WO2012111068A1 - Vehicle, and vehicle control method - Google Patents

Vehicle, and vehicle control method Download PDF

Info

Publication number
WO2012111068A1
WO2012111068A1 PCT/JP2011/053009 JP2011053009W WO2012111068A1 WO 2012111068 A1 WO2012111068 A1 WO 2012111068A1 JP 2011053009 W JP2011053009 W JP 2011053009W WO 2012111068 A1 WO2012111068 A1 WO 2012111068A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
vehicle
power
motor generator
electric motor
Prior art date
Application number
PCT/JP2011/053009
Other languages
French (fr)
Japanese (ja)
Inventor
啓介 森崎
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/053009 priority Critical patent/WO2012111068A1/en
Publication of WO2012111068A1 publication Critical patent/WO2012111068A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a vehicle and a vehicle control method, and more particularly to a technique for restricting engine operation when regenerative power generation is performed by an electric motor.
  • a hybrid vehicle equipped with an electric motor as a drive source in addition to the engine is known.
  • the electric motor has a function as a generator in addition to a function as a drive source. Therefore, when the hybrid vehicle is braked, the electric motor can generate regenerative power.
  • the regenerated power is stored in a power storage device such as a battery and a capacitor.
  • the electric power stored in the power storage device is used for driving an electric motor, for example.
  • Some hybrid vehicles have a generator driven by an engine separately from an electric motor as a drive source. In such a hybrid vehicle, there is a problem that when the generator generates power simultaneously with the regenerative power generation by the electric motor, more power than necessary can be temporarily supplied to the battery.
  • Patent Document 1 discloses, in claim 13 and the like, that the engine is set in an idle state during regenerative braking (regenerative power generation) by an electric motor to limit power generation. To do.
  • the output of the engine is reduced during regenerative power generation by the electric motor, the output of the engine can be increased after the regenerative power generation is completed. Therefore, when the vehicle speed decreases to a speed at which regenerative power generation cannot be performed, the sound emitted from the engine during deceleration can increase. Therefore, the driver may be misunderstood that the vehicle changes from deceleration to acceleration.
  • An object of the present invention is to prevent the engine output from increasing during deceleration.
  • the vehicle includes an engine, an electric motor coupled to the wheels, and when the electric motor regeneratively generates power while the vehicle is decelerating, the operation of the engine is limited, and after the regenerative power generation by the electric motor ends, the engine And a control unit that continues to limit the operation of the system.
  • a method for controlling a vehicle provided with an engine and an electric motor coupled to a wheel includes a step of limiting the operation of the engine when the electric motor regenerates power during deceleration of the vehicle, and the electric motor. And after the regenerative power generation by is completed, the step of continuing to limit the operation of the engine.
  • FIG. 1 is a schematic configuration diagram of a vehicle. It is a figure which shows the alignment chart of a power split device. It is a figure which shows the electric system of a vehicle. It is a figure which shows the period which an engine drives, and the period which stops. It is a timing chart which shows the driving
  • engine 100, first motor generator 110, second motor generator 120, power split mechanism 130, reduction gear 140, and battery 150 are mounted on the vehicle.
  • a hybrid vehicle not having a charging function from an external power source will be described as an example, but a plug-in hybrid vehicle having a charging function from an external power source may be used.
  • ECU 170 Electronic Control Unit 170
  • Engine 100, first motor generator 110, second motor generator 120, and battery 150 are controlled by an ECU (Electronic Control Unit) 170.
  • ECU 170 may be divided into a plurality of ECUs.
  • This vehicle travels by driving force from at least one of engine 100 and second motor generator 120. That is, either one or both of engine 100 and second motor generator 120 is automatically selected as a drive source according to the operating state.
  • engine 100 and second motor generator 120 are controlled in accordance with the result of the driver operating accelerator pedal 172 and brake pedal 174.
  • the operation amount (accelerator opening) of the accelerator pedal 172 is detected by an accelerator opening sensor (not shown).
  • the operation amount of the brake pedal 174 is detected by a stroke sensor (not shown).
  • the vehicle travels using only the second motor generator 120 as a drive source. In this case, engine 100 is stopped. However, the engine 100 may be driven for power generation or the like.
  • the accelerator opening is large, the vehicle speed is high, or the remaining capacity (SOC: State Of Charge) of the battery 150 is small, the engine 100 is driven. In this case, the vehicle travels using only engine 100 or both engine 100 and second motor generator 120 as drive sources.
  • the second motor generator 120 can be controlled to generate regenerative power.
  • Engine 100 is an internal combustion engine. As the fuel / air mixture burns in the combustion chamber, the crankshaft as the output shaft rotates. A catalyst 102 is attached to the engine 100. The catalyst 102 is provided in the exhaust pipe. The exhaust gas discharged from the engine 100 is purified by the catalyst 102 and then discharged outside the vehicle. The catalyst 102 exhibits a purification action by being warmed up to a specific temperature. The catalyst 102 is warmed up by utilizing the heat of the exhaust gas.
  • the catalyst 102 is, for example, a three-way catalyst.
  • Engine 100, first motor generator 110, and second motor generator 120 are connected via power split mechanism 130.
  • the first motor generator 110 and the second motor generator 120 are connected to the output shaft of the engine 100 via the power split mechanism 130.
  • the power generated by the engine 100 is divided into two paths by the power split mechanism 130. One is a path for driving the front wheels 160 via the speed reducer 140. The other is a path for driving the first motor generator 110 to generate power.
  • the first motor generator 110 is a three-phase AC rotating electric machine including a U-phase coil, a V-phase coil, and a W-phase coil.
  • First motor generator 110 generates power using the power of engine 100 divided by power split mechanism 130.
  • the electric power generated by the first motor generator 110 is selectively used according to the running state of the vehicle and the remaining capacity of the battery 150. For example, during normal traveling, the electric power generated by first motor generator 110 becomes electric power for driving second motor generator 120 as it is.
  • the SOC of battery 150 is lower than a predetermined value, the electric power generated by first motor generator 110 is converted from AC to DC by an inverter described later. Thereafter, the voltage is adjusted by a converter described later and stored in the battery 150.
  • the first motor generator 110 When the first motor generator 110 is acting as a generator, the first motor generator 110 generates a negative torque.
  • the negative torque means a torque that becomes a load on engine 100.
  • first motor generator 110 When first motor generator 110 is supplied with electric power and acts as a motor, first motor generator 110 generates positive torque.
  • the positive torque means a torque that does not become a load on the engine 100, that is, a torque that assists the rotation of the engine 100. The same applies to the second motor generator 120.
  • the second motor generator 120 is a three-phase AC rotating electric machine including a U-phase coil, a V-phase coil, and a W-phase coil. Second motor generator 120 is driven by at least one of the electric power stored in battery 150 and the electric power generated by first motor generator 110.
  • the second motor generator 120 is connected to the front wheel 160 via the speed reducer 140. Therefore, the driving force of the second motor generator 120 is transmitted to the front wheels 160 via the speed reducer 140. As a result, the second motor generator 120 assists the engine 100 or causes the vehicle to travel by the driving force from the second motor generator 120.
  • the rear wheels may be driven instead of or in addition to the front wheels 160.
  • the second motor generator 120 When the accelerator opening is zero or when the brake pedal 174 is operated, the second motor generator 120 is controlled to generate regenerative power. When the second motor generator 120 generates regenerative power, the vehicle is regeneratively braked.
  • the second motor generator 120 is driven by the front wheels 160 via the speed reducer 140, and the second motor generator 120 operates as a generator. Accordingly, second motor generator 120 operates as a regenerative brake that converts braking energy into electric power.
  • the electric power generated by second motor generator 120 is stored in battery 150.
  • the power split mechanism 130 includes a planetary gear including a sun gear, a pinion gear, a carrier, and a ring gear.
  • the pinion gear engages with the sun gear and the ring gear.
  • the carrier supports the pinion gear so that it can rotate.
  • the sun gear is connected to the rotation shaft of first motor generator 110.
  • the carrier is connected to the crankshaft of engine 100.
  • the ring gear is connected to the rotation shaft of second motor generator 120 and speed reducer 140.
  • the engine 100, the first motor generator 110, and the second motor generator 120 are connected via a power split mechanism 130 that is a planetary gear, so that the rotational speeds of the engine 100, the first motor generator 110, and the second motor generator 120 are increased. As shown in FIG. 2, the relationship is connected by a straight line in the alignment chart.
  • the battery 150 is an assembled battery configured by connecting a plurality of battery modules in which a plurality of battery cells are integrated in series.
  • the voltage of the battery 150 is about 200V, for example.
  • the battery 150 is charged with electric power supplied from the first motor generator 110 and the second motor generator 120.
  • a capacitor may be used instead of or in addition to the battery 150.
  • the vehicle speed of the vehicle is detected by the vehicle speed sensor 180, and a signal representing the detection result is input to the ECU 170.
  • the acceleration and deceleration of the vehicle are calculated by differentiating the vehicle speed.
  • Each wheel is provided with a braking device 190 for braking the vehicle using frictional force.
  • a braking device 190 for braking the vehicle using frictional force.
  • FIG. 1 only the braking device 190 provided on the right rear wheel is shown as a representative example. Since a known technique may be used for braking device 190, detailed description thereof will not be repeated here.
  • the electric system of the vehicle will be further described with reference to FIG.
  • the vehicle is provided with a converter 200, a first inverter 210, a second inverter 220, and a system main relay 230.
  • Converter 200 includes a reactor, two npn transistors, and two diodes. One end of the reactor is connected to the positive electrode side of each battery, and the other end is connected to the connection point of the two npn transistors.
  • the two npn type transistors are connected in series.
  • the npn transistor is controlled by the ECU 170.
  • a diode is connected between the collector and emitter of each npn transistor so that a current flows from the emitter side to the collector side.
  • an IGBT Insulated Gate Bipolar Transistor
  • a power switching element such as a power MOSFET (Metal Oxide Semiconductor Field-Effect Transistor) can be used instead of the npn transistor.
  • MOSFET Metal Oxide Semiconductor Field-Effect Transistor
  • the voltage is boosted by the converter 200. Conversely, when charging the battery 150 with the electric power generated by the first motor generator 110 or the second motor generator 120, the voltage is stepped down by the converter 200.
  • the system voltage VH between the converter 200 and each inverter is detected by the voltage sensor 180.
  • the detection result of voltage sensor 180 is transmitted to ECU 170.
  • First inverter 210 includes a U-phase arm, a V-phase arm, and a W-phase arm.
  • the U-phase arm, V-phase arm and W-phase arm are connected in parallel.
  • Each of the U-phase arm, the V-phase arm, and the W-phase arm has two npn transistors connected in series. Between the collector and emitter of each npn-type transistor, a diode for flowing current from the emitter side to the collector side is connected.
  • a connection point of each npn transistor in each arm is connected to an end portion different from neutral point 112 of each coil of first motor generator 110.
  • the first inverter 210 converts the direct current supplied from the battery 150 into an alternating current and supplies the alternating current to the first motor generator 110.
  • the first inverter 210 converts the alternating current generated by the first motor generator 110 into a direct current.
  • the second inverter 220 includes a U-phase arm, a V-phase arm, and a W-phase arm.
  • the U-phase arm, V-phase arm and W-phase arm are connected in parallel.
  • Each of the U-phase arm, the V-phase arm, and the W-phase arm has two npn transistors connected in series. Between the collector and emitter of each npn-type transistor, a diode for flowing current from the emitter side to the collector side is connected.
  • a connection point of each npn transistor in each arm is connected to an end portion different from neutral point 122 of each coil of second motor generator 120.
  • the second inverter 220 converts the direct current supplied from the battery 150 into an alternating current and supplies the alternating current to the second motor generator 120. Second inverter 220 converts the alternating current generated by second motor generator 120 into a direct current.
  • the converter 200, the first inverter 210 and the second inverter 220 are controlled by the ECU 170.
  • the system main relay 230 is provided between the battery 150 and the converter 200.
  • the system main relay 230 is a relay that switches between a state where the battery 150 and the electric system are connected and a state where the battery 150 is disconnected. When system main relay 230 is in an open state, battery 150 is disconnected from the electrical system. When system main relay 230 is in a closed state, battery 150 is connected to the electrical system.
  • the state of the system main relay 230 is controlled by the ECU 170. For example, when ECU 170 is activated, system main relay 230 is closed. When ECU 170 stops, system main relay 230 is opened.
  • the output power is set as the power used for driving the vehicle.
  • the output power is calculated by ECU 170 according to a map having, for example, the accelerator opening and the vehicle speed as parameters.
  • the method for calculating the output power is not limited to this. Note that torque, acceleration, driving force, accelerator opening, and the like may be used instead of output power.
  • the engine 100 When the vehicle output power exceeds the engine start threshold, the engine 100 is driven. Thus, the vehicle travels using the driving force of engine 100 in addition to or instead of the driving force of second motor generator 120. Further, the electric power generated by first motor generator 110 using the driving force of engine 100 is directly supplied to second motor generator 120.
  • the engine 100 can be driven to generate power by the first motor generator 110 and charge the battery 150 even if the output power is smaller than the engine start threshold value.
  • the vehicle is controlled in a forced charging mode in which battery 150 is charged until the SOC of battery 150 becomes equal to or greater than the threshold value.
  • the forced charging mode the engine 100 is operated in principle, and the first motor generator 110 is controlled to generate power.
  • the second motor generator 120 when the second motor generator 120 generates regenerative power during deceleration of the vehicle, the operation of the engine 100 is restricted. More specifically, when the driver performs a brake operation (operation of the brake pedal 174) and the second motor generator 120 generates regenerative power, the operation of the engine 100 is limited. As shown in FIG. 5, during regenerative power generation by second motor generator 120 (period from time T1 to T2 in FIG. 5), power generation using engine 100 and first generator 110 is prohibited, and as a result, engine 100 The driving of the first motor generator 110 is limited. Therefore, during regenerative power generation by second motor generator 120, engine 100 is stopped or idling to reduce the power generated by first motor generator 110 to zero. That is, the load operation of engine 100 is prohibited. Even when the forced charging mode is being executed, the load operation of the engine 100 is prohibited. In the present embodiment, the load operation means that engine 100 is operated with a load larger than that during idle operation.
  • the engine 100 In an operation state in which the forced charging mode is executed, that is, an operation state in which the SOC of the battery 150 is lower than the threshold value, the engine 100 is loaded to drive the first motor generator 110. As described above, when the second motor generator 120 regenerates power during deceleration, the engine 100 is stopped or idling. Therefore, when the second motor generator 120 performs regenerative power generation during deceleration in an operation state in which the forced charging mode is executed, the output power of the engine 100 is reduced. In the present embodiment, limiting the operation of engine 100 includes reducing the output power of engine 100.
  • the operation of engine 100 continues to be restricted even after regenerative power generation by second motor generator 120 is completed at time T2 in FIG. More specifically, the operation of the engine 100 continues to be restricted while the driver is performing a brake operation (a period up to time T3 in FIG. 5).
  • the second motor generator 120 may not generate regenerative power during deceleration of the vehicle.
  • the engine 100 is operated and the first motor generator 110 generates power. For example, it is controlled in the forced charging mode.
  • the output power of the engine 100 when the second motor generator 120 does not generate regenerative power during deceleration of the vehicle is It is made larger than the output power of engine 100 when second motor generator 120 regenerates power during deceleration of the vehicle.
  • step (hereinafter step is abbreviated as S) 100 it is determined whether or not the brake pedal 174 has been operated.
  • brake pedal 174 When brake pedal 174 is operated (YES in S100), it is determined in S102 whether second motor generator 120 performs regenerative power generation. For example, when the vehicle speed is equal to or higher than the threshold value, it is determined that second motor generator 120 generates regenerative power.

Abstract

A hybrid car is equipped with an engine and a motor generator connected to car wheels. When the motor generator generates electricity regeneratively during the deceleration of the car, the driving of the engine is restricted. After the completion of the regenerative generation of electricity by the motor generator, the driving of the engine is still restricted.

Description

車両および車両の制御方法Vehicle and vehicle control method
 本発明は、車両および車両の制御方法に関し、特に、電動モータにより回生発電したときにエンジンの運転を制限する技術に関する。 The present invention relates to a vehicle and a vehicle control method, and more particularly to a technique for restricting engine operation when regenerative power generation is performed by an electric motor.
 エンジンに加えて、電動モータが駆動源として搭載されたハイブリッド車が知られている。電動モータは、駆動源としての機能の他、発電機としての機能を有する。したがって、ハイブリッド車の制動時などにおいては、電動モータに回生発電させることができる。回生発電された電力はバッテリおよびキャパシタなどの蓄電装置に蓄えられる。蓄電装置に蓄えられた電力は、たとえば電動モータを駆動するために用いられる。 A hybrid vehicle equipped with an electric motor as a drive source in addition to the engine is known. The electric motor has a function as a generator in addition to a function as a drive source. Therefore, when the hybrid vehicle is braked, the electric motor can generate regenerative power. The regenerated power is stored in a power storage device such as a battery and a capacitor. The electric power stored in the power storage device is used for driving an electric motor, for example.
 あるハイブリッド車は、駆動源としての電動モータとは別に、エンジンにより駆動される発電機を有する。このようなハイブリッド車においては、電動モータによる回生発電と同時に発電機により発電すると、一時的に必要以上の電力がバッテリに供給され得るという課題がある。 Some hybrid vehicles have a generator driven by an engine separately from an electric motor as a drive source. In such a hybrid vehicle, there is a problem that when the generator generates power simultaneously with the regenerative power generation by the electric motor, more power than necessary can be temporarily supplied to the battery.
 そのような課題に対し、特開平7-279702号公報(特許文献1)は、請求項13等において、電動モータによる回生制動(回生発電)時にエンジンをアイドル状態にし、発電を制限することを開示する。 In response to such a problem, Japanese Patent Application Laid-Open No. 7-279702 (Patent Document 1) discloses, in claim 13 and the like, that the engine is set in an idle state during regenerative braking (regenerative power generation) by an electric motor to limit power generation. To do.
特開平7-279702号公報JP 7-279702 A
 しかしながら、電動モータによる回生発電時にエンジンの出力を低下するようにすると、回生発電が終了した後にエンジンの出力が増大し得る。したがって、回生発電ができない速度まで車速が低くなると、減速中にエンジンから発する音が増大し得る。そのため、車両が減速から加速に転じるという誤解を運転者に与え得る。 However, if the output of the engine is reduced during regenerative power generation by the electric motor, the output of the engine can be increased after the regenerative power generation is completed. Therefore, when the vehicle speed decreases to a speed at which regenerative power generation cannot be performed, the sound emitted from the engine during deceleration can increase. Therefore, the driver may be misunderstood that the vehicle changes from deceleration to acceleration.
 本発明の目的は、減速中にエンジンの出力が増大しないようにすることである。 An object of the present invention is to prevent the engine output from increasing during deceleration.
 ある実施例において、車両は、エンジンと、車輪に連結される電動モータと、車両の減速中に電動モータが回生発電すると、エンジンの運転を制限し、電動モータによる回生発電が終了した後、エンジンの運転を制限し続ける制御ユニットとを備える。 In one embodiment, the vehicle includes an engine, an electric motor coupled to the wheels, and when the electric motor regeneratively generates power while the vehicle is decelerating, the operation of the engine is limited, and after the regenerative power generation by the electric motor ends, the engine And a control unit that continues to limit the operation of the system.
 別の実施例において、エンジンと、車輪に連結される電動モータとが設けられた車両の制御方法は、車両の減速中に電動モータが回生発電すると、エンジンの運転を制限するステップと、電動モータによる回生発電が終了した後、エンジンの運転を制限し続けるステップとを備える。 In another embodiment, a method for controlling a vehicle provided with an engine and an electric motor coupled to a wheel includes a step of limiting the operation of the engine when the electric motor regenerates power during deceleration of the vehicle, and the electric motor. And after the regenerative power generation by is completed, the step of continuing to limit the operation of the engine.
 減速中に電動モータによる回生発電が終了しても、エンジンの運転は制限され続ける。そのため、減速中におけるエンジンの出力の増大が制限される。 Even if regenerative power generation by the electric motor ends during deceleration, engine operation continues to be restricted. This limits the increase in engine output during deceleration.
車両の概略構成図である。1 is a schematic configuration diagram of a vehicle. 動力分割機構の共線図を示す図である。It is a figure which shows the alignment chart of a power split device. 車両の電気システムを示す図である。It is a figure which shows the electric system of a vehicle. エンジンが駆動する期間および停止する期間を示す図である。It is a figure which shows the period which an engine drives, and the period which stops. 回生制動時の車両の運転状態を示すタイミングチャートである。It is a timing chart which shows the driving | running state of the vehicle at the time of regenerative braking. 回生発電せずに減速するときの車両の運転状態を示すタイミングチャートである。It is a timing chart which shows the driving | running state of a vehicle when decelerating without generating regenerative power. ECUが実行する処理を示すフローチャートである。It is a flowchart which shows the process which ECU performs.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同一である。したがって、それらについての詳細な説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
 図1を参照して、車両には、エンジン100と、第1モータジェネレータ110と、第2モータジェネレータ120と、動力分割機構130と、減速機140と、バッテリ150とが搭載される。なお、以下の説明においては一例として外部の電源からの充電機能を有さないハイブリッド車について説明するが、外部の電源からの充電機能を有するプラグインハイブリッド車を用いてもよい。 Referring to FIG. 1, engine 100, first motor generator 110, second motor generator 120, power split mechanism 130, reduction gear 140, and battery 150 are mounted on the vehicle. In the following description, a hybrid vehicle not having a charging function from an external power source will be described as an example, but a plug-in hybrid vehicle having a charging function from an external power source may be used.
 エンジン100、第1モータジェネレータ110、第2モータジェネレータ120、バッテリ150は、ECU(Electronic Control Unit)170により制御される。ECU170は複数のECUに分割するようにしてもよい。 Engine 100, first motor generator 110, second motor generator 120, and battery 150 are controlled by an ECU (Electronic Control Unit) 170. ECU 170 may be divided into a plurality of ECUs.
 この車両は、エンジン100および第2モータジェネレータ120のうちの少なくともいずれか一方からの駆動力により走行する。すなわち、エンジン100および第2モータジェネレータ120のうちのいずれか一方もしくは両方が、運転状態に応じて駆動源として自動的に選択される。 This vehicle travels by driving force from at least one of engine 100 and second motor generator 120. That is, either one or both of engine 100 and second motor generator 120 is automatically selected as a drive source according to the operating state.
 たとえば、運転者がアクセルペダル172、およびブレーキペダル174を操作した結果に応じて、エンジン100および第2モータジェネレータ120が制御される。アクセルペダル172の操作量(アクセル開度)は、アクセル開度センサ(図示せず)により検出される。ブレーキペダル174の操作量は、ストロークセンサ(図示せず)により検出される。 For example, engine 100 and second motor generator 120 are controlled in accordance with the result of the driver operating accelerator pedal 172 and brake pedal 174. The operation amount (accelerator opening) of the accelerator pedal 172 is detected by an accelerator opening sensor (not shown). The operation amount of the brake pedal 174 is detected by a stroke sensor (not shown).
 アクセル開度が小さい場合および車速が低い場合などには、第2モータジェネレータ120のみを駆動源として車両が走行する。この場合、エンジン100が停止される。ただし、発電などのためにエンジン100が駆動する場合がある。 When the accelerator opening is small or the vehicle speed is low, the vehicle travels using only the second motor generator 120 as a drive source. In this case, engine 100 is stopped. However, the engine 100 may be driven for power generation or the like.
 また、アクセル開度が大きい場合、車速が高い場合、バッテリ150の残存容量(SOC:State Of Charge)が小さい場合などには、エンジン100が駆動される。この場合、エンジン100のみ、もしくはエンジン100および第2モータジェネレータ120の両方を駆動源として車両が走行する。 Also, when the accelerator opening is large, the vehicle speed is high, or the remaining capacity (SOC: State Of Charge) of the battery 150 is small, the engine 100 is driven. In this case, the vehicle travels using only engine 100 or both engine 100 and second motor generator 120 as drive sources.
 ブレーキペダル174が操作された場合、回生発電するように第2モータジェネレータ120が制御され得る。 When the brake pedal 174 is operated, the second motor generator 120 can be controlled to generate regenerative power.
 エンジン100は、内燃機関である。燃料と空気の混合気が燃焼室内で燃焼することよって、出力軸であるクランクシャフトが回転する。エンジン100には、触媒102が取り付けられる。触媒102は、排気管内に設けられる。エンジン100から排出される排気ガスは、触媒102によって浄化された後、車外に排出される。触媒102は、特定の温度まで暖機されることによって浄化作用を発揮する。触媒102の暖機は、排気ガスの熱を利用して行なわれる。触媒102は、たとえば三元触媒である。 Engine 100 is an internal combustion engine. As the fuel / air mixture burns in the combustion chamber, the crankshaft as the output shaft rotates. A catalyst 102 is attached to the engine 100. The catalyst 102 is provided in the exhaust pipe. The exhaust gas discharged from the engine 100 is purified by the catalyst 102 and then discharged outside the vehicle. The catalyst 102 exhibits a purification action by being warmed up to a specific temperature. The catalyst 102 is warmed up by utilizing the heat of the exhaust gas. The catalyst 102 is, for example, a three-way catalyst.
 エンジン100、第1モータジェネレータ110および第2モータジェネレータ120は、動力分割機構130を介して接続されている。言い換えると、エンジン100の出力軸には、動力分割機構130を介して第1モータジェネレータ110および第2モータジェネレータ120が連結される。エンジン100が発生する動力は、動力分割機構130により、2経路に分割される。一方は減速機140を介して前輪160を駆動する経路である。もう一方は、第1モータジェネレータ110を駆動させて発電する経路である。 Engine 100, first motor generator 110, and second motor generator 120 are connected via power split mechanism 130. In other words, the first motor generator 110 and the second motor generator 120 are connected to the output shaft of the engine 100 via the power split mechanism 130. The power generated by the engine 100 is divided into two paths by the power split mechanism 130. One is a path for driving the front wheels 160 via the speed reducer 140. The other is a path for driving the first motor generator 110 to generate power.
 第1モータジェネレータ110は、U相コイル、V相コイルおよびW相コイルを備える、三相交流回転電機である。第1モータジェネレータ110は、動力分割機構130により分割されたエンジン100の動力により発電する。第1モータジェネレータ110により発電された電力は、車両の走行状態や、バッテリ150の残存容量の状態に応じて使い分けられる。たとえば、通常走行時では、第1モータジェネレータ110により発電された電力はそのまま第2モータジェネレータ120を駆動させる電力となる。一方、バッテリ150のSOCが予め定められた値よりも低い場合、第1モータジェネレータ110により発電された電力は、後述するインバータにより交流から直流に変換される。その後、後述するコンバータにより電圧が調整されてバッテリ150に蓄えられる。 The first motor generator 110 is a three-phase AC rotating electric machine including a U-phase coil, a V-phase coil, and a W-phase coil. First motor generator 110 generates power using the power of engine 100 divided by power split mechanism 130. The electric power generated by the first motor generator 110 is selectively used according to the running state of the vehicle and the remaining capacity of the battery 150. For example, during normal traveling, the electric power generated by first motor generator 110 becomes electric power for driving second motor generator 120 as it is. On the other hand, when the SOC of battery 150 is lower than a predetermined value, the electric power generated by first motor generator 110 is converted from AC to DC by an inverter described later. Thereafter, the voltage is adjusted by a converter described later and stored in the battery 150.
 第1モータジェネレータ110が発電機として作用している場合、第1モータジェネレータ110は負のトルクを発生している。ここで、負のトルクとは、エンジン100の負荷となるようなトルクをいう。第1モータジェネレータ110が電力の供給を受けてモータとして作用している場合、第1モータジェネレータ110は正のトルクを発生する。ここで、正のトルクとは、エンジン100の負荷とならないようなトルク、すなわち、エンジン100の回転をアシストするようなトルクをいう。なお、第2モータジェネレータ120についても同様である。 When the first motor generator 110 is acting as a generator, the first motor generator 110 generates a negative torque. Here, the negative torque means a torque that becomes a load on engine 100. When first motor generator 110 is supplied with electric power and acts as a motor, first motor generator 110 generates positive torque. Here, the positive torque means a torque that does not become a load on the engine 100, that is, a torque that assists the rotation of the engine 100. The same applies to the second motor generator 120.
 第2モータジェネレータ120は、U相コイル、V相コイルおよびW相コイルを備える、三相交流回転電機である。第2モータジェネレータ120は、バッテリ150に蓄えられた電力および第1モータジェネレータ110により発電された電力のうちの少なくともいずれかの電力により駆動する。 The second motor generator 120 is a three-phase AC rotating electric machine including a U-phase coil, a V-phase coil, and a W-phase coil. Second motor generator 120 is driven by at least one of the electric power stored in battery 150 and the electric power generated by first motor generator 110.
 第2モータジェネレータ120は、減速機140を介して前輪160に連結される。したがって、第2モータジェネレータ120の駆動力は、減速機140を介して前輪160に伝えられる。これにより、第2モータジェネレータ120はエンジン100をアシストしたり、第2モータジェネレータ120からの駆動力により車両を走行させたりする。なお、前輪160の代わりにもしくは加えて後輪を駆動するようにしてもよい。 The second motor generator 120 is connected to the front wheel 160 via the speed reducer 140. Therefore, the driving force of the second motor generator 120 is transmitted to the front wheels 160 via the speed reducer 140. As a result, the second motor generator 120 assists the engine 100 or causes the vehicle to travel by the driving force from the second motor generator 120. The rear wheels may be driven instead of or in addition to the front wheels 160.
 アクセル開度が零である場合、またはブレーキペダル174が操作された場合、第2モータジェネレータ120は、回生発電するように制御される。第2モータジェネレータ120が回生発電することにより、車両が回生制動される。 When the accelerator opening is zero or when the brake pedal 174 is operated, the second motor generator 120 is controlled to generate regenerative power. When the second motor generator 120 generates regenerative power, the vehicle is regeneratively braked.
 車両の回生制動時には、減速機140を介して前輪160により第2モータジェネレータ120が駆動され、第2モータジェネレータ120が発電機として作動する。これにより第2モータジェネレータ120は、制動エネルギを電力に変換する回生ブレーキとして作動する。第2モータジェネレータ120により発電された電力は、バッテリ150に蓄えられる。 During regenerative braking of the vehicle, the second motor generator 120 is driven by the front wheels 160 via the speed reducer 140, and the second motor generator 120 operates as a generator. Accordingly, second motor generator 120 operates as a regenerative brake that converts braking energy into electric power. The electric power generated by second motor generator 120 is stored in battery 150.
 動力分割機構130は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを含む遊星歯車から構成される。ピニオンギヤは、サンギヤおよびリングギヤと係合する。キャリアは、ピニオンギヤが自転可能であるように支持する。サンギヤは第1モータジェネレータ110の回転軸に連結される。キャリアはエンジン100のクランクシャフトに連結される。リングギヤは第2モータジェネレータ120の回転軸および減速機140に連結される。 The power split mechanism 130 includes a planetary gear including a sun gear, a pinion gear, a carrier, and a ring gear. The pinion gear engages with the sun gear and the ring gear. The carrier supports the pinion gear so that it can rotate. The sun gear is connected to the rotation shaft of first motor generator 110. The carrier is connected to the crankshaft of engine 100. The ring gear is connected to the rotation shaft of second motor generator 120 and speed reducer 140.
 エンジン100、第1モータジェネレータ110および第2モータジェネレータ120が、遊星歯車からなる動力分割機構130を介して連結されることで、エンジン100、第1モータジェネレータ110および第2モータジェネレータ120の回転数は、図2に示すように共線図において直線で結ばれる関係になる。 The engine 100, the first motor generator 110, and the second motor generator 120 are connected via a power split mechanism 130 that is a planetary gear, so that the rotational speeds of the engine 100, the first motor generator 110, and the second motor generator 120 are increased. As shown in FIG. 2, the relationship is connected by a straight line in the alignment chart.
 図1に戻って、バッテリ150は、複数のバッテリセルを一体化したバッテリモジュールを、さらに複数直列に接続して構成された組電池である。バッテリ150の電圧は、たとえば200V程度である。バッテリ150には、第1モータジェネレータ110および第2モータジェネレータ120から供給される電力が充電される。なお、バッテリ150の代わりにもしくは加えてキャパシタを用いるようにしてもよい。 Referring back to FIG. 1, the battery 150 is an assembled battery configured by connecting a plurality of battery modules in which a plurality of battery cells are integrated in series. The voltage of the battery 150 is about 200V, for example. The battery 150 is charged with electric power supplied from the first motor generator 110 and the second motor generator 120. A capacitor may be used instead of or in addition to the battery 150.
 車両の車速は、車速センサ180により検出され、検出結果を表す信号がECU170に入力される。車両の加速度および減速度は、車速を微分することにより算出される。 The vehicle speed of the vehicle is detected by the vehicle speed sensor 180, and a signal representing the detection result is input to the ECU 170. The acceleration and deceleration of the vehicle are calculated by differentiating the vehicle speed.
 各車輪には、摩擦力を利用して車両を制動するための制動装置190が設けられている。図1においては、右側の後輪に設けられた制動装置190のみを代表例として示す。制動装置190には周知の技術を利用すればよいため、ここではその詳細な説明は繰り返さない。 Each wheel is provided with a braking device 190 for braking the vehicle using frictional force. In FIG. 1, only the braking device 190 provided on the right rear wheel is shown as a representative example. Since a known technique may be used for braking device 190, detailed description thereof will not be repeated here.
 図3を参照して、車両の電気システムについてさらに説明する。車両には、コンバータ200と、第1インバータ210と、第2インバータ220と、システムメインリレー230とが設けられる。 The electric system of the vehicle will be further described with reference to FIG. The vehicle is provided with a converter 200, a first inverter 210, a second inverter 220, and a system main relay 230.
 コンバータ200は、リアクトルと、二つのnpn型トランジスタと、二つダイオードとを含む。リアクトルは、各バッテリの正極側に一端が接続され、2つのnpn型トランジスタの接続点に他端が接続される。 Converter 200 includes a reactor, two npn transistors, and two diodes. One end of the reactor is connected to the positive electrode side of each battery, and the other end is connected to the connection point of the two npn transistors.
 2つのnpn型トランジスタは、直列に接続される。npn型トランジスタは、ECU170により制御される。各npn型トランジスタのコレクタ-エミッタ間には、エミッタ側からコレクタ側へ電流を流すようにダイオードがそれぞれ接続される。 The two npn type transistors are connected in series. The npn transistor is controlled by the ECU 170. A diode is connected between the collector and emitter of each npn transistor so that a current flows from the emitter side to the collector side.
 なお、npn型トランジスタとして、たとえば、IGBT(Insulated Gate Bipolar Transistor)を用いることができる。npn型トランジスタに代えて、パワーMOSFET(Metal Oxide Semiconductor Field-Effect Transistor)等の電力スイッチング素子を用いることができる。 Note that, for example, an IGBT (Insulated Gate Bipolar Transistor) can be used as the npn transistor. A power switching element such as a power MOSFET (Metal Oxide Semiconductor Field-Effect Transistor) can be used instead of the npn transistor.
 バッテリ150から放電された電力を第1モータジェネレータ110もしくは第2モータジェネレータ120に供給する際、電圧がコンバータ200により昇圧される。逆に、第1モータジェネレータ110もしくは第2モータジェネレータ120により発電された電力をバッテリ150に充電する際、電圧がコンバータ200により降圧される。 When the electric power discharged from the battery 150 is supplied to the first motor generator 110 or the second motor generator 120, the voltage is boosted by the converter 200. Conversely, when charging the battery 150 with the electric power generated by the first motor generator 110 or the second motor generator 120, the voltage is stepped down by the converter 200.
 コンバータ200と、各インバータとの間のシステム電圧VHは、電圧センサ180により検出される。電圧センサ180の検出結果は、ECU170に送信される。 The system voltage VH between the converter 200 and each inverter is detected by the voltage sensor 180. The detection result of voltage sensor 180 is transmitted to ECU 170.
 第1インバータ210は、U相アーム、V相アームおよびW相アームを含む。U相アーム、V相アームおよびW相アームは並列に接続される。U相アーム、V相アームおよびW相アームは、それぞれ、直列に接続された2つのnpn型トランジスタを有する。各npn型トランジスタのコレクタ-エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードがそれぞれ接続される。そして、各アームにおける各npn型トランジスタの接続点は、第1モータジェネレータ110の各コイルの中性点112とは異なる端部にそれぞれ接続される。 First inverter 210 includes a U-phase arm, a V-phase arm, and a W-phase arm. The U-phase arm, V-phase arm and W-phase arm are connected in parallel. Each of the U-phase arm, the V-phase arm, and the W-phase arm has two npn transistors connected in series. Between the collector and emitter of each npn-type transistor, a diode for flowing current from the emitter side to the collector side is connected. A connection point of each npn transistor in each arm is connected to an end portion different from neutral point 112 of each coil of first motor generator 110.
 第1インバータ210は、バッテリ150から供給される直流電流を交流電流に変換し、第1モータジェネレータ110に供給する。また、第1インバータ210は、第1モータジェネレータ110により発電された交流電流を直流電流に変換する。 The first inverter 210 converts the direct current supplied from the battery 150 into an alternating current and supplies the alternating current to the first motor generator 110. The first inverter 210 converts the alternating current generated by the first motor generator 110 into a direct current.
 第2インバータ220は、U相アーム、V相アームおよびW相アームを含む。U相アーム、V相アームおよびW相アームは並列に接続される。U相アーム、V相アームおよびW相アームは、それぞれ、直列に接続された2つのnpn型トランジスタを有する。各npn型トランジスタのコレクタ-エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードがそれぞれ接続される。そして、各アームにおける各npn型トランジスタの接続点は、第2モータジェネレータ120の各コイルの中性点122とは異なる端部にそれぞれ接続される。 The second inverter 220 includes a U-phase arm, a V-phase arm, and a W-phase arm. The U-phase arm, V-phase arm and W-phase arm are connected in parallel. Each of the U-phase arm, the V-phase arm, and the W-phase arm has two npn transistors connected in series. Between the collector and emitter of each npn-type transistor, a diode for flowing current from the emitter side to the collector side is connected. A connection point of each npn transistor in each arm is connected to an end portion different from neutral point 122 of each coil of second motor generator 120.
 第2インバータ220は、バッテリ150から供給される直流電流を交流電流に変換し、第2モータジェネレータ120に供給する。また、第2インバータ220は、第2モータジェネレータ120により発電された交流電流を直流電流に変換する。 The second inverter 220 converts the direct current supplied from the battery 150 into an alternating current and supplies the alternating current to the second motor generator 120. Second inverter 220 converts the alternating current generated by second motor generator 120 into a direct current.
 コンバータ200、第1インバータ210および第2インバータ220は、ECU170により制御される。 The converter 200, the first inverter 210 and the second inverter 220 are controlled by the ECU 170.
 システムメインリレー230は、バッテリ150とコンバータ200との間に設けられる。システムメインリレー230は、バッテリ150と電気システムとを接続した状態および遮断した状態を切換えるリレーである。システムメインリレー230が開いた状態であると、バッテリ150が電気システムから遮断される。システムメインリレー230が閉じた状態であると、バッテリ150が電気システムに接続される。 The system main relay 230 is provided between the battery 150 and the converter 200. The system main relay 230 is a relay that switches between a state where the battery 150 and the electric system are connected and a state where the battery 150 is disconnected. When system main relay 230 is in an open state, battery 150 is disconnected from the electrical system. When system main relay 230 is in a closed state, battery 150 is connected to the electrical system.
 システムメインリレー230の状態は、ECU170により制御される。たとえば、ECU170が起動すると、システムメインリレー230が閉じられる。ECU170が停止する際、システムメインリレー230が開かれる。 The state of the system main relay 230 is controlled by the ECU 170. For example, when ECU 170 is activated, system main relay 230 is closed. When ECU 170 stops, system main relay 230 is opened.
 図4を参照して、ECU170によるエンジン100の制御態様についてさらに説明する。図4に示すように、車両の出力パワーがエンジン始動しきい値より小さいと、エンジン100が一時的に停止され、第2モータジェネレータ120の駆動力のみを用いて車両が走行する。 Referring to FIG. 4, the control mode of engine 100 by ECU 170 will be further described. As shown in FIG. 4, when the output power of the vehicle is smaller than the engine start threshold value, engine 100 is temporarily stopped and the vehicle travels using only the driving force of second motor generator 120.
 出力パワーは、車両の走行に用いられるパワーとして設定される。出力パワーは、たとえば、アクセル開度および車速などをパラメータに有するマップに従ってECU170により算出される。なお、出力パワーを算出する方法はこれに限らない。なお、出力パワーの代わりに、トルク、加速度、駆動力およびアクセル開度などを用いるようにしてもよい。 The output power is set as the power used for driving the vehicle. The output power is calculated by ECU 170 according to a map having, for example, the accelerator opening and the vehicle speed as parameters. The method for calculating the output power is not limited to this. Note that torque, acceleration, driving force, accelerator opening, and the like may be used instead of output power.
 車両の出力パワーがエンジン始動しきい値以上になると、エンジン100が駆動される。これにより、第2モータジェネレータ120の駆動力に加えて、もしくは代わりに、エンジン100の駆動力を用いて車両が走行する。また、エンジン100の駆動力を用いて第1モータジェネレータ110が発電した電力が第2モータジェネレータ120に直接供給される。 When the vehicle output power exceeds the engine start threshold, the engine 100 is driven. Thus, the vehicle travels using the driving force of engine 100 in addition to or instead of the driving force of second motor generator 120. Further, the electric power generated by first motor generator 110 using the driving force of engine 100 is directly supplied to second motor generator 120.
 その他、バッテリ150のSOCが低下すると、出力パワーがエンジン始動しきい値より小さくても、第1モータジェネレータ110により発電してバッテリ150を充電するためにエンジン100が駆動し得る。たとえば、バッテリ150のSOCがしきい値よりも低いと、バッテリ150のSOCがしきい値以上になるまでバッテリ150を充電する強制充電モードで車両が制御される。強制充電モードでは、原則としてエンジン100が運転され、第1モータジェネレータ110が発電するように制御される。 In addition, when the SOC of the battery 150 decreases, the engine 100 can be driven to generate power by the first motor generator 110 and charge the battery 150 even if the output power is smaller than the engine start threshold value. For example, when the SOC of battery 150 is lower than a threshold value, the vehicle is controlled in a forced charging mode in which battery 150 is charged until the SOC of battery 150 becomes equal to or greater than the threshold value. In the forced charging mode, the engine 100 is operated in principle, and the first motor generator 110 is controlled to generate power.
 一方、車両の減速中に、第2モータジェネレータ120が回生発電すると、エンジン100の運転が制限される。より具体的には、運転者によるブレーキ操作(ブレーキペダル174の操作)がなされたとき、第2モータジェネレータ120が回生発電すると、エンジン100の運転が制限される。図5に示すように、第2モータジェネレータ120による回生発電中(図5において時間T1~T2までの期間)は、エンジン100および第1ジェネレータ110を用いた発電が禁止され、その結果、エンジン100による第1モータジェネレータ110の駆動が制限される。よって、第2モータジェネレータ120による回生発電中は、第1モータジェネレータ110により発電される電力を零にすべく、エンジン100が停止、またはアイドル運転される。すなわち、エンジン100の負荷運転が禁止される。強制充電モードが実行中であっても、エンジン100の負荷運転が禁止される。なお、本実施の形態において、負荷運転とは、アイドル運転時よりも大きい負荷でエンジン100を運転することを意味する。 On the other hand, when the second motor generator 120 generates regenerative power during deceleration of the vehicle, the operation of the engine 100 is restricted. More specifically, when the driver performs a brake operation (operation of the brake pedal 174) and the second motor generator 120 generates regenerative power, the operation of the engine 100 is limited. As shown in FIG. 5, during regenerative power generation by second motor generator 120 (period from time T1 to T2 in FIG. 5), power generation using engine 100 and first generator 110 is prohibited, and as a result, engine 100 The driving of the first motor generator 110 is limited. Therefore, during regenerative power generation by second motor generator 120, engine 100 is stopped or idling to reduce the power generated by first motor generator 110 to zero. That is, the load operation of engine 100 is prohibited. Even when the forced charging mode is being executed, the load operation of the engine 100 is prohibited. In the present embodiment, the load operation means that engine 100 is operated with a load larger than that during idle operation.
 強制充電モードが実行される運転状態、すなわちバッテリ150のSOCがしきい値よりも低い運転状態では、第1モータジェネレータ110を駆動するためにエンジン100が負荷運転される。前述したように、減速中に第2モータジェネレータ120が回生発電すると、エンジン100が停止、またはアイドル運転される。そのため、強制充電モードが実行される運転状態において、減速中に第2モータジェネレータ120が回生発電すると、エンジン100の出力パワーが低減される。なお、本実施の形態において、エンジン100の運転を制限することは、エンジン100の出力パワーを低減することを含む。 In an operation state in which the forced charging mode is executed, that is, an operation state in which the SOC of the battery 150 is lower than the threshold value, the engine 100 is loaded to drive the first motor generator 110. As described above, when the second motor generator 120 regenerates power during deceleration, the engine 100 is stopped or idling. Therefore, when the second motor generator 120 performs regenerative power generation during deceleration in an operation state in which the forced charging mode is executed, the output power of the engine 100 is reduced. In the present embodiment, limiting the operation of engine 100 includes reducing the output power of engine 100.
 回生発電が不可能な速度まで車速が低下した結果、図5の時間T2において第2モータジェネレータ120による回生発電が終了した後も、エンジン100の運転が制限され続ける。より具体的には、運転者によるブレーキ操作がなされている間(図5の時間T3までの期間)、エンジン100の運転が制限され続ける。 As a result of the vehicle speed being reduced to a speed at which regenerative power generation is impossible, the operation of engine 100 continues to be restricted even after regenerative power generation by second motor generator 120 is completed at time T2 in FIG. More specifically, the operation of the engine 100 continues to be restricted while the driver is performing a brake operation (a period up to time T3 in FIG. 5).
 したがって、強制充電モードでの負荷運転中にエンジン100の出力パワーが低減された場合、第2モータジェネレータ120による回生発電が終了した後も、エンジン100の出力パワーが低減された状態が維持される。 Therefore, when the output power of engine 100 is reduced during the load operation in the forced charging mode, the state in which the output power of engine 100 is reduced is maintained even after the regenerative power generation by second motor generator 120 is completed. .
 一方、たとえば車速が低い場合、または減速度が小さい場合、車両の減速中に第2モータジェネレータ120が回生発電しないこともあり得る。図6に示すように、時間T4にてブレーキ操作された後、車両の減速中に第2モータジェネレータ120が回生発電しないと、エンジン100が運転され、第1モータジェネレータ110が発電するように、たとえば強制充電モードで制御される。 On the other hand, for example, when the vehicle speed is low or the deceleration is small, the second motor generator 120 may not generate regenerative power during deceleration of the vehicle. As shown in FIG. 6, after the brake operation is performed at time T4, if the second motor generator 120 does not generate regenerative power during deceleration of the vehicle, the engine 100 is operated and the first motor generator 110 generates power. For example, it is controlled in the forced charging mode.
 その結果、強制充電モードが実行され得る運転状態、すなわちバッテリ150のSOCがしきい値より低い状態において、車両の減速中に第2モータジェネレータ120が回生発電しない場合のエンジン100の出力パワーは、車両の減速中に第2モータジェネレータ120が回生発電する場合のエンジン100の出力パワーよりも大きくされる。 As a result, in the driving state in which the forced charging mode can be executed, that is, in the state where the SOC of the battery 150 is lower than the threshold value, the output power of the engine 100 when the second motor generator 120 does not generate regenerative power during deceleration of the vehicle is It is made larger than the output power of engine 100 when second motor generator 120 regenerates power during deceleration of the vehicle.
 図7を参照して、本実施の形態においてECU170が実行する処理について説明する。 With reference to FIG. 7, a process executed by ECU 170 in the present embodiment will be described.
 ステップ(以下ステップをSと略す)100にて、ブレーキペダル174が操作されたか否かが判別される。ブレーキペダル174が操作されると(S100にてYES)、S102にて、第2モータジェネレータ120が回生発電するか否かが判断される。たとえば、車速がしきい値以上であると、第2モータジェネレータ120が回生発電すると判断される。 In step (hereinafter step is abbreviated as S) 100, it is determined whether or not the brake pedal 174 has been operated. When brake pedal 174 is operated (YES in S100), it is determined in S102 whether second motor generator 120 performs regenerative power generation. For example, when the vehicle speed is equal to or higher than the threshold value, it is determined that second motor generator 120 generates regenerative power.
 第2モータジェネレータ120が回生発電すると(S102にてYES)、S104にて、回生履歴フラグがオンにされる。その後、S106にて、ブレーキペダル174が操作され、かつ回生履歴フラグがオンであるか否かが判断される。 When second motor generator 120 generates regenerative power (YES in S102), the regenerative history flag is turned on in S104. Thereafter, in S106, it is determined whether or not the brake pedal 174 is operated and the regeneration history flag is on.
 ブレーキペダル174が操作され、かつ回生履歴フラグがオンであると(S106にてYES)、S108にて、エンジン100の負荷運転が禁止される。したがって、第1モータジェネレータ110による発電は実行されない。 When brake pedal 174 is operated and the regeneration history flag is on (YES in S106), load operation of engine 100 is prohibited in S108. Therefore, power generation by first motor generator 110 is not executed.
 その後、ブレーキペダル174が操作されている間(S100にてYES)は、第2モータジェネレータ120の回生発電が終了した後も(S102にてNO)、回生履歴フラグがオンに維持される。したがって、一旦第2モータジェネレータ120が回生発電すれば、ブレーキペダル174が操作されている間(S106にてYES)は、エンジン100の運転が制限され続ける。そのため、減速中におけるエンジン出力の増大が制限される。 Thereafter, while the brake pedal 174 is operated (YES in S100), the regeneration history flag is kept on even after the regenerative power generation of the second motor generator 120 is completed (NO in S102). Therefore, once second motor generator 120 generates regenerative power, the operation of engine 100 continues to be limited while brake pedal 174 is operated (YES in S106). This limits the increase in engine output during deceleration.
 一方、ブレーキペダル174が操作されていないと(S100にてNO)、S110にて、回生履歴フラグがオフにされる。この場合(S106にてNO)、S112にて、エンジン100の負荷運転が許可される。したがって、第1モータジェネレータ110による発電が実行される。 On the other hand, if brake pedal 174 is not operated (NO in S100), the regeneration history flag is turned off in S110. In this case (NO in S106), load operation of engine 100 is permitted in S112. Therefore, power generation by the first motor generator 110 is executed.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 100 エンジン、110 第1モータジェネレータ、120 第2モータジェネレータ、130 動力分割機構、140 減速機、150 バッテリ、160 前輪、170 ECU、172 アクセルペダル、174 ブレーキペダル、180 車速センサ、200 コンバータ、210 第1インバータ、220 第2インバータ、230 システムメインリレー。 100 engine, 110 first motor generator, 120 second motor generator, 130 power split mechanism, 140 speed reducer, 150 battery, 160 front wheel, 170 ECU, 172 accelerator pedal, 174 brake pedal, 180 vehicle speed sensor, 200 converter, 210th 1 inverter, 220 second inverter, 230 system main relay.

Claims (5)

  1.  エンジン(100)と、
     車輪(160)に連結される電動モータ(120)と、
     前記車両の減速中に前記電動モータ(120)が回生発電すると、前記エンジン(100)の運転を制限し、前記電動モータ(120)による回生発電が終了した後、前記エンジン(100)の運転を制限し続ける制御ユニット(170)とを備える、車両。
    An engine (100);
    An electric motor (120) coupled to the wheels (160);
    When the electric motor (120) regenerates power during deceleration of the vehicle, the operation of the engine (100) is limited, and after the regenerative power generation by the electric motor (120) is completed, the operation of the engine (100) is stopped. A vehicle comprising a control unit (170) that continues to be restricted.
  2.  前記制御ユニット(170)は、前記車両の減速中に前記電動モータ(120)が回生発電しない場合の前記エンジン(100)の出力パワーを、前記車両の減速中に前記電動モータ(120)が回生発電する場合の前記エンジン(100)の出力パワーよりも大きくする、請求項1に記載の車両。 The control unit (170) outputs the output power of the engine (100) when the electric motor (120) does not generate regenerative power during deceleration of the vehicle, and the electric motor (120) regenerates during deceleration of the vehicle. The vehicle according to claim 1, wherein the vehicle is larger than the output power of the engine (100) when generating electric power.
  3.  前記制御ユニット(170)は、運転者によるブレーキ操作がなされたとき、前記車両の減速中に前記電動モータ(120)が回生発電すると、前記エンジン(100)の運転を制限し、前記電動モータ(120)による回生発電が終了した後、運転者によるブレーキ操作がなされている間、前記エンジン(100)の運転を制限し続ける、請求項1に記載の車両。 The control unit (170) restricts the operation of the engine (100) when the electric motor (120) regenerates power during deceleration of the vehicle when a brake operation is performed by a driver, and the electric motor ( 2. The vehicle according to claim 1, wherein after the regenerative power generation according to 120) is finished, the operation of the engine (100) is continuously restricted while a brake operation is performed by a driver.
  4.  前記エンジン(100)の出力軸に連結された発電機(110)と、
     前記電動モータ(120)によって回生発電された電力および前記発電機(110)によって発電された電力を蓄える蓄電装置(150)とをさらに備え、
     前記制御ユニット(170)は、前記蓄電装置(150)の残存容量がしきい値より低いと、前記エンジン(100)を運転するとともに、前記発電機(110)が発電するように制御し、
     前記制御ユニット(170)は、前記蓄電装置(150)の残存容量がしきい値より低い状態において、前記車両の減速中に前記電動モータ(120)が回生発電すると、前記エンジン(100)の出力パワーを低減し、前記電動モータ(120)による回生発電が終了した後、前記エンジン(100)の出力パワーが低減された状態を維持する、請求項1に記載の車両。
    A generator (110) coupled to the output shaft of the engine (100);
    A power storage device (150) for storing electric power regenerated by the electric motor (120) and electric power generated by the generator (110);
    When the remaining capacity of the power storage device (150) is lower than a threshold value, the control unit (170) operates the engine (100) and controls the generator (110) to generate power,
    The control unit (170) outputs the output of the engine (100) when the electric motor (120) regenerates power during deceleration of the vehicle in a state where the remaining capacity of the power storage device (150) is lower than a threshold value. 2. The vehicle according to claim 1, wherein the vehicle is maintained in a state in which the output power of the engine (100) is reduced after the power is reduced and regenerative power generation by the electric motor (120) ends.
  5.  エンジン(100)と、車輪(160)に連結される電動モータ(120)とが設けられた車両の制御方法であって、
     前記車両の減速中に前記電動モータ(120)が回生発電すると、前記エンジン(100)の運転を制限するステップと、
     前記電動モータ(120)による回生発電が終了した後、前記エンジン(100)の運転を制限し続けるステップとを備える、車両の制御方法。
    A vehicle control method provided with an engine (100) and an electric motor (120) coupled to wheels (160),
    Limiting the operation of the engine (100) when the electric motor (120) generates regenerative power during deceleration of the vehicle;
    And a step of continuing to limit the operation of the engine (100) after regenerative power generation by the electric motor (120) is completed.
PCT/JP2011/053009 2011-02-14 2011-02-14 Vehicle, and vehicle control method WO2012111068A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053009 WO2012111068A1 (en) 2011-02-14 2011-02-14 Vehicle, and vehicle control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053009 WO2012111068A1 (en) 2011-02-14 2011-02-14 Vehicle, and vehicle control method

Publications (1)

Publication Number Publication Date
WO2012111068A1 true WO2012111068A1 (en) 2012-08-23

Family

ID=46672034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053009 WO2012111068A1 (en) 2011-02-14 2011-02-14 Vehicle, and vehicle control method

Country Status (1)

Country Link
WO (1) WO2012111068A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104290607A (en) * 2013-12-16 2015-01-21 郑州宇通客车股份有限公司 Method for assisting driver to adapt to brake control of battery electric vehicle
WO2023042517A1 (en) * 2021-09-16 2023-03-23 三菱自動車工業株式会社 Electric vehicle control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236203A (en) * 1994-02-23 1995-09-05 Mitsubishi Electric Corp Controller for electric automobile
JPH07279702A (en) * 1994-04-13 1995-10-27 Mitsubishi Motors Corp Control device for engine of hybrid car
JPH08317506A (en) * 1995-05-18 1996-11-29 Aqueous Res:Kk Hybrid vehicle
JP2002095106A (en) * 2000-09-14 2002-03-29 Toyota Motor Corp Braking force controller for vehicle
JP2002315107A (en) * 2001-04-04 2002-10-25 Honda Motor Co Ltd Controller for hybrid vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07236203A (en) * 1994-02-23 1995-09-05 Mitsubishi Electric Corp Controller for electric automobile
JPH07279702A (en) * 1994-04-13 1995-10-27 Mitsubishi Motors Corp Control device for engine of hybrid car
JPH08317506A (en) * 1995-05-18 1996-11-29 Aqueous Res:Kk Hybrid vehicle
JP2002095106A (en) * 2000-09-14 2002-03-29 Toyota Motor Corp Braking force controller for vehicle
JP2002315107A (en) * 2001-04-04 2002-10-25 Honda Motor Co Ltd Controller for hybrid vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104290607A (en) * 2013-12-16 2015-01-21 郑州宇通客车股份有限公司 Method for assisting driver to adapt to brake control of battery electric vehicle
CN104290607B (en) * 2013-12-16 2016-11-16 郑州宇通客车股份有限公司 A kind of driver of auxiliary adapts to the method to pure electric vehicle control for brake
WO2023042517A1 (en) * 2021-09-16 2023-03-23 三菱自動車工業株式会社 Electric vehicle control device

Similar Documents

Publication Publication Date Title
JP5716829B2 (en) Vehicle, vehicle control method, and vehicle control apparatus
EP2692603B1 (en) Vehicle, engine control method, and engine control device
JP5288006B2 (en) Vehicle, vehicle control method and control device
JP5590157B2 (en) Vehicle, vehicle control method, and vehicle control apparatus
JP5714239B2 (en) Vehicle control system
US9145125B2 (en) Control apparatus for vehicle
JP5842899B2 (en) HYBRID VEHICLE, HYBRID VEHICLE CONTROL METHOD, AND ENGINE CONTROL DEVICE
WO2013027290A1 (en) Vehicle, and vehicle control method and apparatus
JP5712895B2 (en) vehicle
JP5549730B2 (en) Hybrid vehicle control device, hybrid vehicle control method, and hybrid vehicle
WO2012111068A1 (en) Vehicle, and vehicle control method
JP2012075228A (en) Apparatus for diagnosing cooling system
US9187077B2 (en) Control system for vehicle
JP2012228902A (en) Vehicle control device
JP2014189252A (en) Vehicle controller
WO2012105018A1 (en) Vehicle and method for controlling vehicle
JP2009190564A (en) Control device for vehicle
WO2012114504A1 (en) Vehicle, and method and device for controlling vehicle
JP2013014219A (en) Control device of vehicle
WO2012053068A1 (en) Vehicle, control method for power train, and control apparatus for power train
JP2012240469A (en) Controller of vehicle
JP5966988B2 (en) Engine control device
JP2012081847A (en) Hybrid automobile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP