WO2012105773A2 - Multimode high-frequency module - Google Patents

Multimode high-frequency module Download PDF

Info

Publication number
WO2012105773A2
WO2012105773A2 PCT/KR2012/000679 KR2012000679W WO2012105773A2 WO 2012105773 A2 WO2012105773 A2 WO 2012105773A2 KR 2012000679 W KR2012000679 W KR 2012000679W WO 2012105773 A2 WO2012105773 A2 WO 2012105773A2
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
module
multimode
strip lines
high frequency
Prior art date
Application number
PCT/KR2012/000679
Other languages
French (fr)
Korean (ko)
Other versions
WO2012105773A3 (en
Inventor
남창기
Original Assignee
Nam Chang Gi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nam Chang Gi filed Critical Nam Chang Gi
Priority to JP2013552459A priority Critical patent/JP5817024B2/en
Publication of WO2012105773A2 publication Critical patent/WO2012105773A2/en
Publication of WO2012105773A3 publication Critical patent/WO2012105773A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array

Definitions

  • the present invention relates to an antenna of a wireless communication device, and more particularly, to a high frequency module of a wireless communication device for reducing coupling between antennas in a multimode antenna to have high isolation characteristics.
  • a multi-mode wireless communication device capable of using a plurality of services with one wireless communication device instead of a separate wireless communication device according to each service has been partially realized.
  • the service of information transmission by radio uses electromagnetic waves as a medium, so that a plurality of services are provided to the user by using one frequency for one type of service in the same service area. Therefore, the wireless communication device must have a function of transmitting and receiving electromagnetic waves of a plurality of frequencies.
  • the conventional radio communication apparatus for example, a method of preparing a plurality of single mode antennas corresponding to one frequency and mounting them in one radio communication apparatus has been adopted.
  • the shaft diameter of the high frequency cable applicable to the radio communication apparatus of a user portable dimension has a diameter of about 1 millimeter, the transmission loss of this high frequency cable reaches several s / m.
  • the use of such high-frequency cables increases the power consumed by the high-frequency circuits, thereby significantly reducing the use time of the wireless communication device or increasing the size of the battery, making it difficult for a user to carry the wireless communication device.
  • antennas capable of operating at different frequencies even in a wireless communication apparatus using a two-frequency common antenna have been proposed in Japanese Patent Laid-Open Nos. 61-295905 and 1- 1805805.
  • a transmitter and a receiver are required for each of the input and output terminals at different locations, there is a problem in that integration required for a small device such as a wireless communication device is difficult.
  • Korean Patent No. 10-0774071 discloses a small multimode antenna capable of sharing one feed point at a plurality of frequencies and a high frequency module using the antenna, and one end of a radiation conductor.
  • a single feed point common in frequency is used, and a first port resonant circuit is connected to one end thereof and a second first port resonant circuit is connected to the other end of the radiating conductor. It is proposed that the conductance component of the admittance when the free space is seen from the feed point is the same as the characteristic admittance of the high frequency circuit, and the susceptance component of the admittance is canceled at a plurality of frequencies by a resonance circuit connected to the feed point. It became.
  • FIG. 1 is a schematic structural diagram of a small multi-mode antenna according to Korean Patent Registration No. 10-0774071.
  • Korean Patent Laid-Open Publication No. 1998-702904 uses an antenna and a diplexer operating at a first frequency and a second frequency that is the lowest frequency far from the first frequency, but the diplexer is a capacitive element and an inductive
  • a dual frequency antenna is disclosed that includes an element and combines two signals so that a single coaxial cable can be used for the antenna and provides impedance matching at the first and second operating frequencies.
  • FIG. 2 is a schematic structural diagram of a dual frequency antenna according to Korean Patent Laid-Open Publication No. 1998-702904.
  • Korean Patent Laid-Open Publication No. 10-2010-0026653 includes a ground plane having a finite plane and made of a conductor for use in a multiband by operating an antenna as a monopole or PIFA antenna using a wireless switch; An antenna body for transmitting and receiving radio waves; A feed line electrically interconnecting the ground plane and the antenna body; A shorting pin for grounding the antenna body to the ground plane; And a switch connected to the shorting pin and controlling a connection state with a ground plane of the antenna body.
  • FIG. 3 is a schematic structural diagram of a planar inverted F antenna according to Korean Patent Laid-Open No. 10-2010-0026653.
  • the present invention has been proposed to solve the above problems, and to provide a high frequency module having high isolation characteristics.
  • each antenna is connected in parallel and independently fed to have high isolation characteristics, and when operating in a multi-band, tuning by operating frequency may be possible.
  • it is to provide a multi-mode high-frequency module of a wireless communication device having a high isolation characteristic that can be made small by reducing the electrical length of the feed line.
  • High frequency module including an antenna module and a power supply module according to the present invention for achieving the above object
  • the antenna module includes a multimode antenna resonating in at least one frequency band,
  • the feed module includes at least two strip lines that are at least electrically parallel to the feed portion, wherein the feed portion supplies power radiated through the multimode antenna, and the at least two strip lines are supplied from the feed portion. Delivers power to the multimode antenna,
  • a printed circuit board further comprising a feeding point for connecting the power supplied through the at least two strip lines to the multimode antenna, the number of the at least two strip lines being formed, and wherein the feeding module is formed of an electrical circuit;
  • the antenna module combines the multi-mode antenna coupled to the power supply module in the opposite direction with respect to the printed circuit board, and supports the multi-mode antenna and couples the multi-mode antenna to the antenna support. Further comprising a portion and the antenna coupling portion may be formed on one side of the antenna support,
  • the other side of the antenna support is further formed with a fastening portion for fastening the antenna support to the printed circuit board,
  • the printed circuit board may further include a coupling groove coupled to the coupling portion at a position opposite to the coupling portion formed on the antenna support portion.
  • the power supply module includes
  • a short line is further formed between the feed portion and the ends of the at least two strip lines electrically connected to each other connected to the feed point to supply the in-phase power to the antennas respectively connected to the at least two strip lines.
  • At least two or more tuning lines are provided between the short line and ends of at least two strip lines connected to the feed point to adjust the resonant frequency of the multimode high frequency module and to attenuate coupling between the multimode antennas. Characterized in that each is further formed between the strip line,
  • tuning line is equivalently a series coupling of capacitor, capacitor and inductor or parallel coupling of capacitor and inductor.
  • the short line connected between the at least two strip line is characterized in that the length of 1/4 wavelength of the desired resonance frequency.
  • the multi-mode high-frequency module of the wireless communication device including the antenna module and the power feeding module according to the present invention having the above configuration has a high isolation characteristic by independently feeding each antenna connected in parallel and operating in a multi-band mode. In this case, not only the tuning by operating frequency is possible but also the high isolation characteristic, which makes it possible to manufacture small by reducing the electrical length of the feed line.
  • FIG. 1 is a schematic structural diagram of a small multi-mode antenna according to Korean Patent Registration No. 10-0774071.
  • FIG. 2 is a schematic structural diagram of a dual frequency antenna according to Korean Patent Laid-Open Publication No. 1998-702904.
  • FIG. 3 is a schematic structural diagram of a planar inverted F antenna according to Korean Patent Laid-Open No. 10-2010-0026653.
  • FIG. 4 is a schematic structural diagram of a multi-mode high frequency module of a wireless communication device according to the present invention.
  • FIG. 5 is a view for explaining the principle that the coupling between the antenna is attenuated in the multi-mode high-frequency module of the wireless communication device according to the present invention.
  • FIG. 6 is a diagram of FIG. 5 converted to an equivalent circuit.
  • FIG. 7 illustrates isolation characteristics between antennas at an operating frequency in a wireless communication device equipped with a multi-mode antenna according to the present invention.
  • FIG. 8 is another example of a structure in which an antenna is mounted on a PCB substrate in a wireless communication device equipped with a multi-mode antenna according to the present invention.
  • FIG. 9 illustrates standing wave ratios and frequency response characteristics when an equivalent capacitor value of a tuning line is 1.2 pF in a wireless communication device equipped with a multi-mode antenna according to the present invention.
  • 10 is a standing wave ratio and frequency response characteristics when an equivalent capacitor value of a tuning line is 1.5 pF in a wireless communication device equipped with a multi-mode antenna according to the present invention.
  • FIG. 11 is a standing wave ratio and frequency response characteristic when an equivalent capacitor value of a tuning line is 2.2 pF in a wireless communication device equipped with a multi-mode antenna according to the present invention.
  • FIG. 12 illustrates standing wave ratios and frequency response characteristics when an equivalent capacitor value of a tuning line is 3 pF in a wireless communication device equipped with a multi-mode antenna according to the present invention.
  • FIG. 13 illustrates standing wave ratios and frequency response characteristics when an equivalent capacitor value of a tuning line is 5pF in a wireless communication device equipped with a multi-mode antenna according to the present invention.
  • first strip line 432 second strip line
  • tuning line 460 short line
  • antenna support 820 antenna
  • feed point 850 strip line
  • tuning line 8621 equivalent capacitor
  • FIG. 4 is a schematic configuration diagram of a multi-mode high frequency module of a wireless communication device according to the present invention, which simplifies a structure in which a high frequency module having the multi-mode antenna of FIG. 8 is mounted on a printed circuit board.
  • the high frequency module includes a printed circuit board 420, a power feeding module 430 mounted on the printed circuit board 420, and an antenna module 410 fastened to the printed circuit board.
  • strip lines 431 and 432 for transmitting power input from the power supply to the antennas 411 and 412 are electrically formed in parallel with each other, and the start of the strip lines 431 and 432 is performed.
  • a short line 460 is formed at one side of the strip lines 431 and 432 between the portions P1 and P2 and the antennas 411 and 412, and the short line 460 and the antennas 411 and 412.
  • the tuning line 441 consists of an inductor and a capacitor to provide high isolation between ports.
  • the antenna module 410 is provided with antennas 411 and 412 that are multi-mode, that is, resonate in at least one or more frequency bands to radiate power.
  • FIG. 5 is a circuit diagram of FIG. 4, wherein a power supply is connected to P1 and P2, and strip lines 531 and 532 are connected to P1 and P2, respectively, and a short is formed at one side of the strip lines 531 and 532.
  • Lines 560 are connected, and feed ends P3 521 and P4 522 are electrically connected to antennas 511 and 512 at ends of the strip lines 531 and 532, and the feed points P3 521.
  • Power is supplied to the antennas 511 and 512 through the P4 522.
  • Tuning line consisting of inductors 551 and 552 and capacitors 541 and 542 in strip lines 531 and 532 between the feed points P3 521 and P4 522 and the short line 560 (not shown). ) More included.
  • FIG. 6 shows the power supply module converted to an equivalent circuit in FIG. 5.
  • the power supply module of FIG. 5 may be simplified to a two-port network, and the tuning line 441 of FIG. 4 may be equivalent to the capacitors 621 and 622 and the inductors 631 and 632.
  • the port P3 and the port P4 have a phase difference of 90 degrees electrically, and the port P2 has a 180 degree phase difference electrically with respect to the port P1, and the same magnitude of current is applied, thereby providing high isolation characteristics.
  • port 2 and port 1 preferably have high isolation characteristics, various techniques have been developed for this purpose.
  • the strip line 431 and the strip line 432 are referred to as ⁇ / 4 ( ⁇ ).
  • the design method to have the electrical length of (wavelength of the resonant frequency) is dominant, but it is not easy to design to have an electrical length of ⁇ / 4 on the printed circuit board (PCB), the present invention is equivalent
  • a structure is proposed in which the ports P1 and P2 have an electrical length of ⁇ / 4 even though the electrical length is shortened by adding the tuning lines L2 represented by the inductors 631 and 632 and the capacitors 621 and 622. .
  • the standing wave ratio is a ratio of the minimum value and the maximum value of the standing wave formed by the incident power and the reflected power, and the closer to 1, the smaller the amount of reflection and the better the impedance matching.
  • the coupling between one terminal and the other terminal is preferably minimized, so the power is measured on the other terminal while power is supplied to one side, and the isolation between the terminals is measured as power.
  • Table 1 below summarizes these measured values. As shown in Table 1, it can be seen that the standing wave ratio has the lowest value (1.14) in the resonant frequency band at 3pF, and 1.17 at 2.2pF and 3pF at It can be seen that it has a similar performance to.
  • the isolation characteristic between the terminals is the lowest value in the resonant frequency region at 2.2pF (-30.6dB), which is about 12dB than -18.4dB at 3pF, which is 16 times different. That is, it can be seen that the isolation characteristic is improved by 16 times compared to 3.0 pF at 2.2 pF. Accordingly, it can be seen that it is preferable to select 2.2 pF as the value of the equivalent capacitor of the tuning line.
  • Table 1 1.2pF (standing wave ratio / isolation degree) 1.5pF (standing wave ratio / isolation degree) 2.2pF (standing wave ratio / isolation chart) 3pF (standing wave ratio / isolation degree) 5pF (standing wave ratio / isolation chart)
  • the current applied through the port P1 is met at the port P2 through the loop L1 passing through the short line 640 and the loop L2 passing through the tuning line, and the currents passing through each loop have the same magnitude but phase 180 degrees from each other. It is reversed and canceled out.
  • the power applied to the port P3 and the port P4, that is, the magnitude of the current is preferably the same, for this purpose it can be achieved by appropriately adjusting the values of the inductor and the capacitor of the tuning line.
  • the PCB substrate requires a space that allows sufficient electrical length.
  • this problem can be achieved by adjusting the length and width of the tuning line equivalent to the inductor and the capacitor.
  • the inductor and the capacitor may be set to appropriate values to match the phase and impedance of the power radiated to the antenna. You can also choose.
  • a separate impedance matching circuit 650 may be further added to the input ports P1 and P2 for impedance matching with the antenna.
  • FIG. 7 illustrates isolation characteristics between antennas at an operating frequency in a wireless communication device equipped with a multi-mode antenna according to the present invention.
  • a line marked with ' ⁇ ' is a measure of isolation between antennas, that is, attenuation of coupling, and a line marked with ' ⁇ ' measures return loss from an antenna.
  • the multi-mode high-frequency module according to the present invention can be seen that the coupling between the antenna is significantly attenuated near the desired resonant frequency to reduce the return loss in the antenna, thereby improving the radiation performance.
  • the isolation characteristic may be varied by changing the value of the capacitor in the tuning line formed between the strip lines by changing the transfer characteristic according to the capacitor.
  • the capacitor value is increased, the band having excellent isolation characteristics, i.e., coupling attenuation, is moved to the low frequency band, and if the capacitor value is decreased, the isolation characteristic is moved to the high frequency band, so that the desired resonance frequency is varied.
  • the coupling of the antenna can be significantly reduced at the desired resonant frequency.
  • FIG 8 is another example of a structure in which a high frequency module with a multi-mode antenna according to the present invention is mounted on a printed circuit board.
  • the multi-mode high frequency module basically includes an antenna module, a power supply module, and a printed circuit board.
  • the antenna module includes a multi-mode antenna 820 resonating at a plurality of frequencies and an antenna support 810 that supports the antenna and is coupled to a printed circuit board.
  • the antenna support 810 includes an antenna 820.
  • the antenna coupling part 821 is formed on one side to be firmly coupled to the antenna support 810, and the antenna support 810 is fastened to fasten the antenna support 810 to the printed circuit board 830.
  • the part 822 is formed in the other side.
  • a fastening groove 831 is formed in the printed circuit board 830 to fasten the antenna support 810 so that the fastening portion 822 is coupled to the fastening groove 831 so that the antenna support 810 is a printed circuit. It is fixed to the substrate 830.
  • the antenna module and the printed circuit board can be separated, so that the entire high frequency module is removed. It is possible to replace only the failed module without having to replace it, which increases the reusability of the high frequency module.
  • the printed circuit board 830 is provided with a feed point 840, that is, a connection pad for transmitting power supplied from the power supply 880 to the antenna module.
  • the power supply module includes a power supply 880, a strip line 850, a tuning line 860, and a short line 870.
  • the tuning line includes an equivalent capacitor 861 and an equivalent inductor 862.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Transceivers (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

The present invention relates to a multimode high-frequency antenna module having high isolation between antennas in a wireless communication device having at least two antennas operating in multiple modes. The antenna module includes a multimode antenna which resonates in at least one frequency band. A power feeder module comprises a feeder unit and two or more strip lines electrically mutually parallel. The feeder unit supplies power to be radiated through the multimode antenna. The two or more strip lines deliver the power supplied from the feeder unit to the multimode antenna. As many feeder points, for connecting the power supplied through said at least two strip lines to the multimode antenna, as there are strip lines are formed. The multimode high-frequency antenna module further comprises a printed circuit board on which an electrical circuit of the power feeder module is formed.

Description

멀티모드 고주파 모듈Multimode High Frequency Module
본 발명은 무선 통신 장치의 안테나에 관한 것으로, 구체적으로 멀티모드 안테나에서 안테나 간 커플링을 감소시켜 높은 격리도 특성을 가지도록 하는 무선 통신 장치의 고주파 모듈에 관한 것이다.The present invention relates to an antenna of a wireless communication device, and more particularly, to a high frequency module of a wireless communication device for reducing coupling between antennas in a multimode antenna to have high isolation characteristics.
최근, 다양한 정보 전달, 정보 제공에 관한 서비스를 무선을 이용하여 제공하는 서비스가 한창 행해지고 있으며, 다수의 무선 통신 장치가 개발되어 실용에 제공되고 있다. 이들 서비스는, 전화, 텔레비전, LAN(Local Area Network) 등 해마다 다양화되고 있으며 모든 서비스를 사용자가 이용하기 위해서는 개개의 서비스에 대응하는 무선 통신 장치를 소지하여야 한다.Background Art In recent years, services for providing various information transfer and information providing services through wireless have been in full swing, and many wireless communication devices have been developed and provided for practical use. These services are diversified year by year, such as telephones, televisions, and local area networks (LANs). In order to use all the services, users must possess radio communication devices corresponding to individual services.
이러한 서비스를 이용하는 사용자의 편리성 향상을 위해 각각의 서비스에 따라 별도의 무선 통신 장치가 아닌 하나의 무선 통신 장치로 복수의 서비스를 이용하는 것이 가능한 멀티모드 무선 통신 장치가 부분적이지만 실현되고 있다.In order to improve convenience of a user using such a service, a multi-mode wireless communication device capable of using a plurality of services with one wireless communication device instead of a separate wireless communication device according to each service has been partially realized.
통상의 무선에 의한 정보 전송의 서비스는 전자파를 매체로 하기 때문에, 동일한 서비스 에어리어에서는, 1종류의 서비스에 관해 하나의 주파수를 사용함으로써, 복수의 서비스가 사용자에게 제공된다. 따라서 무선 통신 장치는 복수의 주파수의 전자파를 송수신하는 기능이 있어야 한다.In general, the service of information transmission by radio uses electromagnetic waves as a medium, so that a plurality of services are provided to the user by using one frequency for one type of service in the same service area. Therefore, the wireless communication device must have a function of transmitting and receiving electromagnetic waves of a plurality of frequencies.
종래의 무선 통신 장치에서는 예를 들면, 하나의 주파수에 대응하는 싱글 모드의 안테나를 복수 개 준비하고, 이들을 하나의 무선 통신 장치에 탑재하는 방법이 채용되었다.In the conventional radio communication apparatus, for example, a method of preparing a plurality of single mode antennas corresponding to one frequency and mounting them in one radio communication apparatus has been adopted.
이 방법에서는 각각의 싱글 모드 안테나를 독립적으로 동작시키기 위해 파장 정도의 거리를 두고 이들을 탑재할 필요가 있으며, 통상의 정보 전송에 관한 서비스에 이용되는 전자파의 주파수가 자유 공간 전파 특성의 제한에 의해 수백 ㎒ 내지 수㎓로 한정되기 때문에 안테나를 이격시키는 거리가 수십㎝ 내지 수m로 되며 따라서, 단말기 치수가 커져 사용자가 휴대하기가 곤란한 문제점이 있으며, 서로 다른 주파수에 감도를 갖는 안테나를 거리를 두고 배치하기 때문에 안테나에 결합하는 고주파 회로도 그 주파수마다 분리·설치할 필요가 있었다.In this method, in order to operate each single-mode antenna independently, it is necessary to mount them at a distance of a wavelength, and the frequency of electromagnetic waves used for services related to normal information transmission is hundreds of times due to the limitation of free space propagation characteristics. Since the distance from the antenna is several tens of centimeters to several meters because it is limited to MHz to several kilohertz, it is difficult to carry the user due to the size of the terminal, and the antennas having sensitivity at different frequencies are arranged at a distance. Therefore, a high frequency circuit coupled to the antenna also needs to be separated and provided for each frequency.
이러한 이유로 반도체의 집적 회로 기술을 적용하는 것이 곤란하게 되며 무선 통신 장치의 치수가 증대될 뿐만 아니라 고주파 회로의 고비용을 초래하는 문제가 있다. 억지로 집적 회로 기술을 적용하여 회로 전체를 집적화해도 고주파 회로로부터 개개의 거리가 떨어진 안테나까지 고주파 케이블로 결합할 필요가 발생한다.For this reason, it is difficult to apply the integrated circuit technology of the semiconductor, and the problem of not only increasing the dimensions of the wireless communication device but also causing the high cost of the high frequency circuit. Even if the integrated circuit technology is forcibly integrated, the necessity of combining the high-frequency cable from the high-frequency circuit to the antennas separated by individual distances is generated.
그런데 사용자가 휴대가능한 치수의 무선 통신 장치에 적용 가능한 고주파 케이블의 축 직경은, 1밀리 내외의 직경을 가지기 때문에 동 고주파 케이블의 전송 손실은 수㏈/m에 달한다. 이러한 고주파 케이블의 사용에 의해 고주파 회로가 소비하는 전력이 증가하여 무선 통신 장치의 사용 시간이 현저히 저하되거나 또는 배터리의 크기가 증가하여 사용자가 무선 통신 장치를 휴대하기 곤란하였다.By the way, since the shaft diameter of the high frequency cable applicable to the radio communication apparatus of a user portable dimension has a diameter of about 1 millimeter, the transmission loss of this high frequency cable reaches several s / m. The use of such high-frequency cables increases the power consumed by the high-frequency circuits, thereby significantly reducing the use time of the wireless communication device or increasing the size of the battery, making it difficult for a user to carry the wireless communication device.
일 예로 2주파 공용 안테나를 이용하는 무선 통신 장치에서도 서로 다른 주파수에서 동작하는 것이 가능한 안테나가 일본 특개소61-295905호, 일본 특개평1-158805호 등에 제안되었다. 그러나 이러한 구조에서는 서로 떨어진 위치의 입출력 단자의 각각에 송신기 및 수신기가 요구되므로 무선통신 장치와 같이 소형의 장치에 요구되는 집적화가 곤란하다는 문제점이 있다.As an example, antennas capable of operating at different frequencies even in a wireless communication apparatus using a two-frequency common antenna have been proposed in Japanese Patent Laid-Open Nos. 61-295905 and 1- 1805805. However, in such a structure, since a transmitter and a receiver are required for each of the input and output terminals at different locations, there is a problem in that integration required for a small device such as a wireless communication device is difficult.
이러한 문제점을 해결하기 위해, 한국등록특허 10-0774071에는 복수의 주파수에서 1개의 급전점을 공용할 수 있는 소형의 멀티모드 안테나와 상기 안테나를 이용한 고주파 모듈이 안테나를, 방사 도체의 일단을 복수의 주파수에서 공통인 단일의 급전점으로 하고, 그 일단에 제1포트 공진 회로를 접속하며, 방사도체의 타단에 제2 1포트 공진 회를 접속하는 구조로 한다. 급전점으로부터 자유 공간을 보았을 경우의 어드미턴스의 컨덕턴스 성분을 고주파 회로의 특성 어드미턴스와 동일하게 하고, 상기 어드미턴스의 서셉턴스 성분을, 급전점에 접속한 공진 회로에 의해 복수의 주파수에서 상쇄하도록 하는 것이 제안되었다.In order to solve this problem, Korean Patent No. 10-0774071 discloses a small multimode antenna capable of sharing one feed point at a plurality of frequencies and a high frequency module using the antenna, and one end of a radiation conductor. A single feed point common in frequency is used, and a first port resonant circuit is connected to one end thereof and a second first port resonant circuit is connected to the other end of the radiating conductor. It is proposed that the conductance component of the admittance when the free space is seen from the feed point is the same as the characteristic admittance of the high frequency circuit, and the susceptance component of the admittance is canceled at a plurality of frequencies by a resonance circuit connected to the feed point. It became.
도 1은 한국등록특허 10-0774071에 따른 소형의 멀티모드 안테나의 개략적인 구조도이다.1 is a schematic structural diagram of a small multi-mode antenna according to Korean Patent Registration No. 10-0774071.
다른 예로 한국공개특허 특1998-702904호에는 제1주파수 및 제1주파수로부터 멀리 떨어져 있는 최저 주파수인 제2주파수에서 동작하는 안테나 및 다이플렉서를 사용하되, 다이플렉서는 용량성 소자와 유도성 소자를 포함하고 단일 동축 케이블이 안테나에 사용될 수 있도록 두 신호를 결합하고 제1 및 제2 동작 주파수에서 임피던스 정합을 제공하도록 하는 이중 주파수 안테나가 개시되어 있다.As another example, Korean Patent Laid-Open Publication No. 1998-702904 uses an antenna and a diplexer operating at a first frequency and a second frequency that is the lowest frequency far from the first frequency, but the diplexer is a capacitive element and an inductive A dual frequency antenna is disclosed that includes an element and combines two signals so that a single coaxial cable can be used for the antenna and provides impedance matching at the first and second operating frequencies.
도 2는 한국공개특허 특1998-702904호에 따른 이중 주파수 안테나의 개략적인 구조도이다.2 is a schematic structural diagram of a dual frequency antenna according to Korean Patent Laid-Open Publication No. 1998-702904.
또 다른 예로, 한국공개특허 10-2010-0026653에는 무선 스위치를 이용하여 안테나를 모노폴 또는 PIFA 안테나로 동작하도록 하여 다중대역에서 사용할 수 있도록 전도체로 이루어지고 유한 평면을 가진 접지면; 전파를 송수신하는 안테나 바디; 상기 접지면과 상기 안테나 바디를 전기적으로 상호 연결하는 급전 라인; 상기 안테나 바디를 상기 접지면에 접지시키는 단락핀; 및 상기 단락핀에 연결되면서 상기 안테나 바디의 접지면과 연결 상태를 제어하는 스위치를 포함하는 평판형 역 에프 안테나가 개시되어 있다.As another example, Korean Patent Laid-Open Publication No. 10-2010-0026653 includes a ground plane having a finite plane and made of a conductor for use in a multiband by operating an antenna as a monopole or PIFA antenna using a wireless switch; An antenna body for transmitting and receiving radio waves; A feed line electrically interconnecting the ground plane and the antenna body; A shorting pin for grounding the antenna body to the ground plane; And a switch connected to the shorting pin and controlling a connection state with a ground plane of the antenna body.
도 3은 한국공개특허 10-2010-0026653에 따른 평판형 역 에프 안테나의 개략적인 구조도이다.3 is a schematic structural diagram of a planar inverted F antenna according to Korean Patent Laid-Open No. 10-2010-0026653.
상기의 종래기술은 비록 소형의 무선통신장치에서 멀티밴드 또는 멀티모드를 동작하도록 하는 안테나를 제공하고 있으나, 복수의 안테나가 구비됨에 따라 안테나간 커플링에 의하여 전파 성능이 감소하는 문제점에 대해서는 해결책을 제시하고 있지 못하다.Although the prior art provides an antenna for operating a multi-band or multi-mode in a small wireless communication device, a solution to the problem that the radio performance is reduced by coupling between antennas as a plurality of antennas are provided. Not present
본 발명은 상기와 같은 문제점을 해결하기 위해 제안된 것으로, 높은 격리도 특성을 갖는 고주파 모듈을 제공하고자 한다. 구체적으로 안테나 모듈과 급전 모듈을 포함하는 무선 통신 장치의 멀티모드 고주파 모듈에서 각각의 안테나가 병렬로 연결되면서 독자적으로 급전되어 높은 격리도 특성을 가지며, 멀티 밴드로 동작하는 경우 동작 주파수별 튜닝이 가능할 뿐만 아니라 급전라인의 전기적 길이를 축소시킴으로써 소형으로 제작하는 것이 가능하도록 하는 높은 격리도 특성을 갖는 무선 통신 장치의 멀티모드 고주파 모듈을 제공하고자 한다.The present invention has been proposed to solve the above problems, and to provide a high frequency module having high isolation characteristics. Specifically, in the multi-mode high-frequency module of the wireless communication device including the antenna module and the power feeding module, each antenna is connected in parallel and independently fed to have high isolation characteristics, and when operating in a multi-band, tuning by operating frequency may be possible. In addition, it is to provide a multi-mode high-frequency module of a wireless communication device having a high isolation characteristic that can be made small by reducing the electrical length of the feed line.
상기와 같은 과제를 달성하기 위한 본 발명에 따른 안테나 모듈과 급전 모듈을 포함하는 고주파 모듈은,High frequency module including an antenna module and a power supply module according to the present invention for achieving the above object,
상기 안테나 모듈이 적어도 하나 이상의 주파수 대역에서 공진하는 멀티모드 안테나를 포함하고,The antenna module includes a multimode antenna resonating in at least one frequency band,
상기 급전 모듈은 급전부와 적어도 전기적으로 서로 병렬인 둘 이상의 스트립 라인을 포함하되, 상기 급전부는 상기 멀티모드 안테나를 통해 방사되는 전력을 공급하고, 상기 적어도 둘 이상의 스트립 라인은 상기 급전부에서 공급되는 전력을 상기 멀티모드 안테나에 전달하며,The feed module includes at least two strip lines that are at least electrically parallel to the feed portion, wherein the feed portion supplies power radiated through the multimode antenna, and the at least two strip lines are supplied from the feed portion. Delivers power to the multimode antenna,
상기 적어도 둘 이상의 스트립 라인을 통해 공급되는 전력을 상기 멀티모드 안테나에 연결하는 급전점이 상기 적어도 둘 이상의 스트립 라인의 수만큼 형성되고 상기 급전 모듈이 전기적 회로로 형성되어 있는 인쇄회로기판을 더 포함하며,A printed circuit board further comprising a feeding point for connecting the power supplied through the at least two strip lines to the multimode antenna, the number of the at least two strip lines being formed, and wherein the feeding module is formed of an electrical circuit;
상기 안테나 모듈은 상기 멀티모드 안테나가 상기 급전모듈에 대해 상기 인쇄회로기판을 중심으로 반대방향에서 결합되도록 하며 상기 멀티모드 안테나를 지지하는 안테나 지지부와 상기 안테나 지지부에 상기 멀티모드 안테나를 결합하는 안테나 결합부를 더 포함하고 상기 안테나 결합부가 상기 안테나 지지부의 일측에 형성될 수 있으며,The antenna module combines the multi-mode antenna coupled to the power supply module in the opposite direction with respect to the printed circuit board, and supports the multi-mode antenna and couples the multi-mode antenna to the antenna support. Further comprising a portion and the antenna coupling portion may be formed on one side of the antenna support,
상기 안테나 지지부의 다른 일측에는 상기 안테나 지지부를 상기 인쇄회로기판에 체결하는 체결부가 더 형성되고,The other side of the antenna support is further formed with a fastening portion for fastening the antenna support to the printed circuit board,
상기 인쇄회로기판에는 상기 안테나 지지부에 형성된 체결부에 대향하는 위치에 상기 체결부에 결합되는 체결홈이 더 형성되는 것을 특징으로 한다.The printed circuit board may further include a coupling groove coupled to the coupling portion at a position opposite to the coupling portion formed on the antenna support portion.
상기 급전 모듈은,The power supply module,
상기 급전부와 상기 급전점과 연결되는 상기 전기적으로 서로 병렬인 적어도 둘 이상의 스트립 라인의 종단부 사이에는 상기 적어도 둘 이상의 스트립 라인에 각각 연결된 안테나에 역위상의 전력을 공급하는 쇼트 라인이 더 형성되고,A short line is further formed between the feed portion and the ends of the at least two strip lines electrically connected to each other connected to the feed point to supply the in-phase power to the antennas respectively connected to the at least two strip lines. ,
상기 쇼트 라인과 상기 급전점과 연결되는 적어도 둘 이상의 스트립 라인의 종단부 사이에는 상기 멀티모드 고주파 모듈의 공진 주파수를 조절하고 상기 멀티모드 안테나 사이의 커플링을 감쇄시키기 위한 튜닝 라인이 상기 적어도 둘 이상의 스트립 라인 사이에 각각 더 형성되는 것을 특징으로 하며,At least two or more tuning lines are provided between the short line and ends of at least two strip lines connected to the feed point to adjust the resonant frequency of the multimode high frequency module and to attenuate coupling between the multimode antennas. Characterized in that each is further formed between the strip line,
상기 튜닝 라인은 등가적으로 커패시터, 커패시터와 인덕터의 직렬 결합 또는 커패시터와 인덕터의 병렬 결합인 것을 특징으로 하는 멀티모드 고주파 모듈.And said tuning line is equivalently a series coupling of capacitor, capacitor and inductor or parallel coupling of capacitor and inductor.
한편 상기 적어도 둘 이상의 스트립 라인 사이에 연결되는 상기 쇼트 라인은 희망공진 주파수의 1/4 파장의 길이인 것을 특징으로 한다.On the other hand, the short line connected between the at least two strip line is characterized in that the length of 1/4 wavelength of the desired resonance frequency.
상기와 같은 구성을 가지는 본 발명에 따른 안테나 모듈과 급전 모듈을 포함하는 무선 통신 장치의 멀티모드 고주파 모듈은 각각의 안테나가 병렬로 연결되면서 독자적으로 급전되어 높은 격리도 특성을 가지며, 멀티 밴드로 동작하는 경우 동작 주파수별 튜닝이 가능할 뿐만 아니라 급전라인의 전기적 길이를 축소함으로써 소형으로 제작하는 것이 가능하도록 하는 높은 격리도 특성을 제공한다.The multi-mode high-frequency module of the wireless communication device including the antenna module and the power feeding module according to the present invention having the above configuration has a high isolation characteristic by independently feeding each antenna connected in parallel and operating in a multi-band mode. In this case, not only the tuning by operating frequency is possible but also the high isolation characteristic, which makes it possible to manufacture small by reducing the electrical length of the feed line.
도 1은 한국등록특허 10-0774071에 따른 소형의 멀티모드 안테나의 개략적인 구조도이다.1 is a schematic structural diagram of a small multi-mode antenna according to Korean Patent Registration No. 10-0774071.
도 2는 한국공개특허 특1998-702904호에 따른 이중 주파수 안테나의 개략적인 구조도이다.2 is a schematic structural diagram of a dual frequency antenna according to Korean Patent Laid-Open Publication No. 1998-702904.
도 3은 한국공개특허 10-2010-0026653에 따른 평판형 역 에프 안테나의 개략적인 구조도이다.3 is a schematic structural diagram of a planar inverted F antenna according to Korean Patent Laid-Open No. 10-2010-0026653.
도 4는 본 발명에 따른 무선 통신 장치의 멀티 모드 고주파 모듈의 개략적인 구성도이다.4 is a schematic structural diagram of a multi-mode high frequency module of a wireless communication device according to the present invention.
도 5는 본 발명에 따른 무선 통신 장치의 멀티 모드 고주파 모듈에서 안테나간 커플링이 감쇄되는 원리를 설명하기 위한 도면이다.5 is a view for explaining the principle that the coupling between the antenna is attenuated in the multi-mode high-frequency module of the wireless communication device according to the present invention.
도 6은 도 5를 등가회로로 변환한 도면이다.FIG. 6 is a diagram of FIG. 5 converted to an equivalent circuit.
도 7은 본 발명에 따른 멀티 모드 안테나가 구비된 무선 통신 장치에서 동작 주파수에서 안테나 사이의 격리도 특성을 나타낸다.7 illustrates isolation characteristics between antennas at an operating frequency in a wireless communication device equipped with a multi-mode antenna according to the present invention.
도 8은 본 발명에 따른 멀티 모드 안테나가 구비된 무선 통신 장치에서 안테나가 PCB기판에 실장되는 구조에 다른 예이다.8 is another example of a structure in which an antenna is mounted on a PCB substrate in a wireless communication device equipped with a multi-mode antenna according to the present invention.
도 9는 본 발명에 따른 멀티 모드 안테나가 구비된 무선 통신 장치에서 튜닝 라인의 등가 커패시터값이 1.2pF인 경우 정재파비 및 주파수 응답 특성이다.9 illustrates standing wave ratios and frequency response characteristics when an equivalent capacitor value of a tuning line is 1.2 pF in a wireless communication device equipped with a multi-mode antenna according to the present invention.
도 10은 본 발명에 따른 멀티 모드 안테나가 구비된 무선 통신 장치에서 튜닝 라인의 등가 커패시터값이 1.5pF인 경우 정재파비 및 주파수 응답 특성이다.10 is a standing wave ratio and frequency response characteristics when an equivalent capacitor value of a tuning line is 1.5 pF in a wireless communication device equipped with a multi-mode antenna according to the present invention.
도 11은 본 발명에 따른 멀티 모드 안테나가 구비된 무선 통신 장치에서 튜닝 라인의 등가 커패시터값이 2.2pF인 경우 정재파비 및 주파수 응답 특성이다.FIG. 11 is a standing wave ratio and frequency response characteristic when an equivalent capacitor value of a tuning line is 2.2 pF in a wireless communication device equipped with a multi-mode antenna according to the present invention.
도 12는 본 발명에 따른 멀티 모드 안테나가 구비된 무선 통신 장치에서 튜닝 라인의 등가 커패시터값이 3pF인 경우 정재파비 및 주파수 응답 특성이다.12 illustrates standing wave ratios and frequency response characteristics when an equivalent capacitor value of a tuning line is 3 pF in a wireless communication device equipped with a multi-mode antenna according to the present invention.
도 13은 본 발명에 따른 멀티 모드 안테나가 구비된 무선 통신 장치에서 튜닝 라인의 등가 커패시터값이 5pF인 경우 정재파비 및 주파수 응답 특성이다.FIG. 13 illustrates standing wave ratios and frequency response characteristics when an equivalent capacitor value of a tuning line is 5pF in a wireless communication device equipped with a multi-mode antenna according to the present invention.
[부호의 설명][Description of the code]
410: 안테나 모듈 411, 412: 안테나410: antenna module 411, 412: antenna
420: 인쇄회로기판 430: 급전 모듈420: printed circuit board 430: power supply module
431: 제1스트립 라인 432: 제2스트립 라인431: first strip line 432: second strip line
441: 튜닝 라인 460: 쇼트라인441: tuning line 460: short line
511, 512: 안테나511, 512: antenna
521, 522: 급전점 531, 532: 스트립 라인521, 522: feed point 531, 532: strip line
541, 542: 등가 커패시터 551, 552: 등가 인덕터541, 542: equivalent capacitor 551, 552: equivalent inductor
560: 쇼트 라인560: short line
611, 612: 스트립 라인 621, 622: 등가 커패시터611 and 612 strip lines 621 and 622 equivalent capacitor
631, 632: 등가 인덕터 650: 임피던스 매칭회로631, 632: equivalent inductor 650: impedance matching circuit
810: 안테나 지지대 820: 안테나810: antenna support 820: antenna
821: 안테나 결합부 822: 체결부821: antenna coupling portion 822: coupling portion
830: 인쇄회로기판 831: 체결홈830: printed circuit board 831: fastening groove
840: 급전점 850: 스트립 라인840: feed point 850: strip line
860: 튜닝 라인 8621: 등가 커패시터860: tuning line 8621: equivalent capacitor
862: 등가 인덕터 870: 쇼트 라인862: equivalent inductor 870: short line
880: 급전원880: power supply
도 4는 본 발명에 따른 무선 통신 장치의 멀티 모드 고주파 모듈의 개략적인 구성도로 도 8의 멀티 모드 안테나가 구비된 고주파 모듈이 인쇄회로기판에 실장되는 구조를 단순화한 것이다.4 is a schematic configuration diagram of a multi-mode high frequency module of a wireless communication device according to the present invention, which simplifies a structure in which a high frequency module having the multi-mode antenna of FIG. 8 is mounted on a printed circuit board.
본 발명에 따른 고주파 모듈은 인쇄회로기판(420)과 상기 인쇄회로기판(420)상에 실장된 급전 모듈(430)과 상기 인쇄회로기판에 체결되는 안테나 모듈(410)을 포함한다.The high frequency module according to the present invention includes a printed circuit board 420, a power feeding module 430 mounted on the printed circuit board 420, and an antenna module 410 fastened to the printed circuit board.
상기에서 급전 모듈(430)에는 급전원으로부터 입력되는 전력을 안테나(411, 412)에 전달하는 스트립 라인(431, 432)이 서로 전기적으로 병렬로 형성되고, 상기 스트립 라인(431, 432)의 시작부(P1, P2)와 상기 안테나(411, 412) 사이에서 상기 스트립 라인(431, 432)의 일측에는 쇼트 라인(460)이 형성되어 있고, 상기 쇼트 라인(460)과 상기 안테나(411, 412) 사이에서 상기 스트립 라인(431, 432)에 부가되어 튜닝 라인(441)이 구비된다. 상기 튜닝 라인(441)은 인덕터와 커패시터로 구성되어 포트간에 높은 격리도를 제공한다.In the power supply module 430, strip lines 431 and 432 for transmitting power input from the power supply to the antennas 411 and 412 are electrically formed in parallel with each other, and the start of the strip lines 431 and 432 is performed. A short line 460 is formed at one side of the strip lines 431 and 432 between the portions P1 and P2 and the antennas 411 and 412, and the short line 460 and the antennas 411 and 412. In addition to the strip line (431, 432) between the tuning line 441 is provided. The tuning line 441 consists of an inductor and a capacitor to provide high isolation between ports.
상기 안테나 모듈에(410)는 멀티 모드 즉, 적어도 하나 이상의 주파수 대역에서 공진되어 전력을 방사하는 안테나(411, 412)가 구비되어 있다.The antenna module 410 is provided with antennas 411 and 412 that are multi-mode, that is, resonate in at least one or more frequency bands to radiate power.
도 5는 도 4를 회로의 형태로 표현 것으로 P1, P2에 급전원이 연결되고 상기 P1, P2에 스트립 라인(531, 532)이 각각 연결되며, 상기 스트립 라인(531, 532)의 일측에는 쇼트 라인(560)이 연결되고, 상기 스트립 라인(531, 532)의 종단부에는 안테나(511, 512)와 전기적으로 연결되는 급전점 P3(521), P4(522)가 있으며 상기 급전점 P3(521), P4(522)를 통해 안테나(511, 512)에 전력이 공급된다. 상기 급전점 P3(521), P4(522)과 쇼트 라인(560) 사이의 스트립 라인(531, 532)에 인덕터(551, 552)와 커패시터(541, 542)로 구성되는 튜닝 라인(도면부호 미포함) 더 포함되어 있다.FIG. 5 is a circuit diagram of FIG. 4, wherein a power supply is connected to P1 and P2, and strip lines 531 and 532 are connected to P1 and P2, respectively, and a short is formed at one side of the strip lines 531 and 532. Lines 560 are connected, and feed ends P3 521 and P4 522 are electrically connected to antennas 511 and 512 at ends of the strip lines 531 and 532, and the feed points P3 521. Power is supplied to the antennas 511 and 512 through the P4 522. Tuning line consisting of inductors 551 and 552 and capacitors 541 and 542 in strip lines 531 and 532 between the feed points P3 521 and P4 522 and the short line 560 (not shown). ) More included.
도 6은 도 5에서 급전 모듈을 등가회로로 변환한 것이다.FIG. 6 shows the power supply module converted to an equivalent circuit in FIG. 5.
도 5의 급전 모듈은 2포트 네트워크로 단순화할 수 있으며, 도 4의 튜닝 라인(441)은 커패시터(621, 622)와 인덕터(631, 632)로 등가화될 수 있다.The power supply module of FIG. 5 may be simplified to a two-port network, and the tuning line 441 of FIG. 4 may be equivalent to the capacitors 621 and 622 and the inductors 631 and 632.
상기와 같은 구성에서 포트 P3과 포트 P4는 전기적으로 90도의 위상차를 가지고 포트 P2는 포트 P1에 대해 전기적으로 180도의 위상차를 가지고 같은 크기의 전류가 인가되므로 높은 격리도 특성을 가지게 된다.In the configuration described above, the port P3 and the port P4 have a phase difference of 90 degrees electrically, and the port P2 has a 180 degree phase difference electrically with respect to the port P1, and the same magnitude of current is applied, thereby providing high isolation characteristics.
통상 포트 2과 포트 1은 높은 격리도 특성을 가지는 것이 바람직하므로 이를 위한 다양한 기술이 개발되고 있으나 종래에는 도 4에서 보는 바와 같이 스트립 라인(431)과 스트립 라인(432)가 소위 λ/4(λ: 공진주파의 파장)의 전기적 길이를 가지도록 하기 위한 설계 방법이 주를 이루고 있으나, 인쇄회로기판(PCB)상에서 λ/4의 전기적 길이를 가지도록 설계하는 것은 용이하지 않으며 본 발명은 이에 따라 등가적으로 인덕터(631, 632)와 커패시터(621, 622)로 표현되는 튜닝 라인 L2를 부가하여 전기적 길이를 짧게 하여도 포트 P1과 포트 P2가 λ/4의 전기적 길이를 가지도록 하는 구조를 제안하였다.Generally, since port 2 and port 1 preferably have high isolation characteristics, various techniques have been developed for this purpose. However, as shown in FIG. 4, the strip line 431 and the strip line 432 are referred to as λ / 4 (λ). : The design method to have the electrical length of (wavelength of the resonant frequency) is dominant, but it is not easy to design to have an electrical length of λ / 4 on the printed circuit board (PCB), the present invention is equivalent In addition, a structure is proposed in which the ports P1 and P2 have an electrical length of λ / 4 even though the electrical length is shortened by adding the tuning lines L2 represented by the inductors 631 and 632 and the capacitors 621 and 622. .
이하에서는 본 발명에 따른 멀티 모드 고주파 모듈의 안테나간 커플링 감쇄의 원리를 도 7 및 도 9 내지 도 13을 참고하여 설명하도록 한다.Hereinafter, the principle of coupling attenuation between antennas of the multi-mode high frequency module according to the present invention will be described with reference to FIGS. 7 and 9 to 13.
알려진 바와 같이 정재파비는 입사전력과 반사전력에 의해 형성되는 정재파의 최소값과 최대값의 비로서 1에 가까울수록 반사량이 적음을 의미하며 임피던스 정합이 잘 이루어지는 것을 의미한다.As is known, the standing wave ratio is a ratio of the minimum value and the maximum value of the standing wave formed by the incident power and the reflected power, and the closer to 1, the smaller the amount of reflection and the better the impedance matching.
도 9(a) 내지 도 13(a)는 커패시터의 값을 변화시키면서 시뮬레이션에 의해 측정된 정재파비를 주파수에 따라 도시한 것이다.9 (a) to 13 (a) show the standing wave ratios measured by simulation according to the frequency while changing the value of the capacitor.
한편 한쪽의 단자와 다른 한쪽의 단자 사이에 커플링은 최소화되는 것이 바람직하므로 한쪽에 전력이 공급하면서 다른 단자에 전력을 측정하여 단자 사이에 격리도를 전력으로 측정하였다.On the other hand, the coupling between one terminal and the other terminal is preferably minimized, so the power is measured on the other terminal while power is supplied to one side, and the isolation between the terminals is measured as power.
도 9(b) 내지 도 13(b)는 전력이 공급되지 않는 단자에서의 전력을 주파수에 따라 시뮬레이션에 의해 측정한 것을 도시한 것이다.9 (b) to 13 (b) show the measurement of power at a terminal to which power is not supplied by simulation according to frequency.
아래의 표 1은 이러한 측정값을 정리한 것으로 표 1에서 보는 바와 같이 정재파비는 3pF일 때 공진주파수 대역에서 가장 낮은값(1.14)을 가짐을 알 수 있으며, 2.2pF인 경우 1.17로서 3pF일 때와 유사한 성능을 가짐을 알 수 있다.Table 1 below summarizes these measured values. As shown in Table 1, it can be seen that the standing wave ratio has the lowest value (1.14) in the resonant frequency band at 3pF, and 1.17 at 2.2pF and 3pF at It can be seen that it has a similar performance to.
한편 단자간의 격리도 특성 즉, 아이솔레이션값은 2.2pF일 때 공진주파수 영역에서 가장 낮은 값(-30.6dB)으로 3pF일 때의 -18.4dB보다 약 12dB로서 16배의 차이가 난다. 즉, 2.2pF일 때 3.0pF보다 16배 정도의 격리도 특성이 개선됨을 알 수 있다. 이에 따라 2.2pF을 튜닝 라인의 등가 커패시터의 값으로 선택하는 것이 바람직함을 알 수 있다.On the other hand, the isolation characteristic between the terminals, that is, the isolation value is the lowest value in the resonant frequency region at 2.2pF (-30.6dB), which is about 12dB than -18.4dB at 3pF, which is 16 times different. That is, it can be seen that the isolation characteristic is improved by 16 times compared to 3.0 pF at 2.2 pF. Accordingly, it can be seen that it is preferable to select 2.2 pF as the value of the equivalent capacitor of the tuning line.
표 1
1.2pF(정재파비/격리도) 1.5pF(정재파비/격리도) 2.2pF(정재파비/격리도) 3pF(정재파비/격리도) 5pF(정재파비/격리도)
1 1.31/-4.2dB 3.39/-7.4dB 2.70/-5.8dB 2.96/-6.9dB 1.78/-11.8dB
2 3.25/-5.8dB 1.92/-10.1dB 1.19/-9.1dB 1.19/-11.9dB 1.36/-29.9dB
3 3.00/-8.1dB 1.70/-17.0dB 1.18/-30.6dB 1.14/-18.4dB 1.47/-11.4dB
4 2.75/-12.9dB 1.51/-23.4dB 1.22/-12.7dB 1.16/-10.7dB 1.55/-8.6dB
5 1.57/-13.2dB 2.04/-11.1dB 2.07/-8.9dB 1.79/-8.5dB 2.13/-7.8dB
Table 1
1.2pF (standing wave ratio / isolation degree) 1.5pF (standing wave ratio / isolation degree) 2.2pF (standing wave ratio / isolation chart) 3pF (standing wave ratio / isolation degree) 5pF (standing wave ratio / isolation chart)
One 1.31 / -4.2dB 3.39 / -7.4dB 2.70 / -5.8dB 2.96 / -6.9 dB 1.78 / -11.8 dB
2 3.25 / -5.8dB 1.92 / -10.1 dB 1.19 / -9.1dB 1.19 / -11.9dB 1.36 / -29.9dB
3 3.00 / -8.1dB 1.70 / -17.0dB 1.18 / -30.6dB 1.14 / -18.4dB 1.47 / -11.4 dB
4 2.75 / -12.9 dB 1.51 / -23.4dB 1.22 / -12.7 dB 1.16 / -10.7dB 1.55 / -8.6dB
5 1.57 / -13.2dB 2.04 / -11.1dB 2.07 / -8.9dB 1.79 / -8.5dB 2.13 / -7.8dB
도 6을 참고하면 포트 P1을 통해 인가되는 전류는 쇼트 라인(640)을 거치는 루프 L1과 튜닝 라인을 거치는 루프 L2을 통해 포트 P2에서 만나는데 각 루프를 거친 전류는 그 크기가 같지만 위상은 180도 서로 역위상이 되어 상쇄된다.Referring to FIG. 6, the current applied through the port P1 is met at the port P2 through the loop L1 passing through the short line 640 and the loop L2 passing through the tuning line, and the currents passing through each loop have the same magnitude but phase 180 degrees from each other. It is reversed and canceled out.
결국 포트 P1에서 인가된 전력량이 포트 P2에 미치는 전력량은 실질적으로 0이 되어 포트 P2는 포트 P1에 대해 높은 격리도 특성을 가지게 되며 포트 P2에 인가된 전력 역시 포트 P1에서는 루프 L1과 루프 L2를 거친 전력이 같은 크기와 역위상이 되어 서로 상쇄되어 포트 P1 역시 포트 P2에 대해 높은 격리도 특성을 가지게 된다.Eventually, the amount of power applied from port P1 to port P2 becomes substantially zero, so that port P2 has high isolation characteristics to port P1, and the power applied to port P2 also goes through loop L1 and loop L2 at port P1. The power is of the same magnitude and antiphase to cancel each other out so that port P1 also has high isolation for port P2.
한편 포트 P3와 포트 P4에 인가되는 전력 즉, 전류의 크기가 동일한 것이 바람직하며 이를 위해 튜닝 라인의 인덕터와 커패시터의 값을 적절히 조절하는 것에 달성될 수 있다.On the other hand, the power applied to the port P3 and the port P4, that is, the magnitude of the current is preferably the same, for this purpose it can be achieved by appropriately adjusting the values of the inductor and the capacitor of the tuning line.
상기에서 설명한 바와 같이 스트립 라인 간의 전기적 길이를 λ/4로 유지하기 위해서는 PCB 기판에는 충분한 전기적 길이를 가능하도록 하는 공간이 요구되는 최근과 같이 점차 소형화되는 추세에서는 λ/4를 유지하기 위한 충분한 공간이 가능하지 않으나 본 발명에서는 이러한 문제점을 인덕터와 커패시터로 등가화되는 튜닝 라인의 길이와 폭 등을 조절하여 달성 가능하며 한편 안테나로 방사되는 전력의 위상과 임피던스를 매칭시키기 위하여 인덕터와 커패시터를 적절한 값으로 선정할 수도 있다.As described above, in order to maintain the electrical length between the strip lines at λ / 4, the PCB substrate requires a space that allows sufficient electrical length. Although not possible in the present invention, this problem can be achieved by adjusting the length and width of the tuning line equivalent to the inductor and the capacitor. Meanwhile, the inductor and the capacitor may be set to appropriate values to match the phase and impedance of the power radiated to the antenna. You can also choose.
한편 안테나와의 임피던스 매칭을 위해 입력 포트인 P1과 P2에는 별도의 임피던스 매칭 회로(650)이 더 부가될 수도 있다.Meanwhile, a separate impedance matching circuit 650 may be further added to the input ports P1 and P2 for impedance matching with the antenna.
도 7은 본 발명에 따른 멀티 모드 안테나가 구비된 무선 통신 장치에서 동작 주파수에서 안테나 사이의 격리도 특성을 나타낸다.7 illustrates isolation characteristics between antennas at an operating frequency in a wireless communication device equipped with a multi-mode antenna according to the present invention.
도 7에서 '□'표시된 선은 안테나간의 격리도 즉, 커플링의 감쇄 정도를 측정한 것이며, '△'로 표시된 선은 안테나에서의 반사손실을 측정한 것이다.In FIG. 7, a line marked with '□' is a measure of isolation between antennas, that is, attenuation of coupling, and a line marked with 'Δ' measures return loss from an antenna.
도 7에서 보는 바와 같이 약 2.5GHz의 공진주파수 근처에서 안테나간의 격리도가 급격히 증가하는 것을 볼 수 있으며, 이때 안테나 반사손실은 현격히 줄어드는 것을 알 수 있다.As shown in FIG. 7, it can be seen that the isolation between antennas is rapidly increased near the resonance frequency of about 2.5 GHz, and the antenna return loss is significantly reduced.
즉, 본 발명에 따른 멀티 모드 고주파 모듈은 희망 공진 주파수 근처에서 안테나간의 커플링이 현저히 감쇄되어 안테나에서 반사손실이 줄어들어 결국 방사 성능이 향상됨을 알 수 있다.That is, the multi-mode high-frequency module according to the present invention can be seen that the coupling between the antenna is significantly attenuated near the desired resonant frequency to reduce the return loss in the antenna, thereby improving the radiation performance.
한편, 도 4 내지 도 6에서 커패시터에 따라 전달특성이 변하는 것에 의해서 스트립 라인 사이에 형성된 튜닝 라인에서 커패시터의 값을 가변함에 따라 격리도 특성을 가변할 수 있다.Meanwhile, in FIG. 4 to FIG. 6, the isolation characteristic may be varied by changing the value of the capacitor in the tuning line formed between the strip lines by changing the transfer characteristic according to the capacitor.
구체적으로 커패시터 값을 증가시키면 격리도 특성 즉, 커플링 감쇄가 우수한 대역이 저주파수 대역으로 이동하고, 커패시터 값을 감소시키면 격리도 특성이 고주파수 대역으로 이동하므로 안테나 멀티 모드로 즉, 희망 공진 주파수가 가변될 때 커패시터의 값을 가변함에 따라 희망 공진 주파수에서 안테나의 커플링을 현저히 감소시킬 수 있다.Specifically, if the capacitor value is increased, the band having excellent isolation characteristics, i.e., coupling attenuation, is moved to the low frequency band, and if the capacitor value is decreased, the isolation characteristic is moved to the high frequency band, so that the desired resonance frequency is varied. By varying the value of the capacitor, the coupling of the antenna can be significantly reduced at the desired resonant frequency.
도 8은 본 발명에 따른 멀티 모드 안테나가 구비된 고주파 모듈이 인쇄회로기판에 실장되는 구조에 다른 예이다.8 is another example of a structure in which a high frequency module with a multi-mode antenna according to the present invention is mounted on a printed circuit board.
도 8에서 보는 바와 같이 본 발명에 따른 멀티 모드 고주파 모듈은 기본적으로 안테나 모듈, 급전 모듈과 인쇄회로기판을 포함하고 있다.As shown in FIG. 8, the multi-mode high frequency module according to the present invention basically includes an antenna module, a power supply module, and a printed circuit board.
안테나 모듈에는 멀티 모드 즉, 복수의 주파수에서 공진되는 안테나(820)와 상기 안테나를 지지하고 인쇄회로기판에 결합되는 안테나 지지대(810)가 포함되어 있으며, 상기 안테나 지지대(810)에는 안테나(820)를 안테나 지지대(810)에 견고히 결합되도록 하기 위한 안테나 결합부(821)가 일측에 형성되어 있으며 또한 상기 안테나 지지대(810)에는 인쇄회로기판(830)에 상기 안테나 지지대(810)를 체결하기 위한 체결부(822)가 다른 일측에 형성되어 있다.The antenna module includes a multi-mode antenna 820 resonating at a plurality of frequencies and an antenna support 810 that supports the antenna and is coupled to a printed circuit board. The antenna support 810 includes an antenna 820. The antenna coupling part 821 is formed on one side to be firmly coupled to the antenna support 810, and the antenna support 810 is fastened to fasten the antenna support 810 to the printed circuit board 830. The part 822 is formed in the other side.
인쇄회로기판(830)에는 상기 안테나 지지대(810)가 체결될 수 있도록 체결홈(831)이 형성되어 상기 체결부(822)가 상기 체결홈(831)에 결합되어 안테나 지지대(810)가 인쇄회로기판(830)에 고정된다.A fastening groove 831 is formed in the printed circuit board 830 to fasten the antenna support 810 so that the fastening portion 822 is coupled to the fastening groove 831 so that the antenna support 810 is a printed circuit. It is fixed to the substrate 830.
상기한 구성에 의하면 고주파 모듈을 사용 중 안테나 모듈이 파손되거나 고장에 의해 교체하여야 할 경우 체결부(822)를 체결홈(831)에서 분리하면 안테나 모듈과 인쇄회로기판이 분리가능하므로 고주파 모듈을 전체로 교체할 필요가 없이 고장이 발생한 모듈만 교체하는 것이 가능하므로 고주파 모듈의 재활용성이 높아진다.According to the above configuration, when the antenna module is damaged or damaged while using the high frequency module, when the fastening part 822 is separated from the fastening groove 831, the antenna module and the printed circuit board can be separated, so that the entire high frequency module is removed. It is possible to replace only the failed module without having to replace it, which increases the reusability of the high frequency module.
또한 상기 인쇄회로기판(830)에는 급전원(880)에서 공급되는 전력을 안테나 모듈에 전달하기 위한 급전점(840) 즉, 연결 패드가 형성되어 있다.In addition, the printed circuit board 830 is provided with a feed point 840, that is, a connection pad for transmitting power supplied from the power supply 880 to the antenna module.
급전 모듈은 급전원(880), 스트립 라인(850), 튜닝 라인(860) 및 쇼트 라인(870)이 포함되어 있다.The power supply module includes a power supply 880, a strip line 850, a tuning line 860, and a short line 870.
튜닝 라인에는 등가 커패시터(861)과 등가 인덕터(862)가 포함되어 있다.The tuning line includes an equivalent capacitor 861 and an equivalent inductor 862.
각 구성에 대한 기능은 도 4에서 설명되었으므로 자세한 설명은 생략한다.Since functions for each component have been described with reference to FIG. 4, detailed descriptions thereof will be omitted.

Claims (11)

  1. 안테나 모듈(410)과 급전 모듈(430)을 포함하는 멀티모드 고주파 모듈에 있어서,In the multi-mode high frequency module including the antenna module 410 and the power supply module 430,
    상기 안테나 모듈(410)은 적어도 둘 이상의 주파수 대역에서 공진하는 멀티모드 안테나(411, 412)를 포함하며,The antenna module 410 includes multimode antennas 411 and 412 that resonate in at least two frequency bands.
    상기 급전 모듈(430)은 The power supply module 430 is
    급전원(P1, P2)으로부터 공급 받은 전력을 상기 멀티모드 안테나(411, 412)로 전달하는 전기적으로 서로 병렬인 둘 이상의 스트립 라인(431, 431)과,Two or more strip lines 431 and 431 that are electrically parallel to each other to transfer the power supplied from the power supply P1 and P2 to the multimode antennas 411 and 412;
    상기 둘 이상의 스트립 라인(431, 432)의 사이에는 스트립 라인(431, 432)에 부가되어 등가적으로 커패시터(541, 542) 또는 커패시터(541, 541)와 인덕터(551, 552)의 결합으로 형성된 튜닝 라인(441)인 것을 특징으로 하는 멀티모드 고주파 모듈.Between the two or more strip lines 431, 432 are added to the strip lines 431, 432 and equivalently formed by the combination of capacitors 541, 542 or capacitors 541, 541 and inductors 551, 552. And a tuning line 441.
  2. 안테나 모듈(410)과 급전 모듈(430)을 포함하는 멀티모드 고주파 모듈에 있어서,In the multi-mode high frequency module including the antenna module 410 and the power supply module 430,
    상기 안테나 모듈(410)은 적어도 둘 이상의 주파수 대역에서 공진하는 멀티모드 안테나(411, 412)를 포함하며,The antenna module 410 includes multimode antennas 411 and 412 that resonate in at least two frequency bands.
    상기 급전 모듈(430)은 The power supply module 430 is
    급전원(P1, P2)으로부터 공급 받은 전력을 상기 멀티모드 안테나(411, 412)로 전달하는 전기적으로 서로 병렬인 둘 이상의 스트립 라인(431, 431)과,Two or more strip lines 431 and 431 that are electrically parallel to each other to transfer the power supplied from the power supply P1 and P2 to the multimode antennas 411 and 412;
    상기 둘 이상의 스트립 라인(431, 432) 사이에는 상기 둘 이상의 스트립 라인(431, 432)에 각각 연결된 안테나에 역위상의 전력을 공급하는 쇼트 라인(460)을 연결하는 것을 특징으로 하는 멀티모드 고주파 모듈.The multimode high frequency module is connected between the two or more strip lines 431 and 432 to connect a short line 460 for supplying antiphase power to an antenna connected to the two or more strip lines 431 and 432, respectively. .
  3. 제2항에 있어서,The method of claim 2,
    상기 둘 이상의 스트립 라인(431, 432) 사이에 연결되는 상기 쇼트 라인은 전기적 길이가 희망공진 주파수의 1/4 파장의 길이인 것을 특징으로 하는 멀티모드 고주파 모듈.And the short line connected between the two or more strip lines (431, 432) has an electrical length of 1/4 wavelength of a desired resonance frequency.
  4. 제1항에 있어서,The method of claim 1,
    상기 커패시터(541, 542) 값을 변경함에 의해 상기 멀티모드 고주파 모듈의 공진 주파수를 가변하여, 상기 멀티모드 안테나(411, 412) 사이의 커플링을 감쇄함을 특징으로 하는 멀티모드 고주파 모듈.The resonant frequency of the multimode high frequency module is varied by changing the value of the capacitor (541, 542), thereby attenuating the coupling between the multimode antennas (411, 412).
  5. 제1항에 있어서,The method of claim 1,
    상기 튜닝 라인(441)을 구성하고 있는 커패시터(541, 542) 또는 인덕터(551, 552)의 값은 튜닝 라인(441)의 길이와 폭으로 조절됨을 특징으로 하는 멀티모드 고주파 모듈.The value of the capacitor (541, 542) or inductor (551, 552) constituting the tuning line (441) is adjusted to the length and width of the tuning line (441).
  6. 제1항에 있어서,The method of claim 1,
    상기 튜닝 라인(441)의 등가적인 커패시터와 인덕터의 결합은 직렬 또는 병렬인 것을 특징으로 하는 멀티모드 고주파 모듈.The combination of the equivalent capacitor and inductor of the tuning line 441 is in series or in parallel.
  7. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 급전 모듈(430)의 전기적 회로가 형성되어 있는 인쇄회로기판(420)을 더 포함하는 것을 특징으로 하는 멀티모드 고주파 모듈.The multi-mode high frequency module, characterized in that it further comprises a printed circuit board 420, the electrical circuit of the power supply module (430) is formed.
  8. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 둘 이상의 스트립 라인(431, 432)으로부터 공급되는 전력을 상기 멀티모드 안테나에 연결하는 연결패드인 급전점(P3, P4)이 상기 둘 이상의 스트림 라인(431, 432)의 수만큼 형성된 것임을 특징으로 하는 멀티모드 고주파 모듈.The feeding point (P3, P4), which is a connection pad for connecting the power supplied from the two or more strip lines (431, 432) to the multi-mode antenna is characterized in that formed by the number of the at least two stream lines (431, 432) Multimode high frequency module.
  9. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 안테나 모듈(410)은 상기 멀티모드 안테나(820)를 지지하고 상기 인쇄회로기판(830)에 결합되는 안테나 지지대(810)를 구비하며, The antenna module 410 has an antenna support 810 for supporting the multi-mode antenna 820 and coupled to the printed circuit board 830,
    상기 안테나 지지대(810)는 상기 멀티모드 안테나(820)를 결합하는 안테나 결합부(821)를 더 포함하고, 상기 안테나 결합부(821)는 상기 안테나 지지대(810)의 일측에 형성되는 것을 특징으로 하는 멀티모드 고주파 모듈.The antenna support 810 further includes an antenna coupling part 821 for coupling the multimode antenna 820, and the antenna coupling part 821 is formed at one side of the antenna support 810. Multimode high frequency module.
  10. 제9항에 있어서,The method of claim 9,
    상기 안테나 지지대(810)의 다른 일측에는 상기 안테나 지지대(810)를 상기 인쇄회로기판(830)에 체결하는 체결부(821)가 더 형성되어 있는 것을 특징으로 하는 멀티모드 고주파 모듈.The other side of the antenna support 810, the multi-mode high-frequency module, characterized in that the fastening portion 821 is further formed to fasten the antenna support (810) to the printed circuit board (830).
  11. 제10항에 있어서,The method of claim 10,
    상기 인쇄회로기판(830)에는 상기 안테나 지지대(810)에 형성된 상기 체결부(821)에 대향하는 위치에 상기 체결부(821)에 결합되는 체결홈(831)이 더 형성되어 있는 것을 특징으로 하는 멀티모드 고주파 모듈.The printed circuit board 830 further includes a fastening groove 831 coupled to the fastening part 821 at a position opposite to the fastening part 821 formed on the antenna support 810. Multimode high frequency module.
PCT/KR2012/000679 2011-01-31 2012-01-30 Multimode high-frequency module WO2012105773A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013552459A JP5817024B2 (en) 2011-01-31 2012-01-30 Multimode high frequency module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110009528A KR101107650B1 (en) 2011-01-31 2011-01-31 Rf module for multi-mode
KR10-2011-0009528 2011-01-31

Publications (2)

Publication Number Publication Date
WO2012105773A2 true WO2012105773A2 (en) 2012-08-09
WO2012105773A3 WO2012105773A3 (en) 2012-11-29

Family

ID=45614543

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2012/000679 WO2012105773A2 (en) 2011-01-31 2012-01-30 Multimode high-frequency module
PCT/KR2012/000678 WO2012105772A2 (en) 2011-01-31 2012-01-30 Multimode high-frequency module

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000678 WO2012105772A2 (en) 2011-01-31 2012-01-30 Multimode high-frequency module

Country Status (3)

Country Link
JP (1) JP5817024B2 (en)
KR (1) KR101107650B1 (en)
WO (2) WO2012105773A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6869649B2 (en) * 2016-06-13 2021-05-12 ラピスセミコンダクタ株式会社 Manufacturing methods for semiconductor devices, communication systems and semiconductor devices.
WO2021181546A1 (en) * 2020-03-11 2021-09-16 三菱電機株式会社 Decoupling circuit
CN114498033B (en) * 2022-02-14 2024-06-07 西安电子科技大学 Broadband high-isolation multiport co-polarized patch antenna based on multimode fusion
CN117559126B (en) * 2024-01-11 2024-03-29 成都瑞迪威科技有限公司 Self-electric-size multi-frequency adjustable radiator and multi-frequency multi-mode monopole antenna

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050107881A (en) * 2004-05-10 2005-11-16 아주대학교산학협력단 Multiple meander strip monopole antenna with broadband characteristic
KR20060059436A (en) * 2004-11-29 2006-06-02 주식회사 케이티프리텔 An apparatus of terminal antenna for receiving a satellite digital multimedia broadcasting (dmb)
KR20070054977A (en) * 2005-11-24 2007-05-30 엘지전자 주식회사 Broadband antenna and electronic equipment comprising it
KR20100056094A (en) * 2008-11-19 2010-05-27 엘지이노텍 주식회사 Antenna

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865007A (en) * 1994-08-22 1996-03-08 Murata Mfg Co Ltd High frequency filter
JP2002164704A (en) * 2000-11-28 2002-06-07 Matsushita Electric Ind Co Ltd High frequency switch for dealing with balance signal, and spiral inductor and distributor
CN101926049B (en) * 2008-11-25 2013-10-30 松下电器产业株式会社 Array antenna device and wireless communication device
JP5165602B2 (en) * 2009-01-09 2013-03-21 株式会社東海理化電機製作所 Antenna holding structure and antenna device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050107881A (en) * 2004-05-10 2005-11-16 아주대학교산학협력단 Multiple meander strip monopole antenna with broadband characteristic
KR20060059436A (en) * 2004-11-29 2006-06-02 주식회사 케이티프리텔 An apparatus of terminal antenna for receiving a satellite digital multimedia broadcasting (dmb)
KR20070054977A (en) * 2005-11-24 2007-05-30 엘지전자 주식회사 Broadband antenna and electronic equipment comprising it
KR20100056094A (en) * 2008-11-19 2010-05-27 엘지이노텍 주식회사 Antenna

Also Published As

Publication number Publication date
KR101107650B1 (en) 2012-01-20
WO2012105772A2 (en) 2012-08-09
JP2014509484A (en) 2014-04-17
WO2012105773A3 (en) 2012-11-29
WO2012105772A3 (en) 2012-11-29
JP5817024B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
KR100467569B1 (en) Microstrip patch antenna for transmitting and receiving
KR100757506B1 (en) Antenna device and radio communication device
US7187338B2 (en) Antenna arrangement and module including the arrangement
WO2011105650A1 (en) Internal mimo antenna capable of selectively controlling isolation characteristic by isolation aid in multiband including lte band
EP1055266B1 (en) Dual band diversity antenna having parasitic radiating element
US7084823B2 (en) Integrated front end antenna
WO2009088231A2 (en) Multi-band internal antenna
WO2018040331A1 (en) Antenna device and mobile terminal
WO2013100676A1 (en) Multiband antenna apparatus
WO2011087177A1 (en) Internal mimo antenna having isolation aid
AU2013208393B2 (en) Small antena apparatus and method for controling the same
WO2010047505A2 (en) Antenna diversity system using active antenna
EP1226620A1 (en) Balanced, retractable mobile phone antenna
WO2009154376A2 (en) Antenna device for a portable handset
WO2010076982A2 (en) Infinite wavelength antenna device
WO2012105773A2 (en) Multimode high-frequency module
CN107403996A (en) A kind of multiple coupled terminal antenna of metal edge frame and mobile terminal device
KR101218702B1 (en) RF module for multi-mode
JPH09121178A (en) Portable telephone set and portable telephone system using it
US20080272964A1 (en) Antenna Radiator Assembly and Radio Communications Assembly
GB2347560A (en) Radio apparatus
KR100861865B1 (en) Wireless terminal
WO2014042301A1 (en) Metamaterial antenna
CN112086742A (en) Antenna structure, thing allies oneself with module and display device
WO2023204464A1 (en) Matching network for decoupling between polarizations of antenna array, and electronic device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742434

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase in:

Ref document number: 2013552459

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12742434

Country of ref document: EP

Kind code of ref document: A2