディスプレイ等からなる入出力装置101が付設されている。 FIG. 2 schematically shows an embodiment of the analytical model creation support apparatus 200 according to the present invention. The analysis model creation support apparatus 200 is stored in the computing means 100 shown in FIG. 1 in the form of a software program. It may be stored in a large-capacity storage medium. The analysis model creation support apparatus 200 is provided with an input / output device 101 including a keyboard, a pointing device, a display, and the like for the user of the CAE system 50 to input and display data.
 解析対象となる対象物(モデル名:M00001)の形状は、入出力装置101を用いて形状入力部202から指定される。この形状データには、CADデータなどが含まれる。指定された対象物の形状データに対して、入出力部201を用いて解析条件入力部203から解析条件が入力される。ここで、解析条件には構造解析、振動解析、流体解析、電磁場解析などの解析種類、荷重境界、拘束境界、流入境界、流出境界、対称境界などの境界条件、 解析対象の固体や流体、気体の物性値などが含まれる。 The shape of the object to be analyzed (model name: M00001) is designated from the shape input unit 202 using the input / output device 101. This shape data includes CAD data and the like. An analysis condition is input from the analysis condition input unit 203 to the shape data of the specified object using the input / output unit 201. Here, analysis conditions include structural analysis, vibration analysis, fluid analysis, electromagnetic field analysis, etc., boundary conditions such as load boundary, constraint boundary, inflow boundary, outflow boundary, and symmetry boundary, and solids, fluids, and gases to be analyzed The physical property values are included.
 すでに解析した解析モデルのデータが蓄積されている過去解析DB104を用いて、対象物の解析モデルと類似の解析モデルを、類似解析モデル検索部205で抽出する。ここで、過去解析DBは過去の解析モデル(モデル名:M10001、M10002、…、M20001、M2002、…等)のデータを格納したデータベースであり、形状入力部102で入力した形状データ、解析条件入力部203で入力した解析条件、メッシュデータ、解析結果、データベースに登録の際にユーザが入力する解析信頼度などが含まれる。また、類似度を検索する項目は、解析モデルの形状および解析種類、境界条件、物性などである。類似度の計算法は図6を用いて後述する。 The similar analysis model search unit 205 extracts an analysis model similar to the analysis model of the object using the past analysis DB 104 in which the data of the analysis model already analyzed is accumulated. Here, the past analysis DB is a database storing data of past analysis models (model names: M10001, M10002,..., M20001, M2002,...), And the shape data input by the shape input unit 102 and analysis condition input The analysis conditions input by the unit 203, mesh data, analysis results, analysis reliability input by the user at the time of registration in the database, and the like are included. Items for searching for similarity are the shape and analysis type of the analysis model, boundary conditions, physical properties, and the like. A method of calculating the similarity will be described later with reference to FIG.
 すでに解析した解析モデルと対象物の解析モデルとの解析条件およびメッシュ特徴量について、相関度計算部206において相関度を計算する。相関度は、式(1)を用いて求められる。ここで、αは相関度、xは形状特徴量および解析条件、yはメッシュ形状特徴量、iはデータベースのデータ番号である。
Figure JPOXMLDOC01-appb-I000001
The degree of correlation is calculated in the degree-of-correlation calculation unit 206 with respect to the analysis conditions and mesh features of the analysis model already analyzed and the analysis model of the object. The degree of correlation is obtained using equation (1). Here, α is the degree of correlation, x is the shape feature quantity and analysis conditions, y is the mesh shape feature quantity, and i is the data number of the database.
Figure JPOXMLDOC01-appb-I000001
 形状特徴量は、例えば、特開2007-280129号公報(特許文献3)に記載されているもので、形状を三角形メッシュに分割したときの任意の2個の三角形メッシュの重心距離および法線ベクトルと重心線の成す角度の和、面積の和から得られる。 The shape feature amount is described in, for example, Japanese Patent Application Laid-Open No. 2007-280129 (Patent Document 3), and the centroid distance and normal vector of any two triangular meshes when the shape is divided into triangular meshes. And the sum of the angles formed by the center of gravity line and the sum of the areas.
 メッシュ形状特徴量は、メッシュデータから計算されるメッシュの種類および内角、価数、サイズなどのメッシュの形状と品質を特徴付ける値である。メッシュの種類は、メッシュの形状が六面体であるか、四面体であるかの区別である。六面体メッシュの場合には、四面体メッシュに比べてメッシュ数が少なくて済み、精度の高い解析が可能となるが、生成するのが困難である。これとは逆に、四面体メッシュの場合には、生成するのは容易であるが、メッシュ数が多くなり、精度も六面体メッシュよりは劣る。 The mesh shape feature value is a value that characterizes the shape and quality of the mesh, such as the type and interior angle, valence, and size of the mesh calculated from the mesh data. The type of mesh is a distinction as to whether the shape of the mesh is a hexahedron or a tetrahedron. In the case of a hexahedral mesh, the number of meshes is smaller than that of a tetrahedral mesh, and a highly accurate analysis is possible, but it is difficult to generate. On the other hand, in the case of a tetrahedral mesh, it is easy to generate, but the number of meshes is increased and the accuracy is inferior to that of a hexahedral mesh.
 メッシュの内角は、六面体メッシュまたは四面体メッシュを構成する面の内角であり、メッシュの直交性に関わる。メッシュの内角が90度に近いほど、直交性が良い。メッシュの価数は四面体メッシュまたは六面体メッシュを構成する節点が、他のいくつの節点と接続しているかを表す値であり、メッシュの規則性に関する。六面体メッシュの場合には、6が最も規則性の良いメッシュを示している。メッシュのサイズは、六面体または四面体メッシュを構成する稜線のサイズ(平均値)で、メッシュの粗密に関する。メッシュサイズは、基本的に小さいほど高精度な解析が可能であるが、例えば構造解析であれば応力が集中する箇所などは、小さいサイズのメッシュに分割する。 The internal angle of the mesh is the internal angle of the surface constituting the hexahedral mesh or tetrahedral mesh, and is related to the orthogonality of the mesh. The closer the interior angle of the mesh is to 90 degrees, the better the orthogonality. The valence of the mesh is a value indicating how many other nodes the tetrahedron or hexahedron mesh is connected to, and relates to the regularity of the mesh. In the case of a hexahedral mesh, 6 indicates the most regular mesh. The size of the mesh is the size (average value) of the ridge lines constituting the hexahedral or tetrahedral mesh, and is related to the mesh density. The smaller the mesh size, the higher the accuracy of the analysis possible. For example, in the case of structural analysis, a portion where stress is concentrated is divided into smaller mesh sizes.
 得られた相関度に基づいて、メッシュ制御ルール生成部207が解析モデルごとにメッシュ制御ルールを作成する。メッシュ制御ルールとは例えば流体解析の壁面境界には5層のレイヤーメッシュを適用する、接触解析の接触面には規則メッシュを生成する、のようなルールである。 Based on the obtained degree of correlation, the mesh control rule generation unit 207 creates a mesh control rule for each analysis model. The mesh control rule is, for example, a rule that a five-layer mesh is applied to the wall boundary of the fluid analysis, and a regular mesh is generated on the contact surface of the contact analysis.
 作成されたメッシュ制御ルールを、メッシュ制御ルール表示部208がユーザに表示する。ユーザは必要に応じて、入出力装置101を用いてメッシュ制御ルール修正部209からメッシュ制御ルールを修正する。 The mesh control rule display unit 208 displays the created mesh control rule to the user. The user corrects the mesh control rule from the mesh control rule correction unit 209 using the input / output device 101 as necessary.
 作成および修正されたメッシュ制御ルールに従って、メッシュ生成部210が六面体メッシャーや四面体メッシャーを用いてメッシュを生成する。これにより、指定したメッシュの種類および価数、内角、サイズ等のメッシュ制御ルールが、メッシュに反映される。生成されたメッシュは、メッシュ表示部211が入出力装置101の画面でユーザに表示する。これにより、ユーザは作成されたメッシュ形状を確認できる。 In accordance with the created and modified mesh control rules, the mesh generation unit 210 generates a mesh using a hexahedral mesher and a tetrahedral mesher. Thereby, the mesh control rules such as the designated mesh type and valence, interior angle, and size are reflected in the mesh. The mesh display unit 211 displays the generated mesh on the screen of the input / output device 101 to the user. Thereby, the user can confirm the created mesh shape.
 このように構成した解析モデル作成支援装置200の処理フローを、図3に示したフローチャートを用いて説明する。図3中で長方形の枠で示される処理は、解析モデル作成支援装置200が自動で実行する処理であり、平行四辺形の枠で示される処理は、ユーザが実行する処理を示す。また、実線は処理の流れを表し、破線はデータの流れを表す。 The processing flow of the analysis model creation support apparatus 200 configured as described above will be described with reference to the flowchart shown in FIG. A process indicated by a rectangular frame in FIG. 3 is a process automatically executed by the analysis model creation support apparatus 200, and a process indicated by a parallelogram frame indicates a process executed by the user. A solid line represents a flow of processing, and a broken line represents a data flow.
 ユーザは、CADデータなどの形状データ102aを解析モデル作成支援装置200に入力する(ステップS301)とともに、解析種類および境界条件、物性等の解析条件を入力し(ステップS302)、解析モデルを設定および登録する(ステップS313)。 The user inputs shape data 102a such as CAD data to the analysis model creation support apparatus 200 (step S301), and also inputs analysis conditions such as an analysis type, boundary conditions, and physical properties (step S302), and sets an analysis model. Registration is performed (step S313).
 設定された解析モデルと類似のモデルを過去解析DB104から検索する(ステップS303)。過去解析DB104には、過去に解析を実施した解析モデルが蓄積・登録されており、各解析モデルについて、解析の種類および境界条件、物性、メッシュデータ、解析信頼度などの情報が格納されている。ここでは解析種類および境界条件、物性、モデルの形状が類似の解析モデルを検索する。 Search the past analysis DB 104 for a model similar to the set analysis model (step S303). The past analysis DB 104 stores and registers analysis models that have been analyzed in the past, and stores information such as analysis types and boundary conditions, physical properties, mesh data, and analysis reliability for each analysis model. . Here, an analysis model having similar analysis types, boundary conditions, physical properties, and model shapes is searched.
 ステップS304で、類似解析モデルが抽出されない場合には、ステップS310に進み、メッシュの種類およびサイズ等のメッシュ制御ルールをユーザが手動で編集・設定し(ステップS310)、メッシュを生成する(ステップS311)。 If a similar analysis model is not extracted in step S304, the process proceeds to step S310, where the user manually edits and sets mesh control rules such as the mesh type and size (step S310), and generates a mesh (step S311). ).
 類似解析モデルが抽出された場合には、検索された類似解析モデルについて、類似解析モデルと対象物の解析モデルの類似度および類似解析モデルの解析の信頼度に基づいて、メッシュ制御ルールを抽出する解析モデルを判定する(ステップS305)。判定された解析モデルの解析種類および境界条件、物性等の解析条件、ならびにメッシュの種類およびサイズ、価数、内角等のメッシュ形状特徴量の相関度を計算する(ステップS306)。相関度に基づいて、メッシュ制御ルールを抽出する(ステップS307)。 When a similar analysis model is extracted, a mesh control rule is extracted for the retrieved similar analysis model based on the similarity between the similar analysis model and the analysis model of the object and the reliability of the analysis of the similar analysis model. An analysis model is determined (step S305). The analysis type and boundary conditions of the determined analysis model, the analysis conditions such as physical properties, and the degree of correlation of the mesh shape features such as the type and size of the mesh, the valence, and the interior angle are calculated (step S306). Based on the correlation degree, a mesh control rule is extracted (step S307).
 ユーザは抽出されたメッシュ制御ルールの中から実際に適用するものを判定し(ステップS308)、対象物の解析モデルにメッシュ制御ルールを反映する(ステップS309)。さらに必要であれば、メッシュ制御ルールを修正あるいは追加する編集を実行し(ステップS310)、メッシュを生成する(ステップS311)。 The user determines what is actually applied from the extracted mesh control rules (step S308), and reflects the mesh control rules in the analysis model of the object (step S309). If necessary, editing for correcting or adding a mesh control rule is executed (step S310), and a mesh is generated (step S311).
 解析終了後には、ユーザは解析モデルを過去解析DB104に登録し、次回以降の解析時にデータベースを利用できるようにする。その際、解析の信頼度を同時に登録して、次回以降の解析時に、メッシュ制御ルール抽出に使用できるか否かの参考になるようにする。 After the analysis is completed, the user registers the analysis model in the past analysis DB 104 so that the database can be used for the subsequent analysis. At this time, the reliability of analysis is registered at the same time so that it can be used as a reference for whether or not it can be used for mesh control rule extraction at the time of subsequent analysis.
 図3に示した解析のための一連の準備における具体的な操作を、図4ないし図10を用いて説明する。図4は、ステップS301で形状データを入力したときに、入出力装置101が備えるディスプレイの表示画面(操作画面)を示したものである。この第1操作画面400では、左側に、複数のボタン401~407が上下方向に並んで配列されたボタン部410が、右側に、解析対象となる対象物408が表示される対象物表示部420が区画されている。 Specific operations in a series of preparations for the analysis shown in FIG. 3 will be described with reference to FIGS. FIG. 4 shows a display screen (operation screen) of the display included in the input / output device 101 when shape data is input in step S301. In the first operation screen 400, a button unit 410 in which a plurality of buttons 401 to 407 are arranged in the vertical direction is arranged on the left side, and an object display unit 420 on which an object 408 to be analyzed is displayed on the right side. Is partitioned.
 ボタン部40は、ユーザが各ボタン401~407に記載された操作を、このボタン401~407をクリックすることにより実行するためのものである。これら複数のボタンの中で、形状入力ボタン401は、CADなどの形状データ102aから形状を持ち込む際に使用する。条件入力ボタン402は、解析条件や境界条件、物性等の解析に用いる各種条件を入力するためのものである。類似解析モデルボタン403は、過去解析DB104から類似の解析モデルを検索し、検索された類似解析モデルの一覧を表示し、抽出した類似解析モデルについて、類似度および信頼度から使用可能なメッシュ制御ルールか否かを判定するのに用いられる。 The button unit 40 is for the user to execute the operations described in the buttons 401 to 407 by clicking the buttons 401 to 407. Among these buttons, a shape input button 401 is used when bringing in a shape from shape data 102a such as CAD. The condition input button 402 is used to input various conditions used for analysis such as analysis conditions, boundary conditions, and physical properties. The similar analysis model button 403 searches for similar analysis models from the past analysis DB 104, displays a list of similar analysis models that have been searched, and can use mesh control rules that can be used from the similarity and reliability of the extracted similar analysis models It is used to determine whether or not.
 メッシュ制御ルール表示ボタン404は、抽出したメッシュ制御ルールを表示し、そのメッシュ制御ルールを適用するかどうかを判定する際に用いられる。メッシュ制御ルール編集ボタン405は、適用されたメッシュ制御ルールを修正および追加する際に用いられる。上記各ボタン401~405を順にクリックして、必要データを入力すると、解析モデルにメッシュ制御ルールが適用されるので、メッシュ生成が可能になる。そこで、メッシュ生成ボタン406をメッシュ生成に使用し、メッシュ表示ボタン407を、生成されたメッシュを表示させて確認するのに用いる。 The mesh control rule display button 404 is used to display the extracted mesh control rule and determine whether to apply the mesh control rule. The mesh control rule edit button 405 is used when correcting and adding an applied mesh control rule. When the necessary data is input by clicking each of the buttons 401 to 405 in order, the mesh control rule is applied to the analysis model, so that mesh generation is possible. Therefore, the mesh generation button 406 is used for mesh generation, and the mesh display button 407 is used for displaying and confirming the generated mesh.
 形状入力ボタン401をクリックしたステップS301の段階では、対象物表示部420にはCADモデル408が3次元で表示される。このステップS301の段階では、対象物の形状とともに、対象識別ラベル430としてモデル名も第1操作画面400に表示される。 At the stage of step S301 when the shape input button 401 is clicked, the CAD model 408 is displayed in three dimensions on the object display unit 420. In the stage of step S301, the model name is also displayed on the first operation screen 400 as the object identification label 430 along with the shape of the object.
 ステップS302に進んで、対象物の解析モデルに解析条件を付与する状態を、図5の第1操作画面400に示す。本実施例では、対象物はコネクティングロッドであり、解析の種類は構造解析(応力解析)である。条件入力ボタン402をクリックしたので、対象物表示部には、対象物408aとともに、対象識別ラベル430aとしてモデル名および解析種類、材料名が表示される。ユーザが、解析種類や材料を選択し、境界条件として面やボリューム、ラインなどの条件の中から該当する形状を画面で選択する。この図5では、ユーザが指定した拘束条件が第1条件表示ラベル502に、荷重条件が第2条件表示ラベル503に表示され、これら第1、第2条件が適用される部位が、ハイライト表示されている。 The process proceeds to step S302, and a state in which the analysis condition is given to the analysis model of the object is shown in the first operation screen 400 of FIG. In this embodiment, the object is a connecting rod, and the type of analysis is structural analysis (stress analysis). Since the condition input button 402 is clicked, the model name, the analysis type, and the material name are displayed as the object identification label 430a together with the object 408a on the object display unit. The user selects the analysis type and material, and selects a corresponding shape from the screen, volume, line, and other conditions as boundary conditions on the screen. In FIG. 5, the constraint condition specified by the user is displayed on the first condition display label 502, the load condition is displayed on the second condition display label 503, and the parts to which the first and second conditions are applied are highlighted. Has been.
 ステップS303で類似解析モデルを検索して類似解析モデルが抽出されたときに、その内容を判定するステップS305で使用する第2操作画面600を、図6に示す。第2操作画面600では、上部に類似解析モデルの使用可否を判定する判定一覧表620が、下部に各種ボタン608~614が配列されたボタン表示部630が区画されている。 FIG. 6 shows a second operation screen 600 used in step S305 for determining the contents when a similar analysis model is extracted by searching for a similar analysis model in step S303. In the second operation screen 600, a determination list 620 for determining whether or not the similar analysis model can be used is displayed in the upper part, and a button display unit 630 in which various buttons 608 to 614 are arranged in the lower part.
 使用可否判定表620では、横軸に、モデル名欄601および類似度欄602、解析種類欄603、第一分類欄604、第二分類欄605、信頼度欄606、判定欄607が設けられている。この中で、モデル名欄601から信頼度欄606までは、類似解析モデル検索で検索した結果出力されたデータである。判定欄607だけは、ユーザの入力欄である。 In the usability determination table 620, a model name field 601 and a similarity field 602, an analysis type field 603, a first classification field 604, a second classification field 605, a reliability field 606, and a determination field 607 are provided on the horizontal axis. Yes. Among them, the model name column 601 to the reliability column 606 are data output as a result of searching by the similar analysis model search. Only the determination column 607 is a user input column.
 類似度欄602の値は、解析種類および第一分類、第二分類、形状の類似度のそれぞれについて正規化したときの平均値で、解析種類および第一分類、第二分類の類似度は対象物の解析モデルと合致する場合には0、合致しない場合には1で与えられる。形状の類似度は、例えば、特開2007-280129号公報(特許文献3)に記載した方法を用いる。具体的には、解析モデル形状を三角形メッシュに分割し、法線ベクトル同士を比較する方法である。 The value in the similarity column 602 is an average value when normalized for each of the analysis type and the first classification, the second classification, and the similarity of the shape. The similarity of the analysis type, the first classification, and the second classification is a target. If it matches the analysis model of the object, 0 is given, and if it does not match, 1 is given. For the shape similarity, for example, a method described in Japanese Patent Application Laid-Open No. 2007-280129 (Patent Document 3) is used. Specifically, the analysis model shape is divided into triangular meshes, and normal vectors are compared with each other.
 一覧表620では、類似度の高いモデルから順に下方へ表示される。信頼度欄606は、過去に解析した解析モデルの結果を過去解析DB104に追加する際にユーザが入力する欄で、解析の信頼度(精度)を入力する。信頼度が低い解析モデルのメッシュ制御ルールを排除するのに用いる。判定欄607は、類似度および信頼度を考慮して、ユーザがメッシュ制御ルールを抽出する解析モデルとして使用するか否かを判定するためのものである。判定の欄が「○」は、抽出された類似解析モデルをメッシュ制御ルールの抽出に利用することを示し、「×」は利用しないことを示す。 In the list 620, the models with the highest similarity are displayed downward. The reliability column 606 is a column that is input by the user when adding the result of the analysis model analyzed in the past to the past analysis DB 104, and inputs the reliability (accuracy) of the analysis. Used to eliminate mesh control rules for analysis models with low reliability. The determination column 607 is for determining whether or not the user uses the analysis model for extracting the mesh control rule in consideration of the similarity and the reliability. In the determination column, “◯” indicates that the extracted similar analysis model is used for extracting the mesh control rule, and “X” indicates that it is not used.
 ボタン表示部630では、左側に信頼度の下限のチェックボックス608とその入力欄609、および類似度の下限のチェックボックス610とその入力欄611が、上下に配置されている。ボタン表示部630の右側には、選択モデル表示ボタン612およびメッシュ制御ルール抽出ボタン613、閉じボタン614が上下に配置されている。 In the button display section 630, a reliability lower limit check box 608 and its input field 609, and a similarity lower limit check box 610 and its input field 611 are arranged vertically on the left side. On the right side of the button display unit 630, a selection model display button 612, a mesh control rule extraction button 613, and a close button 614 are arranged vertically.
 信頼度の下限チェックボックス608と類似度の下限のチェックボックス610にチェックマークが付いている場合には、対応する入力欄609、611に数値の入力が可能となり、その数値以下である類似解析モデルは、自動的に判定欄607に「×」が表示される。これにより、入力した下限値以下の類似解析モデルが、自動的にメッシュ制御関数の抽出対象から外される。信頼度の下限チェックボックス608と類似度の下限のチェックボックス610にチェックマークが付いていない場合には、ユーザが判定欄607に「×」か「○」を入力する。 When the reliability lower limit check box 608 and the similarity lower limit check box 610 are checked, it is possible to input numerical values in the corresponding input fields 609 and 611, and the similarity analysis model that is equal to or lower than the numerical values. Is automatically displayed in the determination column 607. As a result, the similarity analysis model having the input lower limit value or less is automatically excluded from the mesh control function extraction targets. When the reliability lower limit check box 608 and the similarity lower limit check box 610 are not checked, the user inputs “x” or “◯” in the determination column 607.
 選択モデル表示ボタン612は、一覧表620から選択した類似解析モデルを表示するためのものである。この選択モデル表示ボタン612を押すと、図7に示した第3操作画面700に移動する。メッシュ制御ルール抽出ボタン613は、ユーザが使用可否判定一覧表620の判定欄607に、各類似解析モデルについての判定を入力し終えたら、相関度の計算に移行するためのものである。 The selected model display button 612 is for displaying the similar analysis model selected from the list 620. When the selected model display button 612 is pressed, the screen moves to the third operation screen 700 shown in FIG. The mesh control rule extraction button 613 is for shifting to the calculation of the degree of correlation when the user finishes inputting the determination for each similar analysis model in the determination column 607 of the availability determination list 620.
 相関度の計算は、判定欄607で「○」と判定した類似解析モデルについて、上記式(1)から算出する。形状特徴量および解析条件とメッシュデータの相関度が計算されたら、メッシュ制御ルールを抽出する。メッシュ制御ルールと相関度については図8で説明する。閉じボタン614は、この第2操作画面600を閉じるのに用いる。第2操作画面600が閉じられると、第1操作画面400に移動する。 The calculation of the degree of correlation is calculated from the above equation (1) for the similar analysis model determined as “◯” in the determination column 607. When the degree of correlation between the shape feature quantity and analysis condition and the mesh data is calculated, a mesh control rule is extracted. The mesh control rule and the degree of correlation will be described with reference to FIG. A close button 614 is used to close the second operation screen 600. When the second operation screen 600 is closed, the screen moves to the first operation screen 400.
 選択モデル表示ボタン612が押されて、類似解析モデルを表示する第3操作画面700へ移動した様子を、図7に示す。この第3操作画面700では、左側に解析条件表示部710が、右側に解析メッシュ表示部720が区画されている。 FIG. 7 shows a state where the selected model display button 612 has been pressed and moved to the third operation screen 700 displaying the similar analysis model. In the third operation screen 700, an analysis condition display unit 710 is partitioned on the left side, and an analysis mesh display unit 720 is partitioned on the right side.
 解析条件表示部710には、類似解析モデル409aの対象識別ラベル430bおよび3次元形状と、その類似解析モデル409aを解析したときの解析条件が第1条件表示ラベルおよび第2条件表示ラベルとして表示される。対象識別ラベル430bには、モデル名および解析種類、材料が記載されている。第1条件表示ラベル701には拘束条件が、第2条件表示ラベルには加重条件が表示される。なお、設定された拘束条件や荷重条件のような境界条件は、画面上でハイライト表示される。 The analysis condition display unit 710 displays the target identification label 430b and the three-dimensional shape of the similar analysis model 409a and the analysis conditions when the similar analysis model 409a is analyzed as a first condition display label and a second condition display label. The The object identification label 430b describes the model name, analysis type, and material. A constraint condition is displayed on the first condition display label 701, and a weighting condition is displayed on the second condition display label. Note that boundary conditions such as set constraint conditions and load conditions are highlighted on the screen.
 解析メッシュ表示部720には、類似解析モデルのメッシュモデル409bとともに、第3~第5条件表示ラベル704~706が表示される。第3条件表示ラベル704にはメッシュの基準サイズと種類が、第4条件表示ラベル705には粗密設定が、第5条件表示ラベルには所的なメッシュ種類が表示される。類似解析モデルのメッシュモデル409bでは、応力の集中する部位に粗密設定や六面体メッシュを用いてメッシュ制御している。この例のように、図5に示す対象物のコネクティングロッド408aと形状は多少異なっていても、拘束条件や荷重条件が類似であれば類似解析モデルの類似度は、高く計算される。 The analysis mesh display unit 720 displays the third to fifth condition display labels 704 to 706 together with the mesh model 409b of the similar analysis model. The third condition display label 704 displays a reference size and type of mesh, the fourth condition display label 705 displays a coarse / fine setting, and the fifth condition display label displays a specific mesh type. In the mesh model 409b of the similar analysis model, mesh control is performed using a coarse / dense setting or a hexahedral mesh in a portion where stress is concentrated. As in this example, even if the shape of the object connecting rod 408a shown in FIG. 5 is slightly different, the similarity of the similar analysis model is calculated to be high if the constraint conditions and load conditions are similar.
 第2操作画面600において、メッシュ制御ルール抽出ボタン613が押されると、図8に示した第4操作画面800に移行する。これは、ステップS308に相当する。この第4操作画面800では、上部にメッシュ制御ルール使用可否判定一覧表820が形成されており、下部にボタン表示部830が形成されている。 When the mesh control rule extraction button 613 is pressed on the second operation screen 600, the screen shifts to the fourth operation screen 800 shown in FIG. This corresponds to step S308. In the fourth operation screen 800, a mesh control rule availability determination list 820 is formed in the upper part, and a button display unit 830 is formed in the lower part.
 メッシュ制御ルール使用可否判定一覧表800の横軸は、ルール番号欄801および相関度欄802、解析条件欄803、メッシュ形状特徴欄804、判定欄805になっている。この中で、ルール番号欄801からメッシュ形状特徴欄804までは、すでに求められている値や条件の出力表示であり、判定欄805だけがユーザの入力欄である。 The horizontal axis of the mesh control rule availability determination list 800 includes a rule number column 801, a correlation degree column 802, an analysis condition column 803, a mesh shape feature column 804, and a determination column 805. Among them, the rule number column 801 to the mesh shape feature column 804 are output displays of values and conditions already obtained, and only the determination column 805 is a user input column.
 相関度欄802の数値は、式(1)から計算されて表示される。相関度は、メッシュ形状特徴量および解析条件とメッシュデータの相関度であり、相関度の高い順に上から下に一覧表示される。判定欄805は、抽出したメッシュ制御ルールを反映するかどうかユーザの判定結果を入力するためのものであり、「○」は対象のメッシュ制御ルールを解析モデルに反映することを示し、「×」は反映しないことを示す。 The numerical value in the correlation column 802 is calculated from the formula (1) and displayed. The degree of correlation is the degree of correlation between mesh shape feature quantity and analysis condition and mesh data, and is displayed in a list from top to bottom in descending order of correlation degree. The determination column 805 is used to input a determination result of the user as to whether or not the extracted mesh control rule is to be reflected. “◯” indicates that the target mesh control rule is reflected in the analysis model, and “×” Indicates no reflection.
 ボタン表示部830の左側には、相関度の下限のチェックボックス806とその入力欄807が表示されており、右側には、メッシュ制御ルール反映ボタン8008と閉じボタン809とが上下に配置されている。相関度の下限チェックボックス806にチェックマークが付いていると、入力欄807に下限値を入力可能になる。相関度がこの入力欄807に入力された下限値以下であるメッシュ制御ルールは、自動的に判定が「×」になり、メッシュ制御ルールとしては使用されない。 On the left side of the button display unit 830, a check box 806 for the lower limit of correlation and its input field 807 are displayed, and on the right side, a mesh control rule reflection button 8008 and a close button 809 are arranged vertically. . When a check mark is put in the lower limit check box 806 for the correlation degree, a lower limit value can be input in the input field 807. The mesh control rule whose correlation degree is equal to or lower than the lower limit value input in the input field 807 is automatically determined as “x” and is not used as a mesh control rule.
 また、ユーザはメッシュ制御ルールの解析条件欄803やメッシュ形状特徴欄804の内容を自由に修正することができる。メッシュ制御ルール反映ボタン808を押せば、指定されたメッシュ制御ルールが対象物の解析モデル408aに反映される。閉じボタン809は、第4操作画面800を閉じるのに用いられる。 Also, the user can freely modify the contents of the mesh control rule analysis condition field 803 and the mesh shape feature field 804. When the mesh control rule reflection button 808 is pressed, the specified mesh control rule is reflected in the analysis model 408a of the object. A close button 809 is used to close the fourth operation screen 800.
 ステップS309に進んだときの操作画面を、図9に示す。図9は、メッシュ制御ルールを解析モデルに反映した第1操作画面400の様子を示した図である。類似解析モデルの解析条件が移植されて表示されている。 FIG. 9 shows the operation screen when the process proceeds to step S309. FIG. 9 is a diagram illustrating a state of the first operation screen 400 in which the mesh control rule is reflected in the analysis model. The analysis conditions of the similar analysis model are ported and displayed.
 すなわち、対象物の解析モデル408bの他に、第3条件表示ラベル704には基準サイズおよび基準メッシュ種類が、第4表示ラベル705には粗密設定が、第5条件ラベル706には局所的なメッシュ種類が表示されている。また、解析モデル408bでは、これらの条件が付加された部分がハイライト表示されている。さらにユーザはメッシュ制御ルール編集ボタン405を押して反映されたメッシュ制御ルールを修正したり、新たに追加したりすることもできる。 That is, in addition to the analysis model 408b of the object, the third condition display label 704 has a reference size and reference mesh type, the fourth display label 705 has a coarse / fine setting, and the fifth condition label 706 has a local mesh. The type is displayed. Further, in the analysis model 408b, a portion to which these conditions are added is highlighted. Furthermore, the user can correct the mesh control rule reflected by pressing the mesh control rule edit button 405 or add a new one.
 ステップS311に進んで、解析モデルに対してメッシュが作成されたときの第1操作画面400の様子を、図10に示す。図9に示した第1操作画面400で設定した条件である応力集中部の粗密設定と荷重境界ボリュームの六面体メッシュが反映されて、解析モデルのメッシュモデル408cが生成されている。 FIG. 10 shows the state of the first operation screen 400 when the process proceeds to step S311 and a mesh is created for the analysis model. The mesh model 408c of the analysis model is generated by reflecting the density setting of the stress concentration portion and the hexahedral mesh of the load boundary volume, which are the conditions set on the first operation screen 400 shown in FIG.
 上述した本実施例では、データベースに蓄積した既成解析用モデルから類似の解析モデルを検索し、解析条件およびメッシュ形状特徴量について、対象解析モデルとの相関度を計算し、相関度からメッシュ制御ルールを生成して、対象の解析モデルに適用している。また本実施例では、メッシュ制御ルールを表示し、ユーザがメッシュ制御ルールを修正することで、解析条件に適したメッシュを生成できるようにしている。 In the above-described embodiment, similar analysis models are searched from the ready-made analysis models stored in the database, and the degree of correlation with the target analysis model is calculated for the analysis conditions and mesh shape features, and the mesh control rule is calculated from the degree of correlation. Is generated and applied to the target analysis model. In the present embodiment, the mesh control rule is displayed, and the user can generate a mesh suitable for the analysis condition by correcting the mesh control rule.
 このため本実施例によれば、 解析用モデル作成対象に対して形状が類似した解析モデルのメッシュを考慮するだけでなく、解析用モデル作成対象に対して、解析種類や境界条件、物性も考慮しているので解析の現象に適合したメッシュを生成できる。さらにメッシュ制御ルールには、メッシュの粗密だけでなく、メッシュの種類や直交性、規則性も考慮しており、さらに高精度な解析を可能にしている。 For this reason, according to the present embodiment, not only the analysis model mesh whose shape is similar to that of the wrinkle analysis model creation target but also the analysis type, boundary conditions, and physical properties are considered for the analysis model creation target. As a result, a mesh suitable for the analysis phenomenon can be generated. Furthermore, the mesh control rules take into consideration not only the mesh density but also the mesh type, orthogonality, and regularity, thereby enabling more accurate analysis.
 なお、上記説明の操作画面はあくまでも説明の弁に供するためのものであり、操作画面はこれに限るものではない。また、各一覧表も必要に応じて欄項目を増減できる。さらに、解析対象はコンロッドに限るものではないことは、言うまでもない。 Note that the operation screen described above is only for the purpose of explanation, and the operation screen is not limited to this. In addition, each list can be increased or decreased as necessary. Furthermore, it goes without saying that the object of analysis is not limited to the connecting rod.
 また、上記実施例では、コンピュータに直接入出力装置が接続されている例を示しているが、インターネット回線やLANを介してコンピュータと入出力装置が接続されていてもよい。また、解析用モデルの作成者と実際に解析する解析者とが別人でも対応できるよう、入出力装置を複数個、端末装置として設けるようにしてもよい。















Moreover, although the example in which the input / output device is directly connected to the computer is shown in the above embodiment, the computer and the input / output device may be connected via an Internet line or a LAN. Further, a plurality of input / output devices may be provided as terminal devices so that the creator of the analysis model and the analyst who actually analyzes can be handled by different persons.















50…CAEシステム
100…計算機(演算装置)
101…入出力装置
102…入力CAD
102a…形状データ
103…メッシュデータ
104…過去解析データベース(過去解析DB)
105…入出力部
106…表示制御部
107…適用部
108…類似解析モデル検索手段(部)
200…解析用モデル支援作成装置
202…形状入力部
203…解析条件入力手段(部)
205…類似解析モデル検索手段(部)
206…相関度計算手段(部)
207…メッシュ制御ルール作成手段(部)
208…メッシュ制御ルール表示手段(部)
209…メッシュ制御ルール修正手段(部)
210…メッシュ生成部(メッシュモデル作成手段)
211…メッシュ表示部(メッシュモデル表示手段)
400…第1操作画面
401…形状入力ボタン
402…条件入力ボタン
403…類似解析モデル検索ボタン
404…メッシュ制御ルール表示ボタン
405…メッシュ制御ルール編集ボタン
406…メッシュ生成ボタン
407…メッシュ表示ボタン
408、408a~408c…(数値解析)対象物
409a、409b…類似モデル
410…ボタン部
420…対象物表示部
430、430a、430b…対象識別ラベル
502…第1条件表示ラベル
503…第2条件表示ラベル
600…第2操作画面
601…モデル名欄
602…類似度欄
603…解析種類欄
604…第一分類欄
605…第二分類欄
606…信頼度欄
607…判定欄
608…信頼度の下限チェックボックス
609…入力欄
610…類似度の下限チェックボックス
611…入力欄
612…選択モデル表示ボタン
613…メッシュ制御ルール抽出ボタン
614…閉じボタン
620…使用可否判定一覧表
630…ボタン表示部
700…第3操作画面
702…第1条件表示ラベル
703…第2条件表示ラベル
704…第3条件表示ラベル
705…第4条件表示ラベル
706…第5条件表示ラベル
710…解析条件表示部
720…解析メッシュ表示部
800…第4操作画面
801…ルール番号欄
802…相関度欄
803…解析条件欄
804…メッシュ形状特徴欄
805…判定欄
806…相関度の下限チェックボックス
807…入力欄
808…メッシュ制御ルール反映ボタン
809…閉じボタン
820…メッシュ制御ルール使用可否判定表
830…ボタン表示部
50 ... CAE system 100 ... computer (arithmetic unit)
101 ... Input / output device 102 ... Input CAD
102a ... shape data 103 ... mesh data 104 ... past analysis database (past analysis DB)
105 ... Input / output unit 106 ... Display control unit 107 ... Application unit 108 ... Similar analysis model search means (unit)
200 ... Analytical model support creation apparatus 202 ... Shape input unit 203 ... Analysis condition input means (unit)
205 ... Similar analysis model retrieval means (part)
206 ... Correlation degree calculation means (part)
207 ... Mesh control rule creation means (part)
208 ... Mesh control rule display means (part)
209 ... Mesh control rule correction means (part)
210 ... mesh generation unit (mesh model creation means)
211 ... Mesh display section (mesh model display means)
400 ... first operation screen 401 ... shape input button 402 ... condition input button 403 ... similar analysis model search button 404 ... mesh control rule display button 405 ... mesh control rule edit button 406 ... mesh generation button 407 ... mesh display buttons 408, 408a 408c (Numerical analysis) Objects 409a, 409b ... Similar model 410 ... Button part 420 ... Object display part 430, 430a, 430b ... Object identification label 502 ... First condition display label 503 ... Second condition display label 600 ... Second operation screen 601 ... Model name field 602 ... Similarity field 603 ... Analysis type field 604 ... First classification field 605 ... Second classification field 606 ... Reliability field 607 ... Judgment field 608 ... Lower limit check box 609 for reliability Input field 610 ... Similarity lower limit check box 611 ... Input field 6 2 ... Selected model display button 613 ... Mesh control rule extraction button 614 ... Close button 620 ... Usability determination list 630 ... Button display unit 700 ... Third operation screen 702 ... First condition display label 703 ... Second condition display label 704 ... third condition display label 705 ... fourth condition display label 706 ... fifth condition display label 710 ... analysis condition display section 720 ... analysis mesh display section 800 ... fourth operation screen 801 ... rule number column 802 ... correlation degree column 803 ... Analysis condition column 804 ... Mesh shape feature column 805 ... Determination column 806 ... Correlation degree lower limit check box 807 ... Input column 808 ... Mesh control rule reflection button 809 ... Close button 820 ... Mesh control rule availability determination table 830 ... Button display section

Claims (8)

  1.  データを入出力する入出力装置と、入力されたデータに基づき演算する演算装置と、この演算装置に付設された記憶装置とを備えた解析用モデル作成支援装置であって、前記入出力装置は数値解析対象物の形状データを入力し解析モデルを作成する形状データ入力手段と前記解析モデルを解析するときの解析条件を入力する解析条件入力手段とを有し、前記記憶装置には、過去に解析した複数の数値解析対象物について少なくとも解析モデルデータと解析結果と解析条件とが蓄積された過去解析データベースが格納されており、前記演算装置は、前記過去解析データベースについて前記解析対象物の解析モデルを参照して類似解析モデルを抽出する類似解析モデル検索手段と、抽出した類似解析モデルと前記解析対象物の解析モデルについて相関度を演算する相関度演算手段と、前記数値解析対象物の解析モデルについてのメッシュモデルを作成するときに用いるメッシュ制御ルールを前記相関度演算手段が演算した相関度に基づいて生成するメッシュ制御ルール演算手段と、作成されたメッシュ制御ルールに従って前記メッシュモデルを生成するメッシュモデル生成手段とを備えることを特徴とする解析用モデル作成支援装置。 An analysis model creation support device comprising an input / output device for inputting / outputting data, an arithmetic device for calculating based on input data, and a storage device attached to the arithmetic device, wherein the input / output device comprises: Shape data input means for inputting shape data of a numerical analysis object and creating an analysis model, and analysis condition input means for inputting an analysis condition when analyzing the analysis model, the storage device in the past A past analysis database in which at least analysis model data, analysis results, and analysis conditions are stored for a plurality of analyzed numerical analysis objects is stored, and the arithmetic unit analyzes the analysis model of the analysis object with respect to the past analysis database The similarity analysis model search means for extracting the similarity analysis model with reference to the above, the extracted similarity analysis model and the analysis model of the analysis object Correlation degree calculating means for calculating a correlation degree, and mesh control for generating a mesh control rule used when creating a mesh model for the analytical model of the numerical analysis object based on the correlation degree calculated by the correlation degree calculating means An analysis model creation support apparatus comprising: rule calculation means; and mesh model generation means for generating the mesh model in accordance with the created mesh control rule.
  2.  前記入出力装置はさらに、前記メッシュ制御ルール演算手段が生成したメッシュ制御ルールを表示するメッシュ制御ルール表示手段と、生成された前記メッシュモデルを表示するメッシュモデル表示手段とを有しており、前記演算装置は前記メッシュ制御ルール演算手段が演算したメッシュ制御ルールを修正するメッシュ制御ルール修正手段を有することを特徴とする請求項1に記載の解析用モデル作成支援装置。 The input / output device further includes mesh control rule display means for displaying the mesh control rule generated by the mesh control rule calculation means, and mesh model display means for displaying the generated mesh model, 2. The analytical model creation support apparatus according to claim 1, wherein the arithmetic unit includes a mesh control rule correction unit that corrects the mesh control rule calculated by the mesh control rule calculation unit.
  3.  前記相関度演算手段は、抽出した類似解析モデルと前記解析対象物の解析モデルとの相関度を演算するときに用いる解析条件は、解析種類および境界条件、形状特徴量、位置、物性の少なくともいずれかであることを特徴とする請求項2に記載の解析用モデル作成支援装置。 The analysis condition used when calculating the correlation between the extracted similar analysis model and the analysis model of the object to be analyzed is at least one of analysis type and boundary condition, shape feature, position, and physical property. The analytical model creation support apparatus according to claim 2, wherein
  4.  前記相関度演算手段は、抽出した類似解析モデルと前記解析対象物の解析モデルとの相関度を演算するときに用いるメッシュ特徴量は、メッシュの種類および内角、価数、サイズの少なくともいずれかであることを特徴とする請求項2に記載の解析用モデル作成支援装置。 The degree-of-correlation calculating means calculates the degree of correlation between the extracted similar analysis model and the analysis model of the analysis object by using at least one of the mesh type and the interior angle, valence, and size. The analysis model creation support apparatus according to claim 2, wherein the analysis model creation support apparatus is provided.
  5.  前記類似解析モデル検索手段は、蓄積された過去の解析モデルデータと前記解析対象物の解析モデルの類似度あるいは信頼度が所定値以上であれば抽出することを特徴とする請求項2に記載の解析用モデル作成支援装置。 The said similar analysis model search means is extracted if the similarity or reliability of the accumulated past analysis model data and the analysis model of the said analysis target object is more than a predetermined value. Model creation support device for analysis.
  6.  前記メッシュ制御ルール演算手段が演算する相関度は、解析条件とメッシュ特徴量の相関度であることを特徴とする請求項1に記載の解析用モデル作成支援装置。 The analysis model creation support apparatus according to claim 1, wherein the degree of correlation calculated by the mesh control rule calculation means is a degree of correlation between an analysis condition and a mesh feature amount.
  7.  コンピュータを、数値解析対象物の形状データを入力し解析モデルを作成する形状データ入力手段と、前記解析モデルを解析するときの解析条件を入力する解析条件入力手段と、過去に解析した複数の数値解析対象物についての少なくとも形状モデルと解析結果と解析条件とを蓄積する過去解析データベースと、この過去解析データベースについて前記解析対象物の解析モデルを参照して類似解析モデルを検索する検索手段と、抽出した類似解析モデルと前記解析対象物の解析モデルについて、解析条件およびメッシュ特徴量の相関度を演算する相関度演算手段と、前記数値解析対象物の解析モデルについてメッシュモデルを作成するときに用いるメッシュ制御ルールを前記相関度演算手段が演算した相関度に基づいて生成するメッシュ制御ルール演算手段と、作成されたメッシュ制御ルールに従って前記メッシュモデルを生成するメッシュモデル生成手段として機能させるための解析用モデル作成支援プログラム。 A computer for inputting shape data of a numerical analysis object and generating an analysis model; an analysis condition input means for inputting an analysis condition for analyzing the analysis model; and a plurality of numerical values analyzed in the past A past analysis database for accumulating at least a shape model, an analysis result, and an analysis condition for the analysis target; a search means for searching for a similar analysis model by referring to the analysis model of the analysis target for the past analysis database; and extraction Correlation calculation means for calculating the correlation between analysis conditions and mesh features for the similar analysis model and the analysis model of the analysis object, and a mesh used for creating a mesh model for the analysis model of the numerical analysis object A mesh control that generates a control rule based on the correlation degree calculated by the correlation degree calculation means. Rule calculation means and the analysis model creation support program for functioning as a mesh model generating means for generating the mesh model in accordance with the meshing control rules.
  8.  前記コンピュータを、さらに、前記メッシュ制御ルール演算手段が生成したメッシュ制御ルールを表示するメッシュ制御ルール表示手段と、前記メッシュ制御ルール演算手段が演算したメッシュ制御ルールを修正するメッシュ制御ルール修正手段と、生成された前記メッシュモデルを表示するメッシュモデル表示手段として機能させることを特徴とする請求項7に記載のプログラム。 The computer further includes a mesh control rule display means for displaying a mesh control rule generated by the mesh control rule calculation means, a mesh control rule correction means for correcting a mesh control rule calculated by the mesh control rule calculation means, The program according to claim 7, wherein the program is made to function as a mesh model display unit that displays the generated mesh model.
PCT/JP2011/053235 2011-02-16 2011-02-16 Analysis model creation assistance device and analysis model creation assistance program WO2012111104A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053235 WO2012111104A1 (en) 2011-02-16 2011-02-16 Analysis model creation assistance device and analysis model creation assistance program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053235 WO2012111104A1 (en) 2011-02-16 2011-02-16 Analysis model creation assistance device and analysis model creation assistance program

Publications (1)

Publication Number Publication Date
WO2012111104A1 true WO2012111104A1 (en) 2012-08-23

Family

ID=46672068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053235 WO2012111104A1 (en) 2011-02-16 2011-02-16 Analysis model creation assistance device and analysis model creation assistance program

Country Status (1)

Country Link
WO (1) WO2012111104A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113361511A (en) * 2020-03-05 2021-09-07 顺丰科技有限公司 Method, device and equipment for establishing correction model and computer readable storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100038A (en) * 2003-09-24 2005-04-14 Hitachi Ltd Analytic model preparation supporting device
JP2006243774A (en) * 2005-02-03 2006-09-14 Sekisui Chem Co Ltd Cae program and cae device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100038A (en) * 2003-09-24 2005-04-14 Hitachi Ltd Analytic model preparation supporting device
JP2006243774A (en) * 2005-02-03 2006-09-14 Sekisui Chem Co Ltd Cae program and cae device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113361511A (en) * 2020-03-05 2021-09-07 顺丰科技有限公司 Method, device and equipment for establishing correction model and computer readable storage medium

Similar Documents

Publication Publication Date Title
US8345042B2 (en) Mesh-based shape retrieval system
JP5833998B2 (en) Assembly workability evaluation calculation apparatus and assembly workability evaluation method
JP4822863B2 (en) Numerical analysis data creation method and apparatus, program, and storage medium
EP3783519A1 (en) Automatic generation of an analytical model for analysis
US20170066092A1 (en) Apparatus for generating assembly sequence and method for generating assembly sequence
JP5639907B2 (en) Design support apparatus, method and program
US8319792B2 (en) Virtual components for CAD models
US20140324904A1 (en) Similar design structure search device and similar design structure search method
JP5876580B2 (en) Design support system, processing method thereof, and program
EP3118817B1 (en) Post-processing system for finite element analysis
US20160179986A1 (en) Method for manipulating a computer aided design (cad) model, computer program product and server therefore
JP2003288372A (en) Analytic result data processor for cad, analytic result data processing method for cad, and analytic result data processing program for cad
US20100156936A1 (en) Deformation method of analysis model and computer
US20080077259A1 (en) Design aiding apparatus, design aiding method, computer readable recording medium recorded thereon a design aiding program and design aiding system
WO2012111104A1 (en) Analysis model creation assistance device and analysis model creation assistance program
JP2018180693A (en) Work instruction generation device and work instruction generation method
Vergeest et al. Fitting freeform shape patterns to scanned 3D objects
US7225112B2 (en) Conversion check device, conversion check method, and portable storage medium therefor
US8245181B2 (en) Printed circuit board layout system and method thereof
JP2020204817A (en) Three-dimensional model producing device, three-dimensional model producing method, and program
US20110304609A1 (en) Design Support Apparatus and Design Support Method
JP2005332080A (en) Method, device and program for classifying visual information, and storage medium storing visual information classification program
US20110304610A1 (en) Design Support Apparatus and Design Support Method
Selin Application of parametric nurbs geometry to mode shape identification and the modal assurance criterion
JP2007183700A (en) Shape model creation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP