WO2012108364A1 - Glass melting furnace, method for producing molten glass, method for producing glass products and apparatus for producing glass products - Google Patents

Glass melting furnace, method for producing molten glass, method for producing glass products and apparatus for producing glass products Download PDF

Info

Publication number
WO2012108364A1
WO2012108364A1 PCT/JP2012/052550 JP2012052550W WO2012108364A1 WO 2012108364 A1 WO2012108364 A1 WO 2012108364A1 JP 2012052550 W JP2012052550 W JP 2012052550W WO 2012108364 A1 WO2012108364 A1 WO 2012108364A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
raw material
molten
molten glass
glass raw
Prior art date
Application number
PCT/JP2012/052550
Other languages
French (fr)
Japanese (ja)
Inventor
酒本 修
千禾夫 田中
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012556866A priority Critical patent/JP5966933B2/en
Priority to CN201280007241.8A priority patent/CN103339072B/en
Publication of WO2012108364A1 publication Critical patent/WO2012108364A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/005Charging the melting furnaces using screw feeders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/026Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet by charging the ingredients into a flame, through a burner or equivalent heating means used to heat the melting furnace
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Definitions

  • the present invention relates to a glass melting furnace, a method for manufacturing a molten glass, a method for manufacturing a glass product, and an apparatus for manufacturing a glass product.
  • Patent Document 1 discloses a glass melting apparatus that produces molten glass from a glass raw material, and includes at least one oxygen burner and a gaseous state from the oxygen burner.
  • a glass melting apparatus with means for controlling the fuel and oxygen rates is described.
  • This glass melting apparatus generates a laminar gaseous fuel flow and a laminar oxygen flow such that the velocity of the gaseous fuel and the velocity of oxygen are substantially equal, and the generated flame is heated on the surface of the glass raw material.
  • the molten glass is produced by melting the glass raw material.
  • a granulated body (glass raw material particles) composed of a mixed powder of glass raw materials is heated and melted in a high-temperature gas phase atmosphere to form molten glass particles.
  • a method for producing molten glass that is accumulated to form a molten glass (glass melt) see Patent Document 2.
  • this method for producing molten glass is referred to as an in-flight glass melting method.
  • the conventional molten glass manufacturing apparatus and manufacturing method as described above have the following problems.
  • an unmelted material tends to remain in the initial melt at the start of melting of the glass raw material, and there is a problem in terms of energy saving operation.
  • the air melting method described in Patent Document 2 is used, glass raw material particles are individually melted in a high-temperature gas-phase atmosphere, so that high-quality molten glass particles having a uniform composition can be easily obtained and energy-saving operation is also possible. It becomes.
  • the current production of glass is mainly the production of molten glass using a glass melting furnace by a Siemens kiln, and this glass melting furnace is to be changed to a glass melting furnace mainly based on the air melting method.
  • the glass cullet used for recycling is currently mixed with glass cullet of different sizes from several millimeters to 50 millimeters, so it takes time and effort to process all these glass cullets to 1 mm or less.
  • This invention is made
  • the glass melting furnace of the present invention supplies a glass raw material containing glass cullet to a furnace body that stores molten glass, and a supply region on the molten glass that is provided in a side portion of the furnace body and is stored in the furnace body.
  • the glass melting furnace of the present invention includes a second charging unit that is provided in the furnace body and charges glass raw material particles toward another region on the molten glass that is different from the supply region, and below the second charging unit.
  • the first charging section may be provided such that the discharge direction of the molten glass particles is vertically downward.
  • a molten glass discharge port is formed on the side opposite to one side of the furnace body provided with the glass raw material supply unit, and the first charging unit is a discharge direction of the molten glass particles. May be provided so as to be inclined downward and inclined toward the glass raw material supply unit.
  • a molten glass discharge port is formed on the side opposite to one side of the furnace body provided with the glass raw material supply unit, and the first charging unit has a discharge direction of molten glass particles. It may be provided so as to be inclined downward and inclined toward the discharge port side.
  • the glass melting furnace of the present invention may include a heating means for heating the molten glass at the furnace bottom of the furnace body.
  • the glass melting furnace of the present invention may include an auxiliary heating burner on the furnace wall of the furnace body.
  • a glass raw material containing glass cullet is supplied onto the molten glass in a furnace body in which the molten glass is stored, and the first charging unit is supplied to the supply region to which the glass raw material is supplied.
  • the glass raw material particles are charged from above, and the glass raw material particles from the first charging portion are converted into molten glass particles by the first heating gas phase portion below the first charging portion, and then on the glass raw material including the glass cullet.
  • the glass raw material containing the glass cullet is melted by dropping.
  • glass raw material particles are charged from a second charging portion toward another region on the molten glass different from the supply region, and the second raw material is below the second charging portion.
  • the glass raw material particles from the charging part may be supplied to the molten glass after being converted into molten glass particles by the second heated gas phase part.
  • the first charging part or the second Using the glass raw material particles whose components are adjusted so as to compensate for the insufficient composition component with respect to the glass raw material particles charged into the furnace body from the charging portion, the component-adjusted glass is supplied from the first charging portion or the second charging portion.
  • an insufficient composition component can be supplied to the glass raw material containing the glass cullet.
  • the glass raw material is supplied while continuously or intermittently supplying a glass raw material containing glass cullet onto the molten glass in the furnace body storing the molten glass.
  • the glass raw material particles are continuously or intermittently charged from the first charging portion toward the supply region, and the glass raw material particles from the first charging portion are molten glass particles through the first heating gas phase portion.
  • the glass raw material containing the glass cullet may be melted by dropping on the glass raw material containing the glass cullet.
  • the average particle diameter of the glass raw material particles is preferably 30 to 1000 ⁇ m.
  • the manufacturing method of the molten glass of this invention can use what adjusted the quantity of the at least 1 sort (s) or more of a clarifier, a coloring agent, and a fusion aid as the said glass raw material particle after component adjustment.
  • the method for producing a molten glass product according to the present invention comprises a step of producing a molten glass from the glass raw material and the glass raw material particles using the method for producing a molten glass according to any one of the above, and molding the molten glass. And a step of slowly cooling the glass after molding.
  • An apparatus for producing a glass product according to the present invention includes a glass melting furnace according to any one of the above, a molding means for molding the molten glass produced by the glass melting furnace, and a slow cooling means for gradually cooling the glass after molding. And comprising.
  • glass raw material particles are charged into the furnace from the first charging part, and the molten glass particles melted in the first heating gas phase part are placed on the glass raw material containing the glass cullet. It can be directly dropped to the glass raw material including glass cullet to transfer heat and melt. For this reason, glass raw materials containing glass cullet can be efficiently transferred by using heat transfer from molten glass particles in addition to heat transfer from molten glass, and can be quickly melted. Can be manufactured. Further, the molten glass particles dropped onto the glass raw material are melted by the first heating gas phase portion to become molten glass particles having a uniform composition, and glass is obtained by good heat transfer from the molten glass particles having a uniform composition.
  • the composition can be made more uniform than the conventional molten glass.
  • the glass melting furnace of the present invention when a flame of the burner directly hits a pile of glass raw materials including glass cullet on the molten glass with a burner for heating ordinary glass raw materials, fine glass cullet or glass Although the raw material powder is scattered, glass raw material particles are charged into the furnace from the first charging part, and the molten glass particles melted in the first heating gas phase part are directly dropped onto the glass raw material including the glass cullet. Therefore, the scattered fine cullet or glass raw material powder is adsorbed by the molten glass particles deposited by dropping, and scattering of the glass raw material powder and the like can be suppressed.
  • the structure for supplying the glass raw material containing the glass cullet to the supply region in the furnace can be the same as that of the existing melting furnace, and the furnace body has the first charging portion and the first charging portion.
  • the molten glass raw material particles can be supplied onto the glass raw material and heated. Therefore, the structure of the melting furnace equipped with existing equipment such as glass raw material and glass cullet supply equipment can be used as it is, and glass raw material particles containing glass cullet can be used effectively without significant modification of the existing glass melting furnace.
  • the glass raw material can be directly heated using the molten glass particles, and high-quality molten glass can be produced with good thermal efficiency.
  • the molten glass manufacturing apparatus and manufacturing method of the present invention can efficiently manufacture high-quality molten glass having a uniform composition, and thus is manufactured by an energy-saving operation. High quality glass products can be provided.
  • FIG. 1 is a schematic configuration diagram showing the configuration of the first embodiment of the glass melting furnace according to the present invention.
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • FIG. 3 is a schematic cross-sectional view showing an example of an air melting burner applied to the glass melting furnace shown in FIG.
  • FIG. 4 is a flowchart showing an example of a glass product manufacturing method using the glass melting furnace according to the present invention.
  • FIG. 5 is a schematic explanatory view showing the behavior of the molten glass particles in one embodiment of the method for producing molten glass according to the present invention, and FIG. 5 (a) shows that the molten glass particles descend toward the glass raw material.
  • FIG. 5 is a schematic explanatory view showing the behavior of the molten glass particles in one embodiment of the method for producing molten glass according to the present invention, and FIG. 5 (a) shows that the molten glass particles descend toward the glass raw material.
  • FIG. 5B is an explanatory diagram showing a state in which the molten glass particles falling on the glass raw material transmit heat
  • FIG. 5C is a diagram in which the deposition of the molten glass particles proceeds on the glass raw material. It is explanatory drawing which shows a state.
  • FIG. 6 is a schematic configuration diagram showing a second embodiment of the glass melting furnace according to the present invention.
  • FIG. 7 is a sectional view taken along line BB in FIG.
  • FIG. 8 is a schematic configuration diagram showing the main part of the third embodiment of the glass melting furnace according to the present invention
  • FIG. 8 (a) is a horizontal sectional view
  • FIG. 8 (b) is a diagram of FIG. 8 (a). It is sectional drawing which follows CC line.
  • FIG. 8 is a schematic configuration diagram showing a second embodiment of the glass melting furnace according to the present invention.
  • FIG. 7 is a sectional view taken along line BB in FIG.
  • FIG. 8 is a schematic configuration diagram showing the main part of the
  • FIG. 9 is a schematic configuration diagram showing the main part of the fourth embodiment of the glass melting furnace according to the present invention.
  • FIG. 10 is a schematic configuration diagram showing a main part of a fifth embodiment of the glass melting furnace according to the present invention.
  • FIG. 11 is a schematic configuration diagram showing a main part of a sixth embodiment of the glass melting furnace according to the present invention.
  • FIG. 12 is a schematic configuration diagram showing a main part of a seventh embodiment of the glass melting furnace according to the present invention, FIG. 12 (a) is a longitudinal sectional view, and FIG. 12 (b) is a diagram of FIG. 12 (a). It is sectional drawing which follows the DD line.
  • FIG. 13 is a schematic configuration diagram showing a main part of an eighth embodiment of the glass melting furnace according to the present invention, FIG. 13 (a) is a longitudinal sectional view, and FIG. 13 (b) is a diagram of FIG. 13 (a). It is sectional drawing which follows the EE line.
  • FIG. 1 is a schematic configuration diagram showing the configuration of an embodiment of a glass melting furnace according to the present invention
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1
  • FIG. 3 is applied to the glass melting furnace.
  • It is a block diagram which shows an example of an air melting burner.
  • the air melting burner is a burner for use in the air melting method.
  • the glass melting furnace 100 of the present embodiment mainly includes a furnace body 1, an in-air melting burner 2, a gas supply source 3, a glass raw material particle supply unit 4, and a glass raw material supply unit 5. It is configured.
  • a molding apparatus 6 for molding the molten glass G manufactured in the glass melting furnace 100 into a glass product is connected to the downstream side of the glass melting furnace 100.
  • the furnace body 1 has a hollow structure made of a refractory material such as a refractory brick. That is, furnace wall portions 1c, 1d, 1e, and 1f (see FIGS. 1 and 2) are provided between the furnace bottom portion 1b and the ceiling portion 1a, and a storage portion for the molten glass G that is a glass melt is provided inside these. 1h is formed.
  • a glass raw material inlet 1A for introducing the glass raw material GM 2 into the molten glass G in the furnace is provided at the intermediate portion in the height direction of the furnace wall 1c. In FIG. 1, only one glass raw material inlet 1A is drawn, but in this embodiment, as shown in FIG. 2, it is provided in two places spaced apart in the horizontal direction.
  • molding apparatus 6 side is formed in the furnace wall part 1d of the side facing the furnace wall part 1c.
  • the glass raw material supply part 5 of this embodiment is provided in the side part of the furnace body 1, ie, the furnace wall part 1c side of the furnace body 1, and the upstream of the method through which molten glass flows, and glass raw material GM. 2 , a transport pipe 5 d connected to the lower portion of the hopper 5 a, a transport screw 5 b provided inside the transport pipe 5 d, and a drive unit 5 c that rotationally drives the transport screw 5 b.
  • the hopper 5a includes a raw material inlet 5A at the top and a bottom opening 5B at the bottom, a transport pipe 5d is connected horizontally below the bottom opening 5B, and one end of the transport pipe 5d is connected to the glass raw material inlet 1A.
  • the conveying screw 5b is conveyed toward the glass raw material GM 2 in the transport pipe 5d to the glass raw material inlet 1A.
  • one glass raw material supply unit 5 is provided for each glass raw material inlet 1A. Therefore, the glass material GM 2 contained in the hopper 5a is put in the storage portion 1h of glass raw material inlet 1A by the transport screw 5b. If the already molten glass G or molten glass particles U in the storage portion 1h is accumulated molten glass U 'is stored, as shown in FIGS. 1 and 2, the glass raw material GM 2 is formed a mountain-like mass Then, it floats on the liquid surface of the molten glass G (U ′).
  • the raw material supply direction of the glass raw material supply unit 5 is the direction from the furnace wall 1c toward the furnace wall 1d.
  • the air melting burner 2 is provided to melt the glass raw material particles GM 1 in the heated gas phase portion K to form the molten glass particles U, and discharge them toward the supply region S to which the glass raw material GM 2 is supplied. It has been.
  • Aerial melting burner 2 of the present embodiment as in release direction of the glass raw material particles GM 1 is vertically below, attached to a ceiling portion 1a of the furnace body 1 along the vertical axis passing through the center of the supply region S Yes.
  • An example of the internal structure of the air melting burner 2 applied to the present embodiment includes a cylindrical nozzle body 22 having a supply path 21 through which the glass raw material particles GM 1 pass, as shown in FIG.
  • the three-layer structure includes a cladding tube 23 disposed so as to surround the periphery of the nozzle body 22 and an outer tube 24 disposed so as to surround the periphery of the cladding tube 23.
  • a flow path between the nozzle body 22 and the cladding tube 23 is a fuel gas supply path 25, and a flow path between the cladding pipe 23 and the outer pipe 24 is a combustion gas supply path 26.
  • a gas supply source 3 for supplying a fuel gas such as propane, butane, methane, LPG (liquefied petroleum gas) and a combustion gas containing O 2 gas is supplied to the air melting burner 2 through a supply pipe 3a, 3b is connected.
  • the supply pipe 3 a is a pipe that supplies the fuel gas, and is connected to the fuel gas supply path 25.
  • the supply pipe 3 b is a pipe that supplies the combustion gas, and is connected to the combustion gas supply path 26.
  • the gas is introduced into the combustion gas supply passage 26 as indicated by the arrow 29.
  • the air fusion burner 2 can inject the oxyfuel combustion flame H by the said fuel gas and the said gas for combustion to the front end side (lower side of FIG. 1, FIG. 3).
  • the nozzle body 22 of the air melting burner 2, glass material grains supply unit 4 is connected for supplying glass raw material particles GM 1 with a carrier gas through a supply pipe 4a.
  • a carrier gas oxygen or air can be employed.
  • the carrier gas, the glass raw material particles GM 1 is supplied to the nozzle body 22, as long as gas can be injected from the outlet side of the nozzle body 22, not limited to oxygen or air.
  • the configuration of the glass raw material supply unit 4 includes a hopper that stores the glass raw material particles GM 1, and gas delivery means that moves the glass raw material particles GM 1 stored in the hopper into the supply pipe 4 a by the carrier gas. For this reason, when the glass raw material particles GM 1 are supplied from the glass raw material particle supply unit 4 together with the carrier gas to the nozzle body 22, the in-air melting burner 2 injects the oxygen combustion flame H from the tip and the glass raw material particles GM. 1 can be released.
  • the oxygen combustion flame H has a heating gas phase portion K of about 2000 to 3000 ° C. higher than the melting point of each raw material constituting the glass raw material particles GM 1 in and around the oxygen combustion flame H. Can be formed.
  • the glass raw material particles GM 1 are discharged vertically downward as molten glass particles U in the molten liquid phase.
  • the gas burned in the oxyfuel flame H together with the molten glass particles U and the gas that has passed through the heated gas phase portion K without being burned are referred to as a heated gas g heated in the heated gas phase portion K. Injected vertically downward.
  • the heated gas g is heated to substantially the same temperature as the heated gas phase portion K at the time of injection.
  • the glass raw material particles GM 1 are melted in the heated gas phase part K by the air melting burner 2 having the above-described configuration to form the molten glass particles U, and the molten glass particles U are directed to the glass raw material GM 2 containing the glass cullet. Can be released.
  • the air-melting burner 2 of the present embodiment generates a first charging part capable of ejecting glass raw material particles GM 1 in an intended direction through an internal supply path 21 and a heated gas phase part K accompanying the oxyfuel combustion flame H. also serves as a first heating means for melting the glass raw material particles GM 1 and.
  • the structure of the air melting burner 2 is that the glass raw material particles GM 1 are melted in the heated gas phase part K to form the molten glass particles U and discharged toward the supply region S to which the glass raw material GM 2 is supplied.
  • a heating means to be used it is not particularly limited, and all the heating means used in the air melting method can be adopted.
  • the specific suitable heating means the above-described air-melting burner 2 using an oxyfuel flame such as a natural gas-oxygen flame can be used.
  • An apparatus capable of generating at least one of a thermal plasma arc such as a direct current plasma, a multiphase plasma, and a high frequency induction plasma can be used.
  • specific examples are given as the first heating means.
  • the second heating means which will be described later, or a heating means provided in addition to the second heating means will also be described. Means can be used.
  • the molten glass G to be produced in the glass melting furnace 100 of the present embodiment the glass raw material particles GM 1 and the glass raw material GM 2 as the raw materials will be described below.
  • the molten glass G to be manufactured using the glass melting furnace 100 of the present embodiment is not particularly limited in terms of composition. Therefore, it may be any of soda lime glass, alkali-free glass, mixed alkali glass, borosilicate glass, or other glass.
  • the molten glass G is soda lime glass used for a plate glass for construction or vehicles
  • the molten glass G is expressed in terms of mass percentage on the basis of oxide, SiO 2 : 65 to 75%, Al 2 O 3 : 0. ⁇ 3%, CaO: 5-15%, MgO: 0-15%, Na 2 O: 10-20%, K 2 O: 0-3%, Li 2 O: 0-5%, Fe 2 O 3 : 0 to 3%, TiO 2 : 0 to 5%, CeO 2 : 0 to 3%, BaO: 0 to 5%, SrO: 0 to 5%, B 2 O 3 : 0 to 5%, ZnO: 0 to 5 %, ZrO 2 : 0 to 5%, SnO 2 : 0 to 3%, SO 3 : 0 to 0.5%.
  • the molten glass G is a non-alkali glass used for a substrate for a liquid crystal display
  • the molten glass G is expressed in terms of mass percentage on the basis of oxide, SiO 2 : 39 to 75%, Al 2 O 3 : 3 to 27 %, B 2 O 3: 0 ⁇ 20%, MgO: 0 ⁇ 13%, CaO: 0 ⁇ 17%, SrO: 0 ⁇ 20%, BaO: 0 ⁇ 30%, it is preferable to have a composition of.
  • the molten glass G is a mixed alkaline glass used for a substrate for a plasma display
  • the molten glass G is expressed in terms of mass percentage on the basis of oxides, SiO 2 : 50 to 75%, Al 2 O 3 : 0 to It is preferable to have a composition of 15%, MgO + CaO + SrO + BaO + ZnO: 6 to 24%, Na 2 O + K 2 O: 6 to 24%.
  • the molten glass G is a borosilicate glass used in a heat-resistant container or a physics and chemistry instrument
  • the molten glass G is expressed in terms of mass percentage on the basis of oxide, SiO 2 : 60 to 85%, Al It is preferable to have a composition of 2 O 3 : 0 to 5%, B 2 O 3 : 5 to 20%, Na 2 O + K 2 O: 2 to 10%.
  • the glass raw material powder having any one of the above compositions for example, the particulate glass raw material powder particles of each of the above-mentioned components is used as the composition ratio of the target glass.
  • the above-described glass raw material particles GM 1 that are mixed to form a granulated body are prepared.
  • the air melting method is a method for producing a molten glass by melting glass raw material particles GM 1 in a high-temperature gas phase atmosphere in order to produce a glass composed of a plurality of (usually three or more components) components. Can be written.
  • a method of preparing the glass raw material particles GM 1 from the glass raw material powder particles a method such as a spray dry granulation method can be used, and an aqueous solution in which a glass raw material is dispersed and dissolved is sprayed into a high temperature atmosphere to dry and solidify.
  • the grain method is preferred.
  • this granulated body may be composed only of raw materials having a mixing ratio corresponding to the target glass component composition, but the granulated body is further mixed with glass cullet powder having the same composition, and this is mixed with glass. It can also be used as raw material particles GM 1.
  • glass cullet usually has various sizes
  • glass cullet that has already become fine powder may be mixed with glass raw material particle GM 1 , but the average constituting glass raw material particle GM 1
  • a glass cullet having a particle diameter larger than that of the glass particle GM 2 is used after being mixed with a glass raw material GM 2 described later.
  • the glass raw material powder particles in the range of 2 to 500 ⁇ m are dispersed in a solvent such as distilled water, stirred for a predetermined time with a stirrer such as a ball mill, mixed, and pulverized, so that the glass raw material powder particles of the above components are almost uniform.
  • a slurry dispersed in is obtained.
  • the glass raw material particles GM 1 are obtained by spraying this into a heated air stream.
  • a binder such as 2-aminoethanol or PVA (polyvinyl alcohol) may be mixed and stirred for the purpose of uniformly dispersing the raw material powder particles and improving the strength of the granulated raw material.
  • the glass raw material particles GM 1 used in the present embodiment can be formed by a dry granulation method such as a tumbling granulation method or a stirring granulation method in addition to the spray dry granulation method described above.
  • the average particle diameter (weight average) of the glass raw material particles GM 1 is preferably 30 to 1000 ⁇ m. More preferably, glass raw material particles GM 1 having an average particle diameter (weight average) in the range of 50 to 500 ⁇ m are used, and glass raw material particles GM 1 in the range of 70 to 300 ⁇ m are more preferable.
  • An example of the glass raw material particles GM 1 is enlarged and shown in a circle of a two-dot chain line in FIG. It is preferable that almost matches either approximated the composition ratio of the composition ratio of the glass to a final object in one of the glass raw material particles GM 1.
  • the average particle diameter (weight average) of the molten glass particles U in which the glass raw material particles GM 1 are melted is usually about 80% of the average particle diameter of the glass raw material particles GM 1 in many cases.
  • the particle size of the glass raw material particles GM 1 can heat in a short time, that it is easy to dissipate the generated gas from the glass raw material particles GM 1, and in terms of reduction of compositional variation between particles, select the range of above It is preferable to do.
  • These glass raw material particles GM 1 is optionally refining agents as auxiliary materials, coloring agents, can contain molten aids like.
  • boric acid and the like in these glass raw material particles GM 1 have a relatively high vapor pressure at a high temperature, and are thus easily evaporated by heating. Therefore, they should be mixed in excess of the composition of the glass as the final product. Can do.
  • a clarifier when a clarifier is contained as an auxiliary material, a necessary amount of a clarifier containing one or more elements selected from chlorine (Cl), sulfur (S), and fluorine (F) is required. Can be added.
  • Frit GM 2 is a glass raw material for forming the molten glass G in conjunction with the glass raw material particles GM 1.
  • the composition of the glass raw material GM 2 is set based on the target glass composition range of the molten glass G and the quantity ratio of the composition supplied as the glass raw material particles GM 1 .
  • the composition of the glass raw material particles GM 1 preferably matches the target glass composition range as the molten glass G.
  • the composition of the glass raw material GM 2 is also adjusted to the target glass composition range as the molten glass G.
  • the composition of the glass raw material particles GM 1 is out of the range of the glass composition of the target as the molten glass G, the composition of the glass material GM 2 is a composition to compensate for the composition to be insufficient in the glass raw material particles GM 1.
  • the composition of the glass raw material GM 2 deviates from the target glass composition, the composition of the glass raw material particles GM 1 is a composition that supplements the composition lacking in the glass raw material GM 2 .
  • the composition of the composition and the glass material GM 2 glass material grain GM 1 in consideration can achieve a glass composition of the target.
  • Glass raw materials GM 2 used in this embodiment it is preferable to adopt a configuration including a glass cullet least 10 mass%.
  • the glass cullet contained in the glass raw material GM 2 either or both of glass waste generated in the manufacturing process of glass products (in-process circulation cullet) and a glass piece recovered from the city to remove impurities is used. Can be mentioned. These glass scraps and glass pieces are crushed and formed into, for example, a powder form or a broken piece form having a particle size ranging from 1 mm to 50 mm.
  • the size of the glass cullet is meltable and preferably larger. This glass cullet large size by covering the raw material surface of the glass raw material GM 2, it is to suppress the scattering of fine raw materials.
  • the proportion of glass cullet in a glass material GM 2 for example, the type of glass product manufacturing, inventory step in the circulation cullet can appropriately set according to the condition of the purchase prices of commercial cullet.
  • the amount (% by mass) of glass cullet in the total mass of the glass product is often about 30% for plate glass, about 90% for bottle glass, and about 50% for glass for liquid crystal. .
  • the glass raw material GM 2 as components other than the glass cullet, and batch material obtained by mixing powders of a plurality of glass raw materials are glass compositions required by melt obtained. As other glass materials may include those to granulate the pre-batch raw material such as glass raw material particles GM 1. Further, the glass raw material GM 2, as the components other than the glass cullet, a clarifying agent is auxiliary material, colorant, a melting aid or the like can be added.
  • Glass cullet has better meltability than batch materials. Therefore, increasing the amount of glass cullet in a glass material GM 2 is preferred from the viewpoint of energy saving operation. However, since glass cullet is poor in reactivity, defoaming becomes difficult when the number of glass cullet increases. Therefore, in this case, it is preferable to add a clarifying agent with batch material in a glass raw material GM 2. Although a larger amount of clarifier may be added to the glass raw material particles GM 1 , it is relatively effective to add the clarifier to the batch raw material from the viewpoint of volatilization of the clarifier.
  • FIG. 4 is a flowchart showing an example of a method for producing a glass product according to the present invention.
  • FIG. 5 is a schematic explanatory view of the behavior of the molten glass particles U in this example.
  • the oxyfuel flame H is formed by the air melting burner 2, and the heated gas phase part K is formed on the lower end side of the air melting burner 2.
  • the ceiling part 1a, the furnace bottom part 1b, the furnace wall parts 1c, 1d, 1e, and 1f are heated by radiant heat transfer and convection heat transfer by the oxyfuel flame H, and a high-temperature gas phase of, for example, about 1500 ° C. is stored in the storage part 1h. Create an atmosphere. Thereby, the storage part 1h can store the molten glass G as a glass melt.
  • a batch raw material may be accommodated in the storage part 1h, and it may be heated with the air melting burner 2 to form the molten glass G, or it may be melted in the air.
  • the molten glass G may be formed by the burner 2 as described below.
  • the glass raw material particles GM 1 are supplied from the glass raw material particle supply unit 4 together with the carrier gas to the nozzle body 22 of the air-melting burner 2.
  • the glass raw material particles GM 1 move downward in the nozzle body 22 and are charged into the heated gas phase portion K formed by the oxyfuel flame H.
  • the individual glass raw material particles GM 1 are rapidly heated and melted in the heated gas phase portion K, and the whole is melted and individually converted into molten glass particles U.
  • Each molten glass particle U is jetted vertically downward together with the carrier gas and the heated gas g heated in the heated gas phase part K, falls into the storage part 1h of the furnace body 1, and is accumulated in the storage part 1h.
  • U ′ is formed.
  • the glass raw material particles GM 1 are generated in the air-burning burner 2 by the carrier gas, the fuel gas supply path 25, the fuel gas injected from the combustion gas supply path 26, and the airflow formed by the combustion gas. Without staying at the tip, it is sprayed downward and heated.
  • each molten glass particle U is the target molten glass G, and a high-quality melt with a uniform composition. It is glass G.
  • the molten glass particles U are the droplet particles of small particle size which is formed by melting a glass raw material particles GM 1, less bubbles as a result of dissipation of the generated gas is made sufficiently.
  • the glass raw material particles GM 1 are charged into the furnace from the air melting burner (first charging part) 2 and melted in the heating gas phase part K (first heating gas phase part). Since the glass particles U are directly dropped and deposited on the glass raw material GM 2 containing glass cullet, the fine cullet or glass raw material powder scattered on the molten glass particles U is adsorbed, and scattering of the glass raw material powder and the like can be prevented. .
  • the scattered glass raw material powder is often different from the target glass composition, it is possible to reduce the scattered glass raw material powder and prevent it from being mixed into the molten glass G (U '). Effective for obtaining glass. Further in the present invention, since an effect as described above, the flames such as heating gas phase portion K, can be formed to relatively closer to the mass of the glass raw material GM 2. In the case of conventional heating burner, since such action is not, when the flame mass of the glass material GM 2 is too small, fine glass cullet or glass raw material powder as described above is problematic scattered.
  • the molten glass U ' the glass raw material GM 2 containing glass cullet is floated on the liquid surface, the glass material GM 2 containing glass cullet is heated from below, for further melting, dissolution of the initial stage It will be in the state used as the melt, what is called an initial melt (initial melt).
  • an initial melt initial melt
  • the amount of the fining agent remaining in the molten glass U ′ can be controlled by using the melting conditions such as the addition ratio, supply amount, and combustion amount of the fining agent in the glass raw material particles GM 1 as parameters. U ′ can be obtained. Further, by using the air in the molten burner 2, when preparing the initial melt is melt running initial melt early stage of the manufacturing apparatus, not contain ingredients according to the contribution of the glass raw material GM 2.
  • the composition of the glass raw material particles GM 1 and the glass raw material GM 2 is different, in order to form a more homogeneous molten glass G more efficiently, at least the glass raw material particles that form the initial melt at the initial stage of operation of the production apparatus It is preferable that the composition of GM 1 is matched with the composition range of the molten glass G or a composition approximate to the composition range of the molten glass G.
  • the glass raw material GM 2 including the glass cullet is supplied from the glass raw material supply unit 5 after the molten glass U ′ has been stored to some extent. That is, a glass raw material GM 2 were charged into the raw material inlet 5A, by the rotation of the conveying screw 5b, is charged into the reservoir portion 1h of glass raw material inlet 1A.
  • the glass cullet has a size variation in the range of several millimeters to several tens of millimeters, there is no problem in the method in which the glass cullet is introduced into the furnace from the raw material inlet 5A using the conveying screw 5b. Can be thrown in.
  • the glass raw material GM 2 charged into the storage unit 1 h floats in a lump (pile) on the liquid surface of the molten glass U ′ already stored, and is supplied below the air melting burner 2. It is pushed out toward. During this time, the glass raw material GM 2 is heated by heat transfer from the molten glass U ′ and gradually begins to melt from the lower side. In the supply region S, since the molten glass particles U discharged vertically downward from the air melting burner 2 are poured, the glass raw material GM 2 containing the glass cullet comes into contact with the molten glass particles U, and the glass raw material GM 2 is melted. Is promoted. This state will be described below with reference to FIG.
  • FIG. 5A shows an image of the upper portion of the lump of the glass raw material GM 2 including the glass cullet GC floating on the molten glass U ′ and the batch raw material GB.
  • the batch raw material GB having a small size enters the gap between the glass cullet GCs.
  • another glass cullet is laminated under the glass cullet GC, and the batch raw material is contained in the gap.
  • the lump of the glass raw material GM 2 including the glass cullet GC floating on the molten glass U ′ is heated while the lower surface of this lump is in contact with the molten glass U ′ (not shown), and the upper surface m 1 is the inner wall portion of the glass melting furnace 100.
  • the glass material GM 2 containing glass cullet GC in accordance with each amount of heating, the upper surface m 1, is heated and melted from the lower surface mixed in the molten glass U ', the molten glass G is gradually formed.
  • the molten glass particles U on the upper face m 1 falls, as shown in FIG. 5 (b), the molten glass particles U are spread on the upper surface m 1, into close contact with the part of the upper surface m 1.
  • This coherent molten glass particles U via the contact surface mc the upper m 1, occurs heat conduction, can be heated wide glass batch GM 2 through contact surfaces mc.
  • the molten glass particles U pass through the region of about 2000 ° C. to about 3000 ° C., which is the temperature of the heated gas phase portion K, and are heated to a high temperature, so that the temperature is much higher than that of the molten glass U ′. Moreover, it is much higher than the temperature of the glass raw material GM 2 in the solid state.
  • the molten glass particles U have a small diameter, the amount of heat conduction per unit area is extremely large. Further, the molten glass particles U becomes flat by the impact, to attach a wide range as compared with the particle size of the molten glass particles U, heat efficiently transfer heat to the glass raw material GM 2 of molten glass particles U. For this reason, the molten glass particles U flow into the gaps between the glass cullet GCs, and melt the surface of the glass cullet GC and its lower part.
  • FIG. 5C shows, as an example, a state in which a plurality of molten glass particles U that have fallen into an adjacent region have enlarged their respective contact surfaces mc so as to merge with each other and expand like a contact surface mc ′. Show. In such contact surfaces mc (mc '), result in contact in close contact with the glass raw material GM 2 were melted and the molten glass particles U are chemical reactions efficiently proceed.
  • the contact surface mc (mc ′) is larger than the particle volume, the reaction proceeds quickly and a highly uniform reaction occurs in a short time.
  • the droplet-shaped molten glass G according to the composition ratio of the glass raw material of the molten glass particle U and the glass raw material GM 2 is formed on the upper surface m 1 of the glass raw material GM 2 containing the glass cullet GC. Go.
  • the droplet-shaped molten glass G grows and merges with the adjacent similar molten glass G and flows downward or laterally, penetrates the lump, and mixes with the stored molten glass U ′. .
  • the molten glass in the storage part 1h increases.
  • the molten glass particles U that pour down adjacently have been described with reference to the drawings.
  • the molten glass particles U have a wide area on the upper surface m 1 depending on the input amount of the glass raw material particles GM 1 and the discharge range of the molten glass particles U. Cover. Therefore, in the supply area S, while covering the upper surface m 1 glass raw GM 2 by the deposition layer of the molten glass particles U, the melting of the above can proceed on the upper surface m 1.
  • the amount of heat contributing to the melting of the molten glass particles U glass material GM 2 is set to 50% of the heat required for melting the glass raw materials GM 2 to about 60%, from the lower surface due to the contribution of the molten glass U ' and melting, it is possible to substantially balance the melt from the top surface m 1 contributed by the molten glass particles U, it is possible to substantially uniformly melt the glass material GM 2 from the outer surface, it is efficient.
  • the energy saving operation can be realized as the input amount of the glass raw material particles GM 1 increases. That's right. Glass, however, since the ratio of the glass raw material GM 2 to the total amount of the molten glass G increasing the input amount of the glass raw material particles GM 1 is reduced, should the upper limit of the input amount of the glass raw material particles GM 1 occupy the molten glass G It can be determined according to the ratio of the raw material GM 2 , particularly the required amount of glass cullet to be occupied in the glass raw material GM 2 . Therefore, the input amount of the glass raw material particles GM 1 may be appropriately set in consideration of energy efficiency within the upper limit range.
  • the molten glass particles U is continued melting of glass raw material GM 2 and releases on the glass raw material GM 2.
  • the input amount of the glass raw material particles GM 1 and the glass raw material GM 2 becomes a quantitative ratio that satisfies the composition ratio for forming the molten glass G, and when the glass raw material GM 2 corresponding to this quantitative ratio is melted, it is stored.
  • the molten glass becomes a molten glass G having a target glass composition.
  • the molten glass G is manufactured using the glass melting furnace 100.
  • the molten glass G having a target composition ratio in the glass melting furnace 100 is clarified as necessary, transferred from the discharge port 1B to the molding device 6, and can be molded into the target shape by the molding device 6.
  • the glass raw material supply unit 5 supplies the glass raw material GM 2 containing glass cullet into the furnace body 1, and the melting formed by the air melting burner 2.
  • the glass raw material GM 2 can be to the glass raw material GM 2 provide efficient heat transfer from the molten glass particles U hot and liquid phase can be quickly melted. For this reason, molten glass can be efficiently manufactured using the air melting burner 2 while using the glass cullet without reducing the diameter so that the glass cullet can be supplied to the air melting burner 2.
  • the molten glass particles U whose composition is uniformly formed by the air melting burner 2 can be made to adhere to the lump of the glass raw material GM 2 little by little, the reactivity in the melting part of the glass raw material GM 2 is improved, The composition of the hybrid with the molten glass particles U can be made uniform.
  • the clarifier contained in the molten glass particle U acts on the molten glass G, so that the glass cullet with poor reactivity contained in the glass raw material GM 2 is melted. Even when the molten glass G is used, the defoaming effect in the molten glass G can be exhibited. For this reason, since the time for convection and storage of the molten glass G in the furnace body 1 for defoaming can be shortened, the high-quality molten glass G can be produced efficiently.
  • the amount of fining agent necessary for the target fining is 0.3% by mass of the total glass raw material and the amount of glass cullet added is 50% of the glass raw material GM 2 , the fining agent content of the glass cullet is 0. If the glass raw material GM 2 excluding the glass cullet contains 0.4% by weight of the fining agent, the glass raw material GM 2 containing the glass cullet is suitable as the target fining agent amount. It can be set to any value. In addition, when the amount of fining agent necessary for the target fining is 0.3% by mass of the total glass raw material and the amount of glass cullet added is 80% of the glass raw material GM 2 , the amount of fining agent in the glass cullet is 0.
  • the addition rate becomes excessively low, the defoaming effect is reduced, or the addition rate becomes excessively high and white bubbles or the like are generated due to precipitation of the molten salt. Can be prevented.
  • the fining agent has been described as an example.
  • the method for adjusting the addition amount can be similarly applied to other auxiliary materials added to the glass raw material GM 2 , for example, a colorant, a melting aid, and the like.
  • the glass melting furnace 100 described above can be realized by further adding an air melting burner 2 to a glass melting furnace having a conventional structure in which a plurality of oxygen burners for heating are provided on the furnace wall portion to melt batch raw materials.
  • an air melting burner 2 to a glass melting furnace having a conventional structure in which a plurality of oxygen burners for heating are provided on the furnace wall portion to melt batch raw materials.
  • Molten glass G can be manufactured.
  • the molten glass G is introduce
  • a glass product manufacturing apparatus the glass melting furnace 100 described above, a molding apparatus 6 for forming the molten glass G manufactured by the glass melting furnace 100, and the glass molded by the molding apparatus 6 are gradually cooled.
  • size can be illustrated.
  • the glass product manufacturing method and manufacturing apparatus since the molten glass G having a uniform composition efficiently manufactured by the glass melting furnace 100 is used, a high-quality glass product manufactured by energy saving is used. Can be provided.
  • FIG. 6 is a schematic configuration diagram showing a second embodiment of the glass melting furnace according to the present invention.
  • FIG. 7 is a sectional view taken along line BB shown in FIG.
  • the glass melting furnace 101 of the present embodiment is an air melting burner 2 ⁇ / b> A (second air melting burner) and a gas supply to the glass melting furnace 100 of the first embodiment.
  • Add a source 3A instead of the glass material grain supply portion 4 of the glass melting furnace 100 of the first embodiment, the glass material having a supply pipe 4b for supplying glass raw material particles GM 1 independent of the supply pipe 4a It has the structure provided with the particle
  • Other configurations are the same as those of the glass melting furnace 100 of the first embodiment, and the following description will focus on differences from the first embodiment.
  • the air melting burner 2A melts the glass raw material particles GM 1 in the heated gas phase portion K to form the molten glass particles U, and is a region S A that is a region in the furnace body 1 different from the supply region S (FIG. 7). 2) a second air-melting burner that discharges toward the reference). Although the detailed configuration of the air melting burner 2A is not particularly illustrated, it has the same configuration as the air melting burner 2.
  • Aerial melting burner 2A of the present embodiment as in release direction of the glass raw material particles GM 1 is vertically downward, is attached to a ceiling portion 1a between the molten burner 2 and the furnace wall portion 1d in the air.
  • the gas in the molten burner 2A is connected to the glass raw material particle supply section 4A via a supply pipe 4b, a similar form as the air in the molten burner 2, so that the glass raw material particles GM 1 is supplied through a supply pipe 4b It has become. Therefore, the glass melting furnace 101, a glass raw material particle supply unit 4A, the supply pipe 4a, or by appropriately changing the supply amount of supplying glass raw material particles GM 1 to 4b, it or to stop the supply.
  • the gas supply source 3A has the same configuration as that of the gas supply source 3 of the first embodiment, and the supply pipes 3a and 3b are respectively connected to the air-melting burner 2 of the previous first embodiment. It is connected to the air melting burner 2A in the form of. Therefore, the fuel gas is introduced from the gas supply source 3A through the supply pipe 3a into the fuel gas supply path of the air melting burner 2A, and the combustion gas is supplied from the gas supply source 3A through the supply pipe 3b. It is introduced into the 2A combustion gas supply path.
  • the air melting burner 2 ⁇ / b> A can inject the oxyfuel combustion flame H by the fuel gas and the combustion gas on the tip side (the lower side in FIG. 6) similarly to the air melting burner 2.
  • the inside, respectively, from the gas in the molten burner 2,2A can release glass material particles GM 1.
  • air in the molten burner 2A in order to release the glass raw material particles GM 1 toward the different regions S A of the supply area S, glass material grains GM 1 is not melting the glass raw material GM 2 directly, The molten glass G in the reservoir 1 h is increased by the molten glass particles U.
  • the molten glass U ′ which is the initial melt, can be quickly stored by introducing the glass raw material particles GM 1 into both the air melting burners 2 and 2A.
  • the amount ratio of the glass raw material GM 2 to the molten glass G is less than the ratio of the glass raw material particles GM 1, by placing the glass raw material particles GM 1 on both the gas in the molten burner 2, 2A, rapid The molten glass G can be manufactured. Further, for example, when the input amount of the glass raw material GM 2 containing glass cullet changes depending on the situation such as the inventory of circulating cullet in the process, the purchase price of cullet in the city, etc. by adjusting the input amount of the glass raw material particles GM 1, and capable of producing molten glass G.
  • the glass melting furnace 101 the case of producing a molten glass G without using the glass raw material GM 2, without stopping the gas in the molten burner 2, a glass raw material particles in both the air in the molten burner 2,2A By introducing GM 1 , molten glass G can be manufactured quickly.
  • FIG. 8 is a schematic configuration diagram showing a main part of a third embodiment of the glass melting furnace according to the present invention
  • FIG. 8 (a) is a horizontal sectional view
  • FIG. 8 (b) is FIG. Is a cross-sectional view taken along the line CC of FIG.
  • the glass melting furnace 102 of the present embodiment is the same as the glass melting furnace 100 of the first embodiment except that the oxygen burner 30 (auxiliary heating unit) is used.
  • a heating electrode 31 see FIG. 8B.
  • Oxygen-fuel burner 30 is supplied with fuel gas and oxygen from the not shown gas supply source, the oxygen combustion flame h formed sideways, an auxiliary heating unit for heating a mass of glass batch GM 2.
  • the oxygen burner 30 is installed side by side so that the flame ejection direction is the horizontal direction, one at each of the furnace wall portions 1f and 1e between the glass raw material inlet 1A and the supply region S. .
  • the installation height of each oxygen burner 30 can be set at an appropriate position slightly higher than the liquid level of the molten glass G.
  • Each oxygen burner 30 is installed at a certain distance from the glass raw material inlet 1A toward the outlet 1B. By these, scattering of glass raw material powder etc. can be prevented.
  • the oxygen burner 30 of the present embodiment preheats the glass raw material GM 2 until the glass raw material GM 2 constituting the lump reaches the supply region S.
  • the electrode 31 is a heating means for keeping the temperature of the molten glass G (U ′) stored in the storage part 1h within a certain range and causing it to convect, and is a rod-like shape capable of heating the molten glass G (U ′) from the inside side.
  • a structure in which a plurality of electrodes 31 are arranged vertically and horizontally can be employed.
  • the arrangement position of the electrodes 31 is preferably provided as appropriate at a position where the temperature of the molten glass G (U ′) is likely to decrease. For example, it provided on the downstream side of the furnace bottom portion 1b from a region where the mass by the glass raw material GM 2 is formed.
  • the glass melting furnace 102 of the present embodiment since the glass raw material GM 2 that includes the oxygen burner 30 and forms a lump can be preheated, the melting capacity of the glass raw material GM 2 by the molten glass particles U is relatively increased. As a result, melting of the glass raw material GM 2 is further accelerated. Further, it is possible to reduce the temperature drop of the molten glass particles U dropped on the glass raw material GM 2, capable of producing molten glass G at a stable constant speed. Further, oxygen-fuel burner 30 in accordance with the input amount of the glass raw material GM 2, may be carried out on-off control. Oxygen-fuel burner 30, to heat the glass batch GM 2 which is turned on, to suppress the temperature drop of the molten glass G (U ') from investing.
  • the temperature of the molten glass G (U ′) stored in the storage unit 1h can be stabilized.
  • to provide the electrode 31 on the downstream side of the furnace bottom portion 1b of the area mass is formed, to reduce the temperature drop due to introduction of the glass raw material GM 2, a melt of the lower surface m 2 side stable Can be
  • the oxygen burner 30 and the electrode 31 are provided side by side, they combine to suppress the temperature drop of the molten glass G (U ′) and increase the melting ability of the molten glass particles U. it can.
  • FIG. 9 is a schematic configuration diagram showing the main part of the fourth embodiment of the glass melting furnace according to the present invention
  • FIG. 10 is a schematic configuration diagram showing the main part of the fifth embodiment
  • FIG. It is a typical block diagram which shows the principal part of 6 embodiment.
  • the fourth to sixth embodiments are embodiments relating to the arrangement posture and arrangement position of the air-melting burner 2, and the respective components are the same as those of the glass melting furnace 100 of the first embodiment.
  • the glass melting furnace 103 according to the fourth embodiment is configured such that the air melting burner 2 is inclined obliquely downward with respect to the vertical axis and directed toward the glass raw material supply unit 5. It is attached to the ceiling portion 1a in a posture of discharging the molten glass particles U (in the direction from the discharge port 1B side to the raw material input port 5A side). Also, release the central axis of the gas in the molten burner 2 is directed to the center O S of the supply area S.
  • the heating gas g jetted from the gas in the molten burner 2 and the molten glass particles U is to hit diagonally downward toward the upstream side of the raw material supply direction of the glass raw material GM 2, frit GM
  • the forward movement of the lump consisting of 2 can be suppressed.
  • it is possible to prevent the glass material GM 2 will move to the discharge port 1B side through the supply area S before melt sufficiently, can be sufficiently melted mass of glass raw material GM 2.
  • the glass melting furnace 104 of the fifth embodiment is configured such that the air melting burner 2 is inclined obliquely downward with respect to the vertical axis and directed toward the discharge unit 1 ⁇ / b> B (that is, In the direction from the raw material inlet 5A side to the outlet 1B side), it is attached to the ceiling portion 1a in a posture to discharge the molten glass particles U. Also, release the central axis of the gas in the molten burner 2 is directed to the center O S of the supply area S.
  • the heating gas g jetted from the gas in the molten burner 2 and the molten glass particles U hits the downstream side of the glass raw material GM 2 (outlet 1B side), promote the forward movement of the masses it can.
  • the time until the glass raw material GM 2 reaches the supply region S can be shortened, the lump becomes too large and the supply of the glass raw material GM 2 is delayed, or the molten glass G (U ′) is supplied to the glass raw material inlet 1A. It is possible to prevent the temperature from being excessively lowered in the vicinity.
  • the molten glass manufacturing apparatus 105 is configured such that the in-air molten burner 2 is inclined obliquely downward with respect to the vertical axis and directed toward the discharge unit 1 ⁇ / b> B. It is attached to the upper part of the furnace wall part 1c with the attitude
  • FIG. 11 is a schematic diagram, the glass raw material supply unit 5 and the air melting burner 2 are drawn so as to be arranged on the same plane, but their positions in the depth direction are shifted. Also good. For example, if the air melting burner 2 is disposed between the two glass raw material supply parts 5, it is difficult to interfere with the glass raw material supply part 5, so that the air melting burner 2 does not interfere with the glass raw material supply part 5. Can be installed.
  • the air melting burner 2 since the arrangement posture of the air melting burner 2 is the same as that of the fifth embodiment, the air melting burner 2 has the same action as the fifth embodiment. Moreover, since it is provided in the furnace wall part 1c unlike 5th Embodiment, the glass raw material particle supply part 4 can be installed in the exterior of the glass melting furnace 105 near the furnace wall part 1c. Therefore, close the loading position of the glass raw material particles GM 1 and the glass raw material GM 2, the position of the device according to the glass raw material can be aggregated, thereby improving the work efficiency, transportation efficiency of the glass raw material at the time on.
  • This embodiment is an example in the case where the in-air melting burner 2 is provided on the furnace wall 1 c of the glass melting furnace 105.
  • the in-air melting burner 2 is one of the furnace wall parts 1e and 1f close to the furnace wall part 1c when the glass raw material supply part 5 is constituted by one unit or when the interval between the furnace wall parts 1e and 1f is narrow. Or both. In this case as well, the same operation as in this embodiment can be obtained. Moreover, since it is hard to interfere with the glass raw material supply part 5, arrangement
  • FIG. 12 is a schematic configuration diagram showing the main part of a seventh embodiment of the molten glass manufacturing apparatus according to the present invention
  • FIG. 12 (a) is a longitudinal sectional view
  • FIG. 12 (b) is FIG. 2 is a cross-sectional view taken along the line DD of FIG.
  • the glass melting furnace 106 of the seventh embodiment replaces the glass raw material charging port 1 ⁇ / b> A and the glass raw material supply unit 5 of the glass melting furnace 100 of the first embodiment with a glass raw material.
  • the inlet 1C and the glass raw material supply part 32 are provided.
  • a description will be given centering on differences from the first embodiment.
  • the glass raw material inlet 1C of the present embodiment is a rectangular opening provided in the middle of the furnace wall 1c in the height direction and penetrating in the wall thickness direction.
  • the opening shape of the glass raw material inlet 1C in the furnace wall 1c is a rectangular shape in which the horizontal width is substantially the same as that of the supply region S and the width is narrowed in the height direction.
  • the height of the glass raw material inlet 1C is set to the same height as the glass raw material inlet 1A of the first embodiment.
  • Glass raw material supply unit 32 in the present embodiment in order to put the glass raw material GM 2 from the outside of the glass melting furnace 106, a hopper 32a which raw material inlet 32A, the bottom opening 32B in the bottom provided in the upper, glass end the glass raw material GM 2 which is connected to the raw material inlet 1C introduced through a bottom opening 32B and a transport pipe 32d for guiding along a diagonal direction that is inclined downwardly toward the glass raw material inlet 1C.
  • a glass raw material GM 2 were charged into the hopper 32a, the glass raw material GM 2 is pushed out by the not shown blanket feeder for extruding aligned glass raw materials GM 2 in the width direction, the conveying pipe from the bottom opening 32B It falls to the lower side along 32d, and is charged into the reservoir 1h from the glass raw material inlet 1C. Since the glass raw material inlet 1C has a flat rectangular opening parallel to the liquid surface, the glass raw material GM 2 is charged in a state of being shaped into a flat layer.
  • the glass raw material GM 2 when is stored, the glass raw material GM 2 is to form a mass of a layered molten glass G (U' that floats on the liquid surface of) Become.
  • the formed mass when the charged glass raw material GM 2 continues, of a beltlike shape having substantially the same width as the horizontal width of the glass raw material inlet 1C, pushed toward the furnace wall portion 1c in the furnace wall portion 1d side Then, it is supplied to a supply region S indicated by a two-dot chain line in FIG. Glass raw materials GM 2 supplied to the supply area S, as in the above embodiments is efficiently melted by emitted molten glass particles U.
  • the layer thickness of the mass is equalized. Therefore, to reduce the imbalance of the melting rate of the glass raw material GM 2 according to the layer thickness variation can be reduced melt remaining. Further, according to the glass melting furnace 106, for supplying a free-fall of the glass raw material GM 2, a simple device configuration.
  • FIG. 13 is a schematic configuration diagram showing a main part of an eighth embodiment of the glass melting furnace according to the present invention
  • FIG. 13 (a) is a longitudinal sectional view
  • FIG. 13 (b) is a diagram of FIG. 13 (a). It is sectional drawing which follows the EE line.
  • the glass melting furnace 107 of the eighth embodiment replaces the glass raw material inlet 1 ⁇ / b> A and the glass raw material supply unit 5 of the glass melting furnace 100 of the first embodiment with a connecting hole. 1D, the glass raw material supply part 33 is provided.
  • the in-air melting burner 2 is installed in the same manner as in the fifth embodiment.
  • a description will be given centering on differences from the first embodiment.
  • connection hole 1D is a through-hole having a circular cross section provided through the furnace wall portion 1c obliquely downward in an intermediate portion in the height direction of the furnace wall portion 1c in order to connect the glass raw material supply unit 33. is there.
  • the height of the connecting hole 1D is provided at a position higher than the glass raw material inlet 1A of the first embodiment.
  • Glass material supply unit 33 of the present embodiment in order to put the glass raw material GM 2 from the outside of the furnace body 1, a hopper 33a which raw material inlet 33A, the bottom opening 33B in the bottom provided in the upper, end connecting hole the glass raw material GM 2 which is inserted into 1D introduced from concatenated bottom opening 33B toward the reservoir 1h and a conveying pipe 33d for guiding along a diagonal direction that is inclined downward.
  • the transfer pipe 33d protrudes obliquely downward from the furnace wall 1c toward the interior of the storage part 1h, and a glass material inlet 33e that is a circular opening is formed at the tip.
  • the glass raw material inlet 33e is opened above the liquid surface of the integrated molten glass G (U '), the opening position, the glass material GM 2 falling obliquely from a glass raw material inlet 33e is supplied region It is set to an appropriate height spread on S.
  • the conveying pipe 33d from the bottom opening 33B Are pushed out obliquely downward and fallen, and discharged from the glass raw material inlet 33e into the air in the storage portion 1h and charged. Therefore, the glass material GM 2 released is released each a parabola according to the initial speed in the glass raw material inlet 33e, it is sprayed onto the supply area S.
  • the glass raw material GM 2 sprayed and supplied to the supply region S is efficiently melted by the molten glass particles U released from the air melting burner 2 as in the above embodiment.
  • the glass melting furnace 107 of this embodiment in order to slightly spread the glass raw material GM 2 from above the molten glass G (U '), even with a small opening area of the glass raw material inlet 33e, extensively frit GM 2 can be supplied. Further, the glass raw material GM 2 that has been sprinkled to form a mountain-shaped lump, like the structure of the fifth embodiment, promotes the forward movement of the lump by the injection of the heated gas g and the molten glass particles U, and oxygen The glass raw material GM 2 forming a lump by the combustion flame H is melted.
  • first air-melting burners and second air-melting burners are not limited to one, and one or more appropriate numbers can be provided.
  • a plurality of first air-melting burners and second air-melting burners may be provided, for example, in accordance with the plurality of arrangements of the glass raw material supply unit 5 of the embodiment.
  • the first air melting burner and the second air melting burner may be provided anywhere on the ceiling or furnace wall of the furnace body as long as the molten glass particles can be discharged and supplied.
  • the example in which the air melting burner 2 is provided on the furnace wall portion 1c in order to incline the discharge direction of the air melting burner 2 has been described. However, it is provided on the furnace wall portions 1f and 1e. It may be done. When the furnace wall portion 1f, provided 1e has only to be mounted at an angle in a plane perpendicular to the discharge direction may be perpendicular with respect to the raw material supply direction of the glass raw material GM 2.
  • the technology of the present invention can efficiently produce a high-quality molten glass having a uniform composition by an energy-saving operation using a glass raw material containing glass cullet, and can be used for building glass, vehicle glass, and optical glass. It can be widely applied to the production of medical glass, display glass, and other general glass products.
  • the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2011-024273 filed on February 7, 2011 are incorporated herein by reference. .
  • Glass raw material inlet 100 ... Glass melting furnace , 101,102,103,104,105,106,107 ... glass melting furnace, G, U '... molten glass, GM 1 ... glass raw material particles, GM 2 ... glass raw material, GC ... glass cullet, GB ... batch material, H, h ... oxygen combustion flame, K Heating gas phase, S ... supply region, U ... molten glass particles, g ... heating gas, S1 ... glass melting step, S2 ... molding step, S3 ... annealing step, S4 ... cutting step, S A ... other areas.

Abstract

The purpose of the invention is to effectively produce molten glass and glass products by using a glass starting material including glass cullet and by applying an in-flight glass melting method in a glass melting furnace. The present invention relates to a glass melting furnace comprising: a furnace body (1) in which molten glass is accumulated; a glass starting material supply section (5) which is provided on a side of the furnace body (1), and which supplies a glass starting material (GM2) including glass cullet to a supply area (S) above molten glass (G) accumulated inside the furnace body; a first injection section which is provided on a part of the furnace body (1), and which injects glass starting material particles (GM1) towards the supply area (S); and a first heating means which generates, above the supply area (S), a first heating gas phase part (K) in which the glass starting material particles (GM1) from the first injection section are formed into molten glass particles, below the first injection section.

Description

ガラス溶融炉、溶融ガラスの製造方法、ガラス製品の製造方法、およびガラス製品の製造装置Glass melting furnace, molten glass manufacturing method, glass product manufacturing method, and glass product manufacturing apparatus
 本発明は、ガラス溶融炉、溶融ガラスの製造方法、ガラス製品の製造方法、およびガラス製品の製造装置に関する。 The present invention relates to a glass melting furnace, a method for manufacturing a molten glass, a method for manufacturing a glass product, and an apparatus for manufacturing a glass product.
 現在、板ガラス、瓶ガラス、繊維ガラスを始めとして表示装置用ガラスに至るまで、量産規模のガラスの多くはガラス原料を溶融炉にて溶融するというF.シーメンスが開発したシーメンス窯(Siemens type furnace)に基づき生産されている。シーメンス窯による溶融法では、粉末状ガラス原料(バッチ原料)を、シーメンス窯で先に溶融した溶融ガラスの液面上に投入し、それが塊(バッチ山、batch pileともいう。)となったものを溶融ガラスの液面上方に設置したバーナーによって加熱し、その塊の表面から融解を進行させ、徐々に溶融ガラス(ガラス融液)とする。このとき、融液上のバッチ原料は、反応あるいは溶融しやすい物質から順次溶け出るため、融点あるいは粘性の高い珪砂あるいは珪砂分を多く含む粒子が取り残される。また、同様の理由で、融液形成の初期状態においては、局所的に見るとバッチ原料と組成が異なったガラス融液が生じ、融液の不均一が生じやすい。さらに、シーメンス窯によるガラス溶融炉は、大量のエネルギーを必要とするため産業におけるエネルギー消費構造を改革する面から消費エネルギー削減が望まれている。最近では、表示装置用途のガラス板として高品質、高付加価値化ガラスの需要が増大の一途にあり、エネルギー消費も増大しており、溶融ガラスの製造にかかる省エネルギー技術の開発は重要かつ緊急の課題とされている。 Currently, most glass on the mass production scale, including flat glass, bottle glass, and fiberglass, is used for melting glass materials in a melting furnace. It is produced based on the Siemens メ ン type furnace developed by Siemens. In the melting method using a Siemens kiln, powdered glass raw material (batch raw material) is put on the liquid surface of the molten glass previously melted in the Siemens kiln, and it becomes a lump (also called a batch pile or batch pile). A thing is heated with the burner installed above the liquid level of the molten glass, melting is advanced from the surface of the lump, and it is gradually made into molten glass (glass melt). At this time, since the batch raw material on the melt is sequentially dissolved from a substance that easily reacts or melts, silica sand having a high melting point or viscosity or particles containing a large amount of silica sand are left behind. For the same reason, in the initial state of melt formation, a glass melt having a composition different from that of the batch raw material is generated locally, and the melt is likely to be non-uniform. Furthermore, since a glass melting furnace using a Siemens kiln requires a large amount of energy, it is desired to reduce energy consumption in terms of reforming the energy consumption structure in the industry. Recently, the demand for high-quality, high-value-added glass as a glass plate for display devices is increasing, and energy consumption is also increasing, so the development of energy-saving technology for manufacturing molten glass is important and urgent. It is an issue.
 このような従来技術に係る溶融ガラスの製造装置として、例えば、特許文献1には、ガラス原料から溶融ガラスを生産するガラス溶融装置であって、少なくとも一つの酸素バーナーと、酸素バーナーからのガス状燃料及び酸素の速度を制御する手段を備えたガラス溶融装置が記載されている。このガラス溶融装置は、ガス状燃料の速度と酸素の速度が実質的に等しくなるようにして層状のガス状燃料流と層状の酸素流を生じさせ、生成された火炎がガラス原料の表面に熱を与えてガラス原料を溶融することにより溶融ガラスを生産している。 As such a molten glass manufacturing apparatus according to the prior art, for example, Patent Document 1 discloses a glass melting apparatus that produces molten glass from a glass raw material, and includes at least one oxygen burner and a gaseous state from the oxygen burner. A glass melting apparatus with means for controlling the fuel and oxygen rates is described. This glass melting apparatus generates a laminar gaseous fuel flow and a laminar oxygen flow such that the velocity of the gaseous fuel and the velocity of oxygen are substantially equal, and the generated flame is heated on the surface of the glass raw material. The molten glass is produced by melting the glass raw material.
 また、省エネルギー型ガラス製造技術の一例として、ガラス原料の混合粉末からなる造粒体(ガラス原料粒子)を高温の気相雰囲気中で加熱し溶融させて溶融ガラス粒子とし、次いでこの溶融ガラス粒子を集積して溶融ガラス(ガラス融液)を形成する溶融ガラスの製造方法が提案されている(特許文献2参照)。なお、以下では、この溶融ガラスの製造方法を、気中溶融法(in-flight glass melting method)と呼ぶこととする。 Moreover, as an example of energy-saving glass manufacturing technology, a granulated body (glass raw material particles) composed of a mixed powder of glass raw materials is heated and melted in a high-temperature gas phase atmosphere to form molten glass particles. There has been proposed a method for producing molten glass that is accumulated to form a molten glass (glass melt) (see Patent Document 2). In the following, this method for producing molten glass is referred to as an in-flight glass melting method.
日本特表2002-508295号公報Japan Special Table 2002-508295 日本特開2006-199549号公報Japanese Unexamined Patent Publication No. 2006-199549
 前記のような従来の溶融ガラスの製造装置および製造方法には、以下の問題がある。
 特許文献1に記載の技術では、前記のようにガラス原料の溶融開始時の初期融液に未溶融物が残り易いとともに、省エネルギー操業という面では課題を有している。
 特許文献2に記載の気中溶融法を用いるならば、高温の気相雰囲気中でガラス原料粒子を個々に溶融するので組成の均一な高品質の溶融ガラス粒子が得られ易く、省エネルギー操業も可能となる。しかし、現在のガラスの実生産においては、シーメンス窯によるガラス溶融炉を用いた溶融ガラスの生産が主体であり、このガラス溶融炉を、気中溶融法を主体としたガラス溶融炉に変更するには、炉を全く新たに設計し直す必要があり、設備コストが増加する問題がある。また、現状のガラス溶融炉においては、ガラスカレットと称されるガラス片をガラス原料の一部として再利用することがなされており、気中溶融法を基にするガラス溶融炉では、現状ガラスの生産技術において欠くことのできない再生用途のガラスカレットをガラス原料の一部として用いることが容易にできない問題がある。
The conventional molten glass manufacturing apparatus and manufacturing method as described above have the following problems.
In the technique described in Patent Document 1, as described above, an unmelted material tends to remain in the initial melt at the start of melting of the glass raw material, and there is a problem in terms of energy saving operation.
If the air melting method described in Patent Document 2 is used, glass raw material particles are individually melted in a high-temperature gas-phase atmosphere, so that high-quality molten glass particles having a uniform composition can be easily obtained and energy-saving operation is also possible. It becomes. However, the current production of glass is mainly the production of molten glass using a glass melting furnace by a Siemens kiln, and this glass melting furnace is to be changed to a glass melting furnace mainly based on the air melting method. However, it is necessary to redesign the furnace completely, and there is a problem that the equipment cost increases. In the current glass melting furnace, a glass piece called a glass cullet is reused as a part of the glass raw material. In the glass melting furnace based on the air melting method, There is a problem that it is not easy to use glass cullet for recycling, which is indispensable in production technology, as a part of glass raw material.
 即ち、気中溶融法においてガラス原料粒子とともにガラスカレットを溶融させるためには1mm以下程度にガラスカレットを微細化する必要がある。しかし、現在使用されている再生用途のガラスカレットは、数ミリ~50ミリ程度までの大きさの異なるガラスカレットが混在しているので、これらのガラスカレットをすべて1mm以下に加工するための手間やコストが大幅にかかる問題がある。
 従って、微細化していない通常のガラスカレットを使用できる既存の溶融ガラス製造装置をその製造装置に大幅な改良を施すことなく利用した上で、均一な組成の溶融ガラスを得ることができ、熱効率も良好な技術の登場が望まれている。
That is, in order to melt the glass cullet together with the glass raw material particles in the air melting method, it is necessary to refine the glass cullet to about 1 mm or less. However, the glass cullet used for recycling is currently mixed with glass cullet of different sizes from several millimeters to 50 millimeters, so it takes time and effort to process all these glass cullets to 1 mm or less. There is a problem of significant cost.
Therefore, it is possible to obtain a molten glass with a uniform composition and use the existing molten glass manufacturing apparatus that can use a normal glass cullet that has not been refined, without significantly improving the manufacturing apparatus, and the thermal efficiency. The appearance of good technology is desired.
 本発明は、前記の問題に鑑みてなされたものであり、ガラスカレットを含むガラス原料を用いて溶融ガラスを効率的に製造できる溶融ガラスの製造装置および製造方法を提供することを目的とする。
 また、本発明は、本発明の溶融ガラスの製造方法と製造装置を用いるガラス製品の製造方法および製造装置の提供を目的とする。
This invention is made | formed in view of the said problem, and it aims at providing the manufacturing apparatus and manufacturing method of a molten glass which can manufacture a molten glass efficiently using the glass raw material containing a glass cullet.
Moreover, this invention aims at provision of the manufacturing method and manufacturing apparatus of a glass product using the manufacturing method and manufacturing apparatus of the molten glass of this invention.
 本発明のガラス溶融炉は、溶融ガラスを貯留する炉体と、前記炉体の側部に設けられて前記炉体内に貯留された溶融ガラス上の供給領域にガラスカレットを含むガラス原料を供給するガラス原料供給部と、前記炉体の一部に設けられて前記供給領域に向かってガラス原料粒子を投入する第1の投入部と、前記第1の投入部の下方において該第1の投入部からのガラス原料粒子を溶融ガラス粒子とする第1の加熱気相部を前記供給領域の上方に生成する第1の加熱手段と、を備える。
 本発明のガラス溶融炉は、前記炉体に設けられ前記供給領域と異なる溶融ガラス上の他の領域に向かってガラス原料粒子を投入する第2の投入部と、該第2の投入部の下方において該第2の投入部からのガラス原料粒子を溶融ガラス粒子とする第2の加熱気相部を前記他の領域の上方に生成する第2の加熱手段とを備えてもよい。
 本発明のガラス溶融炉では、前記第1の投入部は、前記溶融ガラス粒子の放出方向が鉛直下向きとなるように設けられてもよい。
The glass melting furnace of the present invention supplies a glass raw material containing glass cullet to a furnace body that stores molten glass, and a supply region on the molten glass that is provided in a side portion of the furnace body and is stored in the furnace body. A glass raw material supply unit; a first charging unit provided in a part of the furnace body for charging glass raw material particles toward the supply region; and the first charging unit below the first charging unit. First heating means for generating a first heated gas phase part using molten glass particles as glass raw material particles from above the supply region.
The glass melting furnace of the present invention includes a second charging unit that is provided in the furnace body and charges glass raw material particles toward another region on the molten glass that is different from the supply region, and below the second charging unit. And a second heating means for generating a second heated gas phase part using the glass raw material particles from the second charging part as molten glass particles above the other region.
In the glass melting furnace of the present invention, the first charging section may be provided such that the discharge direction of the molten glass particles is vertically downward.
 本発明のガラス溶融炉は、前記ガラス原料供給部を設けた炉体の一側と反対側に溶融ガラスの排出口が形成されるとともに、前記第一の投入部が前記溶融ガラス粒子の放出方向が斜め下向きとなり、かつ、前記ガラス原料供給部側に向いて傾斜されるように設けられてもよい。
 本発明のガラス溶融炉は、前記ガラス原料供給部を設けた炉体の一側と反対側に溶融ガラスの排出口が形成されるとともに、前記第一の投入部が溶融ガラス粒子の放出方向が斜め下向きとなり、かつ、前記排出口側に向いて傾斜されるように設けられてもよい。
In the glass melting furnace of the present invention, a molten glass discharge port is formed on the side opposite to one side of the furnace body provided with the glass raw material supply unit, and the first charging unit is a discharge direction of the molten glass particles. May be provided so as to be inclined downward and inclined toward the glass raw material supply unit.
In the glass melting furnace of the present invention, a molten glass discharge port is formed on the side opposite to one side of the furnace body provided with the glass raw material supply unit, and the first charging unit has a discharge direction of molten glass particles. It may be provided so as to be inclined downward and inclined toward the discharge port side.
 本発明のガラス溶融炉は、前記炉体の炉底部に溶融ガラスを加熱するための加熱手段を備えてもよい。
 本発明のガラス溶融炉は、前記炉体の炉壁部に補助加熱バーナーを備えてもよい。
The glass melting furnace of the present invention may include a heating means for heating the molten glass at the furnace bottom of the furnace body.
The glass melting furnace of the present invention may include an auxiliary heating burner on the furnace wall of the furnace body.
 本発明の溶融ガラスの製造方法は、溶融ガラスを貯留している炉体内の該溶融ガラス上にガラスカレットを含むガラス原料を供給し、該ガラス原料を供給した供給領域に対し第1の投入部からガラス原料粒子を投入し、第1の投入部の下方において前記第1の投入部からのガラス原料粒子を第1の加熱気相部により溶融ガラス粒子としてから前記ガラスカレットを含むガラス原料上に落下させ、前記ガラスカレットを含むガラス原料を溶融する。 In the method for producing molten glass of the present invention, a glass raw material containing glass cullet is supplied onto the molten glass in a furnace body in which the molten glass is stored, and the first charging unit is supplied to the supply region to which the glass raw material is supplied. The glass raw material particles are charged from above, and the glass raw material particles from the first charging portion are converted into molten glass particles by the first heating gas phase portion below the first charging portion, and then on the glass raw material including the glass cullet. The glass raw material containing the glass cullet is melted by dropping.
 本発明の溶融ガラスの製造方法において、前記供給領域と異なる溶融ガラス上の他の領域に向けて、第2の投入部からガラス原料粒子を投入し、第2の投入部の下方において前記第2の投入部からのガラス原料粒子を第2の加熱気相部により溶融ガラス粒子としてから溶融ガラスに供給してもよい。
 本発明の溶融ガラスの製造方法は、前記炉体内に供給されたガラスカレットを含むガラス原料について製造目的とする溶融ガラスに対し不足の組成成分がある場合、前記第1の投入部または第2の投入部から炉体内に投入するガラス原料粒子に対し前記不足の組成成分を補うように成分調整したガラス原料粒子を用い、前記第1の投入部または第2の投入部から、前記成分調整済みガラス原料粒子を投入することにより、前記ガラスカレットを含むガラス原料に不足の組成成分を補給することができる。
 本発明の溶融ガラスの製造方法において、溶融ガラスを貯留している炉体内の該溶融ガラス上にガラスカレットを含むガラス原料を連続的、または間欠的に供給しながら、かつ該ガラス原料が供給された供給領域に向けて、第1の投入部からガラス原料粒子を連続的、または間欠的に投入して前記第1の投入部からのガラス原料粒子を第1の加熱気相部を通して溶融ガラス粒子として前記ガラスカレットを含むガラス原料上に落下させ、前記ガラスカレットを含むガラス原料を溶融してもよい。
 本発明の溶融ガラスの製造方法において、前記ガラス原料粒子の平均粒径は、30~1000μmとするのが好ましい。
In the molten glass manufacturing method of the present invention, glass raw material particles are charged from a second charging portion toward another region on the molten glass different from the supply region, and the second raw material is below the second charging portion. The glass raw material particles from the charging part may be supplied to the molten glass after being converted into molten glass particles by the second heated gas phase part.
In the method for producing molten glass according to the present invention, when there are insufficient composition components for the molten glass to be produced for the glass raw material containing the glass cullet supplied into the furnace body, the first charging part or the second Using the glass raw material particles whose components are adjusted so as to compensate for the insufficient composition component with respect to the glass raw material particles charged into the furnace body from the charging portion, the component-adjusted glass is supplied from the first charging portion or the second charging portion. By introducing the raw material particles, an insufficient composition component can be supplied to the glass raw material containing the glass cullet.
In the method for producing molten glass of the present invention, the glass raw material is supplied while continuously or intermittently supplying a glass raw material containing glass cullet onto the molten glass in the furnace body storing the molten glass. The glass raw material particles are continuously or intermittently charged from the first charging portion toward the supply region, and the glass raw material particles from the first charging portion are molten glass particles through the first heating gas phase portion. The glass raw material containing the glass cullet may be melted by dropping on the glass raw material containing the glass cullet.
In the method for producing molten glass of the present invention, the average particle diameter of the glass raw material particles is preferably 30 to 1000 μm.
 本発明の溶融ガラスの製造方法は、前記成分調整済みのガラス原料粒子として、清澄剤と着色剤と溶融助剤との少なくとも1種以上の量を調整したものを用いることができる。
 本発明の溶融ガラス製品の製造方法は、先のいずれかに記載の溶融ガラスの製造方法を用いて、前記ガラス原料と前記ガラス原料粒子から溶融ガラスを製造する工程と、該溶融ガラスを成形する工程と、成形後のガラスを徐冷する工程と、を含む。
 本発明のガラス製品の製造装置は、先のいずれかに記載のガラス溶融炉と、該ガラス溶融炉により製造された溶融ガラスを成形する成形手段と、成形後のガラスを徐冷する徐冷手段と、を備える。
The manufacturing method of the molten glass of this invention can use what adjusted the quantity of the at least 1 sort (s) or more of a clarifier, a coloring agent, and a fusion aid as the said glass raw material particle after component adjustment.
The method for producing a molten glass product according to the present invention comprises a step of producing a molten glass from the glass raw material and the glass raw material particles using the method for producing a molten glass according to any one of the above, and molding the molten glass. And a step of slowly cooling the glass after molding.
An apparatus for producing a glass product according to the present invention includes a glass melting furnace according to any one of the above, a molding means for molding the molten glass produced by the glass melting furnace, and a slow cooling means for gradually cooling the glass after molding. And comprising.
 本発明のガラス溶融炉によれば、第1の投入部からガラス原料粒子を炉内に投入し、第1の加熱気相部で溶融させた溶融ガラス粒子を、ガラスカレットを含むガラス原料の上に直接落下させてガラスカレットを含むガラス原料に直接熱を伝達し、溶融させることができる。このため、ガラスカレットを含むガラス原料を溶融ガラスからの伝熱に加え、溶融ガラス粒子からの伝熱も利用して効率良く熱伝達し、速やかに溶融させることができ、良好な熱効率で溶融ガラスを製造できる。
 また、ガラス原料上に落下させる溶融ガラス粒子は、第1の加熱気相部により溶融されて均一組成の溶融ガラス粒子となっていて、この組成均一な溶融ガラス粒子からの良好な熱伝達によりガラス原料を溶融させるので、難溶性の原料を含むガラス原料であっても従来よりも均一な溶融を図ることができ、溶融した初期状態において従来の溶融ガラスよりも組成の均一化を図ることができる。
 さらに、本発明のガラス溶融炉によれば、通常のガラス原料を加熱するためのバーナーで溶融ガラス上のガラスカレットを含むガラス原料の山をバーナーの火炎が直撃した場合に微細なガラスカレットないしはガラス原料粉末が飛散するが、第1の投入部からガラス原料粒子を炉内に投入し、第1の加熱気相部で溶融させた溶融ガラス粒子を、ガラスカレットを含むガラス原料の上に直接落下させるので、落下して堆積した溶融ガラス粒子によって、飛散した微細なカレットないしはガラス原料粉末が吸着され、ガラス原料粉末などの飛散を抑制できる。
According to the glass melting furnace of the present invention, glass raw material particles are charged into the furnace from the first charging part, and the molten glass particles melted in the first heating gas phase part are placed on the glass raw material containing the glass cullet. It can be directly dropped to the glass raw material including glass cullet to transfer heat and melt. For this reason, glass raw materials containing glass cullet can be efficiently transferred by using heat transfer from molten glass particles in addition to heat transfer from molten glass, and can be quickly melted. Can be manufactured.
Further, the molten glass particles dropped onto the glass raw material are melted by the first heating gas phase portion to become molten glass particles having a uniform composition, and glass is obtained by good heat transfer from the molten glass particles having a uniform composition. Since the raw material is melted, even a glass raw material containing a hardly soluble raw material can be melted more uniformly than in the past, and in the melted initial state, the composition can be made more uniform than the conventional molten glass. .
Furthermore, according to the glass melting furnace of the present invention, when a flame of the burner directly hits a pile of glass raw materials including glass cullet on the molten glass with a burner for heating ordinary glass raw materials, fine glass cullet or glass Although the raw material powder is scattered, glass raw material particles are charged into the furnace from the first charging part, and the molten glass particles melted in the first heating gas phase part are directly dropped onto the glass raw material including the glass cullet. Therefore, the scattered fine cullet or glass raw material powder is adsorbed by the molten glass particles deposited by dropping, and scattering of the glass raw material powder and the like can be suppressed.
 本発明のガラス溶融炉によれば、ガラスカレットを含むガラス原料を炉内の供給領域に供給する構造については既存の溶融炉と同等構造を採用でき、更に炉体に第1の投入部と第1の加熱気相部を設けることで溶融ガラス原料粒子をガラス原料上に供給し、加熱できる。従って、ガラス原料とガラスカレットの供給設備などの既存設備を備えた溶融炉の構造をそのまま利用でき、既存ガラス溶融炉の大幅な改造を行うことなく、ガラスカレットを含むガラス原料粒子を有効利用しながら、溶融ガラス粒子を用いてガラス原料を直接加熱することができ、良好な熱効率で高品質の溶融ガラスを製造できる。 According to the glass melting furnace of the present invention, the structure for supplying the glass raw material containing the glass cullet to the supply region in the furnace can be the same as that of the existing melting furnace, and the furnace body has the first charging portion and the first charging portion. By providing one heated gas phase part, the molten glass raw material particles can be supplied onto the glass raw material and heated. Therefore, the structure of the melting furnace equipped with existing equipment such as glass raw material and glass cullet supply equipment can be used as it is, and glass raw material particles containing glass cullet can be used effectively without significant modification of the existing glass melting furnace. However, the glass raw material can be directly heated using the molten glass particles, and high-quality molten glass can be produced with good thermal efficiency.
 本発明のガラス製品の製造方法と製造装置によれば、本発明の溶融ガラスの製造装置および製造方法によって、組成が均一な高品質の溶融ガラスを効率的に製造できるため、省エネルギー操業により製造された高品質のガラス製品を提供できる。 According to the glass product manufacturing method and manufacturing apparatus of the present invention, the molten glass manufacturing apparatus and manufacturing method of the present invention can efficiently manufacture high-quality molten glass having a uniform composition, and thus is manufactured by an energy-saving operation. High quality glass products can be provided.
図1は本発明に係るガラス溶融炉の第1実施形態の構成を示す模式的な構成図である。FIG. 1 is a schematic configuration diagram showing the configuration of the first embodiment of the glass melting furnace according to the present invention. 図2は図1のA-A線に沿う断面図である。FIG. 2 is a sectional view taken along line AA in FIG. 図3は図1に示すガラス溶融炉に適用される気中溶融バーナーの一例を示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing an example of an air melting burner applied to the glass melting furnace shown in FIG. 図4は本発明に係るガラス溶融炉を用いたガラス製品の製造方法の一例を示すフロー図である。FIG. 4 is a flowchart showing an example of a glass product manufacturing method using the glass melting furnace according to the present invention. 図5は本発明に係る溶融ガラスの製造方法の一実施形態における溶融ガラス粒子の挙動を示す模式的な説明図であり、図5(a)は溶融ガラス粒子がガラス原料に向かって降下している状態を示す説明図、図5(b)はガラス原料上に落下した溶融ガラス粒子が熱を伝える状態を示す説明図、図5(c)はガラス原料上に溶融ガラス粒子の堆積が進行した状態を示す説明図である。FIG. 5 is a schematic explanatory view showing the behavior of the molten glass particles in one embodiment of the method for producing molten glass according to the present invention, and FIG. 5 (a) shows that the molten glass particles descend toward the glass raw material. FIG. 5B is an explanatory diagram showing a state in which the molten glass particles falling on the glass raw material transmit heat, and FIG. 5C is a diagram in which the deposition of the molten glass particles proceeds on the glass raw material. It is explanatory drawing which shows a state. 図6は本発明に係るガラス溶融炉の第2実施形態を示す模式的な構成図である。FIG. 6 is a schematic configuration diagram showing a second embodiment of the glass melting furnace according to the present invention. 図7は図6のB-B線に沿う断面図である。FIG. 7 is a sectional view taken along line BB in FIG. 図8は本発明に係るガラス溶融炉の第3実施形態の主要部を示す模式的な構成図であり、図8(a)は水平断面図、図8(b)は図8(a)のC-C線に沿う断面図である。FIG. 8 is a schematic configuration diagram showing the main part of the third embodiment of the glass melting furnace according to the present invention, FIG. 8 (a) is a horizontal sectional view, and FIG. 8 (b) is a diagram of FIG. 8 (a). It is sectional drawing which follows CC line. 図9は本発明に係るガラス溶融炉の第4実施形態の主要部を示す模式的な構成図である。FIG. 9 is a schematic configuration diagram showing the main part of the fourth embodiment of the glass melting furnace according to the present invention. 図10は本発明に係るガラス溶融炉の第5実施形態の主要部を示す模式的な構成図である。FIG. 10 is a schematic configuration diagram showing a main part of a fifth embodiment of the glass melting furnace according to the present invention. 図11は本発明に係るガラス溶融炉の第6実施形態の主要部を示す模式的な構成図である。FIG. 11 is a schematic configuration diagram showing a main part of a sixth embodiment of the glass melting furnace according to the present invention. 図12は本発明に係るガラス溶融炉の第7実施形態の主要部を示す模式的な構成図であり、図12(a)は縦断面図、図12(b)は図12(a)のD-D線に沿う断面図である。FIG. 12 is a schematic configuration diagram showing a main part of a seventh embodiment of the glass melting furnace according to the present invention, FIG. 12 (a) is a longitudinal sectional view, and FIG. 12 (b) is a diagram of FIG. 12 (a). It is sectional drawing which follows the DD line. 図13は本発明に係るガラス溶融炉の第8実施形態の主要部を示す模式的な構成図であり、図13(a)は縦断面図、図13(b)は図13(a)のE-E線に沿う断面図である。FIG. 13 is a schematic configuration diagram showing a main part of an eighth embodiment of the glass melting furnace according to the present invention, FIG. 13 (a) is a longitudinal sectional view, and FIG. 13 (b) is a diagram of FIG. 13 (a). It is sectional drawing which follows the EE line.
[第1実施形態]
 以下、添付図面を参照して本発明に係るガラス溶融炉とそれを用いた溶融ガラスの製造装置と製造方法、並びに、ガラス製品の製造方法の一例について説明する。ただし、本発明は以下に説明する各実施形態に制限されるものではなく、ガラス原料粒子を溶融して溶融ガラス粒子を形成し、ガラス原料が供給される供給領域に向けて放出し同様の効果が得られる限りは本発明の範囲である。
 図1は本発明に係るガラス溶融炉の一実施形態の構成を示す模式的な構成図、図2は図1のA-A線に沿う断面図、図3は同ガラス溶融炉に適用される気中溶融バーナーの一例を示す構成図である。なお、気中溶融バーナーとは、気中溶融法で利用するためのバーナーである。
[First Embodiment]
Hereinafter, an example of a glass melting furnace according to the present invention, a manufacturing apparatus and a manufacturing method of molten glass using the glass melting furnace, and a manufacturing method of a glass product will be described with reference to the accompanying drawings. However, the present invention is not limited to each embodiment described below, the glass raw material particles are melted to form molten glass particles, and released to the supply region where the glass raw material is supplied, and similar effects are obtained. Is within the scope of the present invention.
1 is a schematic configuration diagram showing the configuration of an embodiment of a glass melting furnace according to the present invention, FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1, and FIG. 3 is applied to the glass melting furnace. It is a block diagram which shows an example of an air melting burner. The air melting burner is a burner for use in the air melting method.
 図1に示すように本実施形態のガラス溶融炉100は、炉体1と、気中溶融バーナー2と、ガス供給源3と、ガラス原料粒子供給部4と、ガラス原料供給部5を主体として構成されている。ガラス溶融炉100の下流側には、ガラス溶融炉100において製造された溶融ガラスGをガラス製品に成形するための成形装置6が接続されている。 As shown in FIG. 1, the glass melting furnace 100 of the present embodiment mainly includes a furnace body 1, an in-air melting burner 2, a gas supply source 3, a glass raw material particle supply unit 4, and a glass raw material supply unit 5. It is configured. A molding apparatus 6 for molding the molten glass G manufactured in the glass melting furnace 100 into a glass product is connected to the downstream side of the glass melting furnace 100.
 炉体1は、耐火レンガなどの耐火材により中空構造にされている。すなわち、炉底部1bと天井部1aとの間に炉壁部1c、1d、1e、1f(図1、図2参照)が設けられ、これらの内部にガラス融液である溶融ガラスGの貯留部1hが形成されている。
 炉壁部1cの高さ方向の中間部には、ガラス原料GMを炉内の溶融ガラスGに投入するためのガラス原料投入口1Aが設けられている。図1においてガラス原料投入口1Aは1箇所のみ描かれているが、本実施形態では、図2に示すように、水平方向に離間した2箇所に設けられている。また、炉壁部1cに対向する側の炉壁部1dには、溶融ガラスGを成形装置6側に排出するための排出口1Bが形成されている。
The furnace body 1 has a hollow structure made of a refractory material such as a refractory brick. That is, furnace wall portions 1c, 1d, 1e, and 1f (see FIGS. 1 and 2) are provided between the furnace bottom portion 1b and the ceiling portion 1a, and a storage portion for the molten glass G that is a glass melt is provided inside these. 1h is formed.
A glass raw material inlet 1A for introducing the glass raw material GM 2 into the molten glass G in the furnace is provided at the intermediate portion in the height direction of the furnace wall 1c. In FIG. 1, only one glass raw material inlet 1A is drawn, but in this embodiment, as shown in FIG. 2, it is provided in two places spaced apart in the horizontal direction. Moreover, the discharge port 1B for discharging | emitting molten glass G to the shaping | molding apparatus 6 side is formed in the furnace wall part 1d of the side facing the furnace wall part 1c.
 本実施形態のガラス原料供給部5は、炉体1の側部に、すなわち炉体1の炉壁部1c側であって、溶融ガラスの流れる方法の上流側に設けられており、ガラス原料GMを収容するホッパー5aと、該ホッパー5aの下部に接続された搬送管5dと、搬送管5dの内部に設けられた搬送スクリュー5bと、この搬送スクリュー5bを回転駆動する駆動部5cを備えている。
 ホッパー5aは、上部に原料投入口5A、底部に底部開口5Bを備え、底部開口5Bの下方に水平に搬送管5dが接続され、搬送管5dの一端が前記ガラス原料投入口1Aに連結されている。前記搬送スクリュー5bは搬送管5d内のガラス原料GMをガラス原料投入口1Aに向かって搬送する。
The glass raw material supply part 5 of this embodiment is provided in the side part of the furnace body 1, ie, the furnace wall part 1c side of the furnace body 1, and the upstream of the method through which molten glass flows, and glass raw material GM. 2 , a transport pipe 5 d connected to the lower portion of the hopper 5 a, a transport screw 5 b provided inside the transport pipe 5 d, and a drive unit 5 c that rotationally drives the transport screw 5 b. Yes.
The hopper 5a includes a raw material inlet 5A at the top and a bottom opening 5B at the bottom, a transport pipe 5d is connected horizontally below the bottom opening 5B, and one end of the transport pipe 5d is connected to the glass raw material inlet 1A. Yes. The conveying screw 5b is conveyed toward the glass raw material GM 2 in the transport pipe 5d to the glass raw material inlet 1A.
 本実施形態において、ガラス原料供給部5は、各ガラス原料投入口1Aにそれぞれ1つずつ設けられている。
 このため、ホッパー5aに収容されているガラス原料GMは搬送スクリュー5bによってガラス原料投入口1Aから貯留部1hに投入される。貯留部1h内にすでに溶融ガラスGまたは溶融ガラス粒子Uが集積した溶融ガラスU’が貯留されている場合には、図1、2に示すように、ガラス原料GMが山状の塊を形成して溶融ガラスG(U’)の液面上に浮かぶことになる。
 形成された各塊は、ガラス原料GMの投入が続くと、炉壁部1c側から炉壁部1d側に向かって押し出され互いに合流して、炉壁部1c、1dの間の溶融ガラスG上の一定範囲、たとえば、図2に二点鎖線で示す供給領域Sに供給される。このように本実施形態において、ガラス原料供給部5の原料供給方向は、炉壁部1cから炉壁部1dに向かう方向とされる。
In the present embodiment, one glass raw material supply unit 5 is provided for each glass raw material inlet 1A.
Therefore, the glass material GM 2 contained in the hopper 5a is put in the storage portion 1h of glass raw material inlet 1A by the transport screw 5b. If the already molten glass G or molten glass particles U in the storage portion 1h is accumulated molten glass U 'is stored, as shown in FIGS. 1 and 2, the glass raw material GM 2 is formed a mountain-like mass Then, it floats on the liquid surface of the molten glass G (U ′).
Each mass was formed, when the charged glass raw material GM 2 continues, joins together pushed toward the furnace wall portion 1c side furnace wall portion 1d side furnace wall portions 1c, the molten glass G between 1d It is supplied to a supply range S indicated by a two-dot chain line in FIG. Thus, in this embodiment, the raw material supply direction of the glass raw material supply unit 5 is the direction from the furnace wall 1c toward the furnace wall 1d.
 気中溶融バーナー2は、ガラス原料粒子GMを加熱気相部K中で溶融して溶融ガラス粒子Uを形成し、ガラス原料GMが供給される供給領域Sに向けて放出するために設けられている。本実施形態の気中溶融バーナー2は、ガラス原料粒子GMの放出方向が鉛直下方となるように、供給領域Sの中心を通る鉛直軸に沿って炉体1の天井部1aに取り付けられている。 The air melting burner 2 is provided to melt the glass raw material particles GM 1 in the heated gas phase portion K to form the molten glass particles U, and discharge them toward the supply region S to which the glass raw material GM 2 is supplied. It has been. Aerial melting burner 2 of the present embodiment, as in release direction of the glass raw material particles GM 1 is vertically below, attached to a ceiling portion 1a of the furnace body 1 along the vertical axis passing through the center of the supply region S Yes.
 本実施形態に適用されている気中溶融バーナー2の内部構造の一例は、図3に示すように、ガラス原料粒子GMを通過させる供給路21を有した筒型のノズル本体22と、このノズル本体22の周囲を取り囲むように配置された被覆管23と、この被覆管23の周囲を囲むように配置された外管24とからなる3重構造とされている。ノズル本体22と被覆管23との間の流路が燃料ガス供給路25とされ、被覆管23と外管24との間の流路が燃焼用ガス供給路26とされている。 An example of the internal structure of the air melting burner 2 applied to the present embodiment includes a cylindrical nozzle body 22 having a supply path 21 through which the glass raw material particles GM 1 pass, as shown in FIG. The three-layer structure includes a cladding tube 23 disposed so as to surround the periphery of the nozzle body 22 and an outer tube 24 disposed so as to surround the periphery of the cladding tube 23. A flow path between the nozzle body 22 and the cladding tube 23 is a fuel gas supply path 25, and a flow path between the cladding pipe 23 and the outer pipe 24 is a combustion gas supply path 26.
 また、気中溶融バーナー2には、プロパン、ブタン、メタン、LPG(液化石油ガス)などの燃料ガスと、Oガスを含む燃焼用ガスとを供給するガス供給源3が、供給管3a、3bを介して接続されている。
 供給管3aは、前記燃料ガスを供給する配管であり、燃料ガス供給路25に接続されている。供給管3bは、前記燃焼用ガスを供給する配管であり、燃焼用ガス供給路26に接続されている。
 このため、気中溶融バーナー2は、供給管3aを介して前記燃料ガスが図3の矢印28に示す如く燃料ガス供給路25に導入され、供給管3bを介して前記燃焼用ガスが図3の矢印29に示す如く燃焼用ガス供給路26に導入される。これにより、気中溶融バーナー2は先端側(図1、図3の下方側)に前記燃料ガスおよび前記燃焼用ガスによる酸素燃焼炎Hを噴射できる。
In addition, a gas supply source 3 for supplying a fuel gas such as propane, butane, methane, LPG (liquefied petroleum gas) and a combustion gas containing O 2 gas is supplied to the air melting burner 2 through a supply pipe 3a, 3b is connected.
The supply pipe 3 a is a pipe that supplies the fuel gas, and is connected to the fuel gas supply path 25. The supply pipe 3 b is a pipe that supplies the combustion gas, and is connected to the combustion gas supply path 26.
For this reason, in the air melting burner 2, the fuel gas is introduced into the fuel gas supply path 25 through the supply pipe 3a as shown by the arrow 28 in FIG. 3, and the combustion gas is supplied through the supply pipe 3b in FIG. The gas is introduced into the combustion gas supply passage 26 as indicated by the arrow 29. Thereby, the air fusion burner 2 can inject the oxyfuel combustion flame H by the said fuel gas and the said gas for combustion to the front end side (lower side of FIG. 1, FIG. 3).
 また、気中溶融バーナー2のノズル本体22には、供給管4aを介してガラス原料粒子GMをキャリアガスとともに供給するガラス原料粒子供給部4が接続されている。キャリアガスとしては、酸素または空気を採用できる。ただし、キャリアガスは、ガラス原料粒子GMをノズル本体22に供給して、ノズル本体22の出口側から噴射できるガスであれば、酸素または空気には限定されない。 Further, the nozzle body 22 of the air melting burner 2, glass material grains supply unit 4 is connected for supplying glass raw material particles GM 1 with a carrier gas through a supply pipe 4a. As the carrier gas, oxygen or air can be employed. However, the carrier gas, the glass raw material particles GM 1 is supplied to the nozzle body 22, as long as gas can be injected from the outlet side of the nozzle body 22, not limited to oxygen or air.
 ガラス原料粒子供給部4の構成は、ガラス原料粒子GMを収容するホッパーと、ホッパーに収容されたガラス原料粒子GMを前記キャリアガスによって供給管4a内に移動させるガス送出手段とを備える。
 このため、ガラス原料粒子供給部4からキャリアガスとともにガラス原料粒子GMがノズル本体22に供給されると、気中溶融バーナー2は、先端から酸素燃焼炎Hを噴射するとともに、ガラス原料粒子GMを放出できる。
 本実施形態では、酸素燃焼炎Hが、酸素燃焼炎Hの内部とその周囲に、ガラス原料粒子GMを構成する各原料の融点よりも高い、約2000~3000℃の加熱気相部Kを形成できる。このため、ガラス原料粒子GMは、溶融した液相の溶融ガラス粒子Uとして鉛直下方に放出される。
 また、溶融ガラス粒子Uとともに、酸素燃焼炎H内で燃焼されたガスと、加熱気相部Kを燃焼されることなく通過したガスとは、加熱気相部Kで加熱された加熱ガスgとして鉛直下方側に噴射される。加熱ガスgは、噴射時には加熱気相部Kと略同じ温度に加熱されている。
The configuration of the glass raw material supply unit 4 includes a hopper that stores the glass raw material particles GM 1, and gas delivery means that moves the glass raw material particles GM 1 stored in the hopper into the supply pipe 4 a by the carrier gas.
For this reason, when the glass raw material particles GM 1 are supplied from the glass raw material particle supply unit 4 together with the carrier gas to the nozzle body 22, the in-air melting burner 2 injects the oxygen combustion flame H from the tip and the glass raw material particles GM. 1 can be released.
In the present embodiment, the oxygen combustion flame H has a heating gas phase portion K of about 2000 to 3000 ° C. higher than the melting point of each raw material constituting the glass raw material particles GM 1 in and around the oxygen combustion flame H. Can be formed. For this reason, the glass raw material particles GM 1 are discharged vertically downward as molten glass particles U in the molten liquid phase.
Further, the gas burned in the oxyfuel flame H together with the molten glass particles U and the gas that has passed through the heated gas phase portion K without being burned are referred to as a heated gas g heated in the heated gas phase portion K. Injected vertically downward. The heated gas g is heated to substantially the same temperature as the heated gas phase portion K at the time of injection.
 上述の構成の気中溶融バーナー2によってガラス原料粒子GMを加熱気相部K中で溶融して溶融ガラス粒子Uを形成し、該溶融ガラス粒子Uをガラスカレットを含むガラス原料GMに向けて放出できる。
 本実施形態の気中溶融バーナー2は、内部の供給路21を介しガラス原料粒子GMを目的の方向に噴出できる第1の投入部と、酸素燃焼炎Hに伴う加熱気相部Kを生成してガラス原料粒子GMを溶融する第1の加熱手段を兼ねている。
The glass raw material particles GM 1 are melted in the heated gas phase part K by the air melting burner 2 having the above-described configuration to form the molten glass particles U, and the molten glass particles U are directed to the glass raw material GM 2 containing the glass cullet. Can be released.
The air-melting burner 2 of the present embodiment generates a first charging part capable of ejecting glass raw material particles GM 1 in an intended direction through an internal supply path 21 and a heated gas phase part K accompanying the oxyfuel combustion flame H. also serves as a first heating means for melting the glass raw material particles GM 1 and.
 なお、気中溶融バーナー2の構成は、ガラス原料粒子GMを加熱気相部K中で溶融して溶融ガラス粒子Uを形成し、ガラス原料GMが供給される供給領域Sに向けて放出する加熱手段である限り、特に限定されず、気中溶融法に用いるすべての加熱手段を採用できる。
 たとえば、具体的な好適な加熱手段としては、天然ガス-酸素燃焼炎等の酸素燃焼炎を利用した上述の気中溶融バーナー2を用いることができるが、他に、移送式直流プラズマ、非移送式直流プラズマ、多相プラズマ、高周波誘導プラズマ等の熱プラズマアークなどの少なくとも一つを発生可能な装置を使用できる。ここにおいては、第1の加熱手段としての具体的な例示を挙げているが、後述する第2の加熱手段、あるいは第2の加熱手段に加えて設けられる加熱手段においても、これらの例示の加熱手段を用いることができる。
The structure of the air melting burner 2 is that the glass raw material particles GM 1 are melted in the heated gas phase part K to form the molten glass particles U and discharged toward the supply region S to which the glass raw material GM 2 is supplied. As long as it is a heating means to be used, it is not particularly limited, and all the heating means used in the air melting method can be adopted.
For example, as the specific suitable heating means, the above-described air-melting burner 2 using an oxyfuel flame such as a natural gas-oxygen flame can be used. An apparatus capable of generating at least one of a thermal plasma arc such as a direct current plasma, a multiphase plasma, and a high frequency induction plasma can be used. Here, specific examples are given as the first heating means. However, the second heating means, which will be described later, or a heating means provided in addition to the second heating means will also be described. Means can be used.
 次に、本実施形態のガラス溶融炉100において製造しようとする溶融ガラスGとその原料となるガラス原料粒子GMとガラス原料GMについて以下に説明する。
 本実施形態のガラス溶融炉100を用いて製造しようとする溶融ガラスGは組成的には特に制約されない。従って、ソーダライムガラス、無アルカリガラス、混合アルカリ系ガラス、またはホウケイ酸ガラス、あるいは、その他のガラスのいずれであってもよい。
Next, the molten glass G to be produced in the glass melting furnace 100 of the present embodiment, the glass raw material particles GM 1 and the glass raw material GM 2 as the raw materials will be described below.
The molten glass G to be manufactured using the glass melting furnace 100 of the present embodiment is not particularly limited in terms of composition. Therefore, it may be any of soda lime glass, alkali-free glass, mixed alkali glass, borosilicate glass, or other glass.
 溶融ガラスGが建築用または車両用の板ガラスに使用されるソーダライムガラスの場合に、溶融ガラスGは、酸化物基準の質量百分率表示で、SiO2:65~75%、Al23:0~3%、CaO:5~15%、MgO:0~15%、Na2O:10~20%、K2O:0~3%、Li2O:0~5%、Fe23:0~3%、TiO2:0~5%、CeO2:0~3%、BaO:0~5%、SrO:0~5%、B23:0~5%、ZnO:0~5%、ZrO2:0~5%、SnO2:0~3%、SO3:0~0.5%、という組成を有することが好ましい。 When the molten glass G is soda lime glass used for a plate glass for construction or vehicles, the molten glass G is expressed in terms of mass percentage on the basis of oxide, SiO 2 : 65 to 75%, Al 2 O 3 : 0. ~ 3%, CaO: 5-15%, MgO: 0-15%, Na 2 O: 10-20%, K 2 O: 0-3%, Li 2 O: 0-5%, Fe 2 O 3 : 0 to 3%, TiO 2 : 0 to 5%, CeO 2 : 0 to 3%, BaO: 0 to 5%, SrO: 0 to 5%, B 2 O 3 : 0 to 5%, ZnO: 0 to 5 %, ZrO 2 : 0 to 5%, SnO 2 : 0 to 3%, SO 3 : 0 to 0.5%.
 溶融ガラスGが液晶ディスプレイ用の基板に使用される無アルカリガラスの場合に、溶融ガラスGは、酸化物基準の質量百分率表示で、SiO2:39~75%、Al23:3~27%、B2:0~20%、MgO:0~13%、CaO:0~17%、SrO:0~20%、BaO:0~30%、という組成を有することが好ましい。 When the molten glass G is a non-alkali glass used for a substrate for a liquid crystal display, the molten glass G is expressed in terms of mass percentage on the basis of oxide, SiO 2 : 39 to 75%, Al 2 O 3 : 3 to 27 %, B 2 O 3: 0 ~ 20%, MgO: 0 ~ 13%, CaO: 0 ~ 17%, SrO: 0 ~ 20%, BaO: 0 ~ 30%, it is preferable to have a composition of.
 溶融ガラスGがプラズマディスプレイ用の基板に使用される混合アルカリ系ガラスの場合に、溶融ガラスGは、酸化物基準の質量百分率表示で、SiO2:50~75%、Al23:0~15%、MgO+CaO+SrO+BaO+ZnO:6~24%、Na2O+K2O:6~24%、という組成を有することが好ましい。 When the molten glass G is a mixed alkaline glass used for a substrate for a plasma display, the molten glass G is expressed in terms of mass percentage on the basis of oxides, SiO 2 : 50 to 75%, Al 2 O 3 : 0 to It is preferable to have a composition of 15%, MgO + CaO + SrO + BaO + ZnO: 6 to 24%, Na 2 O + K 2 O: 6 to 24%.
 その他の用途として、溶融ガラスGが耐熱容器または理化学用器具等に使用されるホウケイ酸ガラスの場合に、溶融ガラスGは、酸化物基準の質量百分率表示で、SiO2:60~85%、Al23:0~5%、B2:5~20%、Na2O+K2O:2~10%、という組成を有することが好ましい。 As another application, when the molten glass G is a borosilicate glass used in a heat-resistant container or a physics and chemistry instrument, the molten glass G is expressed in terms of mass percentage on the basis of oxide, SiO 2 : 60 to 85%, Al It is preferable to have a composition of 2 O 3 : 0 to 5%, B 2 O 3 : 5 to 20%, Na 2 O + K 2 O: 2 to 10%.
 本実施形態で気中溶融バーナー2を用いて行う気中溶融法においては、前記いずれかの組成のガラスの原料、例えば上述の各成分の粒子状のガラス原料粉末粒子を目的のガラスの組成比に合わせて混合し、造粒体とした上述のガラス原料粒子GMを用意する。
 基本的に気中溶融法とは、複数(通常3成分以上)の成分から成るガラスを製造するためにガラス原料粒子GMを高温の気相雰囲気中で溶融して溶融ガラスを製造する方法と表記できる。
In the air melting method performed using the air melting burner 2 in the present embodiment, the glass raw material powder having any one of the above compositions, for example, the particulate glass raw material powder particles of each of the above-mentioned components is used as the composition ratio of the target glass. The above-described glass raw material particles GM 1 that are mixed to form a granulated body are prepared.
Basically, the air melting method is a method for producing a molten glass by melting glass raw material particles GM 1 in a high-temperature gas phase atmosphere in order to produce a glass composed of a plurality of (usually three or more components) components. Can be written.
 また、たとえば、前述のガラス原料粒子GMの一例として、無アルカリガラスの一例を適用する場合、珪砂、アルミナ(Al)、ホウ酸(HBO)、水酸化マグネシウム(Mg(OH))、炭酸カルシウム(CaCO)、炭酸ストロンチウム(SrCO)、ジルコン(ZrSiO)、弁柄(Fe)、塩化ストロンチウム(SrCl)などの原料粉末粒子を目的のガラスの組成比に合致するように均一に調合し、たとえばスプレードライ造粒法により30~1000μm程度の造粒体として、ガラス原料粒子GMを得ることができる。 For example, when an example of an alkali-free glass is applied as an example of the glass raw material particle GM 1 described above, silica sand, alumina (Al 2 O 3 ), boric acid (H 3 BO 3 ), magnesium hydroxide (Mg ( OH) 2 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), zircon (ZrSiO 4 ), dial (Fe 2 O 3 ), strontium chloride (SrCl 2 ), etc. uniformly formulated to meet the composition ratio, for example as granules of about 30 ~ 1000 .mu.m by spray drying granulation method, it is possible to obtain a glass raw material particles GM 1.
 前記ガラス原料粉末粒子からガラス原料粒子GMを調製する方法としては、スプレードライ造粒法などの方法が使用でき、ガラス原料を分散溶解させた水溶液を高温雰囲気中に噴霧させて乾燥固化させる造粒法が好ましい。また、この造粒体は目的とするガラスの成分組成に対応する混合比の原料のみで構成してもよいが、その造粒体に更に同一組成のガラスカレット微粉を混合して、これをガラス原料粒子GMとして用いることもできる。なお、ガラスカレットは通常種々の大きさの物が混在するので、すでに微粉となっているガラスカレットは、ガラス原料粒子GMに混合しても良いが、ガラス原料粒子GMを構成する平均的な粒子径よりも大きなガラスカレットは、後に説明するガラス原料GMに混合して利用する。 As a method of preparing the glass raw material particles GM 1 from the glass raw material powder particles, a method such as a spray dry granulation method can be used, and an aqueous solution in which a glass raw material is dispersed and dissolved is sprayed into a high temperature atmosphere to dry and solidify. The grain method is preferred. Further, this granulated body may be composed only of raw materials having a mixing ratio corresponding to the target glass component composition, but the granulated body is further mixed with glass cullet powder having the same composition, and this is mixed with glass. It can also be used as raw material particles GM 1. Since glass cullet usually has various sizes, glass cullet that has already become fine powder may be mixed with glass raw material particle GM 1 , but the average constituting glass raw material particle GM 1 A glass cullet having a particle diameter larger than that of the glass particle GM 2 is used after being mixed with a glass raw material GM 2 described later.
 ガラス原料粒子GMを得るための一例としてスプレードライ造粒法について説明する。2~500μmの範囲のガラス原料粉末を蒸留水などの溶媒中に分散してボールミルなどの攪拌装置で所定時間攪拌し、混合し、粉砕することで上述の各成分のガラス原料粉末粒子がほぼ均一に分散されたスラリーが得られる。これを加熱した気流中に噴霧することでガラス原料粒子GMが得られる。
 なお、前述のスラリーを調製する際、原料粉末粒子の均一分散と造粒原料の強度を向上させる目的で2-アミノエタノール、PVA(ポリビニルアルコール)などのバインダーを混合してから攪拌してもよい。
 本実施形態において用いるガラス原料粒子GMは、上述のスプレードライ造粒法の他に、転動造粒法、攪拌造粒法などの乾式造粒法により形成することもできる。
For spray drying granulation method will be described as an example for obtaining the glass raw material particles GM 1. The glass raw material powder particles in the range of 2 to 500 μm are dispersed in a solvent such as distilled water, stirred for a predetermined time with a stirrer such as a ball mill, mixed, and pulverized, so that the glass raw material powder particles of the above components are almost uniform. A slurry dispersed in is obtained. The glass raw material particles GM 1 are obtained by spraying this into a heated air stream.
In preparing the above-mentioned slurry, a binder such as 2-aminoethanol or PVA (polyvinyl alcohol) may be mixed and stirred for the purpose of uniformly dispersing the raw material powder particles and improving the strength of the granulated raw material. .
The glass raw material particles GM 1 used in the present embodiment can be formed by a dry granulation method such as a tumbling granulation method or a stirring granulation method in addition to the spray dry granulation method described above.
 前記ガラス原料粒子GMの平均粒径(重量平均)は30~1000μmが好ましい。より好ましくは、平均粒径(重量平均)が50~500μmの範囲内のガラス原料粒子GMが使用され、さらに70~300μmの範囲内のガラス原料粒子GMが好ましい。このガラス原料粒子GMの一例を拡大して図1の二点鎖線の円内に示す。1つのガラス原料粒子GMにおいて最終目的とするガラスの組成比にほぼ合致するか近似した組成比となっていることが好ましい。
 ガラス原料粒子GMが溶融した溶融ガラス粒子Uの平均粒径(重量平均)は、通常、ガラス原料粒子GMの平均粒径の80%程度となることが多い。ガラス原料粒子GMの粒径は、短時間で加熱でき、ガラス原料粒子GMからの発生ガスの放散が容易である点、および粒子間の組成変動の低減の点から、前述の範囲を選択することが好ましい。
The average particle diameter (weight average) of the glass raw material particles GM 1 is preferably 30 to 1000 μm. More preferably, glass raw material particles GM 1 having an average particle diameter (weight average) in the range of 50 to 500 μm are used, and glass raw material particles GM 1 in the range of 70 to 300 μm are more preferable. An example of the glass raw material particles GM 1 is enlarged and shown in a circle of a two-dot chain line in FIG. It is preferable that almost matches either approximated the composition ratio of the composition ratio of the glass to a final object in one of the glass raw material particles GM 1.
The average particle diameter (weight average) of the molten glass particles U in which the glass raw material particles GM 1 are melted is usually about 80% of the average particle diameter of the glass raw material particles GM 1 in many cases. The particle size of the glass raw material particles GM 1 can heat in a short time, that it is easy to dissipate the generated gas from the glass raw material particles GM 1, and in terms of reduction of compositional variation between particles, select the range of above It is preferable to do.
 また、これらのガラス原料粒子GMは、必要に応じて、副原料として清澄剤、着色剤、溶融助剤等を含むことができる。また、これらのガラス原料粒子GM中のホウ酸などは、高温時の蒸気圧が比較的高いため加熱により蒸発しやすいことから、最終製品であるガラスの組成よりも余分に混合しておくことができる。
 本実施形態において、副原料として清澄剤を含有する場合、塩素(Cl)、イオウ(S)、フッ素(F)の中から1種または2種以上の元素を選択して含む清澄剤を必要量添加できる。
These glass raw material particles GM 1 is optionally refining agents as auxiliary materials, coloring agents, can contain molten aids like. In addition, boric acid and the like in these glass raw material particles GM 1 have a relatively high vapor pressure at a high temperature, and are thus easily evaporated by heating. Therefore, they should be mixed in excess of the composition of the glass as the final product. Can do.
In this embodiment, when a clarifier is contained as an auxiliary material, a necessary amount of a clarifier containing one or more elements selected from chlorine (Cl), sulfur (S), and fluorine (F) is required. Can be added.
 ガラス原料GMは、ガラス原料粒子GMと合わせて溶融ガラスGを形成するためのガラス原料である。ガラス原料GMの組成は、目標とする溶融ガラスGのガラス組成の範囲と、ガラス原料粒子GMとして供給される組成の分量比とに基づいて、設定される。
 たとえば、ガラス原料粒子GMの組成は、溶融ガラスGとしての目標のガラス組成の範囲に一致していることが好ましい。この場合には、ガラス原料GMの組成も溶融ガラスGとしての目標のガラス組成の範囲に合わせる。
 ただし、ガラス原料粒子GMの組成が溶融ガラスGとしての目標のガラス組成の範囲から外れている場合、ガラス原料GMの組成は、ガラス原料粒子GMに不足する組成を補う組成とする。また、その逆に、目標のガラス組成にガラス原料GMの組成が外れていれば、ガラス原料粒子GMの組成は、ガラス原料GMに不足する組成を補う組成とする。いずれにしても、ガラス原料粒子GMの組成とガラス原料GMの組成を考慮して、目標のガラス組成を実現できる。
Frit GM 2 is a glass raw material for forming the molten glass G in conjunction with the glass raw material particles GM 1. The composition of the glass raw material GM 2 is set based on the target glass composition range of the molten glass G and the quantity ratio of the composition supplied as the glass raw material particles GM 1 .
For example, the composition of the glass raw material particles GM 1 preferably matches the target glass composition range as the molten glass G. In this case, the composition of the glass raw material GM 2 is also adjusted to the target glass composition range as the molten glass G.
However, if the composition of the glass raw material particles GM 1 is out of the range of the glass composition of the target as the molten glass G, the composition of the glass material GM 2 is a composition to compensate for the composition to be insufficient in the glass raw material particles GM 1. On the other hand, if the composition of the glass raw material GM 2 deviates from the target glass composition, the composition of the glass raw material particles GM 1 is a composition that supplements the composition lacking in the glass raw material GM 2 . In any event, the composition of the composition and the glass material GM 2 glass material grain GM 1 in consideration, can achieve a glass composition of the target.
 本実施形態において使用するガラス原料GMは、ガラスカレットを10質量%以上含む構成とすることが好ましい。ガラス原料GMに含有するガラスカレットの例としては、ガラス製品の製造工程等で発生したガラス屑(工程内循環カレット)および市中から回収され不純物を除去したガラス片のいずれか一方または両方が挙げられる。これらのガラス屑、ガラス片は粉砕されて、たとえば、粒径が1mm~50mm程度の範囲にばらついた粉体状または破片状に形成されている。ガラスカレットの大きさは、溶融可能であって、大きいほうがよい。これは、大きなサイズのガラスカレットが原料表面を覆うことによって、ガラス原料GMのうち、微細な原料の飛散を抑制するためである。
 ガラス原料GMにおけるガラスカレットの割合は、たとえば、製造するガラス製品の種類、工程内循環カレットの在庫、市中カレットの購入価格等の状況に応じて適宜設定にできる。
 ガラス製品の全質量に占めるガラスカレットの量(質量%)は、たとえば、板ガラスの場合は30%程度、瓶ガラスの場合は90%程度、液晶用ガラスの場合は50%程度であることが多い。
 また、本実施形態においてガラス原料GMに含まれるガラスカレットは、組成が必要な組成に合っている限り、一般的にガラス溶融炉において用いられるガラスカレットと同様のものを採用できる。
Glass raw materials GM 2 used in this embodiment, it is preferable to adopt a configuration including a glass cullet least 10 mass%. As an example of the glass cullet contained in the glass raw material GM 2 , either or both of glass waste generated in the manufacturing process of glass products (in-process circulation cullet) and a glass piece recovered from the city to remove impurities is used. Can be mentioned. These glass scraps and glass pieces are crushed and formed into, for example, a powder form or a broken piece form having a particle size ranging from 1 mm to 50 mm. The size of the glass cullet is meltable and preferably larger. This glass cullet large size by covering the raw material surface of the glass raw material GM 2, it is to suppress the scattering of fine raw materials.
The proportion of glass cullet in a glass material GM 2, for example, the type of glass product manufacturing, inventory step in the circulation cullet can appropriately set according to the condition of the purchase prices of commercial cullet.
The amount (% by mass) of glass cullet in the total mass of the glass product is often about 30% for plate glass, about 90% for bottle glass, and about 50% for glass for liquid crystal. .
The glass cullet in this embodiment contained in the glass raw material GM 2, as long as it matches the composition required composition, generally can be employed the same as the glass cullet used in glass melting furnaces.
 ガラス原料GMにおいて、ガラスカレット以外の成分としては、溶融することで必要なガラス組成が得られる複数のガラス原料の粉末を混合したバッチ原料が挙げられる。その他、ガラス原料として、ガラス原料粒子GMのように予めバッチ原料を造粒したものを含んでもよい。
 また、ガラス原料GMにおいて、ガラスカレット以外の他の成分としては、副原料である清澄剤、着色剤、溶融助剤等を添加できる。
In the glass raw material GM 2, as components other than the glass cullet, and batch material obtained by mixing powders of a plurality of glass raw materials are glass compositions required by melt obtained. As other glass materials may include those to granulate the pre-batch raw material such as glass raw material particles GM 1.
Further, the glass raw material GM 2, as the components other than the glass cullet, a clarifying agent is auxiliary material, colorant, a melting aid or the like can be added.
 ガラスカレットはバッチ原料に比べ溶融性が良好である。このため、ガラス原料GMにおいてガラスカレットの量を増やすことは省エネルギー操業の点で好ましい。
 ただし、ガラスカレットは反応性に乏しいため、ガラスカレットが増えると脱泡しにくくなる。したがって、この場合には、ガラス原料GMのバッチ原料とともに清澄剤を添加することが好ましい。ガラス原料粒子GMの方に清澄剤を多めに添加してもよいが、バッチ原料に清澄剤を入れる方が清澄剤の揮発などの観点から相対的に効果が高い。
Glass cullet has better meltability than batch materials. Therefore, increasing the amount of glass cullet in a glass material GM 2 is preferred from the viewpoint of energy saving operation.
However, since glass cullet is poor in reactivity, defoaming becomes difficult when the number of glass cullet increases. Therefore, in this case, it is preferable to add a clarifying agent with batch material in a glass raw material GM 2. Although a larger amount of clarifier may be added to the glass raw material particles GM 1 , it is relatively effective to add the clarifier to the batch raw material from the viewpoint of volatilization of the clarifier.
 次に、ガラス溶融炉100を用いた本発明に係る溶融ガラスの製造方法およびガラス製品の製造方法の一実施形態について説明する。
 図4は本発明に係るガラス製品の製造方法の一例を示すフロー図である。図5はこの例における溶融ガラス粒子Uの挙動の模式的な説明図である。
 まず、本実施形態の溶融ガラスの製造方法について説明する。本方法で行う工程は、図4に示す本実施形態のガラス製品の製造方法におけるガラス溶融工程S1を構成する。
Next, an embodiment of a method for producing a molten glass and a method for producing a glass product according to the present invention using the glass melting furnace 100 will be described.
FIG. 4 is a flowchart showing an example of a method for producing a glass product according to the present invention. FIG. 5 is a schematic explanatory view of the behavior of the molten glass particles U in this example.
First, the manufacturing method of the molten glass of this embodiment is demonstrated. The process performed by this method comprises glass melting process S1 in the manufacturing method of the glass product of this embodiment shown in FIG.
 ガラス溶融炉100によって、溶融ガラスGを形成するには、まず、気中溶融バーナー2によって、酸素燃焼炎Hを形成し、気中溶融バーナー2の下端側に加熱気相部Kを形成する。酸素燃焼炎Hによる輻射熱伝達や対流熱伝達によって、天井部1a、炉底部1b、炉壁部1c、1d、1e、1fを加熱し、貯留部1h内に、たとえば、1500℃程度の高温気相雰囲気を形成する。これにより貯留部1hは、溶融ガラスGをガラス融液として貯留できる。
 なお、最初に貯留部1hに溶融ガラスGを形成する場合、貯留部1h内にバッチ原料を収容して気中溶融バーナー2により加熱して溶融ガラスGを形成してもよいし、気中溶融バーナー2により以下に説明の如く溶融ガラスGを形成してもよい。
In order to form the molten glass G by the glass melting furnace 100, first, the oxyfuel flame H is formed by the air melting burner 2, and the heated gas phase part K is formed on the lower end side of the air melting burner 2. The ceiling part 1a, the furnace bottom part 1b, the furnace wall parts 1c, 1d, 1e, and 1f are heated by radiant heat transfer and convection heat transfer by the oxyfuel flame H, and a high-temperature gas phase of, for example, about 1500 ° C. is stored in the storage part 1h. Create an atmosphere. Thereby, the storage part 1h can store the molten glass G as a glass melt.
In addition, when forming the molten glass G in the storage part 1h for the first time, a batch raw material may be accommodated in the storage part 1h, and it may be heated with the air melting burner 2 to form the molten glass G, or it may be melted in the air. The molten glass G may be formed by the burner 2 as described below.
 次に、ガラス原料粒子供給部4から、キャリアガスとともにガラス原料粒子GMを気中溶融バーナー2のノズル本体22に供給する。
 ガラス原料粒子GMは、ノズル本体22内を下方に移動し、酸素燃焼炎Hにより形成された加熱気相部Kに投入される。これにより、個々のガラス原料粒子GMが加熱気相部Kにおいて急速に加熱溶融され、全体が溶融されて個々に溶融ガラス粒子Uに変化する。各溶融ガラス粒子Uは、加熱気相部K内で加熱されたキャリアガスや加熱ガスgとともに鉛直下方に噴射され、炉体1の貯留部1h内に落下し、貯留部1hに集積され溶融ガラスU’を形成する。
Next, the glass raw material particles GM 1 are supplied from the glass raw material particle supply unit 4 together with the carrier gas to the nozzle body 22 of the air-melting burner 2.
The glass raw material particles GM 1 move downward in the nozzle body 22 and are charged into the heated gas phase portion K formed by the oxyfuel flame H. As a result, the individual glass raw material particles GM 1 are rapidly heated and melted in the heated gas phase portion K, and the whole is melted and individually converted into molten glass particles U. Each molten glass particle U is jetted vertically downward together with the carrier gas and the heated gas g heated in the heated gas phase part K, falls into the storage part 1h of the furnace body 1, and is accumulated in the storage part 1h. U ′ is formed.
 このとき、ガラス原料粒子GMは、キャリアガス、燃料ガス供給路25、燃焼用ガス供給路26から噴射される前記燃料ガス、および前記燃焼用ガスが形成する気流によって、気中溶融バーナー2の先端部に滞留することがなく下方に噴射され、加熱される。
 特に、ガラス原料粒子GMの組成が、溶融ガラスGの目標のガラス組成に一致している場合には、各溶融ガラス粒子Uが目標の溶融ガラスGであり、組成が均一な高品質な溶融ガラスGになっている。また、溶融ガラス粒子Uは、ガラス原料粒子GMを溶融し形成した小粒径の液滴粒子であるため、発生ガスの放散が充分になされる結果として泡が少ない。
 また、通常のガラス原料を加熱するためのバーナーで溶融ガラス上のガラスカレットを含むガラス原料の山をバーナーの火炎が直撃した場合に、微細なガラスカレットないしはガラス原料粉末が飛散する。他方、本発明では、気中溶融バーナー(第1の投入部)2からガラス原料粒子GMを炉内に投入し、加熱気相部K(第1の加熱気相部)で溶融させた溶融ガラス粒子Uを、ガラスカレットを含むガラス原料GMの上に直接落下、堆積させるので、溶融ガラス粒子Uに飛散した微細なカレットないしはガラス原料粉末が吸着され、ガラス原料粉末などの飛散を防止できる。飛散したガラス原料粉末は目標のガラス組成と乖離がある場合が多いため、飛散したガラス原料粉末を削減してこれが溶融ガラスG(U’)に混入することを防止することは、高品質な溶融ガラスを得るために有効である。
 さらに本発明では、上記のような作用があるので、加熱気相部Kのような炎を、ガラス原料GMの塊に対して比較的近くまで形成することができる。通常の加熱バーナーの場合には、このような作用はないので、ガラス原料GMの塊にその炎が近すぎると、上記のごとく微細なガラスカレットないしはガラス原料粉末が飛散して問題となる。
At this time, the glass raw material particles GM 1 are generated in the air-burning burner 2 by the carrier gas, the fuel gas supply path 25, the fuel gas injected from the combustion gas supply path 26, and the airflow formed by the combustion gas. Without staying at the tip, it is sprayed downward and heated.
In particular, when the composition of the glass raw material particles GM 1 matches the target glass composition of the molten glass G, each molten glass particle U is the target molten glass G, and a high-quality melt with a uniform composition. It is glass G. Further, the molten glass particles U are the droplet particles of small particle size which is formed by melting a glass raw material particles GM 1, less bubbles as a result of dissipation of the generated gas is made sufficiently.
Further, when a flame of the burner directly hits a pile of glass raw materials including glass cullet on the molten glass with a burner for heating a normal glass raw material, fine glass cullet or glass raw material powder is scattered. On the other hand, in the present invention, the glass raw material particles GM 1 are charged into the furnace from the air melting burner (first charging part) 2 and melted in the heating gas phase part K (first heating gas phase part). Since the glass particles U are directly dropped and deposited on the glass raw material GM 2 containing glass cullet, the fine cullet or glass raw material powder scattered on the molten glass particles U is adsorbed, and scattering of the glass raw material powder and the like can be prevented. . Since the scattered glass raw material powder is often different from the target glass composition, it is possible to reduce the scattered glass raw material powder and prevent it from being mixed into the molten glass G (U '). Effective for obtaining glass.
Further in the present invention, since an effect as described above, the flames such as heating gas phase portion K, can be formed to relatively closer to the mass of the glass raw material GM 2. In the case of conventional heating burner, since such action is not, when the flame mass of the glass material GM 2 is too small, fine glass cullet or glass raw material powder as described above is problematic scattered.
 また、溶融ガラスU’は、ガラスカレットを含むガラス原料GMがその液面上に浮かべられ、下側からガラスカレットを含むガラス原料GMが加熱され、さらに溶融されるため、溶解初期段階の溶融体、いわゆる初期メルト(初期溶融物)となった状態となる。溶融ガラスU’は、投入されるガラスカレットを含むガラス原料GMの溶融時の脱泡を促進するため、充分な量の清澄剤を含んだガラス原料粒子GMを用いることが好ましい。
 溶融ガラスU’における残存清澄剤量は、ガラス原料粒子GMにおける清澄剤の添加比率、供給量、燃焼量などの溶融条件をパラメータとして制御できるため、目的の残存清澄剤量に調整した溶融ガラスU’を得ることができる。
 また、気中溶融バーナー2を用いて、製造装置の稼働初期の溶融初期段階の溶融体である初期メルトを製造すると、ガラス原料GMの寄与分による成分が含まれない。このため、ガラス原料粒子GMとガラス原料GMの組成が異なる場合は、より均質な溶融ガラスGをより効率よく形成するために、少なくとも製造装置の稼働初期の初期メルトを形成するガラス原料粒子GMの組成を、溶融ガラスGの組成の範囲に合わせるか、溶融ガラスGの組成の範囲に近似した組成とすることが好ましい。
Further, the molten glass U ', the glass raw material GM 2 containing glass cullet is floated on the liquid surface, the glass material GM 2 containing glass cullet is heated from below, for further melting, dissolution of the initial stage It will be in the state used as the melt, what is called an initial melt (initial melt). For the molten glass U ′, it is preferable to use glass raw material particles GM 1 containing a sufficient amount of fining agent in order to promote defoaming when the glass raw material GM 2 containing the glass cullet to be charged is melted.
The amount of the fining agent remaining in the molten glass U ′ can be controlled by using the melting conditions such as the addition ratio, supply amount, and combustion amount of the fining agent in the glass raw material particles GM 1 as parameters. U ′ can be obtained.
Further, by using the air in the molten burner 2, when preparing the initial melt is melt running initial melt early stage of the manufacturing apparatus, not contain ingredients according to the contribution of the glass raw material GM 2. For this reason, when the composition of the glass raw material particles GM 1 and the glass raw material GM 2 is different, in order to form a more homogeneous molten glass G more efficiently, at least the glass raw material particles that form the initial melt at the initial stage of operation of the production apparatus It is preferable that the composition of GM 1 is matched with the composition range of the molten glass G or a composition approximate to the composition range of the molten glass G.
 このようにして、ある程度、溶融ガラスU’の貯留が進んでから、ガラス原料供給部5からガラスカレットを含むガラス原料GMを供給する。
 すなわち、原料投入口5Aに投入したガラス原料GMを、搬送スクリュー5bの回転によって、ガラス原料投入口1Aから貯留部1h内に投入する。ここでガラスカレットに数ミリ~数十ミリの範囲で大きさのばらつきがあったとしても、搬送スクリュー5bを用いて原料投入口5Aから炉内にガラスカレットを投入する方式では問題なくガラスカレットの投入ができる。
 貯留部1h内に投入されたガラス原料GMは、すでに貯留された溶融ガラスU’の液面上に塊(パイル)を形成して浮かび、気中溶融バーナー2の下方に位置する供給領域Sに向かって押し出される。この間にガラス原料GMは、溶融ガラスU’からの熱伝達により加熱されて下側から徐々に溶融を始める。
 供給領域Sでは、気中溶融バーナー2から鉛直下方に放出される溶融ガラス粒子Uが降り注いでいるため、ガラスカレットを含むガラス原料GMが溶融ガラス粒子Uと接触し、ガラス原料GMの溶融が促進される。以下に図5を参照してこの様子を説明する。
In this way, the glass raw material GM 2 including the glass cullet is supplied from the glass raw material supply unit 5 after the molten glass U ′ has been stored to some extent.
That is, a glass raw material GM 2 were charged into the raw material inlet 5A, by the rotation of the conveying screw 5b, is charged into the reservoir portion 1h of glass raw material inlet 1A. Here, even if the glass cullet has a size variation in the range of several millimeters to several tens of millimeters, there is no problem in the method in which the glass cullet is introduced into the furnace from the raw material inlet 5A using the conveying screw 5b. Can be thrown in.
The glass raw material GM 2 charged into the storage unit 1 h floats in a lump (pile) on the liquid surface of the molten glass U ′ already stored, and is supplied below the air melting burner 2. It is pushed out toward. During this time, the glass raw material GM 2 is heated by heat transfer from the molten glass U ′ and gradually begins to melt from the lower side.
In the supply region S, since the molten glass particles U discharged vertically downward from the air melting burner 2 are poured, the glass raw material GM 2 containing the glass cullet comes into contact with the molten glass particles U, and the glass raw material GM 2 is melted. Is promoted. This state will be described below with reference to FIG.
 図5(a)には、溶融ガラスU’上に浮かぶガラスカレットGCとバッチ原料GBとを含むガラス原料GMの塊の上方部のイメージを示す。図のように、ガラスカレットGCどうしの隙間に大きさの小さいバッチ原料GBが入り込んだ状態となる。実際には図示していないがガラスカレットGCの下にも、別のガラスカレットが積層し、その隙間にバッチ原料が入っている。溶融ガラスU’上に浮かぶガラスカレットGCを含むガラス原料GMの塊は、図示しないがこの塊の下面が溶融ガラスU’と接触して加熱され、上面mがガラス溶融炉100の内壁部からの輻射熱および加熱ガスgからの気体熱伝達により加熱されている。このため、ガラスカレットGCを含むガラス原料GMは、それぞれの加熱量に応じて、上面m、下面から加熱溶融されて溶融ガラスU’に混入し、溶融ガラスGが形成されていく。 FIG. 5A shows an image of the upper portion of the lump of the glass raw material GM 2 including the glass cullet GC floating on the molten glass U ′ and the batch raw material GB. As shown in the drawing, the batch raw material GB having a small size enters the gap between the glass cullet GCs. Although not shown in the figure, another glass cullet is laminated under the glass cullet GC, and the batch raw material is contained in the gap. The lump of the glass raw material GM 2 including the glass cullet GC floating on the molten glass U ′ is heated while the lower surface of this lump is in contact with the molten glass U ′ (not shown), and the upper surface m 1 is the inner wall portion of the glass melting furnace 100. Is heated by radiant heat from the gas and gas heat transfer from the heating gas g. Therefore, the glass material GM 2 containing glass cullet GC, in accordance with each amount of heating, the upper surface m 1, is heated and melted from the lower surface mixed in the molten glass U ', the molten glass G is gradually formed.
 上面mに溶融ガラス粒子Uが落下すると、図5(b)に示すように、溶融ガラス粒子Uが上面m上に拡がり、上面mの一部に密着する。この密着した溶融ガラス粒子Uから、上面mとの接触面mcを介して、熱伝導が起こり、接触面mcを通してガラス原料GMを広く加熱できる。
 溶融ガラス粒子Uは、加熱気相部Kの温度である約2000℃~約3000℃の領域を通過して高温に加熱されているため、溶融ガラスU’に比べて格段に高温である。また、固体状態のガラス原料GMの温度に比べるとよりいっそう高温である。
 したがって、接触面mcでの熱伝導を急速に行うことができる。しかも溶融ガラス粒子Uは小径であるため、単位面積当たりの熱伝導量がきわめて大きい。また、溶融ガラス粒子Uは衝突により偏平となり、溶融ガラス粒子Uの粒径に比べて広範囲に付着するため、溶融ガラス粒子Uの熱がガラス原料GMに効率よく伝熱する。このため、溶融ガラス粒子Uは、ガラスカレットGCどうしの隙間に流れ込み、ガラスカレットGCの表面やその下方部を溶融する。
As the molten glass particles U on the upper face m 1 falls, as shown in FIG. 5 (b), the molten glass particles U are spread on the upper surface m 1, into close contact with the part of the upper surface m 1. This coherent molten glass particles U, via the contact surface mc the upper m 1, occurs heat conduction, can be heated wide glass batch GM 2 through contact surfaces mc.
The molten glass particles U pass through the region of about 2000 ° C. to about 3000 ° C., which is the temperature of the heated gas phase portion K, and are heated to a high temperature, so that the temperature is much higher than that of the molten glass U ′. Moreover, it is much higher than the temperature of the glass raw material GM 2 in the solid state.
Therefore, heat conduction at the contact surface mc can be performed rapidly. Moreover, since the molten glass particles U have a small diameter, the amount of heat conduction per unit area is extremely large. Further, the molten glass particles U becomes flat by the impact, to attach a wide range as compared with the particle size of the molten glass particles U, heat efficiently transfer heat to the glass raw material GM 2 of molten glass particles U. For this reason, the molten glass particles U flow into the gaps between the glass cullet GCs, and melt the surface of the glass cullet GC and its lower part.
 さらに、図5(c)に示すように、ガラスカレットを含むガラス原料GMにおいて接触面mcにおいてガラス原料GMが急速に溶融し、後続の溶融ガラス粒子Uも接触面mcを構成することになるので、接触面mcも拡大していく。たとえば、図5(c)には、一例として、隣接領域に落下した複数の溶融ガラス粒子Uがそれぞれの接触面mcを拡大した結果、互いに合流して接触面mc’のように拡大した様子を示している。
 このような接触面mc(mc’)では、溶融したガラス原料GMと溶融ガラス粒子Uとが密着して接触する結果、化学反応も効率的に進行する。また、接触面mc(mc’)が粒子体積に比して大きいため、反応が速やかに進行し、均一性の高い反応が短時間のうちに起こる。
 このようにして、ガラスカレットGCを含むガラス原料GMの上面m上に溶融ガラス粒子Uとガラス原料GMとのガラス原料の組成比に応じた液滴状の溶融ガラスGが形成されていく。
Further, as shown in FIG. 5C, the glass raw material GM 2 rapidly melts at the contact surface mc in the glass raw material GM 2 containing the glass cullet, and the subsequent molten glass particles U also constitute the contact surface mc. Therefore, the contact surface mc is also enlarged. For example, FIG. 5C shows, as an example, a state in which a plurality of molten glass particles U that have fallen into an adjacent region have enlarged their respective contact surfaces mc so as to merge with each other and expand like a contact surface mc ′. Show.
In such contact surfaces mc (mc '), result in contact in close contact with the glass raw material GM 2 were melted and the molten glass particles U are chemical reactions efficiently proceed. In addition, since the contact surface mc (mc ′) is larger than the particle volume, the reaction proceeds quickly and a highly uniform reaction occurs in a short time.
Thus, the droplet-shaped molten glass G according to the composition ratio of the glass raw material of the molten glass particle U and the glass raw material GM 2 is formed on the upper surface m 1 of the glass raw material GM 2 containing the glass cullet GC. Go.
 この液滴状の溶融ガラスGは、成長して隣接する同様の溶融ガラスGと合流して下方あるいは側方に流れたり、塊を貫通したりして、貯留済みの溶融ガラスU’に混入する。この結果、貯留部1h内の溶融ガラスが増加していく。
 以上、隣接して降り注ぐ溶融ガラス粒子Uについて図示による説明をしたが、溶融ガラス粒子Uは、ガラス原料粒子GMの投入量、溶融ガラス粒子Uの放出範囲に応じて、上面m上を広範囲に覆う。このため、供給領域Sにおいて、ガラス原料GMの上面mを溶融ガラス粒子Uの堆積層によって覆いつつ、上述の溶融を上面m上で進行させることができる。
The droplet-shaped molten glass G grows and merges with the adjacent similar molten glass G and flows downward or laterally, penetrates the lump, and mixes with the stored molten glass U ′. . As a result, the molten glass in the storage part 1h increases.
As described above, the molten glass particles U that pour down adjacently have been described with reference to the drawings. However, the molten glass particles U have a wide area on the upper surface m 1 depending on the input amount of the glass raw material particles GM 1 and the discharge range of the molten glass particles U. Cover. Therefore, in the supply area S, while covering the upper surface m 1 glass raw GM 2 by the deposition layer of the molten glass particles U, the melting of the above can proceed on the upper surface m 1.
 このとき、ガラスカレットGCを含むガラス原料GMの下面では、溶融ガラスU’との接触による溶融も進行している。このため、溶融ガラス粒子Uの供給量によって、上面mからの溶融の速度と、下面からの溶融の速度を調節できる。
 たとえば、溶融ガラス粒子Uがガラス原料GMの溶融に寄与する熱量を、ガラス原料GMの溶融に必要な熱量の50%から60%程度に設定すれば、溶融ガラスU’の寄与による下面からの溶融と、溶融ガラス粒子Uの寄与による上面mからの溶融をほぼ均衡できるため、ガラス原料GMを外表面からほぼ均等に溶融させることができ、効率的である。
At this time, melting by contact with the molten glass U ′ is also progressing on the lower surface of the glass raw material GM 2 including the glass cullet GC. For this reason, the speed of melting from the upper surface m 1 and the speed of melting from the lower surface can be adjusted by the supply amount of the molten glass particles U.
For example, the amount of heat contributing to the melting of the molten glass particles U glass material GM 2, is set to 50% of the heat required for melting the glass raw materials GM 2 to about 60%, from the lower surface due to the contribution of the molten glass U ' and melting, it is possible to substantially balance the melt from the top surface m 1 contributed by the molten glass particles U, it is possible to substantially uniformly melt the glass material GM 2 from the outer surface, it is efficient.
 また、ガラス溶融炉100の省エネルギー面の評価としては、気中溶融バーナー2を用いた気中溶融法はきわめてエネルギー効率がよいため、ガラス原料粒子GMの投入量が多いほど省エネルギー操業が実現できたことになる。
 ただし、ガラス原料粒子GMの投入量を増やすと溶融ガラスGの全体量に対するガラス原料GMの量比が低下するため、ガラス原料粒子GMの投入量の上限は溶融ガラスGに占めるべきガラス原料GMの比率、特にガラス原料GMに占めるべきガラスカレットの必要量に応じて決定できる。
 したがって、ガラス原料粒子GMの投入量は、この上限の範囲でエネルギー効率を考慮して適宜設定すればよい。
Moreover, as an evaluation of the energy saving aspect of the glass melting furnace 100, since the air melting method using the air melting burner 2 is extremely energy efficient, the energy saving operation can be realized as the input amount of the glass raw material particles GM 1 increases. That's right.
Glass, however, since the ratio of the glass raw material GM 2 to the total amount of the molten glass G increasing the input amount of the glass raw material particles GM 1 is reduced, should the upper limit of the input amount of the glass raw material particles GM 1 occupy the molten glass G It can be determined according to the ratio of the raw material GM 2 , particularly the required amount of glass cullet to be occupied in the glass raw material GM 2 .
Therefore, the input amount of the glass raw material particles GM 1 may be appropriately set in consideration of energy efficiency within the upper limit range.
 このようにしてガラス原料粒子GMから溶融ガラス粒子Uを形成し、溶融ガラス粒子Uをガラス原料GM上に放出してガラス原料GMの溶融を継続する。
 ガラス原料粒子GMおよびガラス原料GMの投入量が、溶融ガラスGを形成する組成比を満足する量比になり、この量比に相当するガラス原料GMが溶融されると、貯留された溶融ガラスは目的のガラス組成を有する溶融ガラスGになる。このようにして、ガラス溶融炉100を用いて溶融ガラスGを製造する。
 ガラス溶融炉100において目的の組成比とした溶融ガラスGは、必要に応じて清澄され、排出口1Bから成形装置6に移送し、成形装置6において目的の形状に成形できる。
In this way, to form a molten glass particles U glass material grains GM 1, the molten glass particles U is continued melting of glass raw material GM 2 and releases on the glass raw material GM 2.
The input amount of the glass raw material particles GM 1 and the glass raw material GM 2 becomes a quantitative ratio that satisfies the composition ratio for forming the molten glass G, and when the glass raw material GM 2 corresponding to this quantitative ratio is melted, it is stored. The molten glass becomes a molten glass G having a target glass composition. Thus, the molten glass G is manufactured using the glass melting furnace 100.
The molten glass G having a target composition ratio in the glass melting furnace 100 is clarified as necessary, transferred from the discharge port 1B to the molding device 6, and can be molded into the target shape by the molding device 6.
 ガラス溶融炉100を用いて行う溶融ガラスの製造方法によれば、ガラス原料供給部5によって炉体1内にガラスカレットを含むガラス原料GMを供給し、気中溶融バーナー2によって形成された溶融ガラス粒子Uをガラス原料GM上に放出するため、ガラス原料GMに対し高温かつ液相の溶融ガラス粒子Uからの効率的な熱伝達を行うことができ、迅速に溶融できる。このため、ガラスカレットを気中溶融バーナー2に供給できるように小径化することなく、ガラスカレットを利用しつつ気中溶融バーナー2も利用して効率良く溶融ガラスを製造できる。 According to the molten glass manufacturing method performed using the glass melting furnace 100, the glass raw material supply unit 5 supplies the glass raw material GM 2 containing glass cullet into the furnace body 1, and the melting formed by the air melting burner 2. to release the glass particles U on the glass raw material GM 2, can be to the glass raw material GM 2 provide efficient heat transfer from the molten glass particles U hot and liquid phase can be quickly melted. For this reason, molten glass can be efficiently manufactured using the air melting burner 2 while using the glass cullet without reducing the diameter so that the glass cullet can be supplied to the air melting burner 2.
 また、気中溶融バーナー2によって組成が均一に形成された溶融ガラス粒子Uを少量ずつガラス原料GMの塊と密着させて溶融できるため、ガラス原料GMの溶融部分における反応性が向上し、溶融ガラス粒子Uとの混成体の組成を均一化できる。
 また、溶融ガラス粒子Uに清澄剤を添加する場合、前記溶融ガラスGにおいて溶融ガラス粒子Uに含まれる清澄剤が作用するため、ガラス原料GMに含まれる反応性に乏しいガラスカレットを溶融させて溶融ガラスGとした場合であっても、溶融ガラスGにおける脱泡効果を発揮できる。このため、脱泡するために炉体1内において溶融ガラスGを対流させて貯留する時間を短縮できるため、効率よく高品質の溶融ガラスGを製造できる。
Further, since the molten glass particles U whose composition is uniformly formed by the air melting burner 2 can be made to adhere to the lump of the glass raw material GM 2 little by little, the reactivity in the melting part of the glass raw material GM 2 is improved, The composition of the hybrid with the molten glass particles U can be made uniform.
In addition, when a clarifier is added to the molten glass particle U, the clarifier contained in the molten glass particle U acts on the molten glass G, so that the glass cullet with poor reactivity contained in the glass raw material GM 2 is melted. Even when the molten glass G is used, the defoaming effect in the molten glass G can be exhibited. For this reason, since the time for convection and storage of the molten glass G in the furnace body 1 for defoaming can be shortened, the high-quality molten glass G can be produced efficiently.
 また、目標とする清澄に必要な清澄剤量を全ガラス原料の0.3質量%とし、ガラスカレットの添加量をガラス原料GMの50%とする場合、ガラスカレットの清澄剤含有量を0.2質量%とすると、ガラスカレットを除くガラス原料GMに0.4質量%の清澄剤を含有させておくと、ガラスカレットを含むガラス原料GMを溶融した場合に目標清澄剤量として適正な値とすることができる。また、目標とする清澄に必要な清澄剤量を全ガラス原料の0.3質量%とし、ガラスカレットの添加量をガラス原料GMの80%とする場合、ガラスカレットの清澄剤含有量を0.2質量%とすると、ガラス原料GMに0.7質量%の清澄剤を含有させておくと、ガラスカレットを含むガラス原料GMを溶融した場合に目標清澄剤量として適正な値とすることができる。また、ガラスカレットを含むガラス原料GMに対し気中溶融バーナー2を用いて供給するガラス原料粒子GMからの溶融ガラス粒子Uにおいては既に泡が少なく、泡抜きされているとすると、上述の関係を満足することでガラス原料粒子GMとガラス原料粒子GMを含めた全溶融ガラスGの清澄剤量の把握ができる。 In addition, when the amount of fining agent necessary for the target fining is 0.3% by mass of the total glass raw material and the amount of glass cullet added is 50% of the glass raw material GM 2 , the fining agent content of the glass cullet is 0. If the glass raw material GM 2 excluding the glass cullet contains 0.4% by weight of the fining agent, the glass raw material GM 2 containing the glass cullet is suitable as the target fining agent amount. It can be set to any value. In addition, when the amount of fining agent necessary for the target fining is 0.3% by mass of the total glass raw material and the amount of glass cullet added is 80% of the glass raw material GM 2 , the amount of fining agent in the glass cullet is 0. Assuming that 2% by mass of glass raw material GM 2 contains 0.7% by mass of a fining agent, when glass raw material GM 2 containing glass cullet is melted, an appropriate value is set as the target fining agent amount. be able to. Furthermore, already small bubbles in the molten glass particles U from the glass raw material particles GM 1 supplies with air in the molten burner 2 to the glass raw material GM 2 containing glass cullet, when being bubble removal, above By satisfying the relationship, it is possible to grasp the amount of fining agent of the entire molten glass G including the glass raw material particles GM 1 and the glass raw material particles GM 2 .
 このように、清澄剤の添加率の配分を適切に行うことによって、添加率が過小になって、脱泡効果が低減したり、添加率が過大になって溶融塩の析出により白泡等が発生することを防止したりできる。
 以上、清澄剤を例にとって説明したが、前記の添加量の調節方法は、ガラス原料GMにそれぞれ添加する他の副原料、たとえば、着色剤、溶融助剤等にも同様に適用できる。
In this way, by appropriately distributing the addition rate of the clarifying agent, the addition rate becomes excessively low, the defoaming effect is reduced, or the addition rate becomes excessively high and white bubbles or the like are generated due to precipitation of the molten salt. Can be prevented.
As described above, the fining agent has been described as an example. However, the method for adjusting the addition amount can be similarly applied to other auxiliary materials added to the glass raw material GM 2 , for example, a colorant, a melting aid, and the like.
 また、以上のガラス溶融炉100は、加熱用の酸素バーナーを炉壁部に複数備えてバッチ原料を溶融させる従来構造のガラス溶融炉に対し、さらに気中溶融バーナー2を増設して実現できる。この場合、既存設備を有効利用できるため、設備コストの上昇を抑制できるとともに、既存設備の操業条件を大幅に変更することはないので、既存設備の操業条件も有効に利用しながら容易かつ安価に溶融ガラスGを製造できることとなる。 Further, the glass melting furnace 100 described above can be realized by further adding an air melting burner 2 to a glass melting furnace having a conventional structure in which a plurality of oxygen burners for heating are provided on the furnace wall portion to melt batch raw materials. In this case, since the existing equipment can be used effectively, the increase in equipment cost can be suppressed, and the operating conditions of the existing equipment will not be changed significantly, making it easy and inexpensive while effectively using the operating conditions of the existing equipment. Molten glass G can be manufactured.
 次に、本発明に係るガラス原料の溶融方法を用いてガラス製品を製造する方法の一例を説明する。
 図4に示す方法に従い、ガラス製品を製造するには、上述のガラス溶融炉100を用いた上述のガラス溶融工程S1により溶融ガラスGを得たならば、溶融ガラスGを排出口1Bから排出し成形装置6に送って目的の形状に成形する成形工程S2を経た後、徐冷工程S3にて徐冷し、切断工程S4において必要な長さに切断する。これにより目的サイズのガラス製品9を製造できる。
 なお、必要に応じて、成形後の溶融ガラスを研磨する工程を設けて、ガラス製品を製造できる。
 また、成形装置6に送る前に、溶融ガラスGを必要に応じ、脱泡を行うための清澄装置、例えば減圧脱泡装置に導入し、減圧状態で強制的にさらに脱泡した後、成形装置6に送ることもできる。
 更に、ガラス製品の製造装置として、上述のガラス溶融炉100と、このガラス溶融炉100により製造された溶融ガラスGを形成する成形装置6と、この成形装置6で成形されたガラスを徐冷する徐冷手段と、徐冷後のガラスを目的の大きさに切断する切断装置を備えた構成を例示できる。
Next, an example of a method for producing a glass product using the glass raw material melting method according to the present invention will be described.
In order to manufacture a glass product according to the method shown in FIG. 4, once the molten glass G is obtained by the glass melting step S1 using the glass melting furnace 100, the molten glass G is discharged from the discharge port 1B. After passing through a molding step S2 to be sent to the molding device 6 to be molded into a desired shape, it is gradually cooled in a slow cooling step S3 and cut to a required length in a cutting step S4. Thereby, the glass product 9 of the target size can be manufactured.
In addition, the process of grind | polishing the molten glass after shaping | molding is provided as needed, and a glass product can be manufactured.
Moreover, before sending to the shaping | molding apparatus 6, the molten glass G is introduce | transduced into the clarification apparatus for performing a defoaming as needed, for example, a vacuum degassing apparatus, and after defoaming forcibly in a pressure reduction state, a shaping | molding apparatus 6 can also be sent.
Furthermore, as a glass product manufacturing apparatus, the glass melting furnace 100 described above, a molding apparatus 6 for forming the molten glass G manufactured by the glass melting furnace 100, and the glass molded by the molding apparatus 6 are gradually cooled. The structure provided with the slow cooling means and the cutting device which cut | disconnects the glass after slow cooling to the target magnitude | size can be illustrated.
 以上に説明したようなガラス製品の製造方法と製造装置によれば、ガラス溶融炉100によって効率的に製造された均一組成の溶融ガラスGを用いるため、省エネルギーにより製造された高品質のガラス製品を提供できる。 According to the glass product manufacturing method and manufacturing apparatus as described above, since the molten glass G having a uniform composition efficiently manufactured by the glass melting furnace 100 is used, a high-quality glass product manufactured by energy saving is used. Can be provided.
[第2実施形態]
 次に、本実施形態の第2実施形態について説明する。
 図6は本発明に係るガラス溶融炉の第2実施形態を示す模式的な構成図である。図7は図6に示すB-B線に沿う断面図である。
 図6、7に示すように、本実施形態のガラス溶融炉101は、先の第1実施形態のガラス溶融炉100に対し気中溶融バーナー2A(第2の気中溶融バーナー)と、ガス供給源3Aを追加し、第1実施形態のガラス溶融炉100のガラス原料粒子供給部4に代えて、供給管4aとは独立してガラス原料粒子GMを供給する供給管4bを設けたガラス原料粒子供給部4Aを備えた構成を有する。その他の構成は先の第1実施形態のガラス溶融炉100と同等であり、以下、第1実施形態と異なる点を中心に説明する。
[Second Embodiment]
Next, a second embodiment of the present embodiment will be described.
FIG. 6 is a schematic configuration diagram showing a second embodiment of the glass melting furnace according to the present invention. FIG. 7 is a sectional view taken along line BB shown in FIG.
As shown in FIGS. 6 and 7, the glass melting furnace 101 of the present embodiment is an air melting burner 2 </ b> A (second air melting burner) and a gas supply to the glass melting furnace 100 of the first embodiment. Add a source 3A, instead of the glass material grain supply portion 4 of the glass melting furnace 100 of the first embodiment, the glass material having a supply pipe 4b for supplying glass raw material particles GM 1 independent of the supply pipe 4a It has the structure provided with the particle | grain supply part 4A. Other configurations are the same as those of the glass melting furnace 100 of the first embodiment, and the following description will focus on differences from the first embodiment.
 気中溶融バーナー2Aは、ガラス原料粒子GMを加熱気相部K中で溶融して溶融ガラス粒子Uを形成し、供給領域Sと異なる炉体1内の領域である領域S(図7参照)に向けて放出する第2の気中溶融バーナーである。気中溶融バーナー2Aの詳細構成は、特に図示しないが、気中溶融バーナー2と同様な構成を有する。
 本実施形態の気中溶融バーナー2Aは、ガラス原料粒子GMの放出方向が鉛直下向きとなるように、気中溶融バーナー2と炉壁部1dとの間の天井部1aに取り付けられている。
 また、気中溶融バーナー2Aは、供給管4bを介してガラス原料粒子供給部4Aと接続され、気中溶融バーナー2と同様の形態で、供給管4bを通してガラス原料粒子GMが供給されるようになっている。このため、ガラス溶融炉101では、ガラス原料粒子供給部4Aによって、供給管4a、4bに供給するガラス原料粒子GMの供給量を適宜変化させたり、供給を停止させたりできる。
The air melting burner 2A melts the glass raw material particles GM 1 in the heated gas phase portion K to form the molten glass particles U, and is a region S A that is a region in the furnace body 1 different from the supply region S (FIG. 7). 2) a second air-melting burner that discharges toward the reference). Although the detailed configuration of the air melting burner 2A is not particularly illustrated, it has the same configuration as the air melting burner 2.
Aerial melting burner 2A of the present embodiment, as in release direction of the glass raw material particles GM 1 is vertically downward, is attached to a ceiling portion 1a between the molten burner 2 and the furnace wall portion 1d in the air.
Further, the gas in the molten burner 2A is connected to the glass raw material particle supply section 4A via a supply pipe 4b, a similar form as the air in the molten burner 2, so that the glass raw material particles GM 1 is supplied through a supply pipe 4b It has become. Therefore, the glass melting furnace 101, a glass raw material particle supply unit 4A, the supply pipe 4a, or by appropriately changing the supply amount of supplying glass raw material particles GM 1 to 4b, it or to stop the supply.
 ガス供給源3Aは、第1実施形態のガス供給源3と同様な構成を有し、供給管3a、3bが、それぞれ先の第1実施形態の気中溶融バーナー2に接続されるのと同様の形態で気中溶融バーナー2Aに接続されている。
 このため、ガス供給源3Aからは、供給管3aを介して前記燃料ガスが、気中溶融バーナー2Aの燃料ガス供給路に導入され、供給管3bを介して前記燃焼用ガスが気中溶融バーナー2Aの燃焼用ガス供給路に導入される。これにより、気中溶融バーナー2Aは、気中溶融バーナー2と同様に、先端側(図6の下方側)に前記燃料ガスおよび前記燃焼用ガスによる酸素燃焼炎Hを噴射できる。
The gas supply source 3A has the same configuration as that of the gas supply source 3 of the first embodiment, and the supply pipes 3a and 3b are respectively connected to the air-melting burner 2 of the previous first embodiment. It is connected to the air melting burner 2A in the form of.
Therefore, the fuel gas is introduced from the gas supply source 3A through the supply pipe 3a into the fuel gas supply path of the air melting burner 2A, and the combustion gas is supplied from the gas supply source 3A through the supply pipe 3b. It is introduced into the 2A combustion gas supply path. As a result, the air melting burner 2 </ b> A can inject the oxyfuel combustion flame H by the fuel gas and the combustion gas on the tip side (the lower side in FIG. 6) similarly to the air melting burner 2.
 本実施形態のガラス溶融炉101によれば、内部に、気中溶融バーナー2、2Aからそれぞれガラス原料粒子GMを放出できる。ただし、気中溶融バーナー2Aは、供給領域Sとは異なる領域Sに向けてガラス原料粒子GMを放出するため、ガラス原料粒子GMは、ガラス原料GMを直接溶融することはなく、溶融ガラス粒子Uによって貯留部1h内の溶融ガラスGを増加させる。
 このため、気中溶融バーナー2、2Aの両方にガラス原料粒子GMを投入することにより、初期メルトである溶融ガラスU’を迅速に貯留できる。
 また、溶融ガラスGに対するガラス原料GMの量比がガラス原料粒子GMの量比よりも少ない場合に、気中溶融バーナー2、2Aの両方にガラス原料粒子GMを投入することにより、迅速に溶融ガラスGを製造できる。
 また、たとえば、工程内循環カレットの在庫、市中カレットの購入価格等の状況に応じてガラスカレットを含むガラス原料GMの投入量が変化する場合にも、気中溶融バーナー2、2Aのそれぞれのガラス原料粒子GMの投入量を調整することにより、溶融ガラスGを製造できる。
According to the glass melting furnace 101 of this embodiment, the inside, respectively, from the gas in the molten burner 2,2A can release glass material particles GM 1. However, air in the molten burner 2A, in order to release the glass raw material particles GM 1 toward the different regions S A of the supply area S, glass material grains GM 1 is not melting the glass raw material GM 2 directly, The molten glass G in the reservoir 1 h is increased by the molten glass particles U.
For this reason, the molten glass U ′, which is the initial melt, can be quickly stored by introducing the glass raw material particles GM 1 into both the air melting burners 2 and 2A.
Further, when the amount ratio of the glass raw material GM 2 to the molten glass G is less than the ratio of the glass raw material particles GM 1, by placing the glass raw material particles GM 1 on both the gas in the molten burner 2, 2A, rapid The molten glass G can be manufactured.
Further, for example, when the input amount of the glass raw material GM 2 containing glass cullet changes depending on the situation such as the inventory of circulating cullet in the process, the purchase price of cullet in the city, etc. by adjusting the input amount of the glass raw material particles GM 1, and capable of producing molten glass G.
 また、ガラス溶融炉101によれば、ガラス原料GMを用いることなく溶融ガラスGを製造する場合、気中溶融バーナー2を停止することなく、気中溶融バーナー2、2Aの両方にガラス原料粒子GMを投入することにより、迅速に溶融ガラスGを製造できる。 Further, according to the glass melting furnace 101, the case of producing a molten glass G without using the glass raw material GM 2, without stopping the gas in the molten burner 2, a glass raw material particles in both the air in the molten burner 2,2A By introducing GM 1 , molten glass G can be manufactured quickly.
[第3実施形態]
 次に、本発明の第3実施形態について説明する。
 図8は本発明に係るガラス溶融炉の第3実施形態の主要部を示す模式的な構成図であり、図8(a)は水平方向の断面図、図8(b)は図8(a)のC-C線に沿う断面図である。
 図8(a)、(b)に主要部の構成を示すように、本実施形態のガラス溶融炉102は、先の第1実施形態のガラス溶融炉100において、酸素バーナー30(補助加熱部)と加熱用の電極31(図8(b)参照)を追加した構成を有する。以下、前記実施形態と異なる点を中心に説明する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described.
FIG. 8 is a schematic configuration diagram showing a main part of a third embodiment of the glass melting furnace according to the present invention, FIG. 8 (a) is a horizontal sectional view, and FIG. 8 (b) is FIG. Is a cross-sectional view taken along the line CC of FIG.
As shown in FIGS. 8 (a) and 8 (b), the glass melting furnace 102 of the present embodiment is the same as the glass melting furnace 100 of the first embodiment except that the oxygen burner 30 (auxiliary heating unit) is used. And a heating electrode 31 (see FIG. 8B). Hereinafter, a description will be given centering on differences from the embodiment.
 酸素バーナー30は、図示略のガス供給源から燃料ガスと酸素との供給を受けて、酸素燃焼炎hを横向きに形成し、ガラス原料GMの塊を加熱する補助加熱部である。
 本実施形態において酸素バーナー30は、ガラス原料投入口1Aと供給領域Sとの間の炉壁部1f、1eにそれぞれ1つずつ、火炎噴出方向を水平方向とするように横向きに設置されている。各酸素バーナー30の設置高さは、溶融ガラスGの液面よりも若干高い適宜位置に設定できる。また、各酸素バーナー30は、ガラス原料投入口1Aから排出口1Bに向かって一定距離を離して設置する。これらにより、ガラス原料粉末などの飛散を防止できる。本実施形態の酸素バーナー30は、塊を構成するガラス原料GMが供給領域Sに到達するまでの間にガラス原料GMを予熱する。
Oxygen-fuel burner 30 is supplied with fuel gas and oxygen from the not shown gas supply source, the oxygen combustion flame h formed sideways, an auxiliary heating unit for heating a mass of glass batch GM 2.
In this embodiment, the oxygen burner 30 is installed side by side so that the flame ejection direction is the horizontal direction, one at each of the furnace wall portions 1f and 1e between the glass raw material inlet 1A and the supply region S. . The installation height of each oxygen burner 30 can be set at an appropriate position slightly higher than the liquid level of the molten glass G. Each oxygen burner 30 is installed at a certain distance from the glass raw material inlet 1A toward the outlet 1B. By these, scattering of glass raw material powder etc. can be prevented. The oxygen burner 30 of the present embodiment preheats the glass raw material GM 2 until the glass raw material GM 2 constituting the lump reaches the supply region S.
 電極31は、貯留部1hに貯留された溶融ガラスG(U’)の温度を一定範囲に保ち、対流させるための加熱手段であり、溶融ガラスG(U’)を内部側から加熱可能な棒状の電極31を複数縦横に配置した構造を採用できる。
 電極31の配列位置は、溶融ガラスG(U’)の温度低下が起こりやすい位置に適宜設けることが好ましい。例えば、ガラス原料GMによる塊が形成される領域よりも下流側の炉底部1bに設けられる。
The electrode 31 is a heating means for keeping the temperature of the molten glass G (U ′) stored in the storage part 1h within a certain range and causing it to convect, and is a rod-like shape capable of heating the molten glass G (U ′) from the inside side. A structure in which a plurality of electrodes 31 are arranged vertically and horizontally can be employed.
The arrangement position of the electrodes 31 is preferably provided as appropriate at a position where the temperature of the molten glass G (U ′) is likely to decrease. For example, it provided on the downstream side of the furnace bottom portion 1b from a region where the mass by the glass raw material GM 2 is formed.
 本実施形態のガラス溶融炉102によれば、酸素バーナー30を備え、塊を形成するガラス原料GMを予熱できるため、溶融ガラス粒子Uによるガラス原料GMの溶融能力が相対的に増大する。この結果、ガラス原料GMの溶融がより加速される。
 また、ガラス原料GM上に落下した溶融ガラス粒子Uの温度低下を低減できるため、安定した一定の速度で溶融ガラスGを製造できる。
 さらに、酸素バーナー30は、ガラス原料GMの投入量に応じて、オンオフ制御を行ってもよい。酸素バーナー30は、投入されたガラス原料GMを加熱するため、投入による溶融ガラスG(U’)の温度低下を抑制する。
According to the glass melting furnace 102 of the present embodiment, since the glass raw material GM 2 that includes the oxygen burner 30 and forms a lump can be preheated, the melting capacity of the glass raw material GM 2 by the molten glass particles U is relatively increased. As a result, melting of the glass raw material GM 2 is further accelerated.
Further, it is possible to reduce the temperature drop of the molten glass particles U dropped on the glass raw material GM 2, capable of producing molten glass G at a stable constant speed.
Further, oxygen-fuel burner 30 in accordance with the input amount of the glass raw material GM 2, may be carried out on-off control. Oxygen-fuel burner 30, to heat the glass batch GM 2 which is turned on, to suppress the temperature drop of the molten glass G (U ') from investing.
 ガラス溶融炉102によれば、電極31を備えるため、貯留部1hに貯留された溶融ガラスG(U’)の温度を安定化できる。特に、本実施形態では、塊が形成される領域の下流側の炉底部1bに電極31を設けるため、ガラス原料GMの投入による温度低下を低減し、下面m側からの溶融量を安定化できる。 According to the glass melting furnace 102, since the electrode 31 is provided, the temperature of the molten glass G (U ′) stored in the storage unit 1h can be stabilized. In particular, in the present embodiment, to provide the electrode 31 on the downstream side of the furnace bottom portion 1b of the area mass is formed, to reduce the temperature drop due to introduction of the glass raw material GM 2, a melt of the lower surface m 2 side stable Can be
 このように、本実施形態では、酸素バーナー30と電極31とを併設しているため、これらが相まって、溶融ガラスG(U’)の温度低下を抑制し、溶融ガラス粒子Uによる溶融能力を高くできる。 Thus, in this embodiment, since the oxygen burner 30 and the electrode 31 are provided side by side, they combine to suppress the temperature drop of the molten glass G (U ′) and increase the melting ability of the molten glass particles U. it can.
[第4、第5、第6実施形態]
 次に、本発明の第4実施形態~第6実施形態について説明する。
 図9は本発明に係るガラス溶融炉の第4実施形態の主要部を示す模式的な構成図、図10は同第5実施形態の主要部を示す模式的な構成図、図11は同第6実施形態の主要部を示す模式的な構成図である。
[Fourth, fifth and sixth embodiments]
Next, the fourth to sixth embodiments of the present invention will be described.
FIG. 9 is a schematic configuration diagram showing the main part of the fourth embodiment of the glass melting furnace according to the present invention, FIG. 10 is a schematic configuration diagram showing the main part of the fifth embodiment, and FIG. It is a typical block diagram which shows the principal part of 6 embodiment.
 第4実施形態~第6実施形態は、気中溶融バーナー2の配置姿勢、配置位置に関する実施形態であり、それぞれの構成要素は、第1実施形態のガラス溶融炉100と同様である。以下、前記第1実施形態と異なる点を中心に説明する。
 図9に主要部の構成を示すように、第4実施形態のガラス溶融炉103は、気中溶融バーナー2が、鉛直軸に対して傾斜する斜め下向き、かつガラス原料供給部5側に向かう方向(排出口1B側から原料投入口5A側に向かう方向)に、溶融ガラス粒子Uを放出する姿勢で天井部1aに取り付けられている。また、気中溶融バーナー2の放出中心軸は、供給領域Sの中心Oに向けられている。
The fourth to sixth embodiments are embodiments relating to the arrangement posture and arrangement position of the air-melting burner 2, and the respective components are the same as those of the glass melting furnace 100 of the first embodiment. Hereinafter, a description will be given centering on differences from the first embodiment.
As shown in FIG. 9, the glass melting furnace 103 according to the fourth embodiment is configured such that the air melting burner 2 is inclined obliquely downward with respect to the vertical axis and directed toward the glass raw material supply unit 5. It is attached to the ceiling portion 1a in a posture of discharging the molten glass particles U (in the direction from the discharge port 1B side to the raw material input port 5A side). Also, release the central axis of the gas in the molten burner 2 is directed to the center O S of the supply area S.
 ガラス溶融炉103によれば、気中溶融バーナー2から噴射される加熱ガスgと溶融ガラス粒子Uとが、ガラス原料GMの原料供給方向の上流側に向いて斜め下向きに当たるため、ガラス原料GMからなる塊の前進移動を抑制できる。この結果、ガラス原料GMが充分に溶融する前に供給領域Sを通り抜けて排出口1B側に移動してしまうことを防止できるため、ガラス原料GMからなる塊を充分に溶融できる。 According to a glass melting furnace 103, the heating gas g jetted from the gas in the molten burner 2 and the molten glass particles U is to hit diagonally downward toward the upstream side of the raw material supply direction of the glass raw material GM 2, frit GM The forward movement of the lump consisting of 2 can be suppressed. As a result, it is possible to prevent the glass material GM 2 will move to the discharge port 1B side through the supply area S before melt sufficiently, can be sufficiently melted mass of glass raw material GM 2.
 図10に主要部の構成を示すように、第5実施形態のガラス溶融炉104は、気中溶融バーナー2が、鉛直軸に対して傾斜する斜め下向き、かつ排出部1B側に向かう方向(すなわち、原料投入口5A側から排出口1B側に向かう方向)に、溶融ガラス粒子Uを放出する姿勢で天井部1aに取り付けられている。また、気中溶融バーナー2の放出中心軸は、供給領域Sの中心Oに向けられている。 As shown in FIG. 10, the glass melting furnace 104 of the fifth embodiment is configured such that the air melting burner 2 is inclined obliquely downward with respect to the vertical axis and directed toward the discharge unit 1 </ b> B (that is, In the direction from the raw material inlet 5A side to the outlet 1B side), it is attached to the ceiling portion 1a in a posture to discharge the molten glass particles U. Also, release the central axis of the gas in the molten burner 2 is directed to the center O S of the supply area S.
 ガラス溶融炉104によれば、気中溶融バーナー2から噴射される加熱ガスgと溶融ガラス粒子Uとが、ガラス原料GMの下流側(排出口1B側)に当たるため、塊の前進移動を促進できる。この結果、ガラス原料GMが供給領域Sに到達するまでの時間を短縮でき、塊が大きくなりすぎてガラス原料GMの供給が滞ったり、溶融ガラスG(U’)がガラス原料投入口1A付近で温度低下しすぎたりすることを防止できる。 According to the glass melting furnace 104, since the heating gas g jetted from the gas in the molten burner 2 and the molten glass particles U are, hits the downstream side of the glass raw material GM 2 (outlet 1B side), promote the forward movement of the masses it can. As a result, the time until the glass raw material GM 2 reaches the supply region S can be shortened, the lump becomes too large and the supply of the glass raw material GM 2 is delayed, or the molten glass G (U ′) is supplied to the glass raw material inlet 1A. It is possible to prevent the temperature from being excessively lowered in the vicinity.
 図11に主要部の構成を示すように、第6実施形態の溶融ガラス製造装置105は、気中溶融バーナー2が、鉛直軸に対して傾斜する斜め下向き、かつ排出部1B側に向かう方向に、溶融ガラス粒子Uを放出する姿勢で炉壁部1cの上部に取り付けられている。また、気中溶融バーナー2の放出中心軸は、供給領域Sの中心Oに向けられている。
 ただし、図11は模式図であるため、ガラス原料供給部5と気中溶融バーナー2とが同一面上に配置されているように描いているが、これらの奥行き方向の位置は、ずれていてもよい。例えば、2箇所のガラス原料供給部5の間に気中溶融バーナー2を配置すれば、ガラス原料供給部5と干渉しにくいため、ガラス原料供給部5と干渉することなく気中溶融バーナー2の設置ができる。
As shown in FIG. 11, the molten glass manufacturing apparatus 105 according to the sixth embodiment is configured such that the in-air molten burner 2 is inclined obliquely downward with respect to the vertical axis and directed toward the discharge unit 1 </ b> B. It is attached to the upper part of the furnace wall part 1c with the attitude | position which discharge | releases the molten glass particle U. Also, release the central axis of the gas in the molten burner 2 is directed to the center O S of the supply area S.
However, since FIG. 11 is a schematic diagram, the glass raw material supply unit 5 and the air melting burner 2 are drawn so as to be arranged on the same plane, but their positions in the depth direction are shifted. Also good. For example, if the air melting burner 2 is disposed between the two glass raw material supply parts 5, it is difficult to interfere with the glass raw material supply part 5, so that the air melting burner 2 does not interfere with the glass raw material supply part 5. Can be installed.
 本実施形態のガラス溶融炉105によれば、気中溶融バーナー2の配置姿勢が前記第5実施形態と同一であるため、気中溶融バーナー2に関しては第5実施形態と同じ作用を有する。
 また、第5実施形態とは異なり炉壁部1cに設けられているため、ガラス原料粒子供給部4を炉壁部1c寄りのガラス溶融炉105の外部に設置できる。このため、ガラス原料粒子GMとガラス原料GMの投入位置を近接し、ガラス原料に関わる装置の位置を集約させることができ、投入時の作業効率、ガラス原料の運搬効率を向上できる。
 本実施形態は、気中溶融バーナー2がガラス溶融炉105の炉壁部1cに設けられた場合の例になっている。
 気中溶融バーナー2は、ガラス原料供給部5が1台で構成された場合や、炉壁部1e、1fの間隔が狭い場合などに、炉壁部1cに近い炉壁部1e、1fのいずれかまたは両方に配置してもよい。この場合も、本実施形態と同様な作用が得られる。また、ガラス原料供給部5と干渉しにくいため、気中溶融バーナー2の配置が容易となる。
According to the glass melting furnace 105 of the present embodiment, since the arrangement posture of the air melting burner 2 is the same as that of the fifth embodiment, the air melting burner 2 has the same action as the fifth embodiment.
Moreover, since it is provided in the furnace wall part 1c unlike 5th Embodiment, the glass raw material particle supply part 4 can be installed in the exterior of the glass melting furnace 105 near the furnace wall part 1c. Therefore, close the loading position of the glass raw material particles GM 1 and the glass raw material GM 2, the position of the device according to the glass raw material can be aggregated, thereby improving the work efficiency, transportation efficiency of the glass raw material at the time on.
This embodiment is an example in the case where the in-air melting burner 2 is provided on the furnace wall 1 c of the glass melting furnace 105.
The in-air melting burner 2 is one of the furnace wall parts 1e and 1f close to the furnace wall part 1c when the glass raw material supply part 5 is constituted by one unit or when the interval between the furnace wall parts 1e and 1f is narrow. Or both. In this case as well, the same operation as in this embodiment can be obtained. Moreover, since it is hard to interfere with the glass raw material supply part 5, arrangement | positioning of the air melting burner 2 becomes easy.
[第7実施形態]
 次に、本発明の第7実施形態について説明する。
 図12は本発明に係る溶融ガラスの製造装置の第7実施形態の主要部を示す模式的な構成図であり、図12(a)は縦断面図、図12(b)は図12(a)のD-D線に沿う断面図である。
 図12に主要部の構成を示すように、第7実施形態のガラス溶融炉106は、第1実施形態のガラス溶融炉100のガラス原料投入口1A、ガラス原料供給部5に代えて、ガラス原料投入口1C、ガラス原料供給部32を備える。以下、前記第1実施形態と異なる点を中心に説明する。
[Seventh Embodiment]
Next, a seventh embodiment of the present invention will be described.
FIG. 12 is a schematic configuration diagram showing the main part of a seventh embodiment of the molten glass manufacturing apparatus according to the present invention, FIG. 12 (a) is a longitudinal sectional view, and FIG. 12 (b) is FIG. 2 is a cross-sectional view taken along the line DD of FIG.
As shown in FIG. 12, the glass melting furnace 106 of the seventh embodiment replaces the glass raw material charging port 1 </ b> A and the glass raw material supply unit 5 of the glass melting furnace 100 of the first embodiment with a glass raw material. The inlet 1C and the glass raw material supply part 32 are provided. Hereinafter, a description will be given centering on differences from the first embodiment.
 本実施形態のガラス原料投入口1Cは、炉壁部1cの高さ方向の中間部において、壁厚方向に貫通して設けられた矩形状の開口である。炉壁部1cにおけるガラス原料投入口1Cの開口形状は、水平方向の幅が供給領域Sと略同一幅とされ、高さ方向に幅狭とされた矩形状である。
 ガラス原料投入口1Cの高さは、第1実施形態のガラス原料投入口1Aと同様の高さに設けられている。
The glass raw material inlet 1C of the present embodiment is a rectangular opening provided in the middle of the furnace wall 1c in the height direction and penetrating in the wall thickness direction. The opening shape of the glass raw material inlet 1C in the furnace wall 1c is a rectangular shape in which the horizontal width is substantially the same as that of the supply region S and the width is narrowed in the height direction.
The height of the glass raw material inlet 1C is set to the same height as the glass raw material inlet 1A of the first embodiment.
 本実施形態においてガラス原料供給部32は、ガラス原料GMをガラス溶融炉106の外部から投入するため、上部に原料投入口32A、底部に底部開口32Bが設けられたホッパー32aと、一端がガラス原料投入口1Cに連結され底部開口32Bから導入されたガラス原料GMをガラス原料投入口1Cに向かって下方に傾斜する斜め方向に沿って案内する搬送管32dとを備える。 Glass raw material supply unit 32 in the present embodiment, in order to put the glass raw material GM 2 from the outside of the glass melting furnace 106, a hopper 32a which raw material inlet 32A, the bottom opening 32B in the bottom provided in the upper, glass end the glass raw material GM 2 which is connected to the raw material inlet 1C introduced through a bottom opening 32B and a transport pipe 32d for guiding along a diagonal direction that is inclined downwardly toward the glass raw material inlet 1C.
 ガラス溶融炉106によれば、ホッパー32aにガラス原料GMを投入し、図示しないがガラス原料GMを幅方向に揃って押し出すブランケットフィーダーによってガラス原料GMが押し出され、底部開口32Bから搬送管32dに沿って下方側に落下し、ガラス原料投入口1Cから貯留部1hに投入される。
 ガラス原料投入口1Cは、液面に平行な偏平の矩形状開口になっているため、ガラス原料GMは、偏平な層状に整形された状態で投入される。貯留部1h内にすでに溶融ガラスG(U’)が貯留されている場合には、ガラス原料GMは、層状の塊を形成して溶融ガラスG(U’)の液面上に浮かぶことになる。
 形成された塊は、ガラス原料GMの投入が続くと、ガラス原料投入口1Cの水平方向の幅とほぼ同幅の帯状をなして、炉壁部1cから炉壁部1d側に向かって押し出され、図12(b)に二点鎖線で示す供給領域Sに供給される。
 供給領域Sに供給されたガラス原料GMは、前記実施形態と同様に、放出された溶融ガラス粒子Uにより効率的に溶融される。
According to a glass melting furnace 106, a glass raw material GM 2 were charged into the hopper 32a, the glass raw material GM 2 is pushed out by the not shown blanket feeder for extruding aligned glass raw materials GM 2 in the width direction, the conveying pipe from the bottom opening 32B It falls to the lower side along 32d, and is charged into the reservoir 1h from the glass raw material inlet 1C.
Since the glass raw material inlet 1C has a flat rectangular opening parallel to the liquid surface, the glass raw material GM 2 is charged in a state of being shaped into a flat layer. Reservoir 1h the already molten glass G (U ') when is stored, the glass raw material GM 2 is to form a mass of a layered molten glass G (U' that floats on the liquid surface of) Become.
The formed mass, when the charged glass raw material GM 2 continues, of a beltlike shape having substantially the same width as the horizontal width of the glass raw material inlet 1C, pushed toward the furnace wall portion 1c in the furnace wall portion 1d side Then, it is supplied to a supply region S indicated by a two-dot chain line in FIG.
Glass raw materials GM 2 supplied to the supply area S, as in the above embodiments is efficiently melted by emitted molten glass particles U.
 本実施形態のガラス溶融炉106によれば、ガラス原料GMを層状に供給するため、山状の塊を形成する場合に比べて、塊の層厚が均等化される。このため、層厚のバラツキによるガラス原料GMの溶融速度の不均衡を低減し、溶融残りを低減できる。
 また、ガラス溶融炉106によれば、ガラス原料GMの自重落下により供給するため、簡素な装置構成となる。
According to the glass melting furnace 106 of this embodiment, for supplying glass raw materials GM 2 in layers, as compared with the case of forming a mountain-like mass, the layer thickness of the mass is equalized. Therefore, to reduce the imbalance of the melting rate of the glass raw material GM 2 according to the layer thickness variation can be reduced melt remaining.
Further, according to the glass melting furnace 106, for supplying a free-fall of the glass raw material GM 2, a simple device configuration.
[第8実施形態]
 次に、本発明の第8実施形態について説明する。
 図13は本発明に係るガラス溶融炉の第8実施形態の主要部を示す模式的な構成図であり、図13(a)は縦断面図、図13(b)は図13(a)のE-E線に沿う断面図である。
[Eighth Embodiment]
Next, an eighth embodiment of the present invention will be described.
FIG. 13 is a schematic configuration diagram showing a main part of an eighth embodiment of the glass melting furnace according to the present invention, FIG. 13 (a) is a longitudinal sectional view, and FIG. 13 (b) is a diagram of FIG. 13 (a). It is sectional drawing which follows the EE line.
 図13に主要部の構成を示すように、第8実施形態のガラス溶融炉107は、第1実施形態のガラス溶融炉100のガラス原料投入口1A、ガラス原料供給部5に代えて、連結孔1D、ガラス原料供給部33を備えている。また、本実施形態では、気中溶融バーナー2は、前記第5実施形態と同様に設置されている。以下、前記第1実施形態と異なる点を中心に説明する。 As shown in FIG. 13, the glass melting furnace 107 of the eighth embodiment replaces the glass raw material inlet 1 </ b> A and the glass raw material supply unit 5 of the glass melting furnace 100 of the first embodiment with a connecting hole. 1D, the glass raw material supply part 33 is provided. In the present embodiment, the in-air melting burner 2 is installed in the same manner as in the fifth embodiment. Hereinafter, a description will be given centering on differences from the first embodiment.
 連結孔1Dは、ガラス原料供給部33を連結するため、炉壁部1cの高さ方向の中間部において、炉壁部1cを斜め下方向に貫通して設けられた円断面を有する貫通孔である。連結孔1Dの高さは、第1実施形態のガラス原料投入口1Aよりも高い位置に設けられている。 The connection hole 1D is a through-hole having a circular cross section provided through the furnace wall portion 1c obliquely downward in an intermediate portion in the height direction of the furnace wall portion 1c in order to connect the glass raw material supply unit 33. is there. The height of the connecting hole 1D is provided at a position higher than the glass raw material inlet 1A of the first embodiment.
 本実施形態のガラス原料供給部33は、ガラス原料GMを炉体1の外部から投入するため、上部に原料投入口33A、底部に底部開口33Bが設けられたホッパー33aと、一端が連結孔1Dに挿通して連結され底部開口33Bから導入されたガラス原料GMを貯留部1hに向かって下方に傾斜する斜め方向に沿って案内する搬送管33dとを備える。
 本変形例では、搬送管33dは、炉壁部1cから貯留部1hの内部に向かって斜め下側に突出され、その先端に円形開口であるガラス原料投入口33eが形成されている。また、ガラス原料投入口33eは、集積した溶融ガラスG(U’)の液面の上方に開口され、その開口位置は、ガラス原料投入口33eから斜め方向に落下するガラス原料GMが供給領域S上に散布される適宜の高さに設定されている。
Glass material supply unit 33 of the present embodiment, in order to put the glass raw material GM 2 from the outside of the furnace body 1, a hopper 33a which raw material inlet 33A, the bottom opening 33B in the bottom provided in the upper, end connecting hole the glass raw material GM 2 which is inserted into 1D introduced from concatenated bottom opening 33B toward the reservoir 1h and a conveying pipe 33d for guiding along a diagonal direction that is inclined downward.
In the present modification, the transfer pipe 33d protrudes obliquely downward from the furnace wall 1c toward the interior of the storage part 1h, and a glass material inlet 33e that is a circular opening is formed at the tip. The glass raw material inlet 33e is opened above the liquid surface of the integrated molten glass G (U '), the opening position, the glass material GM 2 falling obliquely from a glass raw material inlet 33e is supplied region It is set to an appropriate height spread on S.
 本実施形態のガラス溶融炉107によれば、ホッパー33aにガラス原料GMを投入すると、ガラス原料GMは図示していないが別の形態で前述した搬送スクリューによって、底部開口33Bから搬送管33dに沿って斜め下方側に押し出されて落下し、ガラス原料投入口33eから貯留部1h内の空中に放出されて投入される。
 このため、放出されたガラス原料GMは、ガラス原料投入口33eにおける初速度に応じてそれぞれ放物線を描いて放出され、供給領域S上に散布される。
 供給領域Sに散布供給されたガラス原料GMは、前記実施形態と同様に、気中溶融バーナー2から放出された溶融ガラス粒子Uにより効率的に溶融される。
According to the glass melting furnace 107 of this embodiment, when charged glass raw material GM 2 to the hopper 33a, the conveying screw and glass material GM 2 are not shown earlier in another form, the conveying pipe 33d from the bottom opening 33B Are pushed out obliquely downward and fallen, and discharged from the glass raw material inlet 33e into the air in the storage portion 1h and charged.
Therefore, the glass material GM 2 released is released each a parabola according to the initial speed in the glass raw material inlet 33e, it is sprayed onto the supply area S.
The glass raw material GM 2 sprayed and supplied to the supply region S is efficiently melted by the molten glass particles U released from the air melting burner 2 as in the above embodiment.
 本実施形態のガラス溶融炉107によれば、溶融ガラスG(U’)の若干上方からガラス原料GMを散布するため、ガラス原料投入口33eの開口面積が小さくても、広範囲にガラス原料GMを供給できる。
 また、散布されて山状の塊を形成したガラス原料GMは、前記第5実施形態の構造と同様に、加熱ガスg及び溶融ガラス粒子Uの噴射によって、塊の前進移動が促進され、酸素燃焼炎Hによって塊を形成するガラス原料GMが溶融される。
According to the glass melting furnace 107 of this embodiment, in order to slightly spread the glass raw material GM 2 from above the molten glass G (U '), even with a small opening area of the glass raw material inlet 33e, extensively frit GM 2 can be supplied.
Further, the glass raw material GM 2 that has been sprinkled to form a mountain-shaped lump, like the structure of the fifth embodiment, promotes the forward movement of the lump by the injection of the heated gas g and the molten glass particles U, and oxygen The glass raw material GM 2 forming a lump by the combustion flame H is melted.
 なお、以上の説明では、本発明に係るガラス溶融炉、それを用いた溶融ガラスの製造方法、およびガラス製品の製造方法の各実施形態について説明したが、本発明はこれらに種々の変形を加えて実施できる。
 たとえば、第1の気中溶融バーナー、第2の気中溶融バーナーの本数は、1本とは限らず、1本以上の適宜本数を設けることができる。
 第1の気中溶融バーナー、第2の気中溶融バーナーは、たとえば、前記実施形態のガラス原料供給部5の複数の配置に合わせて、それぞれ複数設けてもよい。
 第1の気中溶融バーナー、第2の気中溶融バーナーは、溶融ガラス粒子を放出して供給できる限り、炉体の天井部、炉壁部のどこに設けられていてもよい。たとえば前記第6実施形態では気中溶融バーナー2の放出方向を傾斜させるため、気中溶融バーナー2を炉壁部1cに設けた場合の例が説明されたが、炉壁部1f、1eに設けられていてもよい。炉壁部1f、1eに設ける場合には、放出方向に直交する平面で斜めに取り付けられていればよく、ガラス原料GMの原料供給方向に対しては垂直であってもよい。
In the above description, the embodiments of the glass melting furnace according to the present invention, the method for producing molten glass using the same, and the method for producing glass products have been described, but the present invention adds various modifications thereto. Can be implemented.
For example, the number of first air-melting burners and second air-melting burners is not limited to one, and one or more appropriate numbers can be provided.
A plurality of first air-melting burners and second air-melting burners may be provided, for example, in accordance with the plurality of arrangements of the glass raw material supply unit 5 of the embodiment.
The first air melting burner and the second air melting burner may be provided anywhere on the ceiling or furnace wall of the furnace body as long as the molten glass particles can be discharged and supplied. For example, in the sixth embodiment, the example in which the air melting burner 2 is provided on the furnace wall portion 1c in order to incline the discharge direction of the air melting burner 2 has been described. However, it is provided on the furnace wall portions 1f and 1e. It may be done. When the furnace wall portion 1f, provided 1e has only to be mounted at an angle in a plane perpendicular to the discharge direction may be perpendicular with respect to the raw material supply direction of the glass raw material GM 2.
 また、前記第8実施形態では、ガラス原料GMが搬送管33dから搬送スクリューの押し出しによって落下して放出される場合の例で説明したが、ガラス原料GMとともにキャリアガスを供給して、キャリアガスの噴射圧によって、ガラス原料投入口33eからガラス原料GMを放出してもよい。
 また、先に記載の実施形態に説明したすべての構成要素は、本発明の技術的思想の範囲で適宜組み合わせたり、削除したりして実施できる。
Further, in the eighth embodiment was described using an example of the case where the glass material GM 2 is released and falls by extrusion carrying screw from the transport tube 33d, and supplies the carrier gas together with the glass raw material GM 2, carrier the injection pressure of the gas may emit glass materials GM 2 from the glass raw material inlet 33e.
Further, all the components described in the above-described embodiments can be implemented by being appropriately combined or deleted within the scope of the technical idea of the present invention.
 本発明の技術は、ガラスカレットを含むガラス原料を用いて、組成が均一な高品質の溶融ガラスを省エネルギー操業にて効率的に製造することができ、建築用ガラス、車両用ガラス、光学用ガラス、医療用ガラス、表示装置用ガラス、その他一般のガラス製品の製造に広く適用できる。
 なお、2011年2月7日に出願された日本特許出願2011-024273号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
The technology of the present invention can efficiently produce a high-quality molten glass having a uniform composition by an energy-saving operation using a glass raw material containing glass cullet, and can be used for building glass, vehicle glass, and optical glass. It can be widely applied to the production of medical glass, display glass, and other general glass products.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2011-024273 filed on February 7, 2011 are incorporated herein by reference. .
 1…炉体、1A、1C、1D…ガラス原料投入口、1B…排出口、1a…天井部、1b…炉底部、1c、1d、1e、1f…炉壁部、1h…貯留部、2…気中溶融バーナー(第1の気中溶融バーナー)、2A…気中溶融バーナー(第2の気中溶融バーナー)、3、3A…ガス供給源、4、4A…ガラス原料粒子供給部、5、32、33…ガラス原料供給部、5b…搬送スクリュー、6…成形装置、9…ガラス製品、30…酸素バーナー(補助加熱部)、31…電極、33e…ガラス原料投入口、100…ガラス溶融炉、101、102、103、104、105、106、107…ガラス溶融炉、G、U’…溶融ガラス、GM…ガラス原料粒子、GM…ガラス原料、GC…ガラスカレット、GB…バッチ原料、H、h…酸素燃焼炎、K…加熱気相部、S…供給領域、U…溶融ガラス粒子、g…加熱ガス、S1…ガラス溶融工程、S2…成形工程、S3…徐冷工程、S4…切断工程、S…他の領域。 DESCRIPTION OF SYMBOLS 1 ... Furnace body, 1A, 1C, 1D ... Glass raw material input port, 1B ... Discharge port, 1a ... Ceiling part, 1b ... Furnace bottom part, 1c, 1d, 1e, 1f ... Furnace wall part, 1h ... Reservoir part, 2 ... Air melting burner (first air melting burner), 2A ... Air melting burner (second air melting burner), 3, 3A ... Gas supply source, 4, 4A ... Glass raw material particle supply unit, 5, 32, 33 ... Glass raw material supply section, 5b ... Conveying screw, 6 ... Molding device, 9 ... Glass product, 30 ... Oxygen burner (auxiliary heating section), 31 ... Electrode, 33e ... Glass raw material inlet, 100 ... Glass melting furnace , 101,102,103,104,105,106,107 ... glass melting furnace, G, U '... molten glass, GM 1 ... glass raw material particles, GM 2 ... glass raw material, GC ... glass cullet, GB ... batch material, H, h ... oxygen combustion flame, K Heating gas phase, S ... supply region, U ... molten glass particles, g ... heating gas, S1 ... glass melting step, S2 ... molding step, S3 ... annealing step, S4 ... cutting step, S A ... other areas.

Claims (15)

  1.  溶融ガラスを貯留する炉体と、
     前記炉体の側部に設けられて前記炉体内に貯留された溶融ガラス上の供給領域にガラスカレットを含むガラス原料を供給するガラス原料供給部と、
     前記炉体の一部に設けられて前記供給領域に向かってガラス原料粒子を投入する第1の投入部と、
     前記第1の投入部の下方において該第1の投入部からのガラス原料粒子を溶融ガラス粒子とする第1の加熱気相部を前記供給領域の上方に生成する第1の加熱手段と、
     を備えたガラス溶融炉。
    A furnace body for storing molten glass;
    A glass raw material supply unit for supplying a glass raw material containing glass cullet to a supply region on a molten glass provided in a side part of the furnace body and stored in the furnace body;
    A first charging unit provided in a part of the furnace body for charging glass raw material particles toward the supply region;
    A first heating means for generating a first heating gas phase part above the supply region, wherein the glass raw material particles from the first charging part are molten glass particles below the first charging part;
    A glass melting furnace.
  2.  前記炉体に設けられ、前記供給領域と異なる溶融ガラス上の他の領域に向かってガラス原料粒子を投入する第2の投入部と、該第2の投入部の下方において該第2の投入部からのガラス原料粒子を溶融ガラス粒子とする第2の加熱気相部を前記他の領域の上方に生成する第2の加熱手段と、を備えた請求項1に記載のガラス溶融炉。 A second charging unit provided in the furnace body for charging glass raw material particles toward another region on the molten glass different from the supply region; and the second charging unit below the second charging unit. The glass melting furnace of Claim 1 provided with the 2nd heating means which produces | generates the 2nd heating gaseous-phase part which uses the glass raw material particle | grains from a molten glass particle above the said other area | region.
  3.  前記第1の投入部が、前記溶融ガラス粒子の放出方向が鉛直下向きとなるように設けられた請求項1または2に記載のガラス溶融炉。 The glass melting furnace according to claim 1 or 2, wherein the first charging unit is provided such that a discharge direction of the molten glass particles is vertically downward.
  4.  前記ガラス原料供給部を設けた炉体の一側と反対側に溶融ガラスの排出口が形成されるとともに、前記第一の投入部が前記溶融ガラス粒子の放出方向が斜め下向きとなり、かつ、前記ガラス原料供給部側に向かって傾斜されるように設けられた請求項1~3のいずれか一項に記載のガラス溶融炉。 A molten glass discharge port is formed on the side opposite to one side of the furnace body provided with the glass raw material supply unit, and the discharge direction of the molten glass particles is obliquely downward in the first charging unit, and The glass melting furnace according to any one of claims 1 to 3, wherein the glass melting furnace is provided so as to be inclined toward the glass raw material supply unit side.
  5.  前記ガラス原料供給部を設けた炉体の一側と反対側に溶融ガラスの排出口が形成されるとともに、前記第一の投入部が溶融ガラス粒子の放出方向が斜め下向きとなり、かつ、前記排出口側に向かって傾斜されるように設けられた請求項1~3のいずれか一項に記載のガラス溶融炉。 A molten glass discharge port is formed on the side opposite to the one side of the furnace body provided with the glass raw material supply unit, the discharge direction of the molten glass particles is obliquely downward in the first input unit, and the discharge The glass melting furnace according to any one of claims 1 to 3, wherein the glass melting furnace is provided so as to be inclined toward the outlet side.
  6.  前記炉体の炉底部に溶融ガラスを加熱するための加熱手段を備えた請求項1~5のいずれか一項に記載のガラス溶融炉。 The glass melting furnace according to any one of claims 1 to 5, further comprising heating means for heating the molten glass at a furnace bottom of the furnace body.
  7.  前記炉体の炉壁部に補助加熱バーナーを備えた請求項1~6のいずれか一項に記載のガラス溶融炉。 The glass melting furnace according to any one of claims 1 to 6, wherein an auxiliary heating burner is provided on a furnace wall portion of the furnace body.
  8.  溶融ガラスを貯留している炉体内の該溶融ガラス上にガラスカレットを含むガラス原料を供給し、
     該ガラス原料を供給した供給領域に対し第1の投入部からガラス原料粒子を投入し、
     第1の投入部の下方において前記第1の投入部からのガラス原料粒子を第1の加熱気相部により溶融ガラス粒子としてから前記ガラスカレットを含むガラス原料上に落下させ、
     前記ガラスカレットを含むガラス原料を溶融する溶融ガラスの製造方法。
    Supplying a glass raw material containing glass cullet on the molten glass in the furnace body storing the molten glass;
    Glass raw material particles are charged from the first charging portion to the supply region to which the glass raw material has been supplied,
    The glass raw material particles from the first charging part are dropped into the molten glass particles by the first heating gas phase part below the glass raw material including the glass cullet below the first charging part,
    The manufacturing method of the molten glass which fuse | melts the glass raw material containing the said glass cullet.
  9.  前記供給領域と異なる溶融ガラス上の他の領域に向けて、第2の投入部からガラス原料粒子を投入し、第2の投入部の下方において前記第2の投入部からのガラス原料粒子を第2の加熱気相部により溶融ガラス粒子としてから溶融ガラスに供給する請求項8に記載の溶融ガラスの製造方法。 Glass raw material particles are charged from a second charging portion toward another region on the molten glass different from the supply region, and the glass raw material particles from the second charging portion are disposed below the second charging portion. The method for producing molten glass according to claim 8, wherein the molten glass particles are supplied to the molten glass after being heated by the heated gas phase part.
  10.  前記炉体内に供給されたガラスカレットを含むガラス原料について製造目的とする溶融ガラスに対し不足の組成成分がある場合、前記第1の投入部または第2の投入部から炉体内に投入するガラス原料粒子に対し前記不足の組成成分を補うように成分調整したガラス原料粒子を用い、前記第1の投入部または第2の投入部から、前記成分調整済みガラス原料粒子を投入することにより、前記ガラスカレットを含むガラス原料に不足の組成成分を補給する請求項8または9に記載の溶融ガラスの製造方法。 When the glass raw material containing the glass cullet supplied into the furnace body has a composition component that is insufficient with respect to the molten glass to be manufactured, the glass raw material charged into the furnace body from the first charging portion or the second charging portion. By using the glass raw material particles whose components are adjusted so as to supplement the insufficient composition component with respect to the particles, the glass raw material particles after the component adjustment are supplied from the first charging unit or the second charging unit. The manufacturing method of the molten glass of Claim 8 or 9 which supplies a deficient composition component to the glass raw material containing a cullet.
  11.  前記成分調整済みのガラス原料粒子として、清澄剤と着色剤と溶融助剤との少なくとも1種以上の量を調整した請求項10に記載の溶融ガラスの製造方法。 The manufacturing method of the molten glass of Claim 10 which adjusted the amount of at least 1 sort (s) of a clarifier, a coloring agent, and a fusion aid as the said glass raw material particle after component adjustment.
  12.  溶融ガラスを貯留している炉体内の該溶融ガラス上にガラスカレットを含むガラス原料を連続的、または間欠的に供給しながら、かつ該ガラス原料が供給された供給領域に向けて、第1の投入部からガラス原料粒子を連続的、または間欠的に投入して前記第1の投入部からのガラス原料粒子を第1の加熱気相部を通して溶融ガラス粒子として前記ガラスカレットを含むガラス原料上に落下させ、前記ガラスカレットを含むガラス原料を溶融する、請求項8~11のいずれか一項に記載の溶融ガラスの製造方法。 While continuously or intermittently supplying a glass raw material containing glass cullet onto the molten glass in the furnace body in which the molten glass is stored, the first raw material is supplied to the supply region to which the glass raw material is supplied. The glass raw material particles are continuously or intermittently charged from the charging portion, and the glass raw material particles from the first charging portion are passed through the first heating gas phase portion on the glass raw material including the glass cullet as molten glass particles. The method for producing molten glass according to any one of claims 8 to 11, wherein the glass raw material containing glass cullet is dropped and melted.
  13.  前記ガラス原料粒子の平均粒径が、30~1000μmである請求項8~12のいずれか一項に記載の溶融ガラスの製造方法。 The method for producing molten glass according to any one of claims 8 to 12, wherein an average particle diameter of the glass raw material particles is 30 to 1000 µm.
  14.  請求項8~13のいずれか一項に記載の溶融ガラスの製造方法を用いて、前記ガラス原料と前記ガラス原料粒子から溶融ガラスを製造する工程と、該溶融ガラスを成形する工程と、成形後のガラスを徐冷する工程と、を含むガラス製品の製造方法。 A method for producing a molten glass from the glass raw material and the glass raw material particles, a step for molding the molten glass, and a post-molding method using the method for producing a molten glass according to any one of claims 8 to 13. And a step of slowly cooling the glass.
  15.  請求項1~7のいずれか一項に記載のガラス溶融炉と、該ガラス溶融炉により製造された溶融ガラスを成形する成形手段と、成形後のガラスを徐冷する徐冷手段と、を備えたガラス製品の製造装置。 A glass melting furnace according to any one of claims 1 to 7, a forming means for forming molten glass produced by the glass melting furnace, and a slow cooling means for gradually cooling the glass after forming. Glass product manufacturing equipment.
PCT/JP2012/052550 2011-02-07 2012-02-03 Glass melting furnace, method for producing molten glass, method for producing glass products and apparatus for producing glass products WO2012108364A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012556866A JP5966933B2 (en) 2011-02-07 2012-02-03 Glass melting furnace, molten glass manufacturing method, glass product manufacturing method, and glass product manufacturing apparatus
CN201280007241.8A CN103339072B (en) 2011-02-07 2012-02-03 The manufacturing installation of the manufacture method of glass melting furnace, melten glass, the manufacture method of glasswork and glasswork

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-024273 2011-02-07
JP2011024273 2011-02-07

Publications (1)

Publication Number Publication Date
WO2012108364A1 true WO2012108364A1 (en) 2012-08-16

Family

ID=46638580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052550 WO2012108364A1 (en) 2011-02-07 2012-02-03 Glass melting furnace, method for producing molten glass, method for producing glass products and apparatus for producing glass products

Country Status (4)

Country Link
JP (1) JP5966933B2 (en)
CN (1) CN103339072B (en)
TW (1) TW201236986A (en)
WO (1) WO2012108364A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9102560B2 (en) 2013-01-17 2015-08-11 Sibelco Asia Pte. Ltd. Charging load for making TFT glass and method of making same
FR3025195A1 (en) * 2014-08-29 2016-03-04 Kimpe METHOD FOR MANUFACTURING COLORED GLASS AND DEVICE FOR CARRYING OUT SAID METHOD
WO2018039398A1 (en) * 2016-08-26 2018-03-01 Corning Incorporated Apparatus and method for forming a glass article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115180824B (en) * 2022-07-05 2024-01-16 河北光兴半导体技术有限公司 Fireproof glass composition, fireproof glass and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183031A (en) * 2001-12-18 2003-07-03 Nippon Electric Glass Co Ltd Electric melting furnace for manufacturing glass fiber and method of melting glass for glass fiber
JP2010222217A (en) * 2009-03-25 2010-10-07 Nippon Electric Glass Co Ltd Glass melting furnace
WO2011001757A1 (en) * 2009-06-29 2011-01-06 旭硝子株式会社 Method for manufacturing molten glass, glass-melting furnace, glass article manufacturing device, and glass article manufacturing method
WO2011013594A1 (en) * 2009-07-27 2011-02-03 旭硝子株式会社 Glass melting furnace, process for producing molten glass, apparatus for producing glass product, and process for producing glass product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101323499A (en) * 2008-07-25 2008-12-17 昆明理工大学 Flying melting manufacturing method of glass
JP5532047B2 (en) * 2009-06-18 2014-06-25 旭硝子株式会社 Raw material supply method and raw material supply apparatus, and glass plate manufacturing apparatus and manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183031A (en) * 2001-12-18 2003-07-03 Nippon Electric Glass Co Ltd Electric melting furnace for manufacturing glass fiber and method of melting glass for glass fiber
JP2010222217A (en) * 2009-03-25 2010-10-07 Nippon Electric Glass Co Ltd Glass melting furnace
WO2011001757A1 (en) * 2009-06-29 2011-01-06 旭硝子株式会社 Method for manufacturing molten glass, glass-melting furnace, glass article manufacturing device, and glass article manufacturing method
WO2011013594A1 (en) * 2009-07-27 2011-02-03 旭硝子株式会社 Glass melting furnace, process for producing molten glass, apparatus for producing glass product, and process for producing glass product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9102560B2 (en) 2013-01-17 2015-08-11 Sibelco Asia Pte. Ltd. Charging load for making TFT glass and method of making same
FR3025195A1 (en) * 2014-08-29 2016-03-04 Kimpe METHOD FOR MANUFACTURING COLORED GLASS AND DEVICE FOR CARRYING OUT SAID METHOD
WO2018039398A1 (en) * 2016-08-26 2018-03-01 Corning Incorporated Apparatus and method for forming a glass article
JP2019524630A (en) * 2016-08-26 2019-09-05 コーニング インコーポレイテッド Glass article forming apparatus and method
EP3896037A1 (en) * 2016-08-26 2021-10-20 Corning Incorporated Method for forming a glass article
JP7058641B2 (en) 2016-08-26 2022-04-22 コーニング インコーポレイテッド Glass article forming device and method
US11319234B2 (en) 2016-08-26 2022-05-03 Corning Incorporated Apparatus and method for forming a glass article

Also Published As

Publication number Publication date
JP5966933B2 (en) 2016-08-10
CN103339072B (en) 2016-04-06
TW201236986A (en) 2012-09-16
JPWO2012108364A1 (en) 2014-07-03
CN103339072A (en) 2013-10-02

Similar Documents

Publication Publication Date Title
KR101899171B1 (en) Glass melter, modification method for glass blank, production method for molten glass, production method for glassware, and production apparatus for glassware
CN102482132B (en) Glass melting furnace, molten glass producing method, glass product producing device, and glass product producing method
KR101807320B1 (en) Molten glass manufacturing method, glass-melting furnace, glass product manufacturing method, and glass product manufacturing device
WO2011001757A1 (en) Method for manufacturing molten glass, glass-melting furnace, glass article manufacturing device, and glass article manufacturing method
TW201111309A (en) Glass melting furnace, process for producing molten glass, apparatus for producing glass product, and process for producing glass product
EP4038024B1 (en) Fining glass from a submerged combustion melter
JP5920218B2 (en) Method for melting glass raw material, method for producing molten glass, and method for producing glass product
KR20120031936A (en) Glass melting furnace, process for producing molten glass, apparatus for manufacturing glass products, and process for manufacturing glass products
JP5966933B2 (en) Glass melting furnace, molten glass manufacturing method, glass product manufacturing method, and glass product manufacturing apparatus
KR20120038925A (en) Glass melting furnace, molten glass manufacturing method, glass product manufacturing device, and glass product manufacturing method
JP6015741B2 (en) Glass melting furnace, molten glass manufacturing method, glass product manufacturing apparatus, and glass product manufacturing method
JP5971241B2 (en) Method for producing molten glass and method for producing glass article
JP2012096941A (en) In-flight melting burner, melting method of glass raw material, method of producing molten glass, method of producing glass bead, method of manufacturing glass product, in-flight melting device and device for manufacturing glass product
JP6032201B2 (en) Glass melting furnace, molten glass manufacturing method, glass article manufacturing method, and glass article manufacturing apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280007241.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12745334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012556866

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12745334

Country of ref document: EP

Kind code of ref document: A1