WO2012106831A2 - Method and system for the solar heap leaching of minerals, using solar concentrating collectors, based on fresnel lenses with solar tracking - Google Patents

Method and system for the solar heap leaching of minerals, using solar concentrating collectors, based on fresnel lenses with solar tracking Download PDF

Info

Publication number
WO2012106831A2
WO2012106831A2 PCT/CL2012/000004 CL2012000004W WO2012106831A2 WO 2012106831 A2 WO2012106831 A2 WO 2012106831A2 CL 2012000004 W CL2012000004 W CL 2012000004W WO 2012106831 A2 WO2012106831 A2 WO 2012106831A2
Authority
WO
WIPO (PCT)
Prior art keywords
leaching
solar
copper
solutions
minerals
Prior art date
Application number
PCT/CL2012/000004
Other languages
Spanish (es)
French (fr)
Other versions
WO2012106831A3 (en
Inventor
José Octavio HERNÁNDEZ PAVÉZ
Jesús Manuel CASAS DE PRADA
Original Assignee
Hernandez Pavez Jose Octavio
Casas De Prada Jesus Manuel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hernandez Pavez Jose Octavio, Casas De Prada Jesus Manuel filed Critical Hernandez Pavez Jose Octavio
Publication of WO2012106831A2 publication Critical patent/WO2012106831A2/en
Publication of WO2012106831A3 publication Critical patent/WO2012106831A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/02Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention discloses a process and system for solar leaching in mineral piles such as oxidized copper ores, gold and silver ores, sulphured copper ores, minerals consisting of low grade sulphides, uranium ores, saline ores, minerals of nitrate and caliche rubble, using original design high efficiency solar collectors based on Fresnel lenses with solar tracking or conventional collectors (parabolic reflection, parabolic trough, reflection with collector towers.
  • This invention is in the field of SOLAR LIXIVIATION IN MINERAL BATTERIES.
  • Mineral leaching is a widely used process for the extraction of copper, silver, gold and uranium in the mining industry. It is also used in the extraction of nitrate, iodine, sulfate and borate salts in the saltpeter industry and in the extraction of You leave from salt.
  • leaching in trays and batteries.
  • Heap leaching in the case of copper mining is applied to oxidized minerals as well as high and low grade sulphides.
  • leaching is mainly chemical.
  • Bacterial processes are involved in minerals containing copper sulphides.
  • the leaching of caliche or caliche gravel is done through mainly chemical processes either in batteries or in trays or in agitated reactors.
  • the leaching temperature together with mineralogy and particle size, are the most important parameters that determine both recovery speed and recovery performance. In all the technological variants of leaching application an increase in temperature causes a faster recovery and a higher yield. In the case of bacterial leaching the temperature causes the appearance of different bacteria: at low temperatures ( ⁇ 30 ° C) bacterial species called mesophylls that act slower predominate, while at higher temperatures (> 30-40 ° C) thermophilic bacterial species with higher extraction rates stand out .
  • US Patent 4,739,973 discloses a system that accelerates leaching using a waterproof cover on the battery under which a network of drippers that scatter the leach solution is installed.
  • US 6,743,276 discloses a method and an apparatus that heats the leaching solution prior to its distribution on the ore pile under leaching.
  • the apparatus comprises a heat absorbing blanket provided with a series of individual heat absorbing tubes joined by heat reflecting panels. Heat reflecting panels and heat absorbing tubes transfer energy solar to the leaching solution that circulates through the tubes.
  • the heated leaching solution is subsequently distributed by a series of emitter tubes positioned at the top of the stack.
  • Patent application WO / 2007/140554 discloses a leaching process in mineral piles for the production of metals with the help of solar energy.
  • the process involves the grinding and agglomeration of the mineral with sulfuric acid and / or additives, the disposal of the latter in batteries, the leaching of the batteries with leaching solution, the recovery of the metal from the enriched leaching solution, the heating of the poor solution and of the water by means of solar collectors and its storage in insulated containers and its subsequent use as a leaching solution.
  • SHL Small Heap Leaching / Solar Leaching in Mineral Stacks
  • SHL Small Heap Leaching / Solar Leaching in Mineral Stacks
  • a transparent plastic sheet to prevent water evaporation, heat loss from the battery and allowing the entry of solar radiation for heating
  • leaching solution that has previously been heated in a range of 20 at 50 ° C by means of heat exchange with a thermal fluid that is heated between 50 to 150 ° C by means of solar collectors of original design of high efficiency based on solar concentration by means of Fresnel lenses with solar tracking or solar-parabolic parabolic concentrator solar collectors or parabolic reflection solar collectors with solar tracking or flat solar collectors or solar collectors with flat mirrors s with solar tracking and central tower all of which allows faster recovery of the metal or salt of interest and at the same time allows greater recovery performance so the battery leaves less metal
  • the problem solved by the present invention is to provide a process and system called SHL for leaching in mineral piles with solar heating by means of original solar collectors of high efficiency of solar concentration with Fresnel lenses and solar monitoring with concentration between 500 to 1,000 soles or other solar collectors of the leaching solutions, heating of the batteries and limitation of the evaporation of water and also limitation of the cooling the batteries by covering them with a transparent plastic sheet and none of the documents cited or any relevant combination thereof reveals a process and a system of the aforementioned characteristics.
  • the disclosed invention allows the total costs of the leaching stage to be reduced by less than half with investments of less than US $ 5 / l / hour * m2 of heap leaching solutions.
  • This invention relates to a process and a system for leaching minerals from metals such as copper, silver, gold and uranium and salts such as nitrates, iodates, borates, sulfates called SHL (Solar Heap Leaching / Solar Leaching in mineral piles).
  • SHL Small Heap Leaching / Solar Leaching in mineral piles.
  • the process and the system consists of a battery containing crushed or agglomerated minerals or, in the case of low grade copper sulphides by residual minerals without crushing or agglomerating (run of mine), which is covered with a transparent plastic thermo film to prevent water evaporation, heat losses and allowing the entry of solar radiation for heating.
  • the process and the system include heating of the leaching solutions between 20 to 50 ° C by heat exchange with a thermal fluid that is heated between 50 to 150 ° C by means of an original solar collector based on concentration by Fresnel lenses with solar tracking with a concentration of 500 to 1,000 soles or collectors parabolic trough solar concentrators or solar collectors parabolic trough concentrators or flat solar collectors.
  • The. Solar collectors based on Fresnel lenses with solar tracking allow a greater recovery of heat from the sun, while concentrating solar energy in a focus where a thermal fluid circulates, said thermal fluid can heat solutions to a higher temperature leaching.
  • the hydraulic connections of the heat exchangers that heat the thermal fluid are located in series and series-parallel arrangements to ensure an adequate increase in the temperature of said fluid.
  • the collector is thermally insulated, thus contributing to its thermal efficiency.
  • Heated leaching solutions accumulate in a thermally insulated pond allowing continuous extraction of these solutions to eventually irrigate the batteries 24 hours a day.
  • the leaching solutions are irrigated using drippers on the top covered by thermo film of the batteries with irrigation rates between 1 to 20 liters / hour / m2 of battery.
  • the solutions enriched in metals or salts are collected at the bottom of the bottom of the batteries which is waterproofed and from there they are taken to a stage of solvent extraction or precipitation in the case of metal recovery or evaporation / crystallization for the case of salt extraction.
  • water and reagents are added to be recirculated to the heat exchange stage with the heated thermal fluid in the solar collectors.
  • the battery system is constructed incorporating in its base pipes that allow air to circulate and if necessary also carbon dioxide (C0 2 ) in the batteries in such a way to allow a better action of leaching bacteria.
  • the SHL process and system can be used for leaching minerals that contain copper, silver, gold, uranium, nitrates, iodates, sulfates, borates in sunny regions of the world such as those in the Atacama Desert in Northern Chile.
  • the SHL system increases the recovery of the metal or salt accelerating the speed of the extraction processes, and consequently improving the economy of said processes.
  • the recovery of metals and salts can exceed 90% in the case of high-grade resources processed in batteries.
  • the original solar collection system based on concentration with Fresnel lenses and solar tracking can be used in the heating of cathode washing waters, heating of electrolyte rich in solvent extraction plants and electro-obtaining.
  • the disclosed invention allows reduce the total costs of the leaching stage to less than half with investments less than US $ 5 / liter / hour * m2 of leaching solutions.
  • the system disclosed here for the leaching of minerals to obtain metals, these can be recovered in less than half the time required by conventional heap leaching processes and systems and the recovery yields can exceed 90%, in the case of being high-grade resources processed in batteries.
  • the hot leaching solution (Line 1 of the Diagram of Figure 1) is irrigated by drippers or other irrigation device, on top of the mineral pile (device I) that is covered with a transparent plastic thermo film which allows the passage of solar radiation by heating the battery and at the same time prevents said battery from cooling down and water being lost by evaporation.
  • the battery when it comes to copper sulphides, has pipes that allow the injection of air and, if necessary, also C0 2 (line 2) to encourage bacterial leaching reactions.
  • Stream 3 which is extracted from the bottom of the battery that is waterproofed, enriched in metals or salts, is processed by solvent extraction or precipitation in the case of metals or evaporation / crystallization in the case of salt leaching in device II .
  • Stream 5 contains metals dissolved in organic liquids or precipitates that are conducted to a refining process, or crystallized salts.
  • the thermal fluid cooled by heat exchange with the current 7, (current 9) is sent to the solar collector (device III) which can be a conventional collector or an original solar collector by means of Fresnel lenses (concentration of 500 1,000 soles) and solar tracking such that always the surface of the panel that supports the Fresnel lenses is always perpendicular to the solar rays which increases its thermal efficiency to be heated (current 10).
  • the stream 8 that has been heated by the hot thermal fluid is sent to a thermally insulated tank (device V), from where it is injected into the mineral leaching stack.
  • a non-agglomerated mineral pile (dump ore), whose mineralogical composition was: Copper oxide (CuO) 0.03%, was treated by the process and system of the present invention.
  • Chalcopyrite (CuFeS2) 0.66%; Calcosine (Cu2S) 0.28%; Pyrite (FeS2) 2%.
  • the battery was covered by a 0.2 mm transparent plastic thermofilm with anti-UV treatment.
  • the battery was equipped with a set of drippers that distributed the hot leaching solution.
  • the irrigation rate was 10 L / h / m2, the temperature of the leaching solution being 40 ° C and the copper composition 0.2 g / L.
  • the outlet solution of the battery had a concentration of 2 g / L and a temperature of 34 ° C at 70 days with a total copper recovery of 31.44% (calcosine conversion 54.87%, pyrite conversion of 8.62%, chalcopyrite conversion 18.59% and 100% copper oxide conversion).
  • the rich solutions were subjected to solvent extraction and recirculated to the batteries after thermal exchange with the hot thermal fluid from the heat exchange in the solar collectors.
  • the solar panels concentrators with solar tracking used were constituted by a set of 190X300 mm Fresnel lenses with a focal length of 300 mm located on the surface of the panel with a concentration of 1,000 soles, with the collection exchangers through which the thermal fluid circulates located in the focus of the lenses and fearing the panel an adequate thermal insulation all of which allows to obtain thermal collection efficiencies between 70 and 80% of the incident solar radiation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The invention relates to a copper mineral leaching method, known as solar heap leaching (SHL), providing faster recovery and increased yield, in which: a) the heap of minerals is watered with hot leaching solutions; b) the heap is covered in order to prevent water evaporation and heat loss, while allowing the penetration of solar radiation in order to heat the heap; c) the effluent leaching solutions from the heap are subjected to extraction with solvents or chemical precipitation in order to recover the copper; d) the copper-deficient solutions resulting from the copper recovery step are heated by means of heat exchange with a hot thermal fluid; e) the thermal fluid is heated by means of solar radiation; and f) the hot copper-deficient solutions are collected in order to be supplied to the heaps in a continuous manner throughout the 24 hours of the day. The method is carried out in a system comprising a solar collector having an original design, with solar tracking based on concentrating solar radiation using Fresnel lenses.

Description

TÍTULO  TITLE
PROCESO Y SISTEMA PARA LIXIVIACIÓN SOLAR EN PILAS DE MINERALES UTILIZANDO COLECTORES SOLARES DE PROCESS AND SYSTEM FOR SOLAR LIXIVIATION IN MINERAL BATTERIES USING SOLAR COLLECTORS
CONCENTRACIÓN BASADO EN LENTES FRESNEL CON SEGUIMIENTO SOLAR. CONCENTRATION BASED ON FRESNEL LENSES WITH SOLAR MONITORING.
SECTOR TÉCNICO TECHNICAL SECTOR
La presente invención divulga un proceso y un sistema para lixiviación solar en pilas de minerales tales como minerales de cobre oxidados, minerales de oro y plata, minerales sulfurados de cobre, minerales consistentes en sulfuros de baja ley, minerales de uranio, minerales salinos, minerales de nitrato y ripios de caliche, utilizando colectores solares de diseño original de alta eficiencia de concentración basados en lentes Fresnel con seguimiento solar o colectores convencionales (de reflexión parabólicos, cilindro parabólicos, de reflexión con torres colectoras. The present invention discloses a process and system for solar leaching in mineral piles such as oxidized copper ores, gold and silver ores, sulphured copper ores, minerals consisting of low grade sulphides, uranium ores, saline ores, minerals of nitrate and caliche rubble, using original design high efficiency solar collectors based on Fresnel lenses with solar tracking or conventional collectors (parabolic reflection, parabolic trough, reflection with collector towers.
TÉCNICA ANTERIOR PREVIOUS TECHNIQUE
Esta invención esta en el campo de la LIXIVIACIÓN SOLAR EN PILAS DE MINERALES. La lixiviación de minerales es un proceso ampliamente utilizado para la extracción de cobre, plata, oro y uranio en la industria minera Asimismo se utiliza en la extracción de sales de nitrato, iodo, sulfatos y boratos en la industria del salitre y en la extracción de sales desde salares. This invention is in the field of SOLAR LIXIVIATION IN MINERAL BATTERIES. Mineral leaching is a widely used process for the extraction of copper, silver, gold and uranium in the mining industry. It is also used in the extraction of nitrate, iodine, sulfate and borate salts in the saltpeter industry and in the extraction of You leave from salt.
Dentro de las variantes tecnológicas del proceso se tiene la lixiviación en bateas y en pilas. La lixiviación en pilas en el caso de la minería del cobre se aplica tanto a minerales oxidados como también a sulfuros de alta como de baja ley. En el caso de los minerales oxidados de cobre la lixiviación es principalmente química. Para los minerales que contienen sulfuros de cobre intervienen procesos bacterianos. La lixiviación de caliche o de ripios de caliche se realiza a través de procesos principalmente químicos ya sea en pilas o en bateas o en reactores agitados.  Among the technological variants of the process we have leaching in trays and batteries. Heap leaching in the case of copper mining is applied to oxidized minerals as well as high and low grade sulphides. In the case of oxidized copper ores, leaching is mainly chemical. Bacterial processes are involved in minerals containing copper sulphides. The leaching of caliche or caliche gravel is done through mainly chemical processes either in batteries or in trays or in agitated reactors.
La temperatura de la lixiviación, junto con la mineralogía y el tamaño de partículas, son los parámetros más importantes que determinan tanto la velocidad de recuperación como el rendimiento de recuperación. En todas las variantes tecnológicas de aplicación de la lixiviación un aumento de la temperatura provoca una recuperación más rápida y un rendimiento más elevado. En el caso de la lixiviación bacteriana la temperatura provoca la aparición de bacterias diferentes: a bajas temperaturas (< 30°C) predominan especies bacterianas denominadas mesófilas que actúan más lento, mientras que a temperaturas superiores (> 30-40°C) se destacan especies bacterianas termófilas con velocidades de extracción superiores. The leaching temperature, together with mineralogy and particle size, are the most important parameters that determine both recovery speed and recovery performance. In all the technological variants of leaching application an increase in temperature causes a faster recovery and a higher yield. In the case of bacterial leaching the temperature causes the appearance of different bacteria: at low temperatures (<30 ° C) bacterial species called mesophylls that act slower predominate, while at higher temperatures (> 30-40 ° C) thermophilic bacterial species with higher extraction rates stand out .
Petersen y Dixon (Petersen J. and D.G. Dixon (Nov. 2002). "Thermophilic Heap Leaching of a Chalcopyrite Concéntrate". Minerals Engineering 15 (11), pp. 777-785) demostraron que el uso de bacterias termófilas permitían la lixiviación de calcopirita en columnas a temperaturas superiores a 60°C con recuperaciones de hasta el 90 % en menos de 100 días. Petersen and Dixon (Petersen J. and DG Dixon (Nov. 2002). "Thermophilic Heap Leaching of a Chalcopyrite Concentrate." Minerals Engineering 15 (11), pp. 777-785) demonstrated that the use of thermophilic bacteria allowed leaching of chalcopyrite in columns at temperatures above 60 ° C with recoveries of up to 90% in less than 100 days.
Dixon ( Dixon D.G. (2000). "Analysis of Heat Conservation During Copper Sulphide Heap Leaching," Hydrometallurgy, Vol. 58, pp. 27-41) analizando el comportamiento térmico de una pila de lixiviación de sulfuros de cobre con la ayuda de un modelo computacional determina que una inyección de aire en la base produce un aumento de la difusión de calor hacia arriba con el subsecuente aumento de la temperatura dentro de la pila.  Dixon (Dixon DG (2000). "Analysis of Heat Conservation During Copper Sulphide Heap Leaching," Hydrometallurgy, Vol. 58, pp. 27-41) analyzing the thermal behavior of a copper sulphide leaching stack with the help of a Computational model determines that an injection of air into the base produces an increase in the diffusion of heat upwards with the subsequent increase in temperature inside the battery.
Las siguientes patentes y solicitudes de patentes dicen relación con la lixiviación en pilas de minerales: The following patents and patent applications relate to leaching in mineral piles:
La patente US 4.739.973 divulga un sistema que acelera la lixiviación utilizando una cubierta impermeable sobre la pila bajo la cual se instala una red de goteadores que esparcen la solución lixiviante. US Patent 4,739,973 discloses a system that accelerates leaching using a waterproof cover on the battery under which a network of drippers that scatter the leach solution is installed.
La patente US 6.149.711 divulga un método y un aparato para el calentamiento solar de soluciones de lixiviación en pilas. El aparato incluye una manta de distribución que posee una serie de tubos emisores individuales unidos a paneles absorvedores de calor. El calor colectado en los paneles es transferido a las soluciones de lixiviación que circulan a través de los tubos emisores. La manta de distribución formada por la pluralidad de los tubos emisores y los paneles absorvedores es de material flexible lo que permite enrollarla o desenrollarla durante su aplicación a la pila de mineral. US 6,149,711 discloses a method and an apparatus for solar heating of battery leaching solutions. The apparatus includes a distribution blanket that has a series of individual emitter tubes attached to heat absorbing panels. The heat collected in the panels is transferred to the leaching solutions that circulate through the emitter tubes. The distribution blanket formed by the plurality of the emitter tubes and the absorber panels is made of flexible material which allows it to be rolled or unwound during its application to the ore pile.
La patente US 6.743.276 presenta un método y un aparato que calienta la solución lixiviante previo a su distribución sobre la pila de mineral sometida a lixiviación. El aparato comprende una manta absorbedora de calor dotada de una serie de tubos individuales absorbedores de calor unidos por paneles reflectores de calor. Los paneles reflectores de calor y los tubos absorbedores de calor transfieren energía solar a la solución de lixiviación que circula por los tubos. La solución de lixiviación calentada es posteriormente distribuida por una serie de tubos emisores posicionados en la parte superior de la pila. US 6,743,276 discloses a method and an apparatus that heats the leaching solution prior to its distribution on the ore pile under leaching. The apparatus comprises a heat absorbing blanket provided with a series of individual heat absorbing tubes joined by heat reflecting panels. Heat reflecting panels and heat absorbing tubes transfer energy solar to the leaching solution that circulates through the tubes. The heated leaching solution is subsequently distributed by a series of emitter tubes positioned at the top of the stack.
La patente US 6.884.280 divulga un método de lixiviación de concentrados de minerales sulfurados en el cual el calor generado por la lixiviación de tales concentrados en por lo menos un reactor es transferido a una pila en la cual ocurre una lixiviación bioasistida. US 6,884,280 discloses a method of leaching sulfide mineral concentrates in which the heat generated by the leaching of such concentrates in at least one reactor is transferred to a cell in which bioassisted leaching occurs.
La solicitud de patente WO/2007/140554 divulga un procesó de lixiviación en pilas de minerales para la producción de metales con la ayuda de energía solar. El proceso involucra la molienda y aglomeración del mineral con ácido sulfúrico y/o aditivos, la disposición de éste en pilas, la lixiviación de las pilas con solución lixiviante, la recuperación del metal desde la solución de lixiviación enriquecida, el calentamiento de la solución pobre y del agua mediante colectores solares y su almacenamiento en recipientes aislados y su posterior uso como solución de lixiviación. Patent application WO / 2007/140554 discloses a leaching process in mineral piles for the production of metals with the help of solar energy. The process involves the grinding and agglomeration of the mineral with sulfuric acid and / or additives, the disposal of the latter in batteries, the leaching of the batteries with leaching solution, the recovery of the metal from the enriched leaching solution, the heating of the poor solution and of the water by means of solar collectors and its storage in insulated containers and its subsequent use as a leaching solution.
El proceso y el sistema divulgado en la presente solicitud denominado SHL (Solar Heap Leaching/Lixiviación Solar en Pilas de minerales) se basa en la deposición de un mineral en una pila, que previamente se ha chancado y aglomerado con reactivos o sin aglomerar, se ha cubierto con una lámina transparente de plástico para impedir la evaporación de agua, pérdida de calor de la pila y que permite la entrada de radiación solar para calentamiento, y se ha irrigado con solución de lixiviación que previamente se ha calentado en un rango de 20 a 50°C mediante intercambio de calor con un fluido térmico que se calienta entre 50 a 150 °C mediante colectores solares de diseño original de alta eficiencia basados en concentración solar mediante lentes Fresnel con seguimiento solar o colectores concentradores solares cilindro-parabólicos de reflexión o colectores solares de reflexión parabólicos con seguimiento solar o colectores solares planos o colectores solares con espejos planos con seguimiento solar y torre central todo lo cual permite la recuperación más rápida del metal o sal de interés y al mismo tiempo permite un mayor rendimiento de recuperación por lo cual la pila deja menor cantidad de metal o sal sin recuperar mejorando significativamente la economía de la extracción de metales o sales. The process and system disclosed in this application called SHL (Solar Heap Leaching / Solar Leaching in Mineral Stacks) is based on the deposition of a mineral in a pile, which has previously been crushed and agglomerated with reagents or without agglomerating, It has been covered with a transparent plastic sheet to prevent water evaporation, heat loss from the battery and allowing the entry of solar radiation for heating, and it has been irrigated with leaching solution that has previously been heated in a range of 20 at 50 ° C by means of heat exchange with a thermal fluid that is heated between 50 to 150 ° C by means of solar collectors of original design of high efficiency based on solar concentration by means of Fresnel lenses with solar tracking or solar-parabolic parabolic concentrator solar collectors or parabolic reflection solar collectors with solar tracking or flat solar collectors or solar collectors with flat mirrors s with solar tracking and central tower all of which allows faster recovery of the metal or salt of interest and at the same time allows greater recovery performance so the battery leaves less metal or salt without recovering significantly improving the economy of the extraction of metals or salts.
Por tanto, el problema que resuelve la presente invención es proporcionar un proceso y un sistema denominado SHL para la lixiviación en pilas de minerales con calentamiento solar mediante colectores solares originales de alta eficiencia de concentración solar con lentes Fresnel y seguimiento solar con concentración entre 500 a 1.000 soles u otros colectores solares de las soluciones de lixiviación, calentamiento de las pilas y limitación de la evaporación de agua y limitación también del enfriamiento de las pilas mediante cobertura de las mismas con una lámina de plástico transparente y ninguno de los documentos citados o cualquier combinación relevante de los mismos revela un proceso y un sistema de las características antes citadas. La invención divulgada permite disminuir a menos de la mitad los costos totales de la etapa de lixiviación con inversiones menores a US $ 5/l¡tro/hora*m2 de pila de las soluciones de lixiviación. Al utilizar el sistema aquí divulgado a la lixiviación de minerales para obtención de metales, estos se pueden recuperar en tiempos inferiores a la mitad de la requerida por procesos y sistemas de lixiviación en pilas convencional y los rendimientos de recuperación pueden superar el 90 %, en el caso de ser recursos de alta ley procesados en pilas. Therefore, the problem solved by the present invention is to provide a process and system called SHL for leaching in mineral piles with solar heating by means of original solar collectors of high efficiency of solar concentration with Fresnel lenses and solar monitoring with concentration between 500 to 1,000 soles or other solar collectors of the leaching solutions, heating of the batteries and limitation of the evaporation of water and also limitation of the cooling the batteries by covering them with a transparent plastic sheet and none of the documents cited or any relevant combination thereof reveals a process and a system of the aforementioned characteristics. The disclosed invention allows the total costs of the leaching stage to be reduced by less than half with investments of less than US $ 5 / l / hour * m2 of heap leaching solutions. By using the system disclosed here for the leaching of minerals to obtain metals, these can be recovered in less than half the time required by conventional heap leaching processes and systems and the recovery yields can exceed 90%, in the case of being high-grade resources processed in batteries.
Mejor manera de realizar la invención Best way to realize the invention
Esta invención se refiere a un proceso y un sistema para la lixiviación de minerales de metales tales como el cobre, la plata, el oro y el uranio y sales tales como nitratos, iodatos, boratos, sulfatos denominado SHL (Solar Heap Leaching/Lixiviación solar en pilas de minerales). El proceso y el sistema está constituido por una pila que contiene minerales chancados o aglomerados o, en el caso de sulfuras de cobre de baja ley por minerales residuales sin chancar ni aglomerar (run of mine), que se cubre con un termo film plástico transparente para impedir evaporación de agua, pérdidas de calor y que permite la entrada de radiación solar para calentamiento. Adicionalmente el proceso y el sistema incluye calentamiento de las soluciones de lixiviación entre 20 a 50 °C mediante intercambio de calor con un fluido térmico que se calienta entre 50 a 150 °C mediante un colector solar original basado en concentración por lentes Fresnel con seguimiento solar con una concentración de 500 a 1.000 soles o colectores concentradores solares cilindro-parabólicos de reflexión o colectores solares concentradores de reflexión parabólicos o colectores solares planos. Los. colectores solares basados en lentes Fresnel con seguimiento solar permiten un mayor rendimiento de recuperación del calor del sol, al mismo tiempo que al concentrar la energía solar en un foco por donde circula un fluido térmico, dicho fluido térmico puede calentar a una temperatura superior las soluciones de lixiviación. Las conexiones hidráulicas de los intercambiadores que calientan el fluido térmico se emplazan en disposiciones serie y serie-paralelo para asegurar un adecuado aumento de la temperatura de dicho fluido.. Asimismo el colector se encuentra aislado térmicamente contribuyendo de esta manera a la eficiencia térmica del mismo. Lo mismo ocurre para colectores concentradores solares parabólicos de reflexión con seguimiento solar, colectores concentradores de reflexión cilindro-parabólicos o colectores solares planos. Las soluciones de lixiviación calentadas se acumulan en un estanque aislado térmicamente permitiendo la extracción continua de dichas soluciones para irrigar las pilas eventualmente las 24 horas del día. Las soluciones de lixiviación se irrigan usando goteadores en la parte superior cubierta por termo film de las pilas con tasas de irrigación comprendidas entre 1 a 20 litros/hora/m2 de pila . Las soluciones enriquecidas en metales o sales se colectan en el fondo el fondo de las pilas el cual esta impermeabilizado y de allí se conducen a una etapa de extracción con solventes o precipitación para el caso de recuperación de metales o de evaporación/cristalización para el caso de extracción de sales. A las soluciones pobres resultantes se les agrega agua y reactivos para ser recirculadas a la etapa de intercambio de calor con el fluido térmico calentado en los colectores solares. En el caso de la lixiviación de minerales que contienen sulfuros de cobre o sulfuras de cobre de baja ley el sistema de pilas se construye incorporando en su base tuberías que permiten hacer circular aire y de ser necesario también anhídrido carbónico (C02) en las pilas de tal manera de permitir una mejor acción de bacterias lixiviantes. This invention relates to a process and a system for leaching minerals from metals such as copper, silver, gold and uranium and salts such as nitrates, iodates, borates, sulfates called SHL (Solar Heap Leaching / Solar Leaching in mineral piles). The process and the system consists of a battery containing crushed or agglomerated minerals or, in the case of low grade copper sulphides by residual minerals without crushing or agglomerating (run of mine), which is covered with a transparent plastic thermo film to prevent water evaporation, heat losses and allowing the entry of solar radiation for heating. Additionally, the process and the system include heating of the leaching solutions between 20 to 50 ° C by heat exchange with a thermal fluid that is heated between 50 to 150 ° C by means of an original solar collector based on concentration by Fresnel lenses with solar tracking with a concentration of 500 to 1,000 soles or collectors parabolic trough solar concentrators or solar collectors parabolic trough concentrators or flat solar collectors. The. Solar collectors based on Fresnel lenses with solar tracking allow a greater recovery of heat from the sun, while concentrating solar energy in a focus where a thermal fluid circulates, said thermal fluid can heat solutions to a higher temperature leaching. The hydraulic connections of the heat exchangers that heat the thermal fluid are located in series and series-parallel arrangements to ensure an adequate increase in the temperature of said fluid. Likewise, the collector is thermally insulated, thus contributing to its thermal efficiency. The same is true for parabolic solar concentrator collectors with solar tracking, parabolic trough reflector collectors or flat solar collectors. Heated leaching solutions accumulate in a thermally insulated pond allowing continuous extraction of these solutions to eventually irrigate the batteries 24 hours a day. The leaching solutions are irrigated using drippers on the top covered by thermo film of the batteries with irrigation rates between 1 to 20 liters / hour / m2 of battery. The solutions enriched in metals or salts are collected at the bottom of the bottom of the batteries which is waterproofed and from there they are taken to a stage of solvent extraction or precipitation in the case of metal recovery or evaporation / crystallization for the case of salt extraction. To the resulting poor solutions, water and reagents are added to be recirculated to the heat exchange stage with the heated thermal fluid in the solar collectors. In the case of the leaching of minerals containing copper sulphides or low grade copper sulphides, the battery system is constructed incorporating in its base pipes that allow air to circulate and if necessary also carbon dioxide (C0 2 ) in the batteries in such a way to allow a better action of leaching bacteria.
El proceso y sistema SHL se puede usar para lixiviación de minerales que contienen cobre, plata, oro, uranio, nitratos, iodatos, sulfatos, boratos en regiones soleadas del mundo tales como las del desierto de Atacama en el Norte de Chile El sistema SHL aumenta la recuperación del metal o sal acelerando la velocidad de los procesos de extracción, y en consecuencia mejorando la economía de dichos procesos. Mediante el proceso y sistema divulgado en la presente invención la recuperación de metales y sales puede exceder el 90% en el caso de ser recursos de alta ley procesados en pilas. Asimismo el sistema de colección solar original basado en concentración con lentes Fresnel y seguimiento solar se puede utilizar en el calentamiento de aguas de lavado de cátodos, calentamiento de electrólito rico en las plantas de extracción por solventes y electro-obtención.. La invención divulgada permite disminuir a menos de la mitad los costos totales de la etapa de lixiviación con inversiones menores a US $ 5/litro/hora*m2 de las soluciones de lixiviación. Al utilizar el sistema aquí divulgado a la lixiviación de minerales para obtención de metales, estos se pueden recuperar en tiempos inferiores a la mitad de la requerida por procesos y sistemas de lixiviación en pilas convencional y los rendimientos de recuperación pueden superar el 90 %, en el caso de ser recursos de alta ley procesados en pilas. Mediante la descripción de la Figura 1 , se ilustrará más claramente el proceso y sistema inventado que se presenta en esta solicitud de patente: The SHL process and system can be used for leaching minerals that contain copper, silver, gold, uranium, nitrates, iodates, sulfates, borates in sunny regions of the world such as those in the Atacama Desert in Northern Chile. The SHL system increases the recovery of the metal or salt accelerating the speed of the extraction processes, and consequently improving the economy of said processes. Through the process and system disclosed in the present invention, the recovery of metals and salts can exceed 90% in the case of high-grade resources processed in batteries. Likewise, the original solar collection system based on concentration with Fresnel lenses and solar tracking can be used in the heating of cathode washing waters, heating of electrolyte rich in solvent extraction plants and electro-obtaining. The disclosed invention allows reduce the total costs of the leaching stage to less than half with investments less than US $ 5 / liter / hour * m2 of leaching solutions. By using the system disclosed here for the leaching of minerals to obtain metals, these can be recovered in less than half the time required by conventional heap leaching processes and systems and the recovery yields can exceed 90%, in the case of being high-grade resources processed in batteries. By describing Figure 1, the invented process and system presented in this patent application will be more clearly illustrated:
La solución de lixiviación caliente (Línea 1 del Diagrama de la Figura 1) se riega mediante goteros u otros dispositivo de riego, sobre la parte superior de la pila de minerales (dispositivo I) que está cubierta con un termo film plástico transparente el cual permite el paso de radiación solar calentando la pila y al mismo tiempo evita que dicha pila se enfríe y se pierda agua por evaporación. La pila, cuando se trata de sulfuros de cobre, posee tuberías que permiten la inyección de aire y de ser necesario también C02 (línea 2) para incentivar las reacciones de lixiviación bacteriana. La corriente 3, que se extrae por el fondo de la pila que esta impermeabilizada, enriquecida en metales o sales se procesa por extracción por solventes o precipitación para el caso de metales o evaporación/cristalización en el caso de lixiviación de sales en el dispositivo II. La corriente 5 contiene los metales disueltos en líquidos orgánicos o en precipitados que se conducen a un proceso de refinación, o las sales cristalizadas. A las soluciones pobres o extraídas (corriente 4) se les añade ácido, agua o aguas madres diluidas (corriente 6), obteniéndose la corriente 7 que esta a una temperatura baja y que se calienta en un intercambiador de calor (dispositivo IV). El fluido térmico enfriado por intercambio de calor con la corriente 7, (corriente 9) se envía al colector solar (dispositivo III) que puede ser un colector convencional o un colector original con concentración solar mediante lentes Fresnel (concentración de 500 1.000 soles) y seguimiento solar tal que siempre la superficie del panel que soporta los lentes Fresnel siempre se encuentra perpendicular a los rayos solares lo que hace aumentar su eficiencia térmica para ser calentada (corriente 10). La corriente 8 que ha sido calentada por el fluido térmico caliente se envía a un estanque aislado térmicamente (dispositivo V), desde donde es inyectado a la pila de lixiviación de minerales. The hot leaching solution (Line 1 of the Diagram of Figure 1) is irrigated by drippers or other irrigation device, on top of the mineral pile (device I) that is covered with a transparent plastic thermo film which allows the passage of solar radiation by heating the battery and at the same time prevents said battery from cooling down and water being lost by evaporation. The battery, when it comes to copper sulphides, has pipes that allow the injection of air and, if necessary, also C0 2 (line 2) to encourage bacterial leaching reactions. Stream 3, which is extracted from the bottom of the battery that is waterproofed, enriched in metals or salts, is processed by solvent extraction or precipitation in the case of metals or evaporation / crystallization in the case of salt leaching in device II . Stream 5 contains metals dissolved in organic liquids or precipitates that are conducted to a refining process, or crystallized salts. To the poor or extracted solutions (stream 4) acid, water or diluted mother liquor (stream 6) is added, obtaining stream 7 that is at a low temperature and which is heated in a heat exchanger (device IV). The thermal fluid cooled by heat exchange with the current 7, (current 9) is sent to the solar collector (device III) which can be a conventional collector or an original solar collector by means of Fresnel lenses (concentration of 500 1,000 soles) and solar tracking such that always the surface of the panel that supports the Fresnel lenses is always perpendicular to the solar rays which increases its thermal efficiency to be heated (current 10). The stream 8 that has been heated by the hot thermal fluid is sent to a thermally insulated tank (device V), from where it is injected into the mineral leaching stack.
Ejemplo de Aplicación  Application Example
La invención ahora se describe además haciendo referencia al siguiente ejemplo, que no limita de ningún modo el alcance de la invención.  The invention is now further described with reference to the following example, which does not limit the scope of the invention in any way.
Se procedió a tratar, mediante el proceso y sistema de la presente invención, una pila de mineral no aglomerado (mineral de botadero), cuya composición mineralógica era: Óxido de cobre (CuO) 0,03 %; Calcopirita (CuFeS2) 0,66 %; Calcosina (Cu2S) 0,28 %; Pirita (FeS2) 2%. La pila fue cubierta por un termofilm plástico transparente de 0,2 mm con tratamiento anti-UV. A la pila se la dotó de un conjunto de goteadores que distribuían la solución de lixiviación caliente. La tasa de irrigación fue de 10 L/h/m2, siendo la temperatura de la solución de lixiviación de 40 °C y la composición en cobre de 0,2 g/L. La solución de salida de la pila tenía una concentración de 2 g/L y una temperatura de 34° C a los 70 días con una recuperación total de cobre de 31 ,44 % (conversión de calcosina 54,87 %, conversión de pirita de 8,62 %, conversión de calcopirita 18,59 % y conversión de óxido de cobre de 100%). La soluciones ricas fueron sometidas a extracción por solventes y recirculadas a las pilas previo intercambio térmico con el fluido térmico caliente proveniente del intercambio de calor en los colectores solares. Los paneles solares concentradores con seguimiento solar utilizados estaban constituidos por un conjunto de lentes Fresnel de 190X300 mm con distancia focal de 300 mm ubicados en la superficie del panel con una concentración de 1.000 soles, estando los intercambiadores de colección por los cuales circula el fluido térmico situados en el foco de los lentes y temiendo el panel un adecuado aislamiento térmico todo lo cual permite obtener eficiencias de colección térmica entre 70 a 80 % de la radiación solar incidente. A non-agglomerated mineral pile (dump ore), whose mineralogical composition was: Copper oxide (CuO) 0.03%, was treated by the process and system of the present invention. Chalcopyrite (CuFeS2) 0.66%; Calcosine (Cu2S) 0.28%; Pyrite (FeS2) 2%. The battery was covered by a 0.2 mm transparent plastic thermofilm with anti-UV treatment. The battery was equipped with a set of drippers that distributed the hot leaching solution. The irrigation rate was 10 L / h / m2, the temperature of the leaching solution being 40 ° C and the copper composition 0.2 g / L. The outlet solution of the battery had a concentration of 2 g / L and a temperature of 34 ° C at 70 days with a total copper recovery of 31.44% (calcosine conversion 54.87%, pyrite conversion of 8.62%, chalcopyrite conversion 18.59% and 100% copper oxide conversion). The rich solutions were subjected to solvent extraction and recirculated to the batteries after thermal exchange with the hot thermal fluid from the heat exchange in the solar collectors. The solar panels concentrators with solar tracking used were constituted by a set of 190X300 mm Fresnel lenses with a focal length of 300 mm located on the surface of the panel with a concentration of 1,000 soles, with the collection exchangers through which the thermal fluid circulates located in the focus of the lenses and fearing the panel an adequate thermal insulation all of which allows to obtain thermal collection efficiencies between 70 and 80% of the incident solar radiation.

Claims

REIVINDICACIONES
1. - Un proceso para la lixiviación de minerales de cobre que permite una recuperación más rápida y con mayor rendimiento denominado SHL (Solar Heap Leaching/Lixiviación solar en pilas de minerales), CARACTERIZADO porque 1. - A process for the leaching of copper ores that allows a faster and more efficient recovery called SHL (Solar Heap Leaching / Solar leaching in mineral piles), CHARACTERIZED because
a. - la pila de minerales se riega con soluciones de lixiviación calientes b. - la pila está cubierta para evitar evaporación de agua y pérdida de calor y al mismo tiempo permitir la entrada de radiación solar y calentarla. c- las soluciones de lixiviación efluentes de la pila se someten a extracción con solventes o precipitación química para recuperar el cobre  to. - the mineral pile is irrigated with hot leaching solutions b. - The battery is covered to prevent water evaporation and heat loss and at the same time allow the entry of solar radiation and heat it. c- the effluent leaching solutions of the cell are subjected to solvent extraction or chemical precipitation to recover the copper
d. - Las soluciones pobres en cobre resultantes del proceso de recuperación de cobre anterior se calientan mediante intercambio de calor con un fluido térmico caliente  d. - The poor copper solutions resulting from the previous copper recovery process are heated by heat exchange with a hot thermal fluid
e. - el fluido térmico se calienta mediante radiación solar.  and. - the thermal fluid is heated by solar radiation.
f. las soluciones pobres en cobre calientes se acumulan para ser alimentadas a las pilas de manera continua incluso durante las 24 horas del día.  F. Hot copper-poor solutions accumulate to be fed to the batteries continuously even 24 hours a day.
2. - un proceso de acuerdo a la reivindicación anterior, CARACTERIZADO porque los minerales de la pila pueden ser minerales de plata, oro, cobalto, níquel , Uranio o sales de nitratos, iodatos, boratos. 2. - A process according to the preceding claim, CHARACTERIZED because the minerals in the cell can be silver, gold, cobalt, nickel, Uranium or nitrate salts, iodates, borates.
3. un proceso de acuerdo a las reivindicaciones anteriores CARACTERIZADO porque la lixiviación se realiza con una tasas de irrigación comprendida entre 1 a 20 Litros /hora /m2 de pila.  3. A process according to the preceding claims CHARACTERIZED because leaching is carried out with an irrigation rate between 1 to 20 Liters / hour / m2 of battery.
4. un proceso de acuerdo a las reivindicaciones anteriores CARACTERIZADO porque el aumento de temperatura de las soluciones de lixiviación se sitúa en el rango de aplicación sobre la pila entre 20 y 60°C.  4. A process according to the preceding claims CHARACTERIZED because the temperature increase of the leaching solutions is in the range of application on the stack between 20 and 60 ° C.
5. un proceso de acuerdo a las reivindicaciones anteriores CARACTERIZADO porque el fluido térmico se calienta mediante radiación solar entre 60 a 150 °C.  5. A process according to the preceding claims CHARACTERIZED because the thermal fluid is heated by solar radiation between 60 to 150 ° C.
6. un proceso de acuerdo a las reivindicaciones anteriores CARACTERIZADO porque para el caso de la lixiviación minerales salinos la recuperación de las sales se realiza mediante evaporación/cristalización.  6. A process according to the preceding claims CHARACTERIZED because in the case of leaching saline minerals the recovery of the salts is carried out by evaporation / crystallization.
7. un proceso de acuerdo a las reivindicaciones anteriores CARACTERIZADO porque en el caso de la lixiviación de minerales que contienen sulfuras de cobre o sulfuras de cobre de baja ley se hace circular aire y de ser necesario también anhídrido carbónico (C02) en las pilas de tal manera de permitir una mejor actividad metabólica de las bacterias lixiviantes 7. A process according to the preceding claims CHARACTERIZED because in the case of the leaching of minerals containing copper sulphides or low grade copper sulphides air is circulated and if necessary also carbon dioxide (C02) in the batteries in such a way as to allow a better metabolic activity of the leaching bacteria
7. -Un sistema en que se realiza el proceso de la reivindicación 1 CARACTERIZADO porque:  7. A system in which the process of claim 1 CHARACTERIZED is carried out because:
a. las pilas se construyen con minerales chancados, aglomerados o tal como salen de la mina (run of mine)  to. the batteries are constructed with crushed, agglomerated minerals or as they leave the mine (run of mine)
b. - Láminas de plástico transparente cubren las pilas lo que impide la evaporación de agua y la pérdida de calor y permiten la entrada de radiación solar.  b. - Transparent plastic sheets cover the batteries which prevents water evaporation and heat loss and allows solar radiation to enter.
c- Goteadores riegan las pilas.  c- Drippers water the batteries.
d. - Colectores solares de diseño original basados en concentración solar entre 500 a 1.000 soles mediante lentes Fresnel con seguimiento solar permiten calentar el fluido térmico.  d. - Original design solar collectors based on solar concentration between 500 to 1,000 soles using Fresnel lenses with solar tracking allow heating of the thermal fluid.
e. Intercambiadores de calor de placas o de tubos transfieren el calor desde el fluido térmico a las soluciones de lixiviación.  and. Plate or tube heat exchangers transfer heat from thermal fluid to leaching solutions.
f. - Estanques aislados térmicamente permiten acumular las soluciones de lixiviación.  F. - Thermally insulated ponds allow to accumulate leaching solutions.
8. - Un sistema de acuerdo a la reivindicación anterior CARACTERIZADO porque los colectores solares que calientan el fluido térmico pueden ser colectores concentradores solares cilindro-parabólicos de reflexión o colectores solares concentradores de reflexión parabólicos o colectores solares planos.  8. - A system according to the preceding claim CHARACTERIZED because the solar collectors that heat the thermal fluid can be reflector cylinder parabolic solar collectors or parabolic reflection concentrator solar collectors or flat solar collectors.
9. Un sistema de acuerdo a la reivindicación 7 CARACTERIZADO porque en el caso de la lixiviación de minerales que contienen sulfuros de cobre o sulfuros de cobre de baja ley el sistema de pilas se construye incorporando en su base tuberías que permiten hacer circular aire y de ser necesario también anhídrido carbónico (C02) en las pilas de tal manera de permitir una mejor actividad metabólica de las bacterias lixiviantes.  9. A system according to claim 7 CHARACTERIZED because in the case of the leaching of minerals containing copper sulphides or low grade copper sulphides the battery system is constructed incorporating in its base pipes that allow air and air circulation. carbon dioxide (C02) in the batteries should also be necessary in order to allow a better metabolic activity of the leaching bacteria.
PCT/CL2012/000004 2011-02-08 2012-02-06 Method and system for the solar heap leaching of minerals, using solar concentrating collectors, based on fresnel lenses with solar tracking WO2012106831A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2011000272A CL2011000272A1 (en) 2011-02-08 2011-02-08 Procedure and solar heating system of solutions of metallurgical process plants because it comprises using concentrated solar thermal energy and transferring heat through a thermal fluid to the process solutions.
CL272-2011 2011-02-08

Publications (2)

Publication Number Publication Date
WO2012106831A2 true WO2012106831A2 (en) 2012-08-16
WO2012106831A3 WO2012106831A3 (en) 2012-11-15

Family

ID=46639000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2012/000004 WO2012106831A2 (en) 2011-02-08 2012-02-06 Method and system for the solar heap leaching of minerals, using solar concentrating collectors, based on fresnel lenses with solar tracking

Country Status (2)

Country Link
CL (1) CL2011000272A1 (en)
WO (1) WO2012106831A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111254280A (en) * 2012-11-15 2020-06-09 技术资源有限公司 Heap leaching

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES426415A1 (en) * 1974-05-17 1976-08-01 Briones Fernandez Pola Translucent cover solar energy collector, composed by fresnel cylinder lenses. (Machine-translation by Google Translate, not legally binding)
EP0020153A1 (en) * 1979-06-01 1980-12-10 Exxon Research And Engineering Company Radiation collector
US4739973A (en) * 1986-08-13 1988-04-26 Herndon J Marvin Chemical extraction of metals from ores
WO2007092871A2 (en) * 2006-02-07 2007-08-16 Lane Richard P Method and apparatus for solar heating a leach solution
WO2007140554A1 (en) * 2006-06-02 2007-12-13 Companhia Vale Do Rio Doce An ore heap leaching process for metal production with the aid of solar energy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES426415A1 (en) * 1974-05-17 1976-08-01 Briones Fernandez Pola Translucent cover solar energy collector, composed by fresnel cylinder lenses. (Machine-translation by Google Translate, not legally binding)
EP0020153A1 (en) * 1979-06-01 1980-12-10 Exxon Research And Engineering Company Radiation collector
US4739973A (en) * 1986-08-13 1988-04-26 Herndon J Marvin Chemical extraction of metals from ores
WO2007092871A2 (en) * 2006-02-07 2007-08-16 Lane Richard P Method and apparatus for solar heating a leach solution
WO2007140554A1 (en) * 2006-06-02 2007-12-13 Companhia Vale Do Rio Doce An ore heap leaching process for metal production with the aid of solar energy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111254280A (en) * 2012-11-15 2020-06-09 技术资源有限公司 Heap leaching

Also Published As

Publication number Publication date
CL2011000272A1 (en) 2011-06-10
WO2012106831A3 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
Khamizov et al. Recovery of valuable mineral components from seawater by ion-exchange and sorption methods
US8197664B2 (en) Onsite integrated production factory
CN104962738B (en) Copper electrolyte purifying technology
WO1998040313A1 (en) Facility for desalinating or purifying sea water or brackish water by means of solar energy
ES2357469T3 (en) PROCEDURE AND DEVICE FOR SELECTING EXTRACTION OF CATIONS FOR ELECTROCHEMICAL TRANSFER IN DISSOLUTION, AND APPLICATIONS OF THIS PROCEDURE.
CN103420400A (en) Salt lake brine evaporation method and equipment thereof, and salt lake brine treatment method by utilizing salt lake brine evaporation method and device thereof
CN1093517C (en) Lithium salt extraction process from carbonate type bittern
WO2012106831A2 (en) Method and system for the solar heap leaching of minerals, using solar concentrating collectors, based on fresnel lenses with solar tracking
US11261103B2 (en) Water management system
El-Agouz et al. Theoretical analysis of continuous heat extraction from absorber of solar still for improving the productivity
GB1590843A (en) Solar energy distillation apparatus
CN105905929B (en) The method that lithium carbonate is prepared from the carbonate type bittern of plateau
WO2006015433A1 (en) Water purifier
CN109824067B (en) Extracting lithium concentrate by natural evaporation crystallization lithium precipitation, combined heating crystallization lithium precipitation and dissolution lithium washing
CN103526230A (en) Method for producing high-quality cathode copper with high efficiency in copper electrolyte purification process
WO2010086375A1 (en) Method and device for solar evaporation of salt solutions
CN211971992U (en) Acid-lead storage battery pollution recovery processing device
CN1398786A (en) Lithium carbonate crystal separating process from carbonate-type bittern by means of solar battery
CN207330631U (en) A kind of feces of livestock and poultry anaerobic reation pool
CN105883862B (en) The method that lithium carbonate is prepared from the carbonate type bittern of plateau
CN203393202U (en) Device for simultaneous deamination, defluorination and dechlorination by virtue of ammonia leaching zinc oxide liquid
Lesino et al. Solar ponds in hydrometallurgy and salt production
EP3394301B1 (en) Removal of gypsum from leach solution
CN205088167U (en) Concentration of cocoon cooking waste water silk albumen is recovery system again
CN110723857A (en) High-salinity water concentration and crystallization treatment system and process

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12744796

Country of ref document: EP

Kind code of ref document: A2