WO2012107607A1 - Wavelength classification and radiation-intensity regulating system - Google Patents

Wavelength classification and radiation-intensity regulating system Download PDF

Info

Publication number
WO2012107607A1
WO2012107607A1 PCT/ES2011/070093 ES2011070093W WO2012107607A1 WO 2012107607 A1 WO2012107607 A1 WO 2012107607A1 ES 2011070093 W ES2011070093 W ES 2011070093W WO 2012107607 A1 WO2012107607 A1 WO 2012107607A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
radiation intensity
wavelength
regulator according
classifier system
Prior art date
Application number
PCT/ES2011/070093
Other languages
Spanish (es)
French (fr)
Inventor
Jaime CASELLES FORNÉS
Original Assignee
Caselles Fornes Jaime
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Caselles Fornes Jaime filed Critical Caselles Fornes Jaime
Priority to PCT/ES2011/070093 priority Critical patent/WO2012107607A1/en
Publication of WO2012107607A1 publication Critical patent/WO2012107607A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/876Reflectors formed by assemblies of adjacent reflective elements having different orientation or different features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the field of application of the invention is the classification of wavelengths and regulation of the intensity of radiation in general and concentrated solar radiation in particular.
  • the next step and as a consequence thereof is the optimal use of solar energy and the optimization of its conversion into electric energy by means of devices such as photovoltaic cells, thermal receivers for thermoelectric generation , photoelectrochemical water disinfection devices, radiation wavelength converting devices, thermal devices as well as hydrogen generation devices, both through high temperature processes and / or photoelectrochemicals.
  • devices such as photovoltaic cells, thermal receivers for thermoelectric generation , photoelectrochemical water disinfection devices, radiation wavelength converting devices, thermal devices as well as hydrogen generation devices, both through high temperature processes and / or photoelectrochemicals.
  • the electromagnetic spectrum is very wide, in particular, solar radiation covers various wavelengths ranging from short wavelengths, such as ultraviolet radiation, to long wavelengths, such as infrared radiation. Both ends of said solar radiation are not captured by the human eye.
  • a transparent material In general, if a transparent material is irradiated with a beam of light with a certain angle of incidence, it is broken down into ultraviolet, violet, blue, green, yellow, red and infrared wavelengths.
  • the range of wavelengths that reach the earth's surface ranges from 300nm to 3000nm. Visible light covers the frequency range from 380 nm of the violet color to 770nm of the red color. It is estimated that the light visible by the human eye represents 50% of the total energy of the solar radiation that reaches the earth's surface.
  • the electrical conversion of photovoltaic cells depends on both wavelengths and the intensities with which they are irradiated.
  • the photon energy must be sufficient to overcome the prohibited band (bandgap) and arrive from the valence band to the conduction band.
  • the photon's energy is determined exclusively by its wavelength.
  • the photon wavelength determines its depth of reach, with short wavelengths being braked before long ones.
  • Each material has its corresponding banned band energy level. If the energy of the photon is not enough to overcome the prohibited band, it passes through the semiconductor and is not absorbed, causing the loss of said radiation. If the photon energy is greater than or equal to the bandgap energy of the material, photon absorption occurs. If it is greater than that necessary to overcome the bandgap of the material, the excess energy is transformed into a greater or lesser amount of heat energy depending on the semiconductor material.
  • Gallium arsenide is a direct prohibited band and silicon is an indirect prohibited band. This influences that it has the curves of absorption coefficients of the different wavelengths with different profiles, being in the indirect prohibited band silicon very proportional to the wavelengths and on the contrary in the GaAs it occurs when entering wavelengths of wave that exceed the bandgap a strong increase in photon absorption.
  • thermoelectric generation thermal receivers are greatly affected in their optimization by the variation in the levels of intensity of radiation that can occur when changing climatic conditions at a given time.
  • Optical prisms are used that decompose the solar thermal radiation received in at least two thermal zones in order to achieve the division of the thermal radiation to prevent the longer wavelengths emitted by the receiving body, greater than those that affect said zone, leave that zone.
  • This system is based on the fact that a very hot body emits radiation that can be higher than the one received. Fluid circuits are created on the walls of the receiver to properly take advantage of thermal radiation.
  • Document US 4377154 describes a solar collector in which the reception surfaces are formed by a series of prisms and mirrors, such that the faces of the prisms and mirrors rotate to follow the sun's rays through active motion systems.
  • the document focuses mainly on the detail of tracking the position of the sun.
  • These prisms break down the incident radiation into two zones, infrared and ultraviolet, in which directly or through reflectors directed to other areas, the ultraviolet zone can radiate on photovoltaic cells, thus isolating the infrared radiation that can radiate on thermal devices.
  • This document does not specify a possible way to deliver the beams of light to the device in a concentrated manner, nor the complete and detailed decomposition of the solar spectrum, nor the control of the intensity of each wavelength.
  • thermoelectric conversion mainly parabolic trough devices and large solar orchards with heliostats are being commercialized.
  • Multi-junction cells are based on the use of the solar spectrum in a differentiated way.
  • the objective in the use of solar energy is to reach the lowest generation cost per Kwh possible. This is determined by the cost of the facilities and the levels of efficiency in electrical conversion.
  • said receivers (5B) can be optimized for certain reception conditions being able to reach levels of radiation superconcentration by avoiding inconvenient lengths or not useful, which can be used by other devices that can take advantage of it optimally
  • FIGURE 1 OVERVIEW. CLASSIFIER AND REGULATORY BOX
  • IB Transparent element / optical prism.
  • FIGURE 2 ORIENTABLE CLASSIFIER REFLECTORS.
  • FIGURE 3 INTENSITY REGULATORY MECHANISM SCHEME.
  • FIGURE 4 INTENSITY REGULATION MECHANISM. DETAIL
  • FIGURE 5 INTENSITY REGULATION MECHANISM VIEW.
  • Radiation determined wavelengths focused by the classifying reflectors.
  • FIGURE 6 DETAIL OF THE COOLING MEANS OF THE
  • Cooling media / Heated fluid outlet Cooling media / Heated fluid outlet.
  • Cooling media / Hollow reflectors Cooling media / Hollow reflectors.
  • FIGURE 7 PRISON COOLING FLUID CIRCUIT
  • IB Transparent element / optical prism.
  • FIGURE 8 VIEW WITH NUMBER OF PRISMS AND VARIABLE REGULATORY ELEMENTS.
  • IB Transparent element / optical prism.
  • the system of the invention is based on the decomposition and classification of the entire electromagnetic spectrum of the incident solar radiation and the subsequent use of each wavelength in areas of the system optimized devices for that particular wavelength, thus also controlling the intensity in each of the receiving elements (5B).
  • the wavelength classifier and radiation intensity regulator system operates in such a way that the radiation beams (normally already concentrated by previous acquisition, conduction and concentration phases in optical ducts (1A)) are directed over at least one line of transparent element (IB) that disperses and decomposes them so that each wavelength is placed on different classifying reflectors (ID) so that at least one orientable classifying reflector (ID) can redirect each incident wavelength in it to a target area wherein at least one regulating reflector element (1E) of the intensity of the adjustable radiation is arranged so that the classified and regulated radiation can be directed towards a processing zone of said radiation.
  • IB transparent element
  • ID classifying reflectors
  • ID at least one orientable classifying reflector
  • the scattering of the light beam is determined solely by the angle of incidence and the refractive index of the medium. Therefore, in order to disperse it, it is not necessary to use an element in the form of a prism, being able to disperse with a multitude of shapes and materials.
  • the radiation affects the transparent elements (IB), preferably optical prisms in the form of light beams so that, with certain angles of incidence, the dispersion towards certain areas, depending on the wavelength.
  • IB transparent elements
  • This decomposition has to take into account all the wavelengths of the solar radiation that are received on the Earth's surface: from 300 nm of the ultraviolet to 3000 nm of the infrared, therefore including those not visible.
  • the physical form of the transparent elements (IB) radiation dispersers / decomposers could be very diverse. The simplest form would be as shown in the different Figures 1, 7 and 8, using optical prisms (IB). The decomposition / classification of wavelengths could be greater or lesser, depending on the receiving element devices (5B) in which we would like to process the radiation.
  • the wavelength classifier and radiation intensity regulator system has transparent elements (IB) that are arranged in parallel forming several lines, oriented with different angles to position the different outgoing wavelengths on the same areas system physics.
  • Figure 1 shows an arrangement with a single longitudinal optical prism (IB) with a multitude of in-line optical ducts (1A) that make the radiation conducted by them affect a certain angle on the optical prism (IB).
  • IB longitudinal optical prism
  • 1A in-line optical ducts
  • each material has its own refractive index and produces the dispersion in different physical areas.
  • a cooling circuit (7B, 7C, 7D) ( Figure 7) could be coupled in such a way that the prism will tolerate more radiation concentration.
  • several prism lines (IB) could also be formed, as can be seen in Figure 8, the arrangement of these would be made at different angles to place the different wavelengths on the same physical areas.
  • the manufacturing materials to be used could be varied. Mention that the optimum characteristics in the dispersion are the levels of transparency and absorptivity of the material in all wavelengths and its thermal behavior. Mention by way of example that in the dispersion there is borosilicate glass with transmittances greater than 90% in almost the entire solar spectrum and glass more resistant to high temperatures such as aluminum silicate glass. Additionally it may be convenient to include another material that is part of the composition of the transparent elements / optical prisms (IB): quartz, since it can have certain utilities at high concentrations known its high melting temperature. The faces of the prism could be coated with anti-reflective layers in order to avoid reflections.
  • IB optical prisms
  • the transparent elements / prisms (IB) can take different forms: in longitudinal, in arc, in two superimposed lines facing the shortest wavelengths to the center, in circles, etc.
  • classifying reflectors By passing the radiation through the prism (IB), it is decomposed in its different wavelengths and dispersed, causing them to influence a multitude of classifying reflectors (ID).
  • the number of classifying reflectors (ID) can be variable.
  • the radiation from 300 nm to 3000 nm has been divided into 15 equal parts of 180 nm. This division has been made for illustrative purposes only, but could be a greater or lesser number of divisions.
  • the divisions can have unequal amplitudes, for example, radiation from 1900 nm to 3000 nm can be reflected by a single wider reflector.
  • classifying reflectors include broad ranges of radiation wavelengths
  • concave classifying reflectors can be used to make this radiation influence on narrower regulatory reflector elements (1E).
  • IEE narrower regulatory reflector elements
  • Each of the classifying reflectors (ID) is fixed on axes of rotational motion. These axes are in turn fixed to orientation means (2A).
  • the axes of the classifying reflectors (ID) are centered with the axes of the orientation means (2A) (wheels, in the preferred embodiment) of the classifying reflectors (ID) whose movement can reflect that certain length wave on the different regulatory reflector elements (1E).
  • the invention allows total freedom for the configuration of the classification of the different wavelengths of the incident radiation from the radiation ducts (1A).
  • the orientation means or wheels (2 A) of the classifying reflectors (ID) have position references to indicate which regulating reflector element (1E) of the intensity focuses on.
  • each individual classifying reflector (ID) has freedom of movement for the focus area, that is, to focus on the different intensity regulating elements (1E) .
  • 5 regulatory reflector elements (1E) are provided, therefore the orientation wheel (2 A) for said references 2B, 2C and 2D of Figure 2, has those 5 possible positions determining certain freedom of movement.
  • the orientation means / wheels (2 A) comprise as many position references (2B, 2C, 2D) as the number of regulating reflector elements (1E) the system has.
  • Classifying reflectors (ID) can be rotated manually.
  • the driving of these orientation wheels (2A) of the classifying reflectors (ID) can be done either manually or by introducing electronic devices that perform said rotation.
  • several standard configurations of the set of classifying reflectors (ID) can be included to couple them to the different receiver elements (5B) for the use of radiation.
  • Classifying reflectors can also be equipped with cooling circuits (6A, 6B, 6C) ( Figure 6) that can be connected to cooling means, in which the reflectors Classifiers (ID) have hollow shapes that allow the circulation of a fluid inside, the axes can also be hollow to allow the flow of the fluid through said axes to the hollow reflectors (6C).
  • Manufacturing materials for hollow reflectors (6C), classifiers (ID) or regulators (1E), can be varied.
  • the material must be very polished and will reflect very well determined wavelengths.
  • the thermal behavior of the material is also important at high levels of radiation concentration.
  • reflective materials such as polished or evaporated aluminum that have high levels of reflection in almost the entire solar spectrum (melting point temperature at 660 ° C) and others such as tungsten that has high levels of reflection at long wavelengths, with a very high melting point (3,400 ° C), silver (approximately 961 ° C) and highly polished stainless steel (1500 ° C).
  • the intensity regulation is carried out with elements such as those shown in Figure 5.
  • the radiation from the classifying reflector elements (lD) affects different regulating reflectors (lE), which are allowed some rotational movement depending on the level of radiation intensity, redirecting radiation to more or less wide areas of the receiving elements (5B) of radiation exploitation.
  • the first reflector directs radiation over the intensity level zone 1, (3B), the second reflector directs radiation over the intensity level zone 2 (3C) and the 3 regulating reflectors (1E) remaining redirect radiation over level 1 (3B) and intensity level 2 (3C).
  • the first, second and third regulatory reflector (1E) redirects the radiation classified on the intensity level zones 1, 2 and 3 respectively (3B, 3C, 3D) and the fourth and fifth reflectors distribute the radiation between levels 1, 2 and 3.
  • the first four regulating reflectors (1E) redirect the radiation over the first 4 intensity level zones respectively and the fifth regulatory reflector (1E) Redirects them proportionally to these four zones of intensity levels.
  • each regulating reflector (1E) redirects the radiation that reaches it towards each of the zones (3B, 3C, 3D, 3E, 3F) respectively, that is, in Figure 3, the first regulator reflector (1E) located at the right end, towards zone 3B; the second reflector in that order, towards zone 3C; the third, towards 3D; the fourth, towards zone 3E; and the fifth, towards zone 3F.
  • the position of each of the at least one regulator reflector (1E) will depend on the intensity levels of radiation captured in the compartment (5H).
  • the rotational movement of the regulating reflectors (1E) can be produced in different ways. One way can be manual to, for example, test the behavior of a certain receiving element at different intensity levels. Thus, the regulating reflectors (1E) are orientable according to a rotational movement whose position (3G) determines the amount of classified radiation that each intensity level zone of the system receives (3B, 3C, 3D, 3E, 3F).
  • Another way would be to include electronic control mechanisms that rotate the regulating reflectors (1E) depending on the intensity level.
  • the Regulatory elements (1E) are orientable by rotational movements around its axis, said movements being controlled by electronic mechanisms for controlling the intensity of radiation received.
  • the preferred way is to include a temperature rise pressure circuit, such as that shown in Figure 4, in which there is a compartment (5H) in the area where the reflector regulators (1E) reflect the radiation.
  • This compartment (5H) may contain a fluid that would be heated and produce an increase in pressure that is communicated to the axes of the regulating reflectors (1E) through a conduit (4B, 51) that produces the thrust of pistons (4E) located next to the axes of each of the regulating reflectors (1E).
  • the movement of the pistons (4E) pushes a stop (4G) formed by a blade attached to the shaft that rotates the shaft and the regulating reflector (1E) with its movement.
  • Different tolerance tabs (4H, 41, 4J, 4K, 4L) of movement of this sheet (4G) are provided which produce that this sheet (4G) can adopt the position corresponding to the different intensity levels and not intermediate positions.
  • the sheet (4G) is linked to elastic means to be able to go back to lower levels of eyelashes (4H, 41, 4J, 4K, 4L) in the event of a decrease in intensity levels.
  • a spring (4F) is provided to retract the sheets to lower levels in the event of a decrease in intensity levels.
  • the compartment (5H) can contain a fluid which can produce an increase in pressure in a conduit (4B, 51), said increase is communicated to the axis of the regulating reflector (1E) through the thrust of a piston (4E ) which acts on said regulating reflector (1E).
  • the regulating elements (1E) are orientable by rotational movements around its axis, said movements being able to take place by variations in the pressure exerted by pistons (4E) that expand as the temperature increases by increasing the intensity of radiation received
  • the movement of the regulating reflectors (1E) occurs when the temperature increases and therefore the pressure in the compartment (5H). If there is little pressure in the compartment (5H), all the regulating reflectors (1E) adopt position 1 as the pistons (4E) do not apply enough pressure on the plates (4G) and, ultimately, on the axes.
  • each regulatory reflector element (1E) can have different intensity level graduations.
  • the wavelength classifier and radiation intensity regulator system is configured such that the classified and regulated radiation leaving the regulating reflector (1E) is directed towards a processing zone comprising optimized receiver elements (5B) for the use of said specific spectrum of electromagnetic wavelengths.
  • these could be the same as those used in the classifying reflectors (ID) since they are the same wavelengths of the incident radiation.
  • the inner faces of these regulatory reflector elements (1E) are very reflective in the corresponding wavelengths.
  • the regulating reflectors (1E) can be provided with cooling circuits (6A, 6B, 6C) connectable to cooling means such as those shown in Figure 6, in which a fluid is circulated inside the reflectors.
  • cooling circuits (6A, 6B, 6C) connectable to cooling means such as those shown in Figure 6, in which a fluid is circulated inside the reflectors.
  • these regulating reflector elements (1E) can be very variable in number, even the sorting and regulating box that contains all the reflector sets (ID, 1E) can provide spaces (8F) for inclusion of a variable number of regulatory reflector elements (1E).
  • Each regulatory reflector element (1E) can have different intensity level graduations and different fluids can also circulate. That is, in each regulating reflector element (1E) a fluid adapted to the particular operating conditions of said element can circulate.
  • the wavelength classifier and radiation intensity regulator system may be provided with connection means for performing the vacuum inside.
  • the assembly can have the vacuum inside to avoid radiation absorption, preservation of the devices etc.
  • the wavelength classifier and radiation intensity regulator system may be constructed such that the walls of the container containing the system are equipped with cooling circuits.
  • All the cooling circuits, the prisms (ID), the classifier reflectors (IB) and regulators (1E) and the container walls, can be interconnected to unify them or take advantage of them in Stirling engines of low / medium temperature or exchangers to produce their use in electric generators.
  • the invention allows the classification of any incident electromagnetic radiation with greater or lesser precision and with greater or lesser intensity to be used in specific receiving elements (5B) to take advantage of that determined electromagnetic wavelength of said radiation.
  • outputs to receiving elements formed by: - silicon photovoltaic cells with wavelengths from 900 nm to 1100 nm and with concentration and intensity levels of 100 to 1100 soles, divided into 10 intensity levels of 100 soles each division.
  • wavelength classifier and radiation intensity regulator system as a test system for the different receivers (5B) using direct radiation or solar simulators to calculate the optimal concentrations and intensities of a given range of wavelengths
  • the radiation classification functionality separately is useful for many applications that comprise the regulatory elements (1E) and their corresponding orientation elements, being confined within a single independent container. Intensity regulation without prior wavelength classification is also useful in many receiving devices, whether photovoltaic cells or thermal receivers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The wavelength classification and radiation-intensity regulating system can be used to precisely classify each wavelength of incident radiation, in particular concentrated solar radiation, and to control intensity on an energy utilization receiver. The classification is controlled by making the radiation incident on transparent elements, preferably optical prisms, that separate the beams into the different wavelengths thereof, redirecting each wavelength towards a pre-determined zone. Classification reflectors are provided in each zone, which can rotate and redirect the pre-determined radiation onto a pre-determined target, on which intensity-regulating reflectors are disposed. Said reflectors reflect the radiation towards the utilization zone so that it is processed by a pre-determined receiving device which processes the pre-determined wavelength range and the pre-determined intensity-level intervals in an optimized manner, both being directed towards the receiving device in a controlled manner,.

Description

SISTEMA CLASIFICADOR DE LONGITUDES DE ONDA Y REGULADOR DE CLASSIFIER SYSTEM OF WAVE LENGTHS AND REGULATOR OF
INTENSIDAD DE LA RADIACIÓN RADIATION INTENSITY
Campo técnico de la invención Technical Field of the Invention
El campo de aplicación de la invención es la clasificación de longitudes de onda y regulación de la intensidad de la radiación en general y radiación solar concentrada en particular.  The field of application of the invention is the classification of wavelengths and regulation of the intensity of radiation in general and concentrated solar radiation in particular.
Tras dicha clasificación y regulación, el siguiente paso y como consecuencia de las mismas es el óptimo aprovechamiento de la energía solar y el de la optimización de su conversión en energía eléctrica por medio de dispositivos como por ejemplo células fotovoltaicas, receptores térmicos para la generación termoeléctrica, dispositivos fotoelectroquímicos de desinfección de aguas, dispositivos conversores de longitudes de onda de radiación, dispositivos térmicos así como dispositivos de generación de hidrógeno, tanto mediante procesos a altas temperaturas y/o fotoelectroquímicos. After said classification and regulation, the next step and as a consequence thereof is the optimal use of solar energy and the optimization of its conversion into electric energy by means of devices such as photovoltaic cells, thermal receivers for thermoelectric generation , photoelectrochemical water disinfection devices, radiation wavelength converting devices, thermal devices as well as hydrogen generation devices, both through high temperature processes and / or photoelectrochemicals.
Estado de la técnica State of the art
El espectro electromagnético es muy amplio, en particular, la radiación solar cubre diversas longitudes de onda que van desde longitudes de onda cortas, como la radiación ultravioleta, hasta longitudes de onda largas, como la radiación infrarroja. Ambos extremos de dicha radiación solar no son captados por el ojo humano.  The electromagnetic spectrum is very wide, in particular, solar radiation covers various wavelengths ranging from short wavelengths, such as ultraviolet radiation, to long wavelengths, such as infrared radiation. Both ends of said solar radiation are not captured by the human eye.
En general si un material transparente se irradia con un haz de luz con determinado ángulo de incidencia éste es descompuesto en longitudes de onda ultravioletas, violetas, azules, verdes, amarillos, rojos e infrarrojos. In general, if a transparent material is irradiated with a beam of light with a certain angle of incidence, it is broken down into ultraviolet, violet, blue, green, yellow, red and infrared wavelengths.
La gama de longitudes de onda que llegan a la superficie terrestre va de 300nm a 3000nm. La luz visible cubre el rango de frecuencias desde 380 nm del color violeta hasta 770nm del color rojo. Se estima que la luz visible por el ojo humano representa un 50% de la energía total de la radiación solar que llega a la superficie terrestre. The range of wavelengths that reach the earth's surface ranges from 300nm to 3000nm. Visible light covers the frequency range from 380 nm of the violet color to 770nm of the red color. It is estimated that the light visible by the human eye represents 50% of the total energy of the solar radiation that reaches the earth's surface.
Con el fin de aumentar el rendimiento de las células solares se están fabricando células llamadas multi-unión que consisten en superposición de diferentes láminas sensibles a las diferentes longitudes de onda para aumentar el rendimiento. Estas tienen el inconveniente de que la superposición de diferentes láminas de diferentes materiales produce una cierta sombra en las que se encuentran debajo, las uniones entre diferentes materiales, así como el elevado coste que supone su fabricación. In order to increase the performance of solar cells, cells called multi-junction are being made, which consist of overlapping different sheets sensitive to different wavelengths to increase performance. These have the disadvantage that the superposition of different sheets of different materials produces a certain shadow in which they are underneath, the unions between different materials, as well as the high cost of their manufacture.
Se estima que las células multi-unión tienen un coste 100 veces superior a las convencionales. It is estimated that multi-junction cells have a cost 100 times higher than conventional ones.
Por otra parte se conoce que la conversión eléctrica de las células fotovoltaicas depende tanto de las longitudes de onda como de las intensidades con las que son irradiadas. Para que se produzca el efecto de conversión fotovoltaica la energía del fotón tiene que ser suficiente para superar la banda prohibida (bandgap) y llegar desde la banda de valencia a la de conducción. La energía del fotón viene determinada exclusivamente por su longitud de onda. La longitud de onda del fotón determina su profundidad de alcance, siendo las longitudes de onda cortas frenadas antes que las largas. Cada material tiene su correspondiente nivel energético de banda prohibida. Si la energía del fotón no es suficiente para superar la banda prohibida pasa a través del semiconductor y no es absorbido, produciéndose la pérdida de dicha radiación. Si la energía del fotón es mayor o igual que la energía de bandgap del material, se produce la absorción del fotón. Si es mayor que la necesaria para superar el bandgap del material, la energía sobrante es transformada en mayor o menor cantidad de energía calorífica dependiendo del material semiconductor. On the other hand it is known that the electrical conversion of photovoltaic cells depends on both wavelengths and the intensities with which they are irradiated. In order for the photovoltaic conversion effect to occur, the photon energy must be sufficient to overcome the prohibited band (bandgap) and arrive from the valence band to the conduction band. The photon's energy is determined exclusively by its wavelength. The photon wavelength determines its depth of reach, with short wavelengths being braked before long ones. Each material has its corresponding banned band energy level. If the energy of the photon is not enough to overcome the prohibited band, it passes through the semiconductor and is not absorbed, causing the loss of said radiation. If the photon energy is greater than or equal to the bandgap energy of the material, photon absorption occurs. If it is greater than that necessary to overcome the bandgap of the material, the excess energy is transformed into a greater or lesser amount of heat energy depending on the semiconductor material.
Se conoce que las bandas prohibidas de cada uno de los materiales semiconductores y sus posibles combinaciones es muy dispar, así como que existen semiconductores de banda prohibida directa y de banda prohibida indirecta. El arseniuro de galio (GaAs) es de banda prohibida directa y el silicio es de banda prohibida indirecta. Esto influye en que tenga las curvas de coeficientes de absorción de las distintas longitudes de onda con perfiles diferentes, siendo en el silicio de banda prohibida indirecta muy proporcional a las longitudes de onda y por el contrario en el GaAs se produce al entrar en longitudes de onda que superan el bandgap un fuerte incremento de la absorción de fotones. It is known that the prohibited bands of each of the semiconductor materials and their possible combinations is very different, as well as that there are semiconductors of direct prohibited band and indirect prohibited band. Gallium arsenide (GaAs) is a direct prohibited band and silicon is an indirect prohibited band. This influences that it has the curves of absorption coefficients of the different wavelengths with different profiles, being in the indirect prohibited band silicon very proportional to the wavelengths and on the contrary in the GaAs it occurs when entering wavelengths of wave that exceed the bandgap a strong increase in photon absorption.
Se conoce que la recombinación en las células fotovoltaicas puede ser de distintos tipos y que esto afecta al nivel de temperatura que alcanza la célula en los excesos de energía de los fotones que superan la banda prohibida. Se conoce que la densidad energética del espectro solar no es proporcional, estando concentrado en el espectro visible 50% de la energía de la totalidad del espectro. It is known that recombination in photovoltaic cells can be of different types and that this affects the level of temperature reached by the cell in the excess energy of the photons that exceed the prohibited band. It is known that the energy density of the solar spectrum is not proportional, 50% of the energy of the entire spectrum being concentrated in the visible spectrum.
Por otra parte se conoce que el diseño de los receptores térmicos de generación termoeléctrica están muy afectados en su optimización por la variación de los niveles de intensidad de radiación que se pueden producir al cambiar las condiciones climáticas en un momento dado. On the other hand it is known that the design of thermoelectric generation thermal receivers are greatly affected in their optimization by the variation in the levels of intensity of radiation that can occur when changing climatic conditions at a given time.
La descomposición de la radiación solar mediante prismas ópticos es también conocida. The decomposition of solar radiation by optical prisms is also known.
Son también conocidas las configuraciones en forma de un receptor térmico de energía solar de utilización en sistemas concentradores para la utilización de la energía térmica. Se utilizan unos prismas ópticos que descomponen la radiación solar térmica recibida en al menos dos zonas térmicas con el objetivo de conseguir la división de la radiación térmica para evitar que las longitudes de onda mayores emitidas por el cuerpo receptor, mayores que las que inciden sobre dicha zona, abandonen dicha zona. Este sistema se basa en que un cuerpo muy caliente emite radiación que puede ser superior a la recibida. En las paredes del receptor se crean unos circuitos de fluidos para aprovechar adecuadamente la radiación térmica. The configurations in the form of a solar thermal receiver for use in concentrating systems for the use of thermal energy are also known. Optical prisms are used that decompose the solar thermal radiation received in at least two thermal zones in order to achieve the division of the thermal radiation to prevent the longer wavelengths emitted by the receiving body, greater than those that affect said zone, leave that zone. This system is based on the fact that a very hot body emits radiation that can be higher than the one received. Fluid circuits are created on the walls of the receiver to properly take advantage of thermal radiation.
El documento US 4377154 describe un colector solar en que las superficies de recepción están formadas por una serie de prismas y espejos, de tal forma que las caras de los prismas y los espejos rotan para seguir los rayos solares mediante sistemas activos de movimiento. El documento se centra principalmente en el detalle del seguimiento de la posición del sol. Estos prismas descomponen la radiación incidente en dos zonas, infrarroja y ultravioleta, en las cuales directamente o través de reflectores dirigidos a otras zonas hacen que la zona ultravioleta pueda irradiar sobre células fotovoltaicas, consiguiendo así aislar la radiación infrarroja que puede irradiar sobre dispositivos térmicos. Este documento no especifica una posible forma de hacer llegar al dispositivo los haces de luz de una manera concentrada, ni la descomposición completa y detallada del espectro solar, ni el control de la intensidad de cada longitud de onda. Existen además otros documentos en los que se menciona la utilización, en sus caracterizaciones o particularizaciones, la posibilidad de utilización de los prismas ópticos para la descomposición de la radiación solar, por ejemplo acoplando al dispositivo básico unos prismas descomponedores de radiación. Otras invenciones se caracterizan por elementos receptores de luz los cuales pueden comprender conjuntos independientes formados cada uno de ellos por un colimador, un difractor y una célula optimizada a distintos espectros de luz. Estas invenciones mencionan la posible descomposición de la radiación incidente pero no la desarrollan concreta y detalladamente. Document US 4377154 describes a solar collector in which the reception surfaces are formed by a series of prisms and mirrors, such that the faces of the prisms and mirrors rotate to follow the sun's rays through active motion systems. The document focuses mainly on the detail of tracking the position of the sun. These prisms break down the incident radiation into two zones, infrared and ultraviolet, in which directly or through reflectors directed to other areas, the ultraviolet zone can radiate on photovoltaic cells, thus isolating the infrared radiation that can radiate on thermal devices. This document does not specify a possible way to deliver the beams of light to the device in a concentrated manner, nor the complete and detailed decomposition of the solar spectrum, nor the control of the intensity of each wavelength. There are also other documents that mention the use, in their characterizations or particularizations, of the possibility of using optical prisms for the decomposition of solar radiation, for example by coupling radiation decomposing prisms to the basic device. Other inventions are characterized by light receiving elements which can comprise independent assemblies each formed by a collimator, a diffractor and a cell optimized to different light spectra. These inventions mention the possible decomposition of the incident radiation but do not develop it concretely and in detail.
En la actualidad los sistemas comercializados se basan en aumentar la eficiencia con altos coeficientes de conversión eléctrica mediante células de última generación utilizando la concentración solar o los que buscan bajos costes de células con menores eficiencias. En la conversión termoeléctrica se están comercializando principalmente dispositivos cilindro-parabólicos y grandes huertos solares con helióstatos. Las células multi-unión se basan en la utilización del espectro solar de una manera diferenciada. At present, commercialized systems are based on increasing efficiency with high electrical conversion coefficients by means of last generation cells using solar concentration or those looking for low costs of cells with lower efficiencies. In the thermoelectric conversion, mainly parabolic trough devices and large solar orchards with heliostats are being commercialized. Multi-junction cells are based on the use of the solar spectrum in a differentiated way.
Sumario Summary
El objetivo en el aprovechamiento de la energía solar es llegar al menor coste de generación por Kwh posible. Esto viene determinado por el coste de las instalaciones y por los niveles de eficiencia en la conversión eléctrica.  The objective in the use of solar energy is to reach the lowest generation cost per Kwh possible. This is determined by the cost of the facilities and the levels of efficiency in electrical conversion.
La presente invención mejora estos rendimientos actuales y, con ello, soluciona los problemas del estado de la técnica ya que: The present invention improves these current yields and thereby solves the problems of the state of the art since:
poder ir variando las diferentes longitudes de onda recibidas y los niveles de intensidad irradiados, determinando de esta forma las condiciones en las que se consigue el rendimiento óptimo  to be able to vary the different wavelengths received and the irradiated intensity levels, thus determining the conditions in which the optimum performance is achieved
permite la eficiente irradiación/iluminación de los dispositivos receptores (5B), ya sean fotovoltaicos, térmicos u otros, sólo con determinadas longitudes de onda y con ciertos niveles de intensidad previamente determinados  it allows the efficient irradiation / illumination of the receiving devices (5B), whether photovoltaic, thermal or other, only with certain wavelengths and with certain intensity levels previously determined
facilita que dichos receptores (5B) se puedan optimizar para unas condiciones de recepción determinadas pudiendo alcanzar niveles de superconcentración de la radiación al evitar longitudes no convenientes o no útiles, las cuales puedan ser utilizadas por otros dispositivos que sí la puedan aprovechar óptimamente it facilitates that said receivers (5B) can be optimized for certain reception conditions being able to reach levels of radiation superconcentration by avoiding inconvenient lengths or not useful, which can be used by other devices that can take advantage of it optimally
permite grandes reducciones de costes así como que los receptores funcionen en un modo óptimo. Asimismo la utilización conjunta de varios de estos receptores (5B) aprovecha la totalidad energética del conjunto de frecuencias que configuran la radiación solar  it allows great cost reductions as well as the receivers to work in an optimal way. Likewise, the joint use of several of these receivers (5B) takes advantage of the energy totality of the set of frequencies that configure solar radiation
permite cambiar la configuración de los dispositivos para acoplarlos a distintas composiciones de dispositivos receptores (5B) de aprovechamiento dependiendo de los usos principales que se busquen  allows to change the configuration of the devices to couple them to different compositions of receiving devices (5B) of use depending on the main uses that are sought
consigue el funcionamiento estable de los dispositivos receptores (5B) independientemente de los niveles de radiación en condiciones ambientales cambiantes y la fácil catalogación de los distintos dispositivos receptores (5B).  it achieves the stable operation of the receiving devices (5B) regardless of the radiation levels in changing environmental conditions and the easy cataloging of the different receiving devices (5B).
Descripción de los dibujos Description of the drawings
FIGURA 1. VISTA GENERAL. CAJA CLASIFICADORA Y REGULADORA DE FIGURE 1. OVERVIEW. CLASSIFIER AND REGULATORY BOX
LA RADIACIÓN.  THE RADIATION.
1 A. Conductos radiación incidente.  1 A. Incident radiation ducts.
IB. Elemento transparente/ prisma óptico.  IB. Transparent element / optical prism.
2A. Medios de orientación de los reflectores clasificadores (ID).  2A. Means of orientation of the classifying reflectors (ID).
ID. Reflectores clasificadores orientables.  ID. Adjustable classifying reflectors.
IE. Reflectores reguladores orientables.  IE. Adjustable regulating reflectors.
IF. Longitudes de onda 3000nm a 1920nm y 1560 a 1200nm. Nivel de intensidad 1.  IF. Wavelengths 3000nm at 1920nm and 1560 at 1200nm. Intensity level 1.
IG. Longitudes de onda de 1920nm a 1560nm. Nivel de intensidad 2  IG. Wavelengths from 1920nm to 1560nm. Intensity level 2
IH. Longitudes de onda de 1200nm a 840nm. Nivel de intensidad 3.  IH Wavelengths from 1200nm to 840nm. Intensity level 3.
II. Longitudes de onda de 840nm a 660nm. Nivel de intensidad 3.  II. Wavelengths from 840nm to 660nm. Intensity level 3.
1J. Longitudes de onda de 660nm a 300nm. Nivel de intensidad 5.  1J. Wavelengths from 660nm to 300nm. Intensity level 5.
1K. Radiación incidente sobre elemento receptor de aprovechamiento (5B).  1K Radiation incident on utilization receiver element (5B).
FIGURA 2. REFLECTORES CLASIFICADORES ORIENTABLES. FIGURE 2. ORIENTABLE CLASSIFIER REFLECTORS.
2A. Medios de orientación de los reflectores clasificadores (ID).  2A. Means of orientation of the classifying reflectors (ID).
2B. Rueda: posición 1. Enfoca radiación sobre elemento reflector regulador 1. 2C. Rueda: posición 3. Enfoca radiación sobre elemento reflector regulador 3.2B. Wheel: position 1. Focuses radiation on regulating reflector element 1. 2 C. Wheel: position 3. Focus radiation on regulatory reflector element 3.
2D. Rueda: posición 5. Enfoca radiación sobre elemento reflector regulador 5.2D. Wheel: position 5. Focuses radiation on regulating reflector element 5.
2E. Estructura de la caja. 2E. Box structure
2F. Vista superior del reflector.  2F. Top view of the reflector.
2G. Vista lateral del reflector.  2 G. Side view of the reflector.
2H. Reflector longitudes de onda de 2820nm a 3000nm.  2H. Reflector wavelengths from 2820nm to 3000nm.
21. Reflector longitudes de onda de 2640nm a 2820nm.  21. Reflector wavelengths from 2640nm to 2820nm.
2J. Reflector longitudes de onda de 2460nm a 2640nm.  2J. Reflector wavelengths from 2460nm to 2640nm.
2K. Reflector longitudes de onda de 1740nm a 1920nm.  2K Reflector wavelengths from 1740nm to 1920nm.
2L. Reflector longitudes de onda de 1200nm a 1380nm.  2L. Reflector wavelengths from 1200nm to 1380nm.
2M. Reflector longitudes de onda de 480nm a 660nm.  2M. Reflector wavelengths from 480nm to 660nm.
2N. Reflector longitudes de onda de 300nm a 480nm.  2N. Reflector wavelengths from 300nm to 480nm.
FIGURA 3. ESQUEMA MECANISMO REGULADOR DE LA INTENSIDAD. FIGURE 3. INTENSITY REGULATORY MECHANISM SCHEME.
3A. Radiación de determinadas longitudes de onda enfocada por los reflectores reguladores (1E).  3A. Radiation of certain wavelengths focused by the regulating reflectors (1E).
3B. Nivel 1 intensidad.  3B. Level 1 intensity.
3C. Nivel 2 intensidad.  3C. Level 2 intensity.
3D. Nivel 3 intensidad.  3D Level 3 intensity.
3E. Nivel 4 intensidad.  3E. Level 4 intensity.
3F. Nivel 5 intensidad.  3F. Level 5 intensity
3G. Posiciones de los reflectores dependiendo del nivel de intensidad.  3G Positions of the reflectors depending on the intensity level.
FIGURA 4. MECANISMO REGULACIÓN INTENSIDAD. DETALLE FIGURE 4. INTENSITY REGULATION MECHANISM. DETAIL
MOVIMIENTO POR PRESIÓN.  PRESSURE MOVEMENT.
4 A. Radiación incidente de los reflectores clasificadores y reflejada a las diferentes zonas de niveles de intensidad.  4 A. Incident radiation of the classifying reflectors and reflected to the different intensity level zones.
4B. Tubo comunicador presión.  4B. Pressure communicator tube.
4C. Ejes de los reflectores reguladores (1E).  4C. Shafts of the regulating reflectors (1E).
1E. Reflectores reguladores orientables.  1E. Adjustable regulating reflectors.
4E. Pistón empuje de presión.  4E. Piston push pressure.
4F. Muelle para el retroceso posición intensidad nivel 1.  4F. Spring for recoil level 1 intensity position.
4G. Lámina tope de ejecución del movimiento rotativo sobre el eje.  4G Stop plate for executing the rotary movement on the shaft.
4H. Posición nivel de intensidad 5. 41. Posición nivel de intensidad 4. 4H. Intensity level position 5. 41. Intensity level position 4.
4J. Posición nivel de intensidad 3.  4J. Intensity level position 3.
4K. Posición nivel de intensidad 2.  4K Intensity level position 2.
4L. Posición nivel de intensidad 1.  4L. Intensity level position 1.
4M. Reflector regulador fijo al nivel de intensidad 1.  4M. Fixed regulator reflector at intensity level 1.
4N. Estructura recinto zona reguladora.  4N. Structure enclosure regulatory zone.
FIGURA 5. VISTA MECANISMO REGULACIÓN INTENSIDAD. FIGURE 5. INTENSITY REGULATION MECHANISM VIEW.
5A. Radiación determinadas longitudes de onda enfocada por los reflectores clasificadores.  5A. Radiation determined wavelengths focused by the classifying reflectors.
5B. Elemento receptor de aprovechamiento de la radiación.  5B. Receiving element of radiation exploitation.
5C. Nivel 1 intensidad de radiación.  5C. Level 1 radiation intensity.
5D. Nivel 3 intensidad de radiación.  5 D. Level 3 intensity of radiation.
5E. Nivel 5 intensidad de radiación.  5E. Level 5 radiation intensity.
5F. Medios de orientación según nivel de intensidad de radiación recibida.  5F. Means of orientation according to the level of radiation intensity received.
1E. Reflectores reguladores orientables.  1E. Adjustable regulating reflectors.
5H. Compartimento con fluido que aumenta presión por elevación de temperatura.  5H. Compartment with fluid that increases pressure by temperature rise.
51. Conducto comunicación presión a los ejes de los reflectores.  51. Pressure communication duct to the reflector axes.
FIGURA 6. DETALLE DE LOS MEDIOS DE REFRIGERACIÓN DE LOS FIGURE 6. DETAIL OF THE COOLING MEANS OF THE
REFLECTORES CLASIFICADORES Y DE LOS REGULADORES. 6 A. Medios de refrigeración / Entrada fluido enfriado.  REFLECTORS CLASSIFIERS AND REGULATORS. 6 A. Cooling media / Chilled fluid inlet.
6B. Medios de refrigeración / Salida fluido calentado.  6B. Cooling media / Heated fluid outlet.
6C. Medios de refrigeración / Reflectores huecos.  6C. Cooling media / Hollow reflectors.
6D. Medios de orientación de los reflectores (ID, 1E).  6D. Means of orientation of the reflectors (ID, 1E).
FIGURA 7. CIRCUITO DEL FLUIDO DE REFRIGERACIÓN DEL PRISMA FIGURE 7. PRISON COOLING FLUID CIRCUIT
ÓPTICO.  OPTICAL.
IB. Elemento transparente/ prisma óptico.  IB. Transparent element / optical prism.
7B. Entrada del fluido enfriado.  7B. Chilled fluid inlet.
7C. Salida del fluido calentado.  7C. Heated fluid outlet.
7D. Compartimento hueco circulación de fluido. FIGURA 8. VISTA CON NÚMERO DE PRISMAS Y ELEMENTOS REGULADORES VARIABLE. 7D. Hollow fluid circulation compartment. FIGURE 8. VIEW WITH NUMBER OF PRISMS AND VARIABLE REGULATORY ELEMENTS.
IB. Elemento transparente/ prisma óptico.  IB. Transparent element / optical prism.
ID. Reflectores clasificadores orientables.  ID. Adjustable classifying reflectors.
IE. Reflectores reguladores orientables.  IE. Adjustable regulating reflectors.
5B. Elemento receptor de aprovechamiento de la radiación.  5B. Receiving element of radiation exploitation.
8E. Elementos reguladores sin radiación incidente y sin acoplamiento de receptores.  8E. Regulatory elements without incident radiation and without receiver coupling.
8F. Huecos disponibles para acoplamiento de elementos reguladores.  8F. Gaps available for coupling regulatory elements.
Descripción de los modos de realización Description of the embodiments
El sistema de la invención se basa en la descomposición y clasificación de todo el espectro electromagnético de la radiación solar incidente y la posterior utilización de cada longitud de onda en zonas del sistema dispositivos optimizadas para esa determinada longitud de onda, consiguiendo así controlar también la intensidad en cada uno de los elementos receptores (5B).  The system of the invention is based on the decomposition and classification of the entire electromagnetic spectrum of the incident solar radiation and the subsequent use of each wavelength in areas of the system optimized devices for that particular wavelength, thus also controlling the intensity in each of the receiving elements (5B).
El sistema clasificador de longitudes de onda y regulador de intensidad de la radiación funciona de forma que los haces de radiación (normalmente ya concentrados por fases de captación, conducción y concentración previas en conductos ópticos (1A)) son dirigidos sobre al menos una línea de elemento transparente (IB) que los dispersa y descompone de forma que cada longitud de onda es situada sobre diferentes reflectores clasificadores (ID) para que al menos un reflector clasificador (ID) orientable pueda redirigir cada longitud de onda incidente en él a una zona objetivo en la que se disponen al menos un elemento reflector regulador (1E) de la intensidad de la radiación orientable de forma que la radiación clasificada y regulada se pueda dirigir hacia una zona de procesado de dicha radiación. The wavelength classifier and radiation intensity regulator system operates in such a way that the radiation beams (normally already concentrated by previous acquisition, conduction and concentration phases in optical ducts (1A)) are directed over at least one line of transparent element (IB) that disperses and decomposes them so that each wavelength is placed on different classifying reflectors (ID) so that at least one orientable classifying reflector (ID) can redirect each incident wavelength in it to a target area wherein at least one regulating reflector element (1E) of the intensity of the adjustable radiation is arranged so that the classified and regulated radiation can be directed towards a processing zone of said radiation.
Los elementos transparentes (IB), preferiblemente prismas ópticos, descomponen los haces de luz porque cada longitud de onda que conforma la radiación solar, cambiando de velocidad diferentemente dependiendo del medio que este atravesando, de forma que las longitudes de onda más largas se dispersan menos que las cortas. Esta variación de velocidad de cada longitud de onda depende del índice de refracción del material que la radiación esté atravesando. Dependiendo del ángulo de incidencia del haz sobre el prisma se produce más o menos dispersión de las distintas longitudes de onda. The transparent elements (IB), preferably optical prisms, decompose the light beams because each wavelength that forms the solar radiation, changing speed differently depending on the medium that is passing through, so that the longer wavelengths are less dispersed You cut them. This speed variation of each wavelength depends on the index of refraction of the material that the radiation is going through. Depending on the angle of incidence of the beam on the prism, more or less dispersion of the different wavelengths occurs.
La dispersión del haz de luz viene determinada únicamente por ángulo de incidencia y el índice de refracción del medio. Por tanto para poder dispersarla no es necesario utilizar un elemento en forma de prisma, pudiéndose dispersar con multitud de formas y materiales. The scattering of the light beam is determined solely by the angle of incidence and the refractive index of the medium. Therefore, in order to disperse it, it is not necessary to use an element in the form of a prism, being able to disperse with a multitude of shapes and materials.
Por tanto para producir la clasificación de las diferentes longitudes de onda se necesita que la radiación incida sobre los elementos transparentes (IB), preferiblemente prismas ópticos en forma de haces de luz de forma que, con ciertos ángulos de incidencia, se produzca la dispersión hacia determinadas zonas, dependiendo de la longitud de onda. Therefore, to produce the classification of the different wavelengths it is necessary that the radiation affects the transparent elements (IB), preferably optical prisms in the form of light beams so that, with certain angles of incidence, the dispersion towards certain areas, depending on the wavelength.
Un aspecto importante de esta descomposición es que tiene que tener en cuenta todas las longitudes de onda de la radiación solar que son recibidas en la superficie terrestre: desde 300 nm de los ultravioletas a 3000 nm de los infrarrojos, incluyendo por tanto las no visibles. An important aspect of this decomposition is that it has to take into account all the wavelengths of the solar radiation that are received on the Earth's surface: from 300 nm of the ultraviolet to 3000 nm of the infrared, therefore including those not visible.
La forma física de los elementos transparentes (IB) dispersadores/descomponedores de la radiación podría ser muy diversa. La forma más simple sería como la mostrada en las distintas Figuras 1, 7 y 8, mediante prismas ópticos (IB). La descomposición/ clasificación de las longitudes de onda podría ser mayor o menor, dependiendo de los dispositivos elementos receptores (5B) en los que quisiéramos procesar la radiación. The physical form of the transparent elements (IB) radiation dispersers / decomposers could be very diverse. The simplest form would be as shown in the different Figures 1, 7 and 8, using optical prisms (IB). The decomposition / classification of wavelengths could be greater or lesser, depending on the receiving element devices (5B) in which we would like to process the radiation.
El sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores tiene elementos transparentes (IB) que se disponen paralelamente formando varias líneas, orientados con diferentes ángulos para situar las diferentes longitudes de onda salientes sobre las mismas zonas físicas del sistema. The wavelength classifier and radiation intensity regulator system according to any of the preceding claims has transparent elements (IB) that are arranged in parallel forming several lines, oriented with different angles to position the different outgoing wavelengths on the same areas system physics.
En la Figura 1 se puede apreciar una disposición con un único prisma óptico (IB) longitudinal con multitud de conductos ópticos en línea (1A) que hacen incidir con un cierto ángulo sobre el prisma óptico (IB) la radiación conducida por ellos. Hay que tener en cuenta que cada material tiene su propio índice de refracción y produce la dispersión en diferentes zonas físicas. En caso necesario se podría acoplar un circuito de refrigeración (7B, 7C, 7D) (Figura 7) de tal forma que el prisma tolere más concentración de radiación. En otra realización también se podría formar varias líneas de prismas (IB), como se puede apreciar en la Figura 8 la disposición de estos se realizaría con diferentes ángulos para conseguir situar las diferentes longitudes onda sobre las mismas zonas físicas. Figure 1 shows an arrangement with a single longitudinal optical prism (IB) with a multitude of in-line optical ducts (1A) that make the radiation conducted by them affect a certain angle on the optical prism (IB). Keep in mind that each material has its own refractive index and produces the dispersion in different physical areas. If necessary, a cooling circuit (7B, 7C, 7D) (Figure 7) could be coupled in such a way that the prism will tolerate more radiation concentration. In another embodiment, several prism lines (IB) could also be formed, as can be seen in Figure 8, the arrangement of these would be made at different angles to place the different wavelengths on the same physical areas.
Los materiales de fabricación a utilizar podrían ser variados. Mencionar que las características óptimas en la dispersión son los niveles de transparencia y de absortividad del material en todas las longitudes de onda y su comportamiento térmico. Mencionar a modo de ejemplo que en la dispersión existe vidrio borosilicato con transmitancias superiores al 90% en la casi totalidad del espectro solar y vidrios más resistentes a altas temperaturas como el vidrio de silicato alumínico. Adicionalmente puede ser conveniente incluir otro material que forme parte de la composición de los elementos transparentes/prismas ópticos (IB): el cuarzo, ya que puede tener ciertas utilidades en altas concentraciones conocida su alta temperatura de fusión. Se podría recubrir las caras del prisma con capas antirreflectantes a fin de evitar reflexiones. The manufacturing materials to be used could be varied. Mention that the optimum characteristics in the dispersion are the levels of transparency and absorptivity of the material in all wavelengths and its thermal behavior. Mention by way of example that in the dispersion there is borosilicate glass with transmittances greater than 90% in almost the entire solar spectrum and glass more resistant to high temperatures such as aluminum silicate glass. Additionally it may be convenient to include another material that is part of the composition of the transparent elements / optical prisms (IB): quartz, since it can have certain utilities at high concentrations known its high melting temperature. The faces of the prism could be coated with anti-reflective layers in order to avoid reflections.
Los elementos/prismas transparentes (IB) pueden adoptar distintas formas: en longitudinal, en arco, en dos líneas superpuestas encarando las longitudes de onda más corta al centro, en círculos, etc. The transparent elements / prisms (IB) can take different forms: in longitudinal, in arc, in two superimposed lines facing the shortest wavelengths to the center, in circles, etc.
Haciendo pasar la radiación por el prisma (IB), ésta es descompuesta en sus diferentes longitudes de onda y dispersada, haciéndolas incidir sobre multitud de reflectores clasificadores (ID). La cantidad de reflectores clasificadores (ID) puede ser variable. En la Figura 1 se ha dividido la radiación desde 300 nm a 3000 nm en 15 partes iguales de 180 nm. Esta división se ha realizado sólo a efectos ilustrativos, pero podrían ser un número mayor o menor de divisiones. Las divisiones pueden tener amplitudes desiguales, por ejemplo, la radiación desde de 1900 nm a 3000 nm puede ser reflejada por un único reflector más ancho. Si los reflectores clasificadores (ID) incluyen gamas amplias de longitudes de onda de la radiación se pueden utilizar reflectores clasificadores (ID) cóncavos para poder hacer incidir esta radiación sobre elementos reflectores reguladores (1E) más estrechos. En la Figura 2 se puede apreciar el detalle de estos reflectores clasificadores (ID). En la Figura 2 se ha dividido la radiación también en 15 divisiones de 180 nm de longitudes de onda, como en la Figura 1. By passing the radiation through the prism (IB), it is decomposed in its different wavelengths and dispersed, causing them to influence a multitude of classifying reflectors (ID). The number of classifying reflectors (ID) can be variable. In Figure 1 the radiation from 300 nm to 3000 nm has been divided into 15 equal parts of 180 nm. This division has been made for illustrative purposes only, but could be a greater or lesser number of divisions. The divisions can have unequal amplitudes, for example, radiation from 1900 nm to 3000 nm can be reflected by a single wider reflector. If the classifying reflectors (ID) include broad ranges of radiation wavelengths, concave classifying reflectors (ID) can be used to make this radiation influence on narrower regulatory reflector elements (1E). In Figure 2 you can see the detail of these classifying reflectors (ID). In Figure 2 the radiation has also been divided into 15 divisions of 180 nm wavelengths, as in Figure 1.
Cada uno de los reflectores clasificadores (ID) es fijable sobre ejes de movimiento rotacional. Dichos ejes son a su vez fijables a medios de orientación (2A). En la realización preferida los ejes de los reflectores clasificadores (ID) están centrados con los ejes de los medios de orientación (2A) (ruedas, en la realización preferida) de los reflectores clasificadores (ID) con cuyo movimiento se puede reflejar esa determinada longitud de onda sobre los distintos elementos reflectores reguladores (1E). De esta forma, la invención permite la total libertad para la configuración de la clasificación de las distintas longitudes de onda de la radiación incidente proveniente de los conductos de radiación (1A). Each of the classifying reflectors (ID) is fixed on axes of rotational motion. These axes are in turn fixed to orientation means (2A). In the preferred embodiment, the axes of the classifying reflectors (ID) are centered with the axes of the orientation means (2A) (wheels, in the preferred embodiment) of the classifying reflectors (ID) whose movement can reflect that certain length wave on the different regulatory reflector elements (1E). In this way, the invention allows total freedom for the configuration of the classification of the different wavelengths of the incident radiation from the radiation ducts (1A).
Los medios o ruedas de orientación (2 A) de los reflectores clasificadores (ID) tienen unas referencias de posición para indicar sobre qué elemento reflector regulador (1E) de la intensidad enfoca. En las referencias 2B, 2C y 2D de la Figura 2 se puede apreciar que cada reflector clasificador (ID) individual tiene libertad de movimientos para la zona objetivo de enfoque, es decir, para enfocar en los distintos elementos reguladores de la intensidad (1E). En esta determinada disposición se han previsto 5 elementos reflectores reguladores (1E), por tanto la rueda de orientación (2 A) para dichas referencias 2B, 2C y 2D de la Figura 2, tiene esas 5 posibles posiciones determinando cierta libertad de movimiento. Los medios/ruedas de orientación (2 A) comprenden tantas referencias de posición (2B, 2C, 2D) como número de elementos reflectores reguladores (1E) tiene el sistema. The orientation means or wheels (2 A) of the classifying reflectors (ID) have position references to indicate which regulating reflector element (1E) of the intensity focuses on. In references 2B, 2C and 2D of Figure 2 it can be seen that each individual classifying reflector (ID) has freedom of movement for the focus area, that is, to focus on the different intensity regulating elements (1E) . In this particular arrangement, 5 regulatory reflector elements (1E) are provided, therefore the orientation wheel (2 A) for said references 2B, 2C and 2D of Figure 2, has those 5 possible positions determining certain freedom of movement. The orientation means / wheels (2 A) comprise as many position references (2B, 2C, 2D) as the number of regulating reflector elements (1E) the system has.
Los reflectores clasificadores (ID) se pueden orientar rotacionalmente de forma manual. El accionamiento de estas ruedas de orientación (2A) de los reflectores clasificadores (ID) se puede realizar bien manualmente o bien introduciendo dispositivos electrónicos que realicen dicha rotación. Adicionalmente se puede incluir varias configuraciones estándar de posición del conjunto de reflectores clasificadores (ID) para acoplarlas a los distintos elementos receptores (5B) de aprovechamiento de la radiación. Classifying reflectors (ID) can be rotated manually. The driving of these orientation wheels (2A) of the classifying reflectors (ID) can be done either manually or by introducing electronic devices that perform said rotation. In addition, several standard configurations of the set of classifying reflectors (ID) can be included to couple them to the different receiver elements (5B) for the use of radiation.
Los reflectores clasificadores (ID) también pueden dotarse de circuitos de refrigeración (6A, 6B, 6C) (Figura 6) conectables a medios de refrigeración, en los que los reflectores clasificadores (ID) tienen formas huecas de forma que permiten la circulación de un fluido por su interior, pudiendo también los ejes ser huecos para permitir el flujo del fluido a través de dichos ejes hacia los reflectores huecos (6C). Classifying reflectors (ID) can also be equipped with cooling circuits (6A, 6B, 6C) (Figure 6) that can be connected to cooling means, in which the reflectors Classifiers (ID) have hollow shapes that allow the circulation of a fluid inside, the axes can also be hollow to allow the flow of the fluid through said axes to the hollow reflectors (6C).
Los materiales de fabricación de reflectores huecos (6C), clasificadores (ID) o reguladores (1E), pueden ser muy variados. El material ha de estar muy pulido y reflejará muy bien longitudes de onda determinadas. El comportamiento térmico del material también es importante en niveles altos de concentración de la radiación. Existen materiales reflectantes como el aluminio pulido o evaporado que tienen niveles de reflexión altos en casi todo el espectro solar (temperatura de punto de fusión en 660°C) y otros como el tungsteno que tiene altos niveles de reflexión en las longitudes de onda larga, con un punto de fusión muy alto (3.400°C), la plata (961°C aproximadamente) y el acero inoxidable muy pulido (1500°C). Manufacturing materials for hollow reflectors (6C), classifiers (ID) or regulators (1E), can be varied. The material must be very polished and will reflect very well determined wavelengths. The thermal behavior of the material is also important at high levels of radiation concentration. There are reflective materials such as polished or evaporated aluminum that have high levels of reflection in almost the entire solar spectrum (melting point temperature at 660 ° C) and others such as tungsten that has high levels of reflection at long wavelengths, with a very high melting point (3,400 ° C), silver (approximately 961 ° C) and highly polished stainless steel (1500 ° C).
Para optimizar el comportamiento de los materiales tendremos en cuenta la posibilidad de hacer el vacío ya que éste afecta a los límites térmicos de los materiales así como al de los medios de refrigeración que se pudieran acoplar a estos elementos. To optimize the behavior of the materials we will take into account the possibility of making the vacuum since it affects the thermal limits of the materials as well as the cooling media that could be coupled to these elements.
En este punto del sistema ya tenemos la radiación clasificada en sus diferentes longitudes de onda y cada una de ellas enfocada en los distintos elementos reflectores reguladores (1E). At this point in the system we already have the radiation classified in its different wavelengths and each one focused on the different regulatory reflector elements (1E).
La regulación de la intensidad se realiza con elementos como los mostrados en la Figura 5. La radiación procedente de los elementos reflectores clasificadores (lD)incide en diferentes reflectores reguladores(lE), a los cuales se les permite cierto movimiento rotacional dependiendo del nivel de intensidad de la radiación, redirigiendo la radiación a zonas más o menos amplias de los elementos receptores (5B) de aprovechamiento de la radiación. The intensity regulation is carried out with elements such as those shown in Figure 5. The radiation from the classifying reflector elements (lD) affects different regulating reflectors (lE), which are allowed some rotational movement depending on the level of radiation intensity, redirecting radiation to more or less wide areas of the receiving elements (5B) of radiation exploitation.
En la Figura 3 se puede apreciar una disposición con 5 niveles de intensidad en la que los reflectores reguladores (1E) están situados en una posición de nivel de intensidad 2 (3G). Las diferentes posiciones de los reflectores reguladores (1E) en la Figura 3 dependen de los niveles de intensidad captados en el compartimento (5H). El primer reflector regulador (1E), situado en la Figura 3 el primero en la derecha arriba, no tiene movimiento rotacional ya que siempre, como mínimo, se ha previsto ese mínimo nivel de radiación. En el nivel de intensidad 1 todos los reflectores reguladores (1E) redirigen la radiación (3A) sobre la zona de nivel de intensidad 1 (3B). En el nivel de intensidad 2 (3C), el primer reflector dirige radiación sobre la zona de nivel de intensidad 1, (3B), el segundo reflector dirige la radiación sobre la zona de nivel de intensidad 2 (3C) y los 3 reflectores reguladores (1E) restantes redirigen la radiación sobre el nivel 1 (3B) y el nivel 2 de intensidad (3C). En el nivel de intensidad 3 (3D), el primer, segundo y tercer reflector regulador (1E) redirigen la radiación clasificada sobre las zonas nivel de intensidad 1, 2 y 3 respectivamente (3B, 3C, 3D) y el cuarto y quinto reflector reparten la radiación entre los niveles 1, 2 y 3. En el nivel de intensidad 4 (3E) los cuatro primeros reflectores reguladores (1E) redirigen la radiación sobre las 4 primeras zonas de niveles de intensidad respectivamente y el quinto reflector regulador (1E) la redirige proporcionalmente a esas cuatro zonas de niveles de intensidad. En el nivel 5 (3F) de intensidad todos los reflectores reguladores (1E) redirigen la radiación a su respectiva zona de nivel de intensidad, es decir, cada reflector regulador (1E) redirige la radiación que llega a él hacia cada una de las zonas (3B, 3C, 3D, 3E, 3F) respectivamente, es decir, en la Figura 3, el primer reflector regulador (1E) situado en el extremo derecho, hacia la zona 3B; el segundo reflector en ese orden, hacia la zona 3C; el tercero, hacia la 3D; el cuarto, hacia la zona 3E; y el quinto, hacia la zona 3F. De esta forma la posición de cada uno de los al menos un reflector regulador (1E) dependerá de los niveles de intensidad de radiación captada en el compartimento (5H). In Figure 3 an arrangement with 5 intensity levels can be seen in which the regulating reflectors (1E) are located in a position of intensity level 2 (3G). The different positions of the regulating reflectors (1E) in Figure 3 depend on the intensity levels captured in the compartment (5H). The first regulating reflector (1E), located in Figure 3, the first one on the upper right, has no rotational movement since that minimum level of radiation has always been provided at least. At intensity level 1 all the regulating reflectors (1E) redirect the radiation (3A) over the intensity level zone 1 (3B). At intensity level 2 (3C), the first reflector directs radiation over the intensity level zone 1, (3B), the second reflector directs radiation over the intensity level zone 2 (3C) and the 3 regulating reflectors (1E) remaining redirect radiation over level 1 (3B) and intensity level 2 (3C). At intensity level 3 (3D), the first, second and third regulatory reflector (1E) redirects the radiation classified on the intensity level zones 1, 2 and 3 respectively (3B, 3C, 3D) and the fourth and fifth reflectors distribute the radiation between levels 1, 2 and 3. At intensity level 4 (3E) the first four regulating reflectors (1E) redirect the radiation over the first 4 intensity level zones respectively and the fifth regulatory reflector (1E) Redirects them proportionally to these four zones of intensity levels. At level 5 (3F) of intensity all the regulating reflectors (1E) redirect the radiation to their respective intensity level zone, that is, each regulating reflector (1E) redirects the radiation that reaches it towards each of the zones (3B, 3C, 3D, 3E, 3F) respectively, that is, in Figure 3, the first regulator reflector (1E) located at the right end, towards zone 3B; the second reflector in that order, towards zone 3C; the third, towards 3D; the fourth, towards zone 3E; and the fifth, towards zone 3F. In this way the position of each of the at least one regulator reflector (1E) will depend on the intensity levels of radiation captured in the compartment (5H).
El movimiento rotacional de los reflectores reguladores (1E) se puede producir de diferentes formas. Una forma puede ser manual para, por ejemplo, probar el comportamiento de determinado elemento receptor a los diferentes niveles de intensidad. Así, los reflectores reguladores (1E) son orientables según un movimiento rotacional cuya posición (3G) determina la cantidad de radiación clasificada que recibe cada zona de nivel de intensidad del sistema (3B, 3C, 3D, 3E, 3F). The rotational movement of the regulating reflectors (1E) can be produced in different ways. One way can be manual to, for example, test the behavior of a certain receiving element at different intensity levels. Thus, the regulating reflectors (1E) are orientable according to a rotational movement whose position (3G) determines the amount of classified radiation that each intensity level zone of the system receives (3B, 3C, 3D, 3E, 3F).
Otra forma sería incluir mecanismos electrónicos de control que hicieran rotar los reflectores reguladores (1E) dependiendo del nivel de intensidad. De esta forma, los elementos reguladores (1E) son orientables por movimientos de rotación alrededor de su eje, dichos movimientos siendo controlados por mecanismos electrónicos de control de la intensidad de radiación recibida. Another way would be to include electronic control mechanisms that rotate the regulating reflectors (1E) depending on the intensity level. In this way, the Regulatory elements (1E) are orientable by rotational movements around its axis, said movements being controlled by electronic mechanisms for controlling the intensity of radiation received.
La forma preferida es la de incluir un circuito de presión por elevación de temperatura, como el mostrado en la Figura 4, en el que existe un compartimento (5H) en la zona en que hacen reflejar la radiación los reflectores reguladores (1E). Este compartimento (5H) puede contener un fluido que se calentaría y produciría un incremento de presión que se comunica a los ejes de los reflectores reguladores (1E) mediante un conducto (4B, 51) que produce el empuje de unos pistones (4E) situados al lado de los ejes de cada de los reflectores reguladores (1E). El movimiento de los pistones (4E) empuja un tope (4G) formado por una lámina unida al eje que con su movimiento hace rotar al eje y al reflector regulador (1E). Se ha previsto diferentes pestañas de tolerancia (4H, 41, 4J, 4K, 4L) de movimiento de esta lámina (4G) que producen que esta lámina (4G) puedan adoptar las posición correspondiente a los diferentes niveles de intensidad y no posiciones intermedias. The preferred way is to include a temperature rise pressure circuit, such as that shown in Figure 4, in which there is a compartment (5H) in the area where the reflector regulators (1E) reflect the radiation. This compartment (5H) may contain a fluid that would be heated and produce an increase in pressure that is communicated to the axes of the regulating reflectors (1E) through a conduit (4B, 51) that produces the thrust of pistons (4E) located next to the axes of each of the regulating reflectors (1E). The movement of the pistons (4E) pushes a stop (4G) formed by a blade attached to the shaft that rotates the shaft and the regulating reflector (1E) with its movement. Different tolerance tabs (4H, 41, 4J, 4K, 4L) of movement of this sheet (4G) are provided which produce that this sheet (4G) can adopt the position corresponding to the different intensity levels and not intermediate positions.
La lámina (4G) está ligada a medios elásticos para poder retroceder a niveles de pestañas (4H, 41, 4J, 4K, 4L) más bajos de tolerancia en caso de disminución de los niveles de intensidad. En la realización preferida se ha previsto un muelle (4F) para hacer retroceder las láminas a niveles más bajos en caso de disminución de los niveles de intensidad. The sheet (4G) is linked to elastic means to be able to go back to lower levels of eyelashes (4H, 41, 4J, 4K, 4L) in the event of a decrease in intensity levels. In the preferred embodiment, a spring (4F) is provided to retract the sheets to lower levels in the event of a decrease in intensity levels.
Es decir, el compartimento (5H) puede contener un fluido el cual puede producir un incremento de presión en un conducto (4B, 51), dicho incremento se comunica al eje del reflector regulador (1E) a través del empuje de un pistón (4E) que acciona sobre dicho reflector regulador (1E). De esta forma los elementos reguladores (1E) son orientables por movimientos de rotación alrededor de su eje, dichos movimientos pudiendo tener lugar por variaciones en la presión ejercida por pistones (4E) que se expanden al incrementar la temperatura por aumento de la intensidad de radiación recibida. That is, the compartment (5H) can contain a fluid which can produce an increase in pressure in a conduit (4B, 51), said increase is communicated to the axis of the regulating reflector (1E) through the thrust of a piston (4E ) which acts on said regulating reflector (1E). In this way the regulating elements (1E) are orientable by rotational movements around its axis, said movements being able to take place by variations in the pressure exerted by pistons (4E) that expand as the temperature increases by increasing the intensity of radiation received
Como se puede apreciar en la Figura 3, los grados de libertad de cada uno de los reflectores reguladores (1E) van amp liándose paulatinamente para permitir su mayor margen de rotación para producir la redirección de la radiación (3 A) sobre las distintas zonas de intensidad (3B, 3C, 3D, 3E, 3F) cada vez más amplias. As can be seen in Figure 3, the degrees of freedom of each of the regulatory reflectors (1E) are gradually being expanded to allow greater Margin of rotation to produce the redirection of the radiation (3 A) over the different intensity zones (3B, 3C, 3D, 3E, 3F) increasingly wide.
El movimiento de los reflectores reguladores (1E) se produce al incrementarse la temperatura y por tanto la presión en el compartimento (5H). Si existe poca presión en el compartimento (5H) todos los reflectores reguladores (1E) adoptan la posición 1 al no ejercer suficiente presión los pistones (4E) sobre las láminas (4G) y, en definitiva, sobre los ejes. A medida que se incrementa la intensidad de la radiación y por tanto la temperatura y por tanto la presión, los pistones (4E) empujan las láminas (4G) y éstas hacen rotar los reflectores a las posiciones siguientes a la 1 o de reposo (4L), es decir hacia los niveles de intensidad 2, 3, 4 y 5 (3C, 3D, 3E, 3F) y los distintos niveles de pestaña (4H, 41, 4J, 4K) hasta llegar al límite máximo de libertad de movimiento de cada reflector regulador (1E), el cual se produce cuando la lámina (4G) intenta superar la posición de nivel de intensidad máximo para ese reflector regulador (1E). De esta forma, en su movimiento, el pistón (4E) empuja una lámina (4G) unida al eje, el movimiento de dicha lámina (4G) haciendo rotar al eje y por consiguiente al reflector regulador (1E) sujeto a dicho eje. En general cada elemento reflector regulador (1E) puede tener graduaciones de niveles de intensidad diferentes. The movement of the regulating reflectors (1E) occurs when the temperature increases and therefore the pressure in the compartment (5H). If there is little pressure in the compartment (5H), all the regulating reflectors (1E) adopt position 1 as the pistons (4E) do not apply enough pressure on the plates (4G) and, ultimately, on the axes. As the intensity of the radiation increases and therefore the temperature and therefore the pressure, the pistons (4E) push the blades (4G) and they rotate the reflectors to the positions following the 1 o of rest (4L ), that is to the intensity levels 2, 3, 4 and 5 (3C, 3D, 3E, 3F) and the different tab levels (4H, 41, 4J, 4K) until reaching the maximum limit of freedom of movement of each regulator reflector (1E), which occurs when the sheet (4G) attempts to exceed the maximum intensity level position for that regulator reflector (1E). In this way, in its movement, the piston (4E) pushes a sheet (4G) attached to the shaft, the movement of said sheet (4G) rotating the shaft and consequently the regulating reflector (1E) attached to said axis. In general, each regulatory reflector element (1E) can have different intensity level graduations.
En general, el sistema clasificador de longitudes de onda y regulador de intensidad de la radiación está configurado de forma que la radiación clasificada y regulada que sale del reflector regulador (1E) se dirige hacia una zona de procesado que comprende elementos receptores (5B) optimizados para el aprovechamiento de dicho específico espectro de longitudes de onda electromagnética. In general, the wavelength classifier and radiation intensity regulator system is configured such that the classified and regulated radiation leaving the regulating reflector (1E) is directed towards a processing zone comprising optimized receiver elements (5B) for the use of said specific spectrum of electromagnetic wavelengths.
En cuanto a los materiales a utilizar para la fabricación de los reflectores reguladores (1E), estos podrían ser los mismos que los utilizados en los reflectores clasificadores (ID) ya que son las mismas longitudes de onda de la radicación incidente. Las caras interiores de estos elementos reflectores reguladores (1E) son muy reflexivas en las correspondientes longitudes de onda. As for the materials to be used for the manufacture of the regulating reflectors (1E), these could be the same as those used in the classifying reflectors (ID) since they are the same wavelengths of the incident radiation. The inner faces of these regulatory reflector elements (1E) are very reflective in the corresponding wavelengths.
Los reflectores reguladores (1E) pueden estar provistos de circuitos de refrigeración (6A, 6B, 6C) conectables a medios de refrigeración como los mostrados en la Figura 6, en los que se hace circular un fluido por el interior de los reflectores. En la Figura 8 se puede apreciar que estos elementos reflectores reguladores (1E) pueden ser muy variables en número, incluso la caja clasificadora y reguladora que contiene todos los conjuntos de reflectores (ID, 1E) puede prever espacios (8F) para inclusión de un número variable de elementos reflectores reguladores (1E). The regulating reflectors (1E) can be provided with cooling circuits (6A, 6B, 6C) connectable to cooling means such as those shown in Figure 6, in which a fluid is circulated inside the reflectors. In Figure 8 it can be seen that these regulating reflector elements (1E) can be very variable in number, even the sorting and regulating box that contains all the reflector sets (ID, 1E) can provide spaces (8F) for inclusion of a variable number of regulatory reflector elements (1E).
Cada elemento reflector regulador (1E) puede tener graduaciones de niveles de intensidad diferentes y pueden circular fluidos también diferentes. Es decir, en cada elemento reflector regulador (1E) puede circular un fluido adaptado a las condiciones particulares de operación de dicho elemento. Each regulatory reflector element (1E) can have different intensity level graduations and different fluids can also circulate. That is, in each regulating reflector element (1E) a fluid adapted to the particular operating conditions of said element can circulate.
El sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores puede estar dotado de medios de conexión para realizar el vacío en su interior. En la realización preferida el conjunto puede tener realizado el vacío en su interior a fin de evitar absorciones de radiación, conservación de los dispositivos etc. The wavelength classifier and radiation intensity regulator system according to any of the preceding claims may be provided with connection means for performing the vacuum inside. In the preferred embodiment, the assembly can have the vacuum inside to avoid radiation absorption, preservation of the devices etc.
El sistema clasificador de longitudes de onda y regulador de intensidad de la radiación puede estar construido de forma que las paredes del contenedor que contiene el sistema está dotado con circuitos de refrigeración. The wavelength classifier and radiation intensity regulator system may be constructed such that the walls of the container containing the system are equipped with cooling circuits.
Todos los circuitos de refrigeración, el de los prismas (ID), el de reflectores clasificadores (IB) y reguladores (1E) y el de las paredes del contenedor, pueden estar interconectados para unificarlos o poder aprovecharlos en motores Stirling de baja/media temperatura o intercambiadores para producir su aprovechamiento en generadores eléctricos. All the cooling circuits, the prisms (ID), the classifier reflectors (IB) and regulators (1E) and the container walls, can be interconnected to unify them or take advantage of them in Stirling engines of low / medium temperature or exchangers to produce their use in electric generators.
En conclusión la invención permite la clasificación de toda radiación electromagnética incidente con mayor o menor precisión y con mayor o menor intensidad para ser aprovechada en elementos receptores (5B) específicos de aprovechamiento de esa determinada longitud de onda electromagnética de dicha radiación. In conclusion, the invention allows the classification of any incident electromagnetic radiation with greater or lesser precision and with greater or lesser intensity to be used in specific receiving elements (5B) to take advantage of that determined electromagnetic wavelength of said radiation.
A modo de ejemplo, se pueden incluir salidas a elementos receptores (5B) formados por: - células fotovoltaicas de silicio con longitudes de onda de 900 nm a 1100 nm y con niveles de concentración e intensidad de 100 a 1100 soles, dividida en 10 niveles de intensidad de 100 soles cada división. As an example, outputs to receiving elements (5B) formed by: - silicon photovoltaic cells with wavelengths from 900 nm to 1100 nm and with concentration and intensity levels of 100 to 1100 soles, divided into 10 intensity levels of 100 soles each division.
- células de GaAs con longitudes de onda de 600 a 700 nm y con niveles de concentración e intensidad de 100 a 1100 soles, dividida en 5 niveles de intensidad de 200 soles cada división  - GaAs cells with wavelengths of 600 to 700 nm and with concentration and intensity levels of 100 to 1100 soles, divided into 5 intensity levels of 200 soles each division
- receptores térmicos volumétricos con longitudes de onda de 1000 a 3000 nm y de 700 a 900 nm con niveles de concentración e intensidad de 1000 a 5000 soles, dividida en 8 niveles de 500 soles cada división - volumetric thermal receivers with wavelengths of 1000 to 3000 nm and 700 to 900 nm with concentration levels and intensity of 1000 to 5000 soles, divided into 8 levels of 500 soles each division
- receptores fluorescentes reemisores en longitudes de onda menores, de longitudes de onda de 500 a 600 nm con 3 niveles de intensidad - Fluorescent receivers with shorter wavelengths, 500 to 600 nm wavelengths with 3 intensity levels
- sistemas de circulación de agua para su desinfección con longitudes de onda de 300 nm a 500 nm con 5 niveles de intensidad de 2000 a 10000 soles  - water circulation systems for disinfection with wavelengths from 300 nm to 500 nm with 5 intensity levels from 2000 to 10,000 soles
Es objeto de particular protección el uso del sistema clasificador de longitudes de onda y regulador de intensidad de la radiación como sistema de prueba de los distintos receptores (5B) utilizando radiación directa o simuladores solares para calcular las óptimas concentraciones e intensidades de una gama determinada de longitudes de onda. The use of the wavelength classifier and radiation intensity regulator system as a test system for the different receivers (5B) using direct radiation or solar simulators to calculate the optimal concentrations and intensities of a given range of wavelengths
Finalmente, también es objeto de protección los sub-sistemas independientes y divisibles en módulos: Finally, the independent and divisible sub-systems in modules are also protected:
que comprenden las líneas de elementos transparentes (IB) y los reflectores clasificadores (ID), estando confinados dentro de un único e independiente contenedor. La funcionalidad de clasificación de la radiación por separado es útil para muchas aplicaciones que comprenden los elementos reguladores (1E) y sus correspondientes elementos de orientación, estando confinados dentro de un único e independiente contenedor. La regulación de la intensidad sin clasificación previa de longitudes de onda también es útil en muchos dispositivos receptores, ya sean células fotovoltaicas o receptores térmicos.  comprising the lines of transparent elements (IB) and the classifying reflectors (ID), being confined within a single independent container. The radiation classification functionality separately is useful for many applications that comprise the regulatory elements (1E) and their corresponding orientation elements, being confined within a single independent container. Intensity regulation without prior wavelength classification is also useful in many receiving devices, whether photovoltaic cells or thermal receivers.

Claims

Reivindicaciones Claims
1. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación en la que haces de radiación son dirigidos sobre al menos una línea de elemento transparente (IB) que los dispersa y descompone de forma que cada longitud de onda es situada sobre diferentes reflectores clasificadores (ID) 1. Wavelength classifier system and radiation intensity regulator in which radiation beams are directed over at least one transparent element line (IB) that disperses and decomposes them so that each wavelength is located over different classifying reflectors (ID)
caracterizado por que el al menos un reflector clasificador (ID) orientable redirige cada longitud de onda incidente en él a una zona objetivo en la que se disponen al menos un elemento reflector regulador (1E) de la intensidad de la radiación orientable de forma que la radiación clasificada y regulada se pueda dirigir hacia una zona de procesado de dicha radiación. characterized in that the at least one adjustable classifying reflector (ID) redirects each incident wavelength therein to an objective area where at least one regulating reflector element (1E) of the intensity of the orientable radiation is arranged so that the classified and regulated radiation can be directed towards a processing zone of said radiation.
2. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según la reivindicación 1 2. Wavelength classifier system and radiation intensity regulator according to claim 1
caracterizado por que los reflectores clasificadores (ID) se pueden orientar rotacionalmente de forma manual. characterized in that the classifying reflectors (ID) can be oriented rotationally manually.
3. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según la reivindicación 1 3. Wavelength classifier system and radiation intensity regulator according to claim 1
caracterizado por que los reflectores clasificadores (ID) se pueden orientar por mecanismos electrónicos que controlan dicha rotación. characterized in that the classifying reflectors (ID) can be guided by electronic mechanisms that control said rotation.
4. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores 4. Wavelength classifier system and radiation intensity regulator according to any of the preceding claims
caracterizado por que los elementos reguladores (1E) son orientables por movimientos de rotación alrededor de su eje, dichos movimientos pudiendo tener lugar por variaciones en la presión ejercida por pistones (4E) que se expanden al incrementar la temperatura por aumento de la intensidad de radiación recibida. characterized in that the regulating elements (1E) are orientable by rotational movements around its axis, said movements being able to take place by variations in the pressure exerted by pistons (4E) that expand as the temperature increases by increasing the radiation intensity received
5. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según las reivindicaciones 1 a 3 5. Wavelength classifier system and radiation intensity regulator according to claims 1 to 3
caracterizado por que los elementos reguladores (1E) son orientables por movimientos de rotación alrededor de su eje, dichos movimientos siendo controlados por mecanismos electrónicos de control de la intensidad de radiación recibida. characterized in that the regulating elements (1E) are orientable by rotational movements around its axis, said movements being controlled by electronic mechanisms of control of the received radiation intensity.
6. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores 6. Wavelength classifier system and radiation intensity regulator according to any of the preceding claims
caracterizado por que las líneas de elementos transparentes (IB) son prismas ópticos. characterized in that the lines of transparent elements (IB) are optical prisms.
7. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores 7. Wavelength classifier system and radiation intensity regulator according to any of the preceding claims
caracterizado por que los haces de radiación son dirigidos a las líneas de elementos transparentes (IB) a través de conductos ópticos (1A). characterized in that the radiation beams are directed to the lines of transparent elements (IB) through optical conduits (1A).
8. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores 8. Wavelength classifier system and radiation intensity regulator according to any of the preceding claims
caracterizado por que los elementos transparentes (IB) son refrigerables por medios de refrigeración (7B, 7C, 7D). characterized in that the transparent elements (IB) are refrigerable by cooling means (7B, 7C, 7D).
9. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores 9. Wavelength classifier system and radiation intensity regulator according to any of the preceding claims
caracterizado por que los elementos transparentes (IB) se disponen paralelamente formando varias líneas, orientados con diferentes ángulos para situar las diferentes longitudes onda salientes sobre las mismas zonas físicas del sistema. characterized in that the transparent elements (IB) are arranged in parallel forming several lines, oriented with different angles to place the different protruding wavelengths on the same physical areas of the system.
10. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores 10. Wavelength classifier system and radiation intensity regulator according to any of the preceding claims
caracterizado por que los elementos transparentes (IB) comprenden vidrio borosilicato y/o vidrio de silicato alumínico y/o cuarzo. characterized in that the transparent elements (IB) comprise borosilicate glass and / or aluminum silicate glass and / or quartz.
11. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores 11. Wavelength classifier system and radiation intensity regulator according to any of the preceding claims
caracterizado por que las caras de los elementos transparentes (IB) se recubren con capas antirreflectantes. characterized in that the faces of the transparent elements (IB) are coated with anti-reflective layers.
12. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores caracterizado por que los reflectores clasificadores (ID) son cóncavos para poder hacer incidir esta radiación sobre elementos reflectores reguladores (1E) más estrechos. 12. Wavelength classifier system and radiation intensity regulator according to any of the preceding claims characterized in that the classifying reflectors (ID) are concave so as to be able to influence this radiation on narrower regulatory reflector elements (1E).
13. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores 13. Wavelength classifier system and radiation intensity regulator according to any of the preceding claims
caracterizado por que cada reflector clasificador (ID) es fijable sobre un eje de movimiento rotacional sobre el cual se disponen medios de orientación (2A) del reflector clasificador (ID). characterized in that each classifying reflector (ID) is fixed on a rotational axis of movement on which orientation means (2A) of the classifying reflector (ID) are arranged.
14. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según la reivindicación 13 14. Wavelength classifier system and radiation intensity regulator according to claim 13
caracterizado por que los medios de orientación (2A) de los reflectores clasificadores (ID) tienen unas referencias de posición para indicar sobre qué zona objetivo enfoca. characterized in that the orientation means (2A) of the classifying reflectors (ID) have position references to indicate which target area it focuses on.
15. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según la reivindicación 14 15. Wavelength classifier system and radiation intensity regulator according to claim 14
caracterizado por que los medios de orientación (2A) comprenden tantas referencias de posición como número de elementos reflectores reguladores (1E) tiene el sistema. characterized in that the orientation means (2A) comprise as many position references as the number of regulating reflector elements (1E) the system has.
16. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores 16. Wavelength classifier system and radiation intensity regulator according to any of the preceding claims
caracterizado por que los reflectores clasificadores (ID) son refrigerados por un circuito de refrigeración (6A, 6B, 6C) conectables a medios de refrigeración. characterized in that the classifying reflectors (ID) are cooled by a cooling circuit (6A, 6B, 6C) connectable to cooling means.
17. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según la reivindicación 16 17. Wavelength classifier system and radiation intensity regulator according to claim 16
caracterizado por que los reflectores clasificadores (ID) son reflectores huecos (6C) que forman parte del circuito de refrigeración (6A, 6B, 6C). characterized in that the classifying reflectors (ID) are hollow reflectors (6C) that are part of the cooling circuit (6A, 6B, 6C).
18. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores 18. Wavelength classifier system and radiation intensity regulator according to any of the preceding claims
caracterizado por que los materiales de fabricación de reflectores huecos (6C), clasificadores (ID) o reguladores (1E) comprenden aluminio pulido o evaporado tungsteno, plata o acero inoxidable muy pulido. characterized in that the materials for manufacturing hollow reflectors (6C), classifiers (ID) or regulators (1E) comprise polished or evaporated tungsten aluminum, silver or highly polished stainless steel.
19. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores 19. Wavelength classifier system and radiation intensity regulator according to any of the preceding claims
caracterizado por que las caras interiores del elemento reflector regulador (1E) son muy reflectantes para las longitudes de onda incidentes. characterized in that the inner faces of the regulating reflector element (1E) are very reflective for the incident wavelengths.
20. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según la reivindicación 4 20. Wavelength classifier system and radiation intensity regulator according to claim 4
caracterizado por que la posición de cada uno de los al menos un reflector regulador (1E) depende de los niveles de intensidad de radiación captada en el compartimento (5H). characterized in that the position of each of the at least one regulating reflector (1E) depends on the intensity levels of radiation captured in the compartment (5H).
21. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según la reivindicación 20 21. Wavelength classifier system and radiation intensity regulator according to claim 20
caracterizado por que los reflectores reguladores (1E) son orientables según un movimiento rotacional cuya posición (3G) determina la cantidad de radiación clasificada que recibe cada zona de nivel de intensidad del sistema (3B, 3C, 3D, 3E, 3F). characterized in that the regulating reflectors (1E) are orientable according to a rotational movement whose position (3G) determines the amount of radiation classified that receives each zone of intensity level of the system (3B, 3C, 3D, 3E, 3F).
22. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según la reivindicación 20 22. Wavelength classifier system and radiation intensity regulator according to claim 20
caracterizado por que el compartimento (5H) puede contener un fluido el cual puede producir un incremento de presión en un conducto (4B, 51), dicho incremento se comunica al eje del reflector regulador (1E) a través del empuje de un pistón (4E) que acciona sobre dicho reflector regulador (1E). characterized in that the compartment (5H) can contain a fluid which can produce an increase in pressure in a conduit (4B, 51), said increase is communicated to the axis of the regulating reflector (1E) through the thrust of a piston (4E ) which acts on said regulating reflector (1E).
23. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según la reivindicación 22 23. Wavelength classifier system and radiation intensity regulator according to claim 22
caracterizado por que en su movimiento, el pistón (4E) empuja una lámina (4G) unida al eje, el movimiento de dicha lámina (4G) haciendo rotar al eje y por consiguiente al reflector regulador (1E) sujeto a dicho eje. characterized in that in its movement, the piston (4E) pushes a sheet (4G) attached to the shaft, the movement of said sheet (4G) rotating the shaft and therefore the regulating reflector (1E) attached to said axis.
24 Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según la reivindicación 22 caracterizado por que la lámina (4G), accionable por el pistón (4E), se puede situar sólo en determinadas posiciones limitadas entre diferentes pestañas de tolerancia (4H, 41, 4J, 4K, 4L) previstas. 24 Wavelength classifier system and radiation intensity regulator according to claim 22 characterized in that the sheet (4G), operable by the piston (4E), can be placed only in certain limited positions between different tolerance tabs (4H, 41, 4J, 4K, 4L) provided.
25 Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según la reivindicación 24 25 Wavelength classifier system and radiation intensity regulator according to claim 24
caracterizado por que la lámina (4G) está ligada a medios elásticos para poder retroceder a niveles de pestañas (4H, 41, 4J, 4K, 4L) más bajos de tolerancia en caso de disminución de los niveles de intensidad. characterized in that the sheet (4G) is linked to elastic means to be able to go back to lower levels of eyelashes (4H, 41, 4J, 4K, 4L) in the event of a decrease in intensity levels.
26 Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones 23 a 25 26 Wavelength classifier system and radiation intensity regulator according to any of claims 23 to 25
caracterizado por que la lámina (4G) puede adoptar una posición de reposo (4L) a nivel de intensidad mínimo e incrementalmente, por acción del aumento de presión del fluido en el compartimento (5H) sobre el pistón (4E), este puede empujar dicha lámina (4G) secuencialmente, adoptando dicha lámina (4G) los distintos niveles de pestaña (4H, 41, 4J, 4K), pudiendo llegar hasta el límite máximo de libertad de movimiento de cada lámina (4G) y, por consiguiente, de cada reflector regulador (1E). characterized in that the sheet (4G) can adopt a resting position (4L) at a minimum intensity level and incrementally, by action of the increase in fluid pressure in the compartment (5H) on the piston (4E), it can push said sheet (4G) sequentially, said sheet (4G) adopting the different flange levels (4H, 41, 4J, 4K), being able to reach the maximum limit of freedom of movement of each sheet (4G) and, consequently, of each regulator reflector (1E).
27 Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores 27 Wavelength classifier system and radiation intensity regulator according to any of the preceding claims
caracterizado por que cada elemento reflector regulador (1E) puede tener graduaciones de niveles de intensidad diferentes. characterized in that each regulating reflector element (1E) can have graduations of different intensity levels.
28. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores 28. Wavelength classifier system and radiation intensity regulator according to any of the preceding claims
caracterizado por que los reflectores reguladores (1E) pueden estar provistos de circuitos de refrigeración (6 A, 6B, 6C) conectables a medios de refrigeración en los que se hace circular un fluido por el interior de los reflectores reguladores (1E). characterized in that the regulating reflectors (1E) can be provided with cooling circuits (6 A, 6B, 6C) connectable to cooling means in which a fluid is circulated inside the regulating reflectors (1E).
29. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores 29. Wavelength classifier system and radiation intensity regulator according to any of the preceding claims
caracterizado por que en cada elemento reflector regulador (1E) puede circular un fluido adaptado a las condiciones particulares de operación de dicho elemento. characterized in that in each regulating reflector element (1E) a fluid adapted to the particular operating conditions of said element can circulate.
30. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores 30. Wavelength classifier system and radiation intensity regulator according to any of the preceding claims
caracterizado por que puede estar dotado de medios de conexión para realizar el vacío en su interior. characterized in that it can be provided with connection means to perform the vacuum inside.
31. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores 31. Wavelength classifier system and radiation intensity regulator according to any of the preceding claims
caracterizado por que las paredes del contenedor que contienen al sistema están dotadas con circuitos de refrigeración. characterized in that the walls of the container containing the system are equipped with cooling circuits.
32. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores 32. Wavelength classifier system and radiation intensity regulator according to any of the preceding claims
caracterizado por que todos los circuitos de refrigeración, el de los prismas (IB), el de reflectores clasificadores (IB) y reguladores (1E) y el de las paredes del contenedor son interconectables para inyectar la energía recogida en el fluido a un motor Stirling, intercambiador de calor u otro dispositivo de aprovechamiento de energía calorífica. characterized in that all the cooling circuits, the prisms (IB), the classifier reflectors (IB) and regulators (1E) and the container walls are interconnectable to inject the energy collected in the fluid into a Stirling engine , heat exchanger or other heat energy utilization device.
33. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según cualquiera de las reivindicaciones anteriores 33. Wavelength classifier system and radiation intensity regulator according to any of the preceding claims
caracterizado por que la radiación clasificada y regulada que sale del reflector regulador (1E) se dirige hacia una zona de procesado que comprende elementos receptores (5B) optimizados para el aprovechamiento de dicho específico espectro de longitudes de onda electromagnética. characterized in that the classified and regulated radiation leaving the regulating reflector (1E) is directed towards a processing area comprising receiver elements (5B) optimized for the use of said specific spectrum of electromagnetic wavelengths.
34. Sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según la reivindicación 33 34. Wavelength classifier system and radiation intensity regulator according to claim 33
caracterizado por que los elementos receptores (5B) comprenden células fotovoltaicas, células de GaAs, receptores térmicos volumétricos, receptores fluorescentes reemisores en longitudes de onda, sistemas de circulación de agua para su desinfección, dispositivos de aprovechamiento térmico y/o dispositivos para la generación de hidrógeno, tanto mediante procesos a altas temperaturas como fotoelectroquímicos, pudiendo cada uno de ellos estar optimizado para su operación en una banda de frecuencias determinada. characterized in that the receiving elements (5B) comprise photovoltaic cells, GaAs cells, volumetric thermal receivers, fluorescent receivers in wavelengths, water circulation systems for disinfection, thermal use devices and / or devices for generating hydrogen, both through high temperature and photoelectrochemical processes, each of which can be optimized for operation in a given frequency band.
35. Uso del sistema clasificador de longitudes de onda y regulador de intensidad de la radiación según las reivindicaciones anteriores 35. Use of the wavelength classifier and radiation intensity regulator system according to the preceding claims
como sistema de prueba de los distintos receptores (5B) utilizando radiación directa o simuladores solares para calcular las óptimas concentraciones e intensidades de una gama determinada de longitudes de onda. as a test system for the different receivers (5B) using direct radiation or solar simulators to calculate the optimal concentrations and intensities of a given range of wavelengths.
36. Sistema clasificador de longitudes de onda de una radiación según cualquiera de las reivindicaciones I a 3, 7 a l8, 31 a 32 36. A wavelength classifier system of a radiation according to any of claims I to 3, 7 to l8, 31 to 32
caracterizado por que las líneas de elementos transparentes (IB) y los reflectores clasificadores (ID) están confinados dentro de un único e independiente contenedor. characterized in that the transparent element lines (IB) and the classifying reflectors (ID) are confined within a single independent container.
37. Sistema regulador de intensidad de una radiación según cualquiera de las reivindicaciones 4 a 3, 18, 19 a 30, 31 a 32, 33 a 34 37. A radiation intensity regulator system according to any of claims 4 to 3, 18, 19 to 30, 31 to 32, 33 to 34
caracterizado por que los elementos reguladores (1E) y sus correspondientes elementos de orientación están confinados dentro de un único e independiente contenedor. characterized in that the regulatory elements (1E) and their corresponding orientation elements are confined within a single independent container.
PCT/ES2011/070093 2011-02-11 2011-02-11 Wavelength classification and radiation-intensity regulating system WO2012107607A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2011/070093 WO2012107607A1 (en) 2011-02-11 2011-02-11 Wavelength classification and radiation-intensity regulating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2011/070093 WO2012107607A1 (en) 2011-02-11 2011-02-11 Wavelength classification and radiation-intensity regulating system

Publications (1)

Publication Number Publication Date
WO2012107607A1 true WO2012107607A1 (en) 2012-08-16

Family

ID=46638160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070093 WO2012107607A1 (en) 2011-02-11 2011-02-11 Wavelength classification and radiation-intensity regulating system

Country Status (1)

Country Link
WO (1) WO2012107607A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021267A (en) * 1975-09-08 1977-05-03 United Technologies Corporation High efficiency converter of solar energy to electricity
EP0019016A2 (en) * 1978-12-22 1980-11-26 Michael, Simon, Dipl.-Ing. Solar energy conversion device
US4377154A (en) * 1979-04-16 1983-03-22 Milton Meckler Prismatic tracking insolation
WO1991004580A1 (en) * 1989-09-21 1991-04-04 Holobeam, Inc. Photovoltaic solar systems with dispersive concentrators
DE19634405A1 (en) * 1996-08-26 1998-03-05 Hne Elektronik Gmbh & Co Satel Solar module with light splitting unit
ES2206832T3 (en) * 1992-11-25 2004-05-16 Solar Systems Pty Ltd APPARATUS FOR SEPARATING SOLAR RADIATION IN LONG AND LONG WAVE LENGTH COMPONENTS.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021267A (en) * 1975-09-08 1977-05-03 United Technologies Corporation High efficiency converter of solar energy to electricity
EP0019016A2 (en) * 1978-12-22 1980-11-26 Michael, Simon, Dipl.-Ing. Solar energy conversion device
US4377154A (en) * 1979-04-16 1983-03-22 Milton Meckler Prismatic tracking insolation
WO1991004580A1 (en) * 1989-09-21 1991-04-04 Holobeam, Inc. Photovoltaic solar systems with dispersive concentrators
ES2206832T3 (en) * 1992-11-25 2004-05-16 Solar Systems Pty Ltd APPARATUS FOR SEPARATING SOLAR RADIATION IN LONG AND LONG WAVE LENGTH COMPONENTS.
DE19634405A1 (en) * 1996-08-26 1998-03-05 Hne Elektronik Gmbh & Co Satel Solar module with light splitting unit

Similar Documents

Publication Publication Date Title
ES2207280T3 (en) SOLAR ENERGY RECEIVER SET.
ES2552645T3 (en) Solar concentrator configuration with improved manufacturability and efficiency
ES2729681T3 (en) Radiator unit
ES2463241B1 (en) Apparatus for the luminescent concentration of solar energy
AU2006227140A1 (en) Multi-junction solar cells with an aplanatic imaging system
Maiti et al. Performance of a silicon photovoltaic module under enhanced illumination and selective filtration of incoming radiation with simultaneous cooling
US9435989B1 (en) Light processing system
WO2013004870A1 (en) Solar plant
ES2711112T3 (en) Solar tracking concentrator
Mojiri et al. Spectrally splitting hybrid photovoltaic/thermal receiver design for a linear concentrator
ES2431463T3 (en) Container and solar power plant
WO2012107607A1 (en) Wavelength classification and radiation-intensity regulating system
WO2018015598A1 (en) Solar energy concentrator with movable mirrors for use in flat solar thermal collectors or in static photovoltaic modules
ES2715287T3 (en) Provision
AU2015101876A4 (en) Solar concentrator comprising flat mirrors oriented north-south and a cylindrical-parabolic secondary mirror having a central absorber
CN100368831C (en) Mask sheet with solar energy collection and solar device therefor
KR101770164B1 (en) Reflective element for condensing sun light with high efficiency
JP3558968B2 (en) Solar power generator
ES2965543T3 (en) Tracking device
WO2022006682A1 (en) Radiant energy spectrum converter
ES2844699T3 (en) Solar concentrator
ES2339415B1 (en) ADAPTED RADIATION FLOW CONVERTER.
ES2726673T3 (en) Solar concentrator with separate pivot connections
ES2573482T3 (en) Solar energy collector
ES2449167A1 (en) System of transverse mirrors at the ends of a longitudinal concentrator of solar radiation (Machine-translation by Google Translate, not legally binding)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858442

Country of ref document: EP

Kind code of ref document: A1