WO2012108484A1 - Liquid crystalline styryl derivative, method for producing same, electrically conductive liquid crystal material, and organic semiconductor device. - Google Patents

Liquid crystalline styryl derivative, method for producing same, electrically conductive liquid crystal material, and organic semiconductor device. Download PDF

Info

Publication number
WO2012108484A1
WO2012108484A1 PCT/JP2012/052913 JP2012052913W WO2012108484A1 WO 2012108484 A1 WO2012108484 A1 WO 2012108484A1 JP 2012052913 W JP2012052913 W JP 2012052913W WO 2012108484 A1 WO2012108484 A1 WO 2012108484A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
liquid crystal
styryl derivative
liquid crystalline
following general
Prior art date
Application number
PCT/JP2012/052913
Other languages
French (fr)
Japanese (ja)
Inventor
原本 雄一郎
Original Assignee
日本化学工業株式会社
国立大学法人山梨大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社, 国立大学法人山梨大学 filed Critical 日本化学工業株式会社
Priority to JP2012556919A priority Critical patent/JP5980693B2/en
Publication of WO2012108484A1 publication Critical patent/WO2012108484A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • C09K19/16Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain the chain containing carbon-to-carbon double bonds, e.g. stilbenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/731Liquid crystalline materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/14Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain
    • C09K19/16Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a carbon chain the chain containing carbon-to-carbon double bonds, e.g. stilbenes
    • C09K2019/168Ph-CH=CH-Ph-CH=CH-Ph
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate

Definitions

  • the present invention relates to a liquid crystalline styryl derivative having excellent conductivity useful as an organic semiconductor and capable of controlling the alignment of liquid crystal molecules by rubbing treatment, a production method thereof, a conductive liquid crystal material, and an organic semiconductor element. .
  • conductive liquid crystal materials conventionally, anthracene derivatives, anthraquinoline derivatives, imidazole derivatives, oligothiophene derivatives, styryl derivatives, hydrazone derivatives, triphenylamine compounds, poly-N-vinylcarbazole, oxadiazole, etc.
  • Hanna et al. Have proposed a liquid crystal compound having a smectic A phase as a liquid crystal phase and having a charge transporting ability, and a conductive liquid crystal material using these compounds (see, for example, Patent Documents 1 to 3).
  • the present inventor previously applied a charge transport method in which a voltage is applied to a liquid crystalline compound having a smectic B phase as a liquid crystal phase in a liquid crystal state of the smectic B phase or a solid state generated by the phase transition of the smectic B phase (see Patent Document 4). ), A charge transport method using liquid crystal molecules having a long linear conjugated structure (see Patent Document 5) has been proposed.
  • the liquid crystal compound that the present inventors are paying attention to is a rod-like compound having chain-like alkyl hydrocarbon branch portions on both sides (or one side) of a long linear conjugated structure portion (hereinafter referred to as “core portion”). It is.
  • This liquid crystal compound is durable even at a high temperature of 300 ° C., and has a feature that the core portion is easily aligned so as to be stacked in parallel by the interaction of the chain hydrocarbon portion.
  • the core portion forms a conjugated system by an aromatic ring or multiple bonds so that ⁇ electrons can move. Therefore, since the charge transport property is remarkably increased by aligning the core portions in parallel, in order to use this compound as an organic semiconductor element, the control of the alignment is extremely important.
  • a vapor deposition film is formed by oblique vapor deposition by the PVD method, and the vapor deposition film is then heat-treated in the temperature range of the smectic phase of the liquid crystal compound.
  • a vapor deposition film is formed by oblique vapor deposition by the PVD method, and the vapor deposition film is then heat-treated in the temperature range of the smectic phase of the liquid crystal compound.
  • JP 09-316442 A Japanese Patent Laid-Open No. 11-162648 JP-A-11-199871 JP 2001-351786 A JP 2004-6271 A JP 2005-142233 A
  • the method of forming a thin film by oblique deposition has a problem that the manufacturing cost increases because the deposition apparatus is expensive and the productivity is low.
  • a method for controlling the alignment of a liquid crystal material a method is known in which the surface of an alignment film made of a polymer material such as polyimide is rubbed in a certain direction and liquid crystal molecules are aligned along the rubbing direction.
  • This rubbing treatment can be said to be the most industrially advantageous method because the molecular orientation of the liquid crystal molecules can be controlled by a simple operation.
  • the present invention provides a liquid crystalline styryl derivative having excellent conductivity and capable of controlling molecular orientation by rubbing treatment, a method for producing the same, a conductive liquid crystal material using the liquid crystalline styryl derivative, and an organic
  • An object is to provide a semiconductor device.
  • liquid crystalline styryl derivative represented by a specific general formula has excellent conductivity and is effective against organic solvents such as hexane.
  • the present inventors found that the liquid crystalline styryl derivative can easily control the molecular orientation by rubbing treatment and can orient the liquid crystal molecules in parallel to the substrate. It came to completion.
  • the first invention to be provided by the present invention is a liquid crystalline styryl derivative represented by the following general formula (1). (Wherein R 1 represents an alkyl group, and n represents an integer of 1 to 3)
  • the second invention to be provided by the present invention is the following general formula (2a).
  • An aldehyde compound represented by the following general formula (3a) (Wherein R 1 has the same meaning as described above, Et represents an ethyl group) and a phosphorus compound represented by the following general formula (1A) of the first invention: (Wherein R 1 is as defined above), a method for producing a liquid crystalline styryl derivative.
  • the third invention to be provided by the present invention is the following general formula (2b). (Wherein R 1 is as defined above), and the following general formula (3b) (Wherein R 1 is as defined above, Et represents an ethyl group) and a phosphorus compound represented by the following general formula (1B) of the first invention, (Wherein R 1 is as defined above), a method for producing a liquid crystalline styryl derivative.
  • the fourth invention to be provided by the present invention is the following general formula (2b). (Wherein R 1 is as defined above) and the following general formula (3c) The following general formula (1C) of the first invention, characterized by reacting with a phosphorus compound represented by the formula: (Wherein R 1 is as defined above), a method for producing a liquid crystalline styryl derivative.
  • the fifth invention to be provided by the present invention is the following general formula (2a).
  • a sixth invention to be provided by the present invention is the following general formula (2b) (Wherein R 1 is as defined above) and the following general formula (a4) (Wherein R 1 has the same meaning as described above, Et represents an ethyl group) and a phosphorus compound represented by the following general formula (1C) (Wherein, R 1 is as defined above).
  • a seventh invention to be provided by the present invention is a conductive liquid crystal material characterized by containing the liquid crystalline styryl derivative of the first invention.
  • an eighth invention to be provided by the present invention is an organic semiconductor element characterized by using the conductive liquid crystal material of the seventh invention.
  • the liquid crystalline styryl derivative provided by the present invention is a novel compound and has excellent conductivity.
  • a printing method can be applied as a film forming method of the liquid crystal styryl derivative of the present invention.
  • the liquid crystalline styryl derivative of the present invention is rubbed.
  • the molecular orientation can be easily controlled, and the liquid crystal molecules can be oriented parallel to the substrate.
  • FIG. 3 is a graph showing the relationship between the temperature of an element using a conductive liquid crystal material containing a styryl derivative obtained in Example 1 and the amount of current.
  • FIG. 3 is a graph showing the relationship between the voltage and current density of an element using a solid obtained by heat-treating and cooling the conductive liquid crystal material containing the styryl derivative obtained in Example 1 into an isotropic liquid state. The figure which shows the relationship between the temperature of an element using the electroconductive liquid crystal material obtained by the reference example 2, and electric current amount.
  • the liquid crystalline styryl derivative according to the first aspect of the present invention is a liquid crystalline compound having a long linear conjugated structure portion, and the liquid crystalline styryl derivative has a smectic phase in a liquid crystal state.
  • the liquid crystalline styryl derivative of the present invention is characterized by having three substituents on the benzene rings of the styryl groups at both ends in the general formula (1). Due to this feature, the liquid crystalline styryl derivative of the present invention is further excellent in electrical conductivity, and the molecular alignment can be easily controlled by rubbing treatment to align the liquid crystal molecules in parallel with the substrate.
  • R 1 is a linear or branched alkyl group, and an alkyl group having 1 to 18 carbon atoms is preferably used. Specific examples include a methyl group, an ethyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group, a pentadecyl group, and an octadecyl group. Of these, an alkyl group having 4 to 18 carbon atoms is preferable, and an alkyl group having 6 to 18 carbon atoms is more preferable.
  • the alkyl group has the general formula CH 3 — (CH 2 ) x—CH (CH 3 ) — (CH 2 ) y—CH 2 — (wherein x is an integer from 0 to 7 and y is an integer from 0 to 7)
  • n represents an integer of 1 to 3, preferably 1.
  • the liquid crystalline styryl derivative represented by the general formula (1) may be a cis isomer or a trans isomer, or a mixture of both.
  • the styryl derivative represented by the general formula (1A) according to the second invention of the present invention is suitable by reacting the aldehyde compound represented by the general formula (2a) with the phosphorus compound represented by the general formula (3a). Can be manufactured.
  • aldehyde compound represented by the general formula (2a) of the raw material according to the second invention a commercially available product can be used.
  • R 1 in the formula of the phosphorus compound represented by the general formula of the material of the second aspect of the invention (3a) is a corresponding group R 1 in the general formula (1A).
  • the phosphorus compound represented by the general formula (3a) can be produced, for example, according to the following reaction scheme (1). (In the formula, R 1 and Et are as defined above.)
  • gallic acid (4) is reacted in a solvent such as alkyl bromide (5) and dimethylformamide in the presence of a base such as potassium carbonate, preferably at 40 to 80 ° C. for 5 hours or more.
  • a base such as potassium carbonate
  • the compound (6) is obtained.
  • the compound (6) obtained is reacted with a base such as lithium aluminum halide in a solvent such as ether, preferably at 30 to 50 ° C. for 2 hours or longer to obtain the compound (7).
  • the obtained compound (7) and phosphorus tribromide are reacted in a solvent such as toluene in the presence of a base such as pyridine, preferably at 20 to 50 ° C. for 20 hours or longer to obtain compound (8).
  • the obtained compound (8) and triethyl phosphite can be reacted in a nitrogen atmosphere, preferably at 100 to 150 ° C. for 5 hours or longer to obtain the phosphorus compound (3a).
  • the addition amount of the phosphorus compound of the general formula (3a) is a molar ratio with respect to the aldehyde compound represented by the general formula (2a). It is 1.8 to 2.5, preferably 1.9 to 2.1.
  • the reaction of the aldehyde compound represented by the general formula (2a) and the phosphorus compound of the general formula (3a) is performed in a solvent in the presence of a base.
  • Examples of the base that can be used in the second invention include metal hydrides such as sodium hydride, amines such as trimethylamine and triethylamine, alkali hydroxides such as potassium hydroxide and sodium hydroxide, sodium methoxide and potassium methoxide. Alkoxide such as sodium ethoxide, potassium ethoxide, sodium butoxide, potassium butoxide, pyridine, potassium cresolate, alkyllithium and the like, and these may be used alone or in combination.
  • the amount of the base added is 2.0 to 5.0, preferably 3.0 to 4.0, as a molar ratio to the aldehyde compound represented by the general formula (2a).
  • the reaction solvent that can be used in the second invention is not particularly limited as long as it can dissolve the raw materials and is inert to the product.
  • ethers such as dioxane, tetrahydrofuran and dibutyl ether, nitriles such as acetonitrile and propionitrile, alcohols such as methanol and ethanol, dimethylformamide, acetone and water can be used alone or in combination. .
  • the reaction conditions according to the second invention are a reaction temperature of 10 to 100 ° C., preferably 40 to 70 ° C., and a reaction time of 5 hours or more, preferably 15 to 50 hours.
  • the reaction is stopped by adding an acid such as hydrochloric acid to the reaction solution.
  • an acid such as hydrochloric acid
  • the reaction solvent is removed by distillation or the like, washing is performed as necessary, and recrystallization or column chromatography is performed as necessary.
  • the target liquid crystalline styryl derivative represented by the general formula (1A) can be obtained by purification by a conventional method such as chromatography.
  • the styryl derivative represented by the general formula (1B) according to the third invention of the present invention is suitable by reacting the aldehyde compound represented by the general formula (2b) and the phosphorus compound represented by the general formula (3b). Can be manufactured.
  • R 1 in the formula of the aldehyde compound represented by the general formula (2b) of the third invention is a group corresponding to R 1 in the formula of the liquid crystalline styryl derivative represented by the general formula (1B).
  • the aldehyde compound represented by the general formula (2b) of the third invention can be produced, for example, according to the following reaction scheme (2).
  • gallic acid (4) is reacted with alkyl bromide (5) in the presence of a base such as potassium carbonate to obtain compound (6).
  • compound (7) is obtained by reacting the obtained compound (6) with a base such as lithium aluminum halide.
  • the compound (7) obtained is reacted with phosphorus tribromide to obtain the compound (8).
  • the compound (8) and triphenylphosphine obtained are reacted to obtain the compound (a2).
  • the desired aldehyde compound represented by the general formula (2b) can be obtained (for example, JP-A-2007-217309). See the official gazette).
  • the aldehyde compound represented by the general formula (2b) is obtained by combining the phosphorus compound represented by the general formula (3a) and terephthalaldehyde (aldehyde compound (2a)) with a phosphorus compound (3a) for terephthalaldehyde (2a). ) In a molar ratio of 0.5 to 0.8 and in the presence of a base such as potassium t-butoxide in a solvent such as tetrahydrofuran at 10 to 60 ° C. for 3 hours or longer.
  • a base such as potassium t-butoxide
  • solvent such as tetrahydrofuran
  • the aldehyde compound represented by the general formula (2b) is a mixture of a cis isomer and a trans isomer
  • the aldehyde compound is reacted with iodine while refluxing the mixture in toluene.
  • the trans form of is obtained.
  • the amount of iodine added is preferably 0.001 to 0.1 times mol, more preferably 0.005 to 0.01 times mol, with respect to the aldehyde compound represented by the general formula (2b).
  • the treatment temperature is 100 to 180 ° C, preferably 130 to 150 ° C.
  • R 1 in the formula of the phosphorus compound represented by the general formula (3b) is a group corresponding to R 1 in the formula of the styryl derivative represented by the general formula (1B).
  • the phosphorus compound represented by the general formula (3b) can be produced, for example, according to the following reaction scheme (3).
  • reaction scheme (3) first, 3,4,5-trihydrobenzaldehyde (a1) is reacted with alkyl bromide (5) to obtain compound (a3) (for example, JP-A-2007-137809). See the official gazette).
  • the target phosphorus compound represented by the general formula (3b) can be obtained by reacting the obtained compound (a3) with tetraethyl p-xylylene diphosphonate (phosphorus compound (a4)) (for example, JP 2009-250817 A).
  • the addition amount of the phosphorus compound of the general formula (3b) is a molar ratio with respect to the aldehyde compound represented by the general formula (2b). It is 0.9 to 1.1, preferably 0.95 to 1.05.
  • the reaction of the third invention of the present invention is performed by reacting the aldehyde compound represented by the general formula (2b) and the phosphorus compound represented by the general formula (3b) in a solvent in the presence of a base.
  • Examples of the base that can be used in the third invention include metal hydrides such as sodium hydride, amines such as trimethylamine and triethylamine, alkali hydroxides such as potassium hydroxide and sodium hydroxide, sodium methoxide and potassium methoxide. Alkoxide such as sodium ethoxide, potassium ethoxide, sodium butoxide, potassium butoxide, pyridine, potassium cresolate, alkyllithium and the like, and these may be used alone or in combination.
  • the amount of the base added is 2.0 to 5.0, preferably 2.0 to 4.0, as a molar ratio to the aldehyde compound represented by the general formula (2b).
  • the reaction solvent that can be used in the third invention is not particularly limited as long as it can dissolve the raw material and is inert to the product.
  • ethers such as dioxane, tetrahydrofuran and dibutyl ether, nitriles such as acetonitrile and propionitrile, alcohols such as methanol and ethanol, dimethylformamide, acetone and water can be used alone or in combination. .
  • the reaction conditions according to the third invention are a reaction temperature of 10 to 100 ° C., preferably 10 to 40 ° C., and a reaction time of 5 hours or more, preferably 10 to 30 hours.
  • the reaction is stopped by adding an acid such as hydrochloric acid to the reaction solution, and after completion of the reaction, the reaction solvent is removed by distillation or the like, washing is performed if necessary, and recrystallization or column chromatography is performed if necessary.
  • the target liquid crystalline styryl derivative represented by the general formula (1B) can be obtained by purification by a conventional method such as chromatography.
  • the styryl derivative represented by the general formula (1C) can be preferably produced by the fourth and fifth inventions described later.
  • a styryl derivative represented by the general formula (1C) is obtained by reacting an aldehyde compound represented by the general formula (2b) with a phosphorus compound represented by the general formula (3c). It is.
  • R 1 in the formula of the aldehyde compound represented by the general formula (2b) according to the fourth invention is a group corresponding to R 1 in the formula of the liquid crystalline styryl derivative represented by the general formula (1C),
  • the aldehyde compound represented by the general formula (2b) the aldehyde compound represented by the same general formula (2b) as in the third invention can be used.
  • the addition amount of the phosphorus compound of the general formula (3c) is a molar ratio with respect to the aldehyde compound represented by the general formula (2b). It is 0.9 to 1.1, preferably 0.95 to 1.05.
  • the reaction of the fourth invention of the present invention is carried out by reacting the aldehyde compound represented by the general formula (2b) and the phosphorus compound represented by the general formula (3c) in a solvent in the presence of a base.
  • Examples of the base that can be used in the fourth invention include metal hydrides such as sodium hydride, amines such as trimethylamine and triethylamine, alkali hydroxides such as potassium hydroxide and sodium hydroxide, sodium methoxide and potassium methoxide. Alkoxide such as sodium ethoxide, potassium ethoxide, sodium butoxide, potassium butoxide, pyridine, potassium cresolate, alkyllithium and the like, and these may be used alone or in combination.
  • the amount of the base added is 2.0 to 5.0, preferably 2.0 to 4.0, as a molar ratio to the aldehyde compound represented by the general formula (2b).
  • the reaction solvent that can be used in the fourth invention is not particularly limited as long as it can dissolve the raw materials and is inert to the product.
  • ethers such as dioxane, tetrahydrofuran and dibutyl ether, nitriles such as acetonitrile and propionitrile, alcohols such as methanol and ethanol, dimethylformamide, acetone and water can be used alone or in combination. .
  • the reaction conditions according to the fourth invention are a reaction temperature of 10 to 100 ° C., preferably 10 to 40 ° C., and a reaction time of 5 hours or more, preferably 10 to 50 hours.
  • the reaction is stopped by adding an acid such as hydrochloric acid to the reaction solution, and after completion of the reaction, the reaction solvent is removed by distillation or the like, washing is performed if necessary, and recrystallization or column chromatography is performed if necessary.
  • the target liquid crystalline styryl derivative represented by the general formula (1C) can be obtained by purification by a conventional method such as chromatography.
  • a styryl derivative represented by the general formula (1C) is obtained by reacting an aldehyde compound represented by the general formula (2a) with a phosphorus compound represented by the general formula (3b). It is.
  • R 1 in the formula of the phosphorus compound represented by (3b) according to the fifth invention is a group corresponding to R 1 in the formula of the general formula (1C).
  • the phosphorus compound represented by the same general formula (3b) as the invention can be used.
  • the addition amount of the phosphorus compound of the general formula (3b) is a molar ratio with respect to the aldehyde compound represented by the general formula (2a). It is 0.4 to 0.7, preferably 0.45 to 0.6.
  • the reaction of the fifth invention of the present invention is carried out by reacting an aldehyde compound represented by the general formula (2a) and a phosphorus compound represented by the general formula (3b) in a solvent in the presence of a base.
  • Examples of the base that can be used in the fifth invention include metal hydrides such as sodium hydride, amines such as trimethylamine and triethylamine, alkali hydroxides such as potassium hydroxide and sodium hydroxide, sodium methoxide and potassium methoxide. Alkoxide such as sodium ethoxide, potassium ethoxide, sodium butoxide, potassium butoxide, pyridine, potassium cresolate, alkyllithium and the like, and these may be used alone or in combination.
  • the amount of the base added is 2.0 to 5.0, preferably 2.0 to 4.0, as a molar ratio to the aldehyde compound represented by the general formula (2a).
  • the reaction solvent that can be used in the fifth invention is not particularly limited as long as it can dissolve the raw materials and is inert to the product.
  • ethers such as dioxane, tetrahydrofuran and dibutyl ether, nitriles such as acetonitrile and propionitrile, alcohols such as methanol and ethanol, dimethylformamide, acetone and water can be used alone or in combination. .
  • reaction conditions according to the fifth invention are such that the reaction temperature is 10 to 100 ° C., preferably 10 to 40 ° C., and the reaction time is 5 hours or more, preferably 10 to 50 hours.
  • the reaction is stopped by adding an acid such as hydrochloric acid to the reaction solution, and after the reaction is completed, the reaction solvent is removed by distillation or the like, washing is performed if necessary, and recrystallization or column chromatography is performed if necessary.
  • the target liquid crystalline styryl derivative represented by the general formula (1C) can be obtained by purification by a conventional method such as chromatography.
  • a styryl derivative represented by the general formula (1C) by reacting an aldehyde compound represented by the general formula (2b) with a phosphorus compound represented by the general formula (a4). To get.
  • R 1 in the formula of the aldehyde compound represented by 2b) is a group corresponding to R 1 in the formula of the liquid crystalline styryl derivative represented by the general formula (1C).
  • the phosphorus compound represented by (a4) according to the sixth invention can be easily produced by reacting ⁇ , ⁇ '-dichloro-p-xylene and triethyl phosphite.
  • the addition amount of the phosphorus compound of the general formula (a4) is a molar ratio with respect to the aldehyde compound represented by the general formula (2b). It is 0.4 to 0.7, preferably 0.45 to 0.6.
  • the reaction of the sixth invention of the present invention is carried out by reacting the aldehyde compound represented by the general formula (2b) and the phosphorus compound represented by the general formula (a4) in a solvent in the presence of a base.
  • Examples of the base that can be used in the sixth invention include metal hydrides such as sodium hydride, amines such as trimethylamine and triethylamine, alkali hydroxides such as potassium hydroxide and sodium hydroxide, sodium methoxide and potassium methoxide. Alkoxide such as sodium ethoxide, potassium ethoxide, sodium butoxide, potassium butoxide, pyridine, potassium cresolate, alkyllithium and the like, and these may be used alone or in combination.
  • the addition amount of the base is 2.0 to 6.0, preferably 4.0 to 6.0 in terms of a molar ratio to the aldehyde compound represented by the general formula (2b).
  • the reaction solvent that can be used in the sixth invention is not particularly limited as long as it can dissolve the raw material and is inert to the product.
  • ethers such as dioxane, tetrahydrofuran and dibutyl ether, nitriles such as acetonitrile and propionitrile, alcohols such as methanol and ethanol, dimethylformamide, acetone and water can be used alone or in combination. .
  • reaction conditions according to the sixth invention are such that the reaction temperature is 10 to 100 ° C., preferably 10 to 40 ° C., and the reaction time is 5 hours or more, preferably 10 to 50 hours.
  • the reaction is stopped by adding an acid such as hydrochloric acid to the reaction solution, and after completion of the reaction, the reaction solvent is removed by distillation or the like, washing is performed if necessary, and recrystallization or column chromatography is performed if necessary.
  • the target liquid crystalline styryl derivative represented by the general formula (1C) can be obtained by purification by a conventional method such as chromatography.
  • the various liquid crystalline styryl derivatives represented by the general formula (1) ((1A), (1B), (1C)) obtained by the second to sixth inventions are more conductive than the conventional liquid crystalline styryl derivatives. Excellent solubility in organic solvents such as hexane.
  • the liquid crystalline styryl derivative can easily control the molecular alignment by rubbing treatment, and can align the liquid crystal molecules in parallel with the substrate.
  • the conductive liquid crystal material of the present invention contains 50% by weight or more, preferably 80% by weight or more of the liquid crystalline styryl derivative represented by the general formula (1), and exhibits a liquid crystal state of a smectic phase caused by the liquid crystalline styryl derivative. It is a material to show.
  • liquid crystalline styryl derivative represented by the general formula (1) When used in a mixture of two or more, the temperature range showing the liquid crystal can be widely adjusted.
  • conductive organic liquid crystal compounds such as a liquid crystal compound having a long linear conjugated structure portion (see, for example, JP-A-2004-6271) and the like. Is raised.
  • the conductive liquid crystal material of the present invention is composed of two or more kinds of liquid crystalline styryl derivatives represented by the general formula (1), or a composition with other components such as a liquid crystalline styryl derivative represented by the general formula (1).
  • the solvent is removed by heating, reduced pressure, or the like, or one or more kinds of styryl derivatives represented by the general formula (1) and the same It can be prepared by mixing with other necessary components and melting by heating, or performing sputtering, vacuum deposition, oblique vacuum deposition or the like.
  • the conductive liquid crystal material of the present invention is preferably used as a thin film.
  • vacuum deposition or oblique vacuum deposition can be used, but one or more desired components of the styryl derivative represented by the general formula (1) and other necessary requirements These components can be dissolved in a solvent and formed into a layer by dip coating, spin coating, screen printing, or ink jet printing, which makes it easy to create an organic thin film, which is also industrially advantageous. is there.
  • the conductive liquid crystal material of the present invention preferably exhibits charge transporting ability by the following two methods.
  • a method of applying a voltage to the conductive liquid crystal material in a liquid crystal state of a smectic phase (A) A method of applying a voltage to the conductive liquid crystal material in a solid state generated by a phase transition from a smectic phase.
  • the method (a) is a method in which the conductive liquid crystal material is made into a smectic phase at a predetermined temperature, and a voltage is applied in the liquid crystal state of the smectic phase to transport charges.
  • the smectic phase may be in any state of A, B, C, D, E, F, G, and H.
  • the conductive liquid crystal material is changed to a smectic phase at a predetermined temperature, and the temperature is lowered from this state to obtain a solid state that maintains the molecular orientation of the smectic phase.
  • a voltage is applied to the electrode to transport charges.
  • natural cooling may be used, or rapid cooling may be used.
  • an organic semiconductor element according to an eighth aspect of the present invention is characterized by using the conductive liquid crystal material.
  • the organic semiconductor element of the present invention is characterized in that a conductive liquid crystal layer made of the conductive liquid crystal material is provided between a substrate provided with a pair of electrodes.
  • FIG. 1 is a schematic view showing an embodiment of an organic semiconductor element.
  • the organic semiconductor element of the present invention is provided with electrodes 2a and 2b made of transparent electrodes such as ITO on the surfaces of two glass substrates 1a and 1b, respectively, and a pair of substrates provided with the electrodes is a spencer 4.
  • a cell is formed by adhering with an adhesive while keeping the cell interval constant, and the conductive liquid crystal material is injected into the cell to provide the conductive liquid crystal layer 3 between the electrodes.
  • the conductive liquid crystal layer 3 provided between the electrodes 2a and 2b is set to (a) a smectic phase liquid crystal state, and a voltage is applied in the smectic phase liquid crystal state, or the conductive liquid crystal layer 3 is set to (b )
  • a voltage in the solid state generated by the phase transition from the smectic phase and applying a voltage in the solid state By applying a voltage in the solid state generated by the phase transition from the smectic phase and applying a voltage in the solid state, a high current density can be obtained through the conductive liquid crystal layer 3, and charge can be transported.
  • Examples of the application of the organic semiconductor element according to the present invention include an organic electroluminescence element (EL element), a thin film transistor element, or an organic electroluminescence element including a thin film transistor element.
  • EL element organic electroluminescence element
  • thin film transistor element organic electroluminescence element including a thin film transistor element.
  • FIG. 2 to 5 are schematic views showing one embodiment of the organic semiconductor element of the present invention.
  • an anode b2 a buffer layer b3, a conductive liquid crystal layer b4, and a cathode b5 are sequentially laminated on a transparent substrate b1.
  • This element can be suitably used particularly as an organic electroluminescence element.
  • the substrate b1 a glass substrate usually used for an organic electroluminescence element is used.
  • the anode b2 is made of a transparent material having a large work function for extracting light as necessary. For example, an ITO film is suitable.
  • the cathode b5 is formed of a metal having a low work function, such as a thin film of Al, Ca, LiF, Mg, or an alloy thereof.
  • the conductive liquid crystal layer b4 the conductive liquid crystal material of the present invention is used, and the styryl derivative represented by the general formula (1) itself has blue to green luminescence, so the conductive liquid crystal layer b4 is a luminescent layer or a carrier transport layer. It has the function of. In this case, a smaller amount of a light emitting material can be added as long as the solid state generated by the phase transition from the smectic phase of the conductive liquid crystal material is maintained.
  • luminescent materials examples include diphenylethylene derivatives, triphenylamine derivatives, diaminocarbazole derivatives, benzothiazole derivatives, benzoxazole derivatives, aromatic diamine derivatives, quinacridone compounds, perylene compounds, oxadiazole derivatives, coumarins.
  • Examples thereof include laser compounds, anthraquinone derivatives, DCM-1 and other laser oscillation dyes, various metal complexes, low molecular fluorescent dyes, and polymeric fluorescent materials.
  • the conductive liquid crystal material of the present invention can also be suitably used as an organic layer in a portion in contact with the electrode.
  • the conductive liquid crystal layer b4 is formed by subjecting the components of the conductive liquid crystal material to vacuum deposition or oblique vacuum deposition at the same time or separately at room temperature (5 to 40 ° C.).
  • Each component of the conductive liquid crystal material may be prepared by subjecting each component of the conductive liquid crystal material to a solvent by applying a heat alignment treatment to the smectic liquid crystal state temperature range of the conductive liquid crystal material in an inert gas atmosphere such as argon or helium.
  • the smectic liquid crystal state temperature range of the conductive liquid crystal material After being dissolved in dip coating method, spin coating method, screen printing method, ink jet printing method, then the smectic liquid crystal state temperature range of the conductive liquid crystal material under an inert gas atmosphere such as nitrogen, argon, helium, etc. It is preferable from the viewpoint that a layer formed by adding a heat alignment treatment to can be produced at low cost.
  • the buffer layer b3 is provided as necessary, and is intended to lower the energy barrier for hole injection from the anode b2, and may use, for example, the conductive liquid crystal material of the present invention or other compounds. Good. Examples of other compounds include copper phthalocyanine, PEDOT-PSS (poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate), other phenylamines, starburst amines, vanadium oxide, molybdenum oxide, oxidation Ruthenium, aluminum oxide, amorphous carbon, polyaniline, polythiophene derivatives and the like are used. Further, a buffer layer for the purpose of electron injection may be provided on the cathode b5 side.
  • FIG. 3 is a schematic view showing an embodiment suitable for the case where the organic semiconductor element of the present invention is used as an organic electroluminescence element (EL element).
  • EL element organic electroluminescence element
  • an anode b2, a buffer layer b3, a conductive liquid crystal layer b4, an organic light emitting layer b6 and a cathode b5 are sequentially laminated on a transparent substrate b1, and the light emitting layer b6 is not a conductive liquid crystal layer. This is different from the embodiment of FIG.
  • the light emitting layer b6 includes various conventional organic light emitting materials such as diphenylethylene derivatives, triphenylamine derivatives, diaminocarbazole derivatives, benzothiazole derivatives, benzoxazole derivatives, aromatic diamine derivatives, quinacridone compounds, perylene compounds, oxalates.
  • diphenylethylene derivatives triphenylamine derivatives
  • diaminocarbazole derivatives benzothiazole derivatives
  • benzoxazole derivatives aromatic diamine derivatives
  • quinacridone compounds perylene compounds
  • oxalates oxalates.
  • the conductive liquid crystal layer b4 uses the conductive liquid crystal material of the present invention, and the conductive liquid crystal layer b4 simultaneously or separately contains each component of the liquid crystal composition at room temperature (5 to 40 ° C.). After vacuum deposition or oblique vacuum deposition, it was created by applying a heat alignment treatment to the smectic liquid crystal state temperature range of the conductive liquid crystal material in an inert gas atmosphere such as nitrogen, argon, helium, etc. However, after dissolving each component of the conductive liquid crystal material in a solvent and applying it by the dip coating method, spin coating method, screen printing method, ink jet printing method, atmosphere of an inert gas such as nitrogen, argon, helium, etc.
  • an inert gas atmosphere such as nitrogen, argon, helium, etc.
  • a layer formed by applying a heat alignment treatment to the smectic liquid crystal state temperature range of the conductive liquid crystal material below is preferable from the viewpoint that it can be produced at low cost.
  • the conductive liquid crystal layer b4 mainly functions as a carrier transport layer.
  • the carrier transportability is higher than that of a conventional amorphous organic compound, so that the layer thickness can be increased and carrier injection efficiency can be increased. The effect of increasing the driving voltage and reducing the driving voltage can also be expected.
  • the thickness of the conductive liquid crystal layer b4 can be arbitrarily designed in the range of 100 nm to 100 ⁇ m.
  • TFT thin film transistor
  • the thin film transistor is a field effect TFT in which a source b8 and a drain b9 are formed on a substrate b1 with a gate b7 interposed therebetween, and is insulated so as to cover the gate b7.
  • a film b10 is formed, and a channel part b11 for energizing the source b8 and the drain b9 is provided outside the insulating film b10.
  • an inorganic material such as glass or an alumina sintered body, an insulating material such as a polyimide film, a polyester film, a polyethylene film, a polyphenylene sulfide film, or a polyparaxylene film is used.
  • the gate b7 is an organic material such as ponianiline or polythiophene, a metal such as gold, platinum, chromium, palladium, aluminum, indium, molybdenum or nickel, an alloy of these metals, polysilicon, amorphous silicon, tin oxide, indium oxide or indium. Tin oxide or the like is used.
  • the insulating film b10 is preferably formed by applying an organic material.
  • organic material used examples include polychloropyrene, polyethylene terephthalate, polyoxymethylene, polyvinyl chloride, polyvinylidene fluoride, cyanoethyl pullulan, poly Methyl methacrylate, polysulfone, polycarbonate, polyimide and the like are used.
  • gold, platinum, a transparent conductive film (indium / tin oxide, indium / zinc oxide, or the like) or the like is used.
  • the channel portion b11 is made of the conductive liquid crystal material of the present invention, and the channel portion b11 allows the components of the conductive liquid crystal material to be simultaneously or separately vacuum-deposited or obliquely vacuum-deposited at room temperature (5 to 40 ° C.). Then, the material of the insulating film b10 may be prepared by applying a heat alignment treatment to the smectic liquid crystal state temperature range of the conductive liquid crystal material in an inert gas atmosphere such as nitrogen, argon, helium, etc.
  • an inert gas atmosphere such as nitrogen, argon, helium, etc.
  • a heat alignment treatment is performed in the smectic liquid crystal state temperature range of the conductive liquid crystal material in an inert gas atmosphere such as nitrogen, argon, helium, etc.
  • p-type or n-type properties can be more emphasized by using in combination with an electron-accepting substance or an electron-donating substance if necessary.
  • an electric field from the gate b7 to the channel part b11 made of such a conductive liquid crystal material the amount of holes or electrons inside the channel part b11 can be controlled to provide a function as a switching element.
  • the rubbing direction of the rubbing process is a direction perpendicular to the direction of the current flow path between the source b8 and the drain b9 (for example, the direction of the line connecting the centers of both).
  • the side chain portion of the liquid crystalline styryl derivative having a long linear conjugated structure portion is aligned at right angles to the current flow path between the source and the drain, and the conjugated core portion is closely aligned, so that the carrier transport property is improved. It becomes extremely large, and shows conductivity at the semiconductor level such as silicon.
  • the element of FIG. 5 is a schematic view showing a cross-sectional structure of an organic electroluminescence element including one thin film transistor element of an embodiment using the organic semiconductor element of the present invention.
  • a TFT is formed as a switching element on the same substrate b1 as the electroluminescence element body, and the thin film transistor is used for this TFT. That is, adjacent to the electroluminescence element body, the source b8 and the drain b9 are formed on the substrate b1 so as to face each other across the gate b7.
  • An insulating film b10 is formed so as to cover the gate b7, and a channel part b11 for conducting the source b8 and the drain b9 is formed outside the insulating film b10.
  • the conductive liquid crystal material is used for the channel part b11. It is done. Since it is a matrix type pixel drive, the gate b7 and the source b8 are connected to the x and y signal lines, respectively, and the drain b9 is connected to one pole (in this example, the anode) of the electroluminescence element.
  • the same conductive liquid crystal material as that of the conductive liquid crystal layer b4 of the electroluminescence element body can be used, and it can be formed integrally therewith.
  • the element body and the TFT can be formed at the same time, and the manufacturing cost can be further reduced.
  • the conductive liquid crystal material of the channel portion b11 and the conductive liquid crystal layer b4 is obtained by subjecting the components of the liquid crystal composition to simultaneous or separate vacuum deposition or oblique vacuum deposition at room temperature (5 to 40 ° C.), and then nitrogen, argon
  • the conductive liquid crystal material may be prepared by applying a heat alignment treatment to the smectic liquid crystal state temperature range in an inert gas atmosphere such as helium, but each component of the conductive liquid crystal material is used as a solvent. After dissolving and applying by dip coating method, spin coating method, screen printing method, ink jet printing method, then in the smectic liquid crystal state temperature range of the conductive liquid crystal material in an inert gas atmosphere such as nitrogen, argon, helium etc.
  • a layer formed by applying a heat alignment treatment is preferable from the viewpoint that it can be produced at low cost.
  • the conductive liquid crystal material of the present invention can easily control the molecular alignment by rubbing treatment and align the liquid crystal molecules in parallel with the substrate. Since the conductive liquid crystal material of the present invention has this advantage, a thin film capacitor is preferable among the application examples of the organic semiconductor described above.
  • the gate electrode, the source electrode and the drain electrode are formed so as to cover the gate electrode. And an insulating film formed on the outside of the insulating film, and a channel portion for connecting the source and drain electrodes formed on the outside of the insulating film.
  • the channel portion is formed of a layer made of the conductive liquid crystal material of the present invention.
  • polyimide is used for the channel portion of a thin film capacitor (see FIG. 4) which is configured to be rubbed to the insulating film to enhance the orientation of the conductive material of the outer layer.
  • ⁇ Preparation step of compound (8a)> Into an Erlenmeyer flask, 15 g (0.023 mol) of the compound (7a) and 1.5 g of pyridine were added and dissolved in 50 ml of toluene. In a 100 ml dropping funnel, 3 times moles of PBr 3 of the compound (7a) was dissolved in 20 ml of toluene, and this was used as solution B. The solution B was slowly added dropwise to the solution A prepared above over 30 minutes while cooling with ice. After dropping, the reaction was carried out at 40 ° C. for 2 days. After completion of the reaction, the reaction solution was poured into 300 ml of ice water and extracted with 300 ml of diethyl ether.
  • a styryl derivative represented by the following general formula (A) was synthesized according to Japanese Patent Application Laid-Open No. 2004-6271.
  • Cr Crystal
  • SmG Smectic G phase
  • Smectic F phase Smectic C phase
  • N Nematic phase
  • I Isotropic liquid
  • Example 2 two glass substrates provided with ITO electrodes by vacuum film formation were provided with a gap (15 ⁇ m) with spencer particles so that the ITO electrodes face each other, and a cell was created. did. 20 mg of a mixture containing equal amounts (1: 1 by weight) of the styryl derivative (A1) and styryl derivative (A2) prepared above was pressed into the cell. Next, a voltage of 8 V was applied, the temperature was gradually increased, and the amount of current at each temperature was measured. The results are shown in Table 5 and FIG.
  • the liquid crystal temperature has a current value of 1000 times or more, and the current density of the solid body in the room temperature region is 1.0 ⁇ 10 ⁇ 4 ⁇ A / cm 2 in Reference Example 1.
  • the styryl derivative of Example 1 was 8 ⁇ A / cm 2 or more, which was 10,000 times or more.
  • reaction solution was poured into 300 g of ice water, and then extracted with 300 ml of chloroform using a 1000 ml separatory funnel. Next, the extract was dehydrated with anhydrous sodium sulfate overnight. This was filtered, and chloroform was removed under reduced pressure by an evaporator. 200 ml of hexane was added to the residue and heated to 65 ° C., followed by filtration to separate into a hexane soluble part and an insoluble part, and then purified by column chromatography.
  • reaction solution was concentrated with a rotary evaporator, 200 ml of methanol was added to the residue, and the soluble part was recovered and concentrated. This is extracted by adding 300 ml of toluene and 300 ml of saturated saline, and washed several times with 300 ml of distilled water. Thereafter, the oil layer was dehydrated with anhydrous sodium sulfate overnight. After dehydration, the mixture was filtered and concentrated with a rotary evaporator. To the next residue, 100 ml of hexane was added and filtered, and the hexane insoluble matter was recovered to obtain a phosphorus compound (3b-1).
  • styryl derivative (1B-1) was sandwiched between two glass substrates, heated to a liquid crystal phase-isotropic liquid transition temperature or higher, and the transmitted light was observed with a polarizing microscope.
  • a liquid crystalline compound having a smectic phase as a liquid crystal phase having a vertical alignment with respect to the substrate.
  • styryl derivative (1C-1) was analyzed by 1 H-NMR and FT-IR. As a result, the same pattern as in Example 3 was shown. Further, the obtained styryl derivative (1C-1) was sandwiched between two glass substrates, heated to a liquid crystal phase-isotropic liquid transition temperature or higher, and the transmitted light was observed with a polarizing microscope. Was confirmed to be a liquid crystalline compound having a smectic phase as a liquid crystal phase having a vertical alignment with respect to the substrate.
  • Example 5 ⁇ Preparation process of aldehyde compound (2b-2)>
  • the phosphorus compound (3a-1) was synthesized in the same manner as in Example 1, except that 1-bromodecane was used instead of 1-bromododecane (5a) in the preparation step of the compound (6a) of Example 1.
  • 1-bromodecane was used instead of 1-bromododecane (5a) in the preparation step of the compound (6a) of Example 1.
  • 7.9 g (0.011 mol) of compound (3a-1) and 2.3 g (0.017 mol) of terephthalaldehyde (2a) were dissolved in 50 ml of tetrahydrofuran (solution A).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

The present invention provides a liquid crystalline styryl derivative which has excellent electrical conductivity, in which molecular orientation is controlled by a rubbing treatment and in which liquid crystal molecules are oriented in a direction parallel to a substrate, a method for producing the liquid crystalline styryl derivative, an electrically conductive liquid crystal material containing the liquid crystalline styryl derivative, and an organic semiconductor device. A liquid crystalline styryl derivative is characterized in being represented by general formula (1). The liquid crystalline styryl derivative is such that n is preferably 1 in general formula (1). [Formula 1] (In the formula, R1 denotes an alkyl group and n is an integer between 1 and 3.)

Description

液晶性スチリル誘導体、その製造方法、導電性液晶材料及び有機半導体素子Liquid crystalline styryl derivative, method for producing the same, conductive liquid crystal material, and organic semiconductor element
 本発明は、有機半導体として有用な優れた導電性を有し、ラビング処理により液晶分子の配向の制御が可能な液晶性スチリル誘導体、その製造方法、導電性液晶材料及び有機半導体素子に関するものである。 The present invention relates to a liquid crystalline styryl derivative having excellent conductivity useful as an organic semiconductor and capable of controlling the alignment of liquid crystal molecules by rubbing treatment, a production method thereof, a conductive liquid crystal material, and an organic semiconductor element. .
 近年、エレクトロルミネッセンス素子を構成する正孔輸送材料や導電性液晶材料として、有機材料を使用した有機エレクトロルミネッセンス素子の研究が活発に行われている。 In recent years, research on organic electroluminescent elements using organic materials as hole transport materials and conductive liquid crystal materials constituting the electroluminescent elements has been actively conducted.
 このような、導電性液晶材料としては、従来より、アントラセン誘導体、アントラキノリン誘導体、イミダゾール誘導体、オリゴチオフェン誘導体、スチリル誘導体、ヒドラゾン誘導体、トリフェニルアミン化合物、ポリ-N-ビニルカルバゾールやオキサジアゾール等の化合物が知られている。半那らは、液晶相がスメクチックA相を有する液晶性化合物が電荷輸送能を有し、これらを用いた導電性液晶材料(例えば、特許文献1~3参照)を提案している。 As such conductive liquid crystal materials, conventionally, anthracene derivatives, anthraquinoline derivatives, imidazole derivatives, oligothiophene derivatives, styryl derivatives, hydrazone derivatives, triphenylamine compounds, poly-N-vinylcarbazole, oxadiazole, etc. Are known. Hanna et al. Have proposed a liquid crystal compound having a smectic A phase as a liquid crystal phase and having a charge transporting ability, and a conductive liquid crystal material using these compounds (see, for example, Patent Documents 1 to 3).
 しかしながら、光等によって励起させた状態でないと優れた電荷輸送能を発現しないし、また電流密度も大きくてもナノA/cmオーダと言う低い値であった。また、構造内にカルボニル基を有するもの或いはオリゴチオフェン誘導体は300℃前後の温度で分解し高温での耐久性にも問題があった。 However, excellent charge transport ability is not expressed unless excited by light or the like, and the value is as low as nano A / cm 2 even if the current density is large. Further, those having a carbonyl group in the structure or oligothiophene derivatives decomposed at a temperature of about 300 ° C. and had a problem in durability at high temperatures.
 本発明者は、先に液晶相としてスメクチックB相を有する液晶性化合物にスメクチックB相の液晶状態又はスメクチックB相の相転移で生じる固体状態で電圧を印加する電荷輸送方法(特許文献4参照。)、長い直線的共役系構造部分を持つ液晶分子を用いた電荷輸送方法(特許文献5参照。)を提案した。 The present inventor previously applied a charge transport method in which a voltage is applied to a liquid crystalline compound having a smectic B phase as a liquid crystal phase in a liquid crystal state of the smectic B phase or a solid state generated by the phase transition of the smectic B phase (see Patent Document 4). ), A charge transport method using liquid crystal molecules having a long linear conjugated structure (see Patent Document 5) has been proposed.
 本発明者らが注目している液晶化合物は、長い直線的共役構造部分(以下、「コア部分」という)の両側(又は片側)に鎖状のアルキル系炭化水素の枝部分を有する棒状の化合物である。この液晶化合物は、300℃の高温でも耐久性があり、また、鎖状炭化水素部分の相互作用により、コア部分が平行に積み重なるように配向し易いという特徴を持っている。コア部分は、芳香環や多重結合により共役系を形成してπ電子が移動可能になっている。したがって、コア部分を平行に配向させることによって、電荷輸送性が顕著に増大するので、この化合物を有機半導体素子として利用するためには、その配向の制御がきわめて重要になっている。 The liquid crystal compound that the present inventors are paying attention to is a rod-like compound having chain-like alkyl hydrocarbon branch portions on both sides (or one side) of a long linear conjugated structure portion (hereinafter referred to as “core portion”). It is. This liquid crystal compound is durable even at a high temperature of 300 ° C., and has a feature that the core portion is easily aligned so as to be stacked in parallel by the interaction of the chain hydrocarbon portion. The core portion forms a conjugated system by an aromatic ring or multiple bonds so that π electrons can move. Therefore, since the charge transport property is remarkably increased by aligning the core portions in parallel, in order to use this compound as an organic semiconductor element, the control of the alignment is extremely important.
 従来の導電性液晶分子で分子配向を制御して薄膜を形成する方法としては、PVD法により斜方蒸着して蒸着膜を形成した後、該蒸着膜を液晶化合物のスメクチック相の温度域で熱処理する方法等(例えば、特許文献6参照。)で行っていた。 As a conventional method of forming a thin film by controlling molecular orientation with conductive liquid crystal molecules, a vapor deposition film is formed by oblique vapor deposition by the PVD method, and the vapor deposition film is then heat-treated in the temperature range of the smectic phase of the liquid crystal compound. (For example, refer to Patent Document 6).
特開平09-316442号公報JP 09-316442 A 特開平11-162648号公報Japanese Patent Laid-Open No. 11-162648 特開平11-199871号公報JP-A-11-199871 特開2001-351786号公報JP 2001-351786 A 特開2004-6271号公報JP 2004-6271 A 特開2005-142233号公報JP 2005-142233 A
 斜方蒸着により薄膜を形成する方法は成膜装置が高価な上に生産性も低いため、製造コストが大きくなると言う問題がある。 The method of forming a thin film by oblique deposition has a problem that the manufacturing cost increases because the deposition apparatus is expensive and the productivity is low.
 液晶材料の配向制御方法として、ポリイミド等の高分子材料の配向膜の表面を一定方向にラビング処理して、ラビングの方向に沿って、液晶分子を配列させる方法が知られている。このラビング処理は、簡単な操作で液晶分子の分子配向を制御することができることから、工業的に最も有利な方法だと言える。 As a method for controlling the alignment of a liquid crystal material, a method is known in which the surface of an alignment film made of a polymer material such as polyimide is rubbed in a certain direction and liquid crystal molecules are aligned along the rubbing direction. This rubbing treatment can be said to be the most industrially advantageous method because the molecular orientation of the liquid crystal molecules can be controlled by a simple operation.
 従来の導電性液晶化合物は、ラビング処理により分子配向を制御することが難しいという問題があった。 Conventional conductive liquid crystal compounds have a problem that it is difficult to control molecular orientation by rubbing treatment.
 従って、本発明は、優れた導電性を有し、また、ラビング処理により分子配向を制御することができる液晶性スチリル誘導体、その製造方法、該液晶性スチリル誘導体を用いた導電性液晶材料及び有機半導体素子を提供することを目的とする。 Accordingly, the present invention provides a liquid crystalline styryl derivative having excellent conductivity and capable of controlling molecular orientation by rubbing treatment, a method for producing the same, a conductive liquid crystal material using the liquid crystalline styryl derivative, and an organic An object is to provide a semiconductor device.
 本発明者らは、上記実情を鑑みて、鋭意研究を重ねた結果、特定の一般式で表される新規な液晶性スチリル誘導が、優れた導電性を有し、ヘキサン等の有機溶媒に対して優れた溶解性を示すものであり、また、該液晶性スチリル誘導体はラビング処理により分子配向を容易に制御し、液晶分子を基板に対して平行に配向させることができることを見出し、本発明を完成するに到った。 As a result of intensive studies in view of the above circumstances, the present inventors have found that a novel liquid crystalline styryl derivative represented by a specific general formula has excellent conductivity and is effective against organic solvents such as hexane. In addition, the present inventors found that the liquid crystalline styryl derivative can easily control the molecular orientation by rubbing treatment and can orient the liquid crystal molecules in parallel to the substrate. It came to completion.
 即ち、本発明が提供しようとする第1の発明は、下記一般式(1)で表されることを特徴とする液晶性スチリル誘導体である。
Figure JPOXMLDOC01-appb-C000017
(式中、Rはアルキル基を示し、nは1~3の整数を示す。)
That is, the first invention to be provided by the present invention is a liquid crystalline styryl derivative represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000017
(Wherein R 1 represents an alkyl group, and n represents an integer of 1 to 3)
 また、本発明が提供しようとする第2の発明は、下記一般式(2a)
Figure JPOXMLDOC01-appb-C000018
で表わされるアルデヒド化合物と、下記一般式(3a)
Figure JPOXMLDOC01-appb-C000019
(式中、Rは前記と同義。Etはエチル基を示す。)で表されるリン化合物とを反応させることを特徴とする前記第1の発明の下記一般式(1A)
Figure JPOXMLDOC01-appb-C000020
(式中、Rは前記と同義。)で表される液晶性スチリル誘導体の製造方法である。
The second invention to be provided by the present invention is the following general formula (2a).
Figure JPOXMLDOC01-appb-C000018
An aldehyde compound represented by the following general formula (3a)
Figure JPOXMLDOC01-appb-C000019
(Wherein R 1 has the same meaning as described above, Et represents an ethyl group) and a phosphorus compound represented by the following general formula (1A) of the first invention:
Figure JPOXMLDOC01-appb-C000020
(Wherein R 1 is as defined above), a method for producing a liquid crystalline styryl derivative.
 また、本発明が提供しようとする第3の発明は、下記一般式(2b)
Figure JPOXMLDOC01-appb-C000021
(式中、Rは前記と同義。)で表されるアルデヒド化合物と、下記一般式(3b)
Figure JPOXMLDOC01-appb-C000022
(式中、Rは前記と同義。Etはエチル基を示す。)で表されるリン化合物とを反応させることを特徴とする前記第1の発明の下記一般式(1B)
Figure JPOXMLDOC01-appb-C000023
(式中、Rは前記と同義。)で表される液晶性スチリル誘導体の製造方法である。
The third invention to be provided by the present invention is the following general formula (2b).
Figure JPOXMLDOC01-appb-C000021
(Wherein R 1 is as defined above), and the following general formula (3b)
Figure JPOXMLDOC01-appb-C000022
(Wherein R 1 is as defined above, Et represents an ethyl group) and a phosphorus compound represented by the following general formula (1B) of the first invention,
Figure JPOXMLDOC01-appb-C000023
(Wherein R 1 is as defined above), a method for producing a liquid crystalline styryl derivative.
 また、本発明が提供しようとする第4の発明は、下記一般式(2b)
Figure JPOXMLDOC01-appb-C000024
(式中、Rは前記と同義。)で表されるアルデヒド化合物と、下記一般式(3c)
Figure JPOXMLDOC01-appb-C000025
で表されるリン化合物とを反応させることを特徴とする前記第1の発明の下記一般式(1C)
Figure JPOXMLDOC01-appb-C000026
(式中、Rは前記と同義。)で表される液晶性スチリル誘導体の製造方法である。
The fourth invention to be provided by the present invention is the following general formula (2b).
Figure JPOXMLDOC01-appb-C000024
(Wherein R 1 is as defined above) and the following general formula (3c)
Figure JPOXMLDOC01-appb-C000025
The following general formula (1C) of the first invention, characterized by reacting with a phosphorus compound represented by the formula:
Figure JPOXMLDOC01-appb-C000026
(Wherein R 1 is as defined above), a method for producing a liquid crystalline styryl derivative.
 また、本発明が提供しようとする第5の発明は、下記一般式(2a)
Figure JPOXMLDOC01-appb-C000027
で表わされるアルデヒド化合物と、下記一般式(3b)
Figure JPOXMLDOC01-appb-C000028
(式中、Rは前記と同義。Etはエチル基を示す。)で表されるリン化合物とを反応させることを特徴とする前記第1の発明の下記一般式(1C)
Figure JPOXMLDOC01-appb-C000029
(式中、Rは前記と同義。)で表される液晶性スチリル誘導体の製造方法である。
The fifth invention to be provided by the present invention is the following general formula (2a).
Figure JPOXMLDOC01-appb-C000027
An aldehyde compound represented by the following general formula (3b)
Figure JPOXMLDOC01-appb-C000028
(Wherein R 1 has the same meaning as described above, Et represents an ethyl group) and a phosphorus compound represented by the following general formula (1C) of the first invention:
Figure JPOXMLDOC01-appb-C000029
(Wherein R 1 is as defined above), a method for producing a liquid crystalline styryl derivative.
 また、本発明が提供しようとする第6の発明は、下記一般式(2b)
Figure JPOXMLDOC01-appb-C000030
(式中、Rは前記と同義。)で表されるアルデヒド化合物と、下記一般式(a4)
Figure JPOXMLDOC01-appb-C000031
(式中、Rは前記と同義。Etはエチル基を示す。)で表されるリン化合物とを反応させることを特徴とする下記一般式(1C)
Figure JPOXMLDOC01-appb-C000032
(式中、Rは前記と同義。)で表される請求項1記載の液晶性スチリル誘導体の製造方法である。
Further, a sixth invention to be provided by the present invention is the following general formula (2b)
Figure JPOXMLDOC01-appb-C000030
(Wherein R 1 is as defined above) and the following general formula (a4)
Figure JPOXMLDOC01-appb-C000031
(Wherein R 1 has the same meaning as described above, Et represents an ethyl group) and a phosphorus compound represented by the following general formula (1C)
Figure JPOXMLDOC01-appb-C000032
(Wherein, R 1 is as defined above). The method for producing a liquid crystalline styryl derivative according to claim 1.
 また、本発明が提供しようとする第7の発明は、前記第1の発明の液晶性スチリル誘導体を含有することを特徴とする導電性液晶材料である。 Also, a seventh invention to be provided by the present invention is a conductive liquid crystal material characterized by containing the liquid crystalline styryl derivative of the first invention.
 また、本発明が提供しようする第8の発明は、前記第7の発明の導電性液晶材料を用いてなることを特徴とする有機半導体素子である。 Also, an eighth invention to be provided by the present invention is an organic semiconductor element characterized by using the conductive liquid crystal material of the seventh invention.
 本発明が提供する液晶性スチルル誘導体は、新規な化合物であり、優れた導電性を有する。また、ヘキサン等の有機溶媒に対して優れた溶解性を示すことから、本発明の液晶スチリル誘導体の成膜方法として印刷法が適用可能であり、更に本発明の液晶性スチリル誘導体は、ラビング処理により分子配向を容易に制御し、液晶分子を基板に対して平行に配向させることができる。 The liquid crystalline styryl derivative provided by the present invention is a novel compound and has excellent conductivity. In addition, since it exhibits excellent solubility in an organic solvent such as hexane, a printing method can be applied as a film forming method of the liquid crystal styryl derivative of the present invention. Further, the liquid crystalline styryl derivative of the present invention is rubbed. Thus, the molecular orientation can be easily controlled, and the liquid crystal molecules can be oriented parallel to the substrate.
本発明の有機半導体素子の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the organic-semiconductor element of this invention. 本発明の有機半導体素子を用いた実施形態の一つの有機エレクトロルミネッセンス素子の断面構造を示す模式図。The schematic diagram which shows the cross-section of one organic electroluminescent element of embodiment using the organic-semiconductor element of this invention. 本発明の有機半導体素子を用いた実施形態の一つの有機エレクトロルミネッセンス素子の断面構造を示す模式図。The schematic diagram which shows the cross-section of one organic electroluminescent element of embodiment using the organic-semiconductor element of this invention. 本発明の有機半導体素子を用いた実施形態の一つの薄膜トランジスタ素子の断面構造を示す模式図。The schematic diagram which shows the cross-section of one thin-film transistor element of embodiment using the organic-semiconductor element of this invention. 本発明の有機半導体素子を用いた実施形態の一つの薄膜トランジスタ素子を備える有機エレクトロルミネッセンス素子の断面構造を示す模式図。The schematic diagram which shows the cross-section of an organic electroluminescent element provided with one thin-film transistor element of embodiment using the organic-semiconductor element of this invention. 実施例1及び参考例1で得られたスチリル誘導体をラビング処理を行ったガラス基板に挟んで、次いで等方性液体温度以上に加熱後、室温まで冷却した後の固体状態での偏光顕微鏡写真。A polarizing microscope photograph in a solid state after sandwiching the styryl derivative obtained in Example 1 and Reference Example 1 between glass substrates subjected to rubbing treatment, and then heating to an isotropic liquid temperature or higher and then cooling to room temperature. 実施例1で得られたスチリル誘導体を含む導電性液晶材料を用いた素子の温度と電流量の関係を示す図。3 is a graph showing the relationship between the temperature of an element using a conductive liquid crystal material containing a styryl derivative obtained in Example 1 and the amount of current. FIG. 実施例1で得られたスチリル誘導体を含む導電性液晶材料を等方液体状態に加熱処理し冷却して得られる固体を用いた素子の電圧と電流密度の関係を示す図。3 is a graph showing the relationship between the voltage and current density of an element using a solid obtained by heat-treating and cooling the conductive liquid crystal material containing the styryl derivative obtained in Example 1 into an isotropic liquid state. 参考例2で得られた導電性液晶材料を用いた素子の温度と電流量の関係を示す図。The figure which shows the relationship between the temperature of an element using the electroconductive liquid crystal material obtained by the reference example 2, and electric current amount.
 本発明の第1の発明に係る液晶性スチリル誘導体は、長い直線的共役系構造部分を持つ液晶性化合物であり、該液晶性スチリル誘導体は、液晶状態でスメクチック相を有する。本発明の液晶性スチリル誘導体は、一般式(1)において、両末端のスチリル基のベンゼン環上に3つの置換基を有することに特徴付けられる。この特徴によって本発明の液晶性スチリル誘導体は、更に導電性が優れたものになり、ラビング処理により分子配向を容易に制御し、液晶分子を基板に対して平行に配向させることができる。 The liquid crystalline styryl derivative according to the first aspect of the present invention is a liquid crystalline compound having a long linear conjugated structure portion, and the liquid crystalline styryl derivative has a smectic phase in a liquid crystal state. The liquid crystalline styryl derivative of the present invention is characterized by having three substituents on the benzene rings of the styryl groups at both ends in the general formula (1). Due to this feature, the liquid crystalline styryl derivative of the present invention is further excellent in electrical conductivity, and the molecular alignment can be easily controlled by rubbing treatment to align the liquid crystal molecules in parallel with the substrate.
 一般式(1)中、Rは直鎖状又は分岐状のアルキル基であり、アルキル基としては、炭素数1~18のものが好ましく用いられる。具体的には、メチル基、エチル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、ペンタデシル基、オクタデシル基等が挙げられる。これらのうち、炭素数4~18のアルキル基が好ましく、いっそう好ましくは6~18のアルキル基である。また、アルキル基が一般式CH-(CH)x-CH(CH)-(CH)y-CH-(式中、xは0~7の整数、yは0~7の整数を示す)で表わされる分岐状のアルキル基であると、各種溶媒への溶解性を向上させることができる。
 また、一般式(1)の式中のnは1~3の整数を示し、好ましくは1である。
In general formula (1), R 1 is a linear or branched alkyl group, and an alkyl group having 1 to 18 carbon atoms is preferably used. Specific examples include a methyl group, an ethyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, a dodecyl group, a pentadecyl group, and an octadecyl group. Of these, an alkyl group having 4 to 18 carbon atoms is preferable, and an alkyl group having 6 to 18 carbon atoms is more preferable. In addition, the alkyl group has the general formula CH 3 — (CH 2 ) x—CH (CH 3 ) — (CH 2 ) y—CH 2 — (wherein x is an integer from 0 to 7 and y is an integer from 0 to 7) The solubility in various solvents can be improved.
In the general formula (1), n represents an integer of 1 to 3, preferably 1.
 一般式(1)で表わされる液晶性スチリル誘導体は、シス体若しくはトランス体でもよく、又は両者の混合物であってもよい。 The liquid crystalline styryl derivative represented by the general formula (1) may be a cis isomer or a trans isomer, or a mixture of both.
 以下、本発明の一般式(1)で表されるスチリル誘導体の製造方法について説明する。
 本発明の第2の発明に係る一般式(1A)で表されるスチリル誘導体は、一般式(2a)で表わされるアルデヒド化合物と一般式(3a)で表わされるリン化合物とを反応させることにより好適に製造することができる。
Hereinafter, the manufacturing method of the styryl derivative represented by General formula (1) of this invention is demonstrated.
The styryl derivative represented by the general formula (1A) according to the second invention of the present invention is suitable by reacting the aldehyde compound represented by the general formula (2a) with the phosphorus compound represented by the general formula (3a). Can be manufactured.
 第2の発明に係る原料の一般式(2a)で表わされるアルデヒド化合物は市販品を用いることができる。 As the aldehyde compound represented by the general formula (2a) of the raw material according to the second invention, a commercially available product can be used.
 第2の発明の原料の一般式(3a)で表わされるリン化合物の式中のRは一般式(1A)のRに相当する基である。
 一般式(3a)で表わされるリン化合物は、例えば下記反応スキーム(1)に従って製造することができる。
Figure JPOXMLDOC01-appb-C000033
(式中、R及びEtは前記と同義。)
R 1 in the formula of the phosphorus compound represented by the general formula of the material of the second aspect of the invention (3a) is a corresponding group R 1 in the general formula (1A).
The phosphorus compound represented by the general formula (3a) can be produced, for example, according to the following reaction scheme (1).
Figure JPOXMLDOC01-appb-C000033
(In the formula, R 1 and Et are as defined above.)
 反応スキーム1においては、先ず没食子酸(4)を炭酸カリウム等の塩基の存在下に臭化アルキル(5)とジメチルホルムアミド等の溶媒中で好ましくは40~80℃で5時間以上反応させて、化合物(6)を得る。次に得られた化合物(6)とリチウムアルミニウムハライド等の塩基とをエーテル等の溶媒中で好ましくは30~50℃で2時間以上反応させて化合物(7)を得る。次に得られた化合物(7)と、3臭化リンとをトルエン等の溶媒中でピリジン等の塩基の存在下に好ましくは20~50℃で20時間以上反応させて化合物(8)を得る。次に得られた化合物(8)とトリエチルホスファイトとを窒素雰囲気下に好ましくは100~150℃で5時間以上反応させてリン化合物(3a)を得ることが出来る。 In Reaction Scheme 1, first, gallic acid (4) is reacted in a solvent such as alkyl bromide (5) and dimethylformamide in the presence of a base such as potassium carbonate, preferably at 40 to 80 ° C. for 5 hours or more. Compound (6) is obtained. Next, the compound (6) obtained is reacted with a base such as lithium aluminum halide in a solvent such as ether, preferably at 30 to 50 ° C. for 2 hours or longer to obtain the compound (7). Next, the obtained compound (7) and phosphorus tribromide are reacted in a solvent such as toluene in the presence of a base such as pyridine, preferably at 20 to 50 ° C. for 20 hours or longer to obtain compound (8). . Next, the obtained compound (8) and triethyl phosphite can be reacted in a nitrogen atmosphere, preferably at 100 to 150 ° C. for 5 hours or longer to obtain the phosphorus compound (3a).
 第2の発明に係る一般式(1A)で表わされる液晶性スチリル誘導体の製造法において、一般式(3a)のリン化合物の添加量は、一般式(2a)で表わされるアルデヒド化合物に対するモル比で1.8~2.5、好ましくは1.9~2.1である。 In the method for producing a liquid crystalline styryl derivative represented by the general formula (1A) according to the second invention, the addition amount of the phosphorus compound of the general formula (3a) is a molar ratio with respect to the aldehyde compound represented by the general formula (2a). It is 1.8 to 2.5, preferably 1.9 to 2.1.
 第2の発明において、一般式(2a)で表わされるアルデヒド化合物と、一般式(3a)のリン化合物との反応は、塩基の存在下に溶媒中で行われる。 In the second invention, the reaction of the aldehyde compound represented by the general formula (2a) and the phosphorus compound of the general formula (3a) is performed in a solvent in the presence of a base.
 第2の発明で使用できる塩基としては、例えば、水素化ナトリウム等の金属水素化物、トリメチルアミン、トリエチルアミン等のアミン類、水酸化カリウム、水酸化ナトリウム等の水酸化アルカリ、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウムブトキシド、カリウムブトキシド等のアルコキシド、ピリジン、カリウムクレゾラート、アルキルリチウム等が挙げられ、これらは1種又は2種以上で用いられる。塩基の添加量は一般式(2a)で表わされるアルデヒド化合物に対するモル比で2.0~5.0、好ましくは3.0~4.0である。 Examples of the base that can be used in the second invention include metal hydrides such as sodium hydride, amines such as trimethylamine and triethylamine, alkali hydroxides such as potassium hydroxide and sodium hydroxide, sodium methoxide and potassium methoxide. Alkoxide such as sodium ethoxide, potassium ethoxide, sodium butoxide, potassium butoxide, pyridine, potassium cresolate, alkyllithium and the like, and these may be used alone or in combination. The amount of the base added is 2.0 to 5.0, preferably 3.0 to 4.0, as a molar ratio to the aldehyde compound represented by the general formula (2a).
 第2の発明で使用できる反応溶媒としては、原料を溶解でき、生成物に対して不活性な溶媒であれば特に制限はない。例えば、ジオキサン、テトラヒドロフラン、ジブチルエーテル等のエーテル類、アセトニトリル、プロピオニトリル等のニトリル類、メタノール、エタノール等のアルコール類、ジメチルホルムアミド、アセトン、水等の1種又は2種以上で用いることができる。 The reaction solvent that can be used in the second invention is not particularly limited as long as it can dissolve the raw materials and is inert to the product. For example, ethers such as dioxane, tetrahydrofuran and dibutyl ether, nitriles such as acetonitrile and propionitrile, alcohols such as methanol and ethanol, dimethylformamide, acetone and water can be used alone or in combination. .
 第2の発明に係る反応条件は、反応温度が10~100℃、好ましくは40~70℃で、反応時間が5時間以上、好ましくは15~50時間である。 The reaction conditions according to the second invention are a reaction temperature of 10 to 100 ° C., preferably 40 to 70 ° C., and a reaction time of 5 hours or more, preferably 15 to 50 hours.
 第2の発明は反応液に塩酸等の酸を添加することで反応を停止させ、反応終了後、蒸留等により反応溶媒を除去し、必要により洗浄等を行い、更に必要により再結晶、カラムクロマトグラフィー等の常法の精製を行って目的とする一般式(1A)で表わされる液晶性スチリル誘導体を得ることができる。 In the second aspect of the invention, the reaction is stopped by adding an acid such as hydrochloric acid to the reaction solution. After the reaction is completed, the reaction solvent is removed by distillation or the like, washing is performed as necessary, and recrystallization or column chromatography is performed as necessary. The target liquid crystalline styryl derivative represented by the general formula (1A) can be obtained by purification by a conventional method such as chromatography.
 本発明の第3の発明に係る一般式(1B)で表されるスチリル誘導体は、一般式(2b)で表わされるアルデヒド化合物と一般式(3b)で表わされるリン化合物とを反応させることにより好適に製造することができる。 The styryl derivative represented by the general formula (1B) according to the third invention of the present invention is suitable by reacting the aldehyde compound represented by the general formula (2b) and the phosphorus compound represented by the general formula (3b). Can be manufactured.
 第3の発明の一般式(2b)で表わされるアルデヒド化合物の式中のRは一般式(1B)で表される液晶性スチリル誘導体の式中のRの相当する基である。
 第3の発明の一般式(2b)で表わされるアルデヒド化合物は、例えば下記反応スキーム(2)に従って製造することができる。
 下記反応スキーム(2)において、先ず没食子酸(4)を炭酸カリウム等の塩基の存在下に臭化アルキル(5)とを反応させて、化合物(6)を得る。次に得られた化合物(6)とリチウムアルミニウムハライド等の塩基とを反応させて化合物(7)を得る。次に得られた化合物(7)と、3臭化リンとを反応させて化合物(8)を得る。次に得られた化合物(8)とトリフェニルホスフィンを反応させ化合物(a2)を得る。次に得られた化合物(a2)とテレフタルアルデヒド(2a)とを反応せさせることで、目的とする一般式(2b)で表わされるアルデヒド化合物を得ることができる(例えば、特開2007-217309号公報参照)。
R 1 in the formula of the aldehyde compound represented by the general formula (2b) of the third invention is a group corresponding to R 1 in the formula of the liquid crystalline styryl derivative represented by the general formula (1B).
The aldehyde compound represented by the general formula (2b) of the third invention can be produced, for example, according to the following reaction scheme (2).
In the following reaction scheme (2), first, gallic acid (4) is reacted with alkyl bromide (5) in the presence of a base such as potassium carbonate to obtain compound (6). Next, compound (7) is obtained by reacting the obtained compound (6) with a base such as lithium aluminum halide. Next, the compound (7) obtained is reacted with phosphorus tribromide to obtain the compound (8). Next, the compound (8) and triphenylphosphine obtained are reacted to obtain the compound (a2). Next, by reacting the obtained compound (a2) with terephthalaldehyde (2a), the desired aldehyde compound represented by the general formula (2b) can be obtained (for example, JP-A-2007-217309). See the official gazette).
 また、一般式(2b)で表されるアルデヒド化合物は、前記一般式(3a)で表されるリン化合物とテレフタルアルデヒド(アルデヒド化合物(2a))とを、テレフタルアルデヒド(2a)に対するリン化合物(3a)のモル比で0.5~0.8で、カリウムt-ブトキシド等塩基の存在下にテトラヒドロフラン等溶媒中で10~60℃で3時間以上反応させることに得ることもできる。 Further, the aldehyde compound represented by the general formula (2b) is obtained by combining the phosphorus compound represented by the general formula (3a) and terephthalaldehyde (aldehyde compound (2a)) with a phosphorus compound (3a) for terephthalaldehyde (2a). ) In a molar ratio of 0.5 to 0.8 and in the presence of a base such as potassium t-butoxide in a solvent such as tetrahydrofuran at 10 to 60 ° C. for 3 hours or longer.
 なお、得られた一般式(2b)で表されるアルデヒド化合物はシス体とトランス体との混合物である場合には、必要によりこの混合物をトルエン中で環流させながらヨウ素を作用させて該アルデヒド化合物のトランス体を得る。この場合、ヨウ素の添加量は一般式(2b)で表されるアルデヒド化合物に対して好ましくは0.001~0.1倍モル、更に好ましくは0.005~0.01倍モルであり、加熱処理温度は100~180℃、好ましくは130~150℃である。 In addition, when the obtained aldehyde compound represented by the general formula (2b) is a mixture of a cis isomer and a trans isomer, if necessary, the aldehyde compound is reacted with iodine while refluxing the mixture in toluene. The trans form of is obtained. In this case, the amount of iodine added is preferably 0.001 to 0.1 times mol, more preferably 0.005 to 0.01 times mol, with respect to the aldehyde compound represented by the general formula (2b). The treatment temperature is 100 to 180 ° C, preferably 130 to 150 ° C.
 一般式(3b)で表されるリン化合物の式中のRは一般式(1B)で表されるスチリル誘導体の式中のRの相当する基である。
 一般式(3b)で表されるリン化合物は、例えば下記反応スキーム(3)に従って製造することができる。
 下記反応スキーム(3)において、先ず3,4,5-トリヒドロベンズアルデヒド(a1)と、臭化アルキル(5)とを反応させて、化合物(a3)を得る(例えば、特開2007-137809号公報参照)。次に得られた化合物(a3)とテトラエチルp-キシリレンジホスホネート(リン化合物(a4))とを反応させてことで、目的とする一般式(3b)で表わされるリン化合物を得ることができる(例えば、特開2009-250817号公報)。
R 1 in the formula of the phosphorus compound represented by the general formula (3b) is a group corresponding to R 1 in the formula of the styryl derivative represented by the general formula (1B).
The phosphorus compound represented by the general formula (3b) can be produced, for example, according to the following reaction scheme (3).
In the following reaction scheme (3), first, 3,4,5-trihydrobenzaldehyde (a1) is reacted with alkyl bromide (5) to obtain compound (a3) (for example, JP-A-2007-137809). See the official gazette). Next, the target phosphorus compound represented by the general formula (3b) can be obtained by reacting the obtained compound (a3) with tetraethyl p-xylylene diphosphonate (phosphorus compound (a4)) ( For example, JP 2009-250817 A).
Figure JPOXMLDOC01-appb-C000034
(式中、Rは前記と同義。)
Figure JPOXMLDOC01-appb-C000034
(Wherein R 1 has the same meaning as described above.)
 第3の発明に係る一般式(1B)で表わされる液晶性スチリル誘導体の製造法において、一般式(3b)のリン化合物の添加量は、一般式(2b)で表わされるアルデヒド化合物に対するモル比で0.9~1.1、好ましくは0.95~1.05である。 In the method for producing a liquid crystalline styryl derivative represented by the general formula (1B) according to the third invention, the addition amount of the phosphorus compound of the general formula (3b) is a molar ratio with respect to the aldehyde compound represented by the general formula (2b). It is 0.9 to 1.1, preferably 0.95 to 1.05.
 本発明の第3の発明の反応は、一般式(2b)で表わされるアルデヒド化合物と一般式(3b)で表わされるリン化合物とを塩基の存在下に溶媒中で反応させることにより行われる。 The reaction of the third invention of the present invention is performed by reacting the aldehyde compound represented by the general formula (2b) and the phosphorus compound represented by the general formula (3b) in a solvent in the presence of a base.
 第3の発明で使用できる塩基としては、例えば、水素化ナトリウム等の金属水素化物、トリメチルアミン、トリエチルアミン等のアミン類、水酸化カリウム、水酸化ナトリウム等の水酸化アルカリ、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウムブトキシド、カリウムブトキシド等のアルコキシド、ピリジン、カリウムクレゾラート、アルキルリチウム等が挙げられ、これらは1種又は2種以上で用いられる。塩基の添加量は一般式(2b)で表わされるアルデヒド化合物に対するモル比で2.0~5.0、好ましくは2.0~4.0である。 Examples of the base that can be used in the third invention include metal hydrides such as sodium hydride, amines such as trimethylamine and triethylamine, alkali hydroxides such as potassium hydroxide and sodium hydroxide, sodium methoxide and potassium methoxide. Alkoxide such as sodium ethoxide, potassium ethoxide, sodium butoxide, potassium butoxide, pyridine, potassium cresolate, alkyllithium and the like, and these may be used alone or in combination. The amount of the base added is 2.0 to 5.0, preferably 2.0 to 4.0, as a molar ratio to the aldehyde compound represented by the general formula (2b).
 第3の発明で使用できる反応溶媒としては、原料を溶解でき、生成物に対して不活性な溶媒であれば特に制限はない。例えば、ジオキサン、テトラヒドロフラン、ジブチルエーテル等のエーテル類、アセトニトリル、プロピオニトリル等のニトリル類、メタノール、エタノール等のアルコール類、ジメチルホルムアミド、アセトン、水等の1種又は2種以上で用いることができる。 The reaction solvent that can be used in the third invention is not particularly limited as long as it can dissolve the raw material and is inert to the product. For example, ethers such as dioxane, tetrahydrofuran and dibutyl ether, nitriles such as acetonitrile and propionitrile, alcohols such as methanol and ethanol, dimethylformamide, acetone and water can be used alone or in combination. .
 第3の発明に係る反応条件は、反応温度が10~100℃、好ましくは10~40℃で、反応時間が5時間以上、好ましくは10~30時間である。 The reaction conditions according to the third invention are a reaction temperature of 10 to 100 ° C., preferably 10 to 40 ° C., and a reaction time of 5 hours or more, preferably 10 to 30 hours.
 第3の発明は反応液に塩酸等の酸を添加することで反応を停止させ、反応終了後、蒸留等により反応溶媒を除去し、必要により洗浄等を行い、更に必要により再結晶、カラムクロマトグラフィー等の常法の精製を行って目的とする一般式(1B)で表わされる液晶性スチリル誘導体を得ることができる。 In the third aspect of the invention, the reaction is stopped by adding an acid such as hydrochloric acid to the reaction solution, and after completion of the reaction, the reaction solvent is removed by distillation or the like, washing is performed if necessary, and recrystallization or column chromatography is performed if necessary. The target liquid crystalline styryl derivative represented by the general formula (1B) can be obtained by purification by a conventional method such as chromatography.
 一般式(1C)で表されるスチリル誘導体は、後述する第4の発明及び第5の発明により好適に製造することができる。 The styryl derivative represented by the general formula (1C) can be preferably produced by the fourth and fifth inventions described later.
 本発明の第4の発明は、一般式(2b)で表わされるアルデヒド化合物と一般式(3c)で表わされるリン化合物とを反応させることにより一般式(1C)で表されるスチリル誘導体を得るものである。 According to a fourth aspect of the present invention, a styryl derivative represented by the general formula (1C) is obtained by reacting an aldehyde compound represented by the general formula (2b) with a phosphorus compound represented by the general formula (3c). It is.
 第4の発明に係る一般式(2b)で表わされるアルデヒド化合物の式中のRは一般式(1C)で表される液晶性スチリル誘導体の式中のRに相当する基であり、該一般式(2b)で表わされるアルデヒド化合物は、前記第3の発明と同じ一般式(2b)で表わされるアルデヒド化合物を用いることができる。 R 1 in the formula of the aldehyde compound represented by the general formula (2b) according to the fourth invention is a group corresponding to R 1 in the formula of the liquid crystalline styryl derivative represented by the general formula (1C), As the aldehyde compound represented by the general formula (2b), the aldehyde compound represented by the same general formula (2b) as in the third invention can be used.
 第4の発明に係る一方の原料の一般式(3c)で表されるリン化合物は市販品を用いることができる。 As the phosphorus compound represented by the general formula (3c) of one raw material according to the fourth invention, a commercially available product can be used.
 第4の発明に係る一般式(1C)で表わされる液晶性スチリル誘導体の製造法において、一般式(3c)のリン化合物の添加量は、一般式(2b)で表わされるアルデヒド化合物に対するモル比で0.9~1.1、好ましくは0.95~1.05である。 In the method for producing a liquid crystalline styryl derivative represented by the general formula (1C) according to the fourth invention, the addition amount of the phosphorus compound of the general formula (3c) is a molar ratio with respect to the aldehyde compound represented by the general formula (2b). It is 0.9 to 1.1, preferably 0.95 to 1.05.
 本発明の第4の発明の反応は、一般式(2b)で表わされるアルデヒド化合物と一般式(3c)で表わされるリン化合物とを塩基の存在下に溶媒中で反応させることにより行われる。 The reaction of the fourth invention of the present invention is carried out by reacting the aldehyde compound represented by the general formula (2b) and the phosphorus compound represented by the general formula (3c) in a solvent in the presence of a base.
 第4の発明で使用できる塩基としては、例えば、水素化ナトリウム等の金属水素化物、トリメチルアミン、トリエチルアミン等のアミン類、水酸化カリウム、水酸化ナトリウム等の水酸化アルカリ、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウムブトキシド、カリウムブトキシド等のアルコキシド、ピリジン、カリウムクレゾラート、アルキルリチウム等が挙げられ、これらは1種又は2種以上で用いられる。塩基の添加量は一般式(2b)で表わされるアルデヒド化合物に対するモル比で2.0~5.0、好ましくは2.0~4.0である。 Examples of the base that can be used in the fourth invention include metal hydrides such as sodium hydride, amines such as trimethylamine and triethylamine, alkali hydroxides such as potassium hydroxide and sodium hydroxide, sodium methoxide and potassium methoxide. Alkoxide such as sodium ethoxide, potassium ethoxide, sodium butoxide, potassium butoxide, pyridine, potassium cresolate, alkyllithium and the like, and these may be used alone or in combination. The amount of the base added is 2.0 to 5.0, preferably 2.0 to 4.0, as a molar ratio to the aldehyde compound represented by the general formula (2b).
 第4の発明で使用できる反応溶媒としては、原料を溶解でき、生成物に対して不活性な溶媒であれば特に制限はない。例えば、ジオキサン、テトラヒドロフラン、ジブチルエーテル等のエーテル類、アセトニトリル、プロピオニトリル等のニトリル類、メタノール、エタノール等のアルコール類、ジメチルホルムアミド、アセトン、水等の1種又は2種以上で用いることができる。 The reaction solvent that can be used in the fourth invention is not particularly limited as long as it can dissolve the raw materials and is inert to the product. For example, ethers such as dioxane, tetrahydrofuran and dibutyl ether, nitriles such as acetonitrile and propionitrile, alcohols such as methanol and ethanol, dimethylformamide, acetone and water can be used alone or in combination. .
 第4の発明に係る反応条件は、反応温度が10~100℃、好ましくは10~40℃で、反応時間が5時間以上、好ましくは10~50時間である。 The reaction conditions according to the fourth invention are a reaction temperature of 10 to 100 ° C., preferably 10 to 40 ° C., and a reaction time of 5 hours or more, preferably 10 to 50 hours.
 第4の発明は反応液に塩酸等の酸を添加することで反応を停止させ、反応終了後、蒸留等により反応溶媒を除去し、必要により洗浄等を行い、更に必要により再結晶、カラムクロマトグラフィー等の常法の精製を行って目的とする一般式(1C)で表わされる液晶性スチリル誘導体を得ることができる。 In the fourth aspect of the invention, the reaction is stopped by adding an acid such as hydrochloric acid to the reaction solution, and after completion of the reaction, the reaction solvent is removed by distillation or the like, washing is performed if necessary, and recrystallization or column chromatography is performed if necessary. The target liquid crystalline styryl derivative represented by the general formula (1C) can be obtained by purification by a conventional method such as chromatography.
 本発明の第5の発明は、一般式(2a)で表わされるアルデヒド化合物と一般式(3b)で表わされるリン化合物とを反応させることにより一般式(1C)で表されるスチリル誘導体を得るものである。 According to a fifth aspect of the present invention, a styryl derivative represented by the general formula (1C) is obtained by reacting an aldehyde compound represented by the general formula (2a) with a phosphorus compound represented by the general formula (3b). It is.
 第5の発明に係る一般式(2a)で表わされるアルデヒド化合物は、前記第2の発明と同じ一般式(2a)で表わされるアルデヒド化合物を用いることができる。
 一方、第5の発明に係る(3b)で表されるリン化合物の式中のRは一般式(1C)の式中のRに相当する基であり、該リン化合物は前記第3の発明と同じ一般式(3b)で表わされるリン化合物を用いることができる。
As the aldehyde compound represented by the general formula (2a) according to the fifth invention, the aldehyde compound represented by the same general formula (2a) as that of the second invention can be used.
On the other hand, R 1 in the formula of the phosphorus compound represented by (3b) according to the fifth invention is a group corresponding to R 1 in the formula of the general formula (1C). The phosphorus compound represented by the same general formula (3b) as the invention can be used.
 第5の発明に係る一般式(1C)で表わされる液晶性スチリル誘導体の製造法において、一般式(3b)のリン化合物の添加量は、一般式(2a)で表わされるアルデヒド化合物に対するモル比で0.4~0.7、好ましくは0.45~0.6である。 In the method for producing a liquid crystalline styryl derivative represented by the general formula (1C) according to the fifth invention, the addition amount of the phosphorus compound of the general formula (3b) is a molar ratio with respect to the aldehyde compound represented by the general formula (2a). It is 0.4 to 0.7, preferably 0.45 to 0.6.
 本発明の第5の発明の反応は、一般式(2a)で表わされるアルデヒド化合物と一般式(3b)で表わされるリン化合物とを塩基の存在下に溶媒中で反応させることにより行われる。 The reaction of the fifth invention of the present invention is carried out by reacting an aldehyde compound represented by the general formula (2a) and a phosphorus compound represented by the general formula (3b) in a solvent in the presence of a base.
 第5の発明で使用できる塩基としては、例えば、水素化ナトリウム等の金属水素化物、トリメチルアミン、トリエチルアミン等のアミン類、水酸化カリウム、水酸化ナトリウム等の水酸化アルカリ、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウムブトキシド、カリウムブトキシド等のアルコキシド、ピリジン、カリウムクレゾラート、アルキルリチウム等が挙げられ、これらは1種又は2種以上で用いられる。塩基の添加量は一般式(2a)で表わされるアルデヒド化合物に対するモル比で2.0~5.0、好ましくは2.0~4.0である。 Examples of the base that can be used in the fifth invention include metal hydrides such as sodium hydride, amines such as trimethylamine and triethylamine, alkali hydroxides such as potassium hydroxide and sodium hydroxide, sodium methoxide and potassium methoxide. Alkoxide such as sodium ethoxide, potassium ethoxide, sodium butoxide, potassium butoxide, pyridine, potassium cresolate, alkyllithium and the like, and these may be used alone or in combination. The amount of the base added is 2.0 to 5.0, preferably 2.0 to 4.0, as a molar ratio to the aldehyde compound represented by the general formula (2a).
 第5の発明で使用できる反応溶媒としては、原料を溶解でき、生成物に対して不活性な溶媒であれば特に制限はない。例えば、ジオキサン、テトラヒドロフラン、ジブチルエーテル等のエーテル類、アセトニトリル、プロピオニトリル等のニトリル類、メタノール、エタノール等のアルコール類、ジメチルホルムアミド、アセトン、水等の1種又は2種以上で用いることができる。 The reaction solvent that can be used in the fifth invention is not particularly limited as long as it can dissolve the raw materials and is inert to the product. For example, ethers such as dioxane, tetrahydrofuran and dibutyl ether, nitriles such as acetonitrile and propionitrile, alcohols such as methanol and ethanol, dimethylformamide, acetone and water can be used alone or in combination. .
 第5の発明に係る反応条件は、反応温度が10~100℃、好ましくは10~40℃で、反応時間が5時間以上、好ましくは10~50時間である。 The reaction conditions according to the fifth invention are such that the reaction temperature is 10 to 100 ° C., preferably 10 to 40 ° C., and the reaction time is 5 hours or more, preferably 10 to 50 hours.
 第5の発明は反応液に塩酸等の酸を添加することで反応を停止させ、反応終了後、蒸留等により反応溶媒を除去し、必要により洗浄等を行い、更に必要により再結晶、カラムクロマトグラフィー等の常法の精製を行って目的とする一般式(1C)で表わされる液晶性スチリル誘導体を得ることができる。 In the fifth invention, the reaction is stopped by adding an acid such as hydrochloric acid to the reaction solution, and after the reaction is completed, the reaction solvent is removed by distillation or the like, washing is performed if necessary, and recrystallization or column chromatography is performed if necessary. The target liquid crystalline styryl derivative represented by the general formula (1C) can be obtained by purification by a conventional method such as chromatography.
 本発明の第6の発明は、一般式(2b)で表されるアルデヒド化合物と一般式(a4)で表されるリン化合物とを反応させることにより一般式(1C)で表されるスチルル誘導体を得るものである。 According to a sixth aspect of the present invention, there is provided a styryl derivative represented by the general formula (1C) by reacting an aldehyde compound represented by the general formula (2b) with a phosphorus compound represented by the general formula (a4). To get.
 第6の発明に係る一般式(2b)で表わされるアルデヒド化合物は、前記第3の発明と同じ一般式(2b)で表わされるアルデヒド化合物を用いることができ、第6の発明において、一般式(2b)で表されるアルデヒド化合物の式中のRは一般式(1C)で表される液晶性スチリル誘導体の式中のRに相当する基である。 As the aldehyde compound represented by the general formula (2b) according to the sixth invention, the aldehyde compound represented by the same general formula (2b) as in the third invention can be used. R 1 in the formula of the aldehyde compound represented by 2b) is a group corresponding to R 1 in the formula of the liquid crystalline styryl derivative represented by the general formula (1C).
 一方、第6の発明に係る(a4)で表されるリン化合物は、α,α’-ジクロロ-p-キシレンとトリエチルホスファイトとを反応させることにより容易に製造することができる。 On the other hand, the phosphorus compound represented by (a4) according to the sixth invention can be easily produced by reacting α, α'-dichloro-p-xylene and triethyl phosphite.
 第6の発明に係る一般式(1C)で表わされる液晶性スチリル誘導体の製造法において、一般式(a4)のリン化合物の添加量は、一般式(2b)で表わされるアルデヒド化合物に対するモル比で0.4~0.7、好ましくは0.45~0.6である。 In the method for producing a liquid crystalline styryl derivative represented by the general formula (1C) according to the sixth invention, the addition amount of the phosphorus compound of the general formula (a4) is a molar ratio with respect to the aldehyde compound represented by the general formula (2b). It is 0.4 to 0.7, preferably 0.45 to 0.6.
 本発明の第6の発明の反応は、一般式(2b)で表わされるアルデヒド化合物と一般式(a4)で表わされるリン化合物とを塩基の存在下に溶媒中で反応させることにより行われる。 The reaction of the sixth invention of the present invention is carried out by reacting the aldehyde compound represented by the general formula (2b) and the phosphorus compound represented by the general formula (a4) in a solvent in the presence of a base.
 第6の発明で使用できる塩基としては、例えば、水素化ナトリウム等の金属水素化物、トリメチルアミン、トリエチルアミン等のアミン類、水酸化カリウム、水酸化ナトリウム等の水酸化アルカリ、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウムブトキシド、カリウムブトキシド等のアルコキシド、ピリジン、カリウムクレゾラート、アルキルリチウム等が挙げられ、これらは1種又は2種以上で用いられる。塩基の添加量は一般式(2b)で表わされるアルデヒド化合物に対するモル比で2.0~6.0、好ましくは4.0~6.0である。 Examples of the base that can be used in the sixth invention include metal hydrides such as sodium hydride, amines such as trimethylamine and triethylamine, alkali hydroxides such as potassium hydroxide and sodium hydroxide, sodium methoxide and potassium methoxide. Alkoxide such as sodium ethoxide, potassium ethoxide, sodium butoxide, potassium butoxide, pyridine, potassium cresolate, alkyllithium and the like, and these may be used alone or in combination. The addition amount of the base is 2.0 to 6.0, preferably 4.0 to 6.0 in terms of a molar ratio to the aldehyde compound represented by the general formula (2b).
 第6の発明で使用できる反応溶媒としては、原料を溶解でき、生成物に対して不活性な溶媒であれば特に制限はない。例えば、ジオキサン、テトラヒドロフラン、ジブチルエーテル等のエーテル類、アセトニトリル、プロピオニトリル等のニトリル類、メタノール、エタノール等のアルコール類、ジメチルホルムアミド、アセトン、水等の1種又は2種以上で用いることができる。 The reaction solvent that can be used in the sixth invention is not particularly limited as long as it can dissolve the raw material and is inert to the product. For example, ethers such as dioxane, tetrahydrofuran and dibutyl ether, nitriles such as acetonitrile and propionitrile, alcohols such as methanol and ethanol, dimethylformamide, acetone and water can be used alone or in combination. .
 第6の発明に係る反応条件は、反応温度が10~100℃、好ましくは10~40℃で、反応時間が5時間以上、好ましくは10~50時間である。 The reaction conditions according to the sixth invention are such that the reaction temperature is 10 to 100 ° C., preferably 10 to 40 ° C., and the reaction time is 5 hours or more, preferably 10 to 50 hours.
 第6の発明は反応液に塩酸等の酸を添加することで反応を停止させ、反応終了後、蒸留等により反応溶媒を除去し、必要により洗浄等を行い、更に必要により再結晶、カラムクロマトグラフィー等の常法の精製を行って目的とする一般式(1C)で表わされる液晶性スチリル誘導体を得ることができる。 In the sixth aspect of the invention, the reaction is stopped by adding an acid such as hydrochloric acid to the reaction solution, and after completion of the reaction, the reaction solvent is removed by distillation or the like, washing is performed if necessary, and recrystallization or column chromatography is performed if necessary. The target liquid crystalline styryl derivative represented by the general formula (1C) can be obtained by purification by a conventional method such as chromatography.
 第2~第6の発明により得られる一般式(1)((1A)、(1B)、(1C))で表される各種液晶性スチリル誘導体は、従来の液晶性スチリル誘導体に比べて導電性に優れ、ヘキサン等の有機溶媒に対して優れた溶解性を示す。また、該液晶性スチリル誘導体はラビング処理により分子配向を容易に制御し、液晶分子を基板に対して平行に配向させることができる。 The various liquid crystalline styryl derivatives represented by the general formula (1) ((1A), (1B), (1C)) obtained by the second to sixth inventions are more conductive than the conventional liquid crystalline styryl derivatives. Excellent solubility in organic solvents such as hexane. In addition, the liquid crystalline styryl derivative can easily control the molecular alignment by rubbing treatment, and can align the liquid crystal molecules in parallel with the substrate.
 次いで、本発明の第7の発明に係る導電性液晶材料について説明する。
 本発明の導電性液晶材料は、一般式(1)で表わされる液晶性スチリル誘導体を50重量%以上、好ましくは80重量%以上含有し、前記液晶性スチリル誘導体に起因するスメクチック相の液晶状態を示す材料である。
Next, the conductive liquid crystal material according to the seventh aspect of the present invention will be described.
The conductive liquid crystal material of the present invention contains 50% by weight or more, preferably 80% by weight or more of the liquid crystalline styryl derivative represented by the general formula (1), and exhibits a liquid crystal state of a smectic phase caused by the liquid crystalline styryl derivative. It is a material to show.
 一般式(1)で表わされる液晶性スチリル誘導体は、2種以上で混合して用いることにより、液晶を示す温度範囲を広く調整することができる。 When the liquid crystalline styryl derivative represented by the general formula (1) is used in a mixture of two or more, the temperature range showing the liquid crystal can be widely adjusted.
 また、導電性液晶材料に含有させる他の成分としては、例えば、長い直線的共役系構造部分を持つ液晶化合物等の導電性有機液晶性化合物(例えば、特開2004-6271号公報参照。)等が挙がられる。 Further, as other components to be included in the conductive liquid crystal material, for example, conductive organic liquid crystal compounds such as a liquid crystal compound having a long linear conjugated structure portion (see, for example, JP-A-2004-6271) and the like. Is raised.
 本発明の導電性液晶材料は、一般式(1)で表わされる液晶性スチリル誘導体の2種以上、或いは他の成分との組成物は、例えば一般式(1)で表わされる液晶性スチリル誘導体の1種又は2種以上及びそれ以外の必要な成分を溶媒に溶解した後、溶媒を加熱、減圧等で除去するか、一般式(1)で表わされるスチリル誘導体の1種又は2種以上及びそれ以外の必要な成分とを混合し、加熱溶融するか、又はスパッタリング、真空蒸着、斜方真空蒸着等を行うことにより調製することができる。 The conductive liquid crystal material of the present invention is composed of two or more kinds of liquid crystalline styryl derivatives represented by the general formula (1), or a composition with other components such as a liquid crystalline styryl derivative represented by the general formula (1). After dissolving one or more kinds and other necessary components in a solvent, the solvent is removed by heating, reduced pressure, or the like, or one or more kinds of styryl derivatives represented by the general formula (1) and the same It can be prepared by mixing with other necessary components and melting by heating, or performing sputtering, vacuum deposition, oblique vacuum deposition or the like.
 また、本発明の導電性液晶材料は、薄膜として使用することが好ましい。薄膜を形成する方法としては、真空蒸着法又は斜方真空蒸着法でも行うことができるが、一般式(1)で表わされるスチリル誘導体の1種又は2種以上の所望の成分及びそれ以外の必要な成分を溶媒に溶解し、ディップコート法、スピンコーティング法、スクリーン印刷法、インクジェット印刷法により層形成させることができ、かくすることにより有機薄膜の作成が容易であり、工業的にも有利である。 The conductive liquid crystal material of the present invention is preferably used as a thin film. As a method for forming the thin film, vacuum deposition or oblique vacuum deposition can be used, but one or more desired components of the styryl derivative represented by the general formula (1) and other necessary requirements These components can be dissolved in a solvent and formed into a layer by dip coating, spin coating, screen printing, or ink jet printing, which makes it easy to create an organic thin film, which is also industrially advantageous. is there.
 本発明の導電性液晶材料は、以下の2つの方法により、電荷輸送能を発現さることが好ましい。
(a)スメクチック相の液晶状態で前記導電性液晶材料に電圧を印加する方法。
(b)スメクチック相からの相転移で生じる固体状態で前記導電性液晶材料に電圧を印加する方法。
The conductive liquid crystal material of the present invention preferably exhibits charge transporting ability by the following two methods.
(A) A method of applying a voltage to the conductive liquid crystal material in a liquid crystal state of a smectic phase.
(B) A method of applying a voltage to the conductive liquid crystal material in a solid state generated by a phase transition from a smectic phase.
 前記(a)の方法は、前記導電性液晶材料を所定の温度でスメクチック相とし、このスメクチック相の液晶状態で電圧を印加し、電荷の輸送を行う方法である。この場合、スメクチック相は、A、B、C、D、E、F、G、Hの何れの相の状態であってもよい。 The method (a) is a method in which the conductive liquid crystal material is made into a smectic phase at a predetermined temperature, and a voltage is applied in the liquid crystal state of the smectic phase to transport charges. In this case, the smectic phase may be in any state of A, B, C, D, E, F, G, and H.
 前記(b)の方法は、前記導電性液晶材料を所定の温度でスメクチック相とし、この状態から降温を行うことによりスメクチック相の分子配向を保持した固体状態とし、この固体状態の導電性液晶材料に電圧を印加し、電荷の輸送を行う方法である。なお、降温を行う方法としては、自然冷却で行ってもよいし、急冷で行ってもよい。 In the method (b), the conductive liquid crystal material is changed to a smectic phase at a predetermined temperature, and the temperature is lowered from this state to obtain a solid state that maintains the molecular orientation of the smectic phase. In this method, a voltage is applied to the electrode to transport charges. As a method for lowering the temperature, natural cooling may be used, or rapid cooling may be used.
 次いで、本発明の第8の発明に係る有機半導体素子は、前記導電性液晶材料を用いてなることを特徴とするものである。 Next, an organic semiconductor element according to an eighth aspect of the present invention is characterized by using the conductive liquid crystal material.
 本発明の有機半導体素子は、一対の電極を設けた基板間に前記導電性液晶材料からなる導電性液晶層を設けたことを特徴とする。 The organic semiconductor element of the present invention is characterized in that a conductive liquid crystal layer made of the conductive liquid crystal material is provided between a substrate provided with a pair of electrodes.
 図1は有機半導体素子の一実施形態を示す概略図である。図1において、本発明の有機半導体素子は、2枚のガラス基板1a、1bの表面に、各々ITO等の透明電極からなる
電極2a、2bを設け、該電極を設けた一対の基板をスペンサー4を介してセル間隔を一定に保って接着剤で貼り合わせてセルを作成し、該セル内に前記導電性液晶材料を注入して導電性液晶層3を電極間に設ける。該電極2a、2bの間に設けられた前記導電性液晶層3を(a)スメクチック相の液晶状態として、該スメクチック相の液晶状態で電圧を印加するか、又は導電性液晶層3を(b)スメクチック相からの相転移で生じる固体状態とし、該固体状態で電圧を印加することにより導電性液晶層3を通して高い電流密度が得られ、電荷の輸送を行うことができる。
FIG. 1 is a schematic view showing an embodiment of an organic semiconductor element. In FIG. 1, the organic semiconductor element of the present invention is provided with electrodes 2a and 2b made of transparent electrodes such as ITO on the surfaces of two glass substrates 1a and 1b, respectively, and a pair of substrates provided with the electrodes is a spencer 4. A cell is formed by adhering with an adhesive while keeping the cell interval constant, and the conductive liquid crystal material is injected into the cell to provide the conductive liquid crystal layer 3 between the electrodes. The conductive liquid crystal layer 3 provided between the electrodes 2a and 2b is set to (a) a smectic phase liquid crystal state, and a voltage is applied in the smectic phase liquid crystal state, or the conductive liquid crystal layer 3 is set to (b ) By applying a voltage in the solid state generated by the phase transition from the smectic phase and applying a voltage in the solid state, a high current density can be obtained through the conductive liquid crystal layer 3, and charge can be transported.
 本発明に係る有機半導体素子の応用例として、例えば、有機エレクトロルミネッセンス素子(EL素子)、薄膜トランジスタ素子或いは薄膜トランジスタ素子を備える有機エレクトロルミネッセンス素子がある。 Examples of the application of the organic semiconductor element according to the present invention include an organic electroluminescence element (EL element), a thin film transistor element, or an organic electroluminescence element including a thin film transistor element.
 以下、図を参照しながら本発明の有機半導体素子の応用例について説明する。図2~図5は本発明の有機半導体素子の一実施形態を示す模式図である。図2の素子は、透明な基板b1上に陽極b2、バッファ層b3、導電性液晶層b4及び陰極b5が順次積層されてなるものである。この素子は特に有機エレクトロルミネッセンス素子として好適に用いることができる。基板b1は通常有機エレクトロルミネッセンス素子に常用で用いられているガラス基板が用いられる。陽極b2には、必要により光を取り出すため透明な材料で、仕事関数が大きいものが用いられ、例えばITO膜が好適である。陰極b5は仕事関数が小さい金属、例えば、Al、Ca、LiF、Mgやこれらの合金の薄膜により形成する。導電性液晶層b4は本発明の導電性液晶材料が用いられ、一般式(1)で表わされるスチリル誘導体自体が青色乃至緑色の発光性を有するため導電性液晶層b4は発光層やキャリヤ輸送層の機能を有するものとなる。なお、この場合、該導電性液晶材料のスメクチック相からの相転移で生じる固体状態を維持する範囲内でさらに少量の発光材料を添加することができる。用いることができる発光材料としては、ジフェニルエチレン誘導体、トリフェニルアミン誘導体、ジアミノカルバゾール誘導体、ベンゾチアゾール誘導体、ベンゾキサゾール誘導体、芳香族ジアミン誘導体、キナクリドン系化合物、ペリレン系化合物、オキサジアゾール誘導体、クマリン系化合物、アントラキノン誘導体、DCM-1等のレーザー発振用色素、各種の金属錯体、低分子蛍光色素や高分子蛍光材料等が挙げられる。
 また、本発明の導電性液晶材料は、電極と接する部分の有機層としても好適に用いることができる。
Hereinafter, application examples of the organic semiconductor element of the present invention will be described with reference to the drawings. 2 to 5 are schematic views showing one embodiment of the organic semiconductor element of the present invention. In the element of FIG. 2, an anode b2, a buffer layer b3, a conductive liquid crystal layer b4, and a cathode b5 are sequentially laminated on a transparent substrate b1. This element can be suitably used particularly as an organic electroluminescence element. As the substrate b1, a glass substrate usually used for an organic electroluminescence element is used. The anode b2 is made of a transparent material having a large work function for extracting light as necessary. For example, an ITO film is suitable. The cathode b5 is formed of a metal having a low work function, such as a thin film of Al, Ca, LiF, Mg, or an alloy thereof. As the conductive liquid crystal layer b4, the conductive liquid crystal material of the present invention is used, and the styryl derivative represented by the general formula (1) itself has blue to green luminescence, so the conductive liquid crystal layer b4 is a luminescent layer or a carrier transport layer. It has the function of. In this case, a smaller amount of a light emitting material can be added as long as the solid state generated by the phase transition from the smectic phase of the conductive liquid crystal material is maintained. Examples of luminescent materials that can be used include diphenylethylene derivatives, triphenylamine derivatives, diaminocarbazole derivatives, benzothiazole derivatives, benzoxazole derivatives, aromatic diamine derivatives, quinacridone compounds, perylene compounds, oxadiazole derivatives, coumarins. Examples thereof include laser compounds, anthraquinone derivatives, DCM-1 and other laser oscillation dyes, various metal complexes, low molecular fluorescent dyes, and polymeric fluorescent materials.
The conductive liquid crystal material of the present invention can also be suitably used as an organic layer in a portion in contact with the electrode.
 本発明の有事半導体素子において、この導電性液晶層b4は室温域(5~40℃)で前記導電性液晶材料の各成分を同時又は別々に真空蒸着又は斜方真空蒸着させた後、窒素、アルゴン、ヘリウム等の不活性気体の雰囲気下に該導電性液晶材料のスメクチック液晶状態温度範囲に加熱配向処理を加えて作成されたものであってもよいが、導電性液晶材料の各成分を溶媒に溶解し、ディップコート法、スピンコーティング法、スクリーン印刷法、インクジェット印刷法により塗布した後、次いで窒素、アルゴン、ヘリウム等の不活性気体の雰囲気下に該導電性液晶材料のスメクチック液晶状態温度範囲に加熱配向処理を加えて層形成されたものが低コストで作成できるという観点で好ましい。 In the emergency semiconductor element of the present invention, the conductive liquid crystal layer b4 is formed by subjecting the components of the conductive liquid crystal material to vacuum deposition or oblique vacuum deposition at the same time or separately at room temperature (5 to 40 ° C.). Each component of the conductive liquid crystal material may be prepared by subjecting each component of the conductive liquid crystal material to a solvent by applying a heat alignment treatment to the smectic liquid crystal state temperature range of the conductive liquid crystal material in an inert gas atmosphere such as argon or helium. After being dissolved in dip coating method, spin coating method, screen printing method, ink jet printing method, then the smectic liquid crystal state temperature range of the conductive liquid crystal material under an inert gas atmosphere such as nitrogen, argon, helium, etc. It is preferable from the viewpoint that a layer formed by adding a heat alignment treatment to can be produced at low cost.
 バッファ層b3は、必要により設置され、陽極b2からの正孔注入のエネルギー障壁を低下させることを目的とし、例えば、本発明の導電性液晶材料を用いてもよく、他の化合物を用いてもよい。他の化合物としては、例えば、銅フタロシアニン、PEDOT-PSS(ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート)や、その他フェニルアミン系、スターバースト型アミン系、酸化バナジウム、酸化モリブデン、酸化ルテニウム、酸化アルミニウム、アモルファスカーボン、ポリアニリン、ポリチオフェン誘導体等が用いられる。また、陰極b5側に電子注入を目的とするバッファ層を設けてもよい。 The buffer layer b3 is provided as necessary, and is intended to lower the energy barrier for hole injection from the anode b2, and may use, for example, the conductive liquid crystal material of the present invention or other compounds. Good. Examples of other compounds include copper phthalocyanine, PEDOT-PSS (poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate), other phenylamines, starburst amines, vanadium oxide, molybdenum oxide, oxidation Ruthenium, aluminum oxide, amorphous carbon, polyaniline, polythiophene derivatives and the like are used. Further, a buffer layer for the purpose of electron injection may be provided on the cathode b5 side.
 図3の素子は、本発明の有機半導体素子を有機エレクトロルミネッセンス素子(EL素子)として用いる場合に好適な一実施形態を示す模式図である。この素子は、透明基板b1上に陽極b2、バッファ層b3、導電性液晶層b4、有機物発光層b6及び陰極b5が順次積層されてなるもので、発光層b6が導電性液晶層でない点が、図2の実施形態と相違する。発光層b6には従来の各種の有機発光材料、例えばジフェニルエチレン誘導体、トリフェニルアミン誘導体、ジアミノカルバゾール誘導体、ベンゾチアゾール誘導体、ベンゾキサゾール誘導体、芳香族ジアミン誘導体、キナクリドン系化合物、ペリレン系化合物、オキサジアゾール誘導体、クマリン系化合物、アントラキノン誘導体、DCM-1等のレーザー発振用色素、各種の金属錯体、低分子蛍光色素や高分子蛍光材料等が用いられる。 3 is a schematic view showing an embodiment suitable for the case where the organic semiconductor element of the present invention is used as an organic electroluminescence element (EL element). In this element, an anode b2, a buffer layer b3, a conductive liquid crystal layer b4, an organic light emitting layer b6 and a cathode b5 are sequentially laminated on a transparent substrate b1, and the light emitting layer b6 is not a conductive liquid crystal layer. This is different from the embodiment of FIG. The light emitting layer b6 includes various conventional organic light emitting materials such as diphenylethylene derivatives, triphenylamine derivatives, diaminocarbazole derivatives, benzothiazole derivatives, benzoxazole derivatives, aromatic diamine derivatives, quinacridone compounds, perylene compounds, oxalates. Diazole derivatives, coumarin compounds, anthraquinone derivatives, laser oscillation dyes such as DCM-1, various metal complexes, low molecular fluorescent dyes, polymeric fluorescent materials, and the like are used.
 この実施形態において導電性液晶層b4は本発明の導電性液晶材料を用い、また、この導電性液晶層b4は室温域(5~40℃)で前記液晶組成物の各成分を同時又は別々に真空蒸着又は斜方真空蒸着させた後、窒素、アルゴン、ヘリウム等の不活性気体の雰囲気下に該導電性液晶材料のスメクチック液晶状態温度範囲に加熱配向処理を加えて作成されたものであってもよいが、導電性液晶材料の各成分を溶媒に溶解し、ディップコート法、スピンコーティング法、スクリーン印刷法、インクジェット印刷法により塗布した後、次いで窒素、アルゴン、ヘリウム等の不活性気体の雰囲気下に該導電性液晶材料のスメクチック液晶状態温度範囲に加熱配向処理を加えて層形成されたものが低コストで作成できるという観点で好ましい。
 この場合、導電性液晶層b4は主にキャリア輸送層として機能するが、従来のアモルファス型の有機化合物に比して、キャリア輸送性が高いため層厚を大にし得るとともに、キャリアの注入効率を高めて駆動電圧を低下させるという効果も期待できる。
In this embodiment, the conductive liquid crystal layer b4 uses the conductive liquid crystal material of the present invention, and the conductive liquid crystal layer b4 simultaneously or separately contains each component of the liquid crystal composition at room temperature (5 to 40 ° C.). After vacuum deposition or oblique vacuum deposition, it was created by applying a heat alignment treatment to the smectic liquid crystal state temperature range of the conductive liquid crystal material in an inert gas atmosphere such as nitrogen, argon, helium, etc. However, after dissolving each component of the conductive liquid crystal material in a solvent and applying it by the dip coating method, spin coating method, screen printing method, ink jet printing method, atmosphere of an inert gas such as nitrogen, argon, helium, etc. A layer formed by applying a heat alignment treatment to the smectic liquid crystal state temperature range of the conductive liquid crystal material below is preferable from the viewpoint that it can be produced at low cost.
In this case, the conductive liquid crystal layer b4 mainly functions as a carrier transport layer. However, the carrier transportability is higher than that of a conventional amorphous organic compound, so that the layer thickness can be increased and carrier injection efficiency can be increased. The effect of increasing the driving voltage and reducing the driving voltage can also be expected.
 これらの図2及び図3の有機エレクトロルミネッセンス素子において、導電性液晶層b4の厚みを100nm~100μmの範囲で任意に設計することができる。 In the organic electroluminescence elements shown in FIGS. 2 and 3, the thickness of the conductive liquid crystal layer b4 can be arbitrarily designed in the range of 100 nm to 100 μm.
 図4の素子は、本発明の液晶半導体素子を薄膜トランジスタ素子として用いる場合に好適な一実施形態を示す模式図である。この薄膜トランジスタ(以下、「TFT」と呼ぶ。)は、基板b1上にゲートb7を挟んでソースb8及びドレインb9が対向して形成された電界効果型のTFTであり、ゲートb7を覆うように絶縁膜b10が形成され、絶縁膜b10の外側にソースb8とドレインb9を通電させるチャンネル部b11を備える。基板b1にはガラス、アルミナ焼結体などの無機材料、ポリイミド膜、ポリエステル膜、ポリエチレン膜、ポリフェニレンスルフィド膜、ポリパラキシレン膜等の絶縁性材料が用いられる。ゲートb7はポニアニリン、ポリチオフェン等の有機材料、金、白金、クロム、パラジウム、アルミニウム、インジウム、モリブデン、ニッケル等の金属、これらの金属の合金、ポリシリコン、アモルファスシリコン、錫酸化物、酸化インジウム、インジウム、錫酸化物等が用いられる。絶縁膜b10には、有機材料を塗布して形成したものであることが好ましく、使用される有機材料としては、ポリクロロピレン、ポリエチレンテレフタレート、ポリオキシメチレン、ポリビニルクロライド、ポリフッ化ビニリデン、シアノエチルプルラン、ポリメチルメタクリレート、ポリサルフォン、ポリカーボネート、ポリイミド等が用いられる。ソースb8とドレインb9には、金、白金、透明導電膜(インジウム・スズ酸化物、インジウム・亜鉛酸化物等)等が用いられる。そしてチャンネル部b11は本発明の導電性液晶材料が用いられ、チャンネル部b11は室温域(5~40℃)で前記導電性液晶材料の各成分を同時又は別々に真空蒸着又は斜方真空蒸着させた後、窒素、アルゴン、ヘリウム等の不活性気体の雰囲気下に該導電性液晶材料のスメクチック液晶状態温度範囲に加熱配向処理を加えて作成されたものであってよいが、絶縁膜b10の材料として、例えばポリイミドを用い、これにラビング処理を施した後、導電性液晶材料の各成分を溶媒に溶解したものを、ディップコート法、スピンコーティング法、スクリーン印刷法、インクジェット印刷法により塗布した後、次いで窒素、アルゴン、ヘリウム等の不活性気体の雰囲気下に該導電性液晶材料のスメクチック液晶状態温度範囲に加熱配向処理を加えて絶縁層b10の外層に導電性液晶層を形成することにより、この導電性液晶層の配向性を一層高めることが可能になり、これにより、TFTの作動電圧の低下や高速作動化を図ることができる。また、必要により電子受容性物質や電子供与性物質と併用することにより、p型又はn型の性質をより強調することができる。かかる導電性液晶材料からなるチャンネル部b11にゲートb7から電界をかけることにより、その内部の正孔又は電子の量を制御してスイッチング素子としての機能を付与することができる。さらに、前記ラビング処理のラビングの方向は、ソースb8とドレインb9間の電流流路の方向(例えば両者の中心間を結ぶ線の方向)と直角の方向であることが望ましい。これにより長い直線的共役構造部分を持つ液晶性スチリル誘導体の側鎖部分がソースとドレイン間の電流流路と直角に配列し、共役コア部分が近接して配向されるため、キャリアの輸送性が著しく大になり、シリコン等の半導体レベルの導電性を示すことになる。 4 is a schematic view showing an embodiment suitable for the case where the liquid crystal semiconductor element of the present invention is used as a thin film transistor element. The thin film transistor (hereinafter referred to as “TFT”) is a field effect TFT in which a source b8 and a drain b9 are formed on a substrate b1 with a gate b7 interposed therebetween, and is insulated so as to cover the gate b7. A film b10 is formed, and a channel part b11 for energizing the source b8 and the drain b9 is provided outside the insulating film b10. For the substrate b1, an inorganic material such as glass or an alumina sintered body, an insulating material such as a polyimide film, a polyester film, a polyethylene film, a polyphenylene sulfide film, or a polyparaxylene film is used. The gate b7 is an organic material such as ponianiline or polythiophene, a metal such as gold, platinum, chromium, palladium, aluminum, indium, molybdenum or nickel, an alloy of these metals, polysilicon, amorphous silicon, tin oxide, indium oxide or indium. Tin oxide or the like is used. The insulating film b10 is preferably formed by applying an organic material. Examples of the organic material used include polychloropyrene, polyethylene terephthalate, polyoxymethylene, polyvinyl chloride, polyvinylidene fluoride, cyanoethyl pullulan, poly Methyl methacrylate, polysulfone, polycarbonate, polyimide and the like are used. For the source b8 and the drain b9, gold, platinum, a transparent conductive film (indium / tin oxide, indium / zinc oxide, or the like) or the like is used. The channel portion b11 is made of the conductive liquid crystal material of the present invention, and the channel portion b11 allows the components of the conductive liquid crystal material to be simultaneously or separately vacuum-deposited or obliquely vacuum-deposited at room temperature (5 to 40 ° C.). Then, the material of the insulating film b10 may be prepared by applying a heat alignment treatment to the smectic liquid crystal state temperature range of the conductive liquid crystal material in an inert gas atmosphere such as nitrogen, argon, helium, etc. For example, after applying a rubbing treatment to polyimide using a polyimide, and applying the components of the conductive liquid crystal material dissolved in a solvent by a dip coating method, a spin coating method, a screen printing method, or an ink jet printing method Next, a heat alignment treatment is performed in the smectic liquid crystal state temperature range of the conductive liquid crystal material in an inert gas atmosphere such as nitrogen, argon, helium, etc. By forming a conductive liquid crystal layer on the outer layer of the insulating layer b10, it becomes possible to further improve the orientation of the conductive liquid crystal layer, thereby reducing the operating voltage of the TFT and increasing the operating speed. Can do. Moreover, p-type or n-type properties can be more emphasized by using in combination with an electron-accepting substance or an electron-donating substance if necessary. By applying an electric field from the gate b7 to the channel part b11 made of such a conductive liquid crystal material, the amount of holes or electrons inside the channel part b11 can be controlled to provide a function as a switching element. Further, it is desirable that the rubbing direction of the rubbing process is a direction perpendicular to the direction of the current flow path between the source b8 and the drain b9 (for example, the direction of the line connecting the centers of both). As a result, the side chain portion of the liquid crystalline styryl derivative having a long linear conjugated structure portion is aligned at right angles to the current flow path between the source and the drain, and the conjugated core portion is closely aligned, so that the carrier transport property is improved. It becomes extremely large, and shows conductivity at the semiconductor level such as silicon.
 図5の素子は、本発明の有機半導体素子を用いた実施形態の一つの薄膜トランジスタ素子を備える有機エレクトロルミネッセンス素子の断面構造を示す模式図である。
 この素子はエレクトロルミネッセンス素子本体と同じ基板b1上に、スイッチング素子としてTFTが形成されているものであり、このTFTは前記薄膜トランジスタが用いられる。すなわち、エレクトロルミネッセンス素子本体に隣接して、基板b1上にゲートb7を挟んでソースb8及びドレインb9が対向して形成されている。ゲートb7を覆うように絶縁膜b10が形成させ、絶縁膜b10の外側にソースb8とドレインb9を導通させるチャンネル部b11が形成されているが、このチャンネル部b11に、前記導電性液晶材料が用いられる。マトリックス方式の画素駆動であるから、ゲートb7およびソースb8は、それぞれx、yの信号線に接続され、ドレインb9はエレクトロルミネッセンス素子の一方の極(この例では陽極)に接続されている。
The element of FIG. 5 is a schematic view showing a cross-sectional structure of an organic electroluminescence element including one thin film transistor element of an embodiment using the organic semiconductor element of the present invention.
In this element, a TFT is formed as a switching element on the same substrate b1 as the electroluminescence element body, and the thin film transistor is used for this TFT. That is, adjacent to the electroluminescence element body, the source b8 and the drain b9 are formed on the substrate b1 so as to face each other across the gate b7. An insulating film b10 is formed so as to cover the gate b7, and a channel part b11 for conducting the source b8 and the drain b9 is formed outside the insulating film b10. The conductive liquid crystal material is used for the channel part b11. It is done. Since it is a matrix type pixel drive, the gate b7 and the source b8 are connected to the x and y signal lines, respectively, and the drain b9 is connected to one pole (in this example, the anode) of the electroluminescence element.
 このチャンネル部b11の導電性液晶材料には、エレクトロルミネッセンス素子本体の導電性液晶層b4と同一の導電性液晶材料を用いることができ、これと一体に形成することができる。これにより、アクチィブマットリックス方式の有機エレクトロルミネッセンス素子において、素子本体とTFTを同時に形成することができ、その製造コストの一層の低減を図ることができる。 As the conductive liquid crystal material of the channel part b11, the same conductive liquid crystal material as that of the conductive liquid crystal layer b4 of the electroluminescence element body can be used, and it can be formed integrally therewith. As a result, in the active matrix type organic electroluminescence element, the element body and the TFT can be formed at the same time, and the manufacturing cost can be further reduced.
 チャンネル部b11と導電性液晶層b4の導電性液晶材料は室温域(5~40℃)で前記液晶組成物の各成分を同時又は別々に真空蒸着又は斜方真空蒸着させた後、窒素、アルゴン、ヘリウム等の不活性気体の雰囲気下に該導電性液晶材料のスメクチック液晶状態温度範囲に加熱配向処理を加えて作成されたものであってもよいが、導電性液晶材料の各成分を溶媒に溶解し、ディップコート法、スピンコーティング法、スクリーン印刷法、インクジェット印刷法により塗布した後、次いで窒素、アルゴン、ヘリウム等の不活性気体の雰囲気下に該導電性液晶材料のスメクチック液晶状態温度範囲に加熱配向処理を加えて層形成されたものが低コストで作成できるという観点で好ましい。 The conductive liquid crystal material of the channel portion b11 and the conductive liquid crystal layer b4 is obtained by subjecting the components of the liquid crystal composition to simultaneous or separate vacuum deposition or oblique vacuum deposition at room temperature (5 to 40 ° C.), and then nitrogen, argon The conductive liquid crystal material may be prepared by applying a heat alignment treatment to the smectic liquid crystal state temperature range in an inert gas atmosphere such as helium, but each component of the conductive liquid crystal material is used as a solvent. After dissolving and applying by dip coating method, spin coating method, screen printing method, ink jet printing method, then in the smectic liquid crystal state temperature range of the conductive liquid crystal material in an inert gas atmosphere such as nitrogen, argon, helium etc. A layer formed by applying a heat alignment treatment is preferable from the viewpoint that it can be produced at low cost.
 本発明の導電性液晶材料は、ラビング処理により分子配向を容易に制御し、液晶分子を基板に対して平行に配向させることができる。本発明の導電性液晶材料は、この利点を有しているため前述した有機半導体の応用例のうち、薄膜コンデンサが好ましく、特にゲート、ソース及びドレインの3電極と、ゲート電極を覆うように形成された絶縁膜と、該絶縁膜の外側に形成されたソース及びドレイン電極間を導通せしめるチャンネル部を有し、該チャンネル部が本発明の導電性液晶材料からなる層からなり、前記絶縁膜がポリイミドで、該絶縁膜にラビング処理を施して、その外層の導電性材料の配向性を高めるように構成されている薄膜コンデンサ(図4参照)のチャンネル部に用いられているものが最も好ましい。 The conductive liquid crystal material of the present invention can easily control the molecular alignment by rubbing treatment and align the liquid crystal molecules in parallel with the substrate. Since the conductive liquid crystal material of the present invention has this advantage, a thin film capacitor is preferable among the application examples of the organic semiconductor described above. In particular, the gate electrode, the source electrode and the drain electrode are formed so as to cover the gate electrode. And an insulating film formed on the outside of the insulating film, and a channel portion for connecting the source and drain electrodes formed on the outside of the insulating film. The channel portion is formed of a layer made of the conductive liquid crystal material of the present invention. Most preferably, polyimide is used for the channel portion of a thin film capacitor (see FIG. 4) which is configured to be rubbed to the insulating film to enhance the orientation of the conductive material of the outer layer.
 以下、本発明を実施例により詳細の説明するが、本発明はこれらの実施例に限定されるものではない。
{実施例1}
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.
{Example 1}
<化合物(6a)の調製工程>
Figure JPOXMLDOC01-appb-C000035
 没食子酸(4)0.058mol(10g)、炭酸カリウム0.116mol(16g)をDMF50mlに溶解した。その後、室温にて一時間攪拌した。次に1-ブロモドデカン(5a)0.232mol(58g)をDMF30mlに溶解した溶液をこれに滴下した。滴下後、シリコン浴にて60℃で一晩攪拌して反応を行った。
 反応終了後、反応液から冷希塩酸水300mlとジエチルエーテル300mlで抽出し、次にDMFを除去するため、水で抽出液を洗浄した。次に得られたエーテル層に無水硫酸ナトリウムを加え一晩脱水した。無水硫酸ナトリウムをろ過によって除去し、ジエチルエーテルをロータリエバポレーターで減圧除去し、化合物(6a)30gを得た(収率63%)。
<Preparation step of compound (6a)>
Figure JPOXMLDOC01-appb-C000035
Gallic acid (4) 0.058 mol (10 g) and potassium carbonate 0.116 mol (16 g) were dissolved in 50 ml of DMF. Then, it stirred at room temperature for 1 hour. Next, a solution prepared by dissolving 0.232 mol (58 g) of 1-bromododecane (5a) in 30 ml of DMF was added dropwise thereto. After dropping, the reaction was carried out by stirring overnight at 60 ° C. in a silicon bath.
After completion of the reaction, the reaction solution was extracted with 300 ml of cold dilute hydrochloric acid and 300 ml of diethyl ether, and then the extract was washed with water to remove DMF. Next, anhydrous sodium sulfate was added to the obtained ether layer and dehydrated overnight. Anhydrous sodium sulfate was removed by filtration, and diethyl ether was removed under reduced pressure by a rotary evaporator to obtain 30 g of Compound (6a) (yield 63%).
<化合物(7a)の調製工程>
Figure JPOXMLDOC01-appb-C000036
 500mlの三つ口フラスコにジエチルエーテル50mlを入れ、リチウムアルミニウムハイドライド0.11モル(4.0g)を加えた。これに化合物(6a)0.036モル(30g)をジエチルエーテル50mlに溶解したものをゆっくり滴下した。
 次にシリコン浴にて40℃で4時間環流下に反応を行った。反応終了後、氷冷下で酢酸エチル7.5gをジエチルエーテル30mlに溶解したものを、反応液にゆっくりと滴下した。次に飽和塩化アンモニウム水溶液30mlをゆっくり滴下した後、フラスコ内をジエチルエーテルで満たし、攪拌した。次に遠心分離してエーテル層を得た。残渣にもジエチルエーテルを加えてエーテル層を得、先に得られたエーテル層と合わせた。次に得られたエーテル層は、10%冷希塩酸水100mlで洗浄した後、無水硫酸ナトリウムで一晩脱水した。脱水後、ジエチルエーテルをロータリエバポレーターで減圧除去し、化合物(7a)20gを得た(収率76%)。
<Preparation step of compound (7a)>
Figure JPOXMLDOC01-appb-C000036
50 ml of diethyl ether was placed in a 500 ml three-necked flask, and 0.11 mol (4.0 g) of lithium aluminum hydride was added. A solution prepared by dissolving 0.036 mol (30 g) of compound (6a) in 50 ml of diethyl ether was slowly added dropwise thereto.
Next, the reaction was carried out in a silicon bath at 40 ° C. for 4 hours under reflux. After completion of the reaction, 7.5 g of ethyl acetate dissolved in 30 ml of diethyl ether was slowly added dropwise to the reaction solution under ice cooling. Next, 30 ml of a saturated aqueous ammonium chloride solution was slowly added dropwise, and the flask was filled with diethyl ether and stirred. Next, the mixture was centrifuged to obtain an ether layer. Diethyl ether was also added to the residue to obtain an ether layer, which was combined with the previously obtained ether layer. Next, the obtained ether layer was washed with 100 ml of 10% cold dilute hydrochloric acid and then dehydrated overnight with anhydrous sodium sulfate. After dehydration, diethyl ether was removed under reduced pressure using a rotary evaporator to obtain 20 g of Compound (7a) (yield 76%).
<化合物(8a)の調製工程>
Figure JPOXMLDOC01-appb-C000037
 三角フラスコに化合物(7a)15g(0.023モル)、ピリジン1.5gを入れ、トルエン50mlに溶解し、これをA液とした。
 100mlの滴下ロートに化合物(7a)の3倍モルのPBrをトルエン20mlに溶解してこれをB液とした。
 前記で調製したA液にB液を氷冷しながら30分かけてゆっくり滴下した。滴下後、40℃で2日間反応を行った。
 反応終了後、反応液を氷水300mlに注ぎ、ジエチルエーテル300mlで抽出した。次に水で数回洗浄し、得られたエーテル層に無水硫酸ナトリウムを加え、一晩脱水した。次にろ過して無水硫酸ナトリウムを取り除き、ジエチルエーテルをロータリエバポレーターで減圧除去し、化合物(8a)15gを得た(収率88%)。
<Preparation step of compound (8a)>
Figure JPOXMLDOC01-appb-C000037
Into an Erlenmeyer flask, 15 g (0.023 mol) of the compound (7a) and 1.5 g of pyridine were added and dissolved in 50 ml of toluene.
In a 100 ml dropping funnel, 3 times moles of PBr 3 of the compound (7a) was dissolved in 20 ml of toluene, and this was used as solution B.
The solution B was slowly added dropwise to the solution A prepared above over 30 minutes while cooling with ice. After dropping, the reaction was carried out at 40 ° C. for 2 days.
After completion of the reaction, the reaction solution was poured into 300 ml of ice water and extracted with 300 ml of diethyl ether. Next, it was washed several times with water, and anhydrous sodium sulfate was added to the obtained ether layer and dehydrated overnight. Next, filtration was performed to remove anhydrous sodium sulfate, and diethyl ether was removed under reduced pressure with a rotary evaporator to obtain 15 g of Compound (8a) (yield 88%).
<リン化合物(3a)の調製工程>
Figure JPOXMLDOC01-appb-C000038
 三角フラスコに化合物(8a)15g(0.020モル)、トリエチルホスファイトを化合物(8a)の3倍モル入れ、窒素雰囲気下、130℃で17時間反応させた。
 反応終了後、ロータリエバポレーターで未反応のトリエチルホスファイトを減圧除去し、リン化合物(3a)15gを得た(収率90%)。
<Preparation process of phosphorus compound (3a)>
Figure JPOXMLDOC01-appb-C000038
Into an Erlenmeyer flask, 15 g (0.020 mol) of the compound (8a) and 3 times mole of the compound (8a) were added and triethyl phosphite was allowed to react at 130 ° C. for 17 hours in a nitrogen atmosphere.
After completion of the reaction, unreacted triethyl phosphite was removed under reduced pressure using a rotary evaporator to obtain 15 g of phosphorus compound (3a) (yield 90%).
<スチリル誘導体(1a)の調製工程>
Figure JPOXMLDOC01-appb-C000039
 三角フラスコに、リン化合物(3a)15g(0.020モル)とテレフタルアルデヒド(2a)1.4g(0.010モル)を入れ、THF50mlに溶解した。塩基としてカリウム-t-ブトキシドを4.0g(0.036モル)入れ、50℃で2日間反応を行った。
 反応終了後、36%塩酸を5ml加え反応を停止し、ロータリエバポレーターで濃縮し、残渣を水100mlで洗浄した。次にメタノール100mlで数回洗浄し、次に真空乾燥してスチリル誘導体(1a)6gを得た(収率40%)。また、スチリル誘導体(1a)の相転移温度の測定結果を表2に示す。
(スチリル誘導体(1a)の同定データ)
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
G;ガラス状態、Sm1;スメクチックA相、B相以外の未同定のスメクチック相、Sm2;スメクチックA相、B相以外の未同定のスメクチック相未、I;等方性液体
<Preparation process of styryl derivative (1a)>
Figure JPOXMLDOC01-appb-C000039
In an Erlenmeyer flask, 15 g (0.020 mol) of the phosphorus compound (3a) and 1.4 g (0.010 mol) of terephthalaldehyde (2a) were added and dissolved in 50 ml of THF. 4.0 g (0.036 mol) of potassium tert-butoxide was added as a base and reacted at 50 ° C. for 2 days.
After completion of the reaction, 5 ml of 36% hydrochloric acid was added to stop the reaction, the mixture was concentrated with a rotary evaporator, and the residue was washed with 100 ml of water. Next, it was washed several times with 100 ml of methanol and then vacuum-dried to obtain 6 g of a styryl derivative (1a) (yield 40%). In addition, Table 2 shows the measurement results of the phase transition temperature of the styryl derivative (1a).
(Identification data of styryl derivative (1a))
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
G: Glass state, Sm1: Unidentified smectic phase other than smectic A phase and B phase, Sm2: Unidentified smectic phase other than smectic A phase and B phase, I: Isotropic liquid
{参考例1}
 下記一般式(A)で表わされるスチリル誘導体を特開2004-6271号公報に従って合成した。
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-T000044
Cr;結晶、SmG;スメクチックG相、スメクチックF相、スメクチックC相、N;ネマチック相、I;等方液体
{Reference Example 1}
A styryl derivative represented by the following general formula (A) was synthesized according to Japanese Patent Application Laid-Open No. 2004-6271.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-T000044
Cr: Crystal, SmG: Smectic G phase, Smectic F phase, Smectic C phase, N: Nematic phase, I: Isotropic liquid
<ラビング処理の評価>
 日立化成デュポン社製のポリイミド配向膜LX-1400膜を形成してラビングを行ったガラス基板の配向膜上に、実施例1で得られたスチリル誘導体(1a)及び参考例1で得られたスチリル誘導体をそれぞれ挟んだ。次に、これを加熱装置上に置き、等方性液体になる温度以上に加熱した後、室温(25℃)まで冷却し、偏光顕微鏡によりその透過光を観察した。
 実施例1のスチリル誘導体(1a)は、図6に示したように45°に回転したときに強い透過光が観察され、更に90°に回転したときには全く透過光が観察されなかったことから、室温域において実施例1のスチリル誘導体(1a)は、基板に対して水平配向をとることが観察された。
 一方、参考例1で得られたスチリル誘導体は、図6に示したように45°に回転したときに弱い透過光が観察され、更に90°に回転したときにも透過光が観察されたことから、室温域において参考例1のスチリル誘導体は、基板に対して水平配向をとるものが少ないことが確認された。
<Evaluation of rubbing treatment>
The styryl derivative (1a) obtained in Example 1 and the styryl obtained in Reference Example 1 were formed on the alignment film of a glass substrate on which a polyimide alignment film LX-1400 film manufactured by Hitachi Chemical DuPont was formed and rubbed. Each derivative was sandwiched. Next, this was placed on a heating device, heated to a temperature at which it becomes an isotropic liquid, cooled to room temperature (25 ° C.), and the transmitted light was observed with a polarizing microscope.
In the styryl derivative (1a) of Example 1, strong transmitted light was observed when rotated to 45 ° as shown in FIG. 6, and no transmitted light was observed when rotated further to 90 °. It was observed that the styryl derivative (1a) of Example 1 took a horizontal orientation with respect to the substrate at room temperature.
On the other hand, in the styryl derivative obtained in Reference Example 1, weak transmitted light was observed when rotated to 45 ° as shown in FIG. 6, and transmitted light was further observed when rotated to 90 °. From the results, it was confirmed that the styryl derivative of Reference Example 1 in the room temperature range had little horizontal alignment with respect to the substrate.
<電荷輸送能の評価>
 真空成膜によりITO電極を設けた2枚のガラス基板を、それぞれITO電極が対向するように、スペンサー粒子によってギャップ(50μm)を設け、貼り合わせてセルを作成した。そのセルに実施例1で得られたスチリル誘導体(1a)を圧入した。次いで5Vの電圧を印加し、除々に加温し、各温度毎の電流値を測定した。その結果を図7に示す。
 また、実施例1で得られたスチリル誘導体(1a)を等方性液体となる条件下にセル中に注入した。一旦室温域まで自然冷却し、スメクチック相の相転移で生じる固体状態とした後、室温(25℃)における各電圧毎の電流量を測定した。その結果を図8に示す。
<Evaluation of charge transport ability>
Two glass substrates provided with ITO electrodes by vacuum film formation were provided with a gap (50 μm) with spencer particles so that the ITO electrodes face each other, and cells were created. The styryl derivative (1a) obtained in Example 1 was press-fitted into the cell. Next, a voltage of 5 V was applied, the temperature was gradually increased, and the current value at each temperature was measured. The result is shown in FIG.
Further, the styryl derivative (1a) obtained in Example 1 was injected into the cell under the condition of becoming an isotropic liquid. The mixture was naturally cooled to room temperature once to obtain a solid state generated by the phase transition of the smectic phase, and then the amount of current for each voltage at room temperature (25 ° C.) was measured. The result is shown in FIG.
{参考例2}
 参考例1の一般式(A)で表わされるスチリル誘導体の式中のRが異なる試料((A1)、(A2))を特開2004-6271号公報に従ってそれぞれ合成した。
Figure JPOXMLDOC01-appb-T000045
Cr;結晶、SmG;スメクチックG相、SmF;スメクチックF相、SmC;スメクチックC相、N;ネマチック、I;等方性液体
{Reference Example 2}
Samples ((A1) and (A2)) having different R in the formula of the styryl derivative represented by the general formula (A) of Reference Example 1 were synthesized according to JP-A-2004-6271, respectively.
Figure JPOXMLDOC01-appb-T000045
Cr; Crystal, SmG; Smectic G phase, SmF; Smectic F phase, SmC; Smectic C phase, N: Nematic, I; Isotropic liquid
 次いで、実施例1と同様にして真空成膜によりITO電極を設けた2枚のガラス基板を、それぞれITO電極が対向するように、スペンサー粒子によってギャップ(15μm)を設け、貼り合わせてセルを作成した。そのセルに、前記で調製したスチリル誘導体(A1)とスチリル誘導体(A2)を等量(重量比で1:1)含む混合物20mgを、セル中に圧入した。
 次に、8Vの電圧を印加し、徐々に加温し、各温度毎の電流量を測定しその結果を表5と図9に示した。
 また、前記で調製したスチリル誘導体(A1)とスチリル誘導体(A2)を等量(重量比で1:1)含む混合物20mgを等方性液体となる条件下にセルに注入し、一旦室温域まで自然冷却し、スメクチック相の相転移で生じる固体状態とした後、30℃での電流密度を測定した。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000046
 30℃は固体状態での電流密度、300℃は液晶状態での電流値を示す。 
Next, as in Example 1, two glass substrates provided with ITO electrodes by vacuum film formation were provided with a gap (15 μm) with spencer particles so that the ITO electrodes face each other, and a cell was created. did. 20 mg of a mixture containing equal amounts (1: 1 by weight) of the styryl derivative (A1) and styryl derivative (A2) prepared above was pressed into the cell.
Next, a voltage of 8 V was applied, the temperature was gradually increased, and the amount of current at each temperature was measured. The results are shown in Table 5 and FIG.
Further, 20 mg of a mixture containing equal amounts (1: 1 by weight) of the styryl derivative (A1) and the styryl derivative (A2) prepared above was poured into the cell under the condition of becoming an isotropic liquid, and once until the room temperature range After naturally cooling to obtain a solid state generated by the phase transition of the smectic phase, the current density at 30 ° C. was measured. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000046
30 ° C. shows the current density in the solid state, and 300 ° C. shows the current value in the liquid crystal state.
 図7及び図9の結果、液晶温度において1000倍以上の電流値を有し、室温域での固体状体での電流密度は参考例1では、1.0×10-4μA/cmであるのに対して実
施例1のスチリル誘導体は8μA/cm以上であり、1万倍以上であった。
As a result of FIGS. 7 and 9, the liquid crystal temperature has a current value of 1000 times or more, and the current density of the solid body in the room temperature region is 1.0 × 10 −4 μA / cm 2 in Reference Example 1. In contrast, the styryl derivative of Example 1 was 8 μA / cm 2 or more, which was 10,000 times or more.
{実施例2}
<アルデヒド化合物(2a―1)の調製工程>
Figure JPOXMLDOC01-appb-C000047
 300mlの三角フラスコを用いて、化合物(a2-1)(1.5×10-2モル)とテレフタルアルデヒド4.02g(3.0×10-2モル)をメタノール100ml中で攪拌してA液を調製した。
 28wt%のナトリウムメトキシド2.89g(1.5×10-2モル)をB液とし、B液をA液に滴下し、60℃で24時間攪拌下に反応させた。
 反応終了後、反応液を氷水300g中に注ぎ、次に1000mlの分液ロートを用いて、クロロホルム300mlで抽出した。次に抽出液を無水硫酸ナトリウムで一晩脱水した。
 これをろ過し、クロロホルムをエバポレーターで減圧除去した。残渣にヘキサン200mlを加えて65℃まで加温後、ろ過してヘキサン可溶部と不溶部に分け、次にカラムクロマトグラフィーで精製した。
 精製後、シス-トランス体が混じっている状態なので、化合物に少量のヨウ素とp-キシレンを加えて窒素雰囲気下120℃で4時間還流した。これを室温まで冷やして冷ヘキサン30mlでろ過して、冷メタノール10mlで洗浄してトランス体のアルデヒド化合物(2b-1)を得た。
{Example 2}
<Preparation process of aldehyde compound (2a-1)>
Figure JPOXMLDOC01-appb-C000047
Using a 300 ml Erlenmeyer flask, the compound (a2-1) (1.5 × 10 −2 mol) and 4.02 g (3.0 × 10 −2 mol) of terephthalaldehyde were stirred in 100 ml of methanol, and the solution A Was prepared.
28 wt% sodium methoxide 2.89 g (1.5 × 10 −2 mol) was used as solution B, which was added dropwise to solution A, and reacted at 60 ° C. with stirring for 24 hours.
After completion of the reaction, the reaction solution was poured into 300 g of ice water, and then extracted with 300 ml of chloroform using a 1000 ml separatory funnel. Next, the extract was dehydrated with anhydrous sodium sulfate overnight.
This was filtered, and chloroform was removed under reduced pressure by an evaporator. 200 ml of hexane was added to the residue and heated to 65 ° C., followed by filtration to separate into a hexane soluble part and an insoluble part, and then purified by column chromatography.
Since the cis-trans isomer was mixed after purification, a small amount of iodine and p-xylene were added to the compound, and the mixture was refluxed at 120 ° C. for 4 hours under a nitrogen atmosphere. This was cooled to room temperature, filtered through 30 ml of cold hexane, and washed with 10 ml of cold methanol to obtain a trans aldehyde compound (2b-1).
<リン化合物(3b-1)の調製工程>
Figure JPOXMLDOC01-appb-C000048
 500ml二つ口フラスコを用いて化合物(a3-1)(20.06mM)とテトラエチルp-キシリレンジホスホネート(a4)7.81g(20.64mM)をTHF50mlに溶解させてA液とした。次にカリウム-t-ブトキド2.58g(22.99mM)をTHF100mlに溶解させたものをB液とした。次にB液をA液へゆっくり滴下し、室温(25℃)で5時間攪拌して反応を行った。
 反応終了後、反応液をロータリエバポレーターで濃縮し、残渣にメタノール200mlを加え、可溶部を回収し濃縮した。これにトルエン300mlと飽和食塩水300mlを加えて抽出し、蒸留水300mlで数回洗浄する。その後、油層を無水硫酸ナトリウムで一晩脱水した。脱水後、ろ過してロータリエバポレーターで濃縮し、次の残渣にヘキサン100mlを加えてろ過し、ヘキサン不溶分を回収して、リン化合物(3b-1)を得た。
<Preparation step of phosphorus compound (3b-1)>
Figure JPOXMLDOC01-appb-C000048
Using a 500 ml two-necked flask, compound (a3-1) (20.06 mM) and 7.81 g (20.64 mM) of tetraethyl p-xylylene diphosphonate (a4) were dissolved in 50 ml of THF to prepare a solution A. Next, a solution obtained by dissolving 2.58 g (22.99 mM) of potassium tert-butoxide in 100 ml of THF was designated as solution B. Next, B liquid was dripped slowly into A liquid, and it reacted by stirring at room temperature (25 degreeC) for 5 hours.
After completion of the reaction, the reaction solution was concentrated with a rotary evaporator, 200 ml of methanol was added to the residue, and the soluble part was recovered and concentrated. This is extracted by adding 300 ml of toluene and 300 ml of saturated saline, and washed several times with 300 ml of distilled water. Thereafter, the oil layer was dehydrated with anhydrous sodium sulfate overnight. After dehydration, the mixture was filtered and concentrated with a rotary evaporator. To the next residue, 100 ml of hexane was added and filtered, and the hexane insoluble matter was recovered to obtain a phosphorus compound (3b-1).
<スチリル誘導体(1B-1)の調製工程>
Figure JPOXMLDOC01-appb-C000049
 100mlの三角フラスコを用いて、アルデヒド化合物(2b-1)(1.9×10-9モル)とリン化合物(3b-1)(1.94×10-3モル)をTHF50mlに溶解した。これにカリウムーt-ブトキシド(4.92×10-3モル)を添加し、室温で窒素雰囲気下、17時間反応させた。
 反応終了後、36%塩酸を4ml加え反応を停止し、ロータリエバポレーターで濃縮し、残渣を水50mlで洗浄した。次にメタノール50mlで2回洗浄し、次に真空乾燥してスチリル誘導体(1B-1)1.30gを得た。
 更に、得られたスチリル誘導体(1B-1)を2枚のガラス基板に挟持し、液晶相-等方性液体転移温度以上に加熱した後、偏光顕微鏡によりその透過光を観察した結果、該化合物は基板に対して垂直配向をとる液晶相としてスメクチック相を有する液晶性化合物であることを確認した。
<Preparation process of styryl derivative (1B-1)>
Figure JPOXMLDOC01-appb-C000049
Using a 100 ml Erlenmeyer flask, the aldehyde compound (2b-1) (1.9 × 10 −9 mol) and the phosphorus compound (3b-1) (1.94 × 10 −3 mol) were dissolved in 50 ml of THF. Potassium-t-butoxide (4.92 × 10 −3 mol) was added thereto and reacted at room temperature under a nitrogen atmosphere for 17 hours.
After completion of the reaction, 4 ml of 36% hydrochloric acid was added to stop the reaction, the mixture was concentrated with a rotary evaporator, and the residue was washed with 50 ml of water. Next, it was washed twice with 50 ml of methanol and then vacuum-dried to obtain 1.30 g of a styryl derivative (1B-1).
Further, the obtained styryl derivative (1B-1) was sandwiched between two glass substrates, heated to a liquid crystal phase-isotropic liquid transition temperature or higher, and the transmitted light was observed with a polarizing microscope. Was confirmed to be a liquid crystalline compound having a smectic phase as a liquid crystal phase having a vertical alignment with respect to the substrate.
(スチリル誘導体(1B-1)の同定データ)
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-T000051
(Identification data of styryl derivative (1B-1))
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-T000051
{実施例3}
<スチリル誘導体(1C-1)の調製工程>
Figure JPOXMLDOC01-appb-C000052
 100mlの三角フラスコにアルデヒド化合物(2b-1)(4×10-3モル)とp-キシレンビスー(トリフェニルホスホニウムブロマイド)(3c)(2×10-3モル)をTHF50mlに溶解した。これにカリウムーt-ブトキシド(1×10-2モル)を添加し、室温(25℃)で窒素雰囲気下、18時間反応させた。
 反応終了後、36%塩酸を4ml加え反応を停止し、ロータリエバポレーターで濃縮し、残渣を水50mlで洗浄した。次にメタノール50mlで2回洗浄し、次に真空乾燥してスチリル誘導体(1C-1)を得た。
 更に、得られたスチリル誘導体(1C-1)を2枚のガラス基板に挟持し、液晶相-等方性液体転移温度以上に加熱した後、偏光顕微鏡によりその透過光を観察した結果、該化合物は基板に対して垂直配向をとる液晶相としてスメクチック相を有する液晶性化合物であることを確認した。
(スチリル誘導体(1C-1)の同定データ)
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-T000054
{Example 3}
<Preparation process of styryl derivative (1C-1)>
Figure JPOXMLDOC01-appb-C000052
The aldehyde compound (2b-1) (4 × 10 −3 mol) and p-xylene bis- (triphenylphosphonium bromide) (3c) (2 × 10 −3 mol) were dissolved in 50 ml of THF in a 100 ml Erlenmeyer flask. Potassium-t-butoxide (1 × 10 −2 mol) was added thereto and reacted at room temperature (25 ° C.) under a nitrogen atmosphere for 18 hours.
After completion of the reaction, 4 ml of 36% hydrochloric acid was added to stop the reaction, the mixture was concentrated with a rotary evaporator, and the residue was washed with 50 ml of water. Next, it was washed twice with 50 ml of methanol and then dried under vacuum to obtain a styryl derivative (1C-1).
Further, the obtained styryl derivative (1C-1) was sandwiched between two glass substrates, heated to a liquid crystal phase-isotropic liquid transition temperature or higher, and the transmitted light was observed with a polarizing microscope. Was confirmed to be a liquid crystalline compound having a smectic phase as a liquid crystal phase having a vertical alignment with respect to the substrate.
(Identification data of styryl derivative (1C-1))
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-T000054
{実施例4}
<スチリル誘導体(1C-1)の調製工程>
Figure JPOXMLDOC01-appb-C000055
 100mlの三角フラスコにリン化合物(3b-1)(4×10-3モル)とテレフタルアルデヒド(2a)(2×10-3モル)をTHF50mlに溶解した。これにカリウムーt-ブトキシド(1×10-2モル)を添加し、室温(25℃)で窒素雰囲気下、18時間反応させた。
 反応終了後、36%塩酸を4ml加え反応を停止し、ロータリエバポレーターで濃縮し、残渣を水50mlで洗浄した。次にメタノール50mlで2回洗浄し、次に真空乾燥してスチリル誘導体(1C-1)を得た。
 得られたスチルル誘導体をH-NMRとFT-IRで分析結果、実施例3と同様なパターンを示した。
 更に、得られたスチリル誘導体(1C-1)を2枚のガラス基板に挟持し、液晶相-等方性液体転移温度以上に加熱した後、偏光顕微鏡によりその透過光を観察した結果、該化合物は基板に対して垂直配向をとる液晶相としてスメクチック相を有する液晶性化合物であることを確認した。
{Example 4}
<Preparation process of styryl derivative (1C-1)>
Figure JPOXMLDOC01-appb-C000055
Phosphorus compound (3b-1) (4 × 10 −3 mol) and terephthalaldehyde (2a) (2 × 10 −3 mol) were dissolved in 50 ml of THF in a 100 ml Erlenmeyer flask. Potassium-t-butoxide (1 × 10 −2 mol) was added thereto and reacted at room temperature (25 ° C.) under a nitrogen atmosphere for 18 hours.
After completion of the reaction, 4 ml of 36% hydrochloric acid was added to stop the reaction, the mixture was concentrated with a rotary evaporator, and the residue was washed with 50 ml of water. Next, it was washed twice with 50 ml of methanol and then dried under vacuum to obtain a styryl derivative (1C-1).
The obtained styryl derivative was analyzed by 1 H-NMR and FT-IR. As a result, the same pattern as in Example 3 was shown.
Further, the obtained styryl derivative (1C-1) was sandwiched between two glass substrates, heated to a liquid crystal phase-isotropic liquid transition temperature or higher, and the transmitted light was observed with a polarizing microscope. Was confirmed to be a liquid crystalline compound having a smectic phase as a liquid crystal phase having a vertical alignment with respect to the substrate.
{実施例5}
<アルデヒド化合物(2b-2)の調製工程>
Figure JPOXMLDOC01-appb-C000056
 実施例1の化合物(6a)の調製工程で、1-ブロモドデカン(5a)に代えて1-ブロモデカンにした以外は、実施例1と同様にしてリン化合物(3a―1)を合成した。
 300mlの三角フラスコを用いて、化合物(3a-1)7.9g(0.011モル)とテレフタルアルデヒド(2a)2.3g(0.017モル)をテトラヒドロフラン50mlに溶解した(A液)。これとは別にカリウムt-ブトキシド1.9g(0.017モル)をテトラヒドロフラン100mlに溶解した(B液)。
 A液にB液を室温(25℃)で滴下し、更に室温(25℃)で窒素雰囲気下で一晩攪拌して反応を行った。
 反応終了後、テトラヒドロフランをロータリエバポレーターで減圧除去して残渣を得た。次に残渣にメタノールを150mlを加え、ろ過によりメタノール可溶部を得た。これを減圧除去し、次にジエチルエーテル200mlで抽出した。次に水で数回洗浄し、得られたエーテル層に無水硫酸ナトリウムを加え、一晩脱水した。次にろ過して無水硫酸ナトリウムを取り除き、ジエチルエーテルをロータリエバポレーターで減圧除去し、アルデヒド化合物(2b-2)を得た。
<スチリル誘導体(1C-2)の調製工程>
Figure JPOXMLDOC01-appb-C000057
 100mlの三角フラスコを用いてアルデヒド化合物(2b-2)1.5g(2.2mM)とリン化合物(a4)0.42g(1.1mM)をテトラヒドロフラン30mlに溶解した。次いで、これにカリウムt-ブトキシド1.21g(10.78mM)を添加し、室温(25℃)で窒素雰囲気下で17時間反応を行った。
 反応終了後、36%塩酸を5ml加え反応を停止し、ロータリエバポレーターで濃縮し、残渣を水100mlで洗浄した。次にメタノール50mlで2回洗浄し、次に真空乾燥してスチリル誘導体(1C-1)0.5gを得た。
また、スチリル誘導体(1C-2)の相転移温度の測定結果を表9に示す。
(スチリル誘導体(1C-2)の同定データ)
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
G;ガラス状態、Sm;スメクチック相、I;等方性液体
{Example 5}
<Preparation process of aldehyde compound (2b-2)>
Figure JPOXMLDOC01-appb-C000056
The phosphorus compound (3a-1) was synthesized in the same manner as in Example 1, except that 1-bromodecane was used instead of 1-bromododecane (5a) in the preparation step of the compound (6a) of Example 1.
Using a 300 ml Erlenmeyer flask, 7.9 g (0.011 mol) of compound (3a-1) and 2.3 g (0.017 mol) of terephthalaldehyde (2a) were dissolved in 50 ml of tetrahydrofuran (solution A). Separately, 1.9 g (0.017 mol) of potassium t-butoxide was dissolved in 100 ml of tetrahydrofuran (solution B).
The liquid B was added dropwise to the liquid A at room temperature (25 ° C.), and the reaction was further performed by stirring overnight at room temperature (25 ° C.) in a nitrogen atmosphere.
After completion of the reaction, tetrahydrofuran was removed under reduced pressure with a rotary evaporator to obtain a residue. Next, 150 ml of methanol was added to the residue, and a methanol-soluble part was obtained by filtration. This was removed under reduced pressure and then extracted with 200 ml of diethyl ether. Next, it was washed several times with water, and anhydrous sodium sulfate was added to the obtained ether layer and dehydrated overnight. Next, it was filtered to remove anhydrous sodium sulfate, and diethyl ether was removed under reduced pressure with a rotary evaporator to obtain an aldehyde compound (2b-2).
<Preparation process of styryl derivative (1C-2)>
Figure JPOXMLDOC01-appb-C000057
Using a 100 ml Erlenmeyer flask, 1.5 g (2.2 mM) of aldehyde compound (2b-2) and 0.42 g (1.1 mM) of phosphorus compound (a4) were dissolved in 30 ml of tetrahydrofuran. Next, 1.21 g (10.78 mM) of potassium t-butoxide was added thereto, and the reaction was performed at room temperature (25 ° C.) in a nitrogen atmosphere for 17 hours.
After completion of the reaction, 5 ml of 36% hydrochloric acid was added to stop the reaction, the mixture was concentrated with a rotary evaporator, and the residue was washed with 100 ml of water. Next, it was washed twice with 50 ml of methanol and then dried under vacuum to obtain 0.5 g of a styryl derivative (1C-1).
In addition, Table 9 shows the measurement results of the phase transition temperature of the styryl derivative (1C-2).
(Identification data of styryl derivative (1C-2))
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
G: Glass state, Sm: Smectic phase, I: Isotropic liquid
<溶解性の評価>
 実施例1及び実施例5で得られたスチリル誘導体((1a)、(1C-2))及び参考例1~2で得られたスチリル誘導体((A)、(A1)、(A2))を、50mg/ml、500mg/mlの濃度となるようにヘキサンに加え、24時間、25℃放置後のスチリル誘導体のヘキサンに対する溶解性を非常によく溶ける(○)、あまりよく溶けない(△)、全く溶けない(×)の3段階で目視で評価した。その結果を表10に示す。
Figure JPOXMLDOC01-appb-T000061
<Evaluation of solubility>
The styryl derivatives ((1a), (1C-2)) obtained in Example 1 and Example 5 and the styryl derivatives ((A), (A1), (A2)) obtained in Reference Examples 1-2 were used. The solubility of styryl derivatives in hexane after being left at 25 ° C. for 24 hours is very well dissolved (◯), not very well soluble (Δ), and added to hexane so that the concentration becomes 50 mg / ml and 500 mg / ml. Visual evaluation was made in three stages of no melting (x). The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000061
1a;ガラス基板
2a;電極
3a;導電性液晶層
2b;電極
1b;ガラス電極
4;スペンサー
5;電圧印加手段
b1;基板
b2;陽極
b3;バッファ層
b4;導電性液晶層
b5;陰極
b6;発光層
b7;ゲート
b8;ソース
b9;ドレイン
b10;絶縁膜
b11;チャンネル部
1a; Glass substrate 2a; Electrode 3a; Conductive liquid crystal layer 2b; Electrode 1b; Glass electrode 4; Spencer 5; Voltage application means b1; Substrate b2; Anode b3; Buffer layer b4; Layer b7; gate b8; source b9; drain b10; insulating film b11; channel portion

Claims (13)

  1.  下記一般式(1)で表されることを特徴とする液晶性スチリル誘導体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rはアルキル基を示し、nは1~3の整数を示す。)
    A liquid crystalline styryl derivative represented by the following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 represents an alkyl group, and n represents an integer of 1 to 3)
  2.  前記一般式(1)の式中のnが1であることを特徴とする請求項1記載の液晶性スチリル誘導体。 2. The liquid crystalline styryl derivative according to claim 1, wherein n in the formula (1) is 1.
  3.  前記一般式(1)の式中のRが炭素数4~18のアルキル基であることを特徴とする請求項1又は2記載の液晶性スチリル誘導体。 3. The liquid crystalline styryl derivative according to claim 1, wherein R 1 in the formula (1) is an alkyl group having 4 to 18 carbon atoms.
  4.  下記一般式(2a)
    Figure JPOXMLDOC01-appb-C000002
    で表わされるアルデヒド化合物と、下記一般式(3a)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは前記と同義。Etはエチル基を示す。)で表されるリン化合物とを反応させることを特徴とする下記一般式(1A)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは前記と同義。)で表される請求項1記載の液晶性スチリル誘導体の製造方法。
    The following general formula (2a)
    Figure JPOXMLDOC01-appb-C000002
    An aldehyde compound represented by the following general formula (3a)
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R 1 is as defined above, Et represents an ethyl group) and a phosphorus compound represented by the following general formula (1A):
    Figure JPOXMLDOC01-appb-C000004
    The method for producing a liquid crystalline styryl derivative according to claim 1, wherein R 1 is as defined above.
  5.  下記一般式(2b)
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rは前記と同義。)で表されるアルデヒド化合物と、下記一般式(3b)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Rは前記と同義。Etはエチル基を示す。)で表されるリン化合物とを反応させることを特徴とする下記一般式(1B)
    Figure JPOXMLDOC01-appb-C000007
    (式中、Rは前記と同義。)で表される請求項1記載の液晶性スチリル誘導体の製造方法。
    The following general formula (2b)
    Figure JPOXMLDOC01-appb-C000005
    (Wherein R 1 is as defined above), and the following general formula (3b)
    Figure JPOXMLDOC01-appb-C000006
    (Wherein R 1 is as defined above, Et represents an ethyl group) and a phosphorus compound represented by the following general formula (1B)
    Figure JPOXMLDOC01-appb-C000007
    The method for producing a liquid crystalline styryl derivative according to claim 1, wherein R 1 is as defined above.
  6.  下記一般式(2b)
    Figure JPOXMLDOC01-appb-C000008
    (式中、Rは前記と同義。)で表されるアルデヒド化合物と、下記一般式(3c)
    Figure JPOXMLDOC01-appb-C000009
    で表されるリン化合物とを反応させることを特徴とする下記一般式(1C)   
    Figure JPOXMLDOC01-appb-C000010
    (式中、Rは前記と同義。)で表される請求項1記載の液晶性スチリル誘導体の製造方法。
    The following general formula (2b)
    Figure JPOXMLDOC01-appb-C000008
    (Wherein R 1 is as defined above) and the following general formula (3c)
    Figure JPOXMLDOC01-appb-C000009
    The following general formula (1C) characterized by reacting with a phosphorus compound represented by the formula
    Figure JPOXMLDOC01-appb-C000010
    The method for producing a liquid crystalline styryl derivative according to claim 1, wherein R 1 is as defined above.
  7.  下記一般式(2a)
    Figure JPOXMLDOC01-appb-C000011
    で表わされるアルデヒド化合物と、下記一般式(3b)
    Figure JPOXMLDOC01-appb-C000012
    (式中、Rは前記と同義。Etはエチル基を示す。)で表されるリン化合物とを反応させることを特徴とする下記一般式(1C)
    Figure JPOXMLDOC01-appb-C000013
    (式中、Rは前記と同義。)で表される請求項1記載の液晶性スチリル誘導体の製造方法。
    The following general formula (2a)
    Figure JPOXMLDOC01-appb-C000011
    An aldehyde compound represented by the following general formula (3b)
    Figure JPOXMLDOC01-appb-C000012
    (Wherein R 1 has the same meaning as described above, Et represents an ethyl group) and a phosphorus compound represented by the following general formula (1C)
    Figure JPOXMLDOC01-appb-C000013
    The method for producing a liquid crystalline styryl derivative according to claim 1, wherein R 1 is as defined above.
  8.  下記一般式(2b)
    Figure JPOXMLDOC01-appb-C000014
    (式中、Rは前記と同義。)で表されるアルデヒド化合物と、下記一般式(a4)
    Figure JPOXMLDOC01-appb-C000015
    (式中、Rは前記と同義。Etはエチル基を示す。)で表されるリン化合物とを反応させることを特徴とする下記一般式(1C)
    Figure JPOXMLDOC01-appb-C000016
    (式中、Rは前記と同義。)で表される請求項1記載の液晶性スチリル誘導体の製造方法。
    The following general formula (2b)
    Figure JPOXMLDOC01-appb-C000014
    (Wherein R 1 is as defined above) and the following general formula (a4)
    Figure JPOXMLDOC01-appb-C000015
    (Wherein R 1 has the same meaning as described above, Et represents an ethyl group) and a phosphorus compound represented by the following general formula (1C)
    Figure JPOXMLDOC01-appb-C000016
    The method for producing a liquid crystalline styryl derivative according to claim 1, wherein R 1 is as defined above.
  9.  請求項1乃至3の何れか1項に記載の液晶性スチリル誘導体を含有することを特徴とする導電性液晶材料。 A conductive liquid crystal material comprising the liquid crystalline styryl derivative according to any one of claims 1 to 3.
  10.  請求項9に記載の導電性液晶材料を用いてなることを特徴とする有機半導体素子。 An organic semiconductor element comprising the conductive liquid crystal material according to claim 9.
  11.  一対の電極を設けた電極間に、請求項9記載の導電性液晶材料を用いた薄膜が形成されていることを特徴とする請求項10記載の有機半導体素子。 The organic semiconductor element according to claim 10, wherein a thin film using the conductive liquid crystal material according to claim 9 is formed between electrodes provided with a pair of electrodes.
  12.  有機半導体素子が、ゲート、ソース及びドレインの3電極と、ゲート電極を覆うように形成された絶縁膜と、該絶縁膜の外側に形成されたソース及びドレイン電極間を導通せしめるチャンネル部を有し、該チャンネル部が請求項9記載の導電性液晶材料からなる層からなる薄膜トランジスタであることを特徴とする請求項10記載の有機半導体素子。 An organic semiconductor element has three electrodes of a gate, a source and a drain, an insulating film formed so as to cover the gate electrode, and a channel portion which conducts between the source and drain electrodes formed outside the insulating film. The organic semiconductor device according to claim 10, wherein the channel portion is a thin film transistor comprising a layer made of the conductive liquid crystal material according to claim 9.
  13.  前記絶縁膜がポリイミドからなり、該絶縁膜にラビング処理を施して、その外層の導電性材料の配向性を高めるように構成されていることを特徴とする請求項12記載の有機半導体素子。
     
     
    The organic semiconductor element according to claim 12, wherein the insulating film is made of polyimide, and the insulating film is rubbed to enhance the orientation of the conductive material of the outer layer.

PCT/JP2012/052913 2011-02-10 2012-02-09 Liquid crystalline styryl derivative, method for producing same, electrically conductive liquid crystal material, and organic semiconductor device. WO2012108484A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012556919A JP5980693B2 (en) 2011-02-10 2012-02-09 Liquid crystalline styryl derivative, method for producing the same, conductive liquid crystal material, and organic semiconductor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011027937 2011-02-10
JP2011-027937 2011-02-10

Publications (1)

Publication Number Publication Date
WO2012108484A1 true WO2012108484A1 (en) 2012-08-16

Family

ID=46638696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052913 WO2012108484A1 (en) 2011-02-10 2012-02-09 Liquid crystalline styryl derivative, method for producing same, electrically conductive liquid crystal material, and organic semiconductor device.

Country Status (2)

Country Link
JP (1) JP5980693B2 (en)
WO (1) WO2012108484A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187946A (en) * 2014-03-26 2015-10-29 国立大学法人山梨大学 conductive paste
JP2017105874A (en) * 2015-12-07 2017-06-15 ウシオケミックス株式会社 Heat resistant conductive lubricant
CN107286193A (en) * 2017-01-20 2017-10-24 南京理工大学 (3,4,5 3 (dodecyloxy) benzyl) triphenyl Si Fu Peng Suan Phosphonium and its application in electrogenerated chemiluminescence
CN112534027A (en) * 2018-07-17 2021-03-19 国立大学法人山梨大学 Conductive lubricant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272351A (en) * 2004-03-24 2005-10-06 Yuichiro Haramoto Styryl derivative and method for producing the same
WO2006062014A1 (en) * 2004-12-07 2006-06-15 Nippon Chemical Industrial Co., Ltd Conductive liquid-crystal material, process for producing the same, liquid-crystal composition, liquid-crystal semiconductor element, and information memory medium
JP2006215241A (en) * 2005-02-03 2006-08-17 Konica Minolta Medical & Graphic Inc Photosensitive lithographic printing plate material and plate making method using the same
WO2007094159A1 (en) * 2006-02-14 2007-08-23 Yamanashi University Liquid-crystalline styryl derivative, process for producing the same, and liquid-crystalline semiconductor element employing the same
WO2008145529A1 (en) * 2007-05-25 2008-12-04 Agfa Graphics Nv A lithographic printing plate precursor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272351A (en) * 2004-03-24 2005-10-06 Yuichiro Haramoto Styryl derivative and method for producing the same
WO2006062014A1 (en) * 2004-12-07 2006-06-15 Nippon Chemical Industrial Co., Ltd Conductive liquid-crystal material, process for producing the same, liquid-crystal composition, liquid-crystal semiconductor element, and information memory medium
JP2006215241A (en) * 2005-02-03 2006-08-17 Konica Minolta Medical & Graphic Inc Photosensitive lithographic printing plate material and plate making method using the same
WO2007094159A1 (en) * 2006-02-14 2007-08-23 Yamanashi University Liquid-crystalline styryl derivative, process for producing the same, and liquid-crystalline semiconductor element employing the same
WO2008145529A1 (en) * 2007-05-25 2008-12-04 Agfa Graphics Nv A lithographic printing plate precursor

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
A.M.MORAN ET AL.: "Optical coherence and theoretical study of the excitation dynamics of a highly symmetric cyclophane-liked oligophenylenevinylene dimer", THE JOURNAL OF CHEMICAL PHYSICS, vol. 124, no. 19, 2006, pages 194904 - 1 - 194904-15 *
F.E.KARASZ ET AL.: "Polymer Light Emitting Diodes", TURKISH JOURNAL OF CHEMISTRY, vol. 21, no. 1, 1997, pages 1 - 5 *
F.LINCKER ET AL.: "Synthesis, Photonic Characteristics, and Mesomorphism of an Oligo Biphenylene Vinylene n-Electron System", ORGANIC LETTERS, vol. 7, no. 8, 2005, pages 1505 - 1508 *
H.-C.LIN ET AL.: "Synthesis and Characterization of Light-Emitting Oligo(p-phenylene-vinylene)s and Polymeric Derivatives Containing Three- and Five- Conjugated Phenylene Rings", JOURNAL OF POLYMER SCIENECE: PART A: POLYMER CHEMISTRY, vol. 44, no. 2, 2006, pages 783 - 800 *
H.DETERT ET AL.: "Acidochromism of stilbenoid chromophores with a p-aminoaniline centre", JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, vol. 19, no. 8-9, 2006, pages 603 - 607 *
H.MEIER ET AL.: "(E,E,E)-4,4'-Distyrylstilbens- Synthesis, Photophysics, Photochemistry and Phase Behavior", EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2008, pages 1568 - 1574 *
J.-K.LEE ET AL.: "A New Type of Blue-Light- Emitting Electroluminescent Polymer", MACROMOLECULES, vol. 28, no. 6, 1995, pages 1966 - 1971 *
M.S.WONG ET AL.: "Synthesis and Third-Order Nonlinear Optical Properties of End- Functionalized Oligo-Phenylenevinylenes", CHEMISTRY OF MATERIALS, vol. 14, no. 7, 2002, pages 2999 - 3004 *
T.JIU ET AL.: "Molecular Modeling of Poly(p-phenylenevinylene): Synthesis and Photophysical Properties of Oligomers", JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY, vol. 45, no. 5, 2007, pages 911 - 924 *
Z.GEORG ET AL.: "Synthesis, liquid crystals and photochemistry of di- and tristyrylbenzenes with alkoxy side chains", CHEMICAL ABSTRACTS, vol. 119, no. 3, 1993, pages 834 - 835 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187946A (en) * 2014-03-26 2015-10-29 国立大学法人山梨大学 conductive paste
JP2017105874A (en) * 2015-12-07 2017-06-15 ウシオケミックス株式会社 Heat resistant conductive lubricant
CN107286193A (en) * 2017-01-20 2017-10-24 南京理工大学 (3,4,5 3 (dodecyloxy) benzyl) triphenyl Si Fu Peng Suan Phosphonium and its application in electrogenerated chemiluminescence
CN107286193B (en) * 2017-01-20 2019-06-25 南京理工大学 (3,4,5- tri- (dodecyloxy) benzyl) triphenyl Si Fu Peng Suan Phosphonium and its application in electrogenerated chemiluminescence
CN112534027A (en) * 2018-07-17 2021-03-19 国立大学法人山梨大学 Conductive lubricant
CN112534027B (en) * 2018-07-17 2022-06-14 国立大学法人山梨大学 Conductive lubricant
CN114854472A (en) * 2018-07-17 2022-08-05 国立大学法人山梨大学 Conductive lubricant
CN114854472B (en) * 2018-07-17 2023-06-02 国立大学法人山梨大学 Conductive lubricant

Also Published As

Publication number Publication date
JPWO2012108484A1 (en) 2014-07-03
JP5980693B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP6122112B2 (en) Heterocyclic compounds and organic electronic devices using the same
WO2012005310A1 (en) Fluorinated aromatic compound, organic semiconductor material, and organic thin-film device
KR101096981B1 (en) New fused ring compound and organic electronic device using the same
JP5220005B2 (en) Thiazolothiazole derivatives and organic electronic devices using the same
Kumar et al. Solution-processable naphthalene and phenyl substituted carbazole core based hole transporting materials for efficient organic light-emitting diodes
US20140183517A1 (en) Material for organic light-emitting device, and organic light-emitting device using same
Sun et al. Novel carbazolyl-substituted spiro [acridine-9, 9′-fluorene] derivatives as deep-blue emitting materials for OLED applications
US7625499B2 (en) Conductive liquid-crystal material, process for producing the same, liquid-crystal composition, liquid crystal semiconductor element, and information memory medium
AU2003249016A1 (en) Charge transport compositions comprising fluorinated phenanthroline derivatives
WO2007097395A1 (en) Fluorine-containing compound and method for producing same, fluorine-containing polymer, organic thin film, and organic thin film device
TW201221618A (en) Chalcogen-containing aromatic compound, organic semiconductor material, and organic electronic device
US20130249968A1 (en) Fused polycyclic compound and organic light emitting device using the same
JP2008239987A (en) Dendrimer and organic semiconductor using the same
JP5980693B2 (en) Liquid crystalline styryl derivative, method for producing the same, conductive liquid crystal material, and organic semiconductor element
TW201229052A (en) Heteroacene compound, organic semiconductor material, and organic electronic device
JP5164329B2 (en) Liquid crystalline styryl derivative, method for producing the same, and liquid crystalline semiconductor device using the same
JP5426199B2 (en) Branched compound, organic thin film and organic thin film element using the same
KR100868863B1 (en) New fused ring compound and organic electronic device using the same
WO2007145293A1 (en) Novel fluorine-containing aromatic compounds, organic semiconductor materials, and organic this film devices
JP5600267B2 (en) Novel compounds and their use
WO2012165612A1 (en) Organic semiconductor material, and organic electronics device
JP2010056476A (en) n-TYPE AND HETERO-JUNCTION ORGANIC THIN-FILM TRANSISTOR
JP5952576B2 (en) Liquid crystalline styryl derivative having excellent solubility, method for producing the same, conductive liquid crystal material, and organic semiconductor element
CN113896724A (en) Organic red light micromolecule based on benzothiadiazole-pyreneimidazole and application of organic red light micromolecule in preparation of non-doped organic electroluminescent device
JP2009078975A (en) New fluorine-containing aromatic compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012556919

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12744495

Country of ref document: EP

Kind code of ref document: A1