WO2012108385A1 - Method for producing bisphenol compound - Google Patents

Method for producing bisphenol compound Download PDF

Info

Publication number
WO2012108385A1
WO2012108385A1 PCT/JP2012/052623 JP2012052623W WO2012108385A1 WO 2012108385 A1 WO2012108385 A1 WO 2012108385A1 JP 2012052623 W JP2012052623 W JP 2012052623W WO 2012108385 A1 WO2012108385 A1 WO 2012108385A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
bisphenol
reaction
phenol
strong acid
Prior art date
Application number
PCT/JP2012/052623
Other languages
French (fr)
Japanese (ja)
Inventor
功一 早志
英文 佐野
彩子 寺島
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to JP2012556876A priority Critical patent/JP6184696B2/en
Priority to KR1020157022606A priority patent/KR20150100963A/en
Priority to CN201280006554.1A priority patent/CN103328426B/en
Priority to KR1020137018572A priority patent/KR20130112927A/en
Publication of WO2012108385A1 publication Critical patent/WO2012108385A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • C07C39/16Bis-(hydroxyphenyl) alkanes; Tris-(hydroxyphenyl)alkanes

Definitions

  • the present invention relates to a method for producing a bisphenol compound. More specifically, in a method for producing a bisphenol compound from a phenol compound and a carbonyl compound in the presence of a cation exchanger having a strong acid group and 2- (2-mercaptoethyl) pyridine, the reaction raw material contains water at a specific concentration.
  • the present invention relates to a method for producing a bisphenol compound.
  • a bisphenol compound is generally produced by a condensation reaction between a phenol compound and a carbonyl compound in the presence of an acidic catalyst.
  • an acidic catalyst a mineral acid such as hydrochloric acid is also used, but industrially, a cation exchange resin having an acidic group such as sulfonic acid is widely used from the viewpoint of corrosion of the apparatus by the catalyst and cost.
  • a compound containing a thiol group or a protected thiol group (hereinafter sometimes abbreviated as “thiol compound”) may be allowed to react with a catalyst.
  • thiol compound a compound containing a thiol group or a protected thiol group
  • the co-catalyst thiol compound coexists with the catalyst as follows: (1) a method in which the thiol compound is added to the reaction raw material and supplied; and (2) a functional group capable of binding to a sulfonic acid group such as an amino group.
  • a sulfonic acid group of a sulfonic acid type cation exchange resin is modified with a thiol compound (for example, aminoalkanethiol compound, pyridinealkanethiol compound, etc.) contained.
  • the method of modifying the sulfonic acid type cation exchange resin with the thiol compound of (2) does not mix the thiol compound into the reaction product, and therefore the method of adding the thiol compound of (1) to the reaction raw material.
  • Various compounds such as aminoalkanethiol compounds and pyridinealkanethiol compounds are known as thiol compounds that can be used to modify the sulfonic acid type cation exchange resin.
  • the concentration of water contained in the reaction raw material is 0.2% by weight or more in the presence of a strongly acidic cation exchange resin catalyst. Then, since the conversion rate of the carbonyl compound which is a raw material falls, it is disclosed that it is unpreferable (refer patent document 1). In this document, it is described that it is preferable that water does not exist in the reaction system, and when the concentration is changed, the influence on impurities other than the produced bisphenol compound is not studied at all.
  • the reaction is carried out in the presence of a strongly acidic ion exchange resin catalyst modified with an alkyl-SH group such as cysteamine.
  • a strongly acidic ion exchange resin catalyst modified with an alkyl-SH group such as cysteamine.
  • the amount of water in the reaction raw material is adjusted by adjusting the amount of water in the presence of a strongly acidic ion exchange resin catalyst modified with a 4-pyridylethyl mercaptan compound. It is disclosed that the selectivity of '-bisphenol A is controlled (see Patent Document 3). Further, it is disclosed that the amount of water present in the reaction system is preferably 1 to 5% by weight of the feed solution. However, when such water is added to the reaction system, there is a problem that the reaction activity is remarkably lowered, and further, this document does not discuss any by-products generated during the production of the bisphenol compound.
  • An object of the present invention is to solve the above-mentioned problems, and reacting a phenol compound and a carbonyl compound in the presence of a cation exchanger having a strong acid group and 2- (2-mercaptoethyl) pyridine.
  • the object is to provide an industrially advantageous method capable of efficiently producing the desired bisphenol compound with high selectivity while suppressing the formation of by-products. is there.
  • the strong acid cation exchange resin catalyst modified with 2- (2-mercaptoethyl) pyridine used for the synthesis of bisphenol compound is a strong acid cation exchange resin catalyst modified with 4- (2-mercaptoethyl) pyridine.
  • the initial activity is almost equal or inferior, but it is known to produce a bisphenol compound with high selectivity while maintaining a high conversion rate over a long period of time (patent) (Ref. 4).
  • pattern a long period of time
  • the present inventors produce a bisphenol compound using a strong acid cation exchange resin catalyst modified with 2- (2-mercaptoethyl) pyridine
  • the water concentration in the reaction raw material is determined by converting the acetone conversion rate.
  • the present inventors have found that a bisphenol compound can be produced with high selectivity by increasing a minute amount such that the concentration does not reach a greatly decreasing concentration.
  • the present invention has been made based on these findings.
  • the present invention provides the following.
  • a method for producing a bisphenol compound in which a phenol compound and a carbonyl compound are reacted in the presence of a cation exchanger having a strong acid group and 2- (2-mercaptoethyl) pyridine, the phenol compound and the carbonyl compound A process for producing a bisphenol compound, characterized in that the concentration of water in the reaction raw material containing 0.05 to 0.05% by weight.
  • the cation exchanger having a strong acid group and the 2- (2-mercaptoethyl) pyridine at least a part of the strong acid group of the cation exchanger having a strong acid group is 2- (2-mercaptoethyl).
  • the cation exchanger having a strong acid group and the modified strong acid cation exchanger having a particle size of 30 to 650 ⁇ m account for 50% or more of the total [1] to [3 ]
  • the manufacturing method of the bisphenol compound in any one of.
  • the method of the present invention when a phenol compound and a carbonyl compound are reacted in the presence of a cation exchanger having a strong acid group and 2- (2-mercaptoethyl) pyridine, 0.05 wt.
  • a cation exchanger having a strong acid group and 2- (2-mercaptoethyl) pyridine 0.05 wt.
  • the indane compound here refers to p-isopropenylphenol cyclic dimer and isomers thereof.
  • a bisphenol compound can be continuously produced stably at a high conversion rate and high selectivity over a long period of time, which is extremely advantageous industrially.
  • FIG. 6 is a graph showing the relationship between the water content in the initial phenol solution and the acetone conversion when the reaction is carried out using a 2- (2-mercaptoethyl) pyridine-modified strong acidic cation exchange resin catalyst. Relationship between water content in initial phenol solution and total selectivity of bisphenol and 2,4 'isomer when reacted with 2- (2-mercaptoethyl) pyridine modified strongly acidic cation exchange resin catalyst catalyst It is a graph which shows. 3 is a graph showing the relationship between the water content in the initial phenol solution and the indane compound selectivity when the 2- (2-mercaptoethyl) pyridine-modified strong acidic cation exchange resin catalyst is used for the reaction.
  • the present invention relates to a process for producing a bisphenol compound in which a phenol compound and a carbonyl compound are reacted in the presence of a cation exchanger having a strong acid group and 2- (2-mercaptoethyl) pyridine.
  • a method for producing a bisphenol compound, characterized in that the concentration of water in the reaction raw material containing the compound is 0.05 to 0.5% by weight hereinafter sometimes referred to as “the production method of the present invention”) .
  • the bisphenol compound is produced by a condensation reaction between a phenol compound and a carbonyl compound.
  • a phenol compound means a compound having phenol as a partial structure.
  • the condensation reaction between a phenol compound and a carbonyl compound it is understood that the strong ortho-para orientation of the phenolic hydroxyl group, in particular the para orientation, is used. Therefore, the phenol compound used is a substituent at the ortho or para position.
  • the bisphenol compound which is a condensation reaction product is generally preferably a 4,4′-bisphenol compound from the viewpoint of its use, and from this point, a phenol compound having no substituent at the para position is preferable.
  • the substituent does not inhibit the ortho-para orientation of the phenolic hydroxyl group, and the use of the resulting bisphenol compound as long as it does not sterically hinder the condensation position of the carbonyl compound. It may be arbitrary depending on the physical properties. Typical examples of the substituent include a lower alkyl group having 1 to 4 carbon atoms. Moreover, the compound of the same substitution position can be used also about the phenol compound which substituted halogen atoms, such as a fluorine atom, a chlorine atom, and a bromine atom, instead of this substituent. The number of substituents may be one or more.
  • the phenol compound examples include phenol (unsubstituted phenol), o-cresol, m-cresol, 2,5-xylenol, 2,6-xylenol, 2,3,6-trimethylphenol, Examples include 2,6-di-tert-butylphenol, o-chlorophenol, m-chlorophenol, 2,5-dichlorophenol, and 2,6-dichlorophenol. Of these, phenol is particularly preferred. Although the manufacturing method of the said phenol compound has a well-known method used normally, the phenol compound collect
  • the above-mentioned phenolic compound (excluding the phenolic compound recovered within the bisphenol production process described later) can be used as it is as long as it has a high purity, but generally it is preferably used after purification.
  • the method for purifying the phenol compound is not particularly limited.
  • the phenol compound is reacted with an acidic catalyst such as a general cation exchanger having a strong acid group at 40 to 110 ° C. and contained in the phenol compound.
  • an acidic catalyst such as a general cation exchanger having a strong acid group at 40 to 110 ° C.
  • a method of removing heavy components by distilling after the impurities to be heavy are distilled.
  • the purified phenol compound is used as it is, but when water is contained in the phenol compound, it is generally preferable to use it after removing the water.
  • the carbonyl compound used in the production method of the present invention is not particularly limited, and specific examples include ketones having about 3 to 10 carbon atoms such as acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, cyclohexanone, and acetophenone, And aldehydes having about 1 to 6 carbon atoms such as formaldehyde, acetaldehyde, propionaldehyde and butyraldehyde. Of these, acetone is preferred.
  • bisphenol A useful as a raw material for polycarbonate resin and the like can be obtained, which is particularly preferable.
  • Examples of the method for producing the carbonyl compound include known methods that are generally used, and a carbonyl compound recovered in a bisphenol production process, which will be described in detail later, can also be used.
  • the molar ratio of the phenol compound and carbonyl compound used as a raw material for the condensation reaction is usually 10 to 40 mol, preferably 12 to 25 mol, with respect to 1 mol of the carbonyl compound.
  • the molar ratio of the phenol compound and carbonyl compound used as a raw material for the condensation reaction is usually 10 to 40 mol, preferably 12 to 25 mol, with respect to 1 mol of the carbonyl compound.
  • a cation exchanger having a strong acid group or a cation exchanger having a strong acid group obtained by modifying a part of the strong acid group with 2- (2-mercaptoethyl) pyridine is used as the acidic catalyst.
  • the cation exchanger having a strong acid group subjected to this modification is obtained by introducing a strong acid group such as a sulfonic acid group into a commonly used cation exchanger.
  • the exchange capacity (amount of strong acid group) as the cation exchanger having a strong acid group is usually 0.5 meq / mL or more, preferably 1.0 meq / mL or more per unit volume of the resin in the water state.
  • it is usually 3.0 meq / mL or less, preferably 2.0 meq / mL or less.
  • a dry resin it is usually 1.0 meq / g or more per unit weight, preferably 2.0 meq / g or more, and usually 6.0 meq / g or less, preferably 5.5 meq / g or less. is there.
  • it is usually 0.5 meq / g or more, preferably 1.0 meq / g or more, while usually 3.0 meq / g or less, preferably 2.0 meq / g. It is as follows. If this exchange capacity is too low, the catalytic activity is insufficient, and a cation exchanger having an excessively high exchange capacity is difficult to produce.
  • the exchange capacity of the cation exchanger having a strong acid group is, for example, “Diaion, Ion Exchange Resin / Synthetic Adsorbent Manual 1” (Mitsubishi Chemical Corporation, revised 4th edition, issued on October 31, 2007, 133). ⁇ Page 135) or a method according to this method.
  • the main form of the cation exchanger having a strong acid group used here includes a gel type and a porous type (porous type, high porous type, or macroporous type), and the bisphenol compound of the present invention. From the viewpoint of production cost, a gel type is preferable.
  • a porous type (a porous type, a high porous type, or a macroporous type) is also preferable from the viewpoint of ensuring substance diffusibility, resin durability, and strength.
  • the gel type includes a simple gel type copolymer and an expanded network type gel copolymer, both of which can be used.
  • the porous type is a porous copolymer, which can be used with any surface area, porosity, average pore diameter and the like.
  • a method for preparing a cation exchanger having a gel-type or porous-type strong acid group a conventionally known method can be used.
  • the size of the cation exchanger having a strong acid group used in the production method of the present invention (hereinafter sometimes referred to as “catalyst beads”) and the modified strong acid cation exchanger described below has an average particle size of Usually, it exists in the range of 0.2 mm or more and 2.0 mm or less, and a particle size distribution uniformity is 1.6 or less normally, Preferably it is 1.5 or less.
  • the catalyst beads used in the present invention and the modified strong acid cation exchanger described below are 50% or more of the whole, preferably 60% or more, more preferably 80% or more, most preferably 90% or more has a particle size of 30 to 650 ⁇ m.
  • the catalyst beads may be produced by any method as long as the catalyst beads having the size described above can be produced.
  • the following is a copolymerization reaction of a polymerizable monomer containing a styrene monomer and a crosslinkable monomer.
  • the gel type catalyst beads obtained in the above will be described in detail as an example.
  • the styrenic monomer that is a raw material for the gel-type catalyst beads is a monomer having an arbitrary substituent in a range that does not impair the function as an ion exchange resin on styrene or a benzene ring of styrene or a vinyl group of styrene, Polymers such as polyesters, polycarbonates, polyamides, polyolefins, poly (meth) acrylic acid esters, polyethers, polystyrenes, and macromonomers in which the ends of oligomers have a styryl structure may also be used.
  • “(meth) acryl” means “acryl” and “methacryl”. The same applies to “(meth) acryloyl” described later.
  • the styrene monomer is preferably a monomer represented by the following formula (1).
  • X 1 , X 2 and X 3 are each a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a halogen atom, an alkylsilyloxy group, a nitro group or a nitrile group, and Y is a hydrogen atom.
  • styrene have 1 to 4 carbon atoms.
  • styrene substituted with an alkyl group or a halogen atom Of these, styrene is most preferable as the styrene monomer.
  • these styrene-type monomers may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the crosslinkable monomer is a compound having two or more carbon-carbon double bonds copolymerizable with the styrene monomer in the molecule.
  • polyvinylbenzene such as divinylbenzene and trivinylbenzene, divinyltoluene and the like
  • Two or more benzene rings such as alkyldivinylbenzene, bis (vinylphenyl), bis (vinylphenyl) methane, bis (vinylphenyl) ethane, bis (vinylphenyl) propane, and bis (4-vinylphenyl) sulfone
  • Polymers such as polyester, polycarbonate, polyamide, polyolefin, poly (meth) acrylic ester, polyether, polystyrene, etc. Polymeric carbon-carbon double bonds such as styryl structure at both ends of the oligomer and (meth) acrylic structure It may be a macromonomer having Among these, divinylbenzene is preferable as the crosslinkable monomer. Depending on the divinylbenzene, ethylvinylbenzene (ethylstyrene) may be produced as a by-product when it is produced, and this divinylbenzene may be used in the present invention. can do. These crosslinkable monomers may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the polymerizable monomer for producing the gel-type catalyst beads includes the styrenic monomer and the crosslinkable monomer, but additionally contains other monomers that can be polymerized therewith as necessary. Also good.
  • Specific examples of such polymerizable monomers include polycyclic aromatic skeletons such as naphthalene, anthracene, and phenanthrene, such as vinylnaphthalene and vinylanthracene.
  • Vinyl monomers such as methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate; diene hydrocarbon compounds such as butadiene and isoprene; ⁇ -olefins such as 1-pentene and 1-hexene ; (Meth) acrylonitrile and the like. These may be used alone or in combination of two or more.
  • the amount used is usually 50 mol% or less with respect to the styrene monomer, preferably It is 20 mol% or less, and particularly preferably 10 mol% or less. If the amount of the third monomer used is too large, the amount of strong acid groups per unit weight that can be introduced into the resulting copolymer decreases, and the desired catalytic activity may not be obtained.
  • the degree of crosslinking of the gel-type beads which are a copolymer obtained by polymerizing a polymerizable monomer containing a styrene monomer and a crosslinking monomer, is preferably 1% or more, more preferably 2% or more, and preferably 8% or less. 5% or less is more preferable.
  • the degree of cross-linking here refers to the concentration of the cross-linkable monomer in the polymerizable monomer to be subjected to polymerization on the weight basis, and is the same as the definition used in this field.
  • the degree of crosslinking is too small, it will be difficult to maintain the strength of the resulting catalyst beads and modified strong acid type cation exchanger, and when used as a catalyst, the phenolic compound or phenolic compound and water will be used before use. Swelling or shrinking when conditioning by contacting with a liquid mixture or the like causes crushing of catalyst beads and modified strong acid type cation exchanger, etc., which is not preferable.
  • the degree of crosslinking is too large, the resulting catalyst beads and modified strong acid type cation exchanger will not easily swell, so that diffusion resistance in the catalyst beads and modified strong acid type cation exchanger will easily occur, and catalytic activity will be increased. This is not preferable because it causes a significant decrease in.
  • the copolymerization reaction of a polymerizable monomer containing a styrene monomer and a crosslinkable monomer can be performed based on a known technique using a radical polymerization initiator.
  • a radical polymerization initiator one or more of benzoyl peroxide, lauroyl peroxide, t-butyl hydroperoxide, azobisisobutyronitrile and the like are used.
  • the weight of the polymerizable monomer (total monomer) Weight) to 0.05 wt% or more and 5 wt% or less.
  • the polymerization mode is not particularly limited, and can be carried out in various modes such as solution polymerization, emulsion polymerization, suspension polymerization, etc.
  • a sieve is used in order to keep the uniformity coefficient and average particle size described below within a specified range. It is also possible to classify by.
  • the well-known method of obtaining the spherical copolymer of a uniform particle size is applied suitably. For example, prior to polymerization, a method is known in which an oil-in-water dispersion in which monomer-containing droplets of uniform particle size are dispersed in a separate apparatus is prepared, and this dispersion is charged into a polymerization vessel and polymerized.
  • a nozzle plate having an upwardly formed ejection hole is provided at the bottom of a water-filled container, and the monomer-containing liquid is supplied into the water through this ejection hole.
  • a method of dispersing the monomer-containing droplets in water for example, see Japanese Patent Application Laid-Open No. 2003-252908 and Japanese Patent No. 3899786) can be used. This method is employed in the embodiments described later.
  • the polymerization temperature in the copolymerization reaction is usually room temperature (about 18 to 25 ° C.) or higher, preferably 40 ° C. or higher, more preferably 70 ° C. or higher, usually 250 ° C. or lower, preferably 150 ° C. or lower, more preferably. Is 140 ° C. or lower. If the polymerization temperature is too high, depolymerization occurs at the same time, and the degree of polymerization completion is reduced. If the polymerization temperature is too low, the degree of polymerization completion will be insufficient.
  • the polymerization atmosphere can be carried out under air or an inert gas, and nitrogen, carbon dioxide, argon or the like can be used as the inert gas.
  • the method for introducing strong acid groups into the gel-type beads, which are copolymers obtained by the above copolymerization reaction is not particularly limited, and can be performed according to a conventional method.
  • the strong acid group is preferably a sulfonic acid group, and the method of introducing a sulfonic acid group (sulfonation) is, for example, in the absence of an organic solvent, or benzene, toluene, xylene, nitrobenzene, chlorobenzene, tetrachloromethane.
  • the gel-type beads as a copolymer are reacted with a sulfonating agent such as sulfuric acid, chlorosulfonic acid or fuming sulfuric acid.
  • a sulfonating agent such as sulfuric acid, chlorosulfonic acid or fuming sulfuric acid.
  • an organic solvent and a sulfonating agent all may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the reaction temperature at this time is usually about 0 to 150 ° C., and is appropriately selected according to the sulfonating agent and the organic solvent to be used.
  • the cation exchanger having a strong acid group is obtained by separating the gel-type beads into which the strong acid group has been introduced by washing, isolation or the like according to a conventional method.
  • the catalyst beads contained therein or the modified strong acid type cation exchanger described below has a particle size of 30 to 600 ⁇ m. Those that occupy 50% or more are preferably used.
  • the catalyst beads or the modified strong acid cation exchanger described below has a particle size of 30 to 650 ⁇ m is 50% or more of the total, excellent performance in terms of catalyst activity and desired bisphenol compound selectivity Is obtained.
  • the catalyst beads or the modified strong acid type cation exchanger described below has a particle size of 30 to 650 ⁇ m is less than 50% of the total, the catalyst activity is lowered due to diffusion resistance in the catalyst particles. At the same time, the sequential reaction within the catalyst particles causes a decrease in selectivity.
  • the average particle size of the catalyst beads used in the production method of the present invention or the modified strong acid cation exchanger described below is smaller than 100 ⁇ m, it is necessary to remarkably increase the supply pressure of the raw material to the catalyst layer. Since the force applied to the catalyst increases and the catalyst particles are easily worn and refined, the life of the catalyst packed layer is shortened. In addition, when the raw material supply pressure is increased, the amount of energy consumption is increased and the economic efficiency of the process is deteriorated. Therefore, the average particle size is preferably 100 ⁇ m or more, and the pressure in the catalyst packed bed when used in the fixed bed flow system Since the loss can be suppressed to a low level, the average particle size is more preferably 300 ⁇ m or more.
  • the particle size uniformity coefficient of the catalyst beads or the modified strong acid cation exchanger described below is 1.10 or less, the pressure loss in the catalyst packed bed when used in a fixed bed flow system is low. Can be suppressed. Therefore, when using it on a fixed bed, it is preferable that the uniformity coefficient is 1.05 or less because the same effect is further improved.
  • the uniformity coefficient is greater than 1.10, it is necessary to remarkably increase the supply pressure of the raw material to the catalyst layer, the force applied to the catalyst particles is increased, and the catalyst particles are likely to be worn and refined. The life of the catalyst packed bed is shortened. Further, when the raw material supply pressure is increased, the energy consumption is increased correspondingly, and the economic efficiency of the process is deteriorated.
  • the average particle size and the particle size distribution uniformity referred to in this specification for the resin are expressed by the following formulas described in Diaion Manual 1 (Mitsubishi Chemical Corporation, 4th edition, 2007, pages 140 to 142). It is defined by the calculated value.
  • Average particle diameter diameter corresponding to 50% of the cumulative volume of resin
  • Uniformity coefficient diameter corresponding to the cumulative volume on the large particle side corresponding to 40% / diameter corresponding to the cumulative volume on the large particle side corresponding to 90% It can also be used as the value of the sieving method by converting the measured value obtained by using a method other than the centrifugal sedimentation method, Coulter method, image analysis method, laser diffraction scattering method and the like.
  • the reaction is carried out in the presence of the catalyst beads and the co-catalyst 2- (2-mercaptoethyl) pyridine.
  • 2- (2-mercaptoethyl) pyridine is a compound in which the 2-position of the pyridine ring is substituted with a mercaptoethyl group.
  • the 2- (2-mercaptoethyl) pyridine is represented by a commercially available product or a method described in JP-A No. 2002-003475, JP-A No. 2002-220373, JP-A No. 2005-170820, and the like. Any of those produced according to known methods may be used.
  • the catalyst beads and the co-catalyst 2- (2-mercaptoethyl) pyridine may be present individually in the reaction system, or at least a part of the catalyst beads is 2 It is also preferable to use a compound protected by-(2-mercaptoethyl) pyridine (sometimes referred to as “modified strong acid type cation exchanger” in the present specification) in the reaction system.
  • a method for protecting the strong acid group of the catalyst beads with 2- (2-mercaptoethyl) pyridine is a known method, for example, according to a method disclosed in JP-A-11-246458, water, alcohol, A solution in which 2- (2-mercaptoethyl) pyridine is dissolved in a solvent such as ketone, ether and phenol, or 2- (2-mercaptoethyl) pyridine not diluted with the solvent is directly dispersed in the solvent. It is performed by a method of mixing and stirring by a method such as dropping to the catalyst beads.
  • a part of the strong acid group of the cation exchanger having a strong acid group reacts (neutralizes) with the thiol compound and is denatured by ionic bonding.
  • the modified strong acid type cation exchanger one in which 3 to 30%, preferably 3 to 20%, of the strong acid group is protected with 2- (2-mercaptoethyl) pyridine is used.
  • the catalyst beads and the modified strong acid type cation exchanger become an obstacle to the reaction when moisture remains in the resin, and the present invention adjusts the moisture concentration in the reaction raw material. Since it is characteristic to carry out, it is preferable to remove the water
  • the catalyst beads and 2- (2-mercaptoethyl) pyridine or the modified strong acid cation exchanger are charged into a reactor, and a phenol compound and a carbonyl compound are supplied to the reactor. These are reacted to produce a bisphenol compound.
  • the phenol compound and the carbonyl compound may be reacted in the modified strong acid type cation exchanger or in a reactor packed with the catalyst beads and 2- (2-mercaptoethyl) pyridine as an acidic catalyst.
  • a cation exchanger having a strong acid group filled with a screen or the like provided at least in either the upper part or the lower part of the apparatus, if necessary, or The modified strong acid cation exchanger may be allowed to flow only through the reaction solution without flowing out of the apparatus.
  • the reaction solution may flow from the upper part to the lower part of the apparatus (down flow type) or may flow from the lower part to the upper part of the apparatus (up flow type).
  • a phenol compound and a carbonyl compound are continuously or batchwise supplied to a reactor packed with a modified strong acid cation exchanger or the catalyst beads and 2- (2-mercaptoethyl) pyridine as an acidic catalyst.
  • a reaction system a batch system is also known, but by reacting continuously, a bisphenol compound can be produced more efficiently than when the reaction is performed in a batch system.
  • the phenol compound and the carbonyl compound may be supplied separately to the reactor, or may be mixed and supplied.
  • the mixing ratio of the phenol compound and the carbonyl compound is as described above.
  • the concentration of water in all the reaction raw materials is adjusted to 0.05 to 0.5% by weight.
  • the concentration of the water is more preferably 0.1 to 0.3% by weight, and most preferably 0.15 to 0.25% by weight.
  • a method of adding an appropriate amount of water using a raw material not containing water is preferable.
  • it is desirable to remove moisture in the phenol compound as a raw material before the reaction. Examples of the method for removing water include azeotropic distillation as described in the method for producing a phenol compound. Even when a raw material containing water is used, water can be added and used so that the water concentration of the raw material becomes the above concentration.
  • the reaction temperature is usually performed at a temperature at which the reaction solution can exist in a liquid state without solidifying.
  • the phenol compound is phenol, it is preferably 40 ° C. or higher, 50 ° C. or higher, more preferably 60 ° C. or higher.
  • the higher the reaction temperature, the more advantageous the reaction rate, but the maximum temperature in the reactor is preferably 120 from the viewpoint of the heat resistance temperature of the cation exchanger having a strong acid group or the modified strong acid type cation exchanger. It is desirable to carry out the reaction under the conditions of not higher than 100 ° C., more preferably not higher than 100 ° C., still more preferably not higher than 90 ° C.
  • the strong acid group such as a sulfonic acid group is eliminated due to partial decomposition even at a temperature lower than the heat resistance temperature of the cation exchanger having the strong acid group or the modified strong acid cation exchanger. From such a viewpoint, the lowest possible temperature is preferable, but if the temperature is too low, the produced bisphenol compound may solidify.
  • the reaction time varies depending on conditions such as the amount of catalyst used, reaction temperature, etc., in the method of performing the reaction continuously, it is usually based on LHSV (liquid hydrated catalyst beads or modified strong acid type cation exchange resin as a standard. - hourly space velocity) is performed in 0.05 ⁇ 20 hr -1, preferably at LHSV0.2 ⁇ 10hr -1. In the batch reaction, the reaction is performed in about 0.1 to 20 hours. In addition to a large excess of phenol, the reaction solution produced by the above method contains unreacted raw materials, impurities generated during the reaction, etc., so the target bisphenol compound is extracted from these solutions. It is necessary to take it out.
  • the method for separating and purifying the bisphenol compound as the target substance from the reaction mixture is not particularly limited, and is performed according to a known method. The case where the target substance is bisphenol A will be described below as an example.
  • the reaction mixture obtained by the reaction is separated into a component containing bisphenol A and phenol and a low-boiling component containing water, unreacted acetone, etc. produced as a by-product in the reaction (hereinafter referred to as this).
  • low boiling point component separation step is preferably performed by a method of separating the low boiling point component by distillation under reduced pressure, and the low boiling point component may contain phenol or the like.
  • the component containing bisphenol A and phenol can adjust the concentration of bisphenol A to a desired concentration by removing phenol by distillation or adding phenol as necessary.
  • the phenol compound such as phenol recovered by the distillation or the like can be recycled and used as a raw material for the bisphenol compound production method.
  • a phenol solution obtained by separating a target bisphenol compound from a reaction product liquid (a method of solidifying a bisphenol compound described below by crystallization and solid-liquid separation in a solid-liquid separation step)
  • this liquid is generally called “mother liquor”, but there are other methods such as distillation, which are not limited thereto.
  • the phenol compound purified as described above should be used as a cleaning solution for the crystals obtained in the solid-liquid separation step described below, and recycled to the reactor together with the mother liquor in a desired manner depending on the process. You can also.
  • the phenol compound is phenol
  • a solution containing at least one of bisphenol A, 2,4′-isomer, and p-isopropylphenol is supplied to the reactor as a recycling liquid containing phenol.
  • the amount is usually 0.3 to 20 parts by weight of bisphenol A per 100 parts by weight of phenol.
  • the 2,4'-isomer is usually 0.3 to 10 parts by weight with respect to 100 parts by weight of phenol.
  • p-isopropylphenol is usually 0.1 to 1.0 part by weight per 100 parts by weight of phenol.
  • the total amount of bisphenol A, 2,4'-isomer and p-isopropylphenol is usually 1 to 35 parts by weight per 100 parts by weight of phenol.
  • the amount is usually 0.3 to 10 parts by weight with respect to 100 parts by weight of phenol.
  • the total amount of bisphenol A, 2,4'-isomer, p-isopropylphenol, and other structurally unknown substances is usually 1 to 45 parts by weight based on 100 parts by weight of phenol.
  • concentration of these compounds with respect to phenol is to be lower than this lower limit, an additional purification step is required, which is not preferable. If these compounds are contained in excess of the upper limit with respect to phenol, bisphenol A, 2,4′-isomer, and adduct of bisphenol A and phenol precipitate as crystals in the reaction system, and the operation is continued. May become difficult. Moreover, when manufacturing bisphenol A as a product, refinement
  • the low boiling point component obtained in the low boiling point component separation step separates and recovers unreacted acetone by the acetone circulation step, and circulates the collected acetone (hereinafter sometimes referred to as recovered acetone) to the reaction step. Can do.
  • the recovered acetone contains a trace amount of lower alcohol as an impurity.
  • the lower alcohol means an alcohol having 1 to 8 carbon atoms, and is typically methanol.
  • the methanol concentration in the total acetone including unreacted acetone and recovered acetone supplied to the reaction step is desirably 1,000 ppm or less, preferably 500 ppm or less, more preferably 300 ppm or less.
  • the reaction mixture obtained by the reaction through the low boiling point component separation step is subjected to a crystallization step for obtaining a slurry containing crystals of an adduct of bisphenol A and phenol.
  • concentration of bisphenol A which is a component containing bisphenol A and phenol used in the crystallization step, is preferably 10 to 40% from the viewpoint of ease of handling of the resulting slurry.
  • crystallization method a method of directly cooling a component containing bisphenol A and phenol, a method of cooling by mixing other solvent such as water and evaporating the solvent, and further removing phenol and concentrating.
  • crystallization may be performed once or twice or more.
  • the slurry obtained in the crystallization step is subjected to solid-liquid separation into adduct crystals and mother liquor by vacuum filtration, pressure filtration, centrifugal filtration, etc., and the adduct crystals of bisphenol A and phenol are recovered ( Hereinafter, this may be referred to as a “solid-liquid separation step”).
  • bisphenol A crystals can also be obtained directly by crystallization.
  • high purity molten bisphenol A is obtained.
  • the removed phenol is purified as desired, and can be used for reaction, washing of crystals of the adduct obtained in the solid-liquid separation step, and the like.
  • the obtained high purity molten bisphenol A is solidified in the granulation step.
  • a method of obtaining small spherical bisphenol A prills by injecting molten bisphenol A from a nozzle and bringing it into contact with a cooling gas is simple and preferred.
  • At least a part of the mother liquor separated in the solid-liquid separation step can be treated in the impurity treatment step.
  • it is economical to mix an alkali or acid, heat and then distill to separate light and heavy components, and use the light component for the reaction after recombination treatment with an acid catalyst or the like.
  • it is preferable.
  • by purging the heavy component out of the system accumulation of impurities can be prevented and the purity of the product can be improved.
  • the recovery rate of bisphenol A can also be improved by crystallization after isomerization of at least a part of the mother liquor using an acid catalyst.
  • the 2,4-isomer contained in the mother liquor can be recovered as bisphenol A by a method such as isomerization, but impurities such as indane compounds are difficult to recover as bisphenol A once produced. Can only be removed by purging.
  • impurities such as indane compounds are difficult to recover as bisphenol A once produced. Can only be removed by purging.
  • Example 1 (1) Production of copolymer (gel-type beads) Using a droplet production apparatus and a polymerization reaction apparatus with an underwater speaker attached as a vibration apparatus shown in FIG. Hereinafter, it may be referred to as “copolymer”).
  • the droplet manufacturing apparatus 1 includes a droplet manufacturing tank 3 that holds an aqueous medium 2 that forms a continuous phase, a hydrophobic liquid storage tank 5 that holds a hydrophobic liquid 4 that is immiscible with the aqueous medium 2, and a hydrophobic liquid storage tank.
  • a hydrophobic liquid supply pipe 6 for supplying the hydrophobic liquid 4 stored in 5 to the droplet production tank 3.
  • the droplet manufacturing apparatus 1 is in contact with the aqueous medium 2 and includes a nozzle member 7 having an ejection hole 11 for ejecting the hydrophobic liquid 4 supplied from the hydrophobic liquid supply pipe 6, and the inside of the droplet manufacturing tank 3.
  • An underwater speaker (underwater acoustic device) 8 which is a vibration means for mechanically vibrating the aqueous medium 2, an aqueous medium storage tank 9 for storing the aqueous medium 2, and the aqueous medium 2 stored in the aqueous medium storage tank 9.
  • an aqueous medium supply pipe 10 for supplying the liquid to the droplet production tank 3.
  • reference numeral 12 denotes a hydrophobic liquid ejection storage tank
  • reference numerals 13 and 14 denote a supply pump for the hydrophobic liquid and the aqueous medium, respectively.
  • the polymerization reaction device 16 in FIG. 1 is a polymerization in which the droplet 15 in the droplet production tank 3 of the droplet production device 1 is transferred together with the aqueous medium 2 and the polymerization reaction is performed without coalescing and crushing the droplet 15. It has a reaction tank 17 and a hydrophobic liquid droplet transfer pipe 18 that transfers the liquid droplet 15 from the droplet production tank 3 together with the aqueous medium 2 to the polymerization reaction tank 17 without fusing and crushing.
  • the droplet is transferred from the hydrophobic liquid storage tank 5 through the hydrophobic liquid supply pipe 6 to the aqueous medium 2 that is held in the droplet manufacturing tank 3 to form a continuous phase.
  • the hydrophobic liquid 4 can be ejected from the ejection holes 11 provided in the nozzle member 7 to form an ejection flow of the hydrophobic liquid 4.
  • the aqueous medium 2 side is vibrated by, for example, an underwater speaker 8 to break the jet flow into droplets 15 of a hydrophobic liquid having a uniform particle diameter, and the aqueous medium storage tank 9
  • a flow of the aqueous medium 2 can be formed in the droplet production tank 3 by supplying the aqueous medium 2 stored in the droplet production tank 3 by the supply pump 14.
  • the droplet 15 of the hydrophobic liquid thus made can be moved.
  • a hydrophobic liquid ejection storage tank 12 exists in the lower part inside the droplet production tank 3, and a nozzle having an ejection hole 11 that opens toward the aqueous medium 2 and ejects the hydrophobic liquid 4 in the upper part thereof.
  • a member 7 is attached.
  • the hydrophobic liquid 4 supplied by the supply pump 13 from the hydrophobic liquid storage tank 5 through the hydrophobic liquid supply pipe 6 is stored in the liquid discharge storage tank 12, and the ejection holes provided in the nozzle member 7. 11 is ejected straight upward.
  • a plurality of ejection holes 11 for the hydrophobic liquid 4 are arranged in the nozzle member 7 at a predetermined interval.
  • the diameter of the ejection hole 11 is set according to a desired droplet size. Since the droplet production tank 3 is connected to the polymerization reaction tank 17 by a droplet transfer pipe 18, droplet production formed by supplying the aqueous medium 2 from the aqueous medium storage tank 9 into the droplet production tank 3. Due to the flow of the aqueous medium 2 in the tank 3, the hydrophobic liquid droplets 15 produced in the droplet production tank 3 are continuously transferred to the polymerization reaction tank 17 together with the aqueous medium 2 and used for the polymerization reaction. .
  • an aqueous solution containing 0.05% by weight of polyvinyl alcohol was filled from the aqueous medium storage tank 9 into the droplet production tank 3 and the polymerization reaction tank 17.
  • the polyvinyl alcohol aqueous solution was heated to 40 ° C. and held until the polymerization reaction started.
  • the generated droplets 15 were transferred to the polymerization reaction tank 17 along with the flow of the aqueous medium 2.
  • the mixture is polymerized by heating at 75 ° C. for 8 hours while stirring at a rotation speed that does not coalesce or crush the droplets 15 in the polymerization reaction tank 17 (crosslinking degree 4%). It was.
  • the obtained copolymer slurry was subjected to solid-liquid separation using a centrifuge, and recovered without containing a polyvinyl alcohol aqueous solution.
  • the obtained copolymer was spherical particles having an average particle diameter of 0.29 mm and a uniformity coefficient of 1.02.
  • the average particle size and uniformity coefficient of this copolymer are “Diaion, Ion Exchange Resin / Synthetic Adsorbent Manual 1” (Mitsubishi Chemical Corporation, 4th revised edition, published on October 31, 2007, pages 140 to 141). ) was calculated from the particle size distribution measured by the sieving method described in the following formula.
  • Average particle diameter diameter corresponding to 50% of the cumulative volume of resin
  • Uniformity coefficient diameter corresponding to the cumulative volume on the large particle side corresponding to 40% / diameter corresponding to the cumulative volume on the large particle side corresponding to 90%
  • the exchange capacity, average particle size, uniformity coefficient, and catalyst bead content with a particle size of 30 to 650 ⁇ m were determined for the strongly acidic cation exchange resin obtained, and the results are shown in Table 1.
  • the content of catalyst beads having a particle size of 30 to 650 ⁇ m was calculated from the particle size distribution obtained by the sieving method as in the case of the copolymer.
  • the modification rate is determined by the amount of the strongly acidic cation exchange resin used for modification, the amount of the modifier (2- (2-mercaptoethyl) pyridine) added, and the sulfone in the strongly acidic cation exchange resin determined by titration. It calculated
  • the amount of the sulfonic acid group in the strongly acidic cation exchange resin corresponds to the exchange capacity.
  • Modification rate (%) [(number of moles of added cocatalyst (mmol)) / [(amount of sulfonic acid group in gel-type strongly acidic cation exchange resin (meq / g-wet state) ⁇ used for modification) Weight of gel-type strongly acidic cation exchange resin (g-wet state)]] ⁇ 100
  • the reaction solution was collected 5 hours after the start of the reaction. Moreover, each composition density
  • Example 2 In the production of (4) bisphenol compound in Example 1, the reaction was carried out in the same manner as in Example 1 except that the water content in the reaction raw material was changed to 0.2% by weight. Rate, the total selectivity of bisphenol A and the 2,4 ′ isomer, and the selectivity of the indane compound. The results are shown in Table 2.
  • Example 3 In the production of the bisphenol compound of Example 1 (4), the water content in the reaction raw material was changed to 0.2% by weight, and the amount of phenol with respect to acetone was 13 times in molar ratio, which was the same as Example 1. In the same manner as in Example 1, the acetone conversion rate, the total selectivity of bisphenol A and the 2,4 ′ isomer, and the selectivity of the indane compound were determined. The results are shown in Table 2.
  • Example 3 Production of bisphenol compound
  • 2- (2-mercaptoethyl) pyridine-modified strong acid type cation exchange resin 4- (2-mercaptoethyl) pyridine-modified strong acid type cation obtained above was used.
  • an ion exchange resin the reaction is carried out in the same manner as in Example 1.
  • the acetone conversion, the total selectivity of bisphenol A and the 2,4 ′ isomer, and the selectivity of the indane compound are determined. Asked. The results are shown in Table 3 and FIG. As is apparent from FIG.
  • the catalyst modified with 2- (2-mercaptoethyl) pyridine is more indane compound than the catalyst modified with 4- (2-mercaptoethyl) pyridine.
  • the selectivity was low, and from Table 2, it was found that the water concentration in the reaction raw material was 0.2% by weight or more, and in particular, the effect of suppressing the formation of indane compounds was high.
  • Example 4 2- (2-Mercaptoethyl) pyridine-modified strongly acidic cation exchange resin catalyst (modified rate: 17.2%) 7 prepared in the same manner as in Example 1 using the gel-type catalyst beads produced in Example 1 5 mL was packed in a stainless steel column having an inner diameter of 1 cm and a total length of 44 cm. Phenol at 60 ° C.
  • Example 5 In the same manner as in Example 1 except that a gel type strongly acidic cation exchange resin (trade name: Diaion (registered trademark) SK104) manufactured by Mitsubishi Chemical Corporation was used as the gel type catalyst beads. 7.5 mL of the prepared 2- (2-mercaptoethyl) pyridine-modified strong acidic cation exchange resin catalyst (modification rate 15.8%) was packed in a stainless steel column having an inner diameter of 1 cm and a total length of 44 cm. Phenol at 60 ° C.
  • a gel type strongly acidic cation exchange resin trade name: Diaion (registered trademark) SK104
  • Example 6 2- (2-mercaptoethyl) pyridine-modified strongly acidic cation exchange resin catalyst (modified rate 16%) 3 g-wet prepared in the same manner as in Example 1 using the gel-type catalyst beads produced in Example 1 The state was filled in a glass column with a jacket having an inner diameter of 1 cm and a total length of 10 cm, and hot water at 70 ° C. was circulated through the jacket part. Phenol at 70 ° C. was passed through the top of the reactor filled with the catalyst at 1.5 mL / min for 1.5 hours to completely replace the moisture in the catalyst with phenol, and then phenol with a water content of 0.43% by weight.
  • Example 7 In Example 6, the reaction was conducted in the same manner as in Example 6 except that a phenol / acetone mixed solution (phenol / acetone molar ratio 13) having a water content of 0.07% by weight was used. The total selectivity of bisphenol A and the 2,4 ′ isomer and the selectivity (%) of the indane compound were calculated. The results are shown in Table 4.
  • Example 6 the reaction was carried out in the same manner as in Example 6 except that a phenol / acetone mixed solution (phenol / acetone molar ratio 13) having a water content of 0.03% by weight was used. The total selectivity of bisphenol A and the 2,4 ′ isomer and the selectivity (%) of the indane compound were calculated. The results are shown in Table 4.
  • Example 2 Using the gel-type catalyst beads used in Example 5, a 4- (2-mercaptoethyl) pyridine-modified strongly acidic cation exchange resin catalyst (modification rate 15%) prepared in the same manner as in Example 5, In Example 6, the reaction was performed in the same manner as in Example 6 except that a phenol / acetone mixed solution (phenol / acetone molar ratio 13) having a water content of 0.06% by weight was used. The total selectivity of bisphenol A and the 2,4 ′ isomer and the selectivity (%) of the indane compound were calculated. The results are shown in Table 4.
  • Example 8 Using the gel-type catalyst beads produced in Example 1, a 2- (2-mercaptoethyl) pyridine-modified strong acidic cation exchange resin catalyst (modification rate 5%) prepared in the same manner as in Example 1, In Example 6, the reaction was carried out in the same manner as in Example 6 except that a phenol / acetone mixed solution (phenol / acetone molar ratio of 13) having a water content of 0.05% by weight was used. The total selectivity of bisphenol A and the 2,4 ′ isomer and the selectivity (%) of the indane compound were calculated. The results are shown in Table 4.
  • Example 9 In Example 6, the reaction was conducted in the same manner as in Example 6 except that a phenol / acetone mixed solution (phenol / acetone molar ratio 25) having a water content of 0.05% by weight was used. The total selectivity of bisphenol A and the 2,4 ′ isomer and the selectivity (%) of the indane compound were calculated. The results are shown in Table 5.
  • Example 6 the reaction was carried out in the same manner as in Example 6 except that a phenol / acetone mixed solution (phenol / acetone molar ratio 7) having a water content of 0.07% by weight was used.
  • the total selectivity of bisphenol A and the 2,4 ′ isomer and the selectivity (%) of the indane compound were calculated.
  • the results are shown in Table 5. As is apparent from Table 5, it was found that when the phenol / acetone ratio was 10 or less, the acetone conversion rate was lowered and the selectivity of the indane compound was also raised.
  • Example 10 In Example 6, 75 ° C. warm water was passed through the jacket portion, and a phenol / acetone mixed solution (phenol / acetone molar ratio 13) having a water content of 0.43% by weight was added from the top of the reactor at 75 ° C. at 3 mL / min. The reaction was carried out in the same manner as in Example 6 except that the reaction was carried out continuously by downflow. As in Example 6, the conversion of acetone and the sum of bisphenol A and 2,4 ′ isomer were obtained. And the selectivity (%) of the indane compound were calculated. The results are shown in Table 6.
  • Example 11 In Example 6, 80 ° C. warm water was circulated through the jacket portion, and a phenol / acetone mixed solution (phenol / acetone molar ratio 13) having a water content of 0.43% by weight was added from the top of the reactor at 80 ° C. at 3 mL / min. The reaction was carried out in the same manner as in Example 6 except that the reaction was carried out continuously by downflow. As in Example 6, the conversion of acetone and the sum of bisphenol A and 2,4 ′ isomer were obtained. And the selectivity (%) of the indane compound were calculated. The results are shown in Table 6. As is clear from Table 6, it was found that even when the reaction temperature was 75 ° C. and 80 ° C., the selectivity of the indane compound was not affected as compared with the case of reaction at 70 ° C.

Abstract

The present invention provides a method for producing a bisphenol compound by reacting a phenol compound and a carbonyl compound in the presence of a cation exchanger having a strongly acidic group and 2-(2-mercaptoethyl)pyridine, the production method being characterized in that the concentration of water in the reaction raw material that contains the phenol compound and the carbonyl compound is 0.05 to 0.5 wt.%.

Description

ビスフェノール化合物の製造方法Method for producing bisphenol compound
 本発明は、ビスフェノール化合物の製造方法に関する。更に詳しくは、強酸基を有する陽イオン交換体及び2-(2-メルカプトエチル)ピリジンの存在下、フェノール化合物とカルボニル化合物からビスフェノール化合物を製造する方法において、反応原料中に特定濃度の水を含ませることを特徴とするビスフェノール化合物の製造方法に関する。 The present invention relates to a method for producing a bisphenol compound. More specifically, in a method for producing a bisphenol compound from a phenol compound and a carbonyl compound in the presence of a cation exchanger having a strong acid group and 2- (2-mercaptoethyl) pyridine, the reaction raw material contains water at a specific concentration. The present invention relates to a method for producing a bisphenol compound.
 ビスフェノール化合物は一般に、酸性触媒存在下、フェノール化合物とカルボニル化合物との縮合反応により製造される。酸性触媒としては、塩酸等の鉱酸も使用されるが、触媒による装置の腐食やコストの面から、工業的にはスルホン酸のような酸性基を有する陽イオン交換樹脂が汎用されている。また、転化率および選択率等の向上を目的として、チオール基または保護されたチオール基を含有する化合物(以下、「チオール化合物」と略記することがある)を触媒と共存させて反応させることが知られている。 A bisphenol compound is generally produced by a condensation reaction between a phenol compound and a carbonyl compound in the presence of an acidic catalyst. As the acidic catalyst, a mineral acid such as hydrochloric acid is also used, but industrially, a cation exchange resin having an acidic group such as sulfonic acid is widely used from the viewpoint of corrosion of the apparatus by the catalyst and cost. In addition, for the purpose of improving the conversion rate, selectivity, etc., a compound containing a thiol group or a protected thiol group (hereinafter sometimes abbreviated as “thiol compound”) may be allowed to react with a catalyst. Are known.
 助触媒のチオール化合物を触媒と共存させる方法としては、(1)該チオール化合物を反応原料中に添加して供給する方法と、(2)アミノ基等のスルホン酸基と結合し得る官能基を含有しているチオール化合物(例えばアミノアルカンチオール化合物、ピリジンアルカンチオール化合物等)でスルホン酸型陽イオン交換樹脂のスルホン酸基を変性させて使用する方法とがある。 The co-catalyst thiol compound coexists with the catalyst as follows: (1) a method in which the thiol compound is added to the reaction raw material and supplied; and (2) a functional group capable of binding to a sulfonic acid group such as an amino group. There is a method in which a sulfonic acid group of a sulfonic acid type cation exchange resin is modified with a thiol compound (for example, aminoalkanethiol compound, pyridinealkanethiol compound, etc.) contained.
 前記(2)のチオール化合物でスルホン酸型陽イオン交換樹脂を変性させる方法は、チオール化合物が反応生成物中に混入しないため、前記(1)のチオール化合物を反応原料中に添加する方法よりも優れている。スルホン酸型陽イオン交換樹脂を変性させるために使用することができるチオール化合物としては、アミノアルカンチオール化合物、ピリジンアルカンチオール化合物など種々の化合物が知られている。 The method of modifying the sulfonic acid type cation exchange resin with the thiol compound of (2) does not mix the thiol compound into the reaction product, and therefore the method of adding the thiol compound of (1) to the reaction raw material. Are better. Various compounds such as aminoalkanethiol compounds and pyridinealkanethiol compounds are known as thiol compounds that can be used to modify the sulfonic acid type cation exchange resin.
 上記のビスフェノール化合物の製造方法において、反応系に存在する水の量の影響については、強酸性陽イオン交換樹脂触媒の存在下、反応原料中に含まれる水の濃度を0.2重量%以上とすると、原料であるカルボニル化合物の転化率が低下するため好ましくないことが開示されている(特許文献1を参照)。この文献においては、水は反応系に存在しないことが好ましいことが記載されており、その濃度を変えた場合に、生成するビスフェノール化合物以外の不純物への影響については全く検討がされていない。 In the above method for producing a bisphenol compound, regarding the influence of the amount of water present in the reaction system, the concentration of water contained in the reaction raw material is 0.2% by weight or more in the presence of a strongly acidic cation exchange resin catalyst. Then, since the conversion rate of the carbonyl compound which is a raw material falls, it is disclosed that it is unpreferable (refer patent document 1). In this document, it is described that it is preferable that water does not exist in the reaction system, and when the concentration is changed, the influence on impurities other than the produced bisphenol compound is not studied at all.
 上記ビスフェノール化合物の製造方法における、反応系の水の存在と、生成するビスフェノール化合物以外の不純物との関係については、システアミン等のアルキル-SH基で変性した強酸性イオン交換樹脂触媒の存在下、反応原料中に水を0.6~5重量%添加することで、ビスフェノール化合物選択率が向上し、クロマンおよびインダン類の生成が少なくなることが開示されている(特許文献2を参照)が、本方法においては不純物は少なくなるが、水を添加する量が多いため反応活性が著しく低くなるという難点があった。本方法においては、反応活性が著しく低くなるため、同等量の生産量を確保するために触媒量を増やす必要があり、反応器の数を増やす、あるいは反応器のサイズを大きくするなどの必要が生じ、工業的に不利である。 Regarding the relationship between the presence of water in the reaction system and impurities other than the produced bisphenol compound in the above bisphenol compound production method, the reaction is carried out in the presence of a strongly acidic ion exchange resin catalyst modified with an alkyl-SH group such as cysteamine. It has been disclosed that adding 0.6 to 5% by weight of water to the raw material improves the selectivity of bisphenol compounds and reduces the generation of chroman and indanes (see Patent Document 2). In the method, impurities are reduced, but since the amount of water added is large, there is a problem that the reaction activity is remarkably lowered. In this method, since the reaction activity is remarkably reduced, it is necessary to increase the amount of catalyst in order to ensure an equivalent amount of production, and it is necessary to increase the number of reactors or increase the size of the reactor. This is industrially disadvantageous.
 同程度の水が反応系に存在するビスフェノール化合物製造方法としては、4-ピリジルエチルメルカプタン化合物で変性した強酸性イオン交換樹脂触媒存在下、反応原料中の水の量を調整することで4,4’-ビスフェノールAの選択性を制御することが開示されている(特許文献3を参照)。また、反応系に存在する水の量は、供給液の1~5重量%が好ましいことが開示されている。しかしながら、このような水を反応系に添加すると、反応活性が著しく低くなるという難点があり、さらに本文献では、ビスフェノール化合物製造の際に生成する副生物に関しては何ら検討されていない。 As a method for producing a bisphenol compound in which the same amount of water is present in the reaction system, the amount of water in the reaction raw material is adjusted by adjusting the amount of water in the presence of a strongly acidic ion exchange resin catalyst modified with a 4-pyridylethyl mercaptan compound. It is disclosed that the selectivity of '-bisphenol A is controlled (see Patent Document 3). Further, it is disclosed that the amount of water present in the reaction system is preferably 1 to 5% by weight of the feed solution. However, when such water is added to the reaction system, there is a problem that the reaction activity is remarkably lowered, and further, this document does not discuss any by-products generated during the production of the bisphenol compound.
特開2009-196929号公報JP 2009-196929 A 特開平6-172241号公報JP-A-6-172241 米国特許第7,132,575号明細書US Pat. No. 7,132,575 特開2010-189380号公報JP 2010-189380 A
 本発明の課題は、上記問題点を解決するものであって、強酸基を有する陽イオン交換体及び2-(2-メルカプトエチル)ピリジンの存在下で、フェノール化合物とカルボニル化合物とを反応させることによりビスフェノール化合物を製造する方法において、副生物の生成を抑制しつつ、目的とするビスフェノール化合物を高選択率で、効率よく製造し得る工業的に有利な方法を提供することを課題とするものである。 An object of the present invention is to solve the above-mentioned problems, and reacting a phenol compound and a carbonyl compound in the presence of a cation exchanger having a strong acid group and 2- (2-mercaptoethyl) pyridine. In the method for producing a bisphenol compound, the object is to provide an industrially advantageous method capable of efficiently producing the desired bisphenol compound with high selectivity while suppressing the formation of by-products. is there.
 本発明者らは上記課題を解決すべく鋭意検討した結果、強酸型陽イオン交換樹脂と該強酸性陽イオン交換樹脂触媒の助触媒としての2-(2-メルカプトエチル)ピリジンを使用し、反応原料中に水を0.05から0.5重量%存在させることにより、目的とするビスフェノール化合物の選択性が向上し、副生物であるインダン化合物の生成量が少なくなることを発見した。ビスフェノール化合物の合成に使用される2-(2-メルカプトエチル)ピリジンで変性した強酸型陽イオン交換樹脂触媒は、4-(2-メルカプトエチル)ピリジンを用いて変性した強酸型陽イオン交換樹脂触媒に比べて、初期活性において、ほぼ同等、もしくは劣っているとされているが、長期間に亘って高い転化率を維持しつつビスフェノール化合物を高選択率で製造することが知られている(特許文献4を参照)。本発明者らは、2-(2-メルカプトエチル)ピリジンを用いて変性した強酸型陽イオン交換樹脂触媒を用いてビスフェノール化合物を製造する際に、反応原料中の水濃度を、アセトンの転化率が大きく低下する濃度には達さない程度のごく微量増やすことにより、ビスフェノール化合物を高選択率で製造することができることを見出した。本発明はこれらの知見に基づいてなされたものである。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have used a strong acid cation exchange resin and 2- (2-mercaptoethyl) pyridine as a cocatalyst for the strong acid cation exchange resin catalyst. It has been discovered that the presence of 0.05 to 0.5% by weight of water in the raw material improves the selectivity of the target bisphenol compound and reduces the amount of indane compound produced as a by-product. The strong acid cation exchange resin catalyst modified with 2- (2-mercaptoethyl) pyridine used for the synthesis of bisphenol compound is a strong acid cation exchange resin catalyst modified with 4- (2-mercaptoethyl) pyridine. Compared to the above, it is said that the initial activity is almost equal or inferior, but it is known to produce a bisphenol compound with high selectivity while maintaining a high conversion rate over a long period of time (patent) (Ref. 4). When the present inventors produce a bisphenol compound using a strong acid cation exchange resin catalyst modified with 2- (2-mercaptoethyl) pyridine, the water concentration in the reaction raw material is determined by converting the acetone conversion rate. The present inventors have found that a bisphenol compound can be produced with high selectivity by increasing a minute amount such that the concentration does not reach a greatly decreasing concentration. The present invention has been made based on these findings.
すなわち、本発明は以下を提供する。
[1]フェノール化合物とカルボニル化合物とを、強酸基を有する陽イオン交換体及び2-(2-メルカプトエチル)ピリジンの存在下に反応させるビスフェノール化合物の製造方法であって、前記フェノール化合物とカルボニル化合物を含む反応原料中の水の濃度が0.05~0.5重量%であることを特徴とするビスフェノール化合物の製造方法。
[2]前記強酸基を有する陽イオン交換体および前記2-(2-メルカプトエチル)ピリジンが、前記強酸基を有する陽イオン交換体の強酸基の少なくとも一部が2-(2-メルカプトエチル)ピリジンにより保護されている、変性強酸型陽イオン交換体として存在することを特徴とする[1]に記載のビスフェノール化合物の製造方法。
[3]前記変性強酸型陽イオン交換体が、2-(2-メルカプトエチル)ピリジンによりその強酸基の3~30%が保護されているものであることを特徴とする[2]に記載のビスフェノール化合物の製造方法。
[4]前記強酸基を有する陽イオン交換体及び変性強酸型陽イオン交換体が、その粒径が30~650μmのものが全体の50%以上であることを特徴とする[1]~[3]のいずれかに記載のビスフェノール化合物の製造方法。
[5]前記反応原料中のカルボニル化合物に対するフェノール化合物の量が、モル比で10~40倍であることを特徴とする[1]~[4]のいずれかに記載のビスフェノール化合物の製造方法。
[6]フェノール化合物とカルボニル化合物とを、前記強酸基を有する陽イオン交換体および/又は変性強酸型陽イオン交換体の存在下、50~90℃の温度で反応させることを特徴とする[1]~[5]のいずれかに記載のビスフェノール化合物の製造方法。
[7]前記ビスフェノール化合物が、ビスフェノールAである[1]~[6]のいずれかに記載のビスフェノール化合物の方法。
That is, the present invention provides the following.
[1] A method for producing a bisphenol compound in which a phenol compound and a carbonyl compound are reacted in the presence of a cation exchanger having a strong acid group and 2- (2-mercaptoethyl) pyridine, the phenol compound and the carbonyl compound A process for producing a bisphenol compound, characterized in that the concentration of water in the reaction raw material containing 0.05 to 0.05% by weight.
[2] In the cation exchanger having a strong acid group and the 2- (2-mercaptoethyl) pyridine, at least a part of the strong acid group of the cation exchanger having a strong acid group is 2- (2-mercaptoethyl). The method for producing a bisphenol compound according to [1], wherein the bisphenol compound is present as a modified strong acid type cation exchanger protected by pyridine.
[3] The modified strong acid cation exchanger according to [2], wherein 3 to 30% of the strong acid group is protected by 2- (2-mercaptoethyl) pyridine. A method for producing a bisphenol compound.
[4] The cation exchanger having a strong acid group and the modified strong acid cation exchanger having a particle size of 30 to 650 μm account for 50% or more of the total [1] to [3 ] The manufacturing method of the bisphenol compound in any one of.
[5] The method for producing a bisphenol compound according to any one of [1] to [4], wherein the amount of the phenol compound relative to the carbonyl compound in the reaction raw material is 10 to 40 times in molar ratio.
[6] A phenol compound and a carbonyl compound are reacted at a temperature of 50 to 90 ° C. in the presence of the cation exchanger having a strong acid group and / or a modified strong acid cation exchanger. ]-The manufacturing method of the bisphenol compound in any one of [5].
[7] The method for a bisphenol compound according to any one of [1] to [6], wherein the bisphenol compound is bisphenol A.
 本発明の方法によれば、強酸基を有する陽イオン交換体及び2-(2-メルカプトエチル)ピリジンの存在下で、フェノール化合物とカルボニル化合物を反応させる際、反応原料中に水を0.05~0.5重量%存在させることで、インダン化合物などの副生物の生成を抑制することができる。ここでいうインダン化合物とは、p-イソプロペニルフェノール環状二量体、及びその異性体を示す。結果として、長期間に亘り高転化率及び高選択率で安定してビスフェノール化合物を連続的に製造することができ、工業的に極めて有利である。従来技術である2-(4-メルカプトエチル)ピリジンで変性された強酸基を有する陽イオン交換体の存在下で同反応を行う場合と比較して、少量の水で副生物の生成を抑制できるという効果を有する。 According to the method of the present invention, when a phenol compound and a carbonyl compound are reacted in the presence of a cation exchanger having a strong acid group and 2- (2-mercaptoethyl) pyridine, 0.05 wt. By the presence of ˜0.5% by weight, the production of by-products such as indane compounds can be suppressed. The indane compound here refers to p-isopropenylphenol cyclic dimer and isomers thereof. As a result, a bisphenol compound can be continuously produced stably at a high conversion rate and high selectivity over a long period of time, which is extremely advantageous industrially. Compared to the case where the same reaction is carried out in the presence of a cation exchanger having a strong acid group modified with 2- (4-mercaptoethyl) pyridine, which is a conventional technique, the production of by-products can be suppressed with a small amount of water. It has the effect.
ゲル型ビーズの製造法に用いる重合装置を示す図である。It is a figure which shows the superposition | polymerization apparatus used for the manufacturing method of a gel type bead. 液滴製造装置に設置されるノズル部材を示す図である。It is a figure which shows the nozzle member installed in a droplet manufacturing apparatus. 2-(2-メルカプトエチル)ピリジン変性強酸性陽イオン交換樹脂触媒及び4-(2-メルカプトエチル)ピリジン変性強酸性陽イオン交換樹脂触媒を用いて初期のフェノール溶液中の含水率が0.3%で反応させたときのインダン化合物選択率の関係を示すグラフである。Using 2- (2-mercaptoethyl) pyridine-modified strong acidic cation exchange resin catalyst and 4- (2-mercaptoethyl) pyridine-modified strong acidic cation exchange resin catalyst, the water content in the initial phenol solution was 0.3. It is a graph which shows the relationship of the indane compound selectivity when it is made to react by%. 2-(2-メルカプトエチル)ピリジン変性強酸性陽イオン交換樹脂触媒を用いて反応させたときの初期のフェノール溶液中の含水率とアセトン転化率との関係を示すグラフである。6 is a graph showing the relationship between the water content in the initial phenol solution and the acetone conversion when the reaction is carried out using a 2- (2-mercaptoethyl) pyridine-modified strong acidic cation exchange resin catalyst. 2-(2-メルカプトエチル)ピリジン変性強酸性陽イオン交換樹脂触媒を用いて反応させたときの初期のフェノール溶液中の含水率とビスフェノール及び2,4′異性体の合計の選択率との関係を示すグラフである。Relationship between water content in initial phenol solution and total selectivity of bisphenol and 2,4 'isomer when reacted with 2- (2-mercaptoethyl) pyridine modified strongly acidic cation exchange resin catalyst It is a graph which shows. 2-(2-メルカプトエチル)ピリジン変性強酸性陽イオン交換樹脂触媒を用いて反応させたときの初期のフェノール溶液中の含水率とインダン化合物選択率との関係を示すグラフである。3 is a graph showing the relationship between the water content in the initial phenol solution and the indane compound selectivity when the 2- (2-mercaptoethyl) pyridine-modified strong acidic cation exchange resin catalyst is used for the reaction.
 以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、これらの内容に特定されない。
 本発明は、フェノール化合物とカルボニル化合物とを、強酸基を有する陽イオン交換体及び2-(2-メルカプトエチル)ピリジンの存在下に反応させるビスフェノール化合物の製造方法であって、前記フェノール化合物とカルボニル化合物を含む反応原料中の水の濃度が0.05~0.5重量%であることを特徴とするビスフェノール化合物の製造方法(以下、「本発明の製造方法」と称することがある)である。
The description of the constituent requirements described below is an example (representative example) of an embodiment of the present invention, and is not specified by these contents.
The present invention relates to a process for producing a bisphenol compound in which a phenol compound and a carbonyl compound are reacted in the presence of a cation exchanger having a strong acid group and 2- (2-mercaptoethyl) pyridine. A method for producing a bisphenol compound, characterized in that the concentration of water in the reaction raw material containing the compound is 0.05 to 0.5% by weight (hereinafter sometimes referred to as “the production method of the present invention”) .
 本発明の製造方法では、ビスフェノール化合物はフェノール化合物とカルボニル化合物との縮合反応により製造される。フェノール化合物とは、部分構造としてフェノールを有する化合物をいう。フェノール化合物とカルボニル化合物との縮合反応では、フェノール性水酸基の強いオルト‐パラ配向性、特にパラ配向性を利用するものと解されるところより、使用するフェノール化合物はオルト位又はパラ位に置換基のないものが好ましい。中でも、縮合反応生成物であるビスフェノール化合物は、その用途の点から4,4′-ビスフェノール化合物が一般的に好ましく、この点からパラ位に置換基のないフェノール化合物が好ましい。 In the production method of the present invention, the bisphenol compound is produced by a condensation reaction between a phenol compound and a carbonyl compound. A phenol compound means a compound having phenol as a partial structure. In the condensation reaction between a phenol compound and a carbonyl compound, it is understood that the strong ortho-para orientation of the phenolic hydroxyl group, in particular the para orientation, is used. Therefore, the phenol compound used is a substituent at the ortho or para position. Those without are preferred. Among them, the bisphenol compound which is a condensation reaction product is generally preferably a 4,4′-bisphenol compound from the viewpoint of its use, and from this point, a phenol compound having no substituent at the para position is preferable.
 フェノール化合物が置換基を有する場合、置換基はフェノール性水酸基のオルト-パラ配向性を阻害せず、また、カルボニル化合物の縮合位置に対して立体障害を及ぼさない限り、得られるビスフェノール化合物の用途や物性に応じて任意のものでありうる。典型的な置換基としては、例えば炭素数1~4の低級アルキル基が挙げられる。又、該置換基の代わりに、弗素原子、塩素原子及び臭素原子等のハロゲン原子が置換したフェノール化合物についても、同様の置換位置の化合物を使用することができる。置換基の数は1つでも複数でもよい。 When the phenol compound has a substituent, the substituent does not inhibit the ortho-para orientation of the phenolic hydroxyl group, and the use of the resulting bisphenol compound as long as it does not sterically hinder the condensation position of the carbonyl compound. It may be arbitrary depending on the physical properties. Typical examples of the substituent include a lower alkyl group having 1 to 4 carbon atoms. Moreover, the compound of the same substitution position can be used also about the phenol compound which substituted halogen atoms, such as a fluorine atom, a chlorine atom, and a bromine atom, instead of this substituent. The number of substituents may be one or more.
 前記フェノール化合物としては、具体的には、例えば、フェノール(無置換のフェノール)、o-クレゾール、m-クレゾール、2,5-キシレノール、2,6-キシレノール、2,3,6-トリメチルフェノール、2,6-ジ-tert-ブチルフェノール、o-クロロフェノール、m-クロロフェノール、2,5-ジクロロフェノール及び2,6-ジクロロフェノール等が挙げられる。これらの中ではフェノールが特に好ましい。上記フェノール化合物の製造方法は、公知の通常用いられる方法が挙げられるが、後で詳述するビスフェノール製造プロセス内で回収されるフェノール化合物を用いることもできる。 Specific examples of the phenol compound include phenol (unsubstituted phenol), o-cresol, m-cresol, 2,5-xylenol, 2,6-xylenol, 2,3,6-trimethylphenol, Examples include 2,6-di-tert-butylphenol, o-chlorophenol, m-chlorophenol, 2,5-dichlorophenol, and 2,6-dichlorophenol. Of these, phenol is particularly preferred. Although the manufacturing method of the said phenol compound has a well-known method used normally, the phenol compound collect | recovered within the bisphenol manufacturing process explained in full detail behind can also be used.
 上記フェノール化合物(後述の、ビスフェノール製造プロセス内で回収されるフェノール化合物を除く)は、純度が高いものであればそのまま使用することもできるが、一般的には精製した後に使用するのが好ましい。フェノール化合物の精製方法としては特に制限はないが、例えば、フェノール化合物を、40~110℃で、一般的な強酸基を有する陽イオン交換体のような酸性触媒と反応させ、フェノール化合物中に含まれる不純物を重質化させた後に蒸留して重質分を除去する方法などが挙げられる。通常、精製したフェノール化合物はそのまま使用されるが、フェノール化合物中に水分が含まれる場合、一般的には水分を除去した後に使用するのが好ましい。フェノール化合物中の水分を除去する方法としては特に制限はないが、例えば、共沸剤存在下で水分を含有したフェノール化合物の蒸留を行い、フェノール化合物と水分を分離する方法などが挙げられる。このようにして得られるフェノール化合物は、反応器へ供給することにより反応原料として使用される。 The above-mentioned phenolic compound (excluding the phenolic compound recovered within the bisphenol production process described later) can be used as it is as long as it has a high purity, but generally it is preferably used after purification. The method for purifying the phenol compound is not particularly limited. For example, the phenol compound is reacted with an acidic catalyst such as a general cation exchanger having a strong acid group at 40 to 110 ° C. and contained in the phenol compound. For example, a method of removing heavy components by distilling after the impurities to be heavy are distilled. Usually, the purified phenol compound is used as it is, but when water is contained in the phenol compound, it is generally preferable to use it after removing the water. Although there is no restriction | limiting in particular as the method of removing the water | moisture content in a phenol compound, For example, the method of distilling the phenol compound containing a water | moisture content in presence of an azeotropic agent, and isolate | separating a phenol compound and a water | moisture content etc. is mentioned. The phenol compound thus obtained is used as a reaction raw material by supplying it to the reactor.
 本発明の製造方法に用いられるカルボニル化合物としては特に制限はないが、具体例としては、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、シクロヘキサノン、及びアセトフェノン等の炭素数3~10程度のケトン類、並びにホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド及びブチルアルデヒド等の炭素数1~6程度のアルデヒド類が挙げられる。これらの中では、アセトンが好ましい。 The carbonyl compound used in the production method of the present invention is not particularly limited, and specific examples include ketones having about 3 to 10 carbon atoms such as acetone, methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, cyclohexanone, and acetophenone, And aldehydes having about 1 to 6 carbon atoms such as formaldehyde, acetaldehyde, propionaldehyde and butyraldehyde. Of these, acetone is preferred.
 フェノール化合物としてフェノールを使用し、カルボニル化合物としてアセトンを使用した場合、ポリカーボネート樹脂等の原料として有用なビスフェノールAを得ることができるので、特に好ましい。
 上記カルボニル化合物の製造方法としては、通常用いられる公知の方法が挙げられるが、後で詳述するビスフェノール製造プロセス内で回収されるカルボニル化合物を用いることもできる。
When phenol is used as the phenol compound and acetone is used as the carbonyl compound, bisphenol A useful as a raw material for polycarbonate resin and the like can be obtained, which is particularly preferable.
Examples of the method for producing the carbonyl compound include known methods that are generally used, and a carbonyl compound recovered in a bisphenol production process, which will be described in detail later, can also be used.
 縮合反応の原料として用いるフェノール化合物とカルボニル化合物のモル比は、カルボニル化合物1モルに対してフェノール化合物が通常10モル~40モルであり、好ましくは12モル~25モルである。フェノール化合物の使用量が少なすぎると、副生物が増加する傾向がある。一方、多すぎてもその効果にほとんど変化はなく、むしろ回収、再使用するフェノール化合物の量が増大するため経済的でなくなる傾向がある。 The molar ratio of the phenol compound and carbonyl compound used as a raw material for the condensation reaction is usually 10 to 40 mol, preferably 12 to 25 mol, with respect to 1 mol of the carbonyl compound. When there is too little usage-amount of a phenol compound, there exists a tendency for a by-product to increase. On the other hand, if the amount is too large, there is almost no change in the effect. Rather, the amount of the phenol compound to be recovered and reused tends to increase, which tends to be uneconomical.
 本発明の製造方法では、酸性触媒として、強酸基を有する陽イオン交換体または強酸基の一部を2-(2-メルカプトエチル)ピリジンで変性した強酸基を有する陽イオン交換体が用いられる。
 この変性に供する強酸基を有する陽イオン交換体は、一般に用いられる陽イオン交換体にスルホン酸基等の強酸基を導入したものである。
 上記強酸基を有する陽イオン交換体としての交換容量(強酸基の量)は、含水状態の樹脂の、単位体積当り、通常0.5meq/mL以上、好ましくは1.0meq/mL以上であり、一方、通常3.0meq/mL以下、好ましくは2.0meq/mL以下である。また、乾燥状態の樹脂では、単位重量当り、通常1.0meq/g以上、好ましくは2.0meq/g以上であり、一方、通常6.0meq/g以下、好ましくは5.5meq/g以下である。含水状態の樹脂から付着水を取り除いた湿潤状態では、通常0.5meq/g以上、好ましくは1.0meq/g以上であり、一方、通常3.0meq/g以下、好ましくは2.0meq/g以下である。この交換容量が低過ぎると触媒活性が不足し、また、過度に交換容量の高い陽イオン交換体は製造困難である。
In the production method of the present invention, a cation exchanger having a strong acid group or a cation exchanger having a strong acid group obtained by modifying a part of the strong acid group with 2- (2-mercaptoethyl) pyridine is used as the acidic catalyst.
The cation exchanger having a strong acid group subjected to this modification is obtained by introducing a strong acid group such as a sulfonic acid group into a commonly used cation exchanger.
The exchange capacity (amount of strong acid group) as the cation exchanger having a strong acid group is usually 0.5 meq / mL or more, preferably 1.0 meq / mL or more per unit volume of the resin in the water state. On the other hand, it is usually 3.0 meq / mL or less, preferably 2.0 meq / mL or less. In the case of a dry resin, it is usually 1.0 meq / g or more per unit weight, preferably 2.0 meq / g or more, and usually 6.0 meq / g or less, preferably 5.5 meq / g or less. is there. In the wet state in which the adhering water is removed from the water-containing resin, it is usually 0.5 meq / g or more, preferably 1.0 meq / g or more, while usually 3.0 meq / g or less, preferably 2.0 meq / g. It is as follows. If this exchange capacity is too low, the catalytic activity is insufficient, and a cation exchanger having an excessively high exchange capacity is difficult to produce.
 この強酸基を有する陽イオン交換体の交換容量は、例えば「ダイヤイオン、イオン交換樹脂・合成吸着剤マニュアル1」(三菱化学株式会社刊、改訂4版、平成19年10月31日発行、133~135頁)に記載される方法や、これに準じた方法で求めることができる。
 なお、ここで用いられる強酸基を有する陽イオン交換体の主な形態としては、ゲル型と多孔質型(ポーラス型、ハイポーラス型、又はマクロポーラス型)が挙げられるが、本発明のビスフェノール化合物の製造に用いる場合、製造コストの観点から、ゲル型が好ましい。また、物質拡散性や、樹脂の耐久性、強度の確保の観点で、多孔質型(ポーラス型、ハイポーラス型、又はマクロポーラス型)も好ましい。ゲル型には単純ゲル型共重合体及び拡大網目型ゲル共重合体があり、いずれも用いることができる。一方、多孔質型は多孔性共重合体であって、表面積、気孔率、平均孔径などが任意のものを用いることができる。
The exchange capacity of the cation exchanger having a strong acid group is, for example, “Diaion, Ion Exchange Resin / Synthetic Adsorbent Manual 1” (Mitsubishi Chemical Corporation, revised 4th edition, issued on October 31, 2007, 133). ˜Page 135) or a method according to this method.
The main form of the cation exchanger having a strong acid group used here includes a gel type and a porous type (porous type, high porous type, or macroporous type), and the bisphenol compound of the present invention. From the viewpoint of production cost, a gel type is preferable. In addition, a porous type (a porous type, a high porous type, or a macroporous type) is also preferable from the viewpoint of ensuring substance diffusibility, resin durability, and strength. The gel type includes a simple gel type copolymer and an expanded network type gel copolymer, both of which can be used. On the other hand, the porous type is a porous copolymer, which can be used with any surface area, porosity, average pore diameter and the like.
 ゲル型又は多孔質型の強酸基を有する陽イオン交換体とする方法は、従来公知の方法を用いることができ、例えば「イオン交換樹脂その技術と応用」(オルガノ株式会社発行、改訂版、昭和61年5月16日発行、13~21頁)に従って製造することができる。
 本発明の製造方法で用いられる強酸基を有する陽イオン交換体(以下、「触媒ビーズ」と称することがある)、及び下述する変性強酸型陽イオン交換体のサイズは、平均粒径が、通常0.2mm以上、2.0mm以下の範囲にあり、かつ粒径分布均一度は、通常1.6以下、好ましくは1.5以下である。また、特に好ましくは、本発明で使用される触媒ビーズおよび下述する変性強酸型陽イオン交換体は、その全体の50%以上、好ましくは60%以上、さらに好ましくは80%以上、最も好ましくは90%以上が、粒径が30~650μmである。
As a method for preparing a cation exchanger having a gel-type or porous-type strong acid group, a conventionally known method can be used. For example, “Technology and Application of Ion Exchange Resin” (issued by Organo Corporation, revised edition, Showa) (May 16, 1981, pages 13 to 21).
The size of the cation exchanger having a strong acid group used in the production method of the present invention (hereinafter sometimes referred to as “catalyst beads”) and the modified strong acid cation exchanger described below has an average particle size of Usually, it exists in the range of 0.2 mm or more and 2.0 mm or less, and a particle size distribution uniformity is 1.6 or less normally, Preferably it is 1.5 or less. Further, particularly preferably, the catalyst beads used in the present invention and the modified strong acid cation exchanger described below are 50% or more of the whole, preferably 60% or more, more preferably 80% or more, most preferably 90% or more has a particle size of 30 to 650 μm.
 このような触媒ビーズの製造方法は、上記サイズの触媒ビーズができる方法であれば如何なるものであってもよいが、以下に、スチレン系モノマーと架橋性モノマーとを含む重合性モノマーの共重合反応で得られたゲル型触媒ビーズを例に詳細に説明する。
 上記ゲル型触媒ビーズの原料であるスチレン系モノマーとは、スチレン、又はスチレンのベンゼン環若しくはスチレンのビニル基にイオン交換樹脂としての機能を損なわない範囲の任意の置換基を有するモノマーであるが、ポリエステル、ポリカーボネート、ポリアミド、ポリオレフィン、ポリ(メタ)アクリル酸エステル、ポリエーテル、ポリスチレンなどのポリマーや、オリゴマーの末端がスチリル構造になっているようなマクロモノマーであってもよい。なお、ここで、「(メタ)アクリル」とは、「アクリル」及び「メタクリル」を意味する。後述の「(メタ)アクリロイル」についても同様である。
The catalyst beads may be produced by any method as long as the catalyst beads having the size described above can be produced. The following is a copolymerization reaction of a polymerizable monomer containing a styrene monomer and a crosslinkable monomer. The gel type catalyst beads obtained in the above will be described in detail as an example.
The styrenic monomer that is a raw material for the gel-type catalyst beads is a monomer having an arbitrary substituent in a range that does not impair the function as an ion exchange resin on styrene or a benzene ring of styrene or a vinyl group of styrene, Polymers such as polyesters, polycarbonates, polyamides, polyolefins, poly (meth) acrylic acid esters, polyethers, polystyrenes, and macromonomers in which the ends of oligomers have a styryl structure may also be used. Here, “(meth) acryl” means “acryl” and “methacryl”. The same applies to “(meth) acryloyl” described later.
 スチレン系モノマーとしては、好ましくは下記式(1)で表されるモノマーが挙げられる。 The styrene monomer is preferably a monomer represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、X1、X2、X3は、水素原子、アルキル基、アリール基、アルコキシ基、ハロゲン原子、アルキルシリルオキシ基、ニトロ基、ニトリル基のいずれかを示し、Yは、水素原子、アミノ基、アルキルアミノ基、アルキル基、アルケニル基、アルキニル基、ハロゲン原子、ハロアルキル基、フェニル基やナフチル基などのアリール基、ベンジル基などのアラルキル基、アルコキシアルキル基、ニトロ基、アルカノイル基、ベンゾイル基などのアロイル基、アルコキシカルボニル基、アリルアルコキシカルボニル基、アルコキシ基、ハロアルコキシ基、アリルオキシ基、アラルキルオキシ基、アルコキシアルキルオキシ基、アルカノイルオキシ基、アルコキシカルボニルオキシ基、アラルキルオキシカルボニルオキシ基、又はアルキルシリルオキシ基を示す。nは1から5までの整数であり、X1、X2、X3は互いに同一でも異なっていてもよく、またnが2以上の場合の複数のYは同一でも異なっていてもよい。)
 スチレン系モノマーとしては、具体的には、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、フルオロスチレン、クロロスチレン、ブロモスチレン等の、ベンゼン環が炭素数1~4のアルキル基又はハロゲン原子で置換されたスチレンや、α-メチルスチレン、α-フルオロスチレン、β-フルオロスチレン等の、ビニル基が炭素数1~4のアルキル基又はハロゲン原子で置換されたスチレン等が挙げられる。スチレン系モノマーとしては、これらの中でも、スチレンが最も好ましい。また、これらのスチレン系モノマーは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
(In the formula, X 1 , X 2 and X 3 are each a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a halogen atom, an alkylsilyloxy group, a nitro group or a nitrile group, and Y is a hydrogen atom. Amino group, alkylamino group, alkyl group, alkenyl group, alkynyl group, halogen atom, haloalkyl group, aryl group such as phenyl group and naphthyl group, aralkyl group such as benzyl group, alkoxyalkyl group, nitro group, alkanoyl group, Aroyl group such as benzoyl group, alkoxycarbonyl group, allylalkoxycarbonyl group, alkoxy group, haloalkoxy group, allyloxy group, aralkyloxy group, alkoxyalkyloxy group, alkanoyloxy group, alkoxycarbonyloxy group, aralkyloxycarbonyloxy group, Or Alkyl .N showing an aryloxy group is an integer from 1 to 5, X 1, X 2, X 3 is a plurality of Y when may be the same or different from each other, and n is 2 or more are identical or different May be.)
Specific examples of the styrene monomer include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene, fluorostyrene, chlorostyrene, bromo Vinyl groups such as styrene such as styrene in which the benzene ring is substituted with an alkyl group having 1 to 4 carbon atoms or a halogen atom, α-methylstyrene, α-fluorostyrene, β-fluorostyrene, etc. have 1 to 4 carbon atoms. And styrene substituted with an alkyl group or a halogen atom. Of these, styrene is most preferable as the styrene monomer. Moreover, these styrene-type monomers may be used individually by 1 type, and 2 or more types may be mixed and used for them.
 架橋性モノマーは、分子内に上記スチレン系モノマーと共重合可能な炭素-炭素二重結合を2以上有する化合物であり、具体的には、ジビニルベンゼン、トリビニルベンゼン等のポリビニルベンゼン、ジビニルトルエン等のアルキルジビニルベンゼン、ビス(ビニルフェニル)、ビス(ビニルフェニル)メタン、ビス(ビニルフェニル)エタン、ビス(ビニルフェニル)プロパン、ビス(4-ビニルフェニル)スルホン等の、2以上のベンゼン環が直接又はアルキレン基、スチリレン基などの連結基を介して結合した構造を有する芳香族ジビニル化合物が挙げられる。また、ポリエステル、ポリカーボネート、ポリアミド、ポリオレフィン、ポリ(メタ)アクリル酸エステル、ポリエーテル、ポリスチレンなどのポリマー、オリゴマーの両末端がスチリル構造、(メタ)アクリル構造のような重合性炭素-炭素二重結合を有するマクロモノマーでもよい。これらの中でも、架橋性モノマーとしては、ジビニルベンゼンが好ましい。なお、ジビニルベンゼンによっては、製造される際に副生物としてエチルビニルベンゼン(エチルスチレン)が生成し、これを多量に含有している場合もあるが、本発明においてはこのようなジビニルベンゼンも使用することができる。
 これらの架橋性モノマーは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
The crosslinkable monomer is a compound having two or more carbon-carbon double bonds copolymerizable with the styrene monomer in the molecule. Specifically, polyvinylbenzene such as divinylbenzene and trivinylbenzene, divinyltoluene and the like Two or more benzene rings such as alkyldivinylbenzene, bis (vinylphenyl), bis (vinylphenyl) methane, bis (vinylphenyl) ethane, bis (vinylphenyl) propane, and bis (4-vinylphenyl) sulfone Or the aromatic divinyl compound which has a structure couple | bonded through coupling groups, such as an alkylene group and a styrylene group, is mentioned. Polymers such as polyester, polycarbonate, polyamide, polyolefin, poly (meth) acrylic ester, polyether, polystyrene, etc. Polymeric carbon-carbon double bonds such as styryl structure at both ends of the oligomer and (meth) acrylic structure It may be a macromonomer having Among these, divinylbenzene is preferable as the crosslinkable monomer. Depending on the divinylbenzene, ethylvinylbenzene (ethylstyrene) may be produced as a by-product when it is produced, and this divinylbenzene may be used in the present invention. can do.
These crosslinkable monomers may be used individually by 1 type, and 2 or more types may be mixed and used for them.
 ゲル型触媒ビーズを製造するための重合性モノマーは、前記スチレン系モノマーと前記架橋性モノマーとを含むが、それ以外に、必要に応じて、更にこれらと重合可能な他のモノマーを含んでいてもよい。このような重合可能なモノマー(以下「第3のモノマー」と言う場合がある。)の具体例としては、ビニルナフタレンやビニルアントラセンなどの、ナフタレンやアントラセン、フェナントレンなどの多環芳香族骨格を有するビニルモノマー;アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチルなどの(メタ)アクリル酸エステル、ブタジエン、イソプレン等のジエン系炭化水素化合物;1-ペンテン、1-ヘキセンなどのα-オレフィン;(メタ)アクリロニトリル等が挙げられる。これらは、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The polymerizable monomer for producing the gel-type catalyst beads includes the styrenic monomer and the crosslinkable monomer, but additionally contains other monomers that can be polymerized therewith as necessary. Also good. Specific examples of such polymerizable monomers (hereinafter sometimes referred to as “third monomers”) include polycyclic aromatic skeletons such as naphthalene, anthracene, and phenanthrene, such as vinylnaphthalene and vinylanthracene. Vinyl monomers; (meth) acrylic acid esters such as methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate; diene hydrocarbon compounds such as butadiene and isoprene; α-olefins such as 1-pentene and 1-hexene ; (Meth) acrylonitrile and the like. These may be used alone or in combination of two or more.
 なお、このような第3のモノマーを使用することにより、耐酸化性が増す等の効果が得られるが、この場合、その使用量はスチレン系モノマーに対して、通常50モル%以下、好ましくは20モル%以下、特に好ましくは10モル%以下である。第3のモノマーの使用量が多すぎると、得られる共重合体に導入することができる単位重量当たりの強酸基の量が少なくなり、所望の触媒活性を得られないことがある。 In addition, by using such a third monomer, an effect such as an increase in oxidation resistance can be obtained. In this case, the amount used is usually 50 mol% or less with respect to the styrene monomer, preferably It is 20 mol% or less, and particularly preferably 10 mol% or less. If the amount of the third monomer used is too large, the amount of strong acid groups per unit weight that can be introduced into the resulting copolymer decreases, and the desired catalytic activity may not be obtained.
 スチレン系モノマーと架橋性モノマーとを含む重合性モノマーを重合させて得られる共重合体であるゲル型ビーズの架橋度は1%以上が好ましく、2%以上が更に好ましく、また8%以下が好ましく、5%以下が更に好ましい。ここで言う架橋度とは、重合に供する重合性モノマー中の架橋性モノマーの重量基準での濃度をいい、当該分野において使われている定義と同様である。 The degree of crosslinking of the gel-type beads, which are a copolymer obtained by polymerizing a polymerizable monomer containing a styrene monomer and a crosslinking monomer, is preferably 1% or more, more preferably 2% or more, and preferably 8% or less. 5% or less is more preferable. The degree of cross-linking here refers to the concentration of the cross-linkable monomer in the polymerizable monomer to be subjected to polymerization on the weight basis, and is the same as the definition used in this field.
 この架橋度が小さすぎると、得られる、触媒ビーズ、及び変性強酸型陽イオン交換体の強度を保つことが困難となり、触媒として反応に供するに際し、使用前にフェノール化合物やフェノール化合物と水との混合液等に接触させてコンディショニングを行う時の膨潤、収縮により、触媒ビーズ、及び変性強酸型陽イオン交換体の破砕等が生じるため好ましくない。一方、架橋度が大きすぎると、得られる触媒ビーズ、及び変性強酸型陽イオン交換体が膨潤しにくくなるので、触媒ビーズ、及び変性強酸型陽イオン交換体内の拡散抵抗が生じ易くなり、触媒活性の著しい低下を生じることから好ましくない。 If the degree of crosslinking is too small, it will be difficult to maintain the strength of the resulting catalyst beads and modified strong acid type cation exchanger, and when used as a catalyst, the phenolic compound or phenolic compound and water will be used before use. Swelling or shrinking when conditioning by contacting with a liquid mixture or the like causes crushing of catalyst beads and modified strong acid type cation exchanger, etc., which is not preferable. On the other hand, if the degree of crosslinking is too large, the resulting catalyst beads and modified strong acid type cation exchanger will not easily swell, so that diffusion resistance in the catalyst beads and modified strong acid type cation exchanger will easily occur, and catalytic activity will be increased. This is not preferable because it causes a significant decrease in.
 スチレン系モノマーと架橋性モノマーとを含む重合性モノマーの共重合反応は、ラジカル重合開始剤を用いて公知の技術に基づいて行うことができる。ラジカル重合開始剤としては、過酸化ベンゾイル、過酸化ラウロイル、t-ブチルハイドロパーオキサイド、アゾビスイソブチロニトリル等の1種又は2種以上が用いられ、通常、重合性モノマーの重量(全モノマー重量)に対して0.05重量%以上、5重量%以下で用いられる。 The copolymerization reaction of a polymerizable monomer containing a styrene monomer and a crosslinkable monomer can be performed based on a known technique using a radical polymerization initiator. As the radical polymerization initiator, one or more of benzoyl peroxide, lauroyl peroxide, t-butyl hydroperoxide, azobisisobutyronitrile and the like are used. Usually, the weight of the polymerizable monomer (total monomer) Weight) to 0.05 wt% or more and 5 wt% or less.
 重合様式は、特に限定されるものではなく、溶液重合、乳化重合、懸濁重合等の種々の様式で行うことができ、後述の均一係数や平均粒径を規定の範囲とする為には篩による分級等を行うこともできる。そして、本発明においては均一粒径の球状の共重合体を得る公知の方法が好適に適用される。例えば、重合に先立って、別装置で均一粒径のモノマー含有液滴が分散している水中油型分散液を製造し、この分散液を重合容器に仕込んで重合する方法が知られており、均一粒径の水中油型分散液を製造する方法としては、水を充満した容器の下部に上向きに形成された噴出孔を備えたノズルプレートを設け、この噴出孔を通してモノマー含有液を水中に供給することにより、モノマー含有液滴を水中に分散させる方法(例えば、特開2003-252908号公報、日本特許第3899786号公報参照)を用いることができる。後述の実施例においては、この方法を採用している。 The polymerization mode is not particularly limited, and can be carried out in various modes such as solution polymerization, emulsion polymerization, suspension polymerization, etc. In order to keep the uniformity coefficient and average particle size described below within a specified range, a sieve is used. It is also possible to classify by. And in this invention, the well-known method of obtaining the spherical copolymer of a uniform particle size is applied suitably. For example, prior to polymerization, a method is known in which an oil-in-water dispersion in which monomer-containing droplets of uniform particle size are dispersed in a separate apparatus is prepared, and this dispersion is charged into a polymerization vessel and polymerized. As a method for producing an oil-in-water dispersion with a uniform particle size, a nozzle plate having an upwardly formed ejection hole is provided at the bottom of a water-filled container, and the monomer-containing liquid is supplied into the water through this ejection hole. By doing so, a method of dispersing the monomer-containing droplets in water (for example, see Japanese Patent Application Laid-Open No. 2003-252908 and Japanese Patent No. 3899786) can be used. This method is employed in the embodiments described later.
 なお、共重合反応における重合温度は、通常、室温(約18~25℃)以上、好ましくは40℃以上、さらに好ましくは70℃以上であり、通常250℃以下、好ましくは150℃以下、更に好ましくは140℃以下である。重合温度が高すぎると解重合が併発し、重合完結度がかえって低下する。重合温度が低すぎると重合完結度が不十分となる。また、重合雰囲気は、空気もしくは不活性ガス下で実施可能であり、不活性ガスとしては窒素、二酸化炭素、アルゴン等が使用できる。 The polymerization temperature in the copolymerization reaction is usually room temperature (about 18 to 25 ° C.) or higher, preferably 40 ° C. or higher, more preferably 70 ° C. or higher, usually 250 ° C. or lower, preferably 150 ° C. or lower, more preferably. Is 140 ° C. or lower. If the polymerization temperature is too high, depolymerization occurs at the same time, and the degree of polymerization completion is reduced. If the polymerization temperature is too low, the degree of polymerization completion will be insufficient. The polymerization atmosphere can be carried out under air or an inert gas, and nitrogen, carbon dioxide, argon or the like can be used as the inert gas.
 上記の共重合反応で得られた共重合体であるゲル型ビーズに強酸基を導入する方法は、特に限定されるものでなく、常法に従って行うことができる。強酸基とは、好ましくはスルホン酸基であり、スルホン酸基を導入する(スルホン化)方法は、例えば、有機溶媒の非存在下、あるいは、ベンゼン、トルエン、キシレン、ニトロベンゼン、クロロベンゼン、テトラクロロメタン、ジクロロエタン、トリクロロエチレン、プロピレンジクロライド等の有機溶媒の存在下、共重合体であるゲル型ビーズを、硫酸、クロロスルホン酸、発煙硫酸等のスルホン化剤と反応させることにより行われる。ここで有機溶媒、スルホン化剤は、いずれも、1種を単独で用いてもよく、2種以上を混合して用いてもよい。この際の反応温度は、通常0~150℃程度で、スルホン化剤及び使用する有機溶媒に応じて適宜選択される。 The method for introducing strong acid groups into the gel-type beads, which are copolymers obtained by the above copolymerization reaction, is not particularly limited, and can be performed according to a conventional method. The strong acid group is preferably a sulfonic acid group, and the method of introducing a sulfonic acid group (sulfonation) is, for example, in the absence of an organic solvent, or benzene, toluene, xylene, nitrobenzene, chlorobenzene, tetrachloromethane. In the presence of an organic solvent such as dichloroethane, trichloroethylene or propylene dichloride, the gel-type beads as a copolymer are reacted with a sulfonating agent such as sulfuric acid, chlorosulfonic acid or fuming sulfuric acid. Here, as for an organic solvent and a sulfonating agent, all may be used individually by 1 type, and 2 or more types may be mixed and used for them. The reaction temperature at this time is usually about 0 to 150 ° C., and is appropriately selected according to the sulfonating agent and the organic solvent to be used.
 強酸基が導入されたゲル型ビーズを、常法に従って、洗浄、単離等により分離することで、強酸基を有する陽イオン交換体を得る。
 本発明の製造方法で、当該触媒を、固定床流通方式で使用する場合には、含有される触媒ビーズ、又は下述する変性強酸型陽イオン交換体のうち、その粒径が30~600μmのものが50%以上を占めるものが好ましく用いられる。
The cation exchanger having a strong acid group is obtained by separating the gel-type beads into which the strong acid group has been introduced by washing, isolation or the like according to a conventional method.
In the production method of the present invention, when the catalyst is used in a fixed bed flow system, the catalyst beads contained therein or the modified strong acid type cation exchanger described below has a particle size of 30 to 600 μm. Those that occupy 50% or more are preferably used.
 触媒ビーズ、又は下述する変性強酸型陽イオン交換体が、その粒径が30~650μmのものが全体の50%以上であると、触媒活性及び所望のビスフェノール化合物選択性の面で優れた性能が得られる。一方、触媒ビーズ、又は下述する変性強酸型陽イオン交換体がその粒径が30~650μmのものが全体の50%未満であると、触媒粒子内の拡散抵抗のため、触媒活性が低下をすると共に、触媒粒子内での逐次反応により選択性の低下を引き起こす。 When the catalyst beads or the modified strong acid cation exchanger described below has a particle size of 30 to 650 μm is 50% or more of the total, excellent performance in terms of catalyst activity and desired bisphenol compound selectivity Is obtained. On the other hand, if the catalyst beads or the modified strong acid type cation exchanger described below has a particle size of 30 to 650 μm is less than 50% of the total, the catalyst activity is lowered due to diffusion resistance in the catalyst particles. At the same time, the sequential reaction within the catalyst particles causes a decrease in selectivity.
 本発明の製造方法で用いられる触媒ビーズ、又は下述する変性強酸型陽イオン交換体の平均粒径が、100μmより小さいと、触媒層に対する原料の供給圧力を著しく高くする必要があり、触媒粒子に加わる力が大きくなり、触媒粒子の磨耗や微細化が生じやすくなるため、触媒充填層の寿命が短くなる。また、原料供給圧力が高くなると、その分エネルギー消費量も多くなり、プロセスの経済性が悪くなるので、平均粒径は100μm以上が好ましく、固定床流通方式で用いた際の触媒充填層における圧力損失を低レベルに抑えることができるので、平均粒径は300μm以上が更に好ましい。 When the average particle diameter of the catalyst beads used in the production method of the present invention or the modified strong acid cation exchanger described below is smaller than 100 μm, it is necessary to remarkably increase the supply pressure of the raw material to the catalyst layer. Since the force applied to the catalyst increases and the catalyst particles are easily worn and refined, the life of the catalyst packed layer is shortened. In addition, when the raw material supply pressure is increased, the amount of energy consumption is increased and the economic efficiency of the process is deteriorated. Therefore, the average particle size is preferably 100 μm or more, and the pressure in the catalyst packed bed when used in the fixed bed flow system Since the loss can be suppressed to a low level, the average particle size is more preferably 300 μm or more.
 また、上記触媒ビーズ、又は下述する変性強酸型陽イオン交換体の粒径の均一係数が1.10以下であると、固定床流通方式で用いた際の触媒充填層における圧力損失を低レベルに抑えることができる。したがって、固定床で用いる場合には、均一係数が1.05以下であると、同様の効果が更に優れたものとなり、好ましい。一方、該均一係数が1.10より大きいと、触媒層に対する原料の供給圧力を著しく高くする必要があり、触媒粒子に加わる力が大きくなり、触媒粒子の磨耗や微細化が生じやすくなるため、触媒充填層の寿命が短くなる。また、原料供給圧力が高くなると、その分エネルギー消費量も多くなり、プロセスの経済性が悪くなるため好ましくない。 Further, when the particle size uniformity coefficient of the catalyst beads or the modified strong acid cation exchanger described below is 1.10 or less, the pressure loss in the catalyst packed bed when used in a fixed bed flow system is low. Can be suppressed. Therefore, when using it on a fixed bed, it is preferable that the uniformity coefficient is 1.05 or less because the same effect is further improved. On the other hand, if the uniformity coefficient is greater than 1.10, it is necessary to remarkably increase the supply pressure of the raw material to the catalyst layer, the force applied to the catalyst particles is increased, and the catalyst particles are likely to be worn and refined. The life of the catalyst packed bed is shortened. Further, when the raw material supply pressure is increased, the energy consumption is increased correspondingly, and the economic efficiency of the process is deteriorated.
 なお、本明細書で樹脂について言う平均粒径及び粒径分布均一度は、ダイヤイオンマニュアル1(三菱化学株式会社刊、平成19年第4版、140~142頁)に記載の以下の式で算出した値で定義される。
  平均粒径=樹脂の累積体積の50%に相当する径
  均一係数=大粒子側の累積体積が40%に相当する径/大粒子側の累積体積が90%に相当する径
 また、篩別法以外の遠心沈降法、コールター法、画像解析法、レーザー回析散乱法などの方法を用いて得られた測定値を換算することにより、篩別法の値として用いることもできる。
The average particle size and the particle size distribution uniformity referred to in this specification for the resin are expressed by the following formulas described in Diaion Manual 1 (Mitsubishi Chemical Corporation, 4th edition, 2007, pages 140 to 142). It is defined by the calculated value.
Average particle diameter = diameter corresponding to 50% of the cumulative volume of resin Uniformity coefficient = diameter corresponding to the cumulative volume on the large particle side corresponding to 40% / diameter corresponding to the cumulative volume on the large particle side corresponding to 90% It can also be used as the value of the sieving method by converting the measured value obtained by using a method other than the centrifugal sedimentation method, Coulter method, image analysis method, laser diffraction scattering method and the like.
 本発明の製造方法においては、上記触媒ビーズと助触媒である2-(2-メルカプトエチル)ピリジンの存在下に反応が行われる。ここで、2-(2-メルカプトエチル)ピリジンとは、ピリジン環の2位がメルカプトエチル基で置換されている化合物である。
 上記2-(2-メルカプトエチル)ピリジンは、市販品、または特開2002-003475号公報、特開2002-220373号公報、及び特開2005-170820号公報等に記載されている方法に代表される公知の方法に準じて製造したもののうち、いずれを使用してもよい。
In the production method of the present invention, the reaction is carried out in the presence of the catalyst beads and the co-catalyst 2- (2-mercaptoethyl) pyridine. Here, 2- (2-mercaptoethyl) pyridine is a compound in which the 2-position of the pyridine ring is substituted with a mercaptoethyl group.
The 2- (2-mercaptoethyl) pyridine is represented by a commercially available product or a method described in JP-A No. 2002-003475, JP-A No. 2002-220373, JP-A No. 2005-170820, and the like. Any of those produced according to known methods may be used.
 本発明の製造方法においては、上記触媒ビーズと助触媒である2-(2-メルカプトエチル)ピリジンとは、個々に反応系に存在していてもよいし、上記触媒ビーズの少なくとも一部を2-(2-メルカプトエチル)ピリジンにより保護したもの(本明細書中では、これを「変性強酸型陽イオン交換体」と称することがある)を反応系に存在させることも好ましく用いられる。 In the production method of the present invention, the catalyst beads and the co-catalyst 2- (2-mercaptoethyl) pyridine may be present individually in the reaction system, or at least a part of the catalyst beads is 2 It is also preferable to use a compound protected by-(2-mercaptoethyl) pyridine (sometimes referred to as “modified strong acid type cation exchanger” in the present specification) in the reaction system.
 2-(2-メルカプトエチル)ピリジンで上記触媒ビーズの強酸基を保護する方法は、公知の方法、例えば、特開平11-246458号公報等に示されている方法に準じて、水、アルコール、ケトン、エーテルおよびフェノール等の溶媒に、2-(2-メルカプトエチル)ピリジンを溶解させた溶液、または溶媒により希釈されていない2-(2-メルカプトエチル)ピリジンを、直接、上記溶媒中に分散させた触媒ビーズに滴下するなどの方法により混合し攪拌する方法、等により行われる。当該方法により、強酸基を有する陽イオン交換体の強酸基の一部とチオール化合物とが反応(中和)し、イオン結合することで変性されることとなる。
 変性強酸型陽イオン交換体としては、その強酸基の3~30%、好ましくは3~20%が、2-(2-メルカプトエチル)ピリジンで保護されているものが用いられる。
A method for protecting the strong acid group of the catalyst beads with 2- (2-mercaptoethyl) pyridine is a known method, for example, according to a method disclosed in JP-A-11-246458, water, alcohol, A solution in which 2- (2-mercaptoethyl) pyridine is dissolved in a solvent such as ketone, ether and phenol, or 2- (2-mercaptoethyl) pyridine not diluted with the solvent is directly dispersed in the solvent. It is performed by a method of mixing and stirring by a method such as dropping to the catalyst beads. By this method, a part of the strong acid group of the cation exchanger having a strong acid group reacts (neutralizes) with the thiol compound and is denatured by ionic bonding.
As the modified strong acid type cation exchanger, one in which 3 to 30%, preferably 3 to 20%, of the strong acid group is protected with 2- (2-mercaptoethyl) pyridine is used.
 本発明において、上記触媒ビーズ、及び上記変性強酸型陽イオン交換体は、樹脂内に水分が残留していると反応時の阻害要因となり、また、本発明は反応原料中の水分濃度の調整を行うことが特徴であるため、反応に使用する前に原料であるフェノール化合物と接触させることによりイオン交換樹脂内の水分を除去しておくのが好ましい。また、反応前に原料であるフェノール化合物中の水分も除去しておくことが望ましい。水分を除去する方法としては、フェノール化合物の製造方法に記載したように、共沸蒸留などの方法が挙げられる。このような処理により、反応開始時の誘導期間が短くなり、速やかに反応に使用できるようになる。 In the present invention, the catalyst beads and the modified strong acid type cation exchanger become an obstacle to the reaction when moisture remains in the resin, and the present invention adjusts the moisture concentration in the reaction raw material. Since it is characteristic to carry out, it is preferable to remove the water | moisture content in an ion exchange resin by making it contact with the phenol compound which is a raw material before using for reaction. In addition, it is desirable to remove moisture in the phenol compound as a raw material before the reaction. Examples of the method for removing water include azeotropic distillation as described in the method for producing a phenol compound. By such treatment, the induction period at the start of the reaction is shortened and can be used for the reaction promptly.
 本発明の製造方法では、前述触媒ビーズと2-(2-メルカプトエチル)ピリジン、あるいは前述の変性強酸型陽イオン交換体を反応器に充填し、該反応器にフェノール化合物とカルボニル化合物とを供給し、これらを反応させてビスフェノール化合物を製造する。 本発明における前記フェノール化合物と前記カルボニル化合物との反応方式は、前記変性強酸型陽イオン交換体、又は前記触媒ビーズと2-(2-メルカプトエチル)ピリジンを酸性触媒として充填した反応器にフェノール化合物とカルボニル化合物とを連続的にあるいは回分式で供給して反応を行う方法であれば特に限定されるものではなく、例えば、固定床流通方式、流動床方式、連続撹拌方式及び回分方式のいずれでもよい。 In the production method of the present invention, the catalyst beads and 2- (2-mercaptoethyl) pyridine or the modified strong acid cation exchanger are charged into a reactor, and a phenol compound and a carbonyl compound are supplied to the reactor. These are reacted to produce a bisphenol compound. In the present invention, the phenol compound and the carbonyl compound may be reacted in the modified strong acid type cation exchanger or in a reactor packed with the catalyst beads and 2- (2-mercaptoethyl) pyridine as an acidic catalyst. Is not particularly limited as long as it is a method in which the reaction is carried out by supplying the carbonyl compound continuously or batchwise, for example, any of fixed bed flow method, fluidized bed method, continuous stirring method and batch method Good.
 また、固定床流通方式でフェノール化合物とカルボニル化合物の反応を行う場合、必要に応じて装置の上部及び下部の少なくともいずれか一方にスクリーンなどを設けて充填した強酸基を有する陽イオン交換体、あるいは変性強酸型陽イオン交換体が装置外に流出せずに反応液だけが流通できるようにしてもよい。反応液は装置の上部から下部に流しても(ダウンフロー式)、装置の下部から上部に流しても(アップフロー式)もよい。 In addition, when the reaction between the phenol compound and the carbonyl compound is performed in a fixed bed flow system, a cation exchanger having a strong acid group filled with a screen or the like provided at least in either the upper part or the lower part of the apparatus, if necessary, or The modified strong acid cation exchanger may be allowed to flow only through the reaction solution without flowing out of the apparatus. The reaction solution may flow from the upper part to the lower part of the apparatus (down flow type) or may flow from the lower part to the upper part of the apparatus (up flow type).
 本発明では、フェノール化合物とカルボニル化合物とを、変性強酸型陽イオン交換体又は前記触媒ビーズと2-(2-メルカプトエチル)ピリジンを酸性触媒として充填した反応器に連続的あるいは回分式に供給してビスフェノール化合物を製造する。反応方式としては、回分方式も知られているが、連続的に反応させることにより、回分方式で反応を行なう場合に比べ、効率よくビスフェノール化合物を製造することができる。 In the present invention, a phenol compound and a carbonyl compound are continuously or batchwise supplied to a reactor packed with a modified strong acid cation exchanger or the catalyst beads and 2- (2-mercaptoethyl) pyridine as an acidic catalyst. To produce a bisphenol compound. As a reaction system, a batch system is also known, but by reacting continuously, a bisphenol compound can be produced more efficiently than when the reaction is performed in a batch system.
 フェノール化合物とカルボニル化合物は別々に反応器に供給してもよく、混合して供給してもよい。フェノール化合物とカルボニル化合物との混合比は上記のとおりである。
 本発明の製造方法では、上記全反応原料中の水の濃度が0.05~0.5重量%に調整される。当該水の濃度は、0.1~0.3重量%がさらに好ましく、0.15~0.25重量%が最も好ましい。このような濃度の水を反応系中に存在させるには、水を含有しない原料を用いて、適正量の水を添加する方法が好ましい。また、反応前に原料であるフェノール化合物中の水分も除去しておくことが望ましい。水分を除去する方法としては、フェノール化合物の製造方法に記載したように、共沸蒸留などの方法が挙げられる。水を含有した原料を使用した場合でも、原料の水濃度が上記濃度になるように水を添加して使用することができる。
The phenol compound and the carbonyl compound may be supplied separately to the reactor, or may be mixed and supplied. The mixing ratio of the phenol compound and the carbonyl compound is as described above.
In the production method of the present invention, the concentration of water in all the reaction raw materials is adjusted to 0.05 to 0.5% by weight. The concentration of the water is more preferably 0.1 to 0.3% by weight, and most preferably 0.15 to 0.25% by weight. In order to allow such a concentration of water to be present in the reaction system, a method of adding an appropriate amount of water using a raw material not containing water is preferable. In addition, it is desirable to remove moisture in the phenol compound as a raw material before the reaction. Examples of the method for removing water include azeotropic distillation as described in the method for producing a phenol compound. Even when a raw material containing water is used, water can be added and used so that the water concentration of the raw material becomes the above concentration.
 反応温度は、通常、反応溶液が固化せずに液状で存在しうる温度で行なわれ、フェノール化合物がフェノールの場合は好ましくは40℃以上、50℃以上、より好ましくは60℃以上である。反応温度が高いほど、反応速度的には有利であるが、上記強酸基を有する陽イオン交換体、あるいは変性強酸型陽イオン交換体の耐熱温度の点から反応器内の最高温度が好ましくは120℃以下、より好ましくは100℃以下、さらに好ましくは90℃以下となるような条件で反応させるのが望ましい。反応温度が高くなると上記強酸基を有する陽イオン交換体、あるいは変性強酸型陽イオン交換体の耐熱温度以下でも部分的に分解などによりスルホン酸基等の強酸基の脱離などが起こるので、このような観点からは、できるだけ低い温度が好ましいが、温度が低すぎると生成したビスフェノール化合物が固化する場合がある。 The reaction temperature is usually performed at a temperature at which the reaction solution can exist in a liquid state without solidifying. When the phenol compound is phenol, it is preferably 40 ° C. or higher, 50 ° C. or higher, more preferably 60 ° C. or higher. The higher the reaction temperature, the more advantageous the reaction rate, but the maximum temperature in the reactor is preferably 120 from the viewpoint of the heat resistance temperature of the cation exchanger having a strong acid group or the modified strong acid type cation exchanger. It is desirable to carry out the reaction under the conditions of not higher than 100 ° C., more preferably not higher than 100 ° C., still more preferably not higher than 90 ° C. When the reaction temperature increases, the strong acid group such as a sulfonic acid group is eliminated due to partial decomposition even at a temperature lower than the heat resistance temperature of the cation exchanger having the strong acid group or the modified strong acid cation exchanger. From such a viewpoint, the lowest possible temperature is preferable, but if the temperature is too low, the produced bisphenol compound may solidify.
 反応時間は、触媒の使用量、反応温度等の条件により異なるが、連続的に反応を行う方法では、水湿潤状態の触媒ビーズ、あるいは変性強酸型陽イオン交換樹脂を基準として、通常LHSV(liquid hourly space velocity)0.05~20hr-1で行われ、好ましくはLHSV0.2~10hr-1で行われる。また、回分式で反応を行う方法では、0.1~20時間程度で行われる。
 上記方法により製造された反応液中には、大過剰のフェノールの他に、未反応原料、反応時に生成した不純物等が含まれているので、これらの溶液の中から、目的とするビスフェノール化合物を取り出す必要がある。反応混合物から目的物質であるビスフェノール化合物を分離精製する方法は特に制限はなく、公知の方法に準じて行なわれるが、目的物質が、ビスフェノールAの場合を例として以下に説明する。
Although the reaction time varies depending on conditions such as the amount of catalyst used, reaction temperature, etc., in the method of performing the reaction continuously, it is usually based on LHSV (liquid hydrated catalyst beads or modified strong acid type cation exchange resin as a standard. - hourly space velocity) is performed in 0.05 ~ 20 hr -1, preferably at LHSV0.2 ~ 10hr -1. In the batch reaction, the reaction is performed in about 0.1 to 20 hours.
In addition to a large excess of phenol, the reaction solution produced by the above method contains unreacted raw materials, impurities generated during the reaction, etc., so the target bisphenol compound is extracted from these solutions. It is necessary to take it out. The method for separating and purifying the bisphenol compound as the target substance from the reaction mixture is not particularly limited, and is performed according to a known method. The case where the target substance is bisphenol A will be described below as an example.
 上記反応に引き続いて、反応で得られた反応混合物を、ビスフェノールAとフェノールとを含む成分と、反応で副生する水および未反応アセトン等を含む低沸点成分とに分離する(以下、これを「低沸点成分分離工程」と称することがある)。低沸点成分分離工程は、減圧下に蒸留によって低沸点成分を分離する方法で行なわれるのが好ましく、低沸点成分にはフェノール等が含まれていてもよい。ビスフェノールAとフェノールとを含む成分は、必要に応じて、さらに蒸留等によってフェノールを除去したり、フェノールを追加することによって、ビスフェノールAの濃度を所望の濃度に調整することができる。
 上記蒸留等により回収されたフェノール等のフェノール化合物は、これをリサイクルして、ビスフェノール化合物製造方法の原料として用いることができる。
Subsequent to the above reaction, the reaction mixture obtained by the reaction is separated into a component containing bisphenol A and phenol and a low-boiling component containing water, unreacted acetone, etc. produced as a by-product in the reaction (hereinafter referred to as this). Sometimes referred to as “low boiling point component separation step”). The low boiling point component separation step is preferably performed by a method of separating the low boiling point component by distillation under reduced pressure, and the low boiling point component may contain phenol or the like. The component containing bisphenol A and phenol can adjust the concentration of bisphenol A to a desired concentration by removing phenol by distillation or adding phenol as necessary.
The phenol compound such as phenol recovered by the distillation or the like can be recycled and used as a raw material for the bisphenol compound production method.
 リサイクルされるフェノール化合物を含む液としては、反応生成液から目的とするビスフェノール化合物を分離したフェノール溶液(下述するビスフェノール化合物を晶析などによって固化し、固液分離工程にて固液分離する方法によって、ビスフェノール化合物を分離した場合には、この液は、一般的に「母液」と呼ばれているが、その他にも蒸留などによって分離する方法もあり、これらに限定されるものではない)を用いることができる。なお、上記の如く精製されたフェノール化合物は、下述する固液分離工程で得られた結晶の洗浄液として使用し、母液と共に反応器へリサイクルする等、プロセスに応じて所望の方法で使用することもできる。 As a liquid containing a phenol compound to be recycled, a phenol solution obtained by separating a target bisphenol compound from a reaction product liquid (a method of solidifying a bisphenol compound described below by crystallization and solid-liquid separation in a solid-liquid separation step) When the bisphenol compound is separated by this, this liquid is generally called “mother liquor”, but there are other methods such as distillation, which are not limited thereto. Can be used. The phenol compound purified as described above should be used as a cleaning solution for the crystals obtained in the solid-liquid separation step described below, and recycled to the reactor together with the mother liquor in a desired manner depending on the process. You can also.
 その際に全量もしくは一部を分離して、酸やアルカリの触媒で処理をした後に重質分などの不純物を除去したり、更にビスフェノール化合物を回収した後にビスフェノール化合物の原料として用いることが好ましい。プロセス内で回収されたフェノール化合物をリサイクルして固液分離工程で得られた結晶の洗浄液として使用する際は、一般的には精製した後、使用するのが好ましい。
 なお、実験室などの小さなスケールでは、原料として用いるフェノール化合物として精製した高純度のフェノール化合物なども用いられるが、工業レベルのスケールでは、通常、プロセス内で回収されたフェノール化合物をリサイクルさせて使用するのが有利である。
At that time, it is preferable to separate the whole amount or a part thereof and remove impurities such as heavy components after treatment with an acid or alkali catalyst, or recover the bisphenol compound and use it as a raw material for the bisphenol compound. When the phenol compound recovered in the process is recycled and used as a washing liquid for the crystals obtained in the solid-liquid separation step, it is generally preferable to use it after purification.
In small scales such as laboratories, high-purity phenolic compounds purified as phenolic compounds used as raw materials are also used, but in industrial scales, phenolic compounds recovered in the process are usually recycled and used. It is advantageous to do so.
 上記フェノール化合物のリサイクルにおいて、フェノール化合物がフェノールであり、フェノールを含有するリサイクル液として、ビスフェノールA、2,4’-異性体、及びp-イソプロピルフェノールの少なくとも一つを含む溶液が反応器に供給される場合、その量は、通常フェノール100重量部に対してビスフェノールAは通常0.3~20重量部である。また、フェノール100重量部に対して2,4’-異性体は通常0.3重量部~10重量部である。また、フェノール100重量部に対してp-イソプロピルフェノールは通常0.1重量部~1.0重量部である。また、フェノール100重量部に対してビスフェノールA、2,4’-異性体、及びp-イソプロピルフェノールの合計は通常1重量部~35重量部である。 In the recycling of the phenol compound, the phenol compound is phenol, and a solution containing at least one of bisphenol A, 2,4′-isomer, and p-isopropylphenol is supplied to the reactor as a recycling liquid containing phenol. When used, the amount is usually 0.3 to 20 parts by weight of bisphenol A per 100 parts by weight of phenol. In addition, the 2,4'-isomer is usually 0.3 to 10 parts by weight with respect to 100 parts by weight of phenol. Further, p-isopropylphenol is usually 0.1 to 1.0 part by weight per 100 parts by weight of phenol. The total amount of bisphenol A, 2,4'-isomer and p-isopropylphenol is usually 1 to 35 parts by weight per 100 parts by weight of phenol.
 一方、フェノールを含むリサイクル液に、さらにその他に構造不明物が共存する場合、その量は、通常フェノール100重量部に対してその他の構造不明物は通常0.3重量部~10重量部である。また、フェノール100重量部に対してビスフェノールA、2,4’-異性体、p-イソプロピルフェノール、およびその他の構造不明物の合計は通常1重量部~45重量部である。 On the other hand, when other unknown substances coexist in the recycling liquid containing phenol, the amount is usually 0.3 to 10 parts by weight with respect to 100 parts by weight of phenol. . The total amount of bisphenol A, 2,4'-isomer, p-isopropylphenol, and other structurally unknown substances is usually 1 to 45 parts by weight based on 100 parts by weight of phenol.
 フェノールに対してこれらの化合物をこの下限よりも低い濃度にしようとすると、追加の精製工程等が必要となり、好ましくない。また、フェノールに対してこれらの化合物が上限を超えて含まれると、反応系内でビスフェノールA、2,4’-異性体、及びビスフェノールAとフェノールとのアダクトが結晶として析出し、運転の継続が困難になる場合があり好ましくない。また、製品としてビスフェノールAを製造する際に精製が困難となる場合もある。 If the concentration of these compounds with respect to phenol is to be lower than this lower limit, an additional purification step is required, which is not preferable. If these compounds are contained in excess of the upper limit with respect to phenol, bisphenol A, 2,4′-isomer, and adduct of bisphenol A and phenol precipitate as crystals in the reaction system, and the operation is continued. May become difficult. Moreover, when manufacturing bisphenol A as a product, refinement | purification may become difficult.
 低沸点成分分離工程で得られた低沸点成分は、アセトン循環工程によって未反応アセトンを分離回収し、回収されたアセトン(以下、これを回収アセトンと称することがある)を反応工程に循環させることができる。
 上記回収アセトンには不純物として、微量の低級アルコールが含まれる。低級アルコールとは、炭素数1~8のアルコールを意味し、代表的にはメタノールである。反応工程に供給される未反応のアセトンと回収アセトンを含む全アセトン中のメタノール濃度は、1,000ppm以下、好ましくは500ppm以下、より好ましくは300ppm以下であることが望ましい。
The low boiling point component obtained in the low boiling point component separation step separates and recovers unreacted acetone by the acetone circulation step, and circulates the collected acetone (hereinafter sometimes referred to as recovered acetone) to the reaction step. Can do.
The recovered acetone contains a trace amount of lower alcohol as an impurity. The lower alcohol means an alcohol having 1 to 8 carbon atoms, and is typically methanol. The methanol concentration in the total acetone including unreacted acetone and recovered acetone supplied to the reaction step is desirably 1,000 ppm or less, preferably 500 ppm or less, more preferably 300 ppm or less.
 回収アセトン中に含まれるメタノールは反応に関与しないため、分離回収されたアセトン中に蓄積される。蓄積されたメタノールは変性強酸型陽イオン交換体を劣化させ、触媒寿命を短くする問題があるため、蒸留等によりメタノール濃度を低く抑えることが望ましい。
 上記、低沸点成分分離工程を経た反応で得られた反応混合物を、続いて、ビスフェノールAとフェノールとの付加物の結晶を含有するスラリーを得る晶析工程に供する。晶析工程に供するビスフェノールAとフェノールとを含む成分のビスフェノールAの濃度は、得られるスラリーの取り扱いの容易さ等から、10~40%が好ましい。また晶析方法としては、ビスフェノールAとフェノールとを含む成分を直接冷却させる方法、水等の他の溶媒を混合し、当該溶媒を蒸発させることによって冷却を行なう方法、さらにフェノールを除去して濃縮を行う方法及びこれらを組み合わせる方法等が挙げられ、所望の純度の付加物を得るために1回もしくは2回以上晶析させてもよい。
Since methanol contained in the recovered acetone does not participate in the reaction, it accumulates in the separated and recovered acetone. Accumulated methanol degrades the modified strong acid cation exchanger and shortens the catalyst life, so it is desirable to keep the methanol concentration low by distillation or the like.
Subsequently, the reaction mixture obtained by the reaction through the low boiling point component separation step is subjected to a crystallization step for obtaining a slurry containing crystals of an adduct of bisphenol A and phenol. The concentration of bisphenol A, which is a component containing bisphenol A and phenol used in the crystallization step, is preferably 10 to 40% from the viewpoint of ease of handling of the resulting slurry. As a crystallization method, a method of directly cooling a component containing bisphenol A and phenol, a method of cooling by mixing other solvent such as water and evaporating the solvent, and further removing phenol and concentrating. In order to obtain an adduct having a desired purity, crystallization may be performed once or twice or more.
 前記晶析工程で得られたスラリーは、減圧濾過、加圧濾過、遠心濾過等により付加物の結晶と母液とに固液分離され、ビスフェノールAとフェノールとの付加物の結晶が回収される(以下、これを「固液分離工程」と称することがある)。上記晶析工程で、ビスフェノールAの結晶を晶析によって直接得ることもできる。
 前記固液分離工程で得られた付加物の結晶を、溶融後にフラッシュ蒸留、薄膜蒸留及びスチームストリッピング等の手段によってフェノールを除去することにより、高純度の溶融ビスフェノールAを得る。除去されたフェノールは所望により精製され、反応や前記固液分離工程で得られた付加物の結晶の洗浄等に供することができる。
The slurry obtained in the crystallization step is subjected to solid-liquid separation into adduct crystals and mother liquor by vacuum filtration, pressure filtration, centrifugal filtration, etc., and the adduct crystals of bisphenol A and phenol are recovered ( Hereinafter, this may be referred to as a “solid-liquid separation step”). In the crystallization step, bisphenol A crystals can also be obtained directly by crystallization.
After melting the adduct crystals obtained in the solid-liquid separation step by means of flash distillation, thin film distillation, steam stripping or the like, high purity molten bisphenol A is obtained. The removed phenol is purified as desired, and can be used for reaction, washing of crystals of the adduct obtained in the solid-liquid separation step, and the like.
 得られた高純度の溶融ビスフェノールAは、造粒工程において固化される。ノズルから溶融ビスフェノールAを噴射させ、冷却ガスと接触させることにより小球状のビスフェノールAプリルを得る方法が簡便で好ましい。尚、脱フェノール工程を経ることなく、固液分離工程で得られた付加物の結晶から、再度、晶析を行いビスフェノールAのみを晶析により得ることもできる。 The obtained high purity molten bisphenol A is solidified in the granulation step. A method of obtaining small spherical bisphenol A prills by injecting molten bisphenol A from a nozzle and bringing it into contact with a cooling gas is simple and preferred. In addition, it is also possible to obtain only bisphenol A by crystallization from the adduct crystal obtained in the solid-liquid separation step, without passing through the dephenol step.
 また、系内の不純物の蓄積を防止する目的で、固液分離工程で分離された母液の少なくとも一部を不純物処理工程において処理することもできる。例えば、アルカリ又は酸を混合して加熱処理した後に蒸留して軽質分と重質分とに分離し、軽質分を酸触媒等により再結合反応処理して反応に使用するのが経済性の点でも好ましい。ここで重質分を系外にパージすることにより不純物の蓄積を防止し、製品の純度を向上させることができる。また、母液の少なくとも一部を酸触媒によって異性化した後、晶析を行なうことによってビスフェノールAの回収率の向上を図ることもできる。母液に含まれる2,4-異性体は、異性化などの方法によりビスフェノールAとして回収することが可能だが、インダン化合物などの不純物は一旦生成するとビスフェノールAとして回収することが困難なため、系外にパージすることでしか除去できない。本発明の方法により、インダンなど不純物の生成を低減することで、ビスフェノールAの回収率の向上を図ることができ、また系外にパージする重質分を減らすことができるため、工業的に非常に有利である。 Also, for the purpose of preventing accumulation of impurities in the system, at least a part of the mother liquor separated in the solid-liquid separation step can be treated in the impurity treatment step. For example, it is economical to mix an alkali or acid, heat and then distill to separate light and heavy components, and use the light component for the reaction after recombination treatment with an acid catalyst or the like. However, it is preferable. Here, by purging the heavy component out of the system, accumulation of impurities can be prevented and the purity of the product can be improved. The recovery rate of bisphenol A can also be improved by crystallization after isomerization of at least a part of the mother liquor using an acid catalyst. The 2,4-isomer contained in the mother liquor can be recovered as bisphenol A by a method such as isomerization, but impurities such as indane compounds are difficult to recover as bisphenol A once produced. Can only be removed by purging. By reducing the generation of impurities such as indane by the method of the present invention, it is possible to improve the recovery rate of bisphenol A, and it is possible to reduce the heavy component purged out of the system. Is advantageous.
 以下、実施例によって本発明を詳細に示す。ただし、本発明は以下の実施例により何ら限定されるものではない。なお、以下において、「部」は「重量部」を示す。
[実施例1]
(1)共重合体(ゲル型ビーズ)の製造
 図1に示す、加振装置として水中スピーカーが取り付けられた液滴製造装置と重合反応装置を用いて、均一粒径の球状のゲル型ビーズ(以下、「共重合体」と称することがある)を製造した。
 この液滴製造装置1は、連続相を形成する水性媒質2を保持する液滴製造槽3と、水性媒質2と混和しない疎水性液体4を保持する疎水性液体貯槽5と、疎水性液体貯槽5に貯留されている疎水性液体4を液滴製造槽3に供給する疎水性液体供給管6とを備えている。また、液滴製造装置1は、水性媒質2に接触し、疎水性液体供給管6から供給された疎水性液体4を噴出する噴出孔11を備えたノズル部材7と、液滴製造槽3内の水性媒質2に機械的に振動を加える加振手段である水中スピーカー(水中音響機器)8と、水性媒質2を貯留する水性媒質貯槽9と、水性媒質貯槽9に貯留されている水性媒質2を液滴製造槽3に供給する水性媒質供給管10とを備えている。ここで、符号12は疎水性液体噴出貯槽、符号13、14はそれぞれ疎水性液体、水性媒質の供給ポンプを示す。
Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to the following examples. In the following, “part” means “part by weight”.
[Example 1]
(1) Production of copolymer (gel-type beads) Using a droplet production apparatus and a polymerization reaction apparatus with an underwater speaker attached as a vibration apparatus shown in FIG. Hereinafter, it may be referred to as “copolymer”).
The droplet manufacturing apparatus 1 includes a droplet manufacturing tank 3 that holds an aqueous medium 2 that forms a continuous phase, a hydrophobic liquid storage tank 5 that holds a hydrophobic liquid 4 that is immiscible with the aqueous medium 2, and a hydrophobic liquid storage tank. And a hydrophobic liquid supply pipe 6 for supplying the hydrophobic liquid 4 stored in 5 to the droplet production tank 3. In addition, the droplet manufacturing apparatus 1 is in contact with the aqueous medium 2 and includes a nozzle member 7 having an ejection hole 11 for ejecting the hydrophobic liquid 4 supplied from the hydrophobic liquid supply pipe 6, and the inside of the droplet manufacturing tank 3. An underwater speaker (underwater acoustic device) 8 which is a vibration means for mechanically vibrating the aqueous medium 2, an aqueous medium storage tank 9 for storing the aqueous medium 2, and the aqueous medium 2 stored in the aqueous medium storage tank 9. And an aqueous medium supply pipe 10 for supplying the liquid to the droplet production tank 3. Here, reference numeral 12 denotes a hydrophobic liquid ejection storage tank, and reference numerals 13 and 14 denote a supply pump for the hydrophobic liquid and the aqueous medium, respectively.
 ノズル部材7としては、図2に示す如く、外径100mmの円板に直径が0.125mmの噴出孔11を345個、環状に配置したものを用いた。
 また、図1の重合反応装置16は、液滴製造装置1の液滴製造槽3内の液滴15が水性媒質2と共に移送され液滴15を合着、破砕しないで重合反応を行わせる重合反応槽17と、重合反応槽17に液滴製造槽3内からの液滴15を合着、破砕させないで水性媒質2と共に移送する疎水性液滴移送管18とを有している。
As the nozzle member 7, as shown in FIG. 2, a circular plate having an outer diameter of 100 mm and 345 ejection holes 11 having a diameter of 0.125 mm arranged in an annular shape was used.
Further, the polymerization reaction device 16 in FIG. 1 is a polymerization in which the droplet 15 in the droplet production tank 3 of the droplet production device 1 is transferred together with the aqueous medium 2 and the polymerization reaction is performed without coalescing and crushing the droplet 15. It has a reaction tank 17 and a hydrophobic liquid droplet transfer pipe 18 that transfers the liquid droplet 15 from the droplet production tank 3 together with the aqueous medium 2 to the polymerization reaction tank 17 without fusing and crushing.
 液滴製造装置1では、液滴製造槽3内に保持されて連続相を形成する水性媒質2中に、疎水性液体貯槽5から疎水性液体供給管6を介して供給ポンプ13により移送された疎水性液体4をノズル部材7に設けられた噴出孔11から噴出させて、疎水性液体4の噴出流を形成することができる。その際、水性媒質2側を、例えば、水中スピーカー8により加振させることにより、噴出流を砕いて均一な粒径を有する疎水性液体の液滴15とすることができると共に、水性媒質貯槽9内に貯留されている水性媒質2を供給ポンプ14により液滴製造槽3内に供給することにより、液滴製造槽3内に水性媒質2の流れを形成することができ、この流れによって、発生した疎水性液体の液滴15を移動させることができる。 In the droplet manufacturing apparatus 1, the droplet is transferred from the hydrophobic liquid storage tank 5 through the hydrophobic liquid supply pipe 6 to the aqueous medium 2 that is held in the droplet manufacturing tank 3 to form a continuous phase. The hydrophobic liquid 4 can be ejected from the ejection holes 11 provided in the nozzle member 7 to form an ejection flow of the hydrophobic liquid 4. At that time, the aqueous medium 2 side is vibrated by, for example, an underwater speaker 8 to break the jet flow into droplets 15 of a hydrophobic liquid having a uniform particle diameter, and the aqueous medium storage tank 9 A flow of the aqueous medium 2 can be formed in the droplet production tank 3 by supplying the aqueous medium 2 stored in the droplet production tank 3 by the supply pump 14. The droplet 15 of the hydrophobic liquid thus made can be moved.
 即ち、液滴製造槽3の内側下部には、疎水性液体噴出貯槽12が存在し、その上部には水性媒質2中に向かって開口し、疎水性液体4を噴出する噴出孔11を有するノズル部材7が取付けられている。このため、疎水性液体貯槽5から疎水性液体供給管6を介して供給ポンプ13により供給された疎水性液体4は、液体噴出貯槽12内に貯留されて、ノズル部材7に設けられた噴出孔11から真っ直ぐ上方に向けて噴出される。図2に示す如く、ノズル部材7には、疎水性液体4の噴出孔11が複数個、所定の間隔で配置されている。この噴出孔11の径は、所望の液滴サイズに応じて設定される。
 液滴製造槽3は、液滴移送管18により重合反応槽17と連結されているため、水性媒質貯槽9から液滴製造槽3内に水性媒質2を供給することにより形成された液滴製造槽3内の水性媒質2の流れによって、液滴製造槽3内で製造された疎水性液体の液滴15は水性媒質2と共に連続的に重合反応槽17へ移送され、重合反応に供される。
That is, a hydrophobic liquid ejection storage tank 12 exists in the lower part inside the droplet production tank 3, and a nozzle having an ejection hole 11 that opens toward the aqueous medium 2 and ejects the hydrophobic liquid 4 in the upper part thereof. A member 7 is attached. For this reason, the hydrophobic liquid 4 supplied by the supply pump 13 from the hydrophobic liquid storage tank 5 through the hydrophobic liquid supply pipe 6 is stored in the liquid discharge storage tank 12, and the ejection holes provided in the nozzle member 7. 11 is ejected straight upward. As shown in FIG. 2, a plurality of ejection holes 11 for the hydrophobic liquid 4 are arranged in the nozzle member 7 at a predetermined interval. The diameter of the ejection hole 11 is set according to a desired droplet size.
Since the droplet production tank 3 is connected to the polymerization reaction tank 17 by a droplet transfer pipe 18, droplet production formed by supplying the aqueous medium 2 from the aqueous medium storage tank 9 into the droplet production tank 3. Due to the flow of the aqueous medium 2 in the tank 3, the hydrophobic liquid droplets 15 produced in the droplet production tank 3 are continuously transferred to the polymerization reaction tank 17 together with the aqueous medium 2 and used for the polymerization reaction. .
 本実施例では、まず、水性媒質2として、ポリビニルアルコールを0.05重量%含有する水溶液を、水性媒質貯槽9から液滴製造槽3及び重合反応槽17に満たした。ポリビニルアルコール水溶液は、重合反応開始まで40℃に加温して保持した。一方、重合開始剤として過酸化ベンゾイルを含む96部のスチレン、4部のジビニルベンゼンからなる重合性モノマー混合液を、疎水性液体として疎水性液体貯槽5からノズル部材7の噴出孔11より流量1.54mL/min/孔で液滴製造槽3内に噴出させた。その際、重合性モノマー混合液の噴出流を砕いて均一な粒径を有する液滴15とするために、噴出流に水中スピーカー8より1400Hzの振動を加えた。この時に得られた重合性モノマー混合液の液滴15の平均粒径は、0.32mmであり、均一係数は1.01であった。なお、この液滴15の平均粒径及び均一係数は、液滴の拡大写真を撮影し、画像解析法により粒度分布を求めて算出した。 In this example, first, as the aqueous medium 2, an aqueous solution containing 0.05% by weight of polyvinyl alcohol was filled from the aqueous medium storage tank 9 into the droplet production tank 3 and the polymerization reaction tank 17. The polyvinyl alcohol aqueous solution was heated to 40 ° C. and held until the polymerization reaction started. On the other hand, 96 parts of styrene containing benzoyl peroxide as a polymerization initiator, 4 parts of a polymerizable monomer mixed liquid consisting of divinylbenzene, and a flow rate of 1 from the ejection hole 11 of the nozzle member 7 from the hydrophobic liquid storage tank 5 as a hydrophobic liquid. It was ejected into the droplet production tank 3 at a rate of .54 mL / min / hole. At that time, vibration of 1400 Hz was applied to the jet stream from the underwater speaker 8 in order to break up the jet stream of the polymerizable monomer mixed liquid into droplets 15 having a uniform particle size. The average particle size of the droplets 15 of the polymerizable monomer mixture obtained at this time was 0.32 mm, and the uniformity coefficient was 1.01. The average particle size and uniformity coefficient of the droplet 15 were calculated by taking an enlarged photograph of the droplet and obtaining the particle size distribution by an image analysis method.
 発生した液滴15は、水性媒質2の送流に伴い重合反応槽17に移送された。次いで、重合反応槽17内でこの液滴15を合着又は破砕することのない回転数にて撹拌しながら、75℃で8時間加熱することにより重合させて共重合体(架橋度4%)とした。
 得られた共重合体スラリーを、遠心分離機を用いて固液分離し、ポリビニルアルコール水溶液を含まない状態で回収した。得られた共重合体は平均粒径0.29mmで、均一係数は1.02の球状の粒子であった。
The generated droplets 15 were transferred to the polymerization reaction tank 17 along with the flow of the aqueous medium 2. Next, the mixture is polymerized by heating at 75 ° C. for 8 hours while stirring at a rotation speed that does not coalesce or crush the droplets 15 in the polymerization reaction tank 17 (crosslinking degree 4%). It was.
The obtained copolymer slurry was subjected to solid-liquid separation using a centrifuge, and recovered without containing a polyvinyl alcohol aqueous solution. The obtained copolymer was spherical particles having an average particle diameter of 0.29 mm and a uniformity coefficient of 1.02.
 この共重合体の平均粒径及び均一係数は「ダイヤイオン、イオン交換樹脂・合成吸着剤マニュアル1」(三菱化学株式会社刊、改訂4版、平成19年10月31日発行、140~141頁)に記載の篩別法で測定した粒度分布から、以下の式により算出した。
  平均粒径=樹脂の累積体積の50%に相当する径
  均一係数=大粒子側の累積体積が40%に相当する径/大粒子側の累積体積が90%に相当する径
The average particle size and uniformity coefficient of this copolymer are “Diaion, Ion Exchange Resin / Synthetic Adsorbent Manual 1” (Mitsubishi Chemical Corporation, 4th revised edition, published on October 31, 2007, pages 140 to 141). ) Was calculated from the particle size distribution measured by the sieving method described in the following formula.
Average particle diameter = diameter corresponding to 50% of the cumulative volume of resin Uniformity coefficient = diameter corresponding to the cumulative volume on the large particle side corresponding to 40% / diameter corresponding to the cumulative volume on the large particle side corresponding to 90%
 (2)ゲル型触媒ビーズの製造
 上記(1)で得られた共重合体180gを、1Lの4ッ口フラスコに入れ、ニトロベンゼン198gを加えて70℃で1.5時間加熱、撹拌し、共重合体を膨潤させた。冷却後、ニトロベンゼン324g、98重量%硫酸360gと発煙硫酸189gを加えて、70℃まで昇温し、4時間加熱後、105℃まで昇温して3時間保持した。反応後、多量の水を加えてフラスコ内の硫酸を希釈して取り除いた後、脱塩水を加えて加熱、撹拌し、ニトロベンゼンを留去した。得られた樹脂を脱塩水にて洗浄し、ゲル型触媒ビーズ(以下、「強酸性陽イオン交換樹脂」と称することがある)を得た。
(2) Production of gel-type catalyst beads 180 g of the copolymer obtained in (1) above is placed in a 1 L four-necked flask, 198 g of nitrobenzene is added, and the mixture is heated and stirred at 70 ° C. for 1.5 hours. The polymer was swollen. After cooling, 324 g of nitrobenzene, 360 g of 98% by weight sulfuric acid and 189 g of fuming sulfuric acid were added, the temperature was raised to 70 ° C., heated for 4 hours, then heated to 105 ° C. and held for 3 hours. After the reaction, a large amount of water was added to dilute and remove the sulfuric acid in the flask, and then demineralized water was added and heated and stirred to distill off nitrobenzene. The obtained resin was washed with demineralized water to obtain gel type catalyst beads (hereinafter sometimes referred to as “strongly acidic cation exchange resin”).
 得られた強酸性陽イオン交換樹脂の交換容量、平均粒径、均一係数、粒径30~650μmの触媒ビーズ含有率を求め、その結果を表1に示した。なお、粒径30~650μmの触媒ビーズ含有率は、前記の共重合体同様に篩別法により得られた粒度分布から算出した。 The exchange capacity, average particle size, uniformity coefficient, and catalyst bead content with a particle size of 30 to 650 μm were determined for the strongly acidic cation exchange resin obtained, and the results are shown in Table 1. The content of catalyst beads having a particle size of 30 to 650 μm was calculated from the particle size distribution obtained by the sieving method as in the case of the copolymer.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (3)2-(2-メルカプトエチル)ピリジン変性強酸型陽イオン交換樹脂の調製
 窒素ガス導入管を備えた200mLの四つ口フラスコ中に、前記で製造した湿潤状態の強酸性陽イオン交換樹脂20.0g-湿潤状態、及び60℃の脱塩水約40mLを入れ、強酸性陽イオン交換樹脂を洗浄した。洗浄液はデカンテーションにより廃棄し、再度60℃の脱塩水約40mLを導入した。この洗浄操作を3回繰り返した。次いで、洗浄液を廃棄した後、脱塩水約40mLを加え、フラスコ内を窒素で置換した。そこへ、変性剤(助触媒)として2-(2-メルカプトエチル)ピリジン0.74g(5.32ミリモル)を攪拌下に一度に加え、更に、2時間、室温下で攪拌して変性処理を行った。処理終了後、得られた変性陽イオン交換樹脂を脱塩水で洗浄し、2-(2-メルカプトエチル)ピリジン変性強酸性陽イオン交換樹脂触媒(変性率17.2%)を得た。
(3) Preparation of 2- (2-mercaptoethyl) pyridine-modified strong acid type cation exchange resin In a 200 mL four-necked flask equipped with a nitrogen gas introduction tube, the wet strong acid cation exchange resin produced above About 40 mL of 20.0 g-wet, 60 ° C. demineralized water was added to wash the strongly acidic cation exchange resin. The washing solution was discarded by decantation, and about 40 mL of 60 ° C. demineralized water was introduced again. This washing operation was repeated three times. Next, after discarding the washing solution, about 40 mL of demineralized water was added, and the inside of the flask was replaced with nitrogen. Thereto was added 0.74 g (5.32 mmol) of 2- (2-mercaptoethyl) pyridine as a modifying agent (co-catalyst) at a time under stirring, and the mixture was further stirred at room temperature for 2 hours for modification treatment. went. After the treatment, the resulting modified cation exchange resin was washed with demineralized water to obtain a 2- (2-mercaptoethyl) pyridine-modified strong acidic cation exchange resin catalyst (modification rate: 17.2%).
 なお、変性率は、変性に使用した強酸性陽イオン交換樹脂の量、添加した変性剤(2-(2-メルカプトエチル)ピリジン)の量及び滴定によって求めた強酸性陽イオン交換樹脂中のスルホン酸基の量から、下式に従って求めた。ここで、強酸性陽イオン交換樹脂中のスルホン酸基の量は、上記交換容量に相当する。
 変性率(%)=[(添加した助触媒のモル数(ミリモル))/[(ゲル型強酸性陽イオン交換樹脂中のスルホン酸基の量(meq/g‐湿潤状態)×変性に使用したゲル型強酸性陽イオン交換樹脂の重量(g-湿潤状態))]]×100
The modification rate is determined by the amount of the strongly acidic cation exchange resin used for modification, the amount of the modifier (2- (2-mercaptoethyl) pyridine) added, and the sulfone in the strongly acidic cation exchange resin determined by titration. It calculated | required according to the following formula from the quantity of the acid group. Here, the amount of the sulfonic acid group in the strongly acidic cation exchange resin corresponds to the exchange capacity.
Modification rate (%) = [(number of moles of added cocatalyst (mmol)) / [(amount of sulfonic acid group in gel-type strongly acidic cation exchange resin (meq / g-wet state) × used for modification) Weight of gel-type strongly acidic cation exchange resin (g-wet state)]] × 100
 (4)ビスフェノール化合物の製造
 上記(3)で調製した2-(2-メルカプトエチル)ピリジン変性強酸型陽イオン交換樹脂(以下、「触媒」ということがある)3.0g-湿潤状態をフラスコに量り入れ、70℃のフェノール約100mLを用いて、洗浄液の含水率が0.1重量%以下になるまで繰り返し洗浄した。次いで、上記フラスコにフェノールが120.0gになるように加え、反応原料中の水濃度が0.3重量%になるように調整し、窒素を導入した。その後、フラスコ内液温度70℃、攪拌回転数250rpmにしてアセトン7.4gを一度に添加し、反応開始とした。アセトンに対するフェノールの量はモル比で10倍とした。
(4) Production of bisphenol compound 3.0 g of 2- (2-mercaptoethyl) pyridine-modified strong acid cation exchange resin (hereinafter sometimes referred to as “catalyst”) prepared in (3) above. The sample was weighed and repeatedly washed with about 100 mL of phenol at 70 ° C. until the water content of the cleaning liquid became 0.1 wt% or less. Subsequently, phenol was added to the flask so as to be 120.0 g, and the water concentration in the reaction raw material was adjusted to 0.3 wt%, and nitrogen was introduced. Thereafter, 7.4 g of acetone was added all at once at a liquid temperature in the flask of 70 ° C. and a stirring rotational speed of 250 rpm, and the reaction was started. The amount of phenol relative to acetone was 10 times in molar ratio.
 反応開始から5時間後に反応液を採取した。また、反応液中の各組成濃度は高速液体クロマトグラフィー及びカールフィッシャー水分計により、以下に記載の条件で定量した。アセトン転化率は下記式より求めた。また、各生成物の選択率は、(各生成物量)/(水分およびフェノールを除く全生成物量)を高速液体クロマトグラフィーの結果より面積百分率法で算出して、ビスフェノールAと2,4’異性体との合計の選択率及びインダン化合物(p-イソプロペニルフェノール環状二量体、及びその異性体)の選択率を求めた。結果を表2に示す。 The reaction solution was collected 5 hours after the start of the reaction. Moreover, each composition density | concentration in a reaction liquid was quantified on the conditions described below by the high performance liquid chromatography and Karl Fischer moisture meter. The acetone conversion was obtained from the following formula. The selectivity of each product was calculated by calculating the (per product amount) / (total product amount excluding moisture and phenol) from the results of high performance liquid chromatography by the area percentage method. And the selectivity of the indane compound (p-isopropenylphenol cyclic dimer and its isomer) were determined. The results are shown in Table 2.
 高速液体クロマトグラフィー:島津製作所製「LC-10A」
 カラム:Waters Sun FireTM C18 5μm、
     4.6φ×250mm
 検出器:UV 280nm
 溶離液:A液 90%アセトニトリル水溶液
     B液 0.59mol/Lりん酸水溶液を含む0.5%りん酸二水素ナトリウム水溶液
 アセトン転化率(%)=〔[(原料1kg中のアセトンモル数)-(生成液1kg中のアセトンモル数)]/(原料液1kg中のアセトンモル数)〕×100
High-performance liquid chromatography: “LC-10A” manufactured by Shimadzu Corporation
Column: Waters Sun Fire ™ C18 5 μm,
4.6φ × 250mm
Detector: UV 280nm
Eluent: A solution 90% acetonitrile aqueous solution B solution 0.59 mol / L 0.5% sodium dihydrogen phosphate aqueous solution containing phosphoric acid aqueous solution Acetone conversion (%) = [[(number of moles of acetone in 1 kg of raw material)-( Mole of acetone in 1 kg of product liquid)] / (number of moles of acetone in 1 kg of raw material liquid)] × 100
 [実施例2]
 実施例1の(4)ビスフェノール化合物の製造において、反応原料中の含水率を0.2重量%に変更した以外は、実施例1と同様に反応を行い、実施例1と同様にしてアセトン転化率、ビスフェノールAと2,4’異性体との合計の選択率及びインダン化合物の選択率を求めた。結果を表2に示す。
[Example 2]
In the production of (4) bisphenol compound in Example 1, the reaction was carried out in the same manner as in Example 1 except that the water content in the reaction raw material was changed to 0.2% by weight. Rate, the total selectivity of bisphenol A and the 2,4 ′ isomer, and the selectivity of the indane compound. The results are shown in Table 2.
 [実施例3]
 実施例1の(4)ビスフェノール化合物の製造において、反応原料中の含水率を0.2重量%に変更し、アセトンに対するフェノールの量をモル比で13倍とした以外は、実施例1と同様に反応を行い、実施例1と同様にしてアセトン転化率、ビスフェノールAと2,4’異性体との合計の選択率及びインダン化合物の選択率を求めた。結果を表2に示す。
[Example 3]
In the production of the bisphenol compound of Example 1 (4), the water content in the reaction raw material was changed to 0.2% by weight, and the amount of phenol with respect to acetone was 13 times in molar ratio, which was the same as Example 1. In the same manner as in Example 1, the acetone conversion rate, the total selectivity of bisphenol A and the 2,4 ′ isomer, and the selectivity of the indane compound were determined. The results are shown in Table 2.
 [比較例1]
 実施例1の(4)ビスフェノール化合物の製造において、反応原料中の含水率を0.02重量%に変更した以外は、実施例1と同様に反応を行い、実施例1と同様にしてアセトン転化率、ビスフェノールAと2,4’異性体との合計の選択率及びインダン化合物の選択率を求めた。結果を表2に示す。
[Comparative Example 1]
In the production of the bisphenol compound of Example 1 (4), the reaction was carried out in the same manner as in Example 1 except that the water content in the reaction raw material was changed to 0.02% by weight. Rate, the total selectivity of bisphenol A and the 2,4 ′ isomer, and the selectivity of the indane compound. The results are shown in Table 2.
 [比較例2]
 実施例1の(4)ビスフェノール化合物の製造において、反応原料中の含水率を1.0重量%に変更した以外は、実施例1と同様に反応を行い、実施例1と同様にしてアセトン転化率、ビスフェノールAと2,4’異性体との合計の選択率及びインダン化合物の選択率を求めた。結果を表2に示す。
[Comparative Example 2]
In the production of the bisphenol compound of Example 1 (4), the reaction was carried out in the same manner as in Example 1 except that the water content in the reaction raw material was changed to 1.0% by weight. Rate, the total selectivity of bisphenol A and the 2,4 ′ isomer, and the selectivity of the indane compound. The results are shown in Table 2.
 表2から明らかなように、2-(2-メルカプトエチル)ピリジンにより変性されたスルホン酸型陽イオン交換樹脂を酸性触媒として使用した結果、ビスフェノールAの生成反応において、ビスフェノールAの選択率は反応原料中の水濃度が0.2重量%以上で特に高いことがわかった。 As is apparent from Table 2, as a result of using a sulfonic acid type cation exchange resin modified with 2- (2-mercaptoethyl) pyridine as an acidic catalyst, the selectivity of bisphenol A is the reaction rate in the bisphenol A production reaction. It was found that the water concentration in the raw material was particularly high at 0.2% by weight or more.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[参考例1]
 (1)4-(2-メルカプトエチル)ピリジンの合成
 300mLの四つ口フラスコに、窒素ガス導入管、温度計、ジムロート冷却管、滴下ロートを取り付け、30重量%硫酸水溶液102.9g(0.315モル)と、チオ尿素11.42g(0.15モル)とを仕込んだ。窒素雰囲気下、攪拌しながら70℃まで加熱した後、滴下ロートより、反応温度70℃を保ちながら、4-ビニルピリジン12.62g(0.12モル)を約1時間で滴下し、その後、70℃を保ちながら引き続き5時間反応を行った。この反応液を室温迄冷却した後、トルエン30mlを添加した。
[Reference Example 1]
(1) Synthesis of 4- (2-mercaptoethyl) pyridine A nitrogen gas inlet tube, a thermometer, a Dimroth condenser, and a dropping funnel were attached to a 300 mL four-necked flask, and 102.9 g (0. 315 mol) and 11.42 g (0.15 mol) of thiourea were charged. After heating to 70 ° C. with stirring in a nitrogen atmosphere, 12.62 g (0.12 mol) of 4-vinylpyridine was added dropwise from the dropping funnel over about 1 hour while maintaining the reaction temperature of 70 ° C. The reaction was continued for 5 hours while maintaining the temperature. After cooling the reaction solution to room temperature, 30 ml of toluene was added.
 さらに、攪拌下、反応液に、28重量%アンモニア水45.74g(アンモニアとして0.75mol)を液温が上がらない様に注意しながら約2時間かけて滴下した。滴下終了後、40℃まで昇温し、3時間撹拌した。撹拌停止後、分液ロートに反応液を移して2相に分離した。上相(トルエン相)を取り出し、更に下相(水相)をトルエン30mlで2回抽出を繰り返した。 Furthermore, under stirring, 45.74 g of 28 wt% aqueous ammonia (0.75 mol as ammonia) was added dropwise to the reaction solution over about 2 hours, taking care not to raise the liquid temperature. After completion of dropping, the temperature was raised to 40 ° C. and stirred for 3 hours. After the stirring was stopped, the reaction solution was transferred to a separatory funnel and separated into two phases. The upper phase (toluene phase) was taken out, and the lower phase (aqueous phase) was further extracted twice with 30 ml of toluene.
 次に、バス温50℃、圧力12.5~1.1kPaの条件下、ロータリーエバポレータによりトルエンを留去した。ここで得た残渣を、薄膜蒸発器を使用し、壁面温度130℃、圧力0.6kPaの条件で蒸留精製した結果、純度95.2%の4-(2-メルカプトエチル)ピリジン15.6gを得た。仕込んだ4-ビニルピリジンに対する収率は88.9%であった。 Next, toluene was distilled off by a rotary evaporator under the conditions of a bath temperature of 50 ° C. and a pressure of 12.5 to 1.1 kPa. The residue obtained here was distilled and purified using a thin film evaporator under conditions of a wall surface temperature of 130 ° C. and a pressure of 0.6 kPa. As a result, 15.6 g of 4- (2-mercaptoethyl) pyridine having a purity of 95.2% was obtained. Obtained. The yield based on the charged 4-vinylpyridine was 88.9%.
 (2)4-(2-メルカプトエチル)ピリジン変性強酸型陽イオン交換樹脂の調製
 実施例1の(3)の2-(2-メルカプトエチル)ピリジン変性強酸型陽イオン交換樹脂の調製において、助触媒として2-(2-メルカプトエチル)ピリジンの代わりに、上記で得られた4-(2-メルカプトエチル)ピリジンを用いた他は、実施例1と同様の方法で、共重合体及びゲル型触媒ビーズの製造を行い、4-(2-メルカプトエチル)ピリジン変性強酸型陽イオン交換樹脂(変性率15.8%)の調製を行った。該樹脂の物性測定結果を表1に示す。
(2) Preparation of 4- (2-mercaptoethyl) pyridine-modified strong acid cation exchange resin In the preparation of 2- (2-mercaptoethyl) pyridine-modified strong acid cation exchange resin in Example 1, (3) The copolymer and gel type were prepared in the same manner as in Example 1 except that 4- (2-mercaptoethyl) pyridine obtained above was used instead of 2- (2-mercaptoethyl) pyridine as a catalyst. Catalyst beads were produced, and 4- (2-mercaptoethyl) pyridine-modified strong acid cation exchange resin (modified rate 15.8%) was prepared. The physical property measurement results of the resin are shown in Table 1.
 (3)ビスフェノール化合物の製造
 実施例1において、2-(2-メルカプトエチル)ピリジン変性強酸型陽イオン交換樹脂の代わりに、上記で得られた4-(2-メルカプトエチル)ピリジン変性強酸型陽イオン交換樹脂を用いて、実施例1と同様に反応を行い、実施例1と同様にしてアセトン転化率、ビスフェノールAと2,4’異性体との合計の選択率及びインダン化合物の選択率を求めた。結果を表3、及び図3に示す。図3から明らかなように、ビスフェノールAの生成反応において、2-(2-メルカプトエチル)ピリジンにより変性された触媒は、4-(2-メルカプトエチル)ピリジンにより変性された触媒よりもインダン化合物の選択率が低く、表2より、反応原料中の水濃度が0.2重量%以上で、特にインダン化合物の生成を抑制する効果が高いことがわかった。
(3) Production of bisphenol compound In Example 1, instead of 2- (2-mercaptoethyl) pyridine-modified strong acid type cation exchange resin, 4- (2-mercaptoethyl) pyridine-modified strong acid type cation obtained above was used. Using an ion exchange resin, the reaction is carried out in the same manner as in Example 1. As in Example 1, the acetone conversion, the total selectivity of bisphenol A and the 2,4 ′ isomer, and the selectivity of the indane compound are determined. Asked. The results are shown in Table 3 and FIG. As is apparent from FIG. 3, in the bisphenol A production reaction, the catalyst modified with 2- (2-mercaptoethyl) pyridine is more indane compound than the catalyst modified with 4- (2-mercaptoethyl) pyridine. The selectivity was low, and from Table 2, it was found that the water concentration in the reaction raw material was 0.2% by weight or more, and in particular, the effect of suppressing the formation of indane compounds was high.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 [実施例4]
 実施例1で製造したゲル型触媒ビーズを用いて、実施例1と同様の方法で調製した2-(2-メルカプトエチル)ピリジン変性強酸性陽イオン交換樹脂触媒(変性率17.2%)7.5mLを、内径1cm、全長44cmのステンレス製カラムに充填した。60℃のフェノールを26mL/hrで触媒を充填した反応器上部より24時間通液し、触媒中の水分を完全にフェノールで置換し、その後、フェノール/アセトン(モル比)が11の混合液(アセトン4.4重量%、フェノール76.9重量%、4,4’-ビスフェノールA9.7重量%、水0.3重量%、その他の物質8.7重量%)を、73℃にて26mL/hrで反応器上部よりダウンフローで連続的に通液して反応を行なった。反応器下部から反応液を採取し、ガスクロマトグラフィーにより下記の条件で分析し、分析値から下式によりアセトン転化率、ビスフェノールAと2,4’異性体との合計の選択率及びインダン化合物の選択率を算出した。結果を図4から6に示す。
[Example 4]
2- (2-Mercaptoethyl) pyridine-modified strongly acidic cation exchange resin catalyst (modified rate: 17.2%) 7 prepared in the same manner as in Example 1 using the gel-type catalyst beads produced in Example 1 5 mL was packed in a stainless steel column having an inner diameter of 1 cm and a total length of 44 cm. Phenol at 60 ° C. was passed through the top of the reactor filled with the catalyst at 26 mL / hr for 24 hours to completely replace the water in the catalyst with phenol, and then a mixture of 11 phenol / acetone (molar ratio) ( Acetone (4.4% by weight, phenol 76.9% by weight, 4,4′-bisphenol A 9.7% by weight, water 0.3% by weight, other substances 8.7% by weight) at 73 ° C. The reaction was carried out by continuously flowing in the down flow from the upper part of the reactor in hr. The reaction solution is collected from the lower part of the reactor and analyzed by gas chromatography under the following conditions. From the analysis value, acetone conversion, total selectivity of bisphenol A and 2,4 ′ isomer, and Selectivity was calculated. The results are shown in FIGS.
 <アセトン転化率(%)>
  ガスクロマトグラフィー:SHIMADZU製「GC-14B」
  カラム:アジレント・テクノロジー株式会社製「DB-WAX 15m×0.53mm×  1.0μm」
  検出器:TCD
  キャリアーガス:He
  アセトン転化率(%)=〔[(原料1kg中のアセトンモル数)-(生成液1kg中のアセトンモル数)]/(原料液1kg中のアセトンモル数)〕×100
 <ビスフェノールAと2,4’異性体との合計の選択率(%)、インダン化合物選択率(%)>
  ガスクロマトグラフィー:SHIMADZU製「GC-2014」
  カラム:ジーエルサイエンス株式会社製「INERT CAP 1  15m×0.25mm×1.5μm」
  検出器:FID
  キャリアーガス:窒素
  シリル化剤: N,O‐Bis(trimethylsilyl)trifluoroacetamide (ジーエルサイエンス株式会社社製)
  ビスフェノールAと2,4’異性体との合計の選択率(%)=〔(生成液1kg中のビスフェノールAモル数+2,4’異性体モル数)-(原料液1kg中のビスフェノールAモル数+2,4’異性体モル数)〕/〔(原料液1kg中のアセトンモル  数)-(生成液1kg中のアセトンモル数)〕×100
  インダン類選択率(%)=〔(生成液1kg中のインダン化合物モル数)-(原料液1kg中のインダン化合物モル数)〕×2/〔(原料液1kg中のアセトンモル数)-(生成液1kg中のアセトンモル数)〕×100
<Acetone conversion (%)>
Gas chromatography: “GC-14B” manufactured by SHIMADZU
Column: “DB-WAX 15 m × 0.53 mm × 1.0 μm” manufactured by Agilent Technologies
Detector: TCD
Carrier gas: He
Conversion rate of acetone (%) = [[(number of moles of acetone in 1 kg of raw material) − (number of moles of acetone in 1 kg of product liquid)] / (number of moles of acetone in 1 kg of raw material liquid)] × 100
<Total selectivity of bisphenol A and 2,4 ′ isomer (%), indane compound selectivity (%)>
Gas chromatography: “GC-2014” manufactured by SHIMADZU
Column: “INERT CAP 1 15 m × 0.25 mm × 1.5 μm” manufactured by GL Sciences Inc.
Detector: FID
Carrier gas: Nitrogen Silylating agent: N, O-Bis (trimethylsilyl) trifluoroacetamide (manufactured by GL Sciences Inc.)
Total selectivity of bisphenol A and 2,4 ′ isomer (%) = [(moles of bisphenol A in 1 kg of product liquid + moles of 2,4 ′ isomer) − (moles of bisphenol A in 1 kg of raw material liquid) +2,4 ′ isomer moles)] / [(acetone moles in 1 kg of raw material liquid) − (acetone moles in 1 kg of product liquid)] × 100
Indan selectivity (%) = [(mole number of indane compound in 1 kg of product liquid) − (mole number of indane compound in 1 kg of raw material liquid)] × 2 / [(mole number of acetone in 1 kg of raw material liquid) − (product liquid Mole of acetone in 1 kg)] × 100
 [実施例5]
 ゲル型触媒ビーズとして、三菱化学株式会社製の架橋度4%ゲル型強酸性陽イオン交換樹脂(商品名:ダイヤイオン(登録商標)SK104)を使用した以外は、実施例1と同様の方法で調製した2-(2-メルカプトエチル)ピリジン変性強酸性陽イオン交換樹脂触媒(変性率15.8%)7.5mLを、内径1cm、全長44cmのステンレス製カラムに充填した。60℃のフェノールを26mL/hrで触媒を充填した反応器上部より24時間通液し、触媒中の水分を完全にフェノールで置換し、その後、フェノール/アセトン(モル比)が11の混合液(アセトン4.5重量%、フェノール78.5重量%、4,4’-ビスフェノールA9.4重量%、水0.09重量%、その他の物質7.5重量%)を、73℃にて26mL/hrで反応器上部よりダウンフローで連続的に通液して反応を行なった。反応器下部から反応液を採取し、ガスクロマトグラフィーにより実施例4におけるのと同様の条件で分析し、同様にアセトン転化率、ビスフェノールAと2,4’異性体との合計の選択率及びインダン化合物の選択率(%)を算出した。結果を図4から6に示す。
[Example 5]
In the same manner as in Example 1 except that a gel type strongly acidic cation exchange resin (trade name: Diaion (registered trademark) SK104) manufactured by Mitsubishi Chemical Corporation was used as the gel type catalyst beads. 7.5 mL of the prepared 2- (2-mercaptoethyl) pyridine-modified strong acidic cation exchange resin catalyst (modification rate 15.8%) was packed in a stainless steel column having an inner diameter of 1 cm and a total length of 44 cm. Phenol at 60 ° C. was passed through the top of the reactor filled with the catalyst at 26 mL / hr for 24 hours to completely replace the water in the catalyst with phenol, and then a mixture of 11 phenol / acetone (molar ratio) ( Acetone 4.5 wt%, phenol 78.5 wt%, 4,4'-bisphenol A 9.4 wt%, water 0.09 wt%, other substances 7.5 wt%) The reaction was carried out by continuously flowing in the down flow from the upper part of the reactor in hr. The reaction solution was collected from the lower part of the reactor and analyzed by gas chromatography under the same conditions as in Example 4. Similarly, acetone conversion, total selectivity of bisphenol A and 2,4 ′ isomer, and indane Compound selectivity (%) was calculated. The results are shown in FIGS.
[実施例6]
 実施例1で製造したゲル型触媒ビーズを用いて、実施例1と同様の方法で調製した2-(2-メルカプトエチル)ピリジン変性強酸性陽イオン交換樹脂触媒(変性率16%)3g-湿潤状態を、内径1cm、全長10cmのジャケット付ガラス製カラムに充填し、ジャケット部に70℃の温水を流通させた。70℃のフェノールを1.5mL/分で触媒を充填した反応器上部より1.5時間通液し、触媒中の水分を完全にフェノールで置換し、その後、含水率0.43重量%のフェノール/アセトン混合液(フェノール/アセトンモル比13)を、70℃にて3mL/分で反応器上部よりダウンフローで連続的に通液して反応を行なった。反応器下部から反応液を採取し、ガスクロマトグラフィーにより実施例4におけるのと同様の条件で分析し、同様にアセトン転化率、ビスフェノールAと2,4’異性体との合計の選択率及びインダン化合物の選択率(%)を算出した。結果を表4に示す。
[Example 6]
2- (2-mercaptoethyl) pyridine-modified strongly acidic cation exchange resin catalyst (modified rate 16%) 3 g-wet prepared in the same manner as in Example 1 using the gel-type catalyst beads produced in Example 1 The state was filled in a glass column with a jacket having an inner diameter of 1 cm and a total length of 10 cm, and hot water at 70 ° C. was circulated through the jacket part. Phenol at 70 ° C. was passed through the top of the reactor filled with the catalyst at 1.5 mL / min for 1.5 hours to completely replace the moisture in the catalyst with phenol, and then phenol with a water content of 0.43% by weight. / Acetone mixed solution (phenol / acetone molar ratio 13) was continuously passed through the upper part of the reactor at 70 mL with a flow rate of 3 mL / min. The reaction solution was collected from the lower part of the reactor and analyzed by gas chromatography under the same conditions as in Example 4. Similarly, acetone conversion, total selectivity of bisphenol A and 2,4 ′ isomer, and indane Compound selectivity (%) was calculated. The results are shown in Table 4.
[実施例7]
 実施例6において、含水率0.07重量%のフェノール/アセトン混合液(フェノール/アセトンモル比13)を用いた以外は実施例6と同様にして反応を行い、実施例6と同様にアセトン転化率、ビスフェノールAと2,4’異性体との合計の選択率及びインダン化合物の選択率(%)を算出した。結果を表4に示す。
[Example 7]
In Example 6, the reaction was conducted in the same manner as in Example 6 except that a phenol / acetone mixed solution (phenol / acetone molar ratio 13) having a water content of 0.07% by weight was used. The total selectivity of bisphenol A and the 2,4 ′ isomer and the selectivity (%) of the indane compound were calculated. The results are shown in Table 4.
[比較例3]
 実施例6において、含水率0.03重量%のフェノール/アセトン混合液(フェノール/アセトンモル比13)を用いた以外は実施例6と同様にして反応を行い、実施例6と同様にアセトン転化率、ビスフェノールAと2,4’異性体との合計の選択率及びインダン化合物の選択率(%)を算出した。結果を表4に示す。
[Comparative Example 3]
In Example 6, the reaction was carried out in the same manner as in Example 6 except that a phenol / acetone mixed solution (phenol / acetone molar ratio 13) having a water content of 0.03% by weight was used. The total selectivity of bisphenol A and the 2,4 ′ isomer and the selectivity (%) of the indane compound were calculated. The results are shown in Table 4.
 [参考例2]
 実施例5で使用したゲル型触媒ビーズを用いて、実施例5と同様の方法で調製した4-(2-メルカプトエチル)ピリジン変性強酸性陽イオン交換樹脂触媒(変性率15%)を用い、実施例6において、含水率0.06重量%のフェノール/アセトン混合液(フェノール/アセトンモル比13)を用いた以外は実施例6と同様にして反応を行い、実施例6と同様にアセトン転化率、ビスフェノールAと2,4’異性体との合計の選択率及びインダン化合物の選択率(%)を算出した。結果を表4に示す。
[Reference Example 2]
Using the gel-type catalyst beads used in Example 5, a 4- (2-mercaptoethyl) pyridine-modified strongly acidic cation exchange resin catalyst (modification rate 15%) prepared in the same manner as in Example 5, In Example 6, the reaction was performed in the same manner as in Example 6 except that a phenol / acetone mixed solution (phenol / acetone molar ratio 13) having a water content of 0.06% by weight was used. The total selectivity of bisphenol A and the 2,4 ′ isomer and the selectivity (%) of the indane compound were calculated. The results are shown in Table 4.
[実施例8]
 実施例1で製造したゲル型触媒ビーズを用いて、実施例1と同様の方法で調製した2-(2-メルカプトエチル)ピリジン変性強酸性陽イオン交換樹脂触媒(変性率5%)を用い、実施例6において、含水率0.05重量%のフェノール/アセトン混合液(フェノール/アセトンモル比13)を用いた以外は実施例6と同様にして反応を行い、実施例6と同様にアセトン転化率、ビスフェノールAと2,4’異性体との合計の選択率及びインダン化合物の選択率(%)を算出した。結果を表4に示す。表4から明らかなように、5%変性率の2-(2-メルカプトエチル)ピリジン変性強酸性陽イオン交換樹脂触媒を用いた場合、その変性率が16%の場合(実施例6)と比べて、インダン化合物選択率は変化がないことがわかった。
[Example 8]
Using the gel-type catalyst beads produced in Example 1, a 2- (2-mercaptoethyl) pyridine-modified strong acidic cation exchange resin catalyst (modification rate 5%) prepared in the same manner as in Example 1, In Example 6, the reaction was carried out in the same manner as in Example 6 except that a phenol / acetone mixed solution (phenol / acetone molar ratio of 13) having a water content of 0.05% by weight was used. The total selectivity of bisphenol A and the 2,4 ′ isomer and the selectivity (%) of the indane compound were calculated. The results are shown in Table 4. As is apparent from Table 4, when a 2- (2-mercaptoethyl) pyridine-modified strongly acidic cation exchange resin catalyst having a 5% modification rate was used, the modification rate was 16% (Example 6). The indane compound selectivity was found to be unchanged.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[実施例9]
 実施例6において、含水率0.05重量%のフェノール/アセトン混合液(フェノール/アセトンモル比25)を用いた以外は実施例6と同様にして反応を行い、実施例6と同様にアセトン転化率、ビスフェノールAと2,4’異性体との合計の選択率及びインダン化合物の選択率(%)を算出した。結果を表5に示す。
[Example 9]
In Example 6, the reaction was conducted in the same manner as in Example 6 except that a phenol / acetone mixed solution (phenol / acetone molar ratio 25) having a water content of 0.05% by weight was used. The total selectivity of bisphenol A and the 2,4 ′ isomer and the selectivity (%) of the indane compound were calculated. The results are shown in Table 5.
[参考例5]
 実施例6において、含水率0.07重量%のフェノール/アセトン混合液(フェノール/アセトンモル比7)を用いた以外は実施例6と同様にして反応を行い、実施例6と同様にアセトン転化率、ビスフェノールAと2,4’異性体との合計の選択率及びインダン化合物の選択率(%)を算出した。結果を表5に示す。表5から明らかなように、フェノール/アセトン比を10以下とするとアセトン転化率も低下し、インダン化合物の選択率も上昇することがわかった。
[Reference Example 5]
In Example 6, the reaction was carried out in the same manner as in Example 6 except that a phenol / acetone mixed solution (phenol / acetone molar ratio 7) having a water content of 0.07% by weight was used. The total selectivity of bisphenol A and the 2,4 ′ isomer and the selectivity (%) of the indane compound were calculated. The results are shown in Table 5. As is apparent from Table 5, it was found that when the phenol / acetone ratio was 10 or less, the acetone conversion rate was lowered and the selectivity of the indane compound was also raised.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[実施例10]
 実施例6において、ジャケット部に75℃の温水を流通させ、含水率0.43重量%のフェノール/アセトン混合液(フェノール/アセトンモル比13)を、75℃にて3mL/分で反応器上部よりダウンフローで連続的に通液して反応を行なった以外は、実施例6と同様にして反応を行い、実施例6と同様にアセトン転化率、ビスフェノールAと2,4’異性体との合計の選択率及びインダン化合物の選択率(%)を算出した。結果を表6に示す。
[Example 10]
In Example 6, 75 ° C. warm water was passed through the jacket portion, and a phenol / acetone mixed solution (phenol / acetone molar ratio 13) having a water content of 0.43% by weight was added from the top of the reactor at 75 ° C. at 3 mL / min. The reaction was carried out in the same manner as in Example 6 except that the reaction was carried out continuously by downflow. As in Example 6, the conversion of acetone and the sum of bisphenol A and 2,4 ′ isomer were obtained. And the selectivity (%) of the indane compound were calculated. The results are shown in Table 6.
[実施例11]
 実施例6において、ジャケット部に80℃の温水を流通させ、含水率0.43重量%のフェノール/アセトン混合液(フェノール/アセトンモル比13)を、80℃にて3mL/分で反応器上部よりダウンフローで連続的に通液して反応を行なった以外は、実施例6と同様にして反応を行い、実施例6と同様にアセトン転化率、ビスフェノールAと2,4’異性体との合計の選択率及びインダン化合物の選択率(%)を算出した。結果を表6に示す。表6から明らかなように、反応温度を75℃、及び80℃としても、70℃で反応した場合と比較して、インダン化合物の選択率に影響がないことがわかった。
[Example 11]
In Example 6, 80 ° C. warm water was circulated through the jacket portion, and a phenol / acetone mixed solution (phenol / acetone molar ratio 13) having a water content of 0.43% by weight was added from the top of the reactor at 80 ° C. at 3 mL / min. The reaction was carried out in the same manner as in Example 6 except that the reaction was carried out continuously by downflow. As in Example 6, the conversion of acetone and the sum of bisphenol A and 2,4 ′ isomer were obtained. And the selectivity (%) of the indane compound were calculated. The results are shown in Table 6. As is clear from Table 6, it was found that even when the reaction temperature was 75 ° C. and 80 ° C., the selectivity of the indane compound was not affected as compared with the case of reaction at 70 ° C.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 1 液滴製造装置
 2 水性媒質
 3 液滴製造槽
 4 疎水性液体
 5 疎水性液体貯槽
 6 疎水性液体供給管
 7 ノズル部材
 8 水中スピーカー
 9 水性媒質貯槽
 10 水性媒質供給管
 11 噴出孔
 12 疎水性液体噴出貯槽
 13,14 供給ポンプ
 15 液滴
 16 重合反応装置
 17 重合反応槽
 18 液滴移送管
DESCRIPTION OF SYMBOLS 1 Droplet production apparatus 2 Aqueous medium 3 Droplet production tank 4 Hydrophobic liquid 5 Hydrophobic liquid storage tank 6 Hydrophobic liquid supply pipe 7 Nozzle member 8 Underwater speaker 9 Aqueous medium storage tank 10 Aqueous medium supply pipe 11 Ejection hole 12 Hydrophobic liquid Jet storage tank 13, 14 Supply pump 15 Droplet 16 Polymerization reactor 17 Polymerization reactor 18 Droplet transfer pipe

Claims (7)

  1. フェノール化合物とカルボニル化合物とを、強酸基を有する陽イオン交換体及び2-(2-メルカプトエチル)ピリジンの存在下に反応させるビスフェノール化合物の製造方法であって、前記フェノール化合物とカルボニル化合物を含む反応原料中の水の濃度が0.05~0.5重量%であることを特徴とするビスフェノール化合物の製造方法。 A process for producing a bisphenol compound comprising reacting a phenol compound and a carbonyl compound in the presence of a cation exchanger having a strong acid group and 2- (2-mercaptoethyl) pyridine, the reaction comprising the phenol compound and the carbonyl compound A method for producing a bisphenol compound, wherein the concentration of water in the raw material is 0.05 to 0.5% by weight.
  2. 前記強酸基を有する陽イオン交換体および前記2-(2-メルカプトエチル)ピリジンが、前記強酸基を有する陽イオン交換体の強酸基の少なくとも一部が2-(2-メルカプトエチル)ピリジンにより保護されている、変性強酸型陽イオン交換体として存在することを特徴とする請求項1に記載のビスフェノール化合物の製造方法。 The cation exchanger having the strong acid group and the 2- (2-mercaptoethyl) pyridine are protected by at least part of the strong acid group of the cation exchanger having the strong acid group by 2- (2-mercaptoethyl) pyridine. The method for producing a bisphenol compound according to claim 1, wherein the method is present as a modified strong acid cation exchanger.
  3. 前記変性強酸型陽イオン交換体が、2-(2-メルカプトエチル)ピリジンによりその強酸基の3~30%が保護されているものであることを特徴とする請求項2に記載のビスフェノール化合物の製造方法。 3. The bisphenol compound according to claim 2, wherein the modified strong acid type cation exchanger is such that 3 to 30% of the strong acid group is protected by 2- (2-mercaptoethyl) pyridine. Production method.
  4. 前記強酸基を有する陽イオン交換体及び変性強酸型陽イオン交換体が、その粒径が30~650μmのものが全体の50%以上であることを特徴とする請求項1~3のいずれか一項に記載のビスフェノール化合物の製造方法。 4. The cation exchanger having a strong acid group and a modified strong acid cation exchanger having a particle size of 30 to 650 μm are 50% or more of the total, respectively. The manufacturing method of the bisphenol compound as described in claim | item.
  5. 前記反応原料中のカルボニル化合物に対するフェノール化合物の量が、モル比で10~40倍であることを特徴とする請求項1~4のいずれかに記載のビスフェノール化合物の製造方法。 The method for producing a bisphenol compound according to any one of claims 1 to 4, wherein the amount of the phenol compound relative to the carbonyl compound in the reaction raw material is 10 to 40 times in molar ratio.
  6. フェノール化合物とカルボニル化合物とを、前記強酸基を有する陽イオン交換体および/又は変性強酸型陽イオン交換体の存在下、50~90℃の温度で反応させることを特徴とする請求項1~5のいずれかに記載のビスフェノール化合物の製造方法。 6. The phenol compound and the carbonyl compound are reacted at a temperature of 50 to 90 ° C. in the presence of the cation exchanger having a strong acid group and / or a modified strong acid cation exchanger. The manufacturing method of the bisphenol compound in any one of.
  7. 前記ビスフェノール化合物が、ビスフェノールAである請求項1~6のいずれかに記載のビスフェノール化合物の方法。 The method of a bisphenol compound according to any one of claims 1 to 6, wherein the bisphenol compound is bisphenol A.
PCT/JP2012/052623 2011-02-07 2012-02-06 Method for producing bisphenol compound WO2012108385A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012556876A JP6184696B2 (en) 2011-02-07 2012-02-06 Method for producing bisphenol compound
KR1020157022606A KR20150100963A (en) 2011-02-07 2012-02-06 Method for producing bisphenol compound
CN201280006554.1A CN103328426B (en) 2011-02-07 2012-02-06 The preparation method of bisphenol cpd
KR1020137018572A KR20130112927A (en) 2011-02-07 2012-02-06 Method for producing bisphenol compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011023934 2011-02-07
JP2011-023934 2011-02-07

Publications (1)

Publication Number Publication Date
WO2012108385A1 true WO2012108385A1 (en) 2012-08-16

Family

ID=46638600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052623 WO2012108385A1 (en) 2011-02-07 2012-02-06 Method for producing bisphenol compound

Country Status (5)

Country Link
JP (1) JP6184696B2 (en)
KR (2) KR20150100963A (en)
CN (1) CN103328426B (en)
TW (1) TWI466858B (en)
WO (1) WO2012108385A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184182A1 (en) * 2019-03-14 2020-09-17 三菱ケミカル株式会社 Bisphenol composition and polycarbonate resin
JP2021502348A (en) * 2017-11-10 2021-01-28 ディディピー スペシャリティ エレクトロニック マテリアルズ ユーエス インコーポレーテッド Method of catalytic reaction
WO2022145366A1 (en) 2020-12-28 2022-07-07 三菱ケミカル株式会社 Method for producing bisphenol a and method for producing polycarbonate resin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212257A (en) * 1997-01-29 1998-08-11 Chiyoda Corp Production of bisphenol a
JPH10251179A (en) * 1997-03-10 1998-09-22 Chiyoda Corp Production of bisphenol a
JP2010189380A (en) * 2009-01-22 2010-09-02 Mitsubishi Chemicals Corp Method for producing bisphenol compound

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE050644T2 (en) * 2009-01-22 2020-12-28 Mitsubishi Chem Corp Process for preparing bisphenol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10212257A (en) * 1997-01-29 1998-08-11 Chiyoda Corp Production of bisphenol a
JPH10251179A (en) * 1997-03-10 1998-09-22 Chiyoda Corp Production of bisphenol a
JP2010189380A (en) * 2009-01-22 2010-09-02 Mitsubishi Chemicals Corp Method for producing bisphenol compound

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021502348A (en) * 2017-11-10 2021-01-28 ディディピー スペシャリティ エレクトロニック マテリアルズ ユーエス インコーポレーテッド Method of catalytic reaction
WO2020184182A1 (en) * 2019-03-14 2020-09-17 三菱ケミカル株式会社 Bisphenol composition and polycarbonate resin
JP7435588B2 (en) 2019-03-14 2024-02-21 三菱ケミカル株式会社 Bisphenol composition and polycarbonate resin
WO2022145366A1 (en) 2020-12-28 2022-07-07 三菱ケミカル株式会社 Method for producing bisphenol a and method for producing polycarbonate resin

Also Published As

Publication number Publication date
CN103328426A (en) 2013-09-25
JPWO2012108385A1 (en) 2014-07-03
TWI466858B (en) 2015-01-01
CN103328426B (en) 2016-04-06
TW201240959A (en) 2012-10-16
JP6184696B2 (en) 2017-08-23
KR20130112927A (en) 2013-10-14
KR20150100963A (en) 2015-09-02

Similar Documents

Publication Publication Date Title
US5475154A (en) Method for producing high-purity bisphenols
EP2390243B1 (en) Process for preparing bisphenol
JPH08509466A (en) Novel method for the production of high-purity and ultra-high-purity bisphenol A
JP6184696B2 (en) Method for producing bisphenol compound
AU2003214928A1 (en) Process, reactor and system for preparing a bisphenol
WO2011055819A1 (en) Catalyst for production of bisphenol compound and method for producing bisphenol compound
JP5332846B2 (en) Strongly acidic ion-exchange resin catalyst for bisphenol compound production and method for producing bisphenol compound using the same
JP5668562B2 (en) Method for producing bisphenol A
JP2008273951A (en) Method for producing bisphenol compound and cation-exchange resin catalyst
JP4312761B2 (en) Method for producing bisphenol A
JP5471392B2 (en) Method for producing pyridylethanethiol compound
JP5810405B2 (en) Method for producing bisphenol compound
JP5363532B2 (en) Multi-reactive bifunctional polymer catalyst
JP2010119995A (en) Catalyst for producing bisphenol compound, method for manufacturing the same and method for producing bisphenol compound
JP2009263309A (en) Condensation reaction method
JP2022022811A (en) Production method of bisphenol compound
JP2013202458A (en) Method for manufacturing bisphenol compound
JP2011115758A (en) Method for manufacturing acidic catalyst
JP2011098301A (en) Cation exchange resin and method of producing bisphenol compound
JP2011121898A (en) Method of producing pyridyl ethanethiol compound
JP2023550321A (en) Catalyst system and process for producing bisphenol A

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280006554.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137018572

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012556876

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301004395

Country of ref document: TH

122 Ep: pct application non-entry in european phase

Ref document number: 12744964

Country of ref document: EP

Kind code of ref document: A1