WO2012108426A1 - Deposition apparatus and deposition method - Google Patents

Deposition apparatus and deposition method Download PDF

Info

Publication number
WO2012108426A1
WO2012108426A1 PCT/JP2012/052735 JP2012052735W WO2012108426A1 WO 2012108426 A1 WO2012108426 A1 WO 2012108426A1 JP 2012052735 W JP2012052735 W JP 2012052735W WO 2012108426 A1 WO2012108426 A1 WO 2012108426A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
mask
substrate
evaporation
deposition mask
Prior art date
Application number
PCT/JP2012/052735
Other languages
French (fr)
Japanese (ja)
Inventor
廣治 鳴海
正浩 市原
博之 田村
松本 栄一
三之 田島
永田 博彰
吉岡 正樹
Original Assignee
キヤノントッキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノントッキ株式会社 filed Critical キヤノントッキ株式会社
Priority to KR1020137021171A priority Critical patent/KR101941305B1/en
Publication of WO2012108426A1 publication Critical patent/WO2012108426A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present invention relates to a vapor deposition apparatus and a vapor deposition method for forming a vapor deposition film having a film formation pattern using a vapor deposition mask on a substrate.
  • organic EL display devices using organic electroluminescence elements have attracted attention as display devices that replace CRTs and LCDs.
  • An organic EL device such as an organic EL display device has a configuration in which an electrode layer and a light emitting layer in which a plurality of organic layers are laminated are formed on a substrate, and a sealing layer is further formed on the substrate. Compared with high-speed response, a high viewing angle and high contrast can be realized.
  • Such an organic EL device is generally manufactured by a vacuum vapor deposition method, in which a substrate and a vapor deposition mask are aligned and closely adhered in a vacuum chamber, and a vapor deposition film having a desired film formation pattern is formed on the substrate by the vapor deposition mask. Is formed.
  • the vapor deposition mask for obtaining a desired film formation pattern is enlarged with an increase in the size of the substrate.
  • tension was applied to the vapor deposition mask. Therefore, it is difficult to manufacture a large evaporation mask because it must be welded and fixed to the mask frame.
  • the mask frame becomes large in order to take these into consideration, and the increase in thickness and weight becomes significant in order to obtain accuracy.
  • an invar material having a small linear expansion coefficient is used for the mask frame in order to prevent deterioration of mask accuracy due to thermal expansion, but it is expensive.
  • the substrate and the vapor deposition mask are spaced apart from each other, and the organic light-emitting layer is formed with high accuracy by an opening that generates vapor particles having directivity from the evaporation source.
  • the evaporation source and the opening for generating directivity have an integrated structure, and the integrated structure is heated to a high temperature to generate evaporated particles from the opening. Therefore, the deposition mask receives the radiant heat from the evaporation source, which has no effect of keeping the mask temperature constant during the deposition, and prevents the deterioration of the position accuracy of the film formation pattern due to the thermal expansion of the deposition mask. Can not.
  • the vapor deposition mask becomes high temperature and expands due to thermal expansion, the pitch distance between the mask opening itself and the mask opening extends, and the deposition pattern itself on the substrate formed by the vapor deposition mask increases. The accuracy and the alignment accuracy of the film formation pattern are lowered.
  • a desired film formation pattern can be vapor-deposited over a large area even with a small vapor deposition mask. Since they are separated from each other, the temperature increase of the vapor deposition mask cannot be further prevented, and the vapor deposition mask is subject to thermal deformation and distortion due to the temperature increase as described above, and the vapor deposition accuracy is extremely inferior.
  • the radiant heat to the evaporation mask escapes to the substrate and is radiated.
  • Evaporation film with a deposition pattern can be deposited using a vapor deposition mask, and the structure can be simply and efficiently deposited by moving the film in a separated state, and the restriction opening can be evaporated even when the vapor deposition mask is in a separated state.
  • a vapor deposition mask is attached in contact with a mask holder having a scattering restriction portion provided with a restriction opening, and at least one of the mask holder or the vapor deposition mask is attached.
  • this mask holder not only serves as a scattering limiter, but also exhibits a temperature holding function that suppresses the incidence of radiation heat from the evaporation source and suppresses the deposition mask temperature rise.
  • An object of the present invention is to provide a vapor deposition apparatus and a vapor deposition method.
  • a film forming material evaporated from the evaporation source 1 is deposited on the substrate 4 through the mask opening 3 of the vapor deposition mask 2, and a vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 is formed on the substrate 4.
  • scattering of the evaporated particles of the film forming material evaporated from the evaporation source 1 is between the evaporation source 1 and the substrate 4 disposed in a state of being opposed to the evaporation source 1.
  • a mask holder 6 having a scattering restriction portion provided with a restriction opening portion 5 for restricting the direction is provided, and the substrate 4 and the vapor deposition mask 2 provided in a separated state are joined to the mask holder 6 and attached.
  • At least one of the mask holder 6 and the vapor deposition mask 2 is provided with a temperature control mechanism 9 for maintaining the temperature of the vapor deposition mask 2, and the substrate 4 is attached to the mask holder 6 provided with the vapor deposition mask 2 and the evaporation source 1.
  • a temperature control mechanism 9 for maintaining the temperature of the vapor deposition mask 2
  • the substrate 4 is attached to the mask holder 6 provided with the vapor deposition mask 2 and the evaporation source 1.
  • it is configured to be relatively movable while maintaining a separated state from the vapor deposition mask 2, and by this relative movement, a vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 is formed in a wider area than the vapor deposition mask 2.
  • 4 is a vapor deposition apparatus characterized in that the vapor deposition apparatus is formed on the upper surface.
  • the evaporation source 1 containing the film forming material and the mask opening through which the evaporation particles of the film forming material evaporated from the evaporation port 8 of the evaporation source 1 pass in the vapor deposition chamber 7 in a reduced pressure atmosphere.
  • the vapor deposition mask 2 provided with the portion 3 is disposed, a plurality of the evaporation port portions 8 are arranged in parallel, and the substrate 4 that is positioned in a separated state from the vapor deposition mask 2 is scattered from the plurality of evaporation port portions 8.
  • the vaporized particles to be deposited pass through the mask opening 3 and a vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 is formed on the substrate 4.
  • the vaporization source 1, the vaporization source 1, The mask having the scattering restricting portion provided with the restricting opening portion 5 that does not allow the evaporated particles from the evaporation port portion 8 adjacent to or away from the substrate 4 disposed in an opposing state to pass therethrough.
  • a holder 6 is provided, and this mask holder -6 is attached to the substrate 4 in a state of being separated from the substrate 4, and at least one of the mask holder 6 and the deposition mask 2 is controlled to keep the temperature of the deposition mask 2 from rising.
  • the holding temperature control mechanism 9 is provided, and the substrate 4 is moved relative to the mask holder 6 to which the vapor deposition mask 2 is attached and the evaporation source 1 while maintaining the separated state from the vapor deposition mask 2.
  • the vapor deposition film of the film formation pattern of the vapor deposition mask 2 is made continuous in this relative movement direction so that the vapor deposition film is formed over a wide range even with the vapor deposition mask 2 smaller than the substrate 4. This relates to the vapor deposition apparatus according to Item 1.
  • a plurality of the evaporation port portions 8 of the evaporation source 1 are arranged side by side in a lateral direction orthogonal to the relative movement direction of the substrate 4 and the restriction opening portion of the scattering restriction portion provided in the mask holder 6 5 are arranged side by side along the lateral direction, and the evaporated particles evaporating from the respective evaporation port portions 8 pass only through the opposed limiting opening 5 and further face the limiting opening 5.
  • a vapor deposition film of the film formation pattern is formed on the substrate 4 through the mask opening 3 of the vapor deposition mask 2 so that the vaporized particles from the vaporization port 8 at adjacent or separated positions are attached and captured.
  • the restricting opening portion 5 is configured to restrict a scattering direction of the evaporated particles.
  • the vapor deposition apparatus according to claim 1, wherein the vapor deposition mask 2 is attached to an end of the mask holder 6 on the substrate 4 side.
  • the vapor deposition apparatus according to claim 4, wherein a tension is applied to the vapor deposition mask 2 at an end of the mask holder 6 on the substrate 4 side.
  • the vapor deposition mask 2 is divided into a plurality of pieces in the lateral direction orthogonal to the relative movement direction of the substrate 4, and the divided vapor deposition mask 2 is attached to the mask holder 6 in the lateral direction. It concerns on the vapor deposition apparatus of Claim 1 characterized by the above-mentioned.
  • a plurality of the evaporation ports 8 of the evaporation source 1 are juxtaposed in a lateral direction orthogonal to the relative movement direction of the substrate 4, and the restricting openings are respectively opposed to the one or a plurality of evaporation ports 8.
  • the deposition mask 2 is attached to an end of the mask holder 6 on the substrate 4 side so as to cover each restriction opening 5 of the mask holder 6 having the scattering restriction portion provided with the portion 5.
  • a rib portion 24 extending in the relative movement direction of the substrate 4 is provided between the restricting openings 5 of the mask holder 6, and each restricting portion is provided on the front end surface of the rib portion 24 on the substrate 4 side.
  • the mask holder 6 extends in the relative movement direction of the substrate 4 and deforms the mask holder 6 due to tension applied to the vapor deposition mask 2 when the vapor deposition mask 2 is stretched on the mask holder 6.
  • the rib portion 24 for improving the rigidity of the mask holder 6 in the extending direction is provided between the restricting openings 5. is there.
  • the temperature control mechanism 9 includes a medium path 12 or a heat pipe for circulating a temperature-controlled medium around the restriction opening 5 of the mask holder 6 or between the restriction openings 5.
  • the temperature control mechanism 9 is configured by providing the medium path 12 or the heat pipe 22 through which the medium flows in the mask holder 6 around the restriction opening 5 or between the restriction openings 5.
  • the temperature control mechanism 9 includes the evaporation source 1 side temperature controlled part 9A and the substrate 4 side temperature controlled part 9B in the mask holder 6, and each of the temperature controlled parts 9A and 9B is provided. 13.
  • the temperature control mechanism 9 is configured to cause the temperature gradient generated in the medium path 12 or the heat pipe 22 to be generated in different directions in the respective stages provided in the facing direction. 12.
  • the temperature control mechanism 9 relates to the vapor deposition apparatus according to claim 9, wherein the medium path 12 or the heat pipe 22 is arranged in the rib portion 24.
  • the temperature control mechanism 9 causes the temperature gradient generated in the medium path 12 or the heat pipe 22 disposed in the rib portion 24 to be generated in different directions between the adjacent rib portions 24.
  • the independent evaporation source 1 side temperature control unit 9A and the substrate 4 side temperature control unit 9B are provided between the limiting openings 5 of the mask holder 6 so as to provide the evaporation source 1 side temperature control.
  • the evaporation source by increasing the flow rate of the medium in the medium path 12 or the contact area with the medium, or the number of the heat pipes 22 or the cross-sectional area of the heat pipes 22 of the control unit 9A from the substrate 4 side temperature controlled unit 9B. 14.
  • the shadow SH which is a side edge inclined portion of the vapor deposition film is
  • G the gap between the substrate 4 and the vapor deposition mask 2
  • TS the distance between the evaporation port 8 and the vapor deposition mask 2
  • the configuration is such that the gap G can be set large by setting the opening width ⁇ x of the vapor deposition port portion 8 small so that the shadow SH does not reach the interval PP between adjacent vapor deposition films.
  • the evaporation source 1 is composed of the evaporation particle generating section 26 that performs and the horizontally long diffusion section 27 that diffuses the evaporation particles generated from the evaporation particle generating section 26 and equalizes the pressure.
  • a plurality of the evaporation port portions 8 of the evaporation source 1 are arranged in a lateral direction orthogonal to the relative movement direction of the substrate 4, and each evaporation port portion 8 protrudes toward the substrate 4 side of the evaporation source 1.
  • Provided at the tip of the evaporation port portion forming projection 28 to be cut off, and the heat shield for blocking the heat of the evaporation source 1 around the evaporation port portion formation protrusion 28 or between the evaporation port portion formation protrusions 28 The vapor deposition apparatus according to claim 1, wherein a portion 19 is provided.
  • a plurality of the mask openings 3 of the vapor deposition mask 2 are arranged side by side in a lateral direction orthogonal to the relative movement direction of the substrate 4, and each mask opening 3 is a slit long in the relative movement direction.
  • a plurality of openings are formed in the relative movement direction, and the total opening length in the relative movement direction is set to be longer as the distance from the central portion of the restriction opening 5 is longer in the lateral direction. It concerns on the vapor deposition apparatus of Claim 1 characterized by the above-mentioned.
  • the formation pitch in the lateral direction perpendicular to the relative movement direction of the substrate 4 of the mask opening 3 of the vapor deposition mask 2 that determines the film formation pattern to be vapor deposited on the substrate 4 is the pitch of the film deposition pattern of the vapor deposition film.
  • the gap G between the substrate 4 and the evaporation mask 2 and the distance between the substrate 4 and the evaporation source 1 are set narrower by a difference corresponding to at least one of the sizes, and the evaporation mask 2
  • the opening size in the lateral direction perpendicular to the relative movement direction of the substrate 4 of the mask opening 3 is set to the gap G, the distance, and the evaporation of the evaporation source 1 rather than the pattern width of the deposition pattern of the vapor deposition film.
  • the vapor deposition apparatus according to claim 1, wherein the mask holder (6) is connected to the temperature control mechanism (9) via a connecting portion (25) so as to be detachable from the vapor deposition apparatus. .
  • the vapor deposition apparatus according to claim 1, further comprising a cleaning mechanism for cleaning the film forming material attached to at least one of the mask holder 6 or the vapor deposition mask 2 attached to the mask holder 6. is there.
  • the vapor deposition apparatus according to claim 1, further comprising a material recovery mechanism 17 that recovers a film forming material attached to at least one of the mask holder 6 or the vapor deposition mask 2 attached to the mask holder 6. Is.
  • a second vapor deposition mask 10 is disposed between the substrate 4 and the vapor deposition mask 2.
  • the second mask opening 11 of the second vapor deposition mask 10 is larger than the mask opening 3 of the vapor deposition mask 2 located on the evaporation source 1 side from the second vapor deposition mask 10.
  • At least the lateral opening pattern orthogonal to the relative movement direction of the substrate 4 is provided in the same pattern, and the opening formation pitch is different according to the difference in distance from the substrate 4, and the opening width is 30.
  • the vapor deposition apparatus according to claim 29, wherein the second vapor deposition mask 10 is formed of a material having a larger linear expansion coefficient than that of the vapor deposition mask 2 positioned on the evaporation source 1 side. It is related to.
  • the deposition apparatus according to claim 1, wherein the film forming material is an organic material.
  • the vapor deposition apparatus according to any one of claims 1 to 32 is used to form a vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 on the substrate 4. It concerns the method.
  • the deposition mask can be widely used by relatively moving the substrate in a separated state even if the deposition mask is smaller than the substrate.
  • Vapor deposition film with a deposition pattern can be deposited, and the structure can be simply and efficiently vapor-deposited by relative movement in the separated state, and the limiting opening can be deposited with the evaporation source even when the vapor deposition mask is in the separated state.
  • the vapor deposition mask is attached to a mask holder having a scattering restriction portion provided with a portion, and the vapor deposition mask is attached to at least one of the mask holder or the vapor deposition mask.
  • this mask holder not only serves as a scattering restriction part, but also exhibits a temperature holding function that suppresses the incidence of radiant heat from the evaporation source and suppresses the temperature rise of the vapor deposition mask.
  • the temperature of the vapor deposition mask can be kept constant, thereby preventing distortion of the vapor deposition mask due to heat, and the substrate and the vapor deposition mask can be moved relative to each other in a separated state, but highly accurate vapor deposition can be performed. It becomes a vapor deposition apparatus and a vapor deposition method.
  • the organic light emitting layer can be deposited with high accuracy, and the damage of the substrate, the deposition mask, and the deposited film due to the mask contact can be prevented. It becomes the vapor deposition apparatus and vapor deposition method for organic EL device manufacture which can implement
  • vapor deposition masks in which mask openings are individually set are arranged side by side so as to achieve uniformity in each vapor deposition region based on the film thickness distribution characteristics for each vaporization port. Or the vapor deposition mask can be individually replaced.
  • the rib portion provided extending in the relative movement direction of the substrate can prevent the mask holder from being deformed by the tension of the deposition mask and can maintain the tension of the deposition mask.
  • the rib portion provided extending in the relative movement direction of the substrate can prevent the mask holder from being deformed by the tension of the deposition mask and can maintain the tension of the deposition mask.
  • by providing a mask mounting support surface it is possible to firmly support and join the vapor deposition mask to the mask holder.
  • a temperature control mechanism can be easily provided in the vapor deposition mask or a mask holder which is a part for conducting heat of the vapor deposition mask, and the vapor deposition mask is maintained at a constant temperature. It can be easily realized that the thermal expansion of the vapor deposition mask can be suppressed and vapor deposition can be performed in a highly accurate film formation pattern.
  • the temperature holding function for holding the vapor deposition mask at a constant temperature is further enhanced, and for example, the temperature holding of the evaporation source side mask holder to which a large amount of evaporation particles adhere is maintained. Function can be enhanced.
  • the temperature source control unit on the evaporation source side absorbs heat from the evaporation source, and the substrate side (vapor deposition mask side) temperature control unit further heats it.
  • the temperature of the vapor deposition mask can be kept constant by absorbing water, and the temperature holding function is further enhanced.
  • a temperature gradient is generated in the direction from the evaporation source to the mask side on the lower stage side, and a temperature gradient is generated in the direction from the vapor deposition mask to the evaporation source side on the upper stage side.
  • a temperature gradient is generated in the direction from the vapor deposition mask toward the evaporation source.
  • the temperature distribution in the mask holder becomes uniform, so that the temperature of the mask holder is further increased.
  • the thermal expansion of the vapor deposition mask attached to the end of the mask holder can be further suppressed.
  • the shape of the limiting opening of the mask holder is made smaller than the opening area on the substrate side, the evaporation area of the film forming material evaporated from the evaporation source is reduced. More particles can be captured on the evaporation source side of the restriction opening, so that the film forming material adhering to the substrate side of the restriction opening, that is, the evaporation mask can be reduced, and the vapor deposition mask replacement cycle can be reduced. In addition to being able to extend the time, it becomes easy to collect the deposited film forming material after the mask holder is replaced.
  • the temperature of the vapor deposition mask itself is controlled efficiently, and for example, the temperature holding function is further improved by providing a temperature control mechanism for the mask holder. Since a medium path and a heat pipe that constitute a part of the temperature control mechanism can be provided by using a portion (gap) separated from the vapor deposition mask, the flexibility of the layout of the medium path and the heat pipe can be ensured. .
  • the opening width of the evaporation port portion of the evaporation source is narrowed to cause a gap between the substrate and the vapor deposition mask (the size of the gap also varies depending on the distance from the evaporation source). ) It is possible to further suppress the shadow of the film formation pattern (the amount of protrusion of the inclined portion on the side edge of the vapor deposition film), and increase the evaporation rate by increasing the opening length of the evaporation port in the relative movement direction. it can.
  • an evaporation port portion forming projection is provided in the evaporation source, for example, projecting from the horizontally long diffusion portion (toward the substrate side), and the evaporation port is formed at the tip of each projection.
  • the vapor deposition film having a film formation pattern determined by the horizontal arrangement of the mask openings of the vapor deposition mask is formed by relative movement of the substrate.
  • the long total opening length is set so as to increase in the lateral direction from the central portion of the limiting opening (for example, the position facing the evaporation port), so that the evaporation rate decreases as the distance in the lateral direction increases.
  • the film thickness can be made uniform by correspondingly increasing the opening length.
  • the formation pitch in the lateral direction of the mask openings is determined from the film formation pitch of the film formation pattern deposited on the substrate, the gap between the substrate and the evaporation mask, and the substrate and evaporation. Installed narrower by a difference corresponding to at least one of the distances to the source, and the opening dimension in the lateral direction of the mask opening than the pattern width of the film formation pattern is the gap, the distance, Since the opening width in the lateral direction of the evaporation port portion of the evaporation source is set wide by a difference corresponding to at least one of the sizes, the substrate and the vapor deposition mask are separated from each other, and a gap is formed between them. Even if there is, the position of the film formation pattern is not shifted and the width of the film formation pattern is not shifted, and the formation accuracy of the film formation pattern can be increased.
  • the film forming material adhering to the mask holder or the vapor deposition mask can be cleaned in the vapor deposition device, and the mask holder and the vapor deposition mask can be reused. Easy to do.
  • the material recovery mechanism since the material recovery mechanism is provided, the material can be recovered and reused.
  • the shape of the mask holder is changed to the evaporation source side.
  • the temperature control function of the temperature control unit on the evaporation source side is further increased, for example, as in the invention of claim 18, by increasing the size (increasing the evaporation source side end so as not to adhere to the inner surface of the restriction opening). As a result, the material adheres to the evaporation source side end of the mask holder, and the recovery becomes easier.
  • the second vapor deposition mask since the second vapor deposition mask is provided, it is possible to form a film with the opening pattern of the second vapor deposition mask after suppressing the incidence of radiant heat from the evaporation source. More highly accurate vapor deposition can be performed while suppressing the temperature rise of the vapor deposition mask.
  • a vapor deposition apparatus capable of realizing a second vapor deposition mask that can more reliably prevent shadows and perform high-precision vapor deposition.
  • a temperature increase of the vapor deposition mask is suppressed by a mask holder having a vapor deposition mask, a scattering restriction portion provided with a restriction opening contacting the vapor deposition mask, and a temperature control mechanism provided in the mask holder. Since the temperature can be kept constant, the second vapor deposition mask provided between the vapor deposition mask and the substrate can be formed of a material having a large linear expansion coefficient because it is more difficult to raise the temperature. As a result, it is possible to form a higher-definition mask opening, thereby providing a vapor deposition apparatus capable of performing vapor deposition with higher accuracy.
  • FIG. 5 is a cross-sectional view taken along line AA of FIG. 4 showing the temperature control mechanism of the present embodiment.
  • FIG. 5 is a cross-sectional view taken along line BB of FIG. 4 showing the temperature control mechanism of the present embodiment.
  • FIG. 5 is a sectional view taken along the line CC of FIG. 4 showing the temperature control mechanism of the present embodiment.
  • FIG. 6 is a sectional view taken along the line DD of FIG.
  • the film-forming material evaporated from the evaporation source 1 passes through the restriction opening 5 of the mask holder 6 configured as a scattering restriction part, and onto the substrate 4 through the mask opening 3 of the vapor deposition mask 2. After deposition, a vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 is formed on the substrate 4.
  • the substrate 4 and the vapor deposition mask 2 are arranged in a separated state, and the substrate 4 is configured to be movable relative to the vapor deposition mask 2 and the evaporation source 1 while maintaining the separated state.
  • the substrate 4 is configured to be movable relative to the vapor deposition mask 2 and the evaporation source 1 while maintaining the separated state.
  • a mask holder 6 having a scattering restriction portion provided with the restriction opening 5 for restricting the scattering direction of the evaporated particles of the film forming material evaporated from the evaporation source 1 between the vapor deposition mask 2 and the evaporation source 1.
  • the vapor deposition mask 2 is joined and attached to the mask holder 6 that constitutes the scattering limiting portion, and a temperature control mechanism 9 that holds the temperature of the vapor deposition mask 2 on at least one of the mask holder 6 or the vapor deposition mask 2 is provided. Since it is provided, the incidence of heat from the evaporation source 1 is suppressed, the temperature rise of the mask holder 6 and the vapor deposition mask 2 is suppressed, and the vapor deposition mask 2 is in contact with the mask holder 6 even when it is separated from the substrate 4.
  • the heat of the vapor deposition mask 2 escapes to the mask holder 6, and the temperature control mechanism 9 is provided on the mask holder 6 or the vapor deposition mask 2, so that the vapor deposition mask 2 is kept at a constant temperature. Function is improved.
  • the mask holder 6 having the scattering restriction portion also functions as a temperature holding function at the same time as the function of restricting the scattering direction of the evaporated particles, can suppress the temperature rise of the vapor deposition mask 2, and keep the vapor deposition mask 2 at a constant temperature. This also prevents distortion of the vapor deposition mask 2 due to heat.
  • the substrate 4 is moved relative to the vapor deposition mask 2, the mask holder 6 provided with the vapor deposition mask 2 and the evaporation source 1 while keeping the separated state from the vapor deposition mask 2 in this relative movement direction.
  • the vapor deposition film of the above-mentioned film formation pattern by the vapor deposition mask 2 is continued to form a vapor deposition film in a wide range even with the vapor deposition mask 2 smaller than the substrate 4, and the film formation pattern by incidence from the evaporation port 8 at the adjacent or remote position. Overlapping and distortion due to heat are sufficiently suppressed, and a vapor deposition apparatus capable of performing highly accurate vapor deposition is obtained.
  • a film forming material (for example, an organic material for manufacturing an organic EL device) evaporated from the evaporation source 1 is deposited on the substrate 4 through the mask opening 3 of the vapor deposition mask 2, and this vapor deposition is performed.
  • a vapor deposition apparatus configured such that a vapor deposition film having a film formation pattern defined by a mask 2 is formed on a substrate 4, the substrate 4 and the vapor deposition mask 2 are disposed in a separated state, and the substrate 4 is disposed on the vapor deposition mask. 2.
  • the mask holder 6 and the evaporation source 1 configured as the scattering restriction portion provided with the restriction opening 5 are configured to be relatively movable while maintaining the separated state from the vapor deposition mask 2, and by this relative movement, A vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 is formed on the substrate 4 in a wider range than the vapor deposition mask 2.
  • a restriction opening 5 is provided between the vapor deposition mask 2 and the evaporation source 1 to limit the scattering direction of the evaporated particles of the film forming material evaporated from the evaporation ports 8 of the evaporation sources 1 arranged in parallel.
  • a mask holder 6 that constitutes a scattering restriction portion is provided, and the evaporation particles having a large scattering angle are restricted so that the evaporation particles from the evaporation port portions 8 at adjacent or remote positions are not allowed to pass.
  • the vapor deposition is performed by the vaporized particles from the plurality of vaporization openings 8 so that the vaporization can be performed on the large-area substrate 4 while securing the vaporization rate, and the vaporization of the adjacent or separated positions by the restriction openings 5 is performed. Even if the vapor deposition mask 2 and the substrate 4 are separated from each other, the overlapping of the film formation patterns is prevented.
  • the vapor deposition mask 2 is joined and attached to the master holder 6 that constitutes the scattering limiting portion, and the temperature is controlled so that the temperature of the vapor deposition mask 2 is held in at least one of the mask holder 6 or the vapor deposition mask 2.
  • a control unit 9 is provided so that heat can be conducted to the mask holder 6 by being bonded to the mask holder 6 even when the vapor deposition mask 2 is separated from the substrate 4.
  • the temperature holding function is also performed at the same time as the scattering direction limiting function, so that the temperature rise of the vapor deposition mask 2 is suppressed and the temperature of the vapor deposition mask 2 is kept constant.
  • the vapor deposition mask 2 releases heat as a structure bonded to the mask holder 6 in this way, even if the vapor deposition mask 2 is vapor-deposited in a separated state without being in contact with the substrate 4, the vapor deposition mask 2 is used. 2 is sufficiently suppressed, and the temperature holding function by the temperature control mechanism 9 provided directly on the master holder 6 or the vapor deposition mask 2 is further enhanced, so that the vapor deposition mask 2 can be controlled at a constant temperature. The vapor deposition mask 2 is less likely to be distorted by heat, and the deposition pattern accuracy is maintained, so that deposition with high positional accuracy can be performed.
  • the substrate 4 is moved relative to the mask holder 6 (mask unit) provided with the vapor deposition mask 2 and the evaporation source 1 while maintaining the separated state from the vapor deposition mask 2, and the vapor deposition mask is moved in the relative movement direction. 2.
  • An excellent vapor deposition apparatus capable of forming a vapor deposition film in a wide range even with the vapor deposition mask 2 smaller than the substrate 4 by continuing the vapor deposition film of the film formation pattern 2 and performing high-precision vapor deposition with high positional accuracy of the film formation pattern. It becomes.
  • the evaporation source 1 in which the film forming material (for example, an organic material for manufacturing an organic EL device) is housed in a vapor deposition chamber 7 (for example, in the vacuum chamber 7) in a reduced pressure atmosphere.
  • the vapor deposition mask 2 provided with the mask opening 3 through which the vaporized particles of the film forming material evaporating from a plurality of the evaporation ports 8 arranged side by side of the evaporation source 1 pass.
  • a vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 is formed on the substrate 4 by depositing vapor particles scattered from the plurality of vaporization openings 8 through the mask opening 3 on the substrate 4 aligned with the state.
  • a plurality of evaporation port portions 8 are provided in the lateral direction perpendicular to the relative movement direction of the substrate 4.
  • the overlapping of the film formation patterns due to incidence from the adjacent or distant evaporation port portions 8 of the evaporation port portions 8 is limited by each limiting opening 5 (attached and captured), and
  • a shadow SH is generated as an inclined portion on both sides of the vapor deposition film.
  • each evaporation port 8 is narrowed by reducing the opening width ⁇ x to suppress this shadow SH (the amount of protrusion), and the evaporation port 8 is lengthened in the relative movement direction to increase the evaporation rate.
  • the shadow SH which is an inclined portion at both end portions of the vapor deposition film is G for the gap between the substrate 4 and the vapor deposition mask 2, and the lateral opening width of the evaporation port 8. Is ⁇ x, and the distance between the evaporation port 8 and the vapor deposition mask 2 is TS, it is expressed by the following formula, and the shading SH is set so as not to reach the interval PP between the adjacent vapor deposition films.
  • the gap G can be set large by setting the opening width ⁇ x small.
  • RGB that are light emitting layers are sequentially deposited, but in this case, film formation is performed using the deposition mask 2 in each of RGB.
  • the pixel R is vapor-deposited
  • the pixel GB is hidden by the vapor deposition mask 2, but when the substrate 4 and the vapor deposition mask 2 are separated as in the present embodiment, the both ends of the vapor deposition film are inclined.
  • the shadow SH of the portion is generated, but it is necessary to set so that the shadow SH does not reach the adjacent pixels (SH ⁇ PP).
  • This shadow SH changes according to the conditions of the gap G between the substrate 4 and the vapor deposition mask 2, the distance TS between the evaporation port 8 and the vapor deposition mask 2, and the opening width ⁇ x of the evaporation port 8.
  • the shadow SH is expressed by the above equation, and the gap G can be set large by setting the opening width ⁇ x of the evaporation port portion 8 small so as not to reach the interval PP between the adjacent vapor deposition films. I am doing so.
  • the gap G can be secured to 1 mm or more.
  • TS 100 mm and ⁇ x is 3 mm
  • G 1 mm
  • TS 100 mm and ⁇ x is reduced to 0.6 mm
  • G can be 5 mm
  • SH can be reduced to 0.01 mm, and a higher-definition film forming pattern may be supported.
  • the mask mounting support surface 23 can be widely formed on the rib portion 24 of the mask frame 6, and the second vapor deposition mask 10 described later can be provided.
  • the openings 8 are arranged side by side, the evaporation masks 2 are opposed to each other, the evaporation range in one evaporation opening 8 is narrowed, the incident angle is not increased, and the evaporation by the plurality of evaporation openings 8 is performed. Even if it exists, it is set as the structure which prevents the overlap of the film-forming pattern by the opening part 5 for a restriction
  • the film thickness is prevented from decreasing due to the lower deposition rate as the distance from the position facing the evaporation port portion 8 increases.
  • the incident angle when the incident angle is large, the amount of change in the deposition position due to the change in the film formation pattern increases with respect to the change in the gap G between the substrate 4 and the deposition mask 2, that is, the flatness of the substrate 4 and the deposition mask 2. If the flatness error is caused by thermal distortion, the gap G fluctuates and the error increases. Therefore, the amount of change due to this deposition position error can be suppressed by preventing the incident angle from increasing. High-precision deposition is possible.
  • each evaporation port 8 is made into a narrow slit-shaped opening to reduce the lateral opening width ⁇ x and reach the adjacent vapor deposition film (adjacent pixel). A moderate amount of shading SH is prevented.
  • the narrow evaporation ports 8 are arranged in parallel in the horizontal direction, and the vapor deposition mask 2 provided with the corresponding mask openings 3 is disposed opposite to the evaporation ports 8.
  • the restriction opening 5 is provided between the vapor deposition mask 2 and the evaporation source 1, and only the evaporation particles from the evaporation opening 8 facing the evaporation mask 8 pass through the evaporation opening 8 adjacent to or away from the evaporation opening 8.
  • one or a plurality of evaporation port portions 8 are provided for each evaporation port portion 8 in this way.
  • Each of the limiting openings 5 is associated with each other, and the vapor deposition mask 2 is attached so as to correspond to each of the limiting openings 5.
  • a mask holder 6 (mask unit) provided with an evaporation source 1 and a vapor deposition mask 2 and a substrate 4 are disposed in a vacuum chamber 7, and the chamber 7 is driven by a vacuum pump 13.
  • the inside is decompressed, the alignment mechanism 14 aligns the substrate 4 and the vapor deposition mask 2 attached to the mask holder 6, and the substrate 4 is vapor-deposited by moving relative to the vapor deposition mask 2 (horizontal conveyance). It is said.
  • the alignment mechanism 14 that aligns the substrate 4 and the vapor deposition mask 2 captures, for example, the alignment marks provided on the substrate 4 and the vapor deposition mask 2 with a camera, makes an image determination, and moves the alignment mark X with the movement adjustment mechanism so that they match. , Y, ⁇ directions are finely adjusted and aligned, and even if the substrate is large in size, the substrate adsorption portion that adsorbs the central portion on a flat surface is moved so that the substrate 4 is not distorted.
  • the substrate 4 is provided with a relative movement mechanism 15 for horizontally conveying the substrate 4. Of course, either one may be moved, or the vertical relationship may be reversed or the vertical relationship may be reversed.
  • an in-line system that can be easily transported even by the large substrate 4 is used, and a large deposition mask 2 that is substantially coincident with the substrate 4 in the lateral direction but narrow in the moving direction is large. After the substrate 4 is aligned in the separated state, the substrate 4 is horizontally transported by the transport mechanism 15 in this separated state and deposited.
  • the deposition mask 2 does not have to be large, so that the production is not difficult, and the substrate 4 does not come into contact.
  • the problem of damage to the mask 2 or the deposited film hardly occurs, and a high-quality film can be obtained.
  • a plurality of evaporation sources 1 may be arranged side by side and the respective evaporation port portions 8 may be arranged in parallel.
  • a configuration in which a plurality of evaporation port portions 8 are arranged in parallel on one horizontally long evaporation source 1 is adopted.
  • a plurality of evaporation ports 8 arranged in the lateral direction are provided in one evaporation source 1, and are generated from the evaporation particle generation unit 26 that heats the film forming material and from the evaporation particle generation unit 26.
  • the evaporation source 1 is constituted by a horizontally long diffusion portion 27 that diffuses the vaporized particles and makes the pressure uniform, and a plurality of the evaporation port portions 8 are formed side by side in the horizontally long diffusion portion 27. More specifically, for example, a film forming material is stored in an evaporative particle generation unit 26 (crucible 26) that can be exchanged by an automatic crucible exchanging mechanism 18, and the vaporized particles heated and evaporated in the crucible 26 are temporarily stopped to make the pressure uniform.
  • a film forming material is stored in an evaporative particle generation unit 26 (crucible 26) that can be exchanged by an automatic crucible exchanging mechanism 18, and the vaporized particles heated and evaporated in the crucible 26 are temporarily stopped to make the pressure uniform.
  • the laterally elongated laterally extending portion 27 is provided, and a large number of slit-like openings narrow in the lateral direction as described above in the lateral direction that is long in the relative movement direction at the top of the laterally elongated portion 27 along the lateral direction.
  • a large number of the evaporation ports 8 are arranged in parallel.
  • a plurality of the restriction openings 5 are also arranged in the lateral direction in which a plurality of the evaporation ports 8 are arranged side by side, and the evaporation particles evaporating from the respective evaporation ports 8 are limited to the opposed restriction openings 5 only.
  • the vapor deposition film of the film formation pattern is formed on the substrate 4 through the mask opening 3 of the vapor deposition mask 2 that passes through the limiting aperture 5 and faces the restriction opening 5, and is adjacent to or separated from the substrate 4
  • the evaporation particles from the evaporation port 8 are configured to be restricted by the restriction opening 5 so that the evaporation direction of the evaporation particles is restricted by being attached to and captured by the mask holder 6 configured as the scattering restriction. Yes.
  • the pressure can be made uniform and the film thickness can be made more uniform.
  • one evaporating port 8 may be disposed opposite to one restricting opening 5 so as to be disposed at the center position (below), or one restricting opening 5 may be disposed.
  • the two evaporation ports 8 may be arranged to face each other with the center of the restriction opening 5 as a boundary.
  • each of the evaporation ports 8 arranged side by side as described above.
  • the restricting openings 5 are arranged side by side so as to correspond to each other, and the evaporated particles from any of the adjacent right and left evaporating openings 8 pass through the restricting openings 5 respectively.
  • the adjacent restriction opening 5 cannot pass and is attached and captured.
  • the evaporated particles from one evaporation port 8 pass only through the opposed restriction openings 5 and are adjacent to the left and right.
  • Evaporated particles from the matching evaporation port portion 8 are configured not to pass through the restricting opening 5, thereby reliably preventing the overlapping of the film formation patterns.
  • the mask openings 3 of the vapor deposition mask 2 of the present embodiment are arranged in parallel in the lateral direction orthogonal to the relative movement direction of the substrate 4, and each of these mask openings.
  • the portion 3 is formed in a slit shape that is long in the relative movement direction or a plurality of openings are arranged in parallel in the relative movement direction, and the total opening length in the relative movement direction is longer than the opening length in the lateral direction.
  • the mask openings 3 in each row of the vapor deposition mask 2 may be slit-like openings that are long in the relative movement direction.
  • the mask openings 3 are slits that are long in the relative movement direction. Small openings such as holes or small holes may be scattered in this direction to ensure a wide total opening length (total opening area).
  • the formation pitch of the vapor deposition film is set to a lateral formation pitch perpendicular to the relative movement direction of the substrate 4 of the mask opening 3 of the vapor deposition mask 2 that determines the film deposition pattern to be vapor deposited on the substrate 4.
  • the pitch is set narrower than the pattern pitch by a difference corresponding to the size of the gap G between the substrate 4 and the vapor deposition mask 2 and the distance TS between the evaporation source 1 and the vapor deposition mask 2.
  • the distance MPx from the mask position facing the evaporation source opening center to the mask opening center is from the position of the substrate 4 facing the evaporation source opening center to the film formation pattern center.
  • TS 100 mm and G is 1 mm
  • 100 and ⁇ / (1 + ⁇ ) is about 0.99. Therefore, for example, if Px is 10 mm, MPx is 9.9 mm, and MPx is smaller than Px.
  • the vapor deposition mask 2 can be changed depending on the size of the gap G between the substrate 4 and the vapor deposition mask 2 and the distance TS between the evaporation source 1 and the vapor deposition mask 2.
  • the opening pitch of the vapor deposition mask 2 should be set to be narrower than the film formation pattern pitch in consideration of this deviation amount.
  • the evaporation mask opening width Mx is larger than the gap G between the substrate 4 and the evaporation mask 2 and the evaporation source 1. And the distance corresponding to the size of the distance TS to the vapor deposition mask 2 increases.
  • the mask opening width Mx is about 0.126 mm when G is 3 mm, and about 0.143 mm when G is 5 mm. Become wider.
  • the opening slit of the vapor deposition mask 2 is set so as to be longer as it is further away from the central portion in the lateral direction, and the vapor deposition rate is lower as it is farther from the central portion.
  • the film thickness distribution is set to be uniform.
  • the cosine law is at the position x.
  • the dimensions of the evaporation source port are, for example, an evaporation source opening width ⁇ x of 1 mm, an evaporation source slit length ⁇ y of 60 mm, and a lateral film thickness distribution perpendicular to the relative movement direction of the substrate 4 is 20 of cos ⁇ . If the distribution approximates to the power, the film thickness distribution shown in FIG. 21 is obtained. As the incident angle of the evaporated particles on the vapor deposition mask 2 increases, the influence of the above-described error increases.
  • the film when the film is used for film formation up to a position where the film thickness is as thin as 80% of the center, 60 mm of ⁇ 30 to +30 is 1
  • This is an effective film forming range for forming a film with a nozzle.
  • the evaporation mask opening length at ⁇ 30 and +30 positions that are both ends of the effective film formation range is about 146 mm. As shown in FIG. 21, as the distance from the center to both ends increases, the opening length becomes symmetrical.
  • the limiting opening 5 of the present embodiment has a shape in which the opening area on the evaporation port 8 side is small and widens toward the vapor deposition mask 2 side, in other words, as an inverted truncated pyramid having a small opening area on the evaporation port 8 side.
  • the evaporation particles adhere to the end surface of the restriction opening 5 on the evaporation port 8 side (the end face of the mask holder 6) and adhere to the inner surface of the restriction opening 5 as much as possible.
  • the evaporated particles (film forming material) can be easily peeled and collected.
  • the restriction opening 5 and the evaporation port 8 are separated from each other to enhance the restriction function, and the evaporated particles from the adjacent evaporation port 8 enter the inner surface of the restriction opening 5.
  • a partition 21 may be provided between each evaporation port 8 and each restriction opening 5 so as to adhere to the end surface of the mask holder 6.
  • the vapor deposition mask 2 is attached to the mask holder 6 constituting the scattering restriction portion provided with the restriction opening 5 and at least one of the scattering restriction portion 6 or the vapor deposition mask 2 is provided.
  • a temperature control mechanism 9 for maintaining the temperature of the vapor deposition mask 2 and the mask holder 6 not only serves as a scattering restricting portion but also suppresses the incidence of heat from the evaporation source 1 and conducts the heat of the vapor deposition mask 2.
  • the temperature holding function of absorbing heat can be exhibited to keep the temperature of the vapor deposition mask 2 constant, the distortion of the vapor deposition mask 2 can be prevented, and the substrate 4 and the vapor deposition mask 2 can be separated from each other.
  • the incidence of heat from the evaporation source 1 is suppressed and the temperature rise of the mask holder 6 and the vapor deposition mask 2 is suppressed, and the vapor deposition mask 2 is in contact with the mask holder 6 even when it is separated from the substrate 4. Therefore, the heat of the vapor deposition mask 2 is conducted to the mask holder 6 and the temperature control mechanism 9 is provided in the mask holder 6 or the vapor deposition mask 2, so that the temperature of the vapor deposition mask 2 is maintained at a constant temperature. It is configured to improve functionality.
  • the mask holder 6 constituting the scattering restriction portion serves not only the function of restricting the scattering direction of the evaporated particles but also the temperature holding function, and can suppress the temperature rise of the vapor deposition mask 2 and keep the vapor deposition mask 2 at a constant temperature. Further, distortion of the vapor deposition mask 2 due to heat hardly occurs, and a vapor deposition film with high positional accuracy of the film formation pattern can be deposited.
  • both ends of the block-shaped base portion in which the restriction openings 5 having the above-described shape are arranged at intervals are formed on a flat surface, and the openings of the restriction openings 5 are formed.
  • the mask holder 6 is formed in a shape having a flat surface at the periphery of the end, the deposition mask 2 is attached to the flat surface at the end on the substrate 4 side, and the flat surface at the end on the opposite evaporation source 1 side is evaporated. It is the attachment surface to which particles adhere.
  • An independent medium is circulated above and below the block-shaped base portion of the mask holder 6 and the temperature is controlled by exchanging the medium, and the heat pipe 22 is provided around the restriction opening 5 and the restriction opening, respectively.
  • the temperature control mechanism 9 is provided in the mask holder 6 so as to absorb the heat and suppress the temperature rise so as to keep the temperature of the vapor deposition mask 2 constant.
  • the mask holder 6 is used as a mask frame so as to cover the restriction opening 5.
  • the flat surface at the end of the mask holder 6 on the substrate 4 side that is, the flat surface between the limiting opening 5 of the scattering restricting portion 6 and the peripheral end of the surrounding substrate 4 side is used as a mask mounting support surface.
  • 23 is formed, and the peripheral portion of the vapor deposition mask 2 is supported and joined to the mask mounting support surface 23.
  • the mask opening 3 is formed so that the flatness of the vapor deposition mask 2 is increased and the heat distortion does not occur.
  • the structure is such that tension is applied in the direction of relative movement, which is the length direction, and the vapor deposition mask 2 is superposed on the mask mounting support surface 23 and fixed by tension welding or the like.
  • a sufficiently wide flat surface is formed around the end surface of the mask holder 6 to provide the mask mounting support surface 23, and the space between the limiting openings 5 is also a flat surface. And a mask mounting support surface 23 is also provided between the restricting openings 5.
  • the interval (arrangement pitch) between the mask openings 3 of the vapor deposition mask 2 has a vapor deposition film interval (a vapor deposition film constituting each pixel and an interval between them) of each color of the RGB pixels. Since there is a certain amount of allowance between the adjacent mask openings 3 at the end portions of the opposing vapor deposition mask 2, this allowance interval is also provided between the restricting openings 5 located between the mask openings 3.
  • a rib portion 24, which will be described later, is provided, and the mask mounting support surface 23 is formed between the limiting openings 5 with the tip end surface being a flat surface.
  • the mask holder 6 is configured to have a rigidity higher than the tension by applying the tension in the relative movement direction of the substrate 4 and stretching the vapor deposition mask 2 as described above.
  • the ribs 24 for supporting the vapor deposition mask 2 with the relative movement direction of the substrate 4 as the length direction are provided between the restriction openings 5 to increase the rigidity in this direction, and between the restriction openings 5.
  • the mask mounting support surface 23 for supporting and joining the vapor deposition mask 2 is also provided on the front end surface of the rib portion 24 on the substrate 4 side.
  • the mask holder 6 is provided with a rib portion 24 extending in the relative movement direction of the substrate 4, and the rib portion 24 has a mask mounting support surface 23 attached in contact with the vapor deposition mask 2.
  • the temperature holding function of the vapor deposition mask 2 is enhanced.
  • the mask mounting support surface 23 can be widely secured because the substrate 4 and the vapor deposition mask 2 are separated from each other.
  • the mask mounting support surface 23 in the configuration in which the substrate 4 and the vapor deposition mask 2 are in close contact with each other is 2P + 3PP using the vapor deposition film interval PP and the vapor deposition pattern width P for RGB pixel vapor deposition.
  • a difference A from the extreme end position occurs.
  • A is represented by G (Px + P / 2 ⁇ x / 2) / (TS + G), and the mask mounting support surface 23 is 2A wider than the case where the substrate 4 and the vapor deposition mask 2 are in close contact with each other.
  • the mask mounting support surface 23 when the substrate 4 and the vapor deposition mask 2 are in close contact is 0. 35 mm.
  • the mask mounting support surface 23 is about 0.64 mm when G is 1 mm.
  • the thickness is about 1.79 mm, and a sufficient area for spot welding can be secured by polymerizing the vapor deposition mask 2.
  • the mask holder 6 can be stretched by applying a sufficient tension to the vapor deposition mask 2 by increasing the rigidity as a mask frame.
  • the mask mounting support surface 23 is provided, and the vapor deposition mask 2 is superposed and stretched thereon.
  • the attached strength polymerization by the bearing joining
  • the vapor deposition mask 2 of the present embodiment is divided into a plurality of pieces in the lateral direction orthogonal to the relative movement direction of the substrate 4, and the divided vapor deposition mask 2 is juxtaposed in the lateral direction on the mask holder 6. It is good also as a structure attached to.
  • the vapor deposition masks 2 are arranged side by side so that the end portions are abutted with each other, but the vaporized particles do not pass through welding on the mask mounting support surface 23 at the front end surface of the rib portion 24 of the mask holder 6. And the heat of the vapor deposition mask 2 is conducted.
  • the mask openings 3 are individually arranged so that the film thickness is uniform for each region based on the film thickness distribution characteristics for each evaporation port 8.
  • the vapor deposition masks 2 set in the above can be arranged side by side or the vapor deposition masks 2 can be individually replaced.
  • the temperature control mechanism 9 will be further described.
  • the vapor deposition mask 2 is shielded by the mask holder 6 that constitutes the scattering limiting portion, and the heat to the vapor deposition mask 2 is in contact with the mask.
  • Conductive to the holder 6, and heat is absorbed by the temperature control mechanism 9 including the medium path 12 and the heat pipe 22 in the mask holder 6, so that the vapor deposition mask 2 and the substrate 4 are separated from each other.
  • the temperature rise of the vapor deposition mask 2 can be sufficiently suppressed, the temperature of the vapor deposition mask 2 can be kept constant, distortion due to heat hardly occurs, and vapor deposition with high positional accuracy of the film formation pattern can be performed.
  • the temperature control mechanism 9 includes the medium path 12 or the heat pipe 22 through which the medium is circulated in the mask holder 6 around the restriction opening 5 or between the restriction openings 5.
  • a plurality of stages are provided in the opposing direction of the substrate 4 and the evaporation source 1. That is, for example, a heat exchanging portion 20 (20A, 20B, 20D) for removing heat from the medium flowing through the medium path 12 provided in the mask holder 6 and controlling the temperature is provided, and the medium flowing through the mask holder 6 evaporates.
  • the heat from the source 1 is absorbed and the temperature is controlled by removing heat from the medium at the heat exchanging unit 20 so that the temperature of the deposition mask 2 is controlled to be constant.
  • the mask holder 6 is provided with the evaporation source 1 side temperature control unit 9A and the substrate 4 side temperature control unit 9B, and each of the temperature control units 9A and 9B is independently provided.
  • the medium path 12 (12A, 12B) through which the medium is circulated or the independent heat pipes 22 are provided in the mask holder 6, specifically, in the annular part 6A and the rib part 24 shown in FIG.
  • the substrate 4 side temperature control unit 9B is configured to determine the medium flow rate or the contact area with the medium in the medium path 12A of the evaporation source 1 side temperature control unit 9A, or the number of the heat pipes 22 or the sectional area of the heat pipes 22
  • the temperature control function of the evaporation source 1 side temperature control unit 9A is enhanced by increasing the temperature from the medium path 12B.
  • the temperature control unit 9A on the evaporation source 1 side absorbs heat from the evaporation source, and the substrate 4 side (deposition mask 2 side)
  • the temperature control unit 9B can further absorb heat to keep the temperature of the vapor deposition mask 2 constant, further enhancing the temperature holding function.
  • the mask holder 6 in the shape as described above, that is, in a shape in which the capacity between the limiting openings 5 is larger toward the evaporation source 1 side, the evaporation source 1 side than the temperature control unit 9B on the substrate 4 side.
  • the medium contact area of the medium path 12A of the temperature control section 9A is increased to enhance the heat absorption capability, and the evaporated particles are attached on the evaporation source 1 side and close to the evaporation source 1 (the radiant heat is large).
  • a temperature at which the evaporation source 1 side absorbs heat sufficiently, and the temperature control unit 9B on the substrate 4 side further absorbs heat to control the temperature so that the temperature of the vapor deposition mask 2 is kept constant.
  • the holding function is improved.
  • the temperature control mechanism 9 (9A, 9B) is configured such that the medium path 12 (12A, 12B) through which the cooling water is circulated is passed through the mask holder 6 so that the heat exchange unit 20 (20A, 20B), and the end of the heat pipe 22 may be cooled in the same manner.
  • the temperature control unit 9A on the evaporation source 1 side is used. Has given both sides.
  • the medium path 12 includes a medium inflow path 12A1 for introducing cooling water into the medium path 12A of the evaporation source 1 side temperature control unit 9A in the case of the water cooling type.
  • the medium outflow path 12A2 for discharging the cooling water from the medium path 12A is formed in two stages in the medium path 12A.
  • the medium inflow path 12A1 and the medium outflow path 12A2 are controlled by the evaporation source 1 side temperature control.
  • the medium inflow path 12B1 and the medium outflow path 12B2 of the medium path 12B of the substrate 4 side temperature controlled section 9B are connected to the heat exchanging section 20A of the section 9A through the connecting section 25A. It is formed in steps and is connected to the heat exchanging part 20B of the substrate 4 side temperature controlled part 9B via a connecting part 25B.
  • cooling water controlled to a constant temperature from each heat exchange section 20A, 20B is caused to flow from each medium inflow path 12A1, 12B1 to each medium path 12A, 12B of the mask holder 6,
  • the cooling water whose temperature has been raised by the radiant heat from the evaporation source 1 in the medium paths 12A and 12B is discharged from the medium outflow paths 12A2 and 12B2, and is circulated again to the heat exchanging sections 20A and 20B. It has a temperature holding function to control and hold the vapor deposition mask 2 so that the temperature is constant.
  • the temperature control mechanism 9 including the two independent temperature control units 9 A and 9 B is provided in the mask holder 6.
  • the medium inflow paths 12A1 and 12B1 and the medium outflow paths 12A2 and 12B2 of the medium paths 12A and 12B connected to the heat exchange sections 20A and 20B that take heat from the medium of the medium paths 12A and 12B of the restriction sections 9A and 9B.
  • the connecting portions 25A and 25B are detachably connected to the medium paths 12A and 12B through which the cooling water is circulated, and are connected to the connecting portions 25A and 25B.
  • a check valve (not shown) is included so that when the mask holder 6 is removed, the cooling water does not leak from the connecting portions 25A and 25B.
  • the temperature control part 9A on the evaporation source 1 side is further provided with the heat pipe 22 as described above, and as shown in FIG. 6, the pipe end for cooling the heat pipe 22 is provided.
  • the cooling device 22A is detachable. This is because vaporized particles adhere to the vapor deposition mask 2 and the mask holder 6 one after another during film formation, and there is a risk of affecting the film formation pattern when used for a long time. This is because the replacement chamber 16 is arranged in parallel, and the mask holder 6 provided with the vapor deposition mask 2 can be removed from the vacuum chamber 7 so as to be freely removable.
  • the replacement chamber 16 includes a cleaning mechanism for the mask holder 6 with the vapor deposition mask 2 so that the deposited film material is removed and discarded, or the film deposition material adhered to the vapor deposition mask 2 and the mask holder 6.
  • the material recovery mechanism 17 recovers and reuses the film formation material, and also cleans the film formation material and particles remaining on the surface of the mask holder 6 with the vapor deposition mask 2 after the film formation material is removed. You may make it do. After cleaning, the mask holder 6 with the vapor deposition mask 2 may be returned to the vapor deposition apparatus for use, or replaced with a new mask holder 6 with the vapor deposition mask 2, and the previous mask holder 6 is prepared for the next replacement. You may make it stock.
  • 12B2 and the heat pipe 22 of the temperature limited part 9A are installed in the rib part 24 as shown in FIGS. 6 to 9, rib inlets 241 and 241 for introducing cooling water into the rib part 24.
  • 241 and the position where the rib part outlets 242 242 242 for discharging the cooling water from the rib part 24 and the direction of the heat pipe 22 of the temperature limited part 9A are viewed from the connecting part 25A (25B) side.
  • the direction of the temperature gradient in the rib portion 24 when viewed from the connecting portion 25A (25B) side is For example, they are formed alternately as indicated by arrows T in FIG.
  • the temperature distribution in the mask holder 6 is made more uniform, so that distortion of the mask holder 6 due to heat is less likely to occur, and deformation due to heat of the vapor deposition mask 2 bonded to the mask holder 6 is also suppressed.
  • the positional accuracy of the film formation pattern can be improved.
  • the medium path of the evaporation source 1 side temperature control unit 9A in 12A, the arrangement of the medium inflow path 12A1 and the medium outflow path 12A2 can be reversed from the arrangement shown in FIGS. 7 to 9 so as to have a temperature gradient from the evaporation source 1 side to the substrate 4 side. Thereby, it is possible to effectively suppress an increase in temperature at a portion near the evaporation source 1 of the mask holder 6 that is exposed to high-temperature radiant heat from the evaporation source 1.
  • the temperature gradient and temperature distribution in the mask holder 6 can be changed according to various purposes.
  • a medium flow pipe 12C may be disposed as the medium path 12 around the mask opening 3 or between the mask openings 3 on the surface of the vapor deposition mask 2 on the substrate 4 side.
  • a heat pipe 22C may be provided.
  • the vapor deposition mask 2 may be provided with a temperature control unit 9C along the vapor deposition mask 2 in contact therewith, and the vapor deposition mask 2 may be provided with the temperature control mechanism 9. Since the temperature is controlled, the efficiency is improved, the temperature holding function is further improved, and the gap at the separated portion between the substrate 4 and the vapor deposition mask 2 can be used.
  • the mask holder 6 is made of an inorganic material such as metal or ceramic, or a material coated thereon, so that the heat absorption efficiency and strength are improved.
  • the respective evaporation port portions 8 arranged in parallel in the horizontal direction are provided at the distal end portion of the evaporation port portion forming projection portion 28 formed to project from the horizontally elongated extension portion 27 of the evaporation source 1.
  • a heat shut-off portion 19 that shuts off the heat of the evaporation source 1 is provided around the evaporation port portion forming projection 28 or between the evaporation port portion forming projections 28.
  • the evaporation port 8 is provided at the tip of each of the evaporation port forming projections 28 protruding from the horizontally long diffusion portion 27 of the evaporation source 1, the evaporation rate and material use efficiency are increased.
  • the radiant heat from the heating range other than the evaporation port 8, that is, the high-temperature portion of the evaporation source 1 can be blocked by the heat blocking unit 19 as described above. It becomes the outstanding vapor deposition apparatus which can raise the cooling efficiency of the single-layer vapor deposition mask 2.
  • the heat blocking unit 19 may be any unit that shields heat.
  • a cooling plate is used, and a medium path for supplying a medium is provided in the same manner as the mask holder 6 to cool the heat.
  • the exchange unit 20D is provided to function as the temperature control unit 9D provided in the evaporation source 1 to enhance the heat shielding effect.
  • the evaporation port portion forming protrusions 28 for forming the evaporation port portions 8 are provided on the horizontally elongated portion 27, and the evaporation port portions 8 are respectively provided on the upper end surfaces.
  • the laterally elongated portion 27 may be provided with a flat protrusion portion that is wide in the lateral direction but narrow in the relative movement direction, and a large number of the evaporation port portions 8 may be arranged in parallel on the upper end surface.
  • the vapor deposition mask 2 does not have to be divided and formed as described above as long as it can be formed in a long strip shape in a direction orthogonal to the relative movement direction.
  • a second vapor deposition mask 10 is disposed between the substrate 4 and the vapor deposition mask 2 as shown in FIG.
  • the second mask openings 11 of the second vapor deposition mask 10 are arranged to finally determine the film formation pattern, and the vapor deposition mask 2 located on the evaporation source 1 side with respect to the second vapor deposition mask 10.
  • the opening widths of the first vapor deposition mask 2 are set to be the same or wider so as not to interfere with the second vapor deposition mask 10.
  • the opening pattern is the same pattern.
  • the opening formation pitch is set to a different formation pitch corresponding to the difference in distance from the substrate 4, and the opening width is the same or narrower.
  • the shadow SH caused by the first vapor deposition mask 2 can be suppressed as much as possible by providing the second vapor deposition mask 10, and the temperature of the second vapor deposition mask 10 can be kept constant. High-precision deposition can be performed.
  • both the temperature of the first vapor deposition mask 2 itself and the vapor deposition mask 2 provided on the mask holder 6 provided with the vapor deposition mask 2 can be kept constant, and the first vapor deposition mask 2 and the substrate 4 Since the vapor deposition film having a film formation pattern finally determined by the second vapor deposition mask 10 further provided therebetween is formed, the temperature of the second vapor deposition mask 10 is further hardly increased. Therefore, the second vapor deposition mask 10 can be formed of a material having a larger linear expansion coefficient than that of the first vapor deposition mask 2, and therefore can be formed by, for example, electroforming. Thus, it is possible to perform vapor deposition with higher accuracy such that the tension may be relatively small.
  • the film can be accurately formed according to the opening pattern of the second vapor deposition mask 10.
  • the temperature control mechanism 9 is also provided in the first vapor deposition mask 2 itself, so that the temperature rise of the vapor deposition mask 2 can be further suppressed. Therefore, in this embodiment, the second vapor deposition mask 2 is further reduced. The temperature rise of the mask 10 can be further sufficiently suppressed.
  • the medium path 12 of the vapor deposition mask installed temperature control unit 9C of the temperature control mechanism 9 is disposed between the mask openings 3 of the vapor deposition mask 2.
  • the substrate 4 and the vapor deposition mask 2 are vapor-deposited in a separated state, and this separated space can be used. Further, the heat pipe 22 may be provided around the mask opening 3.
  • the present invention is not limited to the first and second embodiments, and the specific configuration of each component can be designed as appropriate.

Abstract

Provided is an epoch-making deposition apparatus, which can prevent a deposition mask from warping due to heat, and which can perform highly accurate deposition, since a deposition film in a film-forming pattern can be deposited in a wide range using the deposition mask, even a small deposition mask (2), by relatively moving a large substrate (4) with a space between the substrate and the deposition mask, and since the deposition mask (2) can be maintained at a constant temperature by sufficiently suppressing an increase of the temperature of the deposition mask. In the deposition apparatus, the substrate (4) and the deposition mask (2) are disposed with the space therebetween, a mask holder (6) is disposed between the substrate (4) and an evaporation source (1), said mask holder constituting a scatter limiting section that is provided with a limiting opening (5), the deposition mask (2) is attached to the mask holder (6) by bonding the deposition mask to the mask holder, the mask holder (6) is provided with a temperature control mechanism (9) that maintains the temperature of the deposition mask (2), and the highly accurate deposition film in the film-forming pattern can be formed in a range wider than the deposition mask (2) by relatively moving the substrate (4) with respect to the deposition mask (2).

Description

蒸着装置並びに蒸着方法Vapor deposition apparatus and vapor deposition method
 本発明は、蒸着マスクによる成膜パターンの蒸着膜を基板上に形成させる蒸着装置並びに蒸着方法に関するものである。 The present invention relates to a vapor deposition apparatus and a vapor deposition method for forming a vapor deposition film having a film formation pattern using a vapor deposition mask on a substrate.
 近年、有機エレクトロルミネッセンス素子を用いた有機EL表示装置が、CRTやLCDに替る表示装置として注目されている。 In recent years, organic EL display devices using organic electroluminescence elements have attracted attention as display devices that replace CRTs and LCDs.
 この有機EL表示装置などの有機ELデバイスは、基板に電極層と複数の有機層を積層した発光層とを積層形成し、更に封止層を被覆形成した構成であり、自発光で、LCDに比べて高速応答性に優れ、高視野角及び高コントラストを実現できるものである。 An organic EL device such as an organic EL display device has a configuration in which an electrode layer and a light emitting layer in which a plurality of organic layers are laminated are formed on a substrate, and a sealing layer is further formed on the substrate. Compared with high-speed response, a high viewing angle and high contrast can be realized.
 このような有機ELデバイスは、一般に真空蒸着法により製造されており、真空チャンバー内で基板と蒸着マスクをアライメントして密着させ蒸着を行い、この蒸着マスクにより所望の成膜パターンの蒸着膜を基板に形成している。 Such an organic EL device is generally manufactured by a vacuum vapor deposition method, in which a substrate and a vapor deposition mask are aligned and closely adhered in a vacuum chamber, and a vapor deposition film having a desired film formation pattern is formed on the substrate by the vapor deposition mask. Is formed.
 また、このような有機ELデバイスの製造においては、基板の大型化に伴い所望の成膜パターンを得るための蒸着マスクも大型化するが、この大型化のためには蒸着マスクに張力をかけた状態でマスクフレームに溶接固定して製作しなければならないため大型の蒸着マスクの製造は容易でなく、またこの張力が十分でないとマスクの大型化に伴いマスク中心に歪みが生じ蒸着マスクと基板の密着度が低下してしまうことや、これらを考慮するためにマスクフレームが大型となり、精度を得ようとするために肉厚化や重量の増大が顕著となる。また、マスクフレームには熱膨張によるマスク精度の低下を防ぐため、線膨張係数の小さなインバー材が使用されているが高価である。 Moreover, in the manufacture of such an organic EL device, the vapor deposition mask for obtaining a desired film formation pattern is enlarged with an increase in the size of the substrate. To increase the size, tension was applied to the vapor deposition mask. Therefore, it is difficult to manufacture a large evaporation mask because it must be welded and fixed to the mask frame. In consideration of these factors, the mask frame becomes large in order to take these into consideration, and the increase in thickness and weight becomes significant in order to obtain accuracy. In addition, an invar material having a small linear expansion coefficient is used for the mask frame in order to prevent deterioration of mask accuracy due to thermal expansion, but it is expensive.
 このように基板サイズの大型化に伴って蒸着マスクの大型化が求められているが、高精細なマスクの大型化は困難で、また製作できても前記歪みの問題によって実用上様々な問題を生じている。 As described above, it is required to increase the size of the vapor deposition mask as the substrate size increases, but it is difficult to increase the size of the high-definition mask. Has occurred.
 また、例えば、特表2010-511784号などに示されるように、基板と蒸着マスクとを離間配設し、蒸発源と指向性を持った蒸発粒子を発生させる開口部により有機発光層を高精度に成膜させる方法もあるが、前記蒸発源と指向性を発生させる前記開口部が一体構造をしており、開口部から蒸発粒子を発生させるには前記一体構造を高温に加熱する構成となっているため、蒸発源からの輻射熱を蒸着マスクで受けることになり、蒸着中のマスク温度を一定に保持する効果が無く、蒸着マスクの熱膨張による成膜パターンの位置精度の低下を防ぐことができない。 Further, as shown in, for example, JP-T-2010-511784, the substrate and the vapor deposition mask are spaced apart from each other, and the organic light-emitting layer is formed with high accuracy by an opening that generates vapor particles having directivity from the evaporation source. However, the evaporation source and the opening for generating directivity have an integrated structure, and the integrated structure is heated to a high temperature to generate evaporated particles from the opening. Therefore, the deposition mask receives the radiant heat from the evaporation source, which has no effect of keeping the mask temperature constant during the deposition, and prevents the deterioration of the position accuracy of the film formation pattern due to the thermal expansion of the deposition mask. Can not.
 即ち、蒸着マスクが高温となって熱膨張により伸長してしまうので、マスク開口部自体及びマスク開口部のピッチ間距離が伸長することとなり、蒸着マスクで形成される基板上の成膜パターン自体の精度や、成膜パターンの配列精度が低下してしまう。 That is, since the vapor deposition mask becomes high temperature and expands due to thermal expansion, the pitch distance between the mask opening itself and the mask opening extends, and the deposition pattern itself on the substrate formed by the vapor deposition mask increases. The accuracy and the alignment accuracy of the film formation pattern are lowered.
 更に、基板と蒸着マスクとを離間配設して相対移動させる構成とすることで、小さな蒸着マスクでも広範囲に所望の成膜パターンを大型基板に蒸着させることができるが、基板と蒸着マスクとが離間しているため、この蒸着マスクの温度上昇は一層さけられず、蒸着マスクに前述のようにこの温度上昇による熱変形や歪みを生じて蒸着精度が著しく劣ってしまうこととなる。 Furthermore, by adopting a configuration in which the substrate and the vapor deposition mask are spaced apart and relatively moved, a desired film formation pattern can be vapor-deposited over a large area even with a small vapor deposition mask. Since they are separated from each other, the temperature increase of the vapor deposition mask cannot be further prevented, and the vapor deposition mask is subject to thermal deformation and distortion due to the temperature increase as described above, and the vapor deposition accuracy is extremely inferior.
 これまでのように基板と蒸着マスクとを密着重合させて蒸着する場合は、蒸着マスクへの輻射熱は基板へと逃げて放熱されることになる。 When the substrate and the evaporation mask are adhered and polymerized as before, the radiant heat to the evaporation mask escapes to the substrate and is radiated.
 しかし、基板と蒸着マスクとを離間状態のままで基板を相対移動させる構成とすると、前述のように蒸着マスクの温度上昇は著しくこの熱膨張による歪みを生じて成膜パターンの位置精度が著しく劣ってしまう。 However, if the substrate is moved relative to the vapor deposition mask while the substrate and the vapor deposition mask are separated from each other, as described above, the temperature rise of the vapor deposition mask is remarkably caused by distortion due to this thermal expansion, and the position accuracy of the film formation pattern is extremely inferior. End up.
特表2010-511784号公報JP 2010-511784 gazette
 本発明は、このような様々な問題を解決し、基板の大型化に伴って蒸着マスクを同等に大型化せず基板より小形の蒸着マスクでも、基板を離間状態で相対移動させることで広範囲に蒸着マスクによる成膜パターンの蒸着膜を蒸着でき、また、離間状態のまま相対移動させることで構造も簡易で効率良くスピーディーに蒸着でき、しかも蒸着マスクが離間状態のままでも制限用開口部を蒸発源と蒸着マスクとの間に設けることで、蒸発粒子の飛散方向を制限して隣り合う若しくは離れた位置の蒸発口部からの蒸着粒子を通過させず成膜パターンの重なりを防止すると共に、この制限用開口部を設けた飛散制限部を有するマスクホルダーに蒸着マスクを接触させて付設した構成とし、このマスクホルダー若しくは蒸着マスクの少なくとも一方に蒸着マスクの温度を保持する温度制御機構を設けることで、このマスクホルダーは飛散制限部としてだけでなく蒸発源からの輻射熱の入射を抑制し蒸着マスク温度上昇を抑制する温度保持機能を発揮して、蒸着マスクの温度を一定に保持させることができ、これにより蒸着マスクの熱による歪みを防止して、基板と蒸着マスクとを離間状態で相対移動させる構成でありながら、高精度の蒸着が行える蒸着装置並びに蒸着方法を提供することを目的としている。 The present invention solves these various problems, and does not increase the size of the vapor deposition mask to the same size as the substrate is enlarged. Evaporation film with a deposition pattern can be deposited using a vapor deposition mask, and the structure can be simply and efficiently deposited by moving the film in a separated state, and the restriction opening can be evaporated even when the vapor deposition mask is in a separated state. By providing it between the source and the vapor deposition mask, it is possible to limit the scattering direction of the vaporized particles and prevent vapor deposition particles from passing through the vaporization port at adjacent or separated positions from passing each other and A vapor deposition mask is attached in contact with a mask holder having a scattering restriction portion provided with a restriction opening, and at least one of the mask holder or the vapor deposition mask is attached. By providing a temperature control mechanism that maintains the temperature of the deposition mask, this mask holder not only serves as a scattering limiter, but also exhibits a temperature holding function that suppresses the incidence of radiation heat from the evaporation source and suppresses the deposition mask temperature rise. The temperature of the vapor deposition mask can be kept constant, thereby preventing distortion of the vapor deposition mask due to heat, and the substrate and the vapor deposition mask can be moved relative to each other in a separated state, but highly accurate vapor deposition can be performed. An object of the present invention is to provide a vapor deposition apparatus and a vapor deposition method.
 特に有機ELデバイスの製造にあたり、基板の大型化に対応でき、有機発光層の蒸着も精度良く行え、マスク接触による基板,蒸着マスク,蒸着膜の損傷も防止でき、基板より小さな蒸着マスクにより高精度の蒸着が実現できる有機ELデバイス製造用の蒸着装置並びに蒸着方法を提供することを目的としている。 Especially in the manufacture of organic EL devices, it is possible to cope with the increase in size of the substrate, the organic light emitting layer can be deposited with high accuracy, and the damage of the substrate, the deposition mask, and the deposited film due to the mask contact can be prevented. It is an object of the present invention to provide a vapor deposition apparatus and a vapor deposition method for manufacturing an organic EL device that can realize vapor deposition.
 添付図面を参照して本発明の要旨を説明する。 The gist of the present invention will be described with reference to the accompanying drawings.
 蒸発源1から蒸発した成膜材料を、蒸着マスク2のマスク開口部3を介して基板4上に堆積して、この蒸着マスク2により定められた成膜パターンの蒸着膜が基板4上に形成されるように構成した蒸着装置において、前記蒸発源1とこの蒸発源1に対向状態に配設する前記基板4との間に、前記蒸発源1から蒸発した前記成膜材料の蒸発粒子の飛散方向を制限する制限用開口部5を設けた飛散制限部を有するマスクホルダー6を配設し、このマスクホルダー6に前記基板4と離間状態に配設する前記蒸着マスク2を接合させて付設し、このマスクホルダー6若しくは蒸着マスク2の少なくとも一方に蒸着マスク2の温度を保持する温度制御機構9を備え、前記基板4を、前記蒸着マスク2を付設した前記マスクホルダー6及び前記蒸発源1に対して、前記蒸着マスク2との離間状態を保持したまま相対移動自在に構成して、この相対移動により前記蒸着マスク2より広い範囲にこの蒸着マスク2により定められる成膜パターンの蒸着膜が基板4上に形成されるように構成したことを特徴とする蒸着装置に係るものである。 A film forming material evaporated from the evaporation source 1 is deposited on the substrate 4 through the mask opening 3 of the vapor deposition mask 2, and a vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 is formed on the substrate 4. In the vapor deposition apparatus configured as described above, scattering of the evaporated particles of the film forming material evaporated from the evaporation source 1 is between the evaporation source 1 and the substrate 4 disposed in a state of being opposed to the evaporation source 1. A mask holder 6 having a scattering restriction portion provided with a restriction opening portion 5 for restricting the direction is provided, and the substrate 4 and the vapor deposition mask 2 provided in a separated state are joined to the mask holder 6 and attached. At least one of the mask holder 6 and the vapor deposition mask 2 is provided with a temperature control mechanism 9 for maintaining the temperature of the vapor deposition mask 2, and the substrate 4 is attached to the mask holder 6 provided with the vapor deposition mask 2 and the evaporation source 1. On the other hand, it is configured to be relatively movable while maintaining a separated state from the vapor deposition mask 2, and by this relative movement, a vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 is formed in a wider area than the vapor deposition mask 2. 4 is a vapor deposition apparatus characterized in that the vapor deposition apparatus is formed on the upper surface.
 また、減圧雰囲気とする蒸着室7内に、前記成膜材料を収めた前記蒸発源1と、この蒸発源1の蒸発口部8から蒸発した前記成膜材料の蒸発粒子が通過する前記マスク開口部3を設けた前記蒸着マスク2とを配設し、前記蒸発口部8を複数並設し、前記蒸着マスク2と離間状態に位置合わせする基板4に、前記複数の蒸発口部8から飛散する蒸発粒子が前記マスク開口部3を通過して堆積し蒸着マスク2により定められる成膜パターンの蒸着膜が前記基板4に形成されるように構成し、この蒸発源1とこの蒸発源1と対向状態に配設する前記基板4との間に、隣り合う若しくは離れた位置の前記蒸発口部8からの蒸発粒子を通過させない前記制限用開口部5を設けた前記飛散制限部を有する前記マスクホルダー6を配設し、このマスクホルダー6に前記基板4と離間状態に配設する前記蒸着マスク2を接合させて付設し、このマスクホルダー6若しくは前記蒸着マスク2の少なくとも一方に蒸着マスク2の温度上昇を抑制し温度を一定に保持する前記温度制御機構9を設け、前記基板4を、前記蒸着マスク2を付設した前記マスクホルダー6及び前記蒸発源1に対してこの蒸着マスク2との離間状態を保持したまま相対移動させて、この相対移動方向に前記蒸着マスク2の前記成膜パターンの蒸着膜を連続させて前記基板4より小さい前記蒸着マスク2でも広範囲に蒸着膜が形成されるように構成したことを特徴とする請求項1記載の蒸着装置に係るものである。 Further, the evaporation source 1 containing the film forming material and the mask opening through which the evaporation particles of the film forming material evaporated from the evaporation port 8 of the evaporation source 1 pass in the vapor deposition chamber 7 in a reduced pressure atmosphere. The vapor deposition mask 2 provided with the portion 3 is disposed, a plurality of the evaporation port portions 8 are arranged in parallel, and the substrate 4 that is positioned in a separated state from the vapor deposition mask 2 is scattered from the plurality of evaporation port portions 8. The vaporized particles to be deposited pass through the mask opening 3 and a vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 is formed on the substrate 4. The vaporization source 1, the vaporization source 1, The mask having the scattering restricting portion provided with the restricting opening portion 5 that does not allow the evaporated particles from the evaporation port portion 8 adjacent to or away from the substrate 4 disposed in an opposing state to pass therethrough. A holder 6 is provided, and this mask holder -6 is attached to the substrate 4 in a state of being separated from the substrate 4, and at least one of the mask holder 6 and the deposition mask 2 is controlled to keep the temperature of the deposition mask 2 from rising. The holding temperature control mechanism 9 is provided, and the substrate 4 is moved relative to the mask holder 6 to which the vapor deposition mask 2 is attached and the evaporation source 1 while maintaining the separated state from the vapor deposition mask 2. The vapor deposition film of the film formation pattern of the vapor deposition mask 2 is made continuous in this relative movement direction so that the vapor deposition film is formed over a wide range even with the vapor deposition mask 2 smaller than the substrate 4. This relates to the vapor deposition apparatus according to Item 1.
 また、前記基板4の相対移動方向に対して直交する横方向に前記蒸発源1の前記蒸発口部8を複数並設すると共に、前記マスクホルダー6に設ける前記飛散制限部の前記制限用開口部5を前記横方向に沿って複数並設して、前記各蒸発口部8から蒸発する蒸発粒子が、対向する前記制限用開口部5のみを通過し更にこの制限用開口部5と対向する前記蒸着マスク2の前記マスク開口部3を介して前記基板4上に前記成膜パターンの蒸着膜が形成され、隣り合う若しくは離れた位置の前記蒸発口部8からの蒸発粒子は付着捕捉されるようにして前記制限用開口部5により前記蒸発粒子の飛散方向が制限されるように構成したことを特徴とする請求項2記載の蒸着装置に係るものである。 In addition, a plurality of the evaporation port portions 8 of the evaporation source 1 are arranged side by side in a lateral direction orthogonal to the relative movement direction of the substrate 4 and the restriction opening portion of the scattering restriction portion provided in the mask holder 6 5 are arranged side by side along the lateral direction, and the evaporated particles evaporating from the respective evaporation port portions 8 pass only through the opposed limiting opening 5 and further face the limiting opening 5. A vapor deposition film of the film formation pattern is formed on the substrate 4 through the mask opening 3 of the vapor deposition mask 2 so that the vaporized particles from the vaporization port 8 at adjacent or separated positions are attached and captured. 3. The vapor deposition apparatus according to claim 2, wherein the restricting opening portion 5 is configured to restrict a scattering direction of the evaporated particles.
 また、前記マスクホルダー6の前記基板4側の端部に、前記蒸着マスク2を付設したことを特徴とする請求項1記載の蒸着装置に係るものである。 The vapor deposition apparatus according to claim 1, wherein the vapor deposition mask 2 is attached to an end of the mask holder 6 on the substrate 4 side.
 また、前記マスクホルダー6の前記基板4側の端部に、前記蒸着マスク2に張力を付与して張設したことを特徴とする請求項4記載の蒸着装置に係るものである。 The vapor deposition apparatus according to claim 4, wherein a tension is applied to the vapor deposition mask 2 at an end of the mask holder 6 on the substrate 4 side.
 また、前記マスクホルダー6は、前記基板4の相対移動方向に張力を付与して前記蒸着マスク2を張設したことを特徴とする請求項5記載の蒸着装置に係るものである。 6. The vapor deposition apparatus according to claim 5, wherein the mask holder 6 stretches the vapor deposition mask 2 by applying a tension in a relative movement direction of the substrate 4.
 また、前記蒸着マスク2は、前記基板4の相対移動方向と直交する横方向に複数枚に分割した構成とし、この分割した蒸着マスク2を前記マスクホルダー6に前記横方向に並設状態に付設したことを特徴とする請求項1記載の蒸着装置に係るものである。 The vapor deposition mask 2 is divided into a plurality of pieces in the lateral direction orthogonal to the relative movement direction of the substrate 4, and the divided vapor deposition mask 2 is attached to the mask holder 6 in the lateral direction. It concerns on the vapor deposition apparatus of Claim 1 characterized by the above-mentioned.
 また、前記蒸発源1の前記蒸発口部8を前記基板4の相対移動方向と直交する横方向に複数並設し、この一若しくは複数の蒸発口部8毎に夫々対向状態に前記制限用開口部5を設けた前記飛散制限部を有する前記マスクホルダー6の各制限用開口部5を覆うように、前記蒸着マスク2をマスクホルダー6の前記基板4側の端部に付設したことを特徴とする請求項1記載の蒸着装置に係るものである。 In addition, a plurality of the evaporation ports 8 of the evaporation source 1 are juxtaposed in a lateral direction orthogonal to the relative movement direction of the substrate 4, and the restricting openings are respectively opposed to the one or a plurality of evaporation ports 8. The deposition mask 2 is attached to an end of the mask holder 6 on the substrate 4 side so as to cover each restriction opening 5 of the mask holder 6 having the scattering restriction portion provided with the portion 5. The vapor deposition apparatus according to claim 1.
 また、前記マスクホルダー6の前記制限用開口部5間に、前記基板4の相対移動方向に延在するリブ部24を設け、このリブ部24の前記基板4側先端面に、前記各制限用開口部5に設ける前記蒸着マスク2を支承し接合するマスク取付支承面23を設けたことを特徴とする請求項1記載の蒸着装置に係るものである。 Further, a rib portion 24 extending in the relative movement direction of the substrate 4 is provided between the restricting openings 5 of the mask holder 6, and each restricting portion is provided on the front end surface of the rib portion 24 on the substrate 4 side. 2. The vapor deposition apparatus according to claim 1, further comprising a mask mounting support surface for supporting and bonding the vapor deposition mask provided in the opening.
 また、前記マスクホルダー6は、前記基板4の相対移動方向に延在して、前記蒸着マスク2をマスクホルダー6に張設する際に蒸着マスク2に付与される張力によるマスクホルダー6の変形を防ぐため、張設する方向におけるマスクホルダー6の剛性を向上させるリブ部24を、前記制限用開口部5間に設けた構成としたことを特徴とする請求項1記載の蒸着装置に係るものである。 The mask holder 6 extends in the relative movement direction of the substrate 4 and deforms the mask holder 6 due to tension applied to the vapor deposition mask 2 when the vapor deposition mask 2 is stretched on the mask holder 6. In order to prevent this, the rib portion 24 for improving the rigidity of the mask holder 6 in the extending direction is provided between the restricting openings 5. is there.
 また、前記温度制御機構9は、前記マスクホルダー6の前記制限用開口部5の周囲若しくはこの制限用開口部5間に、熱交換して温度制御される媒体を流通させる媒体路12若しくはヒートパイプ22を設けた構成としたことを特徴とする請求項1記載の蒸着装置に係るものである。 The temperature control mechanism 9 includes a medium path 12 or a heat pipe for circulating a temperature-controlled medium around the restriction opening 5 of the mask holder 6 or between the restriction openings 5. The vapor deposition apparatus according to claim 1, wherein 22 is provided.
 また、前記温度制御機構9は、前記制限用開口部5の周囲若しくはこの制限用開口部5間に、媒体を流通させる前記媒体路12若しくは前記ヒートパイプ22を前記マスクホルダー6内に設けて構成し、前記基板4と前記蒸発源1との対向方向に複数段設けた構成としたことを特徴とする請求項11記載の蒸着装置に係るものである。 Further, the temperature control mechanism 9 is configured by providing the medium path 12 or the heat pipe 22 through which the medium flows in the mask holder 6 around the restriction opening 5 or between the restriction openings 5. The vapor deposition apparatus according to claim 11, wherein a plurality of stages are provided in a facing direction between the substrate 4 and the evaporation source 1.
 また、前記温度制御機構9は、前記マスクホルダー6内に、前記蒸発源1側被温度制御部9Aと前記基板4側被温度制御部9Bとを備え、各被温度制御部9A,9Bに夫々独立に媒体を流通させる前記媒体路12若しくは夫々独立した前記ヒートパイプ22を内装した構成としたことを特徴とする請求項12記載の蒸着装置に係るものである。 Further, the temperature control mechanism 9 includes the evaporation source 1 side temperature controlled part 9A and the substrate 4 side temperature controlled part 9B in the mask holder 6, and each of the temperature controlled parts 9A and 9B is provided. 13. The vapor deposition apparatus according to claim 12, wherein the medium path 12 through which the medium is circulated independently or the heat pipes 22 that are independent of each other is internally provided.
 また、前記温度制御機構9は、前記媒体路12内部若しくは前記ヒートパイプ22内部で生じる温度勾配が、前記対向方向に設けた各々の段同士で異なる向きに生じさせるように、前記媒体路12若しくは前記ヒートパイプ22を配置して構成したことを特徴とする請求項11記載の蒸着装置に係るものである。 Further, the temperature control mechanism 9 is configured to cause the temperature gradient generated in the medium path 12 or the heat pipe 22 to be generated in different directions in the respective stages provided in the facing direction. 12. The vapor deposition apparatus according to claim 11, wherein the heat pipe 22 is arranged.
 また、前記温度制御機構9は、前記媒体路12若しくは前記ヒートパイプ22を、前記リブ部24内に配設して構成したことを特徴とする請求項9記載の蒸着装置に係るものである。 Furthermore, the temperature control mechanism 9 relates to the vapor deposition apparatus according to claim 9, wherein the medium path 12 or the heat pipe 22 is arranged in the rib portion 24.
 また、前記温度制御機構9は、前記リブ部24内に配設した前記媒体路12内部若しくは前記ヒートパイプ22内部で生じる温度勾配が、隣接する前記リブ部24間で互いに異なる向きに生じさせるように、前記媒体路12若しくは前記ヒートパイプ22を配置して構成したことを特徴とする請求項15記載の蒸着装置に係るものである。 Further, the temperature control mechanism 9 causes the temperature gradient generated in the medium path 12 or the heat pipe 22 disposed in the rib portion 24 to be generated in different directions between the adjacent rib portions 24. The vapor deposition apparatus according to claim 15, wherein the medium path 12 or the heat pipe 22 is arranged.
 また、前記マスクホルダー6は、前記制限用開口部5の形状を、前記基板4側の開口面積より前記蒸発源1側の開口面積が小さい形状に形成したことを特徴とする請求項1記載の蒸着装置に係るものである。 2. The mask holder 6 according to claim 1, wherein the restriction opening 5 is formed such that the opening area on the evaporation source 1 side is smaller than the opening area on the substrate 4 side. This relates to a vapor deposition apparatus.
 また、前記マスクホルダー6の前記制限用開口部5間に、前記独立した前記蒸発源1側被温度制御部9Aと前記基板4側被温度制御部9Bを設けて、前記蒸発源1側被温度制御部9Aの前記媒体路12の媒体流量若しくは媒体との接触面積、又は前記ヒートパイプ22の数、若しくはヒートパイプ22の断面積を、前記基板4側被温度制御部9Bより増大させこの蒸発源1側被温度制御部9Aの温度制御能力を高めたことを特徴とする請求項13記載の蒸着装置に係るものである。 Further, the independent evaporation source 1 side temperature control unit 9A and the substrate 4 side temperature control unit 9B are provided between the limiting openings 5 of the mask holder 6 so as to provide the evaporation source 1 side temperature control. The evaporation source by increasing the flow rate of the medium in the medium path 12 or the contact area with the medium, or the number of the heat pipes 22 or the cross-sectional area of the heat pipes 22 of the control unit 9A from the substrate 4 side temperature controlled unit 9B. 14. The vapor deposition apparatus according to claim 13, wherein the temperature control capability of the 1-side temperature control unit 9A is enhanced.
 また、前記蒸着マスク2の前記基板4側の表面に、前記マスク開口部3の周囲若しくはこのマスク開口部3間に、熱交換して温度制御される媒体を流通させる媒体路12若しくは前記ヒートパイプ22を配設して、前記蒸着マスク2に前記温度制御機構9を設けたことを特徴とする請求項1記載の蒸着装置に係るものである。 Further, a medium path 12 or a heat pipe through which a medium whose temperature is controlled by heat exchange is distributed around the mask opening 3 or between the mask openings 3 on the surface of the vapor deposition mask 2 on the substrate 4 side. The vapor deposition apparatus according to claim 1, wherein the temperature control mechanism 9 is provided on the vapor deposition mask 2.
 また、前記蒸発源1の前記蒸発口部8は、前記基板4の相対移動方向に長くこれと直交する横方向に幅狭いスリット状としたことを特徴とする請求項1記載の蒸着装置に係るものである。 2. The vapor deposition apparatus according to claim 1, wherein the evaporation port portion 8 of the evaporation source 1 has a slit shape that is long in the relative movement direction of the substrate 4 and narrow in the lateral direction. Is.
 また、前記基板4と前記蒸着マスク2とが離間状態で蒸着しこの蒸着マスク2による成膜パターンの蒸着膜が基板4に形成される際、この蒸着膜の側端傾斜部分である陰影SHは、前記基板4と前記蒸着マスク2とのギャップをG,前記蒸発口部8の前記横方向の開口幅をφx,この蒸発口部8と前記蒸着マスク2との距離をTSとすると、下記の式で表され、この陰影SHが隣接する蒸着膜との間隔PPに達しないように、前記蒸着口部8の前記開口幅φxを小さく設定して前記ギャップGを大きく設定できるように構成したことを特徴とする請求項20記載の蒸着装置に係るものである。
Figure JPOXMLDOC01-appb-M000002
Further, when the substrate 4 and the vapor deposition mask 2 are vapor-deposited in a separated state and a vapor deposition film having a film formation pattern by the vapor deposition mask 2 is formed on the substrate 4, the shadow SH which is a side edge inclined portion of the vapor deposition film is When the gap between the substrate 4 and the vapor deposition mask 2 is G, the lateral opening width of the evaporation port 8 is φx, and the distance between the evaporation port 8 and the vapor deposition mask 2 is TS, It is expressed by the formula, and the configuration is such that the gap G can be set large by setting the opening width φx of the vapor deposition port portion 8 small so that the shadow SH does not reach the interval PP between adjacent vapor deposition films. The vapor deposition apparatus according to claim 20, wherein
Figure JPOXMLDOC01-appb-M000002
 また、前記基板4の相対移動方向と直交する横方向に複数並設する前記蒸発口部8のすべて若しくはその一部は、一つの前記蒸発源1に設けた構成とし、前記成膜材料を加熱する蒸発粒子発生部26と、この蒸発粒子発生部26から発生した前記蒸発粒子が拡散し圧力を均一化する横長拡散部27とで前記蒸発源1を構成し、この横長拡散部27に前記蒸発口部8を前記横方向に複数並設形成したことを特徴とする請求項1記載の蒸着装置に係るものである。 Further, all or a part of the plurality of evaporation ports 8 arranged in parallel in the lateral direction orthogonal to the relative movement direction of the substrate 4 is provided in one evaporation source 1, and the film forming material is heated. The evaporation source 1 is composed of the evaporation particle generating section 26 that performs and the horizontally long diffusion section 27 that diffuses the evaporation particles generated from the evaporation particle generating section 26 and equalizes the pressure. 2. The vapor deposition apparatus according to claim 1, wherein a plurality of the mouth portions 8 are formed side by side in the lateral direction.
 また、前記蒸発源1の前記蒸発口部8を前記基板4の相対移動方向と直交する横方向に複数並設し、各蒸発口部8を前記蒸発源1の前記基板4側に向けて突出する蒸発口部形成用突出部28の先端部に設け、この蒸発口部形成用突出部28の周囲若しくはこの蒸発口部形成用突出部28間に、前記蒸発源1の熱を遮断する熱遮断部19を配設したことを特徴とする請求項1記載の蒸着装置に係るものである。 In addition, a plurality of the evaporation port portions 8 of the evaporation source 1 are arranged in a lateral direction orthogonal to the relative movement direction of the substrate 4, and each evaporation port portion 8 protrudes toward the substrate 4 side of the evaporation source 1. Provided at the tip of the evaporation port portion forming projection 28 to be cut off, and the heat shield for blocking the heat of the evaporation source 1 around the evaporation port portion formation protrusion 28 or between the evaporation port portion formation protrusions 28 The vapor deposition apparatus according to claim 1, wherein a portion 19 is provided.
 また、前記蒸着マスク2の前記マスク開口部3は、前記基板4の前記相対移動方向と直交する横方向に複数並設した構成とし、この各マスク開口部3は、前記相対移動方向に長いスリット状に形成若しくは開口部を前記相対移動方向に複数並設し、この相対移動方向のトータル開口長を前記制限用開口部5の中央部に比して前記横方向に離れる程長くなるように設定したことを特徴とする請求項1記載の蒸着装置に係るものである。 A plurality of the mask openings 3 of the vapor deposition mask 2 are arranged side by side in a lateral direction orthogonal to the relative movement direction of the substrate 4, and each mask opening 3 is a slit long in the relative movement direction. A plurality of openings are formed in the relative movement direction, and the total opening length in the relative movement direction is set to be longer as the distance from the central portion of the restriction opening 5 is longer in the lateral direction. It concerns on the vapor deposition apparatus of Claim 1 characterized by the above-mentioned.
 また、前記基板4に蒸着される成膜パターンを決する前記蒸着マスク2のマスク開口部3の前記基板4の相対移動方向と直交する横方向における形成ピッチを、前記蒸着膜の成膜パターンのピッチよりも前記基板4と前記蒸着マスク2とのギャップGと、前記基板4と前記蒸発源1との距離のうち、少なくともいずれか一つの大小に応じた相違分だけ狭く設定し、前記蒸着マスク2のマスク開口部3の前記基板4の相対移動方向と直交する横方向における開口寸法を、前記蒸着膜の成膜パターンのパターン幅よりも、前記ギャップG、前記距離、前記蒸発源1の前記蒸発口部8の前記横方向における開口幅φxのうち、少なくともいずれか一つの大小に応じた相違分だけ広く設定したことを特徴とする請求項1記載の蒸着装置に係るものである。 Further, the formation pitch in the lateral direction perpendicular to the relative movement direction of the substrate 4 of the mask opening 3 of the vapor deposition mask 2 that determines the film formation pattern to be vapor deposited on the substrate 4 is the pitch of the film deposition pattern of the vapor deposition film. The gap G between the substrate 4 and the evaporation mask 2 and the distance between the substrate 4 and the evaporation source 1 are set narrower by a difference corresponding to at least one of the sizes, and the evaporation mask 2 The opening size in the lateral direction perpendicular to the relative movement direction of the substrate 4 of the mask opening 3 is set to the gap G, the distance, and the evaporation of the evaporation source 1 rather than the pattern width of the deposition pattern of the vapor deposition film. 2. The vapor deposition apparatus according to claim 1, wherein the opening width φx in the lateral direction of the mouth portion 8 is set wide by a difference corresponding to at least one of the sizes. That.
 また、前記マスクホルダー6は、蒸着装置に対して着脱可能なように前記温度制御機構9と連結部25を介して接続されることを特徴とする請求項1記載の蒸着装置に係るものである。 The vapor deposition apparatus according to claim 1, wherein the mask holder (6) is connected to the temperature control mechanism (9) via a connecting portion (25) so as to be detachable from the vapor deposition apparatus. .
 また、前記マスクホルダー6若しくはマスクホルダー6に付設した前記蒸着マスク2の少なくとも一方に付着した成膜材料を洗浄する洗浄機構を備えたことを特徴とする請求項1記載の蒸着装置に係るものである。 2. The vapor deposition apparatus according to claim 1, further comprising a cleaning mechanism for cleaning the film forming material attached to at least one of the mask holder 6 or the vapor deposition mask 2 attached to the mask holder 6. is there.
 また、前記マスクホルダー6若しくはマスクホルダー6に付設した前記蒸着マスク2の少なくとも一方に付着した成膜材料を回収する材料回収機構17を備えたことを特徴とする請求項1記載の蒸着装置に係るものである。 2. The vapor deposition apparatus according to claim 1, further comprising a material recovery mechanism 17 that recovers a film forming material attached to at least one of the mask holder 6 or the vapor deposition mask 2 attached to the mask holder 6. Is.
 また、前記基板4と前記蒸着マスク2との間に、第二の蒸着マスク10を配設したことを特徴とする請求項1記載の蒸着装置に係るものである。 The vapor deposition apparatus according to claim 1, wherein a second vapor deposition mask 10 is disposed between the substrate 4 and the vapor deposition mask 2.
 また、前記第二の蒸着マスク10の第二のマスク開口部11は、この第二の蒸着マスク10より前記蒸発源1側に位置する前記蒸着マスク2の前記マスク開口部3に比して、少なくとも前記基板4の前記相対移動方向と直交する横方向の開口パターンは同一パターンに設けると共に、開口部形成ピッチは前記基板4との距離の相違に対応して異なる形成ピッチとし、開口部幅は同一か幅狭くなるように設けたことを特徴とする請求項29記載の蒸着装置に係るものである。 Further, the second mask opening 11 of the second vapor deposition mask 10 is larger than the mask opening 3 of the vapor deposition mask 2 located on the evaporation source 1 side from the second vapor deposition mask 10. At least the lateral opening pattern orthogonal to the relative movement direction of the substrate 4 is provided in the same pattern, and the opening formation pitch is different according to the difference in distance from the substrate 4, and the opening width is 30. The vapor deposition apparatus according to claim 29, wherein the vapor deposition apparatus is provided so as to be the same or narrower.
 また、前記第二の蒸着マスク10は、これより前記蒸発源1側に位置する前記蒸着マスク2よりも線膨張係数が大である材料で形成したことを特徴とする請求項29記載の蒸着装置に係るものである。 30. The vapor deposition apparatus according to claim 29, wherein the second vapor deposition mask 10 is formed of a material having a larger linear expansion coefficient than that of the vapor deposition mask 2 positioned on the evaporation source 1 side. It is related to.
 また、前記成膜材料を、有機材料としたことを特徴とする請求項1記載の蒸着装置に係るものである。 The deposition apparatus according to claim 1, wherein the film forming material is an organic material.
 また、前記請求項1~32のいずれか1項に記載の蒸着装置を用いて、前記基板4上に前記蒸着マスク2により定められた成膜パターンの蒸着膜を形成することを特徴とする蒸着方法に係るものである。 In addition, the vapor deposition apparatus according to any one of claims 1 to 32 is used to form a vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 on the substrate 4. It concerns the method.
 本発明は上述のように構成したから、基板の大型化に伴って蒸着マスクを同等に大型化せず基板より小形の蒸着マスクでも、基板を離間状態で相対移動させることで広範囲に蒸着マスクによる成膜パターンの蒸着膜を蒸着でき、また、離間状態のまま相対移動させることで構造も簡易で効率良くスピーディーに蒸着でき、しかも蒸着マスクが離間状態のままでも制限用開口部を蒸発源と蒸着マスクとの間に設けることで、蒸発粒子の飛散方向を制限して隣り合う若しくは離れた位置の蒸発口部からの蒸着粒子を通過させず成膜パターンの重なりを防止すると共に、この制限用開口部を設けた飛散制限部を有するマスクホルダーに蒸着マスクを接触させて付設した構成とし、このマスクホルダー若しくは蒸着マスクの少なくとも一方に蒸着マスクの温度を保持する温度制御機構を設けることで、このマスクホルダーは飛散制限部としてだけでなく蒸発源からの輻射熱の入射を抑制し蒸着マスクの温度上昇を抑制する温度保持機能を発揮して、蒸着マスクの温度を一定に保持させることができ、これにより蒸着マスクの熱による歪みを防止して、基板と蒸着マスクとを離間状態で相対移動させる構成でありながら、高精度の蒸着が行える蒸着装置並びに蒸着方法となる。 Since the present invention is configured as described above, even if the deposition mask is not enlarged as the substrate is enlarged, the deposition mask can be widely used by relatively moving the substrate in a separated state even if the deposition mask is smaller than the substrate. Vapor deposition film with a deposition pattern can be deposited, and the structure can be simply and efficiently vapor-deposited by relative movement in the separated state, and the limiting opening can be deposited with the evaporation source even when the vapor deposition mask is in the separated state. By providing between the mask and the mask, it is possible to limit the scattering direction of the evaporated particles and prevent the vapor deposition particles from passing through the evaporation port at the adjacent or remote positions so as not to overlap. The vapor deposition mask is attached to a mask holder having a scattering restriction portion provided with a portion, and the vapor deposition mask is attached to at least one of the mask holder or the vapor deposition mask. By providing a temperature control mechanism that holds the temperature of the mask, this mask holder not only serves as a scattering restriction part, but also exhibits a temperature holding function that suppresses the incidence of radiant heat from the evaporation source and suppresses the temperature rise of the vapor deposition mask. The temperature of the vapor deposition mask can be kept constant, thereby preventing distortion of the vapor deposition mask due to heat, and the substrate and the vapor deposition mask can be moved relative to each other in a separated state, but highly accurate vapor deposition can be performed. It becomes a vapor deposition apparatus and a vapor deposition method.
 特に有機ELデバイスの製造にあたり、基板の大型化に対応でき、有機発光層の蒸着も精度良く行え、マスク接触による基板,蒸着マスク,蒸着膜の損傷も防止でき、基板より小さな蒸着マスクにより高精度の蒸着が実現できる有機ELデバイス製造用の蒸着装置並びに蒸着方法となる。 Especially in the manufacture of organic EL devices, it is possible to cope with the increase in size of the substrate, the organic light emitting layer can be deposited with high accuracy, and the damage of the substrate, the deposition mask, and the deposited film due to the mask contact can be prevented. It becomes the vapor deposition apparatus and vapor deposition method for organic EL device manufacture which can implement | achieve vapor deposition of this.
 また、請求項2,3記載の発明においては、一層本発明の作用・効果が良好に発揮され、一層実用性に優れた蒸着装置となる。 Further, in the inventions according to claims 2 and 3, the operation and effect of the present invention can be exhibited more satisfactorily, and the vapor deposition apparatus is further excellent in practicality.
 また、請求項4,5記載の発明においては、蒸着マスクを蒸発源から最も離れた基板側の端部でマスクホルダーに付設するので、蒸発源からの輻射熱の入射を更に抑制でき、また、蒸着マスクに付与した張力は、マスクホルダーの温度保持機能によって安定的に維持されるのである。 Further, in the inventions according to claims 4 and 5, since the vapor deposition mask is attached to the mask holder at the end on the substrate side farthest from the evaporation source, it is possible to further suppress the incidence of radiant heat from the evaporation source, The tension applied to the mask is stably maintained by the temperature holding function of the mask holder.
 また、請求項6記載の発明においては、蒸着マスクに対して基板の相対移動方向に張力を付与するので、蒸着マスクが撓むことがなくなり、撓みによって生じていた成膜誤差がなくなる。 In the invention described in claim 6, since tension is applied in the relative movement direction of the substrate with respect to the vapor deposition mask, the vapor deposition mask does not bend, and the film formation error caused by the deflection is eliminated.
 また、請求項7記載の発明においては、複数枚に分割した小さな蒸着マスクでも大型の基板に成膜できるので、蒸着マスクの作製が容易となる。 Further, in the invention according to claim 7, since a small evaporation mask divided into a plurality of sheets can be formed on a large substrate, the evaporation mask can be easily manufactured.
 また、請求項8記載の発明においては、各蒸発口部毎の膜厚分布特性に基づいてこの各蒸着領域毎で均一化を図るように、マスク開口部を個別に設定した蒸着マスクを並設したり、これら蒸着マスクを個別に取り替えたりできるように構成可能となるなど一層実用性に優れる。 Further, in the invention according to claim 8, vapor deposition masks in which mask openings are individually set are arranged side by side so as to achieve uniformity in each vapor deposition region based on the film thickness distribution characteristics for each vaporization port. Or the vapor deposition mask can be individually replaced.
 また、請求項9,10記載の発明においては、基板の相対移動方向に延在させて設けたリブ部によって、蒸着マスクの張力によるマスクホルダーの変形が防止できると共に、蒸着マスクの張力が維持でき、かつ、マスク取付支承面を設けたことで、蒸着マスクのマスクホルダーへの支承・接合が強固に行える。 According to the ninth and tenth aspects of the present invention, the rib portion provided extending in the relative movement direction of the substrate can prevent the mask holder from being deformed by the tension of the deposition mask and can maintain the tension of the deposition mask. In addition, by providing a mask mounting support surface, it is possible to firmly support and join the vapor deposition mask to the mask holder.
 また、請求項11記載の発明においては、蒸着マスク若しくはこの蒸着マスクの熱を伝導する部位となるマスクホルダーに温度制御機構を容易に設けることができ、蒸着マスクを一定の温度に保持してこの蒸着マスクの熱膨張を抑制し、高精度の成膜パターンに蒸着できることが容易に実現できる。 In the invention described in claim 11, a temperature control mechanism can be easily provided in the vapor deposition mask or a mask holder which is a part for conducting heat of the vapor deposition mask, and the vapor deposition mask is maintained at a constant temperature. It can be easily realized that the thermal expansion of the vapor deposition mask can be suppressed and vapor deposition can be performed in a highly accurate film formation pattern.
 また、請求項12~19記載の発明においては、蒸着マスクを一定の温度に保持する温度保持機能が一層高まることになり、また例えば蒸発粒子が多量に付着する蒸発源側のマスクホルダーの温度保持機能を高めることができる。 In the inventions according to claims 12 to 19, the temperature holding function for holding the vapor deposition mask at a constant temperature is further enhanced, and for example, the temperature holding of the evaporation source side mask holder to which a large amount of evaporation particles adhere is maintained. Function can be enhanced.
 即ち、例えばマスクホルダーに複数段設けた被温度制御部のうち、蒸発源側の被温度制御部で蒸発源由来の熱を吸収し、基板側(蒸着マスク側)の被温度制御部で更に熱を吸収して蒸着マスクの温度を一定に保つことができ、一層前記温度保持機能が高まることとなる。 That is, for example, among the temperature control units provided in a plurality of stages on the mask holder, the temperature source control unit on the evaporation source side absorbs heat from the evaporation source, and the substrate side (vapor deposition mask side) temperature control unit further heats it. The temperature of the vapor deposition mask can be kept constant by absorbing water, and the temperature holding function is further enhanced.
 また更に請求項14記載の発明においては、例えば、下段側では、蒸発源からマスク側に向かう方向に温度勾配を生じさせ、上段側では、蒸着マスクから蒸発源側に向かう方向に温度勾配を生じさせた場合では、蒸発源からの高温の輻射熱がマスクホルダー下段に入射しても該下段部の温度上昇を一層抑制でき、上段側では、蒸着マスクから蒸発源側に向かう方向に温度勾配を生じさせて、蒸発源からの高温の輻射熱が蒸着マスクに入射しても該蒸着マスクの温度上昇を一層抑制できる。 Furthermore, in the invention described in claim 14, for example, a temperature gradient is generated in the direction from the evaporation source to the mask side on the lower stage side, and a temperature gradient is generated in the direction from the vapor deposition mask to the evaporation source side on the upper stage side. In this case, even if high-temperature radiant heat from the evaporation source is incident on the lower stage of the mask holder, the temperature rise of the lower stage can be further suppressed, and on the upper stage, a temperature gradient is generated in the direction from the vapor deposition mask toward the evaporation source. Thus, even if high-temperature radiant heat from the evaporation source enters the deposition mask, the temperature rise of the deposition mask can be further suppressed.
 また、請求項15記載の発明においては、蒸発源からの高温の輻射熱がリブ部に入射しても該リブ部の温度上昇を抑制し、マスクホルダー端部に付設した蒸着マスクの熱膨張を抑制できる。 In the invention described in claim 15, even if high-temperature radiant heat from the evaporation source is incident on the rib portion, the temperature rise of the rib portion is suppressed, and the thermal expansion of the vapor deposition mask attached to the end of the mask holder is suppressed. it can.
 また、請求項16記載の発明においては、蒸発源からの高温の輻射熱がリブ部やマスクホルダーに入射しても、マスクホルダー内での温度分布が均一化するので、マスクホルダーの温度上昇を一層抑制し、マスクホルダー端部に付設した蒸着マスクの熱膨張を一層抑制できる。 Further, in the invention described in claim 16, even if high-temperature radiant heat from the evaporation source is incident on the rib portion or the mask holder, the temperature distribution in the mask holder becomes uniform, so that the temperature of the mask holder is further increased. The thermal expansion of the vapor deposition mask attached to the end of the mask holder can be further suppressed.
 また請求項17記載の発明においては、マスクホルダーの制限用開口部の形状を、基板側の開口面積より蒸発源側の開口面積が小さい形状としたので、蒸発源から蒸発した成膜材料の蒸発粒子を制限用開口部の蒸発源側でより多く捕捉することができることとなって、制限用開口部の基板側、即ち、蒸発マスクに付着する成膜材料を低減でき、蒸着マスクの交換サイクルを長時間化できると共に、マスクホルダーを交換した後の付着した成膜材料の回収がし易くなる。 In the invention according to claim 17, since the shape of the limiting opening of the mask holder is made smaller than the opening area on the substrate side, the evaporation area of the film forming material evaporated from the evaporation source is reduced. More particles can be captured on the evaporation source side of the restriction opening, so that the film forming material adhering to the substrate side of the restriction opening, that is, the evaporation mask can be reduced, and the vapor deposition mask replacement cycle can be reduced. In addition to being able to extend the time, it becomes easy to collect the deposited film forming material after the mask holder is replaced.
 また、請求項19記載の発明においては、蒸着マスク自体を温度制御するため効率が良く、また例えば更に前記マスクホルダーにも温度制御機構を設けることで更に温度保持機能が向上し、また、基板と蒸着マスクとの離間部分(ギャップ)を利用して温度制御機構の一部を構成する媒体路やヒートパイプを設けることができるので、媒体路やヒートパイプのレイアウトの自由度を確保することができる。 Further, in the invention of claim 19, the temperature of the vapor deposition mask itself is controlled efficiently, and for example, the temperature holding function is further improved by providing a temperature control mechanism for the mask holder. Since a medium path and a heat pipe that constitute a part of the temperature control mechanism can be provided by using a portion (gap) separated from the vapor deposition mask, the flexibility of the layout of the medium path and the heat pipe can be ensured. .
 また、請求項20記載の発明においては、蒸発源の蒸発口部の開口幅を狭めることで、基板と蒸着マスクとのギャップにより生じる(このギャップの大きさ、蒸発源との距離によっても変化する)前記成膜パターンの陰影(蒸着膜の側端傾斜部分のはみ出し量)を一層抑制することができ、また蒸発口部の開口長を相対移動方向に長くすることで蒸発レートを高くすることができる。 Further, in the invention described in claim 20, the opening width of the evaporation port portion of the evaporation source is narrowed to cause a gap between the substrate and the vapor deposition mask (the size of the gap also varies depending on the distance from the evaporation source). ) It is possible to further suppress the shadow of the film formation pattern (the amount of protrusion of the inclined portion on the side edge of the vapor deposition film), and increase the evaporation rate by increasing the opening length of the evaporation port in the relative movement direction. it can.
 特に請求項21記載の発明においては、蒸発口部の開口幅を狭めることで、例えばRGBを順次成膜するような場合に、隣接する蒸着膜(隣接画素)に達する程の陰影が生じることを防止でき、またこのように蒸発口部の開口幅を狭めることで基板と蒸着マスクとのギャップを大きくとれることとなり、前述した制限用開口間のマスク取付支承面を広くとれたり、蒸着マスク自体に温度制御機構を設けたりすることができるなど一層優れた蒸着装置となる。 In particular, in the invention described in claim 21, by narrowing the opening width of the evaporation port portion, for example, in the case of sequentially depositing RGB, it is possible to cause a shadow to reach adjacent vapor deposition films (adjacent pixels). In addition, by narrowing the opening width of the evaporation port portion in this way, the gap between the substrate and the evaporation mask can be increased, and the mask mounting support surface between the aforementioned limiting openings can be widened, or the evaporation mask itself An even better vapor deposition apparatus can be provided, such as a temperature control mechanism.
 また請求項22記載の発明においては、一つの蒸発源として複数の蒸発口部を並設する構成としたため、一つの蒸発源で蒸発粒子の発生量や噴出圧力などの調整や制御を行うことができ、特に蒸発源に横長拡散部を設け、これに複数の蒸発口部を並設することで圧力の均一化が図れ、並設された複数の蒸発口部間での圧力の均一化が図れることとなる。 In the invention described in claim 22, since a plurality of evaporation ports are arranged side by side as one evaporation source, it is possible to adjust and control the generation amount of the evaporation particles, the ejection pressure, etc. with one evaporation source. In particular, by providing a horizontally long diffusion part in the evaporation source and arranging a plurality of evaporation port parts in parallel therewith, the pressure can be made uniform, and the pressure can be made uniform between the plurality of evaporation port parts arranged in parallel. It will be.
 また、請求項23記載の発明においては、蒸発源に蒸発口部形成用突出部を例えば前記横長拡散部に(基板側に向けて)突設し、この各突出部の先端部に前記蒸発口部を設けた構成とすることで、蒸発口部以外の加熱範囲即ち蒸発源の高熱範囲からの輻射熱を、例えば冷却部材などの熱遮断部(蒸発源に設ける温度制御部として機能すること)によって遮断できるため、一層蒸着マスクの温度上昇を抑制して蒸着マスクの温度を一定に保持できることとなる。 Further, in the invention described in claim 23, an evaporation port portion forming projection is provided in the evaporation source, for example, projecting from the horizontally long diffusion portion (toward the substrate side), and the evaporation port is formed at the tip of each projection. By providing the structure, the radiant heat from the heating range other than the evaporation port part, that is, the high heat range of the evaporation source, can be caused by, for example, a heat blocking part such as a cooling member (functioning as a temperature control part provided in the evaporation source) Since it can interrupt | block, the temperature rise of a vapor deposition mask can be suppressed and the temperature of a vapor deposition mask can be kept constant.
 また、請求項24記載の発明においては、基板の相対移動によって蒸着マスクのマスク開口部の横方向の配列によって決する成膜パターンの蒸着膜を形成するが、この蒸着マスクのマスク開口部は、基板の相対移動方向には長いトータル開口長を、制限用開口部の中央部(例えば蒸発口部と対向する位置)から横方向に離れる程長く設定したから、横方向に離れる程蒸発レートが低くなるが、これに対応して開口長が長くなることで膜厚を均一にできる。 Further, in the invention described in claim 24, the vapor deposition film having a film formation pattern determined by the horizontal arrangement of the mask openings of the vapor deposition mask is formed by relative movement of the substrate. In the relative movement direction, the long total opening length is set so as to increase in the lateral direction from the central portion of the limiting opening (for example, the position facing the evaporation port), so that the evaporation rate decreases as the distance in the lateral direction increases. However, the film thickness can be made uniform by correspondingly increasing the opening length.
 また、請求項25記載の発明においては、基板上に蒸着される成膜パターンの成膜ピッチより、マスク開口部の前記横方向における形成ピッチを、基板と蒸着マスクとのギャップと、基板と蒸発源との距離のうち、少なくともいずれか一つの大小に応じた相違分だけ狭く設置し、成膜パターンのパターン幅よりも、マスク開口部の前記横方向における開口寸法を、前記ギャップ、前記距離、前記蒸発源の前記蒸発口部の前記横方向における開口幅のうち、少なくともいずれか一つの大小に応じた相違分だけ広く設定したことから、基板と蒸着マスクとが離間し、これらの間にギャップが存在しても、成膜パターンの位置がずれたり、成膜パターンの幅がずれたりすることがなくなり、成膜パターンの形成精度を高精度にすることができる。 According to a twenty-fifth aspect of the present invention, the formation pitch in the lateral direction of the mask openings is determined from the film formation pitch of the film formation pattern deposited on the substrate, the gap between the substrate and the evaporation mask, and the substrate and evaporation. Installed narrower by a difference corresponding to at least one of the distances to the source, and the opening dimension in the lateral direction of the mask opening than the pattern width of the film formation pattern is the gap, the distance, Since the opening width in the lateral direction of the evaporation port portion of the evaporation source is set wide by a difference corresponding to at least one of the sizes, the substrate and the vapor deposition mask are separated from each other, and a gap is formed between them. Even if there is, the position of the film formation pattern is not shifted and the width of the film formation pattern is not shifted, and the formation accuracy of the film formation pattern can be increased.
 また、請求項26記載の発明においては、連結部を介して蒸着装置と接続したことで、例えば、マスクホルダーの交換時に温度制御機構との分離や再接続が容易に行える。 Further, in the invention described in claim 26, since it is connected to the vapor deposition apparatus via the connecting portion, for example, separation and reconnection with the temperature control mechanism can be easily performed when the mask holder is replaced.
 また、請求項27記載の発明においては、洗浄装置を備えたことにより、マスクホルダー若しくは蒸着マスクに付着した成膜材料を、蒸着装置内で洗浄でき、マスクホルダーや蒸着マスクを再利用することが容易にできる。 Further, in the invention described in claim 27, by providing the cleaning device, the film forming material adhering to the mask holder or the vapor deposition mask can be cleaned in the vapor deposition device, and the mask holder and the vapor deposition mask can be reused. Easy to do.
 また、請求項28記載の発明においては、材料回収機構を備えたことにより、材料を回収して再利用ができ、例えば更に請求項17記載の発明のようにマスクホルダーの形状を蒸発源側を大きくして(制限用開口部内面に付着しにくくなるように蒸発源側端部を広くして)、例えば更に請求項18記載の発明のように蒸発源側の温度制御部の被温度保持機能を高めることで、このマスクホルダーの蒸発源側端部に材料が付着し回収が一層簡易となる。 Further, in the invention described in claim 28, since the material recovery mechanism is provided, the material can be recovered and reused. For example, as in the invention described in claim 17, the shape of the mask holder is changed to the evaporation source side. For example, the temperature control function of the temperature control unit on the evaporation source side is further increased, for example, as in the invention of claim 18, by increasing the size (increasing the evaporation source side end so as not to adhere to the inner surface of the restriction opening). As a result, the material adheres to the evaporation source side end of the mask holder, and the recovery becomes easier.
 また、請求項29記載の発明においては、第二の蒸着マスクを設けることで前記蒸発源からの輻射熱の入射を抑制した上で第二の蒸着マスクの開口パターンで成膜できるので、第二の蒸着マスクの温度上昇を抑制しつつ一層高精度の蒸着が行える。 Further, in the invention of claim 29, since the second vapor deposition mask is provided, it is possible to form a film with the opening pattern of the second vapor deposition mask after suppressing the incidence of radiant heat from the evaporation source. More highly accurate vapor deposition can be performed while suppressing the temperature rise of the vapor deposition mask.
 また、請求項30記載の発明においては、一層確実に陰影を防止でき高精度の蒸着が行える第二の蒸着マスクを実現できる蒸着装置となる。 Further, in the invention of claim 30, it is a vapor deposition apparatus capable of realizing a second vapor deposition mask that can more reliably prevent shadows and perform high-precision vapor deposition.
 また、請求項31記載の発明においては、蒸着マスクとこれに接触する制限用開口部を設けた飛散制限部を有するマスクホルダーと、これに設けた温度制御機構によって蒸着マスクの温度上昇を抑えて温度を一定に保持することができるので、この蒸着マスクと基板との間に設ける第二の蒸着マスクは、更に温度上昇しにくくなることから線膨張係数が大きい材料で形成できるため、例えば電鋳で形成できることになり一層高精細なマスク開口部を形成でき、これにより一層高精度の蒸着を行える蒸着装置となる。 Further, in the invention described in claim 31, a temperature increase of the vapor deposition mask is suppressed by a mask holder having a vapor deposition mask, a scattering restriction portion provided with a restriction opening contacting the vapor deposition mask, and a temperature control mechanism provided in the mask holder. Since the temperature can be kept constant, the second vapor deposition mask provided between the vapor deposition mask and the substrate can be formed of a material having a large linear expansion coefficient because it is more difficult to raise the temperature. As a result, it is possible to form a higher-definition mask opening, thereby providing a vapor deposition apparatus capable of performing vapor deposition with higher accuracy.
 また、請求項32記載の発明においては、有機材料の蒸着装置となり一層実用性に優れる。また、請求項33記載の発明においては、前記作用・効果を発揮する優れた蒸着方法となる。 Also, in the invention of claim 32, it becomes an organic material vapor deposition apparatus and is more practical. Moreover, in the invention of Claim 33, it becomes the outstanding vapor deposition method which exhibits the said effect | action and effect.
本実施例の要部を断面した概略説明正面図である。It is the rough explanatory front view which cut the principal part of a present Example. 本実施例の要部を断面した説明正面図である。It is the explanation front view which cut the principal part of a present Example. 本実施例の要部を断面した説明側面図である。It is the explanation side view which cut the important section of this example. 本実施例の要部の説明斜視図である。It is a description perspective view of the principal part of a present Example. 本実施例の説明分解斜視図である。It is a description exploded perspective view of a present Example. 本実施例の温度制御機構を示す図4のA-A線断面図である。FIG. 5 is a cross-sectional view taken along line AA of FIG. 4 showing the temperature control mechanism of the present embodiment. 本実施例の温度制御機構を示す図4のB-B線断面図である。FIG. 5 is a cross-sectional view taken along line BB of FIG. 4 showing the temperature control mechanism of the present embodiment. 本実施例の温度制御機構を示す図4のC-C線断面図である。FIG. 5 is a sectional view taken along the line CC of FIG. 4 showing the temperature control mechanism of the present embodiment. 本実施例の温度制御機構を示す図4のD-D線断面図である。FIG. 6 is a sectional view taken along the line DD of FIG. 4 showing the temperature control mechanism of the present embodiment. 本実施例の蒸着マスクにも設けた温度制御機構を示す説明平面図である。It is explanatory drawing which shows the temperature control mechanism provided also in the vapor deposition mask of the present Example. 本実施例の蒸着マスクにも設けた温度制御機構を示す説明正断面図である。It is explanatory front sectional drawing which shows the temperature control mechanism provided also in the vapor deposition mask of the present Example. 本実施例の蒸着マスクに設ける温度制御機構の別例を示す説明正面図である。It is explanatory front view which shows another example of the temperature control mechanism provided in the vapor deposition mask of a present Example. 本実施例の要部の拡大説明正面図である。It is an expansion explanatory front view of the principal part of a present Example. 本実施例の蒸発源の説明斜視図である。It is a description perspective view of the evaporation source of a present Example. 本実施例の蒸着マスクの拡大説明平面図である。It is an expansion explanatory top view of the vapor deposition mask of a present Example. 本実施例の蒸着マスクの別例を示す拡大説明平面図である。It is an expansion explanatory top view which shows another example of the vapor deposition mask of a present Example. 本実施例の蒸発源の蒸発口部の開口幅を狭めることで蒸着膜の陰影を抑制でき、またこれによりギャップを大きくとることができることを示す説明図である。It is explanatory drawing which can suppress the shadow of a vapor deposition film by narrowing the opening width | variety of the evaporation port part of the evaporation source of a present Example, and can take a gap large by this. 本実施例の蒸着マスクのマスク開口部の横方向の配列ピッチが成膜ピッチよりも少し狭くすることを示す説明図である。It is explanatory drawing which shows that the arrangement pitch of the horizontal direction of the mask opening part of the vapor deposition mask of a present Example is made a little narrower than a film-forming pitch. 本実施例の蒸着マスクのマスク開口部の横方向の開口寸法が成膜パターンのパターン幅よりも少し広くすることを示す説明図である。It is explanatory drawing which shows that the opening dimension of the horizontal direction of the mask opening part of the vapor deposition mask of a present Example is made a little wider than the pattern width of a film-forming pattern. 本実施例の蒸着レートが中央部から横方向にずれる程低くなることを示す説明図である。It is explanatory drawing which shows that the vapor deposition rate of a present Example becomes so low that it deviates from a center part to a horizontal direction. 本実施例の膜厚分布が余弦則に基づく分布となりこれに応じてマスク開口部の形成長を中央部から横方向に離れる程長く補正設定することを示すグラフである。It is a graph which shows that the film thickness distribution of a present Example becomes distribution based on a cosine law, and the correction | amendment setting of the formation length of a mask opening part is lengthened so that it leaves | separates from a center part to a horizontal direction according to this. 本実施例のマスクホルダーの制限用開口部間のリブ部のマスク取付支承面を広くとることができることを示す説明図である。It is explanatory drawing which shows that the mask attachment support surface of the rib part between the opening parts for a restriction | limiting of the mask holder of a present Example can be taken widely. 第二実施例(第二の蒸着マスクを設けた実施例)の要部を断面した概略説明正面図である。It is the rough explanatory front view which cut the principal part of the 2nd example (example which provided the 2nd vapor deposition mask).
 好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。 Embodiments of the present invention that are considered suitable will be briefly described with reference to the drawings, illustrating the operation of the present invention.
 図1において、蒸発源1から蒸発した成膜材料は、飛散制限部として構成したマスクホルダー6の制限用開口部5を通過すると共に、蒸着マスク2のマスク開口部3を介して基板4上に堆積して、この蒸着マスク2により定められた成膜パターンの蒸着膜が基板4上に形成される。 In FIG. 1, the film-forming material evaporated from the evaporation source 1 passes through the restriction opening 5 of the mask holder 6 configured as a scattering restriction part, and onto the substrate 4 through the mask opening 3 of the vapor deposition mask 2. After deposition, a vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 is formed on the substrate 4.
 この際、前記基板4と前記蒸着マスク2とを離間状態に配設し、この基板4を、前記蒸着マスク2や前記蒸発源1に対してこの離間状態を保持したまま相対移動自在に構成して、この基板4を相対移動させることにより、蒸着マスク2自体よりも広い範囲にこの蒸着マスク2により定められる成膜パターンの蒸着膜が基板4上に形成される。 At this time, the substrate 4 and the vapor deposition mask 2 are arranged in a separated state, and the substrate 4 is configured to be movable relative to the vapor deposition mask 2 and the evaporation source 1 while maintaining the separated state. Thus, by relatively moving the substrate 4, a deposition film having a deposition pattern defined by the deposition mask 2 is formed on the substrate 4 in a wider range than the deposition mask 2 itself.
 また、この蒸着マスク2と蒸発源1との間に、蒸発源1から蒸発した成膜材料の蒸発粒子の飛散方向を制限する前記制限用開口部5を設けた飛散制限部を有するマスクホルダー6を設けて、制限用開口部5により隣り合う若しくは離れた位置の蒸発口部8からの蒸発粒子を通過させず蒸着マスク2と基板4とが離間状態にあっても成膜パターンの重なりを防止している。 Further, a mask holder 6 having a scattering restriction portion provided with the restriction opening 5 for restricting the scattering direction of the evaporated particles of the film forming material evaporated from the evaporation source 1 between the vapor deposition mask 2 and the evaporation source 1. To prevent the deposition patterns from overlapping even if the vapor deposition mask 2 and the substrate 4 are in a separated state without allowing the vaporized particles from the vaporization openings 8 adjacent or separated by the restriction opening 5 to pass therethrough. is doing.
 また更にこの飛散制限部を構成するマスクホルダー6に蒸着マスク2を接合させて付設した構成とし、このマスクホルダー6若しくは蒸着マスク2の少なくとも一方に蒸着マスク2の温度を保持する温度制御機構9を設けたから、前記蒸発源1からの熱の入射が抑えられマスクホルダー6や蒸着マスク2の温度上昇が抑制され、また、蒸着マスク2が基板4と離間状態であってもこのマスクホルダー6と接触していることで蒸着マスク2の熱はマスクホルダー6へ逃げ、しかもこのマスクホルダー6若しくは蒸着マスク2に温度制御機構9が設けられているから、蒸着マスク2を一定の温度に保持する温度保持機能が向上する。 Furthermore, the vapor deposition mask 2 is joined and attached to the mask holder 6 that constitutes the scattering limiting portion, and a temperature control mechanism 9 that holds the temperature of the vapor deposition mask 2 on at least one of the mask holder 6 or the vapor deposition mask 2 is provided. Since it is provided, the incidence of heat from the evaporation source 1 is suppressed, the temperature rise of the mask holder 6 and the vapor deposition mask 2 is suppressed, and the vapor deposition mask 2 is in contact with the mask holder 6 even when it is separated from the substrate 4. As a result, the heat of the vapor deposition mask 2 escapes to the mask holder 6, and the temperature control mechanism 9 is provided on the mask holder 6 or the vapor deposition mask 2, so that the vapor deposition mask 2 is kept at a constant temperature. Function is improved.
 従って、この飛散制限部を有するマスクホルダー6は、蒸発粒子の飛散方向の制限機能と同時に温度保持機能をも果たし、蒸着マスク2の温度上昇を抑制でき蒸着マスク2を一定の温度に保持し、熱による蒸着マスク2の歪みも生じにくいこととなる。 Therefore, the mask holder 6 having the scattering restriction portion also functions as a temperature holding function at the same time as the function of restricting the scattering direction of the evaporated particles, can suppress the temperature rise of the vapor deposition mask 2, and keep the vapor deposition mask 2 at a constant temperature. This also prevents distortion of the vapor deposition mask 2 due to heat.
 従って、基板4を、蒸着マスク2,この蒸着マスク2を付設したマスクホルダー6及び蒸発源1に対してこの蒸着マスク2との離間状態を保持したまま相対移動させることで、この相対移動方向に蒸着マスク2による前記成膜パターンの蒸着膜を連続させて基板4より小さい蒸着マスク2でも広範囲に蒸着膜が形成され、且つ隣り合う若しくは離れた位置の蒸発口部8からの入射による成膜パターンの重なりも、熱による歪みなども十分に抑制され高精度の蒸着が行える蒸着装置となる。 Accordingly, the substrate 4 is moved relative to the vapor deposition mask 2, the mask holder 6 provided with the vapor deposition mask 2 and the evaporation source 1 while keeping the separated state from the vapor deposition mask 2 in this relative movement direction. The vapor deposition film of the above-mentioned film formation pattern by the vapor deposition mask 2 is continued to form a vapor deposition film in a wide range even with the vapor deposition mask 2 smaller than the substrate 4, and the film formation pattern by incidence from the evaporation port 8 at the adjacent or remote position. Overlapping and distortion due to heat are sufficiently suppressed, and a vapor deposition apparatus capable of performing highly accurate vapor deposition is obtained.
 本発明の具体的な実施例について図面に基づいて説明する。 Specific embodiments of the present invention will be described with reference to the drawings.
 本実施例は、蒸発源1から蒸発した成膜材料(例えば、有機ELデバイス製造のための有機材料)を、蒸着マスク2のマスク開口部3を介して基板4上に堆積して、この蒸着マスク2により定められた成膜パターンの蒸着膜が基板4上に形成されるように構成した蒸着装置において、基板4と蒸着マスク2とを離間状態に配設し、この基板4を、蒸着マスク2,制限用開口部5を設けた飛散制限部として構成したマスクホルダー6及び蒸発源1に対して、蒸着マスク2との離間状態を保持したまま相対移動自在に構成して、この相対移動により蒸着マスク2より広い範囲にこの蒸着マスク2により定められる成膜パターンの蒸着膜が基板4上に形成されるように構成している。 In this embodiment, a film forming material (for example, an organic material for manufacturing an organic EL device) evaporated from the evaporation source 1 is deposited on the substrate 4 through the mask opening 3 of the vapor deposition mask 2, and this vapor deposition is performed. In a vapor deposition apparatus configured such that a vapor deposition film having a film formation pattern defined by a mask 2 is formed on a substrate 4, the substrate 4 and the vapor deposition mask 2 are disposed in a separated state, and the substrate 4 is disposed on the vapor deposition mask. 2. The mask holder 6 and the evaporation source 1 configured as the scattering restriction portion provided with the restriction opening 5 are configured to be relatively movable while maintaining the separated state from the vapor deposition mask 2, and by this relative movement, A vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 is formed on the substrate 4 in a wider range than the vapor deposition mask 2.
 また、この蒸着マスク2と蒸発源1との間に、複数並設した蒸発源1の蒸発口部8から蒸発した成膜材料の蒸発粒子の飛散方向を制限する制限用開口部5を設けた飛散制限部を構成したマスクホルダー6を設け、飛散角度の大きい前記蒸発粒子を制限することで隣り合う若しくは離れた位置の蒸発口部8からの蒸発粒子を通過させないようにしている。 Further, a restriction opening 5 is provided between the vapor deposition mask 2 and the evaporation source 1 to limit the scattering direction of the evaporated particles of the film forming material evaporated from the evaporation ports 8 of the evaporation sources 1 arranged in parallel. A mask holder 6 that constitutes a scattering restriction portion is provided, and the evaporation particles having a large scattering angle are restricted so that the evaporation particles from the evaporation port portions 8 at adjacent or remote positions are not allowed to pass.
 即ち、複数の蒸発口部8からの蒸発粒子によって蒸着する構成として蒸発レートを確保しつつ大面積の基板4に蒸着できるようにすると共に、制限用開口部5により隣り合う若しくは離れた位置の蒸発口部8からの入射を防止して蒸着マスク2と基板4とが離間状態にあっても成膜パターンの重なりも防止されるように構成している。 That is, the vapor deposition is performed by the vaporized particles from the plurality of vaporization openings 8 so that the vaporization can be performed on the large-area substrate 4 while securing the vaporization rate, and the vaporization of the adjacent or separated positions by the restriction openings 5 is performed. Even if the vapor deposition mask 2 and the substrate 4 are separated from each other, the overlapping of the film formation patterns is prevented.
 また更にこの飛散制限部を構成するマスターホルダー6に蒸着マスク2を接合させて付設した構成とし、このマスクホルダー6若しくは蒸着マスク2の少なくとも一方に蒸着マスク2の温度を保持するように制御する温度制御部9を設け、蒸着マスク2が基板4と離間状態であってもこのマスクホルダー6と接合していることで熱がマスクホルダー6へ伝導するように構成し、このマスクホルダー6は蒸発粒子の飛散方向の制限機能と同時に温度保持機能をも果たすようにして、蒸着マスク2の温度上昇を抑制し、蒸着マスク2の温度が一定に保持するように構成している。 Further, the vapor deposition mask 2 is joined and attached to the master holder 6 that constitutes the scattering limiting portion, and the temperature is controlled so that the temperature of the vapor deposition mask 2 is held in at least one of the mask holder 6 or the vapor deposition mask 2. A control unit 9 is provided so that heat can be conducted to the mask holder 6 by being bonded to the mask holder 6 even when the vapor deposition mask 2 is separated from the substrate 4. The temperature holding function is also performed at the same time as the scattering direction limiting function, so that the temperature rise of the vapor deposition mask 2 is suppressed and the temperature of the vapor deposition mask 2 is kept constant.
 また、このように蒸着マスク2はマスクホルダー6に接合させた構成として熱を逃がすから、蒸着マスク2が基板4と重合接触していなく離間状態のまま蒸着する構成であっても、この蒸着マスク2の温度上昇は十分に抑制され、また前記マスターホルダー6や蒸着マスク2に直接設ける温度制御機構9による温度保持機能が一層高まり、蒸着マスク2を一定の温度に保持するように温度制御できるため、蒸着マスク2には、熱による歪みが生じにくく、成膜パターンの精度が保持されこの位置精度の高い蒸着が行える。 Further, since the vapor deposition mask 2 releases heat as a structure bonded to the mask holder 6 in this way, even if the vapor deposition mask 2 is vapor-deposited in a separated state without being in contact with the substrate 4, the vapor deposition mask 2 is used. 2 is sufficiently suppressed, and the temperature holding function by the temperature control mechanism 9 provided directly on the master holder 6 or the vapor deposition mask 2 is further enhanced, so that the vapor deposition mask 2 can be controlled at a constant temperature. The vapor deposition mask 2 is less likely to be distorted by heat, and the deposition pattern accuracy is maintained, so that deposition with high positional accuracy can be performed.
 従って、基板4を、蒸着マスク2を付設したマスクホルダー6(マスクユニット)及び蒸発源1に対してこの蒸着マスク2との離間状態を保持したまま相対移動させて、この相対移動方向に蒸着マスク2の前記成膜パターンの蒸着膜を連続させてこの基板4より小さい蒸着マスク2でも広範囲に蒸着膜が形成され、且つこの成膜パターンの位置精度が高い高精度の蒸着が行える優れた蒸着装置となる。 Accordingly, the substrate 4 is moved relative to the mask holder 6 (mask unit) provided with the vapor deposition mask 2 and the evaporation source 1 while maintaining the separated state from the vapor deposition mask 2, and the vapor deposition mask is moved in the relative movement direction. 2. An excellent vapor deposition apparatus capable of forming a vapor deposition film in a wide range even with the vapor deposition mask 2 smaller than the substrate 4 by continuing the vapor deposition film of the film formation pattern 2 and performing high-precision vapor deposition with high positional accuracy of the film formation pattern. It becomes.
 更に説明すると、具体的には、減圧雰囲気とする蒸着室7内(例えば真空チャンバー7内)に、前記成膜材料(例えば有機ELデバイスの製造にあたっての有機材料)を収めた前記蒸発源1と、この蒸発源1の複数並設した蒸発口部8から蒸発する前記成膜材料の蒸発粒子が通過するマスク開口部3を設けた前記蒸着マスク2とを配設し、この蒸着マスク2と離間状態に位置合わせする基板4に、前記複数の蒸発口部8から飛散する蒸発粒子が前記マスク開口部3を通過して堆積し蒸着マスク2により定められる成膜パターンの蒸着膜がこの基板4上に形成されるように構成し、この基板4と蒸発源1との間に隣り合う若しくは離れた位置の蒸発口部8からの蒸発粒子を通過させないようにする制限用開口部5を設けた飛散制限部を構成するマスクホルダー6を配設し、このマスクホルダー6に基板4と離間状態に配設する前記蒸着マスク2を接合させて付設し、このマスクホルダー6に蒸発源1からの熱を吸収し、蒸着マスク2の温度を保持する前記温度抑制機構9を設けている。 More specifically, the evaporation source 1 in which the film forming material (for example, an organic material for manufacturing an organic EL device) is housed in a vapor deposition chamber 7 (for example, in the vacuum chamber 7) in a reduced pressure atmosphere. And the vapor deposition mask 2 provided with the mask opening 3 through which the vaporized particles of the film forming material evaporating from a plurality of the evaporation ports 8 arranged side by side of the evaporation source 1 pass. A vapor deposition film having a film formation pattern defined by the vapor deposition mask 2 is formed on the substrate 4 by depositing vapor particles scattered from the plurality of vaporization openings 8 through the mask opening 3 on the substrate 4 aligned with the state. Scattering provided with a restriction opening 5 between the substrate 4 and the evaporation source 1 so as to prevent evaporation particles from the evaporation port 8 located adjacent to or away from the evaporation source 1 from passing therethrough. Configure the restriction A mask holder 6 is disposed, and the vapor deposition mask 2 disposed in a separated state from the substrate 4 is attached to the mask holder 6, and heat from the evaporation source 1 is absorbed into the mask holder 6. The temperature suppression mechanism 9 that maintains the temperature of 2 is provided.
 言い換えると、本実施例では、このように基板4と蒸着マスク2とを離間状態で相対移動させて蒸着するため、基板4の相対移動方向と直交する横方向に複数の蒸発口部8を設け、この蒸発口部8のうち隣り合う若しくは離れた位置の蒸発口部8からの入射による成膜パターンの重なりを各制限用開口部5により制限して(付着捕捉して)防止し、また、基板4と蒸着マスク2とが離間状態で蒸着しこの蒸着マスク2による成膜パターンの蒸着膜が基板4に形成される際、この蒸着膜の両側端傾斜部分として陰影SHが生じるが、この陰影SHは、基板4と蒸着マスク2とのギャップG、蒸発口部8との距離TSなどの諸条件に応じて変化する。本実施例では各蒸発口部8を開口幅φxを幅狭くしてこの陰影SH(はみ出し量)を抑え、また蒸発口部8の開口長は相対移動方向には長くして蒸発レートを高めている。 In other words, in this embodiment, since the substrate 4 and the vapor deposition mask 2 are relatively moved in a separated state in this manner for vapor deposition, a plurality of evaporation port portions 8 are provided in the lateral direction perpendicular to the relative movement direction of the substrate 4. The overlapping of the film formation patterns due to incidence from the adjacent or distant evaporation port portions 8 of the evaporation port portions 8 is limited by each limiting opening 5 (attached and captured), and When the substrate 4 and the vapor deposition mask 2 are vapor-deposited in a separated state and a vapor deposition film having a film formation pattern by the vapor deposition mask 2 is formed on the substrate 4, a shadow SH is generated as an inclined portion on both sides of the vapor deposition film. SH varies according to various conditions such as a gap G between the substrate 4 and the vapor deposition mask 2 and a distance TS from the evaporation port 8. In this embodiment, each evaporation port 8 is narrowed by reducing the opening width φx to suppress this shadow SH (the amount of protrusion), and the evaporation port 8 is lengthened in the relative movement direction to increase the evaporation rate. Yes.
 具体的には、図17に示すように、蒸着膜の両側端部の傾斜部分である陰影SHは、基板4と蒸着マスク2とのギャップをG,蒸発口部8の前記横方向の開口幅をφx,この蒸発口部8と蒸着マスク2との距離をTSとすると、下記の式で表され、この陰影SHが隣接する蒸着膜との間隔PPに達しないように、蒸着口部8の開口幅φxを小さく設定してギャップGを大きく設定できるように構成している。 Specifically, as shown in FIG. 17, the shadow SH which is an inclined portion at both end portions of the vapor deposition film is G for the gap between the substrate 4 and the vapor deposition mask 2, and the lateral opening width of the evaporation port 8. Is φx, and the distance between the evaporation port 8 and the vapor deposition mask 2 is TS, it is expressed by the following formula, and the shading SH is set so as not to reach the interval PP between the adjacent vapor deposition films. The gap G can be set large by setting the opening width φx small.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 本実施例では、例えば有機EL表示装置の製造において、発光層であるRGBを順次蒸着するが、この場合RGB夫々において蒸着マスク2を用いて成膜する。例えば、画素Rを蒸着する場合は、画素GBは蒸着マスク2で隠されることになるが、本実施例のように基板4と蒸着マスク2とが離間している場合は、蒸着膜の両端傾斜部分の陰影SHが生じるが、この陰影SHが隣接画素には届かないように設定する必要(SH<PPとする)がある。 In this embodiment, for example, in the manufacture of an organic EL display device, RGB that are light emitting layers are sequentially deposited, but in this case, film formation is performed using the deposition mask 2 in each of RGB. For example, when the pixel R is vapor-deposited, the pixel GB is hidden by the vapor deposition mask 2, but when the substrate 4 and the vapor deposition mask 2 are separated as in the present embodiment, the both ends of the vapor deposition film are inclined. The shadow SH of the portion is generated, but it is necessary to set so that the shadow SH does not reach the adjacent pixels (SH <PP).
 この陰影SHは、基板4と蒸着マスク2とのギャップG、蒸発口部8と蒸着マスク2までの距離TS、蒸発口部8の開口幅φxの条件に応じて変化する。図17に示すように、陰影SHは前記の式で表され、隣接する蒸着膜との間隔PPに達しないように、蒸発口部8の開口幅φxを小さく設定してギャップGを大きく設定できるようにしている。 This shadow SH changes according to the conditions of the gap G between the substrate 4 and the vapor deposition mask 2, the distance TS between the evaporation port 8 and the vapor deposition mask 2, and the opening width φx of the evaporation port 8. As shown in FIG. 17, the shadow SH is expressed by the above equation, and the gap G can be set large by setting the opening width φx of the evaporation port portion 8 small so as not to reach the interval PP between the adjacent vapor deposition films. I am doing so.
 具体的には、陰影SH0.03mm以下に設定し、TSを100~300mmとし、φxを0.5~3mmで設定すると、ギャップGが1mm以上確保できる。 Specifically, when the shadow SH is set to 0.03 mm or less, TS is set to 100 to 300 mm, and φx is set to 0.5 to 3 mm, the gap G can be secured to 1 mm or more.
 例えば、TSを100mmでφxを3mmとすると、Gは1mmとなり、また、TSを100mmでφxを0.6mmまで小さくすると、Gを5mm確保することができる。また、TSを300mmとし、φxを3mm、Gを1mmとすると、SHを0.01mmまで小さくすることができ、より高精細な成膜パターンに対応できるようにしてもよい。 For example, if TS is 100 mm and φx is 3 mm, G is 1 mm, and if TS is 100 mm and φx is reduced to 0.6 mm, G can be 5 mm. Further, when TS is 300 mm, φx is 3 mm, and G is 1 mm, SH can be reduced to 0.01 mm, and a higher-definition film forming pattern may be supported.
 このように、基板4と蒸着マスク2とのギャップGが1mm以上有することを利用して、後述するように蒸着マスク2自体に媒体路12やヒートパイプ22を設けることが可能になり、後述するようにマスクフレーム6のリブ部24にマスク取付支承面23を広く形成できたり、後述する第二の蒸着マスク10を配設することも可能になる。 Thus, by using the gap G of 1 mm or more between the substrate 4 and the vapor deposition mask 2, it becomes possible to provide the medium path 12 and the heat pipe 22 in the vapor deposition mask 2 itself as will be described later. As described above, the mask mounting support surface 23 can be widely formed on the rib portion 24 of the mask frame 6, and the second vapor deposition mask 10 described later can be provided.
 また本実施例では、蒸発源1と基板4との距離を大きくすると装置の大型化を招くし、材料効率も悪いし、また蒸着レートも低くなるから、前述のように横方向に多数の蒸発口部8を並設し、夫々に蒸着マスク2を対向させ一つの蒸発口部8での蒸着範囲を狭くして、入射角が大きくならないようにすると共に、複数の蒸発口部8による蒸着であっても制限用開口部5で成膜パターンの重なりも防止し、蒸発源1との距離もそれ程大きくしなくてよい構成としている。 Further, in this embodiment, if the distance between the evaporation source 1 and the substrate 4 is increased, the size of the apparatus is increased, the material efficiency is deteriorated, and the vapor deposition rate is lowered. The openings 8 are arranged side by side, the evaporation masks 2 are opposed to each other, the evaporation range in one evaporation opening 8 is narrowed, the incident angle is not increased, and the evaporation by the plurality of evaporation openings 8 is performed. Even if it exists, it is set as the structure which prevents the overlap of the film-forming pattern by the opening part 5 for a restriction | limiting, and does not need to make the distance with the evaporation source 1 so much.
 また、このように入射角が大きくならないことにより、蒸発口部8と対向する位置から左右に離れる程蒸着レートが低くなることによる膜厚の減少を防止している。また、入射角が大きいと、基板4と蒸着マスク2とのギャップGの変動に対して成膜パターンの変化による蒸着位置の変化量が大きくなってしまう、即ち基板4の平面度や蒸着マスク2の平面度の誤差が熱の歪みなどによって生じると、このギャップGが変動し、これによる誤差が大きくなるため、入射角が大きくならないようにすることでこの蒸着位置の誤差による変化量を抑えて精度の高い蒸着が行えるようにしている。 In addition, since the incident angle does not increase in this way, the film thickness is prevented from decreasing due to the lower deposition rate as the distance from the position facing the evaporation port portion 8 increases. In addition, when the incident angle is large, the amount of change in the deposition position due to the change in the film formation pattern increases with respect to the change in the gap G between the substrate 4 and the deposition mask 2, that is, the flatness of the substrate 4 and the deposition mask 2. If the flatness error is caused by thermal distortion, the gap G fluctuates and the error increases. Therefore, the amount of change due to this deposition position error can be suppressed by preventing the incident angle from increasing. High-precision deposition is possible.
 また本実施例では、更に前述のように陰影SHについては、各蒸発口部8を幅狭なスリット状開口部として横方向の開口幅φxを小さくし、隣接する蒸着膜(隣接画素)に達する程の陰影SHが生じないようにしている。 Further, in the present embodiment, as described above, with respect to the shadow SH, each evaporation port 8 is made into a narrow slit-shaped opening to reduce the lateral opening width φx and reach the adjacent vapor deposition film (adjacent pixel). A moderate amount of shading SH is prevented.
 また本実施例では、前述のように幅狭な蒸発口部8を横方向に並設し、これに対向して夫々に対応するマスク開口部3を設けた蒸着マスク2を配設し、この蒸着マスク2と蒸発源1との間に前記制限用開口部5を設けて、これに対向する蒸発口部8からの蒸発粒子だけを通過して隣り合う若しくは離れた位置の蒸発口部8からの蒸発粒子を通過させずに付着捕捉し、成膜パターンの重なりを防止しているが、本実施例では、このように各蒸発口部8に対して、夫々一若しくは複数の蒸発口部8毎に制限用開口部5を対応させ、この制限用開口部5毎に対応するように蒸着マスク2を付設している。 In the present embodiment, as described above, the narrow evaporation ports 8 are arranged in parallel in the horizontal direction, and the vapor deposition mask 2 provided with the corresponding mask openings 3 is disposed opposite to the evaporation ports 8. The restriction opening 5 is provided between the vapor deposition mask 2 and the evaporation source 1, and only the evaporation particles from the evaporation opening 8 facing the evaporation mask 8 pass through the evaporation opening 8 adjacent to or away from the evaporation opening 8. In the present embodiment, one or a plurality of evaporation port portions 8 are provided for each evaporation port portion 8 in this way. Each of the limiting openings 5 is associated with each other, and the vapor deposition mask 2 is attached so as to correspond to each of the limiting openings 5.
 更に具体的に説明すると、本実施例では、真空チャンバー7内に蒸発源1、蒸着マスク2を付設したマスクホルダー6(マスクユニット)そして基板4を配設し、減圧用ポンプ13によりこのチャンバー7内を減圧し、アライメント機構14により基板4とマスクホルダー6に付設した蒸着マスク2との位置合わせをし、基板4をこの蒸着マスク2に対して相対移動(水平搬送)することで蒸着する構成としている。 More specifically, in this embodiment, a mask holder 6 (mask unit) provided with an evaporation source 1 and a vapor deposition mask 2 and a substrate 4 are disposed in a vacuum chamber 7, and the chamber 7 is driven by a vacuum pump 13. The inside is decompressed, the alignment mechanism 14 aligns the substrate 4 and the vapor deposition mask 2 attached to the mask holder 6, and the substrate 4 is vapor-deposited by moving relative to the vapor deposition mask 2 (horizontal conveyance). It is said.
 この基板4と蒸着マスク2とを位置合わせするアライメント機構14は、例えば基板4と蒸着マスク2とに夫々設けたアライメントマークをカメラで捉えて画像判断し、これが合致するように移動調整機構でX,Y,θ方向に微調整して位置合わせするように構成し、また大型であっても基板4の歪みを生じないようにその中央部を平坦面で吸着する基板吸着部を移動させて大型の基板4を水平搬送する相対移動用の搬送機構15を備えた構成としている。勿論、どちらかを移動させてもよいし、上下関係も逆でも縦形配置としてもよい。 The alignment mechanism 14 that aligns the substrate 4 and the vapor deposition mask 2 captures, for example, the alignment marks provided on the substrate 4 and the vapor deposition mask 2 with a camera, makes an image determination, and moves the alignment mark X with the movement adjustment mechanism so that they match. , Y, θ directions are finely adjusted and aligned, and even if the substrate is large in size, the substrate adsorption portion that adsorbs the central portion on a flat surface is moved so that the substrate 4 is not distorted. The substrate 4 is provided with a relative movement mechanism 15 for horizontally conveying the substrate 4. Of course, either one may be moved, or the vertical relationship may be reversed or the vertical relationship may be reversed.
 従って、本実施例では、大型基板4でも容易に搬送可能なインライン方式としたもので、横方向では基板4と略合致するが移動方向には幅狭い小型の蒸着マスク2に対して、大型の基板4を離間状態でアライメントした後、この離間状態のまま基板4を搬送機構15により水平搬送させて蒸着する構成としている。 Therefore, in this embodiment, an in-line system that can be easily transported even by the large substrate 4 is used, and a large deposition mask 2 that is substantially coincident with the substrate 4 in the lateral direction but narrow in the moving direction is large. After the substrate 4 is aligned in the separated state, the substrate 4 is horizontally transported by the transport mechanism 15 in this separated state and deposited.
 従って、基板サイズがG6,G8と大型となっても蒸着マスク2は大判としなくてもよいため、それだけ製作が困難とならず、また基板4と接触しないため、パーティクルの問題や基板4、蒸着マスク2あるいは蒸着膜の損傷の問題も生じにくく高品質な成膜を得ることができる。 Therefore, even if the substrate size is large, such as G6 and G8, the deposition mask 2 does not have to be large, so that the production is not difficult, and the substrate 4 does not come into contact. The problem of damage to the mask 2 or the deposited film hardly occurs, and a high-quality film can be obtained.
 また本実施例では、複数の蒸発源1を並設して各蒸発口部8を並設してもよいが、一つの横長な蒸発源1に複数の蒸発口部8を並設した構成とし、この横方向に多数並設する蒸発口部8は、一つの前記蒸発源1に設けた構成とし、前記成膜材料を加熱する蒸発粒子発生部26と、この蒸発粒子発生部26から発生した前記蒸発粒子が拡散させて圧力を均一化する横長拡散部27とで前記蒸発源1を構成し、この横長拡散部27に前記蒸発口部8を前記横方向に複数並設形成している。更に説明すると、例えば自動るつぼ交換機構18により交換自在な蒸発粒子発生部26(るつぼ26)に成膜材料を収納し、このるつぼ26で加熱されて蒸発した蒸発粒子を一旦停留させて圧力を均一化する横長形の前記横長拡張部27を設け、この横長拡張部27の上部に相対移動方向に長くこれと直交する横方向に前述のように幅狭いスリット状開口部を多数横方向に沿って並設して前記蒸発口部8を多数並設している。 In this embodiment, a plurality of evaporation sources 1 may be arranged side by side and the respective evaporation port portions 8 may be arranged in parallel. However, a configuration in which a plurality of evaporation port portions 8 are arranged in parallel on one horizontally long evaporation source 1 is adopted. A plurality of evaporation ports 8 arranged in the lateral direction are provided in one evaporation source 1, and are generated from the evaporation particle generation unit 26 that heats the film forming material and from the evaporation particle generation unit 26. The evaporation source 1 is constituted by a horizontally long diffusion portion 27 that diffuses the vaporized particles and makes the pressure uniform, and a plurality of the evaporation port portions 8 are formed side by side in the horizontally long diffusion portion 27. More specifically, for example, a film forming material is stored in an evaporative particle generation unit 26 (crucible 26) that can be exchanged by an automatic crucible exchanging mechanism 18, and the vaporized particles heated and evaporated in the crucible 26 are temporarily stopped to make the pressure uniform. The laterally elongated laterally extending portion 27 is provided, and a large number of slit-like openings narrow in the lateral direction as described above in the lateral direction that is long in the relative movement direction at the top of the laterally elongated portion 27 along the lateral direction. A large number of the evaporation ports 8 are arranged in parallel.
 そしてこの蒸発口部8を複数並設した横方向に、前記制限用開口部5も複数並設して、前記各蒸発口部8から蒸発する蒸発粒子が、対向する前記制限用開口部5のみを通過し更にこの制限用開口部5と対向する前記蒸着マスク2の前記マスク開口部3を介して前記基板4上に前記成膜パターンの蒸着膜が形成されるようにし、隣り合う若しくは離れた前記蒸発口部8からの蒸発粒子はこの飛散制限部として構成したマスクホルダー6に付着捕捉されるようにして前記制限用開口部5により前記蒸発粒子の飛散方向が制限されるように構成している。 A plurality of the restriction openings 5 are also arranged in the lateral direction in which a plurality of the evaporation ports 8 are arranged side by side, and the evaporation particles evaporating from the respective evaporation ports 8 are limited to the opposed restriction openings 5 only. The vapor deposition film of the film formation pattern is formed on the substrate 4 through the mask opening 3 of the vapor deposition mask 2 that passes through the limiting aperture 5 and faces the restriction opening 5, and is adjacent to or separated from the substrate 4 The evaporation particles from the evaporation port 8 are configured to be restricted by the restriction opening 5 so that the evaporation direction of the evaporation particles is restricted by being attached to and captured by the mask holder 6 configured as the scattering restriction. Yes.
 従って、蒸発源1に横長拡散部27を設け、これに複数の蒸着口部8を並設することで圧力の均一化が図れ一層膜厚の均一化が図れることとなる。 Therefore, by providing the horizontally long diffusion portion 27 in the evaporation source 1 and arranging the plurality of vapor deposition ports 8 in parallel therewith, the pressure can be made uniform and the film thickness can be made more uniform.
 更に説明すると、一つの制限用開口部5に対してその中央位置(の下方)に配されるように一つの蒸発口部8を対向配設させてもよいし、一つの制限用開口部5に対してこの制限用開口部5の中央を境に二つの蒸発口部8を対向配設させる構成としてもよいが、本実施例では、前述のように横並びの蒸発口部8の一つ一つに対して制限用開口部5を一つ一つ対応させるように並設した構成とし、隣り合う左右いずれの蒸発口部8からの蒸発粒子も夫々それらに対応する制限用開口部5は通過するが、隣りの制限用開口部5は通過できず付着捕捉されるようにしている。即ちこの制限用開口部5の並設間隔、開口径、開口深さを設定して、一つの蒸発口部8からの蒸発粒子はその対向する制限用開口部5だけを通過し、左右に隣り合う蒸発口部8からの蒸発粒子はこの制限用開口部5を通過しないように構成し、成膜パターンの重なりを確実に防止している。 More specifically, one evaporating port 8 may be disposed opposite to one restricting opening 5 so as to be disposed at the center position (below), or one restricting opening 5 may be disposed. On the other hand, the two evaporation ports 8 may be arranged to face each other with the center of the restriction opening 5 as a boundary. However, in this embodiment, each of the evaporation ports 8 arranged side by side as described above. The restricting openings 5 are arranged side by side so as to correspond to each other, and the evaporated particles from any of the adjacent right and left evaporating openings 8 pass through the restricting openings 5 respectively. However, the adjacent restriction opening 5 cannot pass and is attached and captured. That is, by setting the side-by-side spacing, opening diameter, and opening depth of the restriction openings 5, the evaporated particles from one evaporation port 8 pass only through the opposed restriction openings 5 and are adjacent to the left and right. Evaporated particles from the matching evaporation port portion 8 are configured not to pass through the restricting opening 5, thereby reliably preventing the overlapping of the film formation patterns.
 また本実施例の前記蒸着マスク2の前記マスク開口部3は、図15,16に示すように前記基板4の前記相対移動方向と直交する横方向に多数並設した構成とし、この各マスク開口部3は、前記相対移動方向に長いスリット状に形成若しくは開口部を前記相対移動方向に複数並設して、この相対移動方向のトータル開口長を横方向の開口長より長く形成している。 Further, as shown in FIGS. 15 and 16, the mask openings 3 of the vapor deposition mask 2 of the present embodiment are arranged in parallel in the lateral direction orthogonal to the relative movement direction of the substrate 4, and each of these mask openings. The portion 3 is formed in a slit shape that is long in the relative movement direction or a plurality of openings are arranged in parallel in the relative movement direction, and the total opening length in the relative movement direction is longer than the opening length in the lateral direction.
 即ち、蒸着マスク2の各列のマスク開口部3は、相対移動方向に長いスリット状開口部としてもよいし、蒸着マスク2の剛性を高めるため、このマスク開口部3は相対移動方向に長いスリット孔あるいは小孔などの小開口部をこの方向に点在させてトータル開口長(総合開口面積)を広く確保してもよい。 In other words, the mask openings 3 in each row of the vapor deposition mask 2 may be slit-like openings that are long in the relative movement direction. In order to increase the rigidity of the vapor deposition mask 2, the mask openings 3 are slits that are long in the relative movement direction. Small openings such as holes or small holes may be scattered in this direction to ensure a wide total opening length (total opening area).
 図18に示すように、基板4に蒸着される成膜パターンを決する蒸着マスク2のマスク開口部3の前記基板4の相対移動方向と直交する横方向の形成ピッチを、前記蒸着膜の成膜パターンのピッチよりも、基板4と蒸着マスク2とのギャップGの大小及び蒸発源1と蒸着マスク2までの距離TSの大小に応じた相違分だけ狭く設定している。 As shown in FIG. 18, the formation pitch of the vapor deposition film is set to a lateral formation pitch perpendicular to the relative movement direction of the substrate 4 of the mask opening 3 of the vapor deposition mask 2 that determines the film deposition pattern to be vapor deposited on the substrate 4. The pitch is set narrower than the pattern pitch by a difference corresponding to the size of the gap G between the substrate 4 and the vapor deposition mask 2 and the distance TS between the evaporation source 1 and the vapor deposition mask 2.
 具体的には、図18に示すように、蒸発源開口中心に対向するマスク位置からのマスク開口中心までの距離MPxは、蒸発源開口中心に対向する基板4位置からの成膜パターン中心までの距離Pxにα/(1+α)乗じた分(このときα=TS/G)小さくなる。 Specifically, as shown in FIG. 18, the distance MPx from the mask position facing the evaporation source opening center to the mask opening center is from the position of the substrate 4 facing the evaporation source opening center to the film formation pattern center. The distance Px is reduced by α / (1 + α) (in this case, α = TS / G).
 従って、例えばTSを100mm、Gを1mmとすると、αは100となり、α/(1+α)は約0.99となる。よって、例えばPxを10mmとすると、MPxは9.9mmとなり、MPxはPxより小さい値となる。 Therefore, for example, if TS is 100 mm and G is 1 mm, α is 100 and α / (1 + α) is about 0.99. Therefore, for example, if Px is 10 mm, MPx is 9.9 mm, and MPx is smaller than Px.
 即ち、基板4と蒸着マスク2とが離間しているため、基板4と蒸着マスク2とのギャップGの大小及び蒸発源1と蒸着マスク2までの距離TSの大小に応じて、蒸着マスク2のマスク開口部3を通過して基板4上に堆積する蒸着膜の位置は横方向にずれるが、このずれ量を考慮して、蒸着マスク2の開口ピッチを、成膜パターンピッチより狭く設定することで、成膜パターン位置精度の高い蒸着膜を形成できることとなる。 That is, since the substrate 4 and the vapor deposition mask 2 are separated from each other, the vapor deposition mask 2 can be changed depending on the size of the gap G between the substrate 4 and the vapor deposition mask 2 and the distance TS between the evaporation source 1 and the vapor deposition mask 2. Although the position of the vapor deposition film deposited on the substrate 4 through the mask opening 3 is shifted in the horizontal direction, the opening pitch of the vapor deposition mask 2 should be set to be narrower than the film formation pattern pitch in consideration of this deviation amount. Thus, it is possible to form a vapor deposition film with high film formation pattern position accuracy.
 また、同様に、図19に示すように蒸着マスク開口幅Mxは、蒸発口部8の開口幅φxがマスク開口幅より大きい場合、基板4と蒸着マスク2とのギャップGの大小及び蒸発源1と蒸着マスク2までの距離TSの大小に応じた相違分だけ、広くなる。具体的には、マスク開口幅Mxは(φx+αP/(1+α))で表される(このときα=TS/G)。 Similarly, as shown in FIG. 19, when the opening width φx of the evaporation port 8 is larger than the mask opening width, the evaporation mask opening width Mx is larger than the gap G between the substrate 4 and the evaporation mask 2 and the evaporation source 1. And the distance corresponding to the size of the distance TS to the vapor deposition mask 2 increases. Specifically, the mask opening width Mx is represented by (φx + αP / (1 + α)) (in this case, α = TS / G).
 例えば、蒸着パターン幅Pを0.1mm、TSを100mm、φxを1mmとした場合、マスク開口幅Mxは、Gが3mmでは約0.126mm、Gが5mmでは約0.143mmとなり、蒸着パターン幅より広くなる。 For example, when the deposition pattern width P is 0.1 mm, TS is 100 mm, and φx is 1 mm, the mask opening width Mx is about 0.126 mm when G is 3 mm, and about 0.143 mm when G is 5 mm. Become wider.
 更に、本実施例では、図15、図16に示すように、蒸着マスク2の開口スリットが中央部から横方向に離れるほど長くなるように設定して、中央部から離れる程蒸着レートが低くなっても膜厚分布が均一になるように設定している。 Furthermore, in this embodiment, as shown in FIGS. 15 and 16, the opening slit of the vapor deposition mask 2 is set so as to be longer as it is further away from the central portion in the lateral direction, and the vapor deposition rate is lower as it is farther from the central portion. However, the film thickness distribution is set to be uniform.
 例えば、図20,図21に示すように、前記基板1の相対移動方向と直交する横方向(X軸方向)のある位置xにおける蒸発粒子の飛散角度をθとすると、xの位置では余弦則(cosθ)に累乗係数nを乗じた近似分布となり、前記基板1の相対移動方向(Y軸方向)の膜厚分布をも勘案し、前記蒸着マスク2のマスク開口部3の形成長が中央部を境に左右対称に長く変化していくように設定している。 For example, as shown in FIGS. 20 and 21, if the scattering angle of the evaporated particles at a position x in the lateral direction (X-axis direction) orthogonal to the relative movement direction of the substrate 1 is θ, the cosine law is at the position x. An approximate distribution obtained by multiplying (cos θ) by a power coefficient n, and taking into account the film thickness distribution in the relative movement direction (Y-axis direction) of the substrate 1, the formation length of the mask opening 3 of the vapor deposition mask 2 is the central portion. It is set to change symmetrically for a long time at the border.
 具体的には、蒸発源口部の寸法が、例えば蒸発源開口幅φxが1mm、蒸発源スリット長φyが60mmとし、基板4の相対移動方向と直交する横方向の膜厚分布がcosθの20乗に近似した分布になるとすると、図21に示した膜厚分布となる。蒸発粒子の蒸着マスク2への入射角が大きくなると、前述した誤差の影響が大きくなるので、膜厚が中心の8割まで薄くなる位置まで成膜に使用すると、-30~+30の60mmが1ノズルで成膜する成膜有効範囲である。蒸発源開口中心に対向するマスク位置での基板4の相対移動方向の形成長を100mmとすると、成膜有効範囲の両端である-30、+30の位置での蒸着マスク開口長は約146mmとなり、図21に示すように中心から両端に離れるほど左右対称に開口長が長くなる。 Specifically, the dimensions of the evaporation source port are, for example, an evaporation source opening width φx of 1 mm, an evaporation source slit length φy of 60 mm, and a lateral film thickness distribution perpendicular to the relative movement direction of the substrate 4 is 20 of cos θ. If the distribution approximates to the power, the film thickness distribution shown in FIG. 21 is obtained. As the incident angle of the evaporated particles on the vapor deposition mask 2 increases, the influence of the above-described error increases. Therefore, when the film is used for film formation up to a position where the film thickness is as thin as 80% of the center, 60 mm of −30 to +30 is 1 This is an effective film forming range for forming a film with a nozzle. Assuming that the formation length in the relative movement direction of the substrate 4 at the mask position facing the evaporation source opening center is 100 mm, the evaporation mask opening length at −30 and +30 positions that are both ends of the effective film formation range is about 146 mm. As shown in FIG. 21, as the distance from the center to both ends increases, the opening length becomes symmetrical.
 また、本実施例の制限用開口部5は蒸発口部8側の開口面積が小さく蒸着マスク2側へ行く程広がる形状、言い換えると蒸発口部8側程開口面積が小さい逆角錐台状として、この制限用開口部5の蒸発口部8側の端面に(マスクホルダー6の端面)に蒸発粒子が付着し制限用開口部5の内面にはできるだけ付着しないようにして、このマスクホルダー6に付着した蒸発粒子(成膜材料)の剥離回収が容易となるように構成している。 Further, the limiting opening 5 of the present embodiment has a shape in which the opening area on the evaporation port 8 side is small and widens toward the vapor deposition mask 2 side, in other words, as an inverted truncated pyramid having a small opening area on the evaporation port 8 side. The evaporation particles adhere to the end surface of the restriction opening 5 on the evaporation port 8 side (the end face of the mask holder 6) and adhere to the inner surface of the restriction opening 5 as much as possible. The evaporated particles (film forming material) can be easily peeled and collected.
 また、この各制限用開口部5と蒸発口部8とを近づけすぎると付着する蒸発粒子が蒸着の妨げとなるおそれがあるし、離れている場合には、隣り合う蒸発口部8からの蒸発粒子が制限用開口部5内面に付着する量が増え前述のように回収が容易でなくなる。そのため図13に示すように、制限用開口部5と蒸発口部8とは距離をおいて制限機能を高めると共に、隣の蒸発口部8からの蒸発粒子が制限用開口部5内面にまで入射せずマスクホルダー6の端部面に付着するように、各蒸発口部8と各制限用開口部5との各間に衝立部21を設けてもよい。 Further, if the restricting openings 5 and the evaporation port 8 are too close to each other, the adhering evaporated particles may hinder evaporation, and if they are separated from each other, evaporation from the adjacent evaporation ports 8 may occur. The amount of particles adhering to the inner surface of the restriction opening 5 increases, and recovery becomes difficult as described above. Therefore, as shown in FIG. 13, the restriction opening 5 and the evaporation port 8 are separated from each other to enhance the restriction function, and the evaporated particles from the adjacent evaporation port 8 enter the inner surface of the restriction opening 5. Alternatively, a partition 21 may be provided between each evaporation port 8 and each restriction opening 5 so as to adhere to the end surface of the mask holder 6.
 また、本実施例では、この制限用開口部5を設けた飛散制限部を構成するマスクホルダー6に前記蒸着マスク2を接触させて付設すると共に、この飛散制限部6若しくは蒸着マスク2の少なくとも一方にこの蒸着マスク2の温度を保持する温度制御機構9を備えて、このマスクホルダー6は飛散制限部としてだけでなく蒸発源1からの熱の入射を抑制し蒸着マスク2の熱を伝導しまた更に熱を吸収する温度保持機能を発揮して、蒸着マスク2の温度を一定に保持させることができ、蒸着マスク2の熱による歪みを防止して、基板4と蒸着マスク2とを離間状態で相対移動させる構成でありながら、高精度の蒸着が行えるように構成している。 In the present embodiment, the vapor deposition mask 2 is attached to the mask holder 6 constituting the scattering restriction portion provided with the restriction opening 5 and at least one of the scattering restriction portion 6 or the vapor deposition mask 2 is provided. Is provided with a temperature control mechanism 9 for maintaining the temperature of the vapor deposition mask 2, and the mask holder 6 not only serves as a scattering restricting portion but also suppresses the incidence of heat from the evaporation source 1 and conducts the heat of the vapor deposition mask 2. Furthermore, the temperature holding function of absorbing heat can be exhibited to keep the temperature of the vapor deposition mask 2 constant, the distortion of the vapor deposition mask 2 can be prevented, and the substrate 4 and the vapor deposition mask 2 can be separated from each other. Although it is a structure moved relatively, it is comprised so that highly accurate vapor deposition can be performed.
 即ち、前記蒸発源1からの熱の入射が抑えられマスクホルダー6や蒸着マスク2の温度上昇が抑制され、また、蒸着マスク2が基板4と離間状態であってもこのマスクホルダー6と接触していることで蒸着マスク2の熱はマスクホルダー6へ伝導し、しかもこのマスクホルダー6若しくは蒸着マスク2に温度制御機構9が設けられているから、蒸着マスク2を一定の温度に保持する温度保持機能が向上するように構成している。 That is, the incidence of heat from the evaporation source 1 is suppressed and the temperature rise of the mask holder 6 and the vapor deposition mask 2 is suppressed, and the vapor deposition mask 2 is in contact with the mask holder 6 even when it is separated from the substrate 4. Therefore, the heat of the vapor deposition mask 2 is conducted to the mask holder 6 and the temperature control mechanism 9 is provided in the mask holder 6 or the vapor deposition mask 2, so that the temperature of the vapor deposition mask 2 is maintained at a constant temperature. It is configured to improve functionality.
 従って、この飛散制限部を構成するマスクホルダー6は、蒸発粒子の飛散方向の制限機能と同時に温度保持機能をも果たし、蒸着マスク2の温度上昇を抑制でき蒸着マスク2を一定の温度に保持し、熱による蒸着マスク2の歪みも生じにくいこととなり、成膜パターンの位置精度の高い蒸着膜を蒸着できることとなる。 Therefore, the mask holder 6 constituting the scattering restriction portion serves not only the function of restricting the scattering direction of the evaporated particles but also the temperature holding function, and can suppress the temperature rise of the vapor deposition mask 2 and keep the vapor deposition mask 2 at a constant temperature. Further, distortion of the vapor deposition mask 2 due to heat hardly occurs, and a vapor deposition film with high positional accuracy of the film formation pattern can be deposited.
 具体的には本実施例では、前述した形状の前記制限用開口部5を間隔を置いて並設したブロック状基体部の両端部を平坦面に形成して、前記制限用開口部5の開口端周辺部を平坦面とした形状にマスクホルダー6を形成し、この基板4側の端部の平坦面に蒸着マスク2を付設し、反対側の蒸発源1側の端部の平坦面を蒸発粒子が付着する付着面としている。このマスクホルダー6のブロック状基体部の上下に夫々独立した媒体を流通させこれを熱交換して温度制御する媒体路12若しくは更にヒートパイプ22を夫々制限用開口部5の周囲並びに制限用開口部5間に設けて、熱を吸収し温度上昇を抑制し蒸着マスク2の温度を一定に保持するように温度制御する温度制御機構9をこのマスクホルダー6内に設けた構成としている。 Specifically, in this embodiment, both ends of the block-shaped base portion in which the restriction openings 5 having the above-described shape are arranged at intervals are formed on a flat surface, and the openings of the restriction openings 5 are formed. The mask holder 6 is formed in a shape having a flat surface at the periphery of the end, the deposition mask 2 is attached to the flat surface at the end on the substrate 4 side, and the flat surface at the end on the opposite evaporation source 1 side is evaporated. It is the attachment surface to which particles adhere. An independent medium is circulated above and below the block-shaped base portion of the mask holder 6 and the temperature is controlled by exchanging the medium, and the heat pipe 22 is provided around the restriction opening 5 and the restriction opening, respectively. The temperature control mechanism 9 is provided in the mask holder 6 so as to absorb the heat and suppress the temperature rise so as to keep the temperature of the vapor deposition mask 2 constant.
 更に具体的に説明すると、先ずこのマスクホルダー6に蒸着マスク2を接触させて付設する構成について説明すると、本実施例では、マスクホルダー6をマスクフレームとして前記制限用開口部5を覆うようにして前述のようにこのマスクホルダー6の基板4側の端部の平坦面、即ち、前記飛散制限部6の前記制限用開口部5間及び周囲の基板4側端部の平坦面としてマスク取付支承面23を形成し、このマスク取付支承面23に前記蒸着マスク2の周辺部などを支承し接合する構成とし、また蒸着マスク2の平面度を上げ熱による歪みも生じないようにマスク開口部3の長さ方向である相対移動方向に張力を与えてこのマスク取付支承面23に蒸着マスク2を重合してスポット溶接などし固定して張設した構成としている。 More specifically, the configuration in which the vapor deposition mask 2 is brought into contact with the mask holder 6 will be described first. In this embodiment, the mask holder 6 is used as a mask frame so as to cover the restriction opening 5. As described above, the flat surface at the end of the mask holder 6 on the substrate 4 side, that is, the flat surface between the limiting opening 5 of the scattering restricting portion 6 and the peripheral end of the surrounding substrate 4 side is used as a mask mounting support surface. 23 is formed, and the peripheral portion of the vapor deposition mask 2 is supported and joined to the mask mounting support surface 23. Further, the mask opening 3 is formed so that the flatness of the vapor deposition mask 2 is increased and the heat distortion does not occur. The structure is such that tension is applied in the direction of relative movement, which is the length direction, and the vapor deposition mask 2 is superposed on the mask mounting support surface 23 and fixed by tension welding or the like.
 本実施例では、図22に示すようにマスクホルダー6の端部面の周辺部に十分に広い平坦面を形成して前記マスク取付支承面23を設けると共に、制限用開口部5間も平坦面を形成してこの制限用開口部5間にもマスク取付支承面23を設けている。蒸着マスク2のマスク開口部3の間隔(配列ピッチ)は、前記RGB画素の各色の蒸着膜間隔(各画素を構成する蒸着膜とその間の間隔)があるから、例えば各制限用開口部5に対向する蒸着マスク2の端部で隣り合うマスク開口部3同士の間隔もこのようにある程度の余裕があるから、このマスク開口部3間に位置する制限用開口部5間にもこの余裕間隔を利用して後述するリブ部24を設け、この先端面を平坦面としてこの制限用開口部5間にも前記マスク取付支承面23を形成した構成としている。 In this embodiment, as shown in FIG. 22, a sufficiently wide flat surface is formed around the end surface of the mask holder 6 to provide the mask mounting support surface 23, and the space between the limiting openings 5 is also a flat surface. And a mask mounting support surface 23 is also provided between the restricting openings 5. The interval (arrangement pitch) between the mask openings 3 of the vapor deposition mask 2 has a vapor deposition film interval (a vapor deposition film constituting each pixel and an interval between them) of each color of the RGB pixels. Since there is a certain amount of allowance between the adjacent mask openings 3 at the end portions of the opposing vapor deposition mask 2, this allowance interval is also provided between the restricting openings 5 located between the mask openings 3. A rib portion 24, which will be described later, is provided, and the mask mounting support surface 23 is formed between the limiting openings 5 with the tip end surface being a flat surface.
 更に説明すると、このマスクホルダー6は、前記基板4の相対移動方向に張力を付与して前記蒸着マスク2を張設することによるこの張力以上の剛性を有する構成としているが、前述のように前記基板4の相対移動方向を長さ方向とし前記蒸着マスク2を支承する前記リブ部24を、前記制限用開口部5間に設けた構成としてこの方向の剛性を高め、この制限用開口部5間の前記リブ部24の前記基板4側先端面にも蒸着マスク2を支承し接合するマスク取付支承面23を設けた構成としている。 More specifically, the mask holder 6 is configured to have a rigidity higher than the tension by applying the tension in the relative movement direction of the substrate 4 and stretching the vapor deposition mask 2 as described above. The ribs 24 for supporting the vapor deposition mask 2 with the relative movement direction of the substrate 4 as the length direction are provided between the restriction openings 5 to increase the rigidity in this direction, and between the restriction openings 5. The mask mounting support surface 23 for supporting and joining the vapor deposition mask 2 is also provided on the front end surface of the rib portion 24 on the substrate 4 side.
 即ち、本実施例では、マスクホルダー6に基板4の相対移動方向に延在するリブ部24を設け、このリブ部24は、蒸着マスク2と接触させて付設するマスク取付支承面23を有することで、蒸着マスク2の温度保持機能を高めている。このマスク取付支承面23は、基板4と蒸着マスク2が離間していることで、広く確保できる。 That is, in this embodiment, the mask holder 6 is provided with a rib portion 24 extending in the relative movement direction of the substrate 4, and the rib portion 24 has a mask mounting support surface 23 attached in contact with the vapor deposition mask 2. Thus, the temperature holding function of the vapor deposition mask 2 is enhanced. The mask mounting support surface 23 can be widely secured because the substrate 4 and the vapor deposition mask 2 are separated from each other.
 例えば、図22に示すように基板4と蒸着マスク2が密着している構成でのマスク取付支承面23は、RGB画素蒸着のための蒸着膜間隔PPと蒸着パターン幅Pを用いて、2P+3PPで表される。本実施例では、この図22に示すように、ギャップGを有することで、蒸発源1と対向する基板4中心から見て、蒸着パターンの最端の位置と蒸着マスク2のマスク開口部3の最端の位置との差Aが生じる。AはG(Px+P/2-φx/2)/(TS+G)で表され、マスク取付支承面23は、基板4と蒸着マスク2が密着している場合と比較して2A分広くなる。 For example, as shown in FIG. 22, the mask mounting support surface 23 in the configuration in which the substrate 4 and the vapor deposition mask 2 are in close contact with each other is 2P + 3PP using the vapor deposition film interval PP and the vapor deposition pattern width P for RGB pixel vapor deposition. expressed. In this embodiment, as shown in FIG. 22, by having a gap G, the position of the extreme end of the vapor deposition pattern and the mask opening 3 of the vapor deposition mask 2 when viewed from the center of the substrate 4 facing the evaporation source 1. A difference A from the extreme end position occurs. A is represented by G (Px + P / 2−φx / 2) / (TS + G), and the mask mounting support surface 23 is 2A wider than the case where the substrate 4 and the vapor deposition mask 2 are in close contact with each other.
 更に具体的に説明すると、例えば蒸着パターン幅Pを0.1mm、蒸着膜間隔PPを0.05mmとした場合、基板4と蒸着マスク2が密着している場合のマスク取付支承面23は0.35mmとなる。しかし、本実施例の基板4と蒸着マスク2が離間状態にある場合では、例えば、TSを200mm、φxを1mm、Pxを30mmとすると、マスク取付支承面23はGが1mmでは約0.64mm、Gが5mmでは約1.79mmとなり、蒸着マスク2を重合してスポット溶接する面積を十分確保できる。 More specifically, for example, when the vapor deposition pattern width P is 0.1 mm and the vapor deposition film interval PP is 0.05 mm, the mask mounting support surface 23 when the substrate 4 and the vapor deposition mask 2 are in close contact is 0. 35 mm. However, in the case where the substrate 4 and the vapor deposition mask 2 are separated from each other in this embodiment, for example, when TS is 200 mm, φx is 1 mm, and Px is 30 mm, the mask mounting support surface 23 is about 0.64 mm when G is 1 mm. When G is 5 mm, the thickness is about 1.79 mm, and a sufficient area for spot welding can be secured by polymerizing the vapor deposition mask 2.
 従って、このマスクホルダー6はマスクフレームとしての剛性が高まることで、蒸着マスク2に十分な張力を付与して張設することもできる。 Therefore, the mask holder 6 can be stretched by applying a sufficient tension to the vapor deposition mask 2 by increasing the rigidity as a mask frame.
 即ち、前述のようにマスク取付支承面23を設けてこれに蒸着マスク2を重合して張設するため、特にこのように張力を付与し張設する場合には、付設強度(支承接合による重合固定強度)が強固にして安定し、極めて実用性に優れる。 That is, as described above, the mask mounting support surface 23 is provided, and the vapor deposition mask 2 is superposed and stretched thereon. In particular, when tension is applied and stretched in this way, the attached strength (polymerization by the bearing joining) (Fixed strength) is strong and stable, and extremely practical.
 また、本実施例の蒸着マスク2は、基板4の相対移動方向と直交する横方向に複数枚に分割した構成とし、この分割した蒸着マスク2を前記マスクホルダー6にこの横方向に並設状態に付設した構成としてもよい。この場合、蒸着マスク2の端部同士を突き合わせるようにして並設するが、前記マスクホルダー6のリブ部24の先端面のマスク取付支承面23上で夫々溶接して蒸発粒子が通過しないように密閉すると共に、蒸着マスク2の熱を伝導させるように構成している。 Further, the vapor deposition mask 2 of the present embodiment is divided into a plurality of pieces in the lateral direction orthogonal to the relative movement direction of the substrate 4, and the divided vapor deposition mask 2 is juxtaposed in the lateral direction on the mask holder 6. It is good also as a structure attached to. In this case, the vapor deposition masks 2 are arranged side by side so that the end portions are abutted with each other, but the vaporized particles do not pass through welding on the mask mounting support surface 23 at the front end surface of the rib portion 24 of the mask holder 6. And the heat of the vapor deposition mask 2 is conducted.
 従って、小さな蒸着マスク2でも大型化に対応でき、また例えば各蒸発口部8毎の膜厚分布特性に基づいてこの各領域毎に膜厚の均一化を図るように、マスク開口部3を個別に設定した蒸着マスク2を並設したり、これら蒸着マスク2を個別に取り替えたりできるように構成可能となるなど一層実用性に優れる。 Accordingly, even a small vapor deposition mask 2 can cope with an increase in size, and for example, the mask openings 3 are individually arranged so that the film thickness is uniform for each region based on the film thickness distribution characteristics for each evaporation port 8. The vapor deposition masks 2 set in the above can be arranged side by side or the vapor deposition masks 2 can be individually replaced.
 次に、温度制御機構9について更に説明すると、本実施例では、蒸着マスク2が飛散制限部を構成するマスクホルダー6によって遮熱されると共に、蒸着マスク2への熱はこれが接触しているこのマスクホルダー6へと伝導し、またこのマスクホルダー6には前記媒体路12やヒートパイプ22などで構成される温度制御機構9で熱が吸収されるから、蒸着マスク2と基板4とが離間していても蒸着マスク2の温度上昇は十分に抑えられ、蒸着マスク2の温度を一定に保持でき、熱による歪みが生じにくくなり、成膜パターンの位置精度が高い蒸着が行える。 Next, the temperature control mechanism 9 will be further described. In this embodiment, the vapor deposition mask 2 is shielded by the mask holder 6 that constitutes the scattering limiting portion, and the heat to the vapor deposition mask 2 is in contact with the mask. Conductive to the holder 6, and heat is absorbed by the temperature control mechanism 9 including the medium path 12 and the heat pipe 22 in the mask holder 6, so that the vapor deposition mask 2 and the substrate 4 are separated from each other. However, the temperature rise of the vapor deposition mask 2 can be sufficiently suppressed, the temperature of the vapor deposition mask 2 can be kept constant, distortion due to heat hardly occurs, and vapor deposition with high positional accuracy of the film formation pattern can be performed.
 この温度制御機構9は、前述のように前記制限用開口部5の周囲若しくはこの制限用開口部5間に、媒体を流通させる前記媒体路12若しくは前記ヒートパイプ22を前記マスクホルダー6内に、前記基板4と前記蒸発源1との対向方向に複数段設けた構成としている。即ち、例えばこのマスクホルダー6内に設けた媒体路12を流通する媒体から熱を奪って温度制御する熱交換部20(20A,20B,20D)を設け、マスクホルダー6内を流通する媒体で蒸発源1からの熱を吸収し、この媒体からこの熱交換部20で熱を奪って温度制御し、蒸着マスク2の温度が一定となるように制御するように複数段独立してマスクホルダー6内に設けている。 As described above, the temperature control mechanism 9 includes the medium path 12 or the heat pipe 22 through which the medium is circulated in the mask holder 6 around the restriction opening 5 or between the restriction openings 5. A plurality of stages are provided in the opposing direction of the substrate 4 and the evaporation source 1. That is, for example, a heat exchanging portion 20 (20A, 20B, 20D) for removing heat from the medium flowing through the medium path 12 provided in the mask holder 6 and controlling the temperature is provided, and the medium flowing through the mask holder 6 evaporates. The heat from the source 1 is absorbed and the temperature is controlled by removing heat from the medium at the heat exchanging unit 20 so that the temperature of the deposition mask 2 is controlled to be constant. Provided.
 更に説明すると本実施例では、マスクホルダー6内に、前記蒸発源1側被温度制御部9Aと前記基板4側被温度制御部9Bとを備え、各被温度制御部9A,9Bに夫々独立に媒体を流通させる前記媒体路12(12A,12B)若しくは夫々独立した前記ヒートパイプ22を、マスクホルダー6内、具体的には、図6に示す環状部6A及びリブ部24に内装した構成とし、更にこの蒸発源1側被温度制御部9Aの前記媒体路12Aの媒体流量若しくは媒体との接触面積、又は前記ヒートパイプ22の数若しくはヒートパイプ22の断面積を前記基板4側被温度制御部9Bの媒体路12Bより増大させこの蒸発源1側被温度制御部9Aの温度制御機能を高めている。 More specifically, in this embodiment, the mask holder 6 is provided with the evaporation source 1 side temperature control unit 9A and the substrate 4 side temperature control unit 9B, and each of the temperature control units 9A and 9B is independently provided. The medium path 12 (12A, 12B) through which the medium is circulated or the independent heat pipes 22 are provided in the mask holder 6, specifically, in the annular part 6A and the rib part 24 shown in FIG. Further, the substrate 4 side temperature control unit 9B is configured to determine the medium flow rate or the contact area with the medium in the medium path 12A of the evaporation source 1 side temperature control unit 9A, or the number of the heat pipes 22 or the sectional area of the heat pipes 22 The temperature control function of the evaporation source 1 side temperature control unit 9A is enhanced by increasing the temperature from the medium path 12B.
 即ち、マスクホルダー6に複数段設けた被温度制御部9A,9Bのうち、蒸発源1側の被温度制御部9Aで蒸発源由来の熱を吸収し、基板4側(蒸着マスク2側)の被温度制御部9Bで更に熱を吸収して蒸着マスク2の温度を一定に保つことができ、一層温度保持機能が高められる。 That is, of the temperature control units 9A and 9B provided in a plurality of stages on the mask holder 6, the temperature control unit 9A on the evaporation source 1 side absorbs heat from the evaporation source, and the substrate 4 side (deposition mask 2 side) The temperature control unit 9B can further absorb heat to keep the temperature of the vapor deposition mask 2 constant, further enhancing the temperature holding function.
 また、マスクホルダー6を前述のような形状、即ち、制限用開口部5間の容量が蒸発源1側程大きい形状とすることで、基板4側の被温度制御部9Bよりも蒸発源1側の被温度制御部9Aの媒体路12Aの媒体接触面積を大きくして熱吸収能力を高め、この蒸発源1側で蒸発粒子を付着させると共にこの蒸発源1に近く(輻射熱が大きく)またこの付着量の多い蒸発源1側で熱を十分に吸収し、そして基板4側の被温度制御部9Bで更に熱を吸収して温度制御し、蒸着マスク2の温度が一定となるように保持する温度保持機能を向上させている。 Further, by making the mask holder 6 in the shape as described above, that is, in a shape in which the capacity between the limiting openings 5 is larger toward the evaporation source 1 side, the evaporation source 1 side than the temperature control unit 9B on the substrate 4 side. The medium contact area of the medium path 12A of the temperature control section 9A is increased to enhance the heat absorption capability, and the evaporated particles are attached on the evaporation source 1 side and close to the evaporation source 1 (the radiant heat is large). A temperature at which the evaporation source 1 side absorbs heat sufficiently, and the temperature control unit 9B on the substrate 4 side further absorbs heat to control the temperature so that the temperature of the vapor deposition mask 2 is kept constant. The holding function is improved.
 この温度制御機構9(9A,9B)は、前述のように水冷式の場合は冷却水を流通させる媒体路12(12A,12B)をマスクホルダー6内にめぐらせて熱交換部20(20A,20B)で冷却するように構成し、またヒートパイプ22を同様にめぐらせてその端部を冷却するように構成してもよいが、本実施例では蒸発源1側の被温度制御部9Aについては双方を施している。 In the case of the water cooling type, the temperature control mechanism 9 (9A, 9B) is configured such that the medium path 12 (12A, 12B) through which the cooling water is circulated is passed through the mask holder 6 so that the heat exchange unit 20 (20A, 20B), and the end of the heat pipe 22 may be cooled in the same manner. However, in this embodiment, the temperature control unit 9A on the evaporation source 1 side is used. Has given both sides.
 また、特に図1及び図7に示すように、前記媒体路12には、水冷式の場合に、蒸発源1側被温度制御部9Aの媒体路12Aに冷却水を導入する媒体流入路12A1と、同媒体路12Aから冷却水を排出する媒体流出路12A2を、媒体路12A内に二段に形成してあって、これら媒体流入路12A1と媒体流出路12A2は、蒸発源1側被温度制御部9Aの熱交換部20Aに、連結部25Aを介して接続され、同様に、基板4側被温度制御部9Bの媒体路12Bの媒体流入路12B1と媒体流出路12B2も媒体路12B内に二段に形成してあって、基板4側被温度制御部9Bの熱交換部20Bに、連結部25Bを介して接続されている。 As shown in FIGS. 1 and 7 in particular, the medium path 12 includes a medium inflow path 12A1 for introducing cooling water into the medium path 12A of the evaporation source 1 side temperature control unit 9A in the case of the water cooling type. The medium outflow path 12A2 for discharging the cooling water from the medium path 12A is formed in two stages in the medium path 12A. The medium inflow path 12A1 and the medium outflow path 12A2 are controlled by the evaporation source 1 side temperature control. Similarly, the medium inflow path 12B1 and the medium outflow path 12B2 of the medium path 12B of the substrate 4 side temperature controlled section 9B are connected to the heat exchanging section 20A of the section 9A through the connecting section 25A. It is formed in steps and is connected to the heat exchanging part 20B of the substrate 4 side temperature controlled part 9B via a connecting part 25B.
 そして、例えば水冷式の場合は、各熱交換部20A,20Bから一定温度に制御された冷却水を、各媒体流入路12A1,12B1からマスクホルダー6の各媒体路12A,12Bへ流入させ、各媒体路12A,12Bで蒸発源1からの輻射熱により温度上昇した冷却水を各媒体流出路12A2,12B2から排出して、前記熱交換部20A,20Bへ再度循環させることでマスクホルダー6の温度を制御し、蒸着マスク2の温度が一定になるように保持する温度保持機能を有している。 For example, in the case of a water-cooled type, cooling water controlled to a constant temperature from each heat exchange section 20A, 20B is caused to flow from each medium inflow path 12A1, 12B1 to each medium path 12A, 12B of the mask holder 6, The cooling water whose temperature has been raised by the radiant heat from the evaporation source 1 in the medium paths 12A and 12B is discharged from the medium outflow paths 12A2 and 12B2, and is circulated again to the heat exchanging sections 20A and 20B. It has a temperature holding function to control and hold the vapor deposition mask 2 so that the temperature is constant.
 このようにして、蒸発源1と基板4との対向方向に、マスクホルダー6内に二段の独立した前記被温度制御部9A,9Bから成る温度制御機構9を設け、この独立した各被温度制限部9A,9Bの各媒体路12A,12Bの媒体から熱を奪う前記各熱交換部20A,20Bと接続する各媒体路12A,12Bの各媒体流入路12A1,12B1と媒体流出路12A2,12B2に連結部25A,25Bを設け、例えば水冷式の場合は、冷却水を流通させる媒体路12A,12Bにこの連結部25A,25Bを着脱自在に連結する構成とし、各々の連結部25A,25Bには不図示のチェック弁が内在され、マスクホルダー6を取り外す際に、各連結部25A,25Bから冷却水が漏れないようになっている。また本実施例では、蒸発源1側の被温度制御部9Aには更に前述のようにヒートパイプ22をも内装した構成とし、図6に示すように、このヒートパイプ22を冷却するパイプ端部とこの冷却装置22Aとが着脱自在となるようにしている。これは、蒸着マスク2やマスクホルダー6には成膜中に蒸発粒子が次々に付着し、長時間使用すると成膜パターンに影響を及ぼす虞があるため、真空チャンバー7に不図示のゲート弁を介して交換用チャンバー16を並設し、真空チャンバー7から蒸着マスク2を付設したマスクホルダー6を取出自在に構成できるようにするためである。また、前記交換用チャンバー16には、蒸着マスク2付のマスクホルダー6の洗浄機構を備え、付着した成膜材料を除去し廃棄するか、若しくは蒸着マスク2及びマスクホルダー6に付着した成膜材料を剥離させ、材料回収機構17で前記成膜材料を回収し再利用すると共に、成膜材料剥離後の蒸着マスク2付マスクホルダー6の表面に残った成膜材料やパーティクルを除去するために洗浄するようにしてもよい。洗浄後の蒸着マスク2付のマスクホルダー6は蒸着装置に戻して使用してもよいし、新たな蒸着マスク2付マスクホルダー6に交換し、先のマスクホルダー6は次の交換に備えるためにストックしておくようにしてもよい。 In this way, in the opposing direction of the evaporation source 1 and the substrate 4, the temperature control mechanism 9 including the two independent temperature control units 9 A and 9 B is provided in the mask holder 6. The medium inflow paths 12A1 and 12B1 and the medium outflow paths 12A2 and 12B2 of the medium paths 12A and 12B connected to the heat exchange sections 20A and 20B that take heat from the medium of the medium paths 12A and 12B of the restriction sections 9A and 9B. For example, in the case of a water-cooled type, the connecting portions 25A and 25B are detachably connected to the medium paths 12A and 12B through which the cooling water is circulated, and are connected to the connecting portions 25A and 25B. A check valve (not shown) is included so that when the mask holder 6 is removed, the cooling water does not leak from the connecting portions 25A and 25B. Further, in this embodiment, the temperature control part 9A on the evaporation source 1 side is further provided with the heat pipe 22 as described above, and as shown in FIG. 6, the pipe end for cooling the heat pipe 22 is provided. The cooling device 22A is detachable. This is because vaporized particles adhere to the vapor deposition mask 2 and the mask holder 6 one after another during film formation, and there is a risk of affecting the film formation pattern when used for a long time. This is because the replacement chamber 16 is arranged in parallel, and the mask holder 6 provided with the vapor deposition mask 2 can be removed from the vacuum chamber 7 so as to be freely removable. The replacement chamber 16 includes a cleaning mechanism for the mask holder 6 with the vapor deposition mask 2 so that the deposited film material is removed and discarded, or the film deposition material adhered to the vapor deposition mask 2 and the mask holder 6. The material recovery mechanism 17 recovers and reuses the film formation material, and also cleans the film formation material and particles remaining on the surface of the mask holder 6 with the vapor deposition mask 2 after the film formation material is removed. You may make it do. After cleaning, the mask holder 6 with the vapor deposition mask 2 may be returned to the vapor deposition apparatus for use, or replaced with a new mask holder 6 with the vapor deposition mask 2, and the previous mask holder 6 is prepared for the next replacement. You may make it stock.
 また、本実施例にあっては、上記したマスクホルダー6内の二段の独立した前記被温度制御部9A,9Bにおける各媒体路12A,12Bの各媒体流入路12A1,12B1および媒体流出路12A2,12B2や、被温度制限部9Aのヒートパイプ22を、図6乃至図9に示すようにリブ部24内に内装する場合に、リブ部24に冷却水を導入するリブ部流入口241,241,241および、リブ部24から冷却水を排出するリブ部流出口242,242,242を設ける位置や、被温度制限部9Aのヒートパイプ22の向きを、連結部25A(25B)側から見て、奇数番目のリブ部24A,24A,24Aと偶数番目のリブ部24B,24B,24Bとで変えることで、連結部25A(25B)側から見たときのリブ部24における温度勾配の向きが、例えば図6にて矢印Tで示すように交互に形成されるようになる。これによって、マスクホルダー6における温度分布が一層均一化されるので、熱によるマスクホルダー6の歪みが生じにくくなり、マスクホルダー6に接合した蒸着マスク2の熱による変形も抑制されるため、このことによっても、成膜パターンの位置精度が高められる。 In this embodiment, the medium inflow paths 12A1 and 12B1 and the medium outflow paths 12A2 of the medium paths 12A and 12B in the two independent temperature control units 9A and 9B in the mask holder 6 described above. , 12B2 and the heat pipe 22 of the temperature limited part 9A are installed in the rib part 24 as shown in FIGS. 6 to 9, rib inlets 241 and 241 for introducing cooling water into the rib part 24. , 241 and the position where the rib part outlets 242 242 242 for discharging the cooling water from the rib part 24 and the direction of the heat pipe 22 of the temperature limited part 9A are viewed from the connecting part 25A (25B) side. By changing between the odd-numbered rib portions 24A, 24A, 24A and the even-numbered rib portions 24B, 24B, 24B, the direction of the temperature gradient in the rib portion 24 when viewed from the connecting portion 25A (25B) side is For example, they are formed alternately as indicated by arrows T in FIG. As a result, the temperature distribution in the mask holder 6 is made more uniform, so that distortion of the mask holder 6 due to heat is less likely to occur, and deformation due to heat of the vapor deposition mask 2 bonded to the mask holder 6 is also suppressed. As a result, the positional accuracy of the film formation pattern can be improved.
 また、上記したマスクホルダー6内の二段の独立した前記被温度制御部9A,9Bにおける各媒体路12A,12Bにおける上記した温度勾配の形成にあたり、蒸発源1側被温度制御部9Aの媒体路12Aでは、蒸発源1側から基板4側に向かう温度勾配になるように、媒体流入路12A1と媒体流出路12A2の配置を図7乃至図9に示した配置とは逆にすることもでき、これによって、蒸発源1からの高温の輻射熱に晒されるマスクホルダー6の蒸発源1に近接した部位における温度上昇を効果的に抑制できる。 Further, in forming the above-described temperature gradient in each of the medium paths 12A and 12B in the two independent temperature control units 9A and 9B in the mask holder 6, the medium path of the evaporation source 1 side temperature control unit 9A. In 12A, the arrangement of the medium inflow path 12A1 and the medium outflow path 12A2 can be reversed from the arrangement shown in FIGS. 7 to 9 so as to have a temperature gradient from the evaporation source 1 side to the substrate 4 side. Thereby, it is possible to effectively suppress an increase in temperature at a portion near the evaporation source 1 of the mask holder 6 that is exposed to high-temperature radiant heat from the evaporation source 1.
 このようにして、マスクホルダー6における温度勾配や温度分布は、種々の目的に応じて夫々にかなうように変更することができるものである。 In this way, the temperature gradient and temperature distribution in the mask holder 6 can be changed according to various purposes.
 また、前記蒸着マスク2の前記基板4側の表面に、前記マスク開口部3の周囲若しくはこのマスク開口部3間に、前記媒体路12として媒体流通管12Cを配設してもよいし、前記ヒートパイプ22Cを配設してもよい。 Further, a medium flow pipe 12C may be disposed as the medium path 12 around the mask opening 3 or between the mask openings 3 on the surface of the vapor deposition mask 2 on the substrate 4 side. A heat pipe 22C may be provided.
 また、前記蒸着マスク2にもこれと接する蒸着マスク2に沿う温度制御部9Cを設けて蒸着マスク2にも前記温度制御機構9を設けた構成としても良く、この場合は、蒸着マスク2自体を温度制御するため効率が良く、更に温度保持機能が向上し、また、基板4と蒸着マスク2との離間部分のギャップを利用して設けることができる。 Further, the vapor deposition mask 2 may be provided with a temperature control unit 9C along the vapor deposition mask 2 in contact therewith, and the vapor deposition mask 2 may be provided with the temperature control mechanism 9. Since the temperature is controlled, the efficiency is improved, the temperature holding function is further improved, and the gap at the separated portion between the substrate 4 and the vapor deposition mask 2 can be used.
 また、マスクホルダー6は金属やセラミックなどの無機材料あるいはこれにコーティングしたものを採用し、熱吸収効率及び強度が向上するように構成している。 In addition, the mask holder 6 is made of an inorganic material such as metal or ceramic, or a material coated thereon, so that the heat absorption efficiency and strength are improved.
 また、本実施例では、横方向に並設する、各蒸発口部8を、前記蒸発源1の前記横長拡張部27に突出形成した蒸発口部形成用突出部28の先端部に設け、この蒸発口部形成用突出部28の周囲若しくはこの蒸発口部形成用突出部28間に、蒸発源1の熱を遮断する熱遮断部19を配設している。 Further, in this embodiment, the respective evaporation port portions 8 arranged in parallel in the horizontal direction are provided at the distal end portion of the evaporation port portion forming projection portion 28 formed to project from the horizontally elongated extension portion 27 of the evaporation source 1. A heat shut-off portion 19 that shuts off the heat of the evaporation source 1 is provided around the evaporation port portion forming projection 28 or between the evaporation port portion forming projections 28.
 従って、蒸発源1の横長拡散部27に突設した前記各蒸発口形成用突出部28の先端部に前記蒸発口部8を設けた構成とすることで、蒸発レートや材料使用効率が高まり、この突出部28の先端部に蒸発口部8を設けることで、蒸発口部8以外の加熱範囲即ち蒸発源1の高熱部分からの輻射熱を、前述のように熱遮断部19によって遮断できるため、一層蒸着マスク2の冷却効率を高めることができる優れた蒸着装置となる。 Therefore, by using the configuration in which the evaporation port 8 is provided at the tip of each of the evaporation port forming projections 28 protruding from the horizontally long diffusion portion 27 of the evaporation source 1, the evaporation rate and material use efficiency are increased. By providing the evaporation port 8 at the tip of the projecting portion 28, the radiant heat from the heating range other than the evaporation port 8, that is, the high-temperature portion of the evaporation source 1, can be blocked by the heat blocking unit 19 as described above. It becomes the outstanding vapor deposition apparatus which can raise the cooling efficiency of the single-layer vapor deposition mask 2. FIG.
 この熱遮断部19は、熱を遮蔽するものであればよいが、本実施例では冷却板を採用し、前記マスクホルダー6と同様に媒体を供給する媒体路を内装し、これを冷却する熱交換部20Dを設けて、蒸発源1に設ける被温度制御部9Dとして機能させて、熱遮蔽効果を高めている。 The heat blocking unit 19 may be any unit that shields heat. In this embodiment, a cooling plate is used, and a medium path for supplying a medium is provided in the same manner as the mask holder 6 to cool the heat. The exchange unit 20D is provided to function as the temperature control unit 9D provided in the evaporation source 1 to enhance the heat shielding effect.
 また本実施例の蒸発源1は、前述のように横長拡張部27に各蒸発口部8を形成する蒸発口部形成用突出部28を突設し、この上端面に夫々蒸発口部8を設けているが、横長拡張部27に横方向には幅広いが相対移動方向には狭い偏平突出部を設けてこの上端面に蒸発口部8を多数並設してもよい。 Further, in the evaporation source 1 of this embodiment, as described above, the evaporation port portion forming protrusions 28 for forming the evaporation port portions 8 are provided on the horizontally elongated portion 27, and the evaporation port portions 8 are respectively provided on the upper end surfaces. However, the laterally elongated portion 27 may be provided with a flat protrusion portion that is wide in the lateral direction but narrow in the relative movement direction, and a large number of the evaporation port portions 8 may be arranged in parallel on the upper end surface.
 尚、蒸着マスク2は、相対移動方向と直交する方向に長い短冊状に形成したものが作成できれば、上述したように分割して形成しなくてもよい。 Note that the vapor deposition mask 2 does not have to be divided and formed as described above as long as it can be formed in a long strip shape in a direction orthogonal to the relative movement direction.
 また、第二実施例では、図23に示すように前記基板4と前記蒸着マスク2との間に、第二の蒸着マスク10を配設している。 In the second embodiment, a second vapor deposition mask 10 is disposed between the substrate 4 and the vapor deposition mask 2 as shown in FIG.
 この第二の蒸着マスク10の第二のマスク開口部11は、前記成膜パターンを最終的に決する配列とし、この第二の蒸着マスク10より前記蒸発源1側に位置する前記蒸着マスク2の前記マスク開口部3に比して、少なくとも前記基板4の前記相対移動方向と直交する横方向の開口パターンは同一パターンに設けると共に、開口部形成ピッチは前記基板4との距離の相違に対応して異なる形成ピッチとし、また第二の蒸着マスク10の妨げとならないように第一の蒸着マスク2の各開口部幅は同一か幅広くなるように設けている。 The second mask openings 11 of the second vapor deposition mask 10 are arranged to finally determine the film formation pattern, and the vapor deposition mask 2 located on the evaporation source 1 side with respect to the second vapor deposition mask 10. Compared to the mask opening 3, at least a lateral opening pattern orthogonal to the relative movement direction of the substrate 4 is provided in the same pattern, and the opening formation pitch corresponds to a difference in distance from the substrate 4. Therefore, the opening widths of the first vapor deposition mask 2 are set to be the same or wider so as not to interfere with the second vapor deposition mask 10.
 相対移動方向の配列については、前述のように蒸発レートを確保するためスリット状としたり、点在させた縦列状としたりするもので、必ずしも同一開口形状とする必要はないが、少なくとも横方向の開口パターンは同一パターンとしている。しかし、開口部形成ピッチは前記基板4との距離の相違に対応して異なる形成ピッチとし、開口部幅は同一か幅狭くなるように設けている。 As for the arrangement in the relative movement direction, as described above, it is a slit shape to ensure the evaporation rate or a dotted column shape, and it is not always necessary to have the same opening shape. The opening pattern is the same pattern. However, the opening formation pitch is set to a different formation pitch corresponding to the difference in distance from the substrate 4, and the opening width is the same or narrower.
 従って、本実施例では、第二の蒸着マスク10を設けることで第一となる前記蒸着マスク2による陰影SHを極力抑制でき、またこの第二の蒸着マスク10の温度を一定に保持でき、一層高精度の蒸着が行えることができる。 Therefore, in this embodiment, the shadow SH caused by the first vapor deposition mask 2 can be suppressed as much as possible by providing the second vapor deposition mask 10, and the temperature of the second vapor deposition mask 10 can be kept constant. High-precision deposition can be performed.
 即ち、第一の蒸着マスク2自体やこの蒸着マスク2を付設するマスクホルダー6に設けた蒸着マスク2の温度を双方とも一定に保持できる上に、この第一の蒸着マスク2と基板4との間に更に設けるこの第二の蒸着マスク10で最終的に決定される成膜パターンの蒸着膜を形成することになるからこの第二の蒸着マスク10は一層温度上昇しにくくなる。従って、この第二の蒸着マスク10は第一の蒸着マスク2に比して線膨張係数が大きい材料で形成できることになり、従って、例えば電鋳で形成できることになり一層高精細なマスク開口部11を形成できまた張力も比較的小さくてよいなど一層高精度の蒸着を行えることとなる。 That is, both the temperature of the first vapor deposition mask 2 itself and the vapor deposition mask 2 provided on the mask holder 6 provided with the vapor deposition mask 2 can be kept constant, and the first vapor deposition mask 2 and the substrate 4 Since the vapor deposition film having a film formation pattern finally determined by the second vapor deposition mask 10 further provided therebetween is formed, the temperature of the second vapor deposition mask 10 is further hardly increased. Therefore, the second vapor deposition mask 10 can be formed of a material having a larger linear expansion coefficient than that of the first vapor deposition mask 2, and therefore can be formed by, for example, electroforming. Thus, it is possible to perform vapor deposition with higher accuracy such that the tension may be relatively small.
 尚、第二の蒸着マスク10を基板4に密着させて成膜すると、第二の蒸着マスク10の開口パターン通りに精度よく成膜できることは言うまでもない。 Needless to say, when the second vapor deposition mask 10 is adhered to the substrate 4 to form a film, the film can be accurately formed according to the opening pattern of the second vapor deposition mask 10.
 また、本実施例では、この第一の蒸着マスク2自体にも温度制御機構9を設けることで一層この蒸着マスク2の温度上昇を抑えることができ、従って、本実施例では更に第二の蒸着マスク10の温度上昇も更に十分に抑えることができる。 In this embodiment, the temperature control mechanism 9 is also provided in the first vapor deposition mask 2 itself, so that the temperature rise of the vapor deposition mask 2 can be further suppressed. Therefore, in this embodiment, the second vapor deposition mask 2 is further reduced. The temperature rise of the mask 10 can be further sufficiently suppressed.
 また、この温度制御機構9の蒸着マスク沿設温度制御部9Cの媒体路12を前記蒸着マスク2の前記マスク開口部3間に配設している。 Further, the medium path 12 of the vapor deposition mask installed temperature control unit 9C of the temperature control mechanism 9 is disposed between the mask openings 3 of the vapor deposition mask 2.
 従って、前記基板4と前記蒸着マスク2が離間状態のまま蒸着する構成であり、この離間スペースを利用できる。また、マスク開口部3の周囲にヒートパイプ22を配設した構成としてもよい。 Therefore, the substrate 4 and the vapor deposition mask 2 are vapor-deposited in a separated state, and this separated space can be used. Further, the heat pipe 22 may be provided around the mask opening 3.
 尚、本発明は、実施例1,2に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。 The present invention is not limited to the first and second embodiments, and the specific configuration of each component can be designed as appropriate.

Claims (33)

  1.  蒸発源から蒸発した成膜材料を、蒸着マスクのマスク開口部を介して基板上に堆積して、この蒸着マスクにより定められた成膜パターンの蒸着膜が基板上に形成されるように構成した蒸着装置において、前記蒸発源とこの蒸発源に対向状態に配設する前記基板との間に、前記蒸発源から蒸発した前記成膜材料の蒸発粒子の飛散方向を制限する制限用開口部を設けた飛散制限部を有するマスクホルダーを配設し、このマスクホルダーに前記基板と離間状態に配設する前記蒸着マスクを接合させて付設し、このマスクホルダー若しくは蒸着マスクの少なくとも一方に蒸着マスクの温度を保持する温度制御機構を備え、前記基板を、前記蒸着マスクを付設した前記マスクホルダー及び前記蒸発源に対して、前記蒸着マスクとの離間状態を保持したまま相対移動自在に構成して、この相対移動により前記蒸着マスクより広い範囲にこの蒸着マスクにより定められる成膜パターンの蒸着膜が基板上に形成されるように構成したことを特徴とする蒸着装置。 The film forming material evaporated from the evaporation source is deposited on the substrate through the mask opening of the vapor deposition mask, and a vapor deposition film having a film formation pattern defined by the vapor deposition mask is formed on the substrate. In the vapor deposition apparatus, a limiting opening is provided between the evaporation source and the substrate disposed opposite to the evaporation source to limit a scattering direction of evaporated particles of the film forming material evaporated from the evaporation source. A mask holder having a scattering restriction portion is disposed, and the vapor deposition mask disposed apart from the substrate is bonded to the mask holder, and the temperature of the vapor deposition mask is attached to at least one of the mask holder or the vapor deposition mask. A temperature control mechanism for holding the substrate, and holding the substrate in a separated state with respect to the vapor deposition mask with respect to the mask holder and the evaporation source provided with the vapor deposition mask The vapor deposition apparatus is configured to be relatively movable so that a vapor deposition film having a film formation pattern defined by the vapor deposition mask is formed on the substrate in a wider range than the vapor deposition mask by the relative movement. .
  2.  減圧雰囲気とする蒸着室内に、前記成膜材料を収めた前記蒸発源と、この蒸発源の蒸発口部から蒸発した前記成膜材料の蒸発粒子が通過する前記マスク開口部を設けた前記蒸着マスクとを配設し、前記蒸発口部を複数並設し、前記蒸着マスクと離間状態に位置合わせする基板に、前記複数の蒸発口部から飛散する蒸発粒子が前記マスク開口部を通過して堆積し蒸着マスクにより定められる成膜パターンの蒸着膜が前記基板に形成されるように構成し、この蒸発源とこの蒸発源と対向状態に配設する前記基板との間に、隣り合う若しくは離れた位置の前記蒸発口部からの蒸発粒子を通過させない前記制限用開口部を設けた前記飛散制限部を有する前記マスクホルダーを配設し、このマスクホルダーに前記基板と離間状態に配設する前記蒸着マスクを接合させて付設し、このマスクホルダー若しくは前記蒸着マスクの少なくとも一方に蒸着マスクの温度上昇を抑制し温度を一定に保持する前記温度制御機構を設け、前記基板を、前記蒸着マスクを付設した前記マスクホルダー及び前記蒸発源に対してこの蒸着マスクとの離間状態を保持したまま相対移動させて、この相対移動方向に前記蒸着マスクの前記成膜パターンの蒸着膜を連続させて前記基板より小さい前記蒸着マスクでも広範囲に蒸着膜が形成されるように構成したことを特徴とする請求項1記載の蒸着装置。 The vapor deposition mask provided with the evaporation source containing the film forming material and the mask opening through which the evaporated particles of the film forming material evaporated from the evaporation port of the evaporation source pass in a vapor deposition chamber having a reduced pressure atmosphere And a plurality of the evaporation port portions are arranged side by side, and evaporated particles scattered from the plurality of evaporation port portions pass through the mask opening portions and are deposited on a substrate that is positioned in a separated state from the vapor deposition mask. A vapor deposition film having a film formation pattern determined by a vapor deposition mask is formed on the substrate, and is adjacent to or separated from the evaporation source and the substrate disposed opposite to the evaporation source. The deposition is provided with the mask holder having the scattering restricting portion provided with the restricting opening that does not allow evaporation particles from passing through the evaporation port portion at a position, and the mask holder is disposed in a separated state from the substrate. Ma The temperature control mechanism that suppresses the temperature rise of the vapor deposition mask and keeps the temperature constant is provided on at least one of the mask holder or the vapor deposition mask, and the substrate is provided with the vapor deposition mask. The mask holder and the evaporation source are moved relative to each other while being kept apart from the deposition mask, and the deposition film of the deposition pattern of the deposition mask is made continuous in this relative movement direction to be smaller than the substrate. The vapor deposition apparatus according to claim 1, wherein the vapor deposition mask is configured to form a vapor deposition film over a wide range.
  3.  前記基板の相対移動方向に対して直交する横方向に前記蒸発源の前記蒸発口部を複数並設すると共に、前記マスクホルダーに設ける前記飛散制限部の前記制限用開口部を前記横方向に沿って複数並設して、前記各蒸発口部から蒸発する蒸発粒子が、対向する前記制限用開口部のみを通過し更にこの制限用開口部と対向する前記蒸着マスクの前記マスク開口部を介して前記基板上に前記成膜パターンの蒸着膜が形成され、隣り合う若しくは離れた位置の前記蒸発口部からの蒸発粒子は付着捕捉されるようにして前記制限用開口部により前記蒸発粒子の飛散方向が制限されるように構成したことを特徴とする請求項2記載の蒸着装置。 A plurality of the evaporation ports of the evaporation source are arranged side by side in a transverse direction orthogonal to the relative movement direction of the substrate, and the restriction opening of the scattering restriction provided in the mask holder is along the transverse direction. The vaporized particles evaporating from the respective evaporation port portions pass only through the limiting opening portion facing each other and further pass through the mask opening portion of the vapor deposition mask facing the limiting opening portion. A vapor deposition film of the film formation pattern is formed on the substrate, and the evaporation particles from the evaporation port at adjacent or separated positions are attached and trapped so that the evaporation particles are scattered by the restriction opening. The vapor deposition apparatus according to claim 2, wherein the vapor deposition apparatus is configured to be limited.
  4.  前記マスクホルダーの前記基板側の端部に、前記蒸着マスクを付設したことを特徴とする請求項1記載の蒸着装置。 The vapor deposition apparatus according to claim 1, wherein the vapor deposition mask is attached to an end of the mask holder on the substrate side.
  5.  前記マスクホルダーの前記基板側の端部に、前記蒸着マスクに張力を付与して張設したことを特徴とする請求項4記載の蒸着装置。 The vapor deposition apparatus according to claim 4, wherein a tension is applied to the vapor deposition mask at an end of the mask holder on the substrate side.
  6.  前記マスクホルダーは、前記基板の相対移動方向に張力を付与して前記蒸着マスクを張設したことを特徴とする請求項5記載の蒸着装置。 6. The vapor deposition apparatus according to claim 5, wherein the mask holder stretches the vapor deposition mask by applying a tension in a relative movement direction of the substrate.
  7.  前記蒸着マスクは、前記基板の相対移動方向と直交する横方向に複数枚に分割した構成とし、この分割した蒸着マスクを前記マスクホルダーに前記横方向に並設状態に付設したことを特徴とする請求項1記載の蒸着装置。 The vapor deposition mask is divided into a plurality of pieces in a lateral direction perpendicular to the relative movement direction of the substrate, and the divided vapor deposition masks are attached to the mask holder in a juxtaposed state in the lateral direction. The vapor deposition apparatus according to claim 1.
  8.  前記蒸発源の前記蒸発口部を前記基板の相対移動方向と直交する横方向に複数並設し、この一若しくは複数の蒸発口部毎に夫々対向状態に前記制限用開口部を設けた前記飛散制限部を有する前記マスクホルダーの各制限用開口部を覆うように、前記蒸着マスクをマスクホルダーの前記基板側の端部に付設したことを特徴とする請求項1記載の蒸着装置。 A plurality of the evaporation port portions of the evaporation source are arranged in parallel in a lateral direction orthogonal to the relative movement direction of the substrate, and the scattering opening in which the restriction opening portion is provided in an opposing state for each of the one or a plurality of evaporation port portions. The vapor deposition apparatus according to claim 1, wherein the vapor deposition mask is attached to an end portion of the mask holder on the substrate side so as to cover each restriction opening of the mask holder having a restriction portion.
  9.  前記マスクホルダーの前記制限用開口部間に、前記基板の相対移動方向に延在するリブ部を設け、このリブ部の前記基板側先端面に、前記各制限用開口部に設ける前記蒸着マスクを支承し接合するマスク取付支承面を設けたことを特徴とする請求項1記載の蒸着装置。 A rib portion extending in the relative movement direction of the substrate is provided between the restriction opening portions of the mask holder, and the vapor deposition mask provided in each of the restriction opening portions is provided on the substrate-side front end surface of the rib portion. 2. The vapor deposition apparatus according to claim 1, further comprising a mask mounting support surface for supporting and joining.
  10.  前記マスクホルダーは、前記基板の相対移動方向に延在して、前記蒸着マスクをマスクホルダーに張設する際に蒸着マスクに付与される張力によるマスクホルダーの変形を防ぐため、張設する方向におけるマスクホルダーの剛性を向上させるリブ部を、前記制限用開口部間に設けた構成としたことを特徴とする請求項1記載の蒸着装置。 The mask holder extends in the relative movement direction of the substrate, and prevents the mask holder from being deformed by tension applied to the vapor deposition mask when the vapor deposition mask is stretched on the mask holder. 2. The vapor deposition apparatus according to claim 1, wherein a rib portion for improving the rigidity of the mask holder is provided between the restricting openings.
  11.  前記温度制御機構は、前記マスクホルダーの前記制限用開口部の周囲若しくはこの制限用開口部間に、熱交換して温度制御される媒体を流通させる媒体路若しくはヒートパイプを設けた構成としたことを特徴とする請求項1記載の蒸着装置。 The temperature control mechanism has a configuration in which a medium path or a heat pipe that circulates a medium whose temperature is controlled by heat exchange is provided around the restriction opening of the mask holder or between the restriction openings. The vapor deposition apparatus according to claim 1.
  12.  前記温度制御機構は、前記制限用開口部の周囲若しくはこの制限用開口部間に、媒体を流通させる前記媒体路若しくは前記ヒートパイプを前記マスクホルダー内に設けて構成し、前記基板と前記蒸発源との対向方向に複数段設けた構成としたことを特徴とする請求項11記載の蒸着装置。 The temperature control mechanism is configured by providing the medium path or the heat pipe for circulating a medium around the restriction opening or between the restriction openings in the mask holder, and the substrate and the evaporation source. The vapor deposition apparatus according to claim 11, wherein a plurality of stages are provided in a direction opposite to the direction.
  13.  前記温度制御機構は、前記マスクホルダー内に、前記蒸発源側被温度制御部と前記基板側被温度制御部とを備え、各被温度制御部に夫々独立に媒体を流通させる前記媒体路若しくは夫々独立した前記ヒートパイプを内装した構成としたことを特徴とする請求項12記載の蒸着装置。 The temperature control mechanism includes, in the mask holder, the evaporation source side temperature control unit and the substrate side temperature control unit, and the medium path or the media path for allowing each temperature control unit to circulate a medium independently. The vapor deposition apparatus according to claim 12, wherein the independent heat pipe is built in.
  14.  前記温度制御機構は、前記媒体路内部若しくは前記ヒートパイプ内部で生じる温度勾配が、前記対向方向に設けた各々の段同士で異なる向きに生じさせるように、前記媒体路若しくは前記ヒートパイプを配置して構成したことを特徴とする請求項11記載の蒸着装置。 The temperature control mechanism arranges the medium path or the heat pipe so that a temperature gradient generated in the medium path or the heat pipe is generated in different directions in each of the stages provided in the facing direction. The vapor deposition apparatus according to claim 11, wherein the vapor deposition apparatus is configured.
  15.  前記温度制御機構は、前記媒体路若しくは前記ヒートパイプを、前記リブ部内に配設して構成したことを特徴とする請求項9記載の蒸着装置。 The vapor deposition apparatus according to claim 9, wherein the temperature control mechanism is configured by arranging the medium path or the heat pipe in the rib portion.
  16.  前記温度制御機構は、前記リブ部内に配設した前記媒体路内部若しくは前記ヒートパイプ内部で生じる温度勾配が、隣接する前記リブ部間で互いに異なる向きに生じさせるように、前記媒体路若しくは前記ヒートパイプを配置して構成したことを特徴とする請求項15記載の蒸着装置。 The temperature control mechanism is configured to cause the temperature gradient generated in the medium path or the heat pipe disposed in the rib portion to be generated in different directions between the adjacent rib portions. The vapor deposition apparatus according to claim 15, wherein a pipe is arranged.
  17.  前記マスクホルダーは、前記制限用開口部の形状を、前記基板側の開口面積より前記蒸発源側の開口面積が小さい形状に形成したことを特徴とする請求項1記載の蒸着装置。 The vapor deposition apparatus according to claim 1, wherein the mask holder is formed such that the restriction opening has a shape in which the opening area on the evaporation source side is smaller than the opening area on the substrate side.
  18.  前記マスクホルダーの前記制限用開口部間に、前記独立した前記蒸発源側被温度制御部と前記基板側被温度制御部を設けて、前記蒸発源側被温度制御部の前記媒体路の媒体流量若しくは媒体との接触面積、又は前記ヒートパイプの数、若しくはヒートパイプの断面積を、前記基板側被温度制御部より増大させこの蒸発源側被温度制御部の温度制御能力を高めたことを特徴とする請求項13記載の蒸着装置。 The independent evaporation source side temperature control unit and the substrate side temperature control unit are provided between the limiting openings of the mask holder, and the medium flow rate of the medium path of the evaporation source side temperature control unit Alternatively, the contact area with the medium, the number of the heat pipes, or the cross-sectional area of the heat pipes is increased from the substrate-side temperature-controlled part, and the temperature control capability of the evaporation source-side temperature-controlled part is enhanced. The vapor deposition apparatus according to claim 13.
  19.  前記蒸着マスクの前記基板側の表面に、前記マスク開口部の周囲若しくはこのマスク開口部間に、熱交換して温度制御される媒体を流通させる媒体路若しくは前記ヒートパイプを配設して、前記蒸着マスクに前記温度制御機構を設けたことを特徴とする請求項1記載の蒸着装置。 On the surface of the vapor deposition mask on the substrate side, a medium path or a heat pipe for circulating a medium whose temperature is controlled by heat exchange is disposed around the mask opening or between the mask openings, The vapor deposition apparatus according to claim 1, wherein the temperature control mechanism is provided in the vapor deposition mask.
  20.  前記蒸発源の前記蒸発口部は、前記基板の相対移動方向に長くこれと直交する横方向に幅狭いスリット状としたことを特徴とする請求項1記載の蒸着装置。 2. The evaporation apparatus according to claim 1, wherein the evaporation port portion of the evaporation source has a slit shape that is long in the relative movement direction of the substrate and narrow in the lateral direction.
  21.  前記基板と前記蒸着マスクとが離間状態で蒸着しこの蒸着マスクによる成膜パターンの蒸着膜が基板に形成される際、この蒸着膜の側端傾斜部分である陰影SHは、前記基板と前記蒸着マスクとのギャップをG,前記蒸発口部の前記横方向の開口幅をφx,この蒸発口部と前記蒸着マスクとの距離をTSとすると、下記の式で表され、この陰影SHが隣接する蒸着膜との間隔PPに達しないように、前記蒸着口部の前記開口幅φxを小さく設定して前記ギャップGを大きく設定できるように構成したことを特徴とする請求項20記載の蒸着装置。
    Figure JPOXMLDOC01-appb-M000001
    When the substrate and the vapor deposition mask are vapor-deposited in a separated state, and a vapor deposition film having a film formation pattern by the vapor deposition mask is formed on the substrate, the shadow SH that is a side edge inclined portion of the vapor deposition film is formed on the substrate and the vapor deposition. When the gap with the mask is G, the opening width in the lateral direction of the evaporation port portion is φx, and the distance between the evaporation port portion and the vapor deposition mask is TS, this shadow SH is adjacent to the mask. 21. The vapor deposition apparatus according to claim 20, wherein the gap G can be set large by setting the opening width φx of the vapor deposition port portion small so as not to reach the interval PP with the vapor deposition film.
    Figure JPOXMLDOC01-appb-M000001
  22.  前記基板の相対移動方向と直交する横方向に複数並設する前記蒸発口部のすべて若しくはその一部は、一つの前記蒸発源に設けた構成とし、前記成膜材料を加熱する蒸発粒子発生部と、この蒸発粒子発生部から発生した前記蒸発粒子が拡散し圧力を均一化する横長拡散部とで前記蒸発源を構成し、この横長拡散部に前記蒸発口部を前記横方向に複数並設形成したことを特徴とする請求項1記載の蒸着装置。 All or part of the evaporation port portions arranged in parallel in the lateral direction orthogonal to the relative movement direction of the substrate are provided in one evaporation source, and the evaporated particle generating portion for heating the film forming material And an elongate diffusion unit that diffuses the vaporized particles generated from the evaporative particle generation unit and makes the pressure uniform, and constitutes the evaporation source, and a plurality of the evaporation ports are arranged in the horizontal direction in the elongate diffusion unit. The vapor deposition apparatus according to claim 1, wherein the vapor deposition apparatus is formed.
  23.  前記蒸発源の前記蒸発口部を前記基板の相対移動方向と直交する横方向に複数並設し、各蒸発口部を前記蒸発源の前記基板側に向けて突出する蒸発口部形成用突出部の先端部に設け、この蒸発口部形成用突出部の周囲若しくはこの蒸発口部形成用突出部間に、前記蒸発源の熱を遮断する熱遮断部を配設したことを特徴とする請求項1記載の蒸着装置。 A plurality of the evaporation port portions of the evaporation source are juxtaposed in a lateral direction orthogonal to the relative movement direction of the substrate, and each evaporation port portion protrudes toward the substrate side of the evaporation source. A heat shut-off portion that cuts off the heat of the evaporation source is provided around the evaporation port portion forming projection or between the evaporation port portion forming projections. The vapor deposition apparatus according to 1.
  24.  前記蒸着マスクの前記マスク開口部は、前記基板の前記相対移動方向と直交する横方向に複数並設した構成とし、この各マスク開口部は、前記相対移動方向に長いスリット状に形成若しくは開口部を前記相対移動方向に複数並設し、この相対移動方向のトータル開口長を前記制限用開口部の中央部に比して前記横方向に離れる程長くなるように設定したことを特徴とする請求項1記載の蒸着装置。 A plurality of the mask openings of the vapor deposition mask are arranged in parallel in a lateral direction orthogonal to the relative movement direction of the substrate, and each mask opening is formed or formed in a slit shape long in the relative movement direction. A plurality of the above-mentioned are arranged side by side in the relative movement direction, and the total opening length in the relative movement direction is set so as to become longer as the distance in the lateral direction is longer than the central part of the restriction opening. Item 2. The vapor deposition apparatus according to Item 1.
  25.  前記基板に蒸着される成膜パターンを決する前記蒸着マスクのマスク開口部の前記基板の相対移動方向と直交する横方向における形成ピッチを、前記蒸着膜の成膜パターンのピッチよりも前記基板と前記蒸着マスクとのギャップGと、前記基板と前記蒸発源との距離のうち、少なくともいずれか一つの大小に応じた相違分だけ狭く設定し、前記蒸着マスクのマスク開口部の前記基板の相対移動方向と直交する横方向における開口寸法を、前記蒸着膜の成膜パターンのパターン幅よりも、前記ギャップG、前記距離、前記蒸発源の前記蒸発口部の前記横方向における開口幅φxのうち、少なくともいずれか一つの大小に応じた相違分だけ広く設定したことを特徴とする請求項1記載の蒸着装置。 The formation pitch in the lateral direction orthogonal to the relative movement direction of the substrate of the mask opening of the vapor deposition mask that determines the film formation pattern to be vapor deposited on the substrate is set to be larger than the pitch of the film deposition pattern of the vapor deposition film and the substrate. The gap G between the evaporation mask and the distance between the substrate and the evaporation source is set to be narrow by a difference corresponding to at least one of the sizes, and the relative movement direction of the substrate at the mask opening of the evaporation mask The opening dimension in the lateral direction orthogonal to the deposition width of the deposition pattern of the vapor deposition film is at least of the gap G, the distance, and the opening width φx in the lateral direction of the evaporation port portion of the evaporation source. The vapor deposition apparatus according to claim 1, wherein the vapor deposition apparatus is set wide by a difference corresponding to any one of the sizes.
  26.  前記マスクホルダーは、蒸着装置に対して着脱可能なように前記温度制御機構と連結部を介して接続されることを特徴とする請求項1記載の蒸着装置。 The vapor deposition apparatus according to claim 1, wherein the mask holder is connected to the temperature control mechanism via a connecting portion so as to be detachable from the vapor deposition apparatus.
  27.  前記マスクホルダー若しくはマスクホルダーに付設した前記蒸着マスクの少なくとも一方に付着した成膜材料を洗浄する洗浄機構を備えたことを特徴とする請求項1記載の蒸着装置。 The vapor deposition apparatus according to claim 1, further comprising a cleaning mechanism for cleaning a film forming material attached to at least one of the mask holder or the vapor deposition mask attached to the mask holder.
  28.  前記マスクホルダー若しくはマスクホルダーに付設した前記蒸着マスクの少なくとも一方に付着した成膜材料を回収する材料回収機構を備えたことを特徴とする請求項1記載の蒸着装置。 The vapor deposition apparatus according to claim 1, further comprising a material recovery mechanism for recovering a film forming material attached to at least one of the mask holder or the vapor deposition mask attached to the mask holder.
  29.  前記基板と前記蒸着マスクとの間に、第二の蒸着マスクを配設したことを特徴とする請求項1記載の蒸着装置。 The vapor deposition apparatus according to claim 1, wherein a second vapor deposition mask is disposed between the substrate and the vapor deposition mask.
  30.  前記第二の蒸着マスクの第二のマスク開口部は、この第二の蒸着マスクより前記蒸発源側に位置する前記蒸着マスクの前記マスク開口部に比して、少なくとも前記基板の前記相対移動方向と直交する横方向の開口パターンは同一パターンに設けると共に、開口部形成ピッチは前記基板との距離の相違に対応して異なる形成ピッチとし、開口部幅は同一か幅狭くなるように設けたことを特徴とする請求項29記載の蒸着装置。 The second mask opening of the second vapor deposition mask has at least the relative movement direction of the substrate as compared with the mask opening of the vapor deposition mask located on the evaporation source side from the second vapor deposition mask. The opening pattern in the horizontal direction orthogonal to the opening pattern is provided in the same pattern, and the opening formation pitch is set to be different according to the difference in distance from the substrate, and the opening width is set to be the same or narrower. The vapor deposition apparatus of Claim 29 characterized by these.
  31.  前記第二の蒸着マスクは、これより前記蒸発源側に位置する前記蒸着マスクよりも線膨張係数が大である材料で形成したことを特徴とする請求項29記載の蒸着装置。 30. The vapor deposition apparatus according to claim 29, wherein the second vapor deposition mask is formed of a material having a larger linear expansion coefficient than the vapor deposition mask located on the evaporation source side.
  32.  前記成膜材料を、有機材料としたことを特徴とする請求項1記載の蒸着装置。 The vapor deposition apparatus according to claim 1, wherein the film forming material is an organic material.
  33.  前記請求項1~32のいずれか1項に記載の蒸着装置を用いて、前記基板上に前記蒸着マスクにより定められた成膜パターンの蒸着膜を形成することを特徴とする蒸着方法。 A vapor deposition method using the vapor deposition apparatus according to any one of claims 1 to 32 to form a vapor deposition film having a film formation pattern defined by the vapor deposition mask on the substrate.
PCT/JP2012/052735 2011-02-10 2012-02-07 Deposition apparatus and deposition method WO2012108426A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020137021171A KR101941305B1 (en) 2011-02-10 2012-02-07 Deposition apparatus and deposition method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-027900 2011-02-10
JP2011027900A JP5616812B2 (en) 2011-02-10 2011-02-10 Vapor deposition apparatus and vapor deposition method

Publications (1)

Publication Number Publication Date
WO2012108426A1 true WO2012108426A1 (en) 2012-08-16

Family

ID=46638639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052735 WO2012108426A1 (en) 2011-02-10 2012-02-07 Deposition apparatus and deposition method

Country Status (4)

Country Link
JP (1) JP5616812B2 (en)
KR (1) KR101941305B1 (en)
TW (1) TW201247912A (en)
WO (1) WO2012108426A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050501A1 (en) * 2012-09-25 2014-04-03 キヤノントッキ株式会社 Vapor deposition device and vapor deposition method
CN112289711A (en) * 2020-10-23 2021-01-29 西北工业大学 Low-temperature substrate heating table for growing semiconductor film and manufacturing method thereof
CN113337803A (en) * 2021-06-07 2021-09-03 京东方科技集团股份有限公司 Evaporation coating support plate, evaporation coating device and evaporation coating method
CN112289711B (en) * 2020-10-23 2024-04-26 西北工业大学 Low-temperature substrate heating table for growing semiconductor film and manufacturing method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5957322B2 (en) * 2012-07-19 2016-07-27 キヤノントッキ株式会社 Vapor deposition apparatus and vapor deposition method
JP6008731B2 (en) * 2012-12-18 2016-10-19 キヤノントッキ株式会社 Deposition equipment
JP5827965B2 (en) * 2013-02-05 2015-12-02 シャープ株式会社 Manufacturing method of display device
CN104233193A (en) * 2013-06-06 2014-12-24 上海和辉光电有限公司 Evaporation device and evaporation method
JP5856584B2 (en) * 2013-06-11 2016-02-10 シャープ株式会社 Limit plate unit, vapor deposition unit and vapor deposition apparatus
WO2014203632A1 (en) * 2013-06-21 2014-12-24 シャープ株式会社 Process for producing organic electroluminescent element, and organic electroluminescent display device
JP2016011438A (en) * 2014-06-27 2016-01-21 キヤノントッキ株式会社 Vapor deposition apparatus and vapor deposition mask
CN107532276A (en) * 2015-04-22 2018-01-02 夏普株式会社 Evaporation coating device and evaporation coating method
WO2017069036A1 (en) * 2015-10-20 2017-04-27 シャープ株式会社 Restriction unit, deposition device, method for producing deposition film, method for producing electroluminescent display device, and electroluminescent display device
CN109097728B (en) * 2018-09-26 2021-11-02 京东方科技集团股份有限公司 Mask plate, screen stretching method thereof and screen stretching device
KR102372878B1 (en) * 2019-01-10 2022-03-08 가부시키가이샤 아루박 deposition apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170200A (en) * 2008-01-15 2009-07-30 Sony Corp Method of manufacturing display device
JP2010270396A (en) * 2009-05-22 2010-12-02 Samsung Mobile Display Co Ltd Thin film deposition apparatus
JP2011047035A (en) * 2009-08-25 2011-03-10 Samsung Mobile Display Co Ltd Thin film vapor deposition apparatus and method for manufacturing organic emission display by using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080131587A1 (en) 2006-11-30 2008-06-05 Boroson Michael L Depositing organic material onto an oled substrate
JP5265407B2 (en) * 2009-02-13 2013-08-14 株式会社アルバック Vacuum deposition method
JP2013163837A (en) * 2012-02-09 2013-08-22 Canon Tokki Corp Vapor deposition apparatus, and method of forming film using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170200A (en) * 2008-01-15 2009-07-30 Sony Corp Method of manufacturing display device
JP2010270396A (en) * 2009-05-22 2010-12-02 Samsung Mobile Display Co Ltd Thin film deposition apparatus
JP2011047035A (en) * 2009-08-25 2011-03-10 Samsung Mobile Display Co Ltd Thin film vapor deposition apparatus and method for manufacturing organic emission display by using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050501A1 (en) * 2012-09-25 2014-04-03 キヤノントッキ株式会社 Vapor deposition device and vapor deposition method
CN112289711A (en) * 2020-10-23 2021-01-29 西北工业大学 Low-temperature substrate heating table for growing semiconductor film and manufacturing method thereof
CN112289711B (en) * 2020-10-23 2024-04-26 西北工业大学 Low-temperature substrate heating table for growing semiconductor film and manufacturing method thereof
CN113337803A (en) * 2021-06-07 2021-09-03 京东方科技集团股份有限公司 Evaporation coating support plate, evaporation coating device and evaporation coating method

Also Published As

Publication number Publication date
JP5616812B2 (en) 2014-10-29
KR101941305B1 (en) 2019-04-10
TW201247912A (en) 2012-12-01
JP2012167309A (en) 2012-09-06
KR20140018232A (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5616812B2 (en) Vapor deposition apparatus and vapor deposition method
JP5883230B2 (en) Vapor deposition apparatus and vapor deposition method
JP2012193391A5 (en)
JP5356210B2 (en) Mask assembly, manufacturing method thereof, and vapor deposition apparatus for flat panel display using the same
TWI671414B (en) Vapor deposition mask, vapor deposition mask preparation body, method for producing vapor deposition mask, and method for producing organic semiconductor device
TWI509095B (en) A manufacturing method of the imposition-type deposition mask and a manufacturing method of the resulting stencil sheet and an organic semiconductor device
TWI687315B (en) Vapor deposition mask, pattern manufacturing method, organic semiconductor element manufacturing method
US8882921B2 (en) Thin film deposition apparatus
JP5492120B2 (en) Evaporation source and vapor deposition equipment
TWI633197B (en) High-precision shadow-mask-deposition system and method therefor
JP2019516865A (en) High precision shadow mask deposition system and method thereof
KR102106333B1 (en) Mask assembly and method of fabricating organic light emitting display device using the same
JP2013055039A (en) Manufacturing method of el light-emitting device and vapor deposition device
US20100316801A1 (en) Thin film deposition apparatus
JP2013209697A (en) Film deposition apparatus and film deposition method
US20140033980A1 (en) Deposition apparatus
WO2012127993A1 (en) Vapor-deposition device and vapor-deposition method
WO2014050501A1 (en) Vapor deposition device and vapor deposition method
WO2012127957A1 (en) Vapor-deposition device and vapor-deposition method
JP6769692B2 (en) Method for manufacturing vapor deposition mask and method for manufacturing organic semiconductor devices
JP2012197467A5 (en)
CN109642313B (en) High-precision shadow mask deposition system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744676

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137021171

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12744676

Country of ref document: EP

Kind code of ref document: A1