WO2012111035A1 - Collision avoidance braking device and collision avoidance braking method - Google Patents

Collision avoidance braking device and collision avoidance braking method Download PDF

Info

Publication number
WO2012111035A1
WO2012111035A1 PCT/JP2011/000792 JP2011000792W WO2012111035A1 WO 2012111035 A1 WO2012111035 A1 WO 2012111035A1 JP 2011000792 W JP2011000792 W JP 2011000792W WO 2012111035 A1 WO2012111035 A1 WO 2012111035A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
brake
collision avoidance
correction value
unit
Prior art date
Application number
PCT/JP2011/000792
Other languages
French (fr)
Japanese (ja)
Inventor
亮 猪俣
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/000792 priority Critical patent/WO2012111035A1/en
Publication of WO2012111035A1 publication Critical patent/WO2012111035A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems

Definitions

  • the present invention relates to a collision avoidance braking device and a collision avoidance braking method, and more specifically, an apparatus that is mounted on a vehicle and that automatically controls a brake to assist in avoiding a collision with an obstacle of the vehicle, and its It relates to a method performed by an apparatus.
  • These conventional collision avoidance braking devices detect and calculate parameters necessary for control using various sensors mounted on the vehicle.
  • the parameters include, for example, the speed of the vehicle, the steering angle of the vehicle, the weight of the vehicle, the distance to the obstacle, the direction of the obstacle, the slope of the road surface, and the friction coefficient of the road surface.
  • the collision avoidance braking device determines the braking operation start timing (hereinafter referred to as braking start timing) necessary to prevent the vehicle from colliding with the obstacle and the braking effectiveness based on the parameters obtained by the detection and calculation.
  • the condition hereinafter referred to as braking force
  • the brake is automatically controlled.
  • JP 2008-49932 A Japanese Patent Laid-Open No. 5-294218
  • the conventional collision avoidance braking device does not consider the deterioration state of the brake pad as a parameter for determining the braking start timing and the braking force. For this reason, in the conventional collision avoidance braking device, when the deterioration of the brake pad is progressing, the vehicle cannot avoid the collision with the obstacle with the braking start timing and the braking force obtained by the calculation. It is also possible.
  • an object of the present invention is to provide a collision avoidance braking apparatus that can avoid a vehicle from colliding with an obstacle by appropriately controlling the braking start timing and the braking force in consideration of the deterioration state of the brake pad. It is to provide a collision avoidance braking method.
  • a collision avoidance braking apparatus includes a detection unit that detects a brake operation by a driver, an acquisition unit that acquires a vehicle condition including at least a deceleration of the vehicle, and a brake operation detection. And a correction unit that estimates a deterioration state of the brake pad from the vehicle deceleration acquired at times, and corrects the vehicle deceleration at the time of execution of the automatic brake control according to the estimated deterioration state of the brake pad.
  • the detection unit acquires the brake hydraulic pressure at the time of detecting the brake operation.
  • the correction unit includes a first estimation unit that estimates a deterioration state of the brake pad based on a relationship between the brake hydraulic pressure acquired when the brake operation is detected and the vehicle deceleration, and the estimated deterioration state of the brake pad. And a first estimation unit that estimates an actual deceleration characteristic of the current vehicle and a first deceleration characteristic that is required for the vehicle to avoid a collision in the vehicle condition at the time of the brake operation. A second calculation unit that calculates a correction value for eliminating a state where the estimated actual deceleration characteristic and the required deceleration characteristic are different from each other, and automatically using the correction value And a control unit that executes brake control.
  • the correction unit further includes a storage unit that stores the correction values calculated by the second calculation unit by classifying the correction values into a plurality of classes classified according to vehicle conditions at the time of the brake operation, and the control unit
  • the control unit When collision avoidance is required, it is desirable to read out the correction value classified into the class that matches the vehicle condition at that time from the storage unit and execute the automatic brake control using the read correction value.
  • vehicle conditions it is preferable to classify at least one of vehicle speed, vehicle weight, road gradient, vehicle outside temperature, travel area weather, and brake operation frequency.
  • the automatic brake control executed by the control unit of the collision avoidance braking device is performed according to the deceleration characteristic obtained by correcting the required deceleration characteristic calculated by the first calculation unit with the read correction value. Alternatively, it may be performed at the braking start timing corrected with the read correction value of the specified braking start timing, or the padding process start timing corrected with the read correction value of the specified padding processing start timing. May be done.
  • the overall braking force exhibited by the automatic brake control is substantially the same, and the deceleration characteristics required for the vehicle for collision avoidance have deteriorated. It is possible to improve the situation in which the deceleration characteristic actually generated by the brake pad deviates.
  • the first estimation unit may perform control so as not to estimate the deterioration state of the brake pad when the vehicle condition exceeds a predetermined range. By controlling in this way, it is possible to prevent a correction value with low accuracy from being calculated when the vehicle conditions are extreme.
  • the second calculation unit may obtain an average value of a plurality of correction values calculated during a predetermined period, and set the average value as a correction value used for automatic brake control. With this setting, it is possible to provide highly accurate collision avoidance braking even under unstable vehicle traveling conditions in which the correction value calculated every time a brake operation occurs changes greatly. Become.
  • the correcting step includes a step in which the calculation unit estimates a deterioration state of the brake pad based on a relationship between the brake hydraulic pressure acquired when the brake operation is detected and the deceleration of the vehicle, and the calculation unit is estimated.
  • a step of estimating the actual deceleration characteristic of the current vehicle based on the deterioration state of the brake pad, and a deceleration characteristic required for the vehicle for avoiding a collision in the vehicle condition at the time of the brake operation Calculating the correction value for eliminating the state where the estimated actual deceleration characteristic and the required deceleration characteristic are different from each other, and the control unit Performing automatic brake control using the value.
  • the collision avoidance braking method of the present invention is provided in the form of a program for causing a computer to execute a series of processing procedures.
  • This program may be introduced into a computer storage device via a computer-readable recording medium, or may be directly executed from the recording medium.
  • This recording medium is a semiconductor memory such as a ROM, a RAM or a flash memory, a magnetic disk memory such as a flexible disk or a hard disk, an optical disk memory such as a CD-ROM, a DVD or a BD, a memory card, and the like. And other communication media.
  • the brake start timing and the braking force can always be appropriately controlled in consideration of the deterioration state of the brake pad. Therefore, it is possible to prevent a situation where an obstacle cannot be avoided.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle brake system including a collision avoidance braking apparatus according to first to fourth embodiments of the present invention.
  • FIG. 2 is a flowchart showing a processing procedure of a correction value acquisition operation performed by the collision avoidance braking apparatus according to the first, third, and fourth embodiments.
  • FIG. 3 is a diagram showing the characteristics of the friction coefficient ⁇ during the brake operation.
  • FIG. 4 is a diagram showing the relationship between brake hydraulic pressure and deceleration.
  • FIG. 5 is a diagram conceptually illustrating an example of correction values classified and stored for each class in the storage unit 15 of the first, third, and fourth embodiments.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle brake system including a collision avoidance braking apparatus according to first to fourth embodiments of the present invention.
  • FIG. 2 is a flowchart showing a processing procedure of a correction value acquisition operation performed by the collision avoidance braking apparatus according to the first, third, and fourth embodiments.
  • FIG. 6 is a flowchart showing the procedure of the correction value reflecting operation performed by the collision avoidance braking apparatus according to the first to fourth embodiments.
  • FIG. 7 is a flowchart illustrating another processing procedure of the correction value acquisition operation performed by the collision avoidance braking apparatus according to the first embodiment.
  • FIG. 8 is a flowchart illustrating a processing procedure of a correction value acquisition operation performed by the collision avoidance braking apparatus according to the second embodiment.
  • FIG. 9 is a flowchart showing a detailed processing procedure of step S801 shown in FIG.
  • FIG. 10 is a diagram illustrating the concept of the average correction value obtained by the calculation unit 14.
  • FIG. 11 is a diagram conceptually illustrating an example of the correction value and the average correction value for each class stored in the storage unit 15 of the second embodiment.
  • FIG. 12 shows the difference in braking start timing between the automatic brake control (a) performed by the conventional collision avoidance braking apparatus and the automatic brake control (b) performed by the collision avoidance braking apparatus according to the third embodiment of the present invention.
  • FIG. FIG. 13 shows the start timing of the backpacking process in the automatic brake control (a) performed by the conventional collision avoidance braking apparatus and the automatic brake control (b) performed by the collision avoidance braking apparatus according to the fourth embodiment of the present invention. It is a figure which shows a difference.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle brake system including a collision avoidance braking apparatus according to a first embodiment of the present invention.
  • the vehicle brake system shown in FIG. 1 includes a collision avoidance braking apparatus according to the first embodiment, a brake control unit 51, and four brake actuators 52.
  • the collision avoidance braking device according to the first embodiment includes a vehicle information acquisition unit 11, an obstacle detection unit 12, a brake operation detection unit 13, a calculation unit 14, a storage unit 15, and an automatic brake control unit 16.
  • the vehicle information acquisition unit 11 includes information acquisition mechanisms such as various sensors and GPS, and includes vehicle speed, vehicle deceleration, vehicle weight, road gradient, vehicle outside temperature, travel area weather, and brake operation.
  • Information about vehicle conditions (or states) such as frequency (hereinafter referred to as vehicle information) is acquired.
  • vehicle information information about vehicle conditions (or states) such as frequency (hereinafter referred to as vehicle information) is acquired.
  • the speed of the vehicle can be acquired using a vehicle speed sensor.
  • the deceleration of the vehicle can be acquired using a deceleration sensor.
  • the weight of the vehicle is obtained from the displacement amount of the suspension sensor.
  • the road gradient is obtained from the difference between the differential value of the wheel speed and the sensor value using a vehicle speed sensor and a gyro sensor.
  • the outside air temperature of the vehicle can be acquired using a temperature sensor.
  • the weather in the travel area can be acquired from weather information via GPS or the operating state of the wiper.
  • the brake operation frequency can be acquired from the lighting state of the stop lamp. This vehicle information is output to the calculation unit 14.
  • the obstacle detection unit 12 includes a laser radar, a microwave radar, a millimeter wave radar, an ultrasonic radar, or the like, and detects an obstacle present around the vehicle.
  • the obstacle detection unit 12 acquires information such as a relative distance from the vehicle to the obstacle, a relative speed between the vehicle and the obstacle, and a direction in which the obstacle exists (hereinafter referred to as obstacle information).
  • the obstacle information can be acquired by transmitting a radar wave from the vehicle toward the surroundings and receiving a reflected wave that hits the obstacle and returns to the vehicle. This obstacle information is output to the calculation unit 14.
  • the brake operation detection unit 13 includes a pedal sensor, a hydraulic pressure sensor, and the like, and brake operation by the driver, that is, whether or not the brake pedal is depressed, and information on brake hydraulic pressure according to the depression amount of the brake pedal (hereinafter referred to as brake information). ) To get.
  • brake information is output to the calculation unit 14 and the brake control unit 51.
  • the calculation unit 14 inputs vehicle information from the vehicle information acquisition unit 11, obstacle information from the obstacle detection unit 12, and brake information from the brake operation detection unit 13, and performs necessary calculations based on each information. .
  • the calculation unit 14 sequentially stores correction values calculated at a predetermined timing in the storage unit 15 so that the vehicle needs to avoid a collision with an obstacle. If it is determined that there is, an appropriate instruction is given to the automatic brake control unit 16 based on the correction value already stored in the storage unit 15.
  • the storage unit 15 stores a correction value for correcting the braking force generated by the automatic brake control performed by the automatic brake control unit 16.
  • This correction value is stored in correspondence with each of a plurality of classes that are preliminarily classified according to predetermined vehicle conditions for a plurality of pieces of information included in the vehicle information. Details of the plurality of classes will be described later.
  • the automatic brake control unit 16 calculates a deceleration characteristic required for the collision avoidance in the vehicle condition at that time. Then, the calculated deceleration characteristic is corrected with a correction value given from the calculation unit 14. Then, the automatic brake control unit 16 controls the braking force generated by the brake actuators 52 provided on the four wheels of the vehicle according to the corrected required deceleration characteristic. This control is performed independently of the brake operation according to the driver's intention. Control of the braking force of the brake actuator 52 according to the brake operation according to the driver's intention is performed via the brake control unit 51.
  • the correction value acquisition operation and the correction value reflection operation are performed.
  • the correction value acquisition operation is an operation that is performed when the driver performs a brake operation during normal driving without an obstacle around the vehicle.
  • the deterioration state of the brake pad is estimated, and the vehicle is reduced based on the estimated deterioration state.
  • a correction value related to the speed characteristic is obtained, and the obtained correction value is stored in association with the vehicle information for each class.
  • the correction value reflecting operation is an operation performed when an obstacle exists around the vehicle and the vehicle needs to avoid the obstacle, and is stored in association with a class that matches the vehicle condition at that time. Using the correction value, the deceleration characteristic required in the automatic brake control is corrected.
  • the correction value acquisition operation and the correction value reflection operation will be described.
  • the correction value acquisition operation is started when the vehicle is started by turning on the ignition button or the like.
  • the brake operation detection unit 13 detects a brake operation performed by the driver (step S201).
  • the vehicle information acquisition unit 11 acquires vehicle information at the time of detection (step S202).
  • the brake operation detection part 13 acquires the brake hydraulic pressure at the time of detection (step S203).
  • the calculation unit 14 calculates the estimated friction coefficient ⁇ according to the following mathematical formula (step S204).
  • G is the deceleration of the vehicle
  • L is the weight of the vehicle
  • R is the tire radius
  • P is the brake hydraulic pressure
  • A is the W / C area
  • r is the effective braking radius.
  • G G ⁇ L ⁇ R / (2 ⁇ P ⁇ A ⁇ r)
  • the estimated friction coefficient ⁇ has a characteristic that converges to a certain value when a predetermined time elapses.
  • the calculation unit 14 estimates the deterioration state of the brake pad from the calculated estimated friction coefficient ⁇ (step S206). That is, the calculation unit 14 determines that the brake pad is less deteriorated or less deteriorated as the estimated friction coefficient ⁇ is larger.
  • the characteristics of the friction coefficient ⁇ regarding the brake pad without deterioration (new article) and the brake pad with deterioration (deteriorated article) are shown.
  • the calculation unit 14 estimates the actual deceleration characteristic of the vehicle under the current vehicle conditions based on the estimated deterioration state of the brake pad (step S207).
  • the relationship between the brake hydraulic pressure and the deceleration has the characteristic shown in FIG. 4 in the range where the pressure increase gradient of the brake hydraulic pressure changes linearly. That is, when the brake hydraulic pressure is the same, the deceleration when the brake pad is deteriorated (deteriorated product) is proportionally smaller than the deceleration when the brake pad is not deteriorated (new product). Therefore, the actual deceleration characteristic of the vehicle that matches the current deterioration state of the brake pad is estimated from the relationship shown in FIG.
  • the calculating part 14 calculates the correction value which corrects the deceleration characteristic requested
  • This correction value is obtained when the actual deceleration characteristic of the vehicle obtained by braking the brake actuator 52 by the automatic brake control unit 16 during the collision avoidance braking is the deceleration characteristic required due to the deterioration of the brake pad. This is to prevent divergence. That is, this correction value is used to correct the required deceleration characteristic in order to eliminate the difference between the actual deceleration characteristic and the required deceleration characteristic.
  • FIG. 5 is a diagram conceptually illustrating an example of correction values classified and stored for each class in the storage unit 15.
  • steps S201 to S209 described above are repeated until the vehicle stops the engine, for example, when the ignition button is turned off (step S210).
  • a correction value corresponding to the actual deterioration state of the brake pad during normal traveling can be acquired for each class classified with respect to various vehicle conditions of the vehicle.
  • the correction value may be calculated again for the class for which the correction value is already stored in the storage unit 15.
  • the correction value of the corresponding class is updated by overwriting every time the latest correction value is calculated.
  • correction value reflection operation This correction value reflection operation is performed in parallel with the correction value acquisition operation described above.
  • the correction value reflecting operation is started when an obstacle present around the vehicle is detected by the obstacle detection unit 12.
  • the vehicle information acquisition unit 11 acquires vehicle information at the time of detecting the obstacle (step S601).
  • the calculation unit 14 analyzes the obstacle information given from the obstacle detection unit 12 and the vehicle information given from the vehicle information acquisition unit 11, and calculates a collision risk degree indicating that the vehicle may collide with the obstacle (Ste S602). Then, the calculation unit 14 determines whether or not the calculated collision risk is equal to or greater than a predetermined value (step S603).
  • step S604 If the correction value is not yet stored in the class selected in step S604, the correction value reflecting operation is terminated without correcting the braking force using the correction value (step S605; No).
  • the automatic brake control unit 16 performs normal automatic brake control.
  • the correction value corresponding to the actual deterioration state of the brake pad is calculated during normal traveling, and the vehicle, the obstacle, In a scene where the collision of the vehicle should be avoided, the calculated correction value is reflected in the automatic brake control.
  • the present collision avoidance braking apparatus can always apply the optimum braking force to the brake actuator 52, thereby improving the accuracy of obstacle avoidance of the vehicle.
  • step S701 and S702 are inserted between step S202 and step S203 in FIG. 2, and a correction value acquisition operation is performed in a case where it is determined that a highly accurate correction value cannot be obtained. It may not be performed.
  • the correction value (FIG. 2: step S208) calculated each time in response to the brake operation performed by the driver is overwritten and stored in the corresponding class in the storage unit 15 (FIG. 2: step). S209). Therefore, the correction value stored in the storage unit 15 is only one latest correction value (see FIG. 5).
  • the deterioration state of the brake pad which is estimated based on the temperature of the brake pad when the correction value acquisition operation is performed, the wetness, the amount of attached rust, and the like varies. Therefore, there may be a case where an obstacle cannot be actually avoided only based on the correction value calculated by the latest brake operation. Therefore, in the second embodiment, a correction value calculation method for further improving the accuracy of obstacle avoidance by the vehicle will be described.
  • the schematic configuration of the vehicle brake system including the collision avoidance braking apparatus according to the second embodiment of the present invention is the same as that of the collision avoidance braking apparatus according to the first embodiment shown in FIG.
  • the processing of the calculation unit 14 and the stored contents of the storage unit 15 are slightly different from those of the collision avoidance braking apparatus according to the first embodiment.
  • the collision avoidance braking apparatus according to the second embodiment will be described focusing on the different processes.
  • FIG. 8 is a flowchart showing a processing procedure of a correction value acquisition operation performed by the collision avoidance braking apparatus according to the second embodiment.
  • the correction value acquisition operation is as described in the first embodiment.
  • the correction value storage process in step S801 in FIG. 8 is different from that in FIG.
  • the detailed process of step S801 in FIG. 8 is shown in the flowchart of FIG.
  • the calculating part 14 first memorize
  • FIG. 10 shows the concept of the average correction value obtained by the calculation unit 14. In addition, what is necessary is just to set arbitrarily the length of a predetermined period according to the material, durability, etc. of a brake pad.
  • step S902 when the current average correction value is obtained, the calculation unit 14 checks whether the past average correction value is already stored in the storage unit 15 (step S903). When the past average correction value is stored as a result of the confirmation in step S903, the calculation unit 14 obtains a difference between the past average correction value and the current average correction value (step S904, FIG. 10). . If the past average correction value is not stored as a result of the confirmation in step S903, the calculation unit 14 newly stores the current average correction value in the storage unit 15 (step S908).
  • step S905 determines whether or not the difference obtained in step S904 is equal to or greater than a predetermined threshold. If it is determined in step S905 that the difference is greater than or equal to the threshold, the calculation unit 14 stores the current average correction value in the storage unit 15 by overwriting (step S908). On the other hand, when it is determined in step S905 that the difference is not greater than or equal to the threshold, the calculation unit 14 also determines whether the previously performed difference is greater than or equal to the threshold for other classes other than the class to which the correction value is added. Is checked, and it is determined whether or not the class having the difference equal to or greater than the threshold exceeds half of all classes (step S906).
  • step S906 When it is determined in step S906 that the class whose difference is equal to or greater than the threshold exceeds half of all classes, the calculation unit 14 overwrites the storage unit 15 with the current average correction value obtained in the class in which the correction value is added. (Step S908). However, if it is determined in step S906 that the class whose difference is equal to or greater than the threshold value is less than half of all classes, the calculation unit 14 does not store the current average correction value in the storage unit 15 and stores the past average correction. The value is held as it is (step S907).
  • FIG. 11 is a diagram conceptually illustrating an example of the correction value and the average correction value for each class stored in the storage unit 15.
  • the correction value is added each time a correction value is calculated for each class, and the obtained average correction value is also stored.
  • the Note that the retention period of the stored correction value may be determined in advance (for example, one month or one year) or may not be determined.
  • the correction value reflecting operation performed by the collision avoidance braking apparatus according to the second embodiment is the same as that in the flowchart of FIG. 6 described in the first embodiment, in which the calculation unit 14 calculates the average correction value of the selected class.
  • the data is read from the storage unit 15 (step S606 in FIG. 6), and the automatic brake control unit 16 is instructed to correct the requested deceleration characteristic according to the read average correction value (step S607 in FIG. 6).
  • the deceleration characteristic required by the automatic brake control using the average correction value considering the change transition of the deterioration state of the brake pad is correct.
  • the schematic configuration of the vehicle brake system including the collision avoidance braking apparatus according to the third embodiment of the present invention is the same as that of the collision avoidance braking apparatus according to the first embodiment shown in FIG.
  • the processing of the calculation unit 14 is different from that of the collision avoidance braking apparatus according to the first embodiment.
  • the collision avoidance braking apparatus according to the third embodiment will be described focusing on the different processes.
  • step S607 in the correction value reflecting operation (FIG. 6) described above is different. Specifically, the calculation unit 14 reads the correction value of the class selected in step S604 from the storage unit 15 (step S606). Then, the calculation unit 14 outputs the read correction value to the automatic brake control unit 16 and instructs the automatic brake control unit 16 to advance the braking start timing given to the brake actuator 52 according to the correction value (step S607). .
  • the braking start timing of the automatic brake control is corrected using the correction value corresponding to the deterioration state of the brake pad. As a result, it is possible to improve the situation where the deceleration required by the automatic brake control unit 16 and the deceleration actually caused by the deteriorated brake pad are different.
  • the example in which only the braking start timing of the automatic brake control is corrected based on the correction value has been described.
  • the correction of the braking start timing of the automatic brake control of the third embodiment is combined with the correction of the required deceleration characteristics described in the first and second embodiments, that is, the correction of the braking force of the automatic brake control. May be performed.
  • control may be performed so that the braking start timing of the automatic brake control is advanced by a predetermined time.
  • the determination as to whether or not the brake pads are deteriorated is that the difference is greater than or equal to the threshold value for half of all classes stored in the storage unit 15 in step S906 (FIG. 9) of the second embodiment. Depending on whether or not, it can be considered.
  • the schematic configuration of the vehicle brake system including the collision avoidance braking apparatus according to the fourth embodiment of the present invention is the same as that of the collision avoidance braking apparatus according to the first embodiment shown in FIG.
  • the processing of the calculation unit 14 is different from that of the collision avoidance braking apparatus according to the first embodiment.
  • the collision avoidance braking apparatus according to the fourth embodiment will be described focusing on the different processes.
  • step S607 in the correction value reflecting operation (FIG. 6) described above is different. Specifically, the calculation unit 14 reads the correction value of the class selected in step S604 from the storage unit 15 (step S606). Then, the calculation unit 14 outputs the read correction value to the automatic brake control unit 16 and instructs the automatic brake control unit 16 to advance the start timing of the filling process given to the brake actuator 52 according to the correction value. (Step S607).
  • FIG. 13 shows the difference in the start timing of the backpacking process between the conventional automatic brake control (a) and the automatic brake control (b) of the present invention.
  • the start timing of the loosening process of the brake actuator 52 is advanced by a correction value calculated based on the deterioration state of the brake pad. Therefore, according to this control, the brake pad temperature rises sufficiently to improve the braking effectiveness, so that the total braking force from the brake ON to the brake OFF can be achieved without increasing the braking force of the brake actuator 52. Can be substantially equivalent to the case where the braking force of the brake actuator 52 is increased.
  • the correction processing start timing of the automatic brake control is corrected using the correction value according to the deterioration state of the brake pad. .
  • the deceleration characteristic required by the automatic brake control unit 16 and the deceleration characteristic actually generated by the deteriorated brake pad are different.
  • the correction of the start processing timing of the automatic brake control of the fourth embodiment is the correction of the required deceleration characteristics described in the first and second embodiments, that is, the braking force of the automatic brake control. It may be performed in combination with the correction, and / or may be performed in combination with the correction of the braking start timing of the automatic brake control described in the third embodiment.
  • the collision avoidance braking device and the collision avoidance braking method according to the present invention can be used for a vehicle or the like having an automatic brake control device. Therefore, it is suitable when the braking start timing and the braking force are always appropriately controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

Provided is a collision avoidance braking device and a collision avoidance braking method in which the braking force and other parameters are controlled in an appropriate manner, taking the state of degradation of the brake pad into account, to avoid a collision between a vehicle and an obstacle with a high degree of accuracy. When the driver operates the brake, a computation unit (14) calculates the estimated friction coefficient μ on the basis of vehicle information and the brake hydraulic pressure obtained from a vehicle information obtaining unit (11) and a brake operation detector (13). Next, the computation unit (14) estimates the state of degradation of the brake pad from the estimated friction coefficient μ, and estimates the actual deceleration characteristics of the vehicle on the basis of the state of degradation of the brake pad. Next, the computation unit (14) calculates and stores a corrective value for causing the actual deceleration characteristics to conform to deceleration characteristics required by an automatic brake controller (16). Then, when there is a need for the vehicle to avoid an obstacle, the computation unit (14) uses the stored corrective value to correct the braking force presented by the automatic brake controller (16) to a brake actuator (52).

Description

衝突回避制動装置及び衝突回避制動方法Collision avoidance braking device and collision avoidance braking method
 本発明は、衝突回避制動装置及び衝突回避制動方法に関し、より特定的には、車両に搭載され、車両の障害物への衝突回避を支援するためにブレーキを自動的に制御する装置、及びその装置が実行する方法に関する。 The present invention relates to a collision avoidance braking device and a collision avoidance braking method, and more specifically, an apparatus that is mounted on a vehicle and that automatically controls a brake to assist in avoiding a collision with an obstacle of the vehicle, and its It relates to a method performed by an apparatus.
 車両に搭載される安全装置の1つとして、車両の周囲にある障害物を認識して、走行する車両が障害物に衝突せずに回避できるようドライバの操作を支援する衝突回避制動装置が開発されている。例えば、特許文献1及び特許文献2を参照。 As one of the safety devices mounted on the vehicle, a collision avoidance braking device that recognizes obstacles around the vehicle and assists the driver's operation so that the traveling vehicle can avoid it without colliding with the obstacle has been developed. Has been. For example, see Patent Document 1 and Patent Document 2.
 これらの従来の衝突回避制動装置では、車両に搭載された様々なセンサを用いて、制御に必要なパラメータを検出及び演算する。このパラメータとは、例えば車両の速度、車両の操舵角度、車両の重量、障害物までの距離、障害物の方向、路面の勾配、及び路面の摩擦係数等である。そして、衝突回避制動装置は、この検出及び演算によって得られたパラメータに基づいて、車両が障害物に衝突しないために必要なブレーキ操作の開始タイミング(以下、制動開始タイミングと記す)やブレーキの利き具合(以下、制動力と記す)を求め、ブレーキを自動的に制御する。 These conventional collision avoidance braking devices detect and calculate parameters necessary for control using various sensors mounted on the vehicle. The parameters include, for example, the speed of the vehicle, the steering angle of the vehicle, the weight of the vehicle, the distance to the obstacle, the direction of the obstacle, the slope of the road surface, and the friction coefficient of the road surface. Then, the collision avoidance braking device determines the braking operation start timing (hereinafter referred to as braking start timing) necessary to prevent the vehicle from colliding with the obstacle and the braking effectiveness based on the parameters obtained by the detection and calculation. The condition (hereinafter referred to as braking force) is obtained and the brake is automatically controlled.
特開2008-49932号公報JP 2008-49932 A 特開平5-294218号公報Japanese Patent Laid-Open No. 5-294218
 車両が障害物に衝突しないために必要な制動開始タイミングや制動力を決定する要因として、上述したパラメータ以外にブレーキバッド(又はブレーキシュー)の状態がある。つまり、ブレーキバッド(又はブレーキシュー)は、ディスクロータ(又はブレーキドラム)との接触で制動力を生じさせるため、長期間の使用によって接触面が摩耗するといった経時劣化が生じる。このため、経時劣化が生じたブレーキバッドは、劣化がないブレーキバッドと比べて制動力が小さくなる(図4を参照)。従って、制動開始タイミングや制動力を決定するためのパラメータに、ブレーキバッドの劣化状態を含めるのが望ましい。 As a factor for determining the braking start timing and braking force necessary for the vehicle not to collide with an obstacle, there is a brake pad (or brake shoe) state in addition to the parameters described above. That is, since the brake pad (or brake shoe) generates a braking force by contact with the disk rotor (or brake drum), deterioration over time occurs such that the contact surface is worn by long-term use. For this reason, a brake pad that has deteriorated over time has a smaller braking force than a brake pad that does not deteriorate (see FIG. 4). Therefore, it is desirable to include the deterioration state of the brake pad in the parameters for determining the braking start timing and the braking force.
 しかしながら、上記従来の衝突回避制動装置では、制動開始タイミングや制動力を決定するためのパラメータとして、ブレーキバッドの劣化状態を考慮していない。このため、従来の衝突回避制動装置では、ブレーキバッドの劣化が進んでいるような場合、演算で求められた制動開始タイミングや制動力では、車両が障害物との衝突を回避することができないということも考えられる。 However, the conventional collision avoidance braking device does not consider the deterioration state of the brake pad as a parameter for determining the braking start timing and the braking force. For this reason, in the conventional collision avoidance braking device, when the deterioration of the brake pad is progressing, the vehicle cannot avoid the collision with the obstacle with the braking start timing and the braking force obtained by the calculation. It is also possible.
 それ故に、本発明の目的は、ブレーキバッドの劣化状態を考慮して、制動開始タイミングや制動力を適切に制御することで、車両が障害物に衝突することを回避できる、衝突回避制動装置及び衝突回避制動方法を提供することである。 Therefore, an object of the present invention is to provide a collision avoidance braking apparatus that can avoid a vehicle from colliding with an obstacle by appropriately controlling the braking start timing and the braking force in consideration of the deterioration state of the brake pad. It is to provide a collision avoidance braking method.
 本発明は、自動ブレーキ制御を用いて車両の障害物への衝突回避を支援する衝突回避制動装置に向けられている。そして、上記目的を達成するために、本発明の衝突回避制動装置は、ドライバによるブレーキ操作を検出する検出部と、車両の減速度を少なくとも含んだ車両条件を取得する取得部と、ブレーキ操作検出時に取得された車両の減速度からブレーキパッドの劣化状態を推定し、自動ブレーキ制御実行時の車両の減速度をこの推定されたブレーキパッドの劣化状態に応じて補正する補正部とを備える。典型的には、検出部は、ブレーキ操作検出時のブレーキ油圧を取得する。また、補正部は、ブレーキ操作検出時に取得されたブレーキ油圧と車両の減速度との関係に基づいて、ブレーキパッドの劣化状態を推定する第1の推定部と、推定されたブレーキパッドの劣化状態に基づいて、現在の車両が持つ実際の減速度特性を推定する第2の推定部と、ブレーキ操作時の車両条件において、衝突回避のために車両に要求される減速度特性を算出する第1の算出部と、推定された実際の減速度特性と要求される減速度特性とが乖離している状態を解消させるための補正値を算出する第2の算出部と、補正値を用いて自動ブレーキ制御を実行する制御部とを備えている。 The present invention is directed to a collision avoidance braking device that assists in avoiding collision of a vehicle with an obstacle using automatic brake control. In order to achieve the above object, a collision avoidance braking apparatus according to the present invention includes a detection unit that detects a brake operation by a driver, an acquisition unit that acquires a vehicle condition including at least a deceleration of the vehicle, and a brake operation detection. And a correction unit that estimates a deterioration state of the brake pad from the vehicle deceleration acquired at times, and corrects the vehicle deceleration at the time of execution of the automatic brake control according to the estimated deterioration state of the brake pad. Typically, the detection unit acquires the brake hydraulic pressure at the time of detecting the brake operation. The correction unit includes a first estimation unit that estimates a deterioration state of the brake pad based on a relationship between the brake hydraulic pressure acquired when the brake operation is detected and the vehicle deceleration, and the estimated deterioration state of the brake pad. And a first estimation unit that estimates an actual deceleration characteristic of the current vehicle and a first deceleration characteristic that is required for the vehicle to avoid a collision in the vehicle condition at the time of the brake operation. A second calculation unit that calculates a correction value for eliminating a state where the estimated actual deceleration characteristic and the required deceleration characteristic are different from each other, and automatically using the correction value And a control unit that executes brake control.
 この構成により、衝突回避のために車両に要求される減速度特性と、劣化しているブレーキパッドによって実際に生じる減速度特性とが、乖離してしまう状況を改善することができる。 With this configuration, it is possible to improve the situation where the deceleration characteristic required for the vehicle for avoiding a collision and the deceleration characteristic actually generated by the deteriorated brake pad deviate.
 本衝突回避制動装置では、補正部が、第2の算出部で算出される補正値を、ブレーキ操作時の車両条件によって区分した複数のクラスに分類して記憶する記憶部をさらに備え、制御部によって、衝突回避が要求される時、その時の車両条件に一致するクラスに分類されている補正値を記憶部から読み出し、読み出した補正値を用いて自動ブレーキ制御を実行することが望ましい。車両条件については、車両の速度、車両の重量、道路の勾配、車両の外気温、走行エリアの天候、ブレーキ操作頻度の少なくとも1つを区分することが好ましい。 In the present collision avoidance braking device, the correction unit further includes a storage unit that stores the correction values calculated by the second calculation unit by classifying the correction values into a plurality of classes classified according to vehicle conditions at the time of the brake operation, and the control unit Thus, when collision avoidance is required, it is desirable to read out the correction value classified into the class that matches the vehicle condition at that time from the storage unit and execute the automatic brake control using the read correction value. Regarding vehicle conditions, it is preferable to classify at least one of vehicle speed, vehicle weight, road gradient, vehicle outside temperature, travel area weather, and brake operation frequency.
 このような構成では、車両の重量や道路の勾配等の車両条件に応じた複数の補正値を記憶しておくので、車両条件によってブレーキ油圧と減速度特性との関係が大きく変化した場合であっても、適切に自動ブレーキ制御を実行することができる。 In such a configuration, since a plurality of correction values corresponding to vehicle conditions such as vehicle weight and road gradient are stored, the relationship between the brake hydraulic pressure and the deceleration characteristics greatly changes depending on the vehicle conditions. Even in such a case, the automatic brake control can be appropriately executed.
 また、本衝突回避制動装置の制御部が実行する自動ブレーキ制御は、第1の算出部で算出される要求される減速度特性を読み出した補正値で補正した減速度特性に応じて行われてもよいし、規定の制動開始タイミングを読み出した補正値で補正した制動開始タイミングで行われてもよいし、規定のがた詰め処理開始タイミングを読み出した補正値で補正したがた詰め処理開始タイミングで行われてよい。 Further, the automatic brake control executed by the control unit of the collision avoidance braking device is performed according to the deceleration characteristic obtained by correcting the required deceleration characteristic calculated by the first calculation unit with the read correction value. Alternatively, it may be performed at the braking start timing corrected with the read correction value of the specified braking start timing, or the padding process start timing corrected with the read correction value of the specified padding processing start timing. May be done.
 いずれの方法で自動ブレーキ制御が実行されても、自動ブレーキ制御で発揮される総合的制動力は実質的に同じとなり、衝突回避のために車両に要求される減速度特性と、劣化しているブレーキパッドによって実際に生じる減速度特性とが、乖離してしまう状況を改善することができる。 Regardless of the method used to execute automatic brake control, the overall braking force exhibited by the automatic brake control is substantially the same, and the deceleration characteristics required for the vehicle for collision avoidance have deteriorated. It is possible to improve the situation in which the deceleration characteristic actually generated by the brake pad deviates.
 また、第1の推定部は、車両条件が所定の範囲を超えた場合、ブレーキパッドの劣化状態を推定しないように制御してもよい。
 このように制御すれば、車両条件が極端な場合に、精度の低い補正値を算出してしまうことを防ぐことができる。
Further, the first estimation unit may perform control so as not to estimate the deterioration state of the brake pad when the vehicle condition exceeds a predetermined range.
By controlling in this way, it is possible to prevent a correction value with low accuracy from being calculated when the vehicle conditions are extreme.
 なお、第2の算出部は、所定の期間に算出された複数の補正値の平均値を求め、この平均値を自動ブレーキ制御に用いる補正値として設定してもよい。
 このように設定すれば、ブレーキ操作が発生する度に算出される補正値が大きく変化するような不安定な車両走行状況下であっても、精度の高い衝突回避制動を提供することが可能となる。
The second calculation unit may obtain an average value of a plurality of correction values calculated during a predetermined period, and set the average value as a correction value used for automatic brake control.
With this setting, it is possible to provide highly accurate collision avoidance braking even under unstable vehicle traveling conditions in which the correction value calculated every time a brake operation occurs changes greatly. Become.
 また、本発明は、自動ブレーキ制御を用いて車両の障害物への衝突回避を支援する衝突回避制動装置が実行する衝突回避制動方法に向けられている。そして、上記目的を達成するために、本発明の衝突回避制動方法は、検出部が、ドライバによるブレーキ操作を検出するステップと、取得部が、車両の減速度を少なくとも含んだ車両条件を取得するステップと、演算部が、ブレーキ操作検出時に取得された車両の減速度からブレーキパッドの劣化状態を推定し、自動ブレーキ制御実行時の車両の減速度をその推定されたブレーキパッドの劣化状態に応じて補正するステップとを備える。典型的には、検出するステップは、ブレーキ操作検出時のブレーキ油圧を取得する。また、補正するステップは、演算部が、ブレーキ操作検出時に取得されたブレーキ油圧と車両の減速度との関係に基づいて、ブレーキパッドの劣化状態を推定するステップと、演算部が、推定されたブレーキパッドの劣化状態に基づいて、現在の車両が持つ実際の減速度特性を推定するステップと、演算部が、ブレーキ操作時の車両条件において、衝突回避のために車両に要求される減速度特性を算出するステップと、演算部が、推定された実際の減速度特性と要求される減速度特性とが乖離している状態を解消させるための補正値を算出するステップと、制御部が、補正値を用いて自動ブレーキ制御を実行するステップとを備える。 The present invention is also directed to a collision avoidance braking method executed by a collision avoidance braking apparatus that supports avoidance of a collision with an obstacle of a vehicle using automatic brake control. In order to achieve the above object, in the collision avoidance braking method of the present invention, the detection unit detects the brake operation by the driver, and the acquisition unit acquires the vehicle condition including at least the deceleration of the vehicle. The step and the calculation unit estimate the brake pad deterioration state from the vehicle deceleration acquired when the brake operation is detected, and the vehicle deceleration during the execution of the automatic brake control according to the estimated brake pad deterioration state And a step of correcting. Typically, in the detecting step, the brake hydraulic pressure at the time of detecting the brake operation is acquired. Further, the correcting step includes a step in which the calculation unit estimates a deterioration state of the brake pad based on a relationship between the brake hydraulic pressure acquired when the brake operation is detected and the deceleration of the vehicle, and the calculation unit is estimated. A step of estimating the actual deceleration characteristic of the current vehicle based on the deterioration state of the brake pad, and a deceleration characteristic required for the vehicle for avoiding a collision in the vehicle condition at the time of the brake operation Calculating the correction value for eliminating the state where the estimated actual deceleration characteristic and the required deceleration characteristic are different from each other, and the control unit Performing automatic brake control using the value.
 なお、この本発明の衝突回避制動方法は、一連の処理手順をコンピュータに実行させるためのプログラムの形式で提供される。このプログラムは、コンピュータ読み取り可能な記録媒体を介してコンピュータの記憶装置に導入されてもよいし、記録媒体上から直接実行されてもよい。この記録媒体は、ROMやRAMやフラッシュメモリ等の半導体メモリ、フレキシブルディスクやハードディスク等の磁気ディスクメモリ、CD-ROMやDVDやBD等の光ディスクメモリ、及びメモリカード等をいい、電話回線や搬送路等の通信媒体も含まれる。 The collision avoidance braking method of the present invention is provided in the form of a program for causing a computer to execute a series of processing procedures. This program may be introduced into a computer storage device via a computer-readable recording medium, or may be directly executed from the recording medium. This recording medium is a semiconductor memory such as a ROM, a RAM or a flash memory, a magnetic disk memory such as a flexible disk or a hard disk, an optical disk memory such as a CD-ROM, a DVD or a BD, a memory card, and the like. And other communication media.
 上記本発明の衝突回避制動装置及び衝突回避制動方法によれば、ブレーキバッドの劣化状態を考慮して、制動開始タイミングや制動力を常に適切に制御することができる。従って、障害物を回避できない状況を防ぐことが可能となる。 According to the collision avoidance braking apparatus and the collision avoidance braking method of the present invention, the brake start timing and the braking force can always be appropriately controlled in consideration of the deterioration state of the brake pad. Therefore, it is possible to prevent a situation where an obstacle cannot be avoided.
図1は、本発明の第1~第4の実施形態に係る衝突回避制動装置を含む車両ブレーキシステムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a vehicle brake system including a collision avoidance braking apparatus according to first to fourth embodiments of the present invention. 図2は、第1、第3、及び第4の実施形態に係る衝突回避制動装置が行う補正値取得動作の処理手順を示すフローチャートである。FIG. 2 is a flowchart showing a processing procedure of a correction value acquisition operation performed by the collision avoidance braking apparatus according to the first, third, and fourth embodiments. 図3は、ブレーキ操作時における摩擦係数μの特性を示す図である。FIG. 3 is a diagram showing the characteristics of the friction coefficient μ during the brake operation. 図4は、ブレーキ油圧と減速度との関係を示す図である。FIG. 4 is a diagram showing the relationship between brake hydraulic pressure and deceleration. 図5は、第1、第3、及び第4の実施形態の記憶部15にクラス毎に分類されて記憶される補正値の一例を概念的に示した図である。FIG. 5 is a diagram conceptually illustrating an example of correction values classified and stored for each class in the storage unit 15 of the first, third, and fourth embodiments. 図6は、第1~第4の実施形態に係る衝突回避制動装置が行う補正値反映動作の処理手順を示すフローチャートである。FIG. 6 is a flowchart showing the procedure of the correction value reflecting operation performed by the collision avoidance braking apparatus according to the first to fourth embodiments. 図7は、第1の実施形態に係る衝突回避制動装置が行う補正値取得動作の他の処理手順を示すフローチャートである。FIG. 7 is a flowchart illustrating another processing procedure of the correction value acquisition operation performed by the collision avoidance braking apparatus according to the first embodiment. 図8は、第2の実施形態に係る衝突回避制動装置が行う補正値取得動作の処理手順を示すフローチャートである。FIG. 8 is a flowchart illustrating a processing procedure of a correction value acquisition operation performed by the collision avoidance braking apparatus according to the second embodiment. 図9は、図8に示すステップS801の詳細な処理手順を示すフローチャートである。FIG. 9 is a flowchart showing a detailed processing procedure of step S801 shown in FIG. 図10は、演算部14で求められる平均補正値の概念を示す図である。FIG. 10 is a diagram illustrating the concept of the average correction value obtained by the calculation unit 14. 図11は、第2の実施形態の記憶部15に記憶されるクラス毎の補正値及び平均補正値の一例を概念的に示した図である。FIG. 11 is a diagram conceptually illustrating an example of the correction value and the average correction value for each class stored in the storage unit 15 of the second embodiment. 図12は、従来の衝突回避制動装置が行う自動ブレーキ制御(a)と本発明の第3の実施形態に係る衝突回避制動装置が行う自動ブレーキ制御(b)とにおける制動開始タイミングの違いを示す図である。FIG. 12 shows the difference in braking start timing between the automatic brake control (a) performed by the conventional collision avoidance braking apparatus and the automatic brake control (b) performed by the collision avoidance braking apparatus according to the third embodiment of the present invention. FIG. 図13は、従来の衝突回避制動装置が行う自動ブレーキ制御(a)と本発明の第4の実施形態に係る衝突回避制動装置が行う自動ブレーキ制御(b)とにおけるがた詰め処理開始タイミングの違いを示す図である。FIG. 13 shows the start timing of the backpacking process in the automatic brake control (a) performed by the conventional collision avoidance braking apparatus and the automatic brake control (b) performed by the collision avoidance braking apparatus according to the fourth embodiment of the present invention. It is a figure which shows a difference.
 以下、本発明の各実施形態について、図面を参照しながら説明する。
  <第1の実施形態>
 図1は、本発明の第1の実施形態に係る衝突回避制動装置を含む車両ブレーキシステムの概略構成を示す図である。図1に示す車両ブレーキシステムは、第1の実施形態に係る衝突回避制動装置と、ブレーキ制御部51と、4つのブレーキアクチュエータ52とを備える。この第1の実施形態に係る衝突回避制動装置は、車両情報取得部11、障害物検出部12、ブレーキ操作検出部13、演算部14、記憶部15、及び自動ブレーキ制御部16を含む。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
FIG. 1 is a diagram showing a schematic configuration of a vehicle brake system including a collision avoidance braking apparatus according to a first embodiment of the present invention. The vehicle brake system shown in FIG. 1 includes a collision avoidance braking apparatus according to the first embodiment, a brake control unit 51, and four brake actuators 52. The collision avoidance braking device according to the first embodiment includes a vehicle information acquisition unit 11, an obstacle detection unit 12, a brake operation detection unit 13, a calculation unit 14, a storage unit 15, and an automatic brake control unit 16.
 まず、第1の実施形態に係る衝突回避制動装置の各構成を簡単に説明する。
 車両情報取得部11は、各種センサやGPS等の情報取得機構を備えており、車両の速度、車両の減速度、車両の重量、道路の勾配、車両の外気温、走行エリアの天候、ブレーキ操作頻度等の車両の条件(又は状態)に関する情報(以下、車両情報と記す)を取得する。例えば、車両の速度は、車速センサを用いて取得できる。車両の減速度は、減速センサを用いて取得できる。車両の重量は、サスペンションセンサの変位量から求められる。道路の勾配は、車速センサ及びジャイロセンサを用い、車輪速の微分値とセンサ値との差異から求められる。車両の外気温は、温度センサを用いて取得できる。走行エリアの天候は、GPSを介した気象情報やワイパーの作動状態から取得できる。ブレーキ操作頻度は、ストップランプの点灯状態から取得できる。この車両情報は、演算部14に出力される。
First, each configuration of the collision avoidance braking apparatus according to the first embodiment will be briefly described.
The vehicle information acquisition unit 11 includes information acquisition mechanisms such as various sensors and GPS, and includes vehicle speed, vehicle deceleration, vehicle weight, road gradient, vehicle outside temperature, travel area weather, and brake operation. Information about vehicle conditions (or states) such as frequency (hereinafter referred to as vehicle information) is acquired. For example, the speed of the vehicle can be acquired using a vehicle speed sensor. The deceleration of the vehicle can be acquired using a deceleration sensor. The weight of the vehicle is obtained from the displacement amount of the suspension sensor. The road gradient is obtained from the difference between the differential value of the wheel speed and the sensor value using a vehicle speed sensor and a gyro sensor. The outside air temperature of the vehicle can be acquired using a temperature sensor. The weather in the travel area can be acquired from weather information via GPS or the operating state of the wiper. The brake operation frequency can be acquired from the lighting state of the stop lamp. This vehicle information is output to the calculation unit 14.
 障害物検出部12は、レーザレーダ、マイクロ波レーダ、ミリ波レーダ、又は超音波レーダ等を備えており、車両の周囲に存在する障害物を検出する。そして、障害物検出部12は、車両から障害物までの相対距離、車両と障害物との相対速度、及び障害物が存在する方向等の情報(以下、障害物情報と記す)を取得する。例えば、障害物情報は、車両から周囲に向けてレーダ波を発信し、このレーダ波が障害物に当たって車両に戻ってくる反射波を受信することで取得できる。この障害物情報は、演算部14に出力される。 The obstacle detection unit 12 includes a laser radar, a microwave radar, a millimeter wave radar, an ultrasonic radar, or the like, and detects an obstacle present around the vehicle. The obstacle detection unit 12 acquires information such as a relative distance from the vehicle to the obstacle, a relative speed between the vehicle and the obstacle, and a direction in which the obstacle exists (hereinafter referred to as obstacle information). For example, the obstacle information can be acquired by transmitting a radar wave from the vehicle toward the surroundings and receiving a reflected wave that hits the obstacle and returns to the vehicle. This obstacle information is output to the calculation unit 14.
 ブレーキ操作検出部13は、ペダルセンサや油圧センサ等を備えており、ドライバによるブレーキ操作、つまりブレーキペダル踏み込みの有無、及びブレーキペダルの踏み込み量に応じたブレーキ油圧の情報(以下、ブレーキ情報と記す)を取得する。このブレーキ情報は、演算部14及びブレーキ制御部51に出力される。 The brake operation detection unit 13 includes a pedal sensor, a hydraulic pressure sensor, and the like, and brake operation by the driver, that is, whether or not the brake pedal is depressed, and information on brake hydraulic pressure according to the depression amount of the brake pedal (hereinafter referred to as brake information). ) To get. This brake information is output to the calculation unit 14 and the brake control unit 51.
 演算部14は、車両情報取得部11から車両情報を、障害物検出部12から障害物情報を、及びブレーキ操作検出部13からブレーキ情報をそれぞれ入力し、各情報に基づいて必要な演算を行う。この演算部14は、車両が通常走行中であると判断した場合には、所定のタイミングで演算される補正値を記憶部15に逐次記憶し、車両が障害物との衝突を回避する必要があると判断した場合には、記憶部15にすでに記憶されている補正値に基づいて、自動ブレーキ制御部16へ適切な指示を与える。 The calculation unit 14 inputs vehicle information from the vehicle information acquisition unit 11, obstacle information from the obstacle detection unit 12, and brake information from the brake operation detection unit 13, and performs necessary calculations based on each information. . When it is determined that the vehicle is traveling normally, the calculation unit 14 sequentially stores correction values calculated at a predetermined timing in the storage unit 15 so that the vehicle needs to avoid a collision with an obstacle. If it is determined that there is, an appropriate instruction is given to the automatic brake control unit 16 based on the correction value already stored in the storage unit 15.
 記憶部15は、自動ブレーキ制御部16が行う自動ブレーキ制御によって生じる制動力を補正するための補正値を記憶する。この補正値は、車両情報に含まれる複数の情報について所定の車両条件によって予め区分された、複数のクラスのそれぞれに対応して記憶されている。この複数のクラスの詳細については、後述する。 The storage unit 15 stores a correction value for correcting the braking force generated by the automatic brake control performed by the automatic brake control unit 16. This correction value is stored in correspondence with each of a plurality of classes that are preliminarily classified according to predetermined vehicle conditions for a plurality of pieces of information included in the vehicle information. Details of the plurality of classes will be described later.
 自動ブレーキ制御部16は、演算部14によって車両が障害物との衝突を回避する必要があると判断された場合、その時点での車両条件において衝突回避のために要求される減速度特性を算出し、算出した減速度特性を演算部14から与えられる補正値で補正する。そして、自動ブレーキ制御部16は、補正した要求減速度特性に従って、車両の四輪に設けられたブレーキアクチュエータ52で発生させる制動力を制御する。この制御は、ドライバの意思に従ったブレーキ操作とは独立して行われる。なお、ドライバの意思に従ったブレーキ操作に応じたブレーキアクチュエータ52の制動力の制御は、ブレーキ制御部51を介して行われる。 When the calculation unit 14 determines that the vehicle needs to avoid a collision with an obstacle, the automatic brake control unit 16 calculates a deceleration characteristic required for the collision avoidance in the vehicle condition at that time. Then, the calculated deceleration characteristic is corrected with a correction value given from the calculation unit 14. Then, the automatic brake control unit 16 controls the braking force generated by the brake actuators 52 provided on the four wheels of the vehicle according to the corrected required deceleration characteristic. This control is performed independently of the brake operation according to the driver's intention. Control of the braking force of the brake actuator 52 according to the brake operation according to the driver's intention is performed via the brake control unit 51.
 次に、上記構成による第1の実施形態に係る衝突回避制動装置で行われる衝突回避制動手法を、図2~図6をさらに参照して説明する。
 図2は、第1の実施形態に係る衝突回避制動装置が行う補正値取得動作の処理手順を示すフローチャートである。図3は、ブレーキ操作時における摩擦係数μの特性を示す図である。図4は、ブレーキ油圧と減速度との関係を示す図である。図5は、記憶部15に記憶されるクラス毎の補正値の一例を概念的に示した図である。図6は、第1の実施形態に係る衝突回避制動装置が行う補正値反映動作の処理手順を示すフローチャートである。
Next, a collision avoidance braking method performed by the collision avoidance braking apparatus according to the first embodiment having the above-described configuration will be described with further reference to FIGS.
FIG. 2 is a flowchart showing a processing procedure of a correction value acquisition operation performed by the collision avoidance braking apparatus according to the first embodiment. FIG. 3 is a diagram showing the characteristics of the friction coefficient μ during the brake operation. FIG. 4 is a diagram showing the relationship between brake hydraulic pressure and deceleration. FIG. 5 is a diagram conceptually illustrating an example of the correction value for each class stored in the storage unit 15. FIG. 6 is a flowchart showing a processing procedure of a correction value reflecting operation performed by the collision avoidance braking apparatus according to the first embodiment.
 本発明の衝突回避制動装置では、補正値取得動作及び補正値反映動作が行われる。
 補正値取得動作は、車両の周囲に障害物が存在しない通常走行中におけるドライバのブレーキ操作時に行われる動作であり、ブレーキパッドの劣化状態を推定し、この推定した劣化状態に基づいて車両の減速度特性に関わる補正値を求め、この求めた補正値を車両情報に関連付けてクラス毎に記憶する。
 補正値反映動作は、車両の周囲に障害物が存在していて車両が障害物を回避する必要が生じた時に行われる動作であり、その時の車両条件と一致するクラスに関連付けて記憶されている補正値を用いて、自動ブレーキ制御において要求される減速度特性を補正する。
 以下、この補正値取得動作及び補正値反映動作について説明する。
In the collision avoidance braking apparatus of the present invention, the correction value acquisition operation and the correction value reflection operation are performed.
The correction value acquisition operation is an operation that is performed when the driver performs a brake operation during normal driving without an obstacle around the vehicle. The deterioration state of the brake pad is estimated, and the vehicle is reduced based on the estimated deterioration state. A correction value related to the speed characteristic is obtained, and the obtained correction value is stored in association with the vehicle information for each class.
The correction value reflecting operation is an operation performed when an obstacle exists around the vehicle and the vehicle needs to avoid the obstacle, and is stored in association with a class that matches the vehicle condition at that time. Using the correction value, the deceleration characteristic required in the automatic brake control is corrected.
Hereinafter, the correction value acquisition operation and the correction value reflection operation will be described.
1.補正値取得動作
 図2において、補正値取得動作は、イグニッションボタンがONされる等によって車両が始動することで開始される。車両の始動後、ブレーキ操作検出部13は、ドライバによって行われるブレーキ操作を検出する(ステップS201)。このステップS201においてブレーキ操作が検出された場合、車両情報取得部11は、検出時の車両情報を取得する(ステップS202)。また、ブレーキ操作検出部13は、検出時のブレーキ油圧を取得する(ステップS203)。
1. Correction Value Acquisition Operation In FIG. 2, the correction value acquisition operation is started when the vehicle is started by turning on the ignition button or the like. After the vehicle is started, the brake operation detection unit 13 detects a brake operation performed by the driver (step S201). When a brake operation is detected in step S201, the vehicle information acquisition unit 11 acquires vehicle information at the time of detection (step S202). Moreover, the brake operation detection part 13 acquires the brake hydraulic pressure at the time of detection (step S203).
 車両情報及びブレーキ油圧を取得すると、演算部14は、下記の数式に従って、推定摩擦係数μを算出する(ステップS204)。この数式において、Gは車両の減速度、Lは車両の重量、Rはタイヤ半径、Pはブレーキ油圧、AはW/C面積、及びrは制動有効半径である。
   μ=G×L×R/(2×P×A×r)
 この推定摩擦係数μは、図3に示すように所定の時間が経過すればある値に収束する特性を有する。従って、安定した推定摩擦係数μを得るために、ブレーキ操作の発生から所定の時間が経過した期間X内において変動幅Yを持つ推定摩擦係数μを求める(ステップS205;Yes)。なお、推定摩擦係数μが、ブレーキ操作の発生から所定の時間が経過した期間X内において変動幅Yを持たない場合には(ステップS205;No)、安定した推定摩擦係数μを得られないと判断されて補正値は算出されない。
When the vehicle information and the brake hydraulic pressure are acquired, the calculation unit 14 calculates the estimated friction coefficient μ according to the following mathematical formula (step S204). In this equation, G is the deceleration of the vehicle, L is the weight of the vehicle, R is the tire radius, P is the brake hydraulic pressure, A is the W / C area, and r is the effective braking radius.
μ = G × L × R / (2 × P × A × r)
As shown in FIG. 3, the estimated friction coefficient μ has a characteristic that converges to a certain value when a predetermined time elapses. Accordingly, in order to obtain a stable estimated friction coefficient μ, an estimated friction coefficient μ having a fluctuation range Y within a period X in which a predetermined time has elapsed since the occurrence of the brake operation is obtained (step S205; Yes). If the estimated friction coefficient μ does not have the fluctuation range Y within the period X after a predetermined time has elapsed since the occurrence of the brake operation (step S205; No), the estimated estimated friction coefficient μ cannot be obtained. As a result, the correction value is not calculated.
 次に、演算部14は、算出された推定摩擦係数μからブレーキパッドの劣化状態を推定する(ステップS206)。つまり、演算部14は、推定摩擦係数μが大きいほど劣化がない又は劣化が少ないブレーキパッドであると判断する。図3の例では、劣化がないブレーキパッド(新品)及び劣化があるブレーキパッド(劣化品)に関する摩擦係数μの特性を示している。 Next, the calculation unit 14 estimates the deterioration state of the brake pad from the calculated estimated friction coefficient μ (step S206). That is, the calculation unit 14 determines that the brake pad is less deteriorated or less deteriorated as the estimated friction coefficient μ is larger. In the example of FIG. 3, the characteristics of the friction coefficient μ regarding the brake pad without deterioration (new article) and the brake pad with deterioration (deteriorated article) are shown.
 次に、演算部14は、推定したブレーキパッドの劣化状態に基づいて、現在の車両条件において車両が持つ実際の減速度特性を推定する(ステップS207)。ここで、ブレーキ油圧と減速度との関係は、ブレーキ油圧の昇圧勾配が線形に変化する範囲においては図4に示す特性を有する。すなわち、ブレーキ油圧が同じ場合、ブレーキパッドが劣化している時(劣化品)の減速度は、ブレーキパッドが劣化していない時(新品)の減速度に対して比例的に小さくなる。そこで、現在のブレーキパッドの劣化状態に合った車両の実際の減速度特性を、図4に示す関係から推定する。 Next, the calculation unit 14 estimates the actual deceleration characteristic of the vehicle under the current vehicle conditions based on the estimated deterioration state of the brake pad (step S207). Here, the relationship between the brake hydraulic pressure and the deceleration has the characteristic shown in FIG. 4 in the range where the pressure increase gradient of the brake hydraulic pressure changes linearly. That is, when the brake hydraulic pressure is the same, the deceleration when the brake pad is deteriorated (deteriorated product) is proportionally smaller than the deceleration when the brake pad is not deteriorated (new product). Therefore, the actual deceleration characteristic of the vehicle that matches the current deterioration state of the brake pad is estimated from the relationship shown in FIG.
 そして、演算部14は、障害物との衝突を回避する際に、車両に要求される減速度特性を補正する補正値を算出する(ステップS208)。この補正値は、衝突回避制動時において、自動ブレーキ制御部16がブレーキアクチュエータ52を制動することで得られる車両の実際の減速度特性が、ブレーキパッドの劣化が原因で要求される減速度特性と乖離してしまうことを防ぐためのものである。すなわち、この補正値は、実際の減速度特性と要求される減速度特性との乖離を解消させるために、要求される減速度特性を良くする方向に補正するものである。 And the calculating part 14 calculates the correction value which corrects the deceleration characteristic requested | required of a vehicle, when avoiding the collision with an obstruction (step S208). This correction value is obtained when the actual deceleration characteristic of the vehicle obtained by braking the brake actuator 52 by the automatic brake control unit 16 during the collision avoidance braking is the deceleration characteristic required due to the deterioration of the brake pad. This is to prevent divergence. That is, this correction value is used to correct the required deceleration characteristic in order to eliminate the difference between the actual deceleration characteristic and the required deceleration characteristic.
 上述した推定摩擦係数μの変化特性(図3)やブレーキ油圧-減速度特性(図4)は、車両の重量や道路の勾配等によって大きく変化する。このため、演算部14は、車両条件が異なる複数のクラスについて、補正値をそれぞれ算出する。この複数のクラス毎に算出された複数の補正値は、各クラスの車両情報と共に分類されて記憶部15に記憶される(ステップS209)。図5は、記憶部15にクラス毎に分類されて記憶される補正値の一例を概念的に示した図である。 The above-described change characteristic of the estimated friction coefficient μ (FIG. 3) and brake hydraulic pressure-deceleration characteristic (FIG. 4) vary greatly depending on the vehicle weight, road gradient, and the like. Therefore, the calculation unit 14 calculates correction values for a plurality of classes having different vehicle conditions. The plurality of correction values calculated for each of the plurality of classes are classified together with the vehicle information of each class and stored in the storage unit 15 (step S209). FIG. 5 is a diagram conceptually illustrating an example of correction values classified and stored for each class in the storage unit 15.
 上述したステップS201~S209の処理は、イグニッションボタンがOFFされる等によって車両がエンジン停止するまで繰り返し行われる(ステップS210)。この繰り返し行われる補正値取得動作によって、通常走行中に実際のブレーキパッドの劣化状態に対応した補正値を、車両の様々な車両条件に関して区分したクラス毎に取得することができる。 The processes in steps S201 to S209 described above are repeated until the vehicle stops the engine, for example, when the ignition button is turned off (step S210). Through this correction value acquisition operation that is repeatedly performed, a correction value corresponding to the actual deterioration state of the brake pad during normal traveling can be acquired for each class classified with respect to various vehicle conditions of the vehicle.
 なお、補正値取得動作を繰り返し行うことにより、すでに補正値を記憶部15に記憶しているクラスについて再び補正値の算出が行われる場合もある。この場合には、本第1の実施形態では、常に最新の補正値が算出される度に該当するクラスの補正値を上書きで更新することを行う。 Note that, by repeatedly performing the correction value acquisition operation, the correction value may be calculated again for the class for which the correction value is already stored in the storage unit 15. In this case, in the first embodiment, the correction value of the corresponding class is updated by overwriting every time the latest correction value is calculated.
2.補正値反映動作
 上述した補正値取得動作と並行して行われるのが、この補正値反映動作である。
 図6において、この補正値反映動作は、障害物検出部12において車両の周囲に存在する障害物が検出されると開始される。障害物が検出されると、車両情報取得部11は、障害物検出時の車両情報を取得する(ステップS601)。演算部14は、障害物検出部12から与えられる障害物情報及び車両情報取得部11から与えられる車両情報を解析し、車両が障害物に衝突する可能性を示した衝突危険度を算出する(ステップS602)。そして、演算部14は、算出した衝突危険度が所定値以上であるか否かを判断する(ステップS603)。
2. Correction value reflection operation This correction value reflection operation is performed in parallel with the correction value acquisition operation described above.
In FIG. 6, the correction value reflecting operation is started when an obstacle present around the vehicle is detected by the obstacle detection unit 12. When an obstacle is detected, the vehicle information acquisition unit 11 acquires vehicle information at the time of detecting the obstacle (step S601). The calculation unit 14 analyzes the obstacle information given from the obstacle detection unit 12 and the vehicle information given from the vehicle information acquisition unit 11, and calculates a collision risk degree indicating that the vehicle may collide with the obstacle ( Step S602). Then, the calculation unit 14 determines whether or not the calculated collision risk is equal to or greater than a predetermined value (step S603).
 上記ステップS603において衝突危険度が所定値以上であると判断した場合、演算部14は、記憶部15に記憶されている複数のクラスの中から、上記ステップS601で取得した車両情報に含まれる車両条件に一致する車両条件を持つクラスを、1つ選定する(ステップS604)。ステップS604でクラスが選定されると、演算部14は、この選定されたクラスの補正値を記憶部15から読み出す(ステップS606)。そして、演算部14は、読み出した補正値に従って要求する減速度特性を補正するように自動ブレーキ制御部16に指示する(ステップS607)。そして、自動ブレーキ制御部16は、補正後の要求減速度特性に従ってブレーキアクチュエータ52の制動力を制御する(ステップS608)。これにより、自動ブレーキ制御部16によって要求される減速度特性と略一致した減速度特性を、車両に持たせることができる。 If it is determined in step S603 that the collision risk is greater than or equal to a predetermined value, the calculation unit 14 selects a vehicle included in the vehicle information acquired in step S601 from the plurality of classes stored in the storage unit 15. One class having a vehicle condition that matches the condition is selected (step S604). When a class is selected in step S604, the calculation unit 14 reads the correction value of the selected class from the storage unit 15 (step S606). Then, the calculation unit 14 instructs the automatic brake control unit 16 to correct the requested deceleration characteristic according to the read correction value (step S607). Then, the automatic brake control unit 16 controls the braking force of the brake actuator 52 according to the corrected required deceleration characteristic (step S608). As a result, the vehicle can have a deceleration characteristic that substantially matches the deceleration characteristic required by the automatic brake control unit 16.
 なお、上記ステップS604で選定したクラスに補正値がまだ記憶されていない場合には、補正値を用いた制動力の補正が行われることなく補正値反映動作が終了し(ステップS605;No)、自動ブレーキ制御部16によって通常の自動ブレーキ制御が実施される。 If the correction value is not yet stored in the class selected in step S604, the correction value reflecting operation is terminated without correcting the braking force using the correction value (step S605; No). The automatic brake control unit 16 performs normal automatic brake control.
 以上のように、本発明の第1の実施形態に係る衝突回避制動装置によれば、通常走行中に実際のブレーキパッドの劣化状態に応じた補正値を算出しておき、車両と障害物との衝突を回避すべき場面では、自動ブレーキ制御にこの算出された補正値を反映させる。これにより、自動ブレーキ制御部16で要求される減速度特性と、劣化しているブレーキパッドによって実際に生じる減速度特性とが、乖離してしまう状況を改善することができる。従って、本衝突回避制動装置は、常に最適な制動力をブレーキアクチュエータ52に与えることができ、それにより車両の障害物回避の精度を向上させることが可能となる。 As described above, according to the collision avoidance braking apparatus according to the first embodiment of the present invention, the correction value corresponding to the actual deterioration state of the brake pad is calculated during normal traveling, and the vehicle, the obstacle, In a scene where the collision of the vehicle should be avoided, the calculated correction value is reflected in the automatic brake control. As a result, it is possible to improve the situation in which the deceleration characteristic required by the automatic brake control unit 16 and the deceleration characteristic actually generated by the deteriorated brake pad deviate from each other. Therefore, the present collision avoidance braking apparatus can always apply the optimum braking force to the brake actuator 52, thereby improving the accuracy of obstacle avoidance of the vehicle.
 なお、上記第1の実施形態では、ドライバによってブレーキ操作された場合、車両がどのような条件に置かれていても常に補正値取得動作を実行する場合を説明した。
 しかし、車両条件が極端な場合、例えば乗員数及び荷物が多く車両重量が非常に重い時、急な道路勾配で四輪の制動力バランスが悪い時、ブレーキ操作の頻度が高くブレーキパッドの温度が極端に高くなっている時、気温や天候が悪化して路面の摩擦係数が極端に変化している時等には、精度の高い補正値を算出することは困難であると言える。従って、図7に示すように、図2のステップS202とステップS203との間にステップS701及びS702を挿入して、高精度の補正値が得られないと判断される場面では補正値取得動作を行わないようにしてもよい。
In the first embodiment, the case where the correction value acquisition operation is always executed when the brake is operated by the driver regardless of the condition of the vehicle has been described.
However, when the vehicle conditions are extreme, for example, when the number of passengers and luggage is large and the vehicle weight is very heavy, when the braking force balance of the four wheels is poor due to a steep road slope, the frequency of brake operation is high and the temperature of the brake pad is high. It can be said that it is difficult to calculate a highly accurate correction value when the temperature is extremely high, when the temperature and weather are deteriorated, and the friction coefficient of the road surface is extremely changed. Therefore, as shown in FIG. 7, steps S701 and S702 are inserted between step S202 and step S203 in FIG. 2, and a correction value acquisition operation is performed in a case where it is determined that a highly accurate correction value cannot be obtained. It may not be performed.
  <第2の実施形態>
 上記第1の実施形態では、ドライバが行うブレーキ操作に応じてその都度算出される補正値(図2:ステップS208)は、記憶部15の該当するクラスに上書きで記憶される(図2:ステップS209)。従って、記憶部15に記憶される補正値は、最新の補正値が1つだけである(図5を参照)。
 ところが、現実には、補正値取得動作を行う時のブレーキパッドの温度、濡れ具合、及び錆の付着量等によって推定されるブレーキパッドの劣化状態の良し悪しがばらつくことが考えられる。従って、最新のブレーキ操作で算出される補正値に基づくだけでは、実際に障害物を回避することができない場合も考えられ得る。
 そこで、本第2の実施形態では、車両による障害物回避の精度をより向上させる補正値の算出方法を説明する。
<Second Embodiment>
In the first embodiment, the correction value (FIG. 2: step S208) calculated each time in response to the brake operation performed by the driver is overwritten and stored in the corresponding class in the storage unit 15 (FIG. 2: step). S209). Therefore, the correction value stored in the storage unit 15 is only one latest correction value (see FIG. 5).
However, in reality, it is conceivable that the deterioration state of the brake pad, which is estimated based on the temperature of the brake pad when the correction value acquisition operation is performed, the wetness, the amount of attached rust, and the like varies. Therefore, there may be a case where an obstacle cannot be actually avoided only based on the correction value calculated by the latest brake operation.
Therefore, in the second embodiment, a correction value calculation method for further improving the accuracy of obstacle avoidance by the vehicle will be described.
 本発明の第2の実施形態に係る衝突回避制動装置を含む車両ブレーキシステムの概略構成は、図1に示した第1の実施形態に係る衝突回避制動装置と同様である。ただし、この第2の実施形態に係る衝突回避制動装置では、演算部14の処理及び記憶部15の記憶内容が第1の実施形態に係る衝突回避制動装置と若干異なる。
 以下、この異なる処理を中心に、第2の実施形態に係る衝突回避制動装置を説明する。
The schematic configuration of the vehicle brake system including the collision avoidance braking apparatus according to the second embodiment of the present invention is the same as that of the collision avoidance braking apparatus according to the first embodiment shown in FIG. However, in the collision avoidance braking apparatus according to the second embodiment, the processing of the calculation unit 14 and the stored contents of the storage unit 15 are slightly different from those of the collision avoidance braking apparatus according to the first embodiment.
Hereinafter, the collision avoidance braking apparatus according to the second embodiment will be described focusing on the different processes.
 図8は、第2の実施形態に係る衝突回避制動装置が行う補正値取得動作の処理手順を示すフローチャートである。補正値取得動作については、上記第1の実施形態で説明したとおりであり、本第2の実施形態においては、図8のステップS801の補正値記憶処理が図2と異なる。この図8におけるステップS801の詳細な処理は、図9のフローチャートに示される。 FIG. 8 is a flowchart showing a processing procedure of a correction value acquisition operation performed by the collision avoidance braking apparatus according to the second embodiment. The correction value acquisition operation is as described in the first embodiment. In the second embodiment, the correction value storage process in step S801 in FIG. 8 is different from that in FIG. The detailed process of step S801 in FIG. 8 is shown in the flowchart of FIG.
 図9において、演算部14は、まず、記憶部15におけるブレーキ操作時の車両条件に該当するクラスに、図8のステップS208で算出した補正値を記憶する(ステップS901)。このとき、演算部14は、すでに記憶されている前回算出した補正値を消去することなく、今回算出した補正値を記憶部15に追記する。次に、演算部14は、補正値を追記したクラスの全ての補正値から所定の期間に記憶された複数の補正値を、記憶部15から読み出して、この複数の補正値を平均した平均補正値を求める(ステップS902)。図10に、演算部14で求められる平均補正値の概念を示す。なお、所定の期間の長さは、ブレーキパッドの材質や耐久力等に応じて任意に設定すればよい。 In FIG. 9, the calculating part 14 first memorize | stores the correction value calculated by step S208 of FIG. 8 in the class applicable to the vehicle conditions at the time of the brake operation in the memory | storage part 15 (step S901). At this time, the calculation unit 14 adds the correction value calculated this time to the storage unit 15 without deleting the previously calculated correction value already stored. Next, the calculation unit 14 reads out a plurality of correction values stored in a predetermined period from all the correction values of the class to which the correction value is added from the storage unit 15, and averages the plurality of correction values. A value is obtained (step S902). FIG. 10 shows the concept of the average correction value obtained by the calculation unit 14. In addition, what is necessary is just to set arbitrarily the length of a predetermined period according to the material, durability, etc. of a brake pad.
 上記ステップS902において、今回の平均補正値が求まると、演算部14は、過去の平均補正値が記憶部15にすでに記憶されているかを確認する(ステップS903)。そして、ステップS903での確認の結果、過去の平均補正値が記憶されている場合、演算部14は、過去の平均補正値と今回の平均補正値との差分を求める(ステップS904、図10)。なお、ステップS903での確認の結果、過去の平均補正値が記憶されていない場合には、演算部14は、今回の平均補正値を新たに記憶部15に記憶する(ステップS908)。 In step S902, when the current average correction value is obtained, the calculation unit 14 checks whether the past average correction value is already stored in the storage unit 15 (step S903). When the past average correction value is stored as a result of the confirmation in step S903, the calculation unit 14 obtains a difference between the past average correction value and the current average correction value (step S904, FIG. 10). . If the past average correction value is not stored as a result of the confirmation in step S903, the calculation unit 14 newly stores the current average correction value in the storage unit 15 (step S908).
 次に、演算部14は、上記ステップS904で求められた差分が予め定めた閾値以上か否かを判断する(ステップS905)。このステップS905で差分が閾値以上であると判断されると、演算部14は、今回の平均補正値を記憶部15に上書きで記憶する(ステップS908)。一方、このステップS905で差分が閾値以上でないと判断されると、演算部14は、補正値を追記したクラス以外の他のクラスについても、以前に行った差分が閾値以上か否かについての結果を確認し、差分が閾値以上となったクラスが全クラスの半数を超えるか否かを判断する(ステップS906)。 Next, the calculation unit 14 determines whether or not the difference obtained in step S904 is equal to or greater than a predetermined threshold (step S905). If it is determined in step S905 that the difference is greater than or equal to the threshold, the calculation unit 14 stores the current average correction value in the storage unit 15 by overwriting (step S908). On the other hand, when it is determined in step S905 that the difference is not greater than or equal to the threshold, the calculation unit 14 also determines whether the previously performed difference is greater than or equal to the threshold for other classes other than the class to which the correction value is added. Is checked, and it is determined whether or not the class having the difference equal to or greater than the threshold exceeds half of all classes (step S906).
 上記ステップS906で差分が閾値以上となったクラスが全クラスの半数を超えると判断されると、演算部14は、補正値を追記したクラスで求めた今回の平均補正値を記憶部15に上書きで記憶する(ステップS908)。しかし、ステップS906で差分が閾値以上となったクラスが全クラスの半数に満たないと判断されると、演算部14は、今回の平均補正値を記憶部15に記憶せずに過去の平均補正値をそのまま保持する(ステップS907)。 When it is determined in step S906 that the class whose difference is equal to or greater than the threshold exceeds half of all classes, the calculation unit 14 overwrites the storage unit 15 with the current average correction value obtained in the class in which the correction value is added. (Step S908). However, if it is determined in step S906 that the class whose difference is equal to or greater than the threshold value is less than half of all classes, the calculation unit 14 does not store the current average correction value in the storage unit 15 and stores the past average correction. The value is held as it is (step S907).
 図11は、記憶部15に記憶されるクラス毎の補正値及び平均補正値の一例を概念的に示した図である。この図11に示すように、第2の実施形態に係る衝突回避制動装置では、各クラスについて補正値が算出される度に補正値を追記していくと共に、求められた平均補正値も記憶される。なお、記憶した補正値の保持期間は、予め定めてあってもよいし(例えば、1ヶ月や1年)、定めていなくてもよい。 FIG. 11 is a diagram conceptually illustrating an example of the correction value and the average correction value for each class stored in the storage unit 15. As shown in FIG. 11, in the collision avoidance braking apparatus according to the second embodiment, the correction value is added each time a correction value is calculated for each class, and the obtained average correction value is also stored. The Note that the retention period of the stored correction value may be determined in advance (for example, one month or one year) or may not be determined.
 なお、第2の実施形態に係る衝突回避制動装置が行う補正値反映動作は、上記第1の実施形態で説明した図6のフローチャートにおいて、演算部14が、選定されたクラスの平均補正値を記憶部15から読み出し(図6のステップS606)、読み出した平均補正値に従って要求する減速度特性を補正するように自動ブレーキ制御部16に指示することになる(図6のステップS607)。 The correction value reflecting operation performed by the collision avoidance braking apparatus according to the second embodiment is the same as that in the flowchart of FIG. 6 described in the first embodiment, in which the calculation unit 14 calculates the average correction value of the selected class. The data is read from the storage unit 15 (step S606 in FIG. 6), and the automatic brake control unit 16 is instructed to correct the requested deceleration characteristic according to the read average correction value (step S607 in FIG. 6).
 以上のように、本発明の第2の実施形態に係る衝突回避制動装置によれば、ブレーキパッドの劣化状態の変化推移を考慮した平均補正値を用いて、自動ブレーキ制御が要求する減速度特性を補正する。これにより、ブレーキ操作が発生する度に算出される補正値が大きく変化するような不安定な車両走行状況下であっても、精度の高い衝突回避制動を提供することが可能となる。 As described above, according to the collision avoidance braking apparatus according to the second embodiment of the present invention, the deceleration characteristic required by the automatic brake control using the average correction value considering the change transition of the deterioration state of the brake pad. Correct. As a result, it is possible to provide highly accurate collision avoidance braking even under unstable vehicle traveling conditions in which the correction value calculated every time a braking operation occurs.
  <第3の実施形態>
 上記第1及び第2の実施形態では、自動ブレーキ制御部16で要求される減速度特性と劣化しているブレーキパッドによって実際に発生する減速度特性との乖離状態を改善するために、ドライバのブレーキ操作から推定されるブレーキパッドの劣化状態に基づいて、自動ブレーキ制御部16が要求する減速度特性を補正する、換言すればブレーキアクチュエータ52の制動力を制御する手法を説明した。すなわち、ブレーキパッドの劣化に伴ってブレーキの利きを良くする手法である。
<Third Embodiment>
In the first and second embodiments, in order to improve the deviation state between the deceleration characteristic required by the automatic brake control unit 16 and the deceleration characteristic actually generated by the deteriorated brake pad, The method of correcting the deceleration characteristic required by the automatic brake control unit 16 based on the deterioration state of the brake pad estimated from the brake operation, in other words, controlling the braking force of the brake actuator 52 has been described. That is, this is a technique for improving the braking effectiveness as the brake pads deteriorate.
 これに対して、本第3の実施形態では、ブレーキパッドの劣化状態に基づいて、ブレーキアクチュエータ52の制動タイミングを制御する手法を説明する。すなわち、ブレーキパッドの劣化に伴ってブレーキの利き始めを早くする手法である。 On the other hand, in the third embodiment, a method for controlling the braking timing of the brake actuator 52 based on the deterioration state of the brake pad will be described. In other words, this is a technique for speeding up the start of braking with the deterioration of the brake pads.
 本発明の第3の実施形態に係る衝突回避制動装置を含む車両ブレーキシステムの概略構成は、図1に示した第1の実施形態に係る衝突回避制動装置と同様である。ただし、この第3の実施形態に係る衝突回避制動装置では、演算部14の処理が第1の実施形態に係る衝突回避制動装置と異なる。
 以下、この異なる処理を中心に、第3の実施形態に係る衝突回避制動装置を説明する。
The schematic configuration of the vehicle brake system including the collision avoidance braking apparatus according to the third embodiment of the present invention is the same as that of the collision avoidance braking apparatus according to the first embodiment shown in FIG. However, in the collision avoidance braking apparatus according to the third embodiment, the processing of the calculation unit 14 is different from that of the collision avoidance braking apparatus according to the first embodiment.
Hereinafter, the collision avoidance braking apparatus according to the third embodiment will be described focusing on the different processes.
 本第3の実施形態に係る衝突回避制動装置では、上述した補正値反映動作(図6)におけるステップS607の処理が異なる。具体的には、演算部14は、ステップS604において選定されたクラスの補正値を記憶部15から読み出す(ステップS606)。そして、演算部14は、この読み出した補正値を自動ブレーキ制御部16に出力し、補正値に従ってブレーキアクチュエータ52に与える制動開始タイミングを早めるように、自動ブレーキ制御部16に指示する(ステップS607)。 In the collision avoidance braking apparatus according to the third embodiment, the processing in step S607 in the correction value reflecting operation (FIG. 6) described above is different. Specifically, the calculation unit 14 reads the correction value of the class selected in step S604 from the storage unit 15 (step S606). Then, the calculation unit 14 outputs the read correction value to the automatic brake control unit 16 and instructs the automatic brake control unit 16 to advance the braking start timing given to the brake actuator 52 according to the correction value (step S607). .
 図12に、従来の自動ブレーキ制御(a)と本発明の自動ブレーキ制御(b)とにおける制動開始タイミングの違いを示す。
 図12に示すように、第3の実施形態に係る衝突回避制動装置では、ブレーキパッドの劣化状態に基づいて算出される補正値で、ブレーキアクチュエータ52の制動開始タイミングを早めている。従って、この制御によれば、ブレーキアクチュエータ52の制動力を強くしなくても、ブレーキONからブレーキOFFまでの総合的制動力は、ブレーキアクチュエータ52の制動力を強くした場合と実質的に同等にすることができる。
FIG. 12 shows the difference in braking start timing between the conventional automatic brake control (a) and the automatic brake control (b) of the present invention.
As shown in FIG. 12, in the collision avoidance braking apparatus according to the third embodiment, the braking start timing of the brake actuator 52 is advanced by a correction value calculated based on the deterioration state of the brake pad. Therefore, according to this control, even if the braking force of the brake actuator 52 is not increased, the total braking force from the brake ON to the brake OFF is substantially equal to the case where the braking force of the brake actuator 52 is increased. can do.
 以上のように、本発明の第3の実施形態に係る衝突回避制動装置によれば、ブレーキパッドの劣化状態に応じた補正値を用いて、自動ブレーキ制御の制動開始タイミングを補正する。これにより、自動ブレーキ制御部16で要求される減速度と、劣化しているブレーキパッドによって実際に生じる減速度とが、乖離している状況を改善することができる。 As described above, according to the collision avoidance braking apparatus according to the third embodiment of the present invention, the braking start timing of the automatic brake control is corrected using the correction value corresponding to the deterioration state of the brake pad. As a result, it is possible to improve the situation where the deceleration required by the automatic brake control unit 16 and the deceleration actually caused by the deteriorated brake pad are different.
 なお、上記第3の実施形態では、補正値に基づいて自動ブレーキ制御の制動開始タイミングだけを補正する例を説明した。しかし、この第3の実施形態の自動ブレーキ制御の制動開始タイミングの補正は、上記第1及び第2の実施形態で説明した要求減速度特性の補正、つまり自動ブレーキ制御の制動力の補正と組み合わせて行うようにしてもよい。 In the third embodiment, the example in which only the braking start timing of the automatic brake control is corrected based on the correction value has been described. However, the correction of the braking start timing of the automatic brake control of the third embodiment is combined with the correction of the required deceleration characteristics described in the first and second embodiments, that is, the correction of the braking force of the automatic brake control. May be performed.
 また、上記第3の実施形態では、逐次値が変化する補正値に応じて自動ブレーキ制御の制動開始タイミングも逐次変化させることを前提に説明した。しかし、演算部14が、ブレーキパッドが劣化しているか否かを判断して、劣化していると判断した場合に自動ブレーキ制御の制動開始タイミングを所定時間だけ早めるように制御を行ってもよい。この場合、ブレーキパッドが劣化しているか否かの判断は、上記第2の実施形態のステップS906(図9)において、記憶部15に記憶されている全クラスの半数について差分が閾値以上であるか否かで行うこと等が考えられる。 In the third embodiment, the description has been made on the assumption that the braking start timing of the automatic brake control is also sequentially changed according to the correction value for which the successive value is changed. However, when the calculation unit 14 determines whether or not the brake pad has deteriorated and determines that the brake pad has deteriorated, control may be performed so that the braking start timing of the automatic brake control is advanced by a predetermined time. . In this case, the determination as to whether or not the brake pads are deteriorated is that the difference is greater than or equal to the threshold value for half of all classes stored in the storage unit 15 in step S906 (FIG. 9) of the second embodiment. Depending on whether or not, it can be considered.
  <第4の実施形態>
 一般に、自動ブレーキ制御が行われる直前には、ブレーキパッドとディスクロータとを減速度が生じない程度に接触させ、両者の間に存在するクリアランスを埋めて自動ブレーキ制御時における減速度応答性を向上させる「がた詰め」と呼ばれる処理が行われる。通常、このがた詰め処理は、クリアランスを埋めるために要求される時間を超えて継続して行う必要はない。しかしながら、ブレーキパッドが劣化した状態においては、がた詰め処理を長く行うことでブレーキパッドの温度を上昇させる効果やディスクロータに付着した錆を擦り落とす効果が期待され、ブレーキパッドの利きを向上させると考えられる。
<Fourth Embodiment>
In general, immediately before automatic brake control is performed, the brake pad and disk rotor are brought into contact with each other to the extent that deceleration does not occur, and the clearance existing between the two is filled to improve the deceleration response during automatic brake control. A process called “packing” is performed. Normally, this padding process does not have to be continued beyond the time required to fill the clearance. However, in a state where the brake pad has deteriorated, the effect of raising the temperature of the brake pad and the effect of scraping off the rust adhering to the disc rotor can be expected by extending the padding process for a long time, thereby improving the effectiveness of the brake pad. it is conceivable that.
 そこで、本第4の実施形態では、ブレーキパッドの劣化状態に基づいて、がた詰め処理を開始するタイミングを制御する手法を説明する。 Therefore, in the fourth embodiment, a method for controlling the timing for starting the backpacking process based on the deterioration state of the brake pad will be described.
 本発明の第4の実施形態に係る衝突回避制動装置を含む車両ブレーキシステムの概略構成は、図1に示した第1の実施形態に係る衝突回避制動装置と同様である。ただし、この第4の実施形態に係る衝突回避制動装置では、演算部14の処理が第1の実施形態に係る衝突回避制動装置と異なる。
 以下、この異なる処理を中心に、第4の実施形態に係る衝突回避制動装置を説明する。
The schematic configuration of the vehicle brake system including the collision avoidance braking apparatus according to the fourth embodiment of the present invention is the same as that of the collision avoidance braking apparatus according to the first embodiment shown in FIG. However, in the collision avoidance braking apparatus according to the fourth embodiment, the processing of the calculation unit 14 is different from that of the collision avoidance braking apparatus according to the first embodiment.
Hereinafter, the collision avoidance braking apparatus according to the fourth embodiment will be described focusing on the different processes.
 本第4の実施形態に係る衝突回避制動装置では、上述した補正値反映動作(図6)におけるステップS607の処理が異なる。具体的には、演算部14は、ステップS604において選定されたクラスの補正値を記憶部15から読み出す(ステップS606)。そして、演算部14は、この読み出した補正値を自動ブレーキ制御部16に出力し、補正値に従ってブレーキアクチュエータ52に与えるがた詰め処理の開始タイミングを早めるように、自動ブレーキ制御部16に指示する(ステップS607)。 In the collision avoidance braking apparatus according to the fourth embodiment, the processing in step S607 in the correction value reflecting operation (FIG. 6) described above is different. Specifically, the calculation unit 14 reads the correction value of the class selected in step S604 from the storage unit 15 (step S606). Then, the calculation unit 14 outputs the read correction value to the automatic brake control unit 16 and instructs the automatic brake control unit 16 to advance the start timing of the filling process given to the brake actuator 52 according to the correction value. (Step S607).
 図13に、従来の自動ブレーキ制御(a)と本発明の自動ブレーキ制御(b)とにおけるがた詰め処理の開始タイミングの違いを示す。
 図13に示すように、第4の実施形態に係る衝突回避制動装置では、ブレーキパッドの劣化状態に基づいて算出される補正値で、ブレーキアクチュエータ52のがた詰め処理開始タイミングを早めている。従って、この制御によれば、ブレーキパッドの温度が十分に上昇してブレーキの利きが良くなるため、ブレーキアクチュエータ52の制動力を強くしなくても、ブレーキONからブレーキOFFまでの総合的制動力は、ブレーキアクチュエータ52の制動力を強くした場合と実質的に同等にすることができる。
FIG. 13 shows the difference in the start timing of the backpacking process between the conventional automatic brake control (a) and the automatic brake control (b) of the present invention.
As shown in FIG. 13, in the collision avoidance braking apparatus according to the fourth embodiment, the start timing of the loosening process of the brake actuator 52 is advanced by a correction value calculated based on the deterioration state of the brake pad. Therefore, according to this control, the brake pad temperature rises sufficiently to improve the braking effectiveness, so that the total braking force from the brake ON to the brake OFF can be achieved without increasing the braking force of the brake actuator 52. Can be substantially equivalent to the case where the braking force of the brake actuator 52 is increased.
 以上のように、本発明の第4の実施形態に係る衝突回避制動装置によれば、ブレーキパッドの劣化状態に応じた補正値を用いて、自動ブレーキ制御のがた詰め処理開始タイミングを補正する。これにより、自動ブレーキ制御部16で要求される減速度特性と、劣化しているブレーキパッドによって実際に生じる減速度特性とが、乖離している状況を改善することができる。 As described above, according to the collision avoidance braking apparatus according to the fourth embodiment of the present invention, the correction processing start timing of the automatic brake control is corrected using the correction value according to the deterioration state of the brake pad. . As a result, it is possible to improve the situation where the deceleration characteristic required by the automatic brake control unit 16 and the deceleration characteristic actually generated by the deteriorated brake pad are different.
 なお、上記第4の実施形態では、補正値に基づいて自動ブレーキ制御のがた詰め処理開始タイミングだけを補正する例を説明した。しかし、この第4の実施形態の自動ブレーキ制御のがた詰め処理開始タイミングの補正は、上記第1及び第2の実施形態で説明した要求減速度特性の補正、つまり自動ブレーキ制御の制動力の補正と組み合わせて行うようにしてもよいし、及び/又は上記第3の実施形態で説明した自動ブレーキ制御の制動開始タイミングの補正と組み合わせて行うようにしてもよい。 In the fourth embodiment, an example has been described in which only the loosening start timing of automatic brake control is corrected based on the correction value. However, the correction of the start processing timing of the automatic brake control of the fourth embodiment is the correction of the required deceleration characteristics described in the first and second embodiments, that is, the braking force of the automatic brake control. It may be performed in combination with the correction, and / or may be performed in combination with the correction of the braking start timing of the automatic brake control described in the third embodiment.
 また、上記第4の実施形態では、逐次値が変化する補正値に応じて自動ブレーキ制御のがた詰め処理開始タイミングも逐次変化させることを前提に説明した。しかし、演算部14が、ブレーキパッドが劣化しているか否かを判断して、劣化していると判断した場合に自動ブレーキ制御のがた詰め処理開始タイミングを所定時間だけ早めるように制御を行ってもよい。この場合、ブレーキパッドが劣化しているか否かの判断は、上記第2の実施形態のステップS906(図9)において、記憶部15に記憶されている全クラスの半数について差分が閾値以上であるか否かで行うこと等が考えられる。 In the fourth embodiment, the description has been given on the assumption that the start-up process start timing of the automatic brake control is also sequentially changed according to the correction value for which the successive value is changed. However, when the calculation unit 14 determines whether or not the brake pad has deteriorated and determines that the brake pad has deteriorated, control is performed so that the start timing of the automatic brake control loosening process is advanced by a predetermined time. May be. In this case, the determination as to whether or not the brake pads are deteriorated is that the difference is greater than or equal to the threshold value for half of all classes stored in the storage unit 15 in step S906 (FIG. 9) of the second embodiment. Depending on whether or not, it can be considered.
 本発明の衝突回避制動装置及び衝突回避制動方法は、自動ブレーキ制御装置を有する車両等に利用可能であり、特に、車両に障害物を回避する必要が生じた時に、ブレーキバッドの劣化状態を考慮して制動開始タイミングや制動力を常に適切に制御したい場合等に適している。 INDUSTRIAL APPLICABILITY The collision avoidance braking device and the collision avoidance braking method according to the present invention can be used for a vehicle or the like having an automatic brake control device. Therefore, it is suitable when the braking start timing and the braking force are always appropriately controlled.
11 車両情報取得部
12 障害物検出部
13 ブレーキ操作検出部
14、24 演算部
15、25 記憶部
16 自動ブレーキ制御部
51 ブレーキ制御部
52 ブレーキアクチュエータ
DESCRIPTION OF SYMBOLS 11 Vehicle information acquisition part 12 Obstacle detection part 13 Brake operation detection part 14, 24 Calculation part 15, 25 Storage part 16 Automatic brake control part 51 Brake control part 52 Brake actuator

Claims (11)

  1.  自動ブレーキ制御を用いて車両の障害物への衝突回避を支援する衝突回避制動装置であって、
     ドライバによるブレーキ操作を検出する検出部と、
     車両の減速度を少なくとも含んだ車両条件を取得する取得部と、
     前記ブレーキ操作検出時に取得された前記車両の減速度からブレーキパッドの劣化状態を推定し、前記自動ブレーキ制御実行時の車両の減速度を当該推定されたブレーキパッドの劣化状態に応じて補正する補正部とを備える、衝突回避制動装置。
    A collision avoidance braking device for assisting in avoiding a collision with an obstacle of a vehicle using automatic brake control,
    A detection unit for detecting a brake operation by a driver;
    An acquisition unit for acquiring a vehicle condition including at least a deceleration of the vehicle;
    Correction for estimating the deterioration state of the brake pad from the deceleration of the vehicle acquired at the time of detecting the brake operation and correcting the deceleration of the vehicle at the time of execution of the automatic brake control according to the estimated deterioration state of the brake pad And a collision avoidance braking device.
  2.  前記検出部は、ブレーキ操作検出時のブレーキ油圧を取得し、
     前記補正部は、
      前記ブレーキ操作検出時に取得された前記ブレーキ油圧と前記車両の減速度との関係に基づいて、ブレーキパッドの劣化状態を推定する第1の推定部と、
      前記推定されたブレーキパッドの劣化状態に基づいて、現在の車両が持つ実際の減速度特性を推定する第2の推定部と、
      前記ブレーキ操作時の車両条件において、衝突回避のために車両に要求される減速度特性を算出する第1の算出部と、
      前記推定された実際の減速度特性と前記要求される減速度特性とが乖離している状態を解消させるための補正値を算出する第2の算出部と、
      前記補正値を用いて前記自動ブレーキ制御を実行する制御部とを備える、請求項1に記載の衝突回避制動装置。
    The detection unit acquires a brake hydraulic pressure at the time of detecting a brake operation,
    The correction unit is
    A first estimation unit that estimates a deterioration state of a brake pad based on a relationship between the brake hydraulic pressure acquired when the brake operation is detected and the deceleration of the vehicle;
    A second estimation unit for estimating an actual deceleration characteristic of the current vehicle based on the estimated deterioration state of the brake pad;
    A first calculation unit that calculates a deceleration characteristic required for the vehicle for avoiding a collision in the vehicle condition during the brake operation;
    A second calculation unit for calculating a correction value for eliminating a state where the estimated actual deceleration characteristic and the required deceleration characteristic are deviated;
    The collision avoidance braking device according to claim 1, further comprising: a control unit that executes the automatic brake control using the correction value.
  3.  前記補正部は、前記第2の算出部で算出される前記補正値を、前記ブレーキ操作時の車両条件によって区分した複数のクラスに分類して記憶する記憶部をさらに備え、
     前記制御部は、衝突回避が要求される時、その時の車両条件に一致するクラスに分類されている補正値を前記記憶部から読み出し、当該読み出した補正値を用いて前記自動ブレーキ制御を実行することを特徴とする、請求項2に記載の衝突回避制動装置。
    The correction unit further includes a storage unit that stores the correction values calculated by the second calculation unit by classifying the correction values into a plurality of classes divided according to vehicle conditions at the time of the brake operation,
    When the collision avoidance is requested, the control unit reads the correction value classified into the class that matches the vehicle condition at that time from the storage unit, and executes the automatic brake control using the read correction value. The collision avoidance braking device according to claim 2, wherein:
  4.  前記制御部は、前記第1の算出部で算出される前記要求される減速度特性を前記読み出した補正値で補正した減速度特性に応じて、前記自動ブレーキ制御を実行することを特徴とする、請求項3に記載の衝突回避制動装置。 The control unit performs the automatic brake control according to a deceleration characteristic obtained by correcting the required deceleration characteristic calculated by the first calculation unit with the read correction value. The collision avoidance braking device according to claim 3.
  5.  前記制御部は、規定の制動開始タイミングを前記読み出した補正値で補正した制動開始タイミングで、前記自動ブレーキ制御を実行することを特徴とする、請求項3に記載の衝突回避制動装置。 4. The collision avoidance braking apparatus according to claim 3, wherein the control unit executes the automatic brake control at a braking start timing obtained by correcting a prescribed braking start timing with the read correction value.
  6.  前記制御部は、規定のがた詰め処理開始タイミングを前記読み出した補正値で補正したがた詰め処理開始タイミングで、前記自動ブレーキ制御を実行することを特徴とする、請求項3に記載の衝突回避制動装置。 4. The collision according to claim 3, wherein the control unit executes the automatic brake control at a filling process start timing obtained by correcting a prescribed filling process start timing with the read correction value. 5. Avoidance braking device.
  7.  前記車両条件の区分は、車両の速度、車両の重量、道路の勾配、車両の外気温、走行エリアの天候、ブレーキ操作頻度の少なくとも1つを含むことを特徴とする、請求項3に記載の衝突回避制動装置。 The vehicle condition classification includes at least one of a vehicle speed, a vehicle weight, a road gradient, a vehicle outside temperature, a running area weather, and a brake operation frequency. Collision avoidance braking device.
  8.  前記第1の推定部は、前記車両条件が所定の範囲を超えた場合、前記ブレーキパッドの劣化状態を推定しないことを特徴とする、請求項2に記載の衝突回避制動装置。 3. The collision avoidance braking device according to claim 2, wherein the first estimation unit does not estimate a deterioration state of the brake pad when the vehicle condition exceeds a predetermined range.
  9.  前記第2の算出部は、所定の期間に算出された複数の補正値の平均値を求め、当該平均値を前記自動ブレーキ制御に用いる補正値として設定することを特徴とする、請求項2に記載の衝突回避制動装置。 The second calculation unit obtains an average value of a plurality of correction values calculated during a predetermined period, and sets the average value as a correction value used for the automatic brake control. The collision avoidance braking device as described.
  10.  自動ブレーキ制御を用いて車両の障害物への衝突回避を支援する衝突回避制動装置が実行する衝突回避制動方法であって、
     検出部が、ドライバによるブレーキ操作を検出するステップと、
     取得部が、車両の減速度を少なくとも含んだ車両条件を取得するステップと、
     演算部が、前記ブレーキ操作検出時に取得された前記車両の減速度からブレーキパッドの劣化状態を推定し、前記自動ブレーキ制御実行時の車両の減速度を当該推定されたブレーキパッドの劣化状態に応じて補正するステップとを備える、衝突回避制動方法。
    A collision avoidance braking method executed by a collision avoidance braking device that assists in avoiding collision of a vehicle with an obstacle using automatic brake control,
    A detecting unit detecting a brake operation by the driver;
    An obtaining unit obtaining vehicle conditions including at least a deceleration of the vehicle;
    A calculation unit estimates a deterioration state of the brake pad from the deceleration of the vehicle acquired when the brake operation is detected, and determines the deceleration of the vehicle at the time of execution of the automatic brake control according to the estimated deterioration state of the brake pad. A collision avoidance braking method.
  11.  前記検出するステップは、ブレーキ操作検出時のブレーキ油圧を取得し、
     前記補正するステップは、
      前記演算部が、前記ブレーキ操作検出時に取得された前記ブレーキ油圧と前記車両の減速度との関係に基づいて、ブレーキパッドの劣化状態を推定するステップと、
      前記演算部が、前記推定されたブレーキパッドの劣化状態に基づいて、現在の車両が持つ実際の減速度特性を推定するステップと、
      前記演算部が、前記ブレーキ操作時の車両条件において、衝突回避のために車両に要求される減速度特性を算出するステップと、
      前記演算部が、前記推定された実際の減速度特性と前記要求される減速度特性とが乖離している状態を解消させるための補正値を算出するステップと、
      制御部が、前記補正値を用いて前記自動ブレーキ制御を実行するステップとを含む、請求項10に記載の衝突回避制動方法。
    The detecting step acquires a brake hydraulic pressure at the time of detecting a brake operation,
    The correcting step includes
    The calculating unit estimating a deterioration state of a brake pad based on a relationship between the brake hydraulic pressure acquired when the brake operation is detected and a deceleration of the vehicle;
    The arithmetic unit estimating an actual deceleration characteristic of the current vehicle based on the estimated deterioration state of the brake pad;
    The calculating unit calculating a deceleration characteristic required for the vehicle for avoiding a collision in a vehicle condition at the time of the brake operation;
    The calculation unit calculating a correction value for eliminating a state where the estimated actual deceleration characteristic and the required deceleration characteristic are deviated; and
    The collision avoidance braking method according to claim 10, further comprising: a control unit that executes the automatic brake control using the correction value.
PCT/JP2011/000792 2011-02-14 2011-02-14 Collision avoidance braking device and collision avoidance braking method WO2012111035A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/000792 WO2012111035A1 (en) 2011-02-14 2011-02-14 Collision avoidance braking device and collision avoidance braking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/000792 WO2012111035A1 (en) 2011-02-14 2011-02-14 Collision avoidance braking device and collision avoidance braking method

Publications (1)

Publication Number Publication Date
WO2012111035A1 true WO2012111035A1 (en) 2012-08-23

Family

ID=46672002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000792 WO2012111035A1 (en) 2011-02-14 2011-02-14 Collision avoidance braking device and collision avoidance braking method

Country Status (1)

Country Link
WO (1) WO2012111035A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114954386A (en) * 2022-07-08 2022-08-30 所托(杭州)汽车智能设备有限公司 Automatic braking control method, vehicle, and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294218A (en) * 1992-04-22 1993-11-09 Mazda Motor Corp Automatic braking device for vehicle
JP2001341626A (en) * 2000-05-31 2001-12-11 Tokico Ltd Electric brake device
JP2004237886A (en) * 2003-02-06 2004-08-26 Nissan Motor Co Ltd Braking control unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294218A (en) * 1992-04-22 1993-11-09 Mazda Motor Corp Automatic braking device for vehicle
JP2001341626A (en) * 2000-05-31 2001-12-11 Tokico Ltd Electric brake device
JP2004237886A (en) * 2003-02-06 2004-08-26 Nissan Motor Co Ltd Braking control unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114954386A (en) * 2022-07-08 2022-08-30 所托(杭州)汽车智能设备有限公司 Automatic braking control method, vehicle, and storage medium

Similar Documents

Publication Publication Date Title
JP3975922B2 (en) Curve radius estimation device
US9081387B2 (en) Method and device for the prediction and adaptation of movement trajectories of motor vehicles
JP6076394B2 (en) Vehicle steering apparatus and vehicle steering control method
KR101665459B1 (en) Preceding vehicle selection apparatus
US10703370B2 (en) Vehicle action control
JP6040945B2 (en) Predecessor selection device
JP7151179B2 (en) Lane change estimation device and lane change estimation method, vehicle control device and vehicle control method
US7155341B2 (en) System and method for informing vehicle environment
JP5146542B2 (en) Traveling route estimation device and traveling route estimation method used in the device
JP3409736B2 (en) Leading vehicle follow-up control device
KR20160134656A (en) Method for operating an autonomously operating driving safety or driver assistance system of a motor vehicle
JP2002145037A (en) Coefficient of friction on road estimating device of vehicle
JP6106261B2 (en) Nonlinear compensation controller for an active steering system in a vehicle
KR102024986B1 (en) Apparatus and method for lane Keeping control
JP2010285987A (en) System and method for controlling traction in two-wheeled vehicle
JP7048009B2 (en) Vehicle control unit
JPWO2018230341A1 (en) Vehicle control device
JP2010072800A (en) Arousal determination device
JP2012126293A (en) Steering controlling system of vehicle
JP5206490B2 (en) Vehicle ground contact surface friction state estimation apparatus and method
JP2007145201A (en) Navigation cooperative cruise controller
US11673580B2 (en) Apparatus and method for controlling braking of autonomous vehicle
WO2012111035A1 (en) Collision avoidance braking device and collision avoidance braking method
JP2013180639A (en) Road surface friction coefficient estimating device and road surface friction coefficient estimation method
JP2007245901A (en) Vehicular motion control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP