WO2012105720A1 - Three-dimensional image display device - Google Patents

Three-dimensional image display device Download PDF

Info

Publication number
WO2012105720A1
WO2012105720A1 PCT/JP2012/052801 JP2012052801W WO2012105720A1 WO 2012105720 A1 WO2012105720 A1 WO 2012105720A1 JP 2012052801 W JP2012052801 W JP 2012052801W WO 2012105720 A1 WO2012105720 A1 WO 2012105720A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
eye
green
red
image display
Prior art date
Application number
PCT/JP2012/052801
Other languages
French (fr)
Japanese (ja)
Inventor
掛谷 英紀
Original Assignee
国立大学法人筑波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人筑波大学 filed Critical 国立大学法人筑波大学
Publication of WO2012105720A1 publication Critical patent/WO2012105720A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/23Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using wavelength separation, e.g. using anaglyph techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects

Definitions

  • the present invention relates to a stereoscopic image display device capable of suppressing the occurrence of flicker when a three-dimensional image is displayed on an image display device with a low refresh rate compared to the case where a conventional display method is used.
  • a stereoscopic image display device using a display device such as a cathode ray tube, a liquid crystal display panel, a plasma display panel, or a digital micromirror device (DMD: Digital Micromirror Device) is used as a device capable of displaying a color stereoscopic image.
  • the video projector type stereoscopic image display device used is well known. In order to display a stereoscopic image using these display devices, images for the right eye and the left eye are displayed to the observer.
  • time-division display is often performed in order to display the pixels of the display device with high resolution without dividing the pixels of the right eye and left eye into two.
  • shutters synchronized with the above time division are provided for the right eye and the left eye.
  • the time-division display includes a frame sequential method in which left and right switching is performed for each frame and a field sequential method in which each field is switched, but the shutter switching frequency in the latter field sequential method is higher than that of the former. It will be higher except in special cases.
  • a shutter system that uses a right-eye shutter and a left-eye shutter in a time sequential display of a frame sequential system is often used.
  • This shutter is realized by, for example, electrically controlling the polarization characteristics of the liquid crystal.
  • a liquid crystal shutter that opens and closes to the left and right, and (2) the observer.
  • a polarizing filter is used, that is, polarizing glasses that transmit circularly polarized light in the opposite directions on the left and right sides are applied, and the circularly polarized state of the light emitted from the display surface is switched on the display device side.
  • the plasma display is suitable for liquid crystal shutter glasses by switching the left and right images at twice 120 Hz. Image. This is because the plasma display uses an impulse display method, and all pixels simultaneously discharge plasma for a short time and then turn off.
  • a liquid crystal display it is necessary to make it 240 times of 240 Hz. This is because the liquid crystal display rewrites the image for the left or right eye after the drawing of the image for the right or left eye is finished, and thus needs to hide the image being rewritten.
  • Anaglyph is known as a substantially monochromatic stereoscopic image display method. In this method, images of colors complementary to each other are presented to the observer, and the respective images are presented to the right eye and the left eye via filters that transmit either one of the complementary colors or the other.
  • Dolby 3D is known as an anaglyph capable of displaying a color stereoscopic image.
  • FIG. 4 shows a structural example of a liquid crystal display. This comprises a polarizing filter 1, a glass substrate 2, a transparent electrode 3, an alignment film 4, a liquid crystal 5, a spacer 6, a color filter 7, and a backlight.
  • FIG. 5 shows an example of transmission spectral characteristics of a resist used for a color filter of a color LCD panel. From this figure, it can be seen that although there is a slight overlap in the transmission characteristics, it can be spectrally separated by the color resist. It is desirable that the overlap of the transmission characteristics is as small as possible.
  • FIG. 6 shows a spectrum example of a light emitting diode (LED) light source used in a liquid crystal display.
  • FIG. 7 shows a spectrum example of a white LED element using a blue LED, a green phosphor, and a red phosphor.
  • the spectrum of the light source used in the present invention has various backlights, that is, in the case of the edge light type backlight method and the direct type backlight method, red (R), green (G), It is desirable that the boundary between blue (B) is clear. It is desirable to be clear in this way when a plasma display or a colored organic EL display is applied to the present invention.
  • the present invention is a display device having a set of display primary colors (for example, three primary colors or four primary colors), that is, a normal color display device, and a normal refresh without using a particularly high refresh rate for stereoscopic images.
  • a rate display device realizes an anaglyph type color stereoscopic image display device.
  • the stereoscopic image display device of the present invention is a stereoscopic image display device based on time-division multiplex anaglyph, which is a time-division multiplex image display means, a time-division multiplex image separation means, a first control device that controls the stereoscopic image display device, A second control device for controlling the time-division multiplexed image display means; and a synchronization means for synchronizing the first control device and the second control device.
  • the time-division multiplex image display means displays, on one display screen, a plurality of color stereoscopic images including at least one image of red, green and blue to be displayed for one of the right-eye image and the left-eye image.
  • the right-eye image and the left-eye image are displayed simultaneously so that they are complementary colors, and the left-eye image and the right-eye image are alternately displayed by time-division multiplexing.
  • the time-division multiplex image separation means includes a right-eye and a left-eye, each of which is a color filter whose transmission wavelength characteristic changes periodically, and is a feature of the stereoscopic image display device.
  • the transmission wavelength changes in synchronization with time-division multiplexing, and the transmission wavelength of the color filter for the right eye or the left eye is different from that of the color of the image displayed for the right eye or the left eye, respectively. It is characterized by being higher than the transmittance.
  • the stereoscopic image display device can be easily realized by using a liquid crystal panel for color image display on the display surface. Further, the backlight of the color image display liquid crystal panel can easily separate red, green and blue by using a set of light emitting diodes or diode lasers emitting the red, green and blue light as light sources.
  • the time-division multiplex image display means selectively transmits red, green and blue light from the light source.
  • the time-division multiplex image display means is provided with each material that selectively transmits the red, green, and blue light in a mosaic pattern, such as a liquid crystal panel that excludes a backlight from a color liquid crystal display.
  • each intensity modulation element that modulates the intensity of each light transmitted through each of the substances arranged in the mosaic pattern with each liquid crystal shutter is provided.
  • the time-division multiplexing display on the display screen has a configuration that can reduce flicker at a low refresh rate most, and the first image that displays the green image of the right-eye image, the red image, and the blue image of the left-eye image. Time division multiplexing is performed in which the period and the second period in which the red image, the blue image, and the green image of the left eye image are displayed are alternately arranged.
  • the green light transmittance of the green image of the right-eye or left-eye color filter is greater than the red light transmittance of the red image and the blue light transmittance of the blue image of the left-eye image.
  • the green light transmittance of the green image of the right-eye or left-eye color filter is higher or lower than the second period, respectively, and the red light or blue image of the red image of the left-eye image is synchronized with the second period. Lower or higher than the blue light transmittance, respectively.
  • Each time slot in the time division is further time divided (hereinafter referred to as second time division), and the color filter is divided into a plurality of regions that change according to each time slot in the second time division, and the time division multiplexed image display is performed.
  • the means is configured to be divided into a plurality of areas that perform respective displays that pass through each of the plurality of areas, and the plurality of areas change according to each time slot in the second time division,
  • the viewing angle can be increased by sequentially switching the divided area of the color filter and the divided area of the time-division multiplexed image display means according to each time slot in the second time division.
  • a time-division color anaglyph stereoscopic image displayed on a normal color liquid crystal display device is viewed through the time-division color filter glasses which is one of the features of the present invention, so that flicker can be achieved even at a normal refresh rate. Appreciate color 3D images without feeling.
  • FIG. 1 shows a block diagram of a stereoscopic image display apparatus of the present invention.
  • FIG. 2 shows an operation timing diagram of the example of FIG.
  • FIG. 3 is an operation timing chart in the case where the transmission characteristics of the liquid crystal panel 11 and the color filter 13 are synchronized, and is an example of a time chart slightly different from FIG.
  • FIG. 4 is a diagram showing the structure of the liquid crystal display 10. This is a structure that can also be used for the color filter 13.
  • FIG. 5 shows an example of the transmission spectrum of the color filter of the liquid crystal display 10.
  • FIG. 6 is a schematic diagram showing an emission spectrum of a backlight using LEDs as light sources for all three primary colors.
  • FIG. 7 is a schematic diagram showing an emission spectrum of a backlight of a white LED light source using a blue LED, a green phosphor, and a red phosphor.
  • FIG. 8 is a diagram illustrating that when there is an overlapping portion of the transmission characteristics at the RGB ends of the color filter 13, a ghost image due to light transmitted through the portion may be seen. In order to avoid this, it is desirable to use a color filter in which the overlap between BG and GR is negligible in the spectral characteristics of transmittance.
  • FIG. 1 is a block diagram of a stereoscopic image display apparatus as an example of the present invention.
  • FIG. 2 shows an example of the operation timing.
  • the stereoscopic image display apparatus of the present invention is a stereoscopic image display apparatus based on time-division multiplex anaglyph, which is time-division multiplex image display means (liquid crystal display 10), time-division multiplex image separation means (color filter glasses 12), and the stereoscopic image.
  • the synchronization circuit 18 may be wired or wireless.
  • the liquid crystal display 10 modulates light including red (R), green (G), and blue (B) of the three primary colors of light from the backlight 17 with an image displayed in color on the liquid crystal display panel 11, and the observer 14 Is observed through the left and right color filters 13.
  • the image displayed on the liquid crystal display panel 13 is the output of the first control device 16, and the liquid crystal display panel 13 constituting the color filter glasses 12 is controlled by the second control device 16.
  • the backlight used here is, for example, a well-known cold cathode fluorescent tube.
  • a light source having a spectrum shown in the schematic diagram of FIG. 6 may be used in which the three primary colors are LEDs or laser diodes. Further, the light source having a spectrum shown in the schematic diagram of FIG.
  • the liquid crystal display 10 has, for example, the structure shown in FIG.
  • the transmission spectrum of the color filter can be used even when there is a slight overlap between the red and green or green and blue spectra as shown in FIG. 5, but this overlap is preferably as small as possible.
  • the color filter glasses 12 are glasses having a structure similar to that of the liquid crystal display of FIG.
  • the transmission characteristics of the color filter 13 allow viewing of a color stereoscopic image even when the transmission characteristics of the color filter of the liquid crystal display 10 are similar to those described above.
  • the transmission characteristics at the RGB edges of the color filter 13 overlap. When there is a part, a ghost image by light transmitted through the part may be seen. In order to avoid this, as shown in FIG. 8, it is desirable to use a color filter that is small enough that the overlap between BG and GR is negligible in the spectral characteristics of transmittance.
  • a dielectric multilayer film filter is provided on the glass substrate of the color filter glasses 12 so as to block light transmission between the BG and the G-R overlapping portions. You may make it do.
  • the image displayed on the liquid crystal display 10 and the transmission characteristics of the color filter 13 are synchronized as follows. This synchronization is achieved between the first control device 16 and the second control device 15 via the synchronization circuit 18.
  • the image displayed on the liquid crystal display 10 and the transmission characteristics of the color filter 13 may be synchronized as shown in FIG. (1)
  • t1 section On the right side of the LCD panel 11, green and blue are transmitted and red is blocked.
  • red On the left, green and blue are blocked, red is transmitted,
  • t2 section On the right side of the LCD panel 11, green and blue are blocked, red is transmitted, On the left, green and blue are transmitted, red is blocked, On the right side of the color filter 13, green and blue are blocked, red is transmitted, On the left, green and blue are transmitted, red is blocked, And repeat these intervals.
  • yellow (Y) is used in addition to the above RGB.
  • a light source containing yellow (Y) is used, and the color filter and the color filter 13 of the liquid crystal display panel 11 are yellow (Y) in addition to RGB.
  • Y yellow
  • what is necessary is just to synchronize with the green thing as the timing of permeation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Liquid Crystal (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

The present invention achieves a color three-dimensional image display device that is anaglyphic and that is a display device having a normal refresh rate. With respect to either a right-eye image or a left-eye image, a time division multiplexing image display means displays on one display screen via time division multiplexing a plurality of color three-dimensional images containing an image that is at least one of R, G, and B, and that is to be displayed. The right-eye and left-eye image are images having different colors, are displayed simultaneously, and via time division multiplexing, the left-eye and right-eye image are alternatingly displayed. Also, there is a time division multiplexing image separation means for the right eye and for the left eye, and each is a color filter that has cyclically changing transmitted wavelength characteristics. The transmitted wavelength characteristics change synchronously with the image display device, and of the transmitted wavelength characteristics of the color filter for the right eye or the left eye, the transmittance of the color of the image displayed correspondingly for the right eye or the left eye is higher than the transmittance of other colors.

Description

立体画像表示装置Stereoscopic image display device
 この発明は、低リフレッシュレートの画像表示装置に、3次元画像を表示した場合のフリッカの発生を、従来の表示方法を用いた場合に比べて抑制することができる立体画像表示装置に関している。 The present invention relates to a stereoscopic image display device capable of suppressing the occurrence of flicker when a three-dimensional image is displayed on an image display device with a low refresh rate compared to the case where a conventional display method is used.
 立体画像表示装置の歴史は長く、19世紀末から種々のものが発明されている。この中で、カラーの立体画像を表示できるものとして、ブラウン管、液晶表示パネル、プラズマ表示パネル、などの表示デバイスを用いた立体画像表示装置、あるいは、デジタルマイクロミラーデバイス(DMD:Digital Micromirror Device)を用いたビデオプロジェクタ型の立体画像表示装置などがよく知られている。
 これらの表示デバイスを用いて立体画像を表示するには、観察者に右目用および左目用の画像を表示する。この際、表示デバイスの画素を右目用および左目用に2分割することなく、高い解像度で表示するために、時分割表示が行われることが多い。この場合、時分割表示された画像を右目用および左目用に分離するために、上記の時分割に同期したシャッターを右目用および左目用に設けられる。また、時分割表示には、左右の切替えをフレーム毎に行うフレームシーケンシャル方式と、フィールド毎に行うフィールドシーケンシャル方式があるが、後者のフィールドシーケンシャル方式の場合の上記シャッターの切換え周波数は、前者に比べて、特殊な場合を除いて、より高くなる。このため、フレームシーケンシャル方式の時分割表示で、右目用および左目用のシャッターを用いて分離するシャッター方式がよく用いられる。このシャッターは、例えば液晶の偏光特性を電気的に制御して実現されるが、(1)メガネ型にして、左右交互に開閉する液晶シャッターを観察者が装着する場合と、(2)観察者は偏光フィルタを、つまり左右で逆回りの円偏光を透過する偏光メガネをかけ、表示装置側で表示面からの出射光の円偏光状態を切換える場合と、がある。
 ここで、上記(1)の場合で、60Hz(1秒間に60枚の画像)のフレームレートを実現する場合、プラズマディスプレイでは2倍の120Hzで左右の画像を切換えることで、液晶シャッター眼鏡に適した画像となる。これは、プラズマディスプレイでは、インパルス表示方式が使われ、全画素が同時に短時間だけプラズマ放電してから消灯するためである。一方、液晶ディスプレイでは、4倍の240Hzにする必要がある。これは、液晶ディスプレイでは右または左目用画像の描画が終わってからそれぞれ左または右目用画像の書換えを行うので、その書換え途中の画像を隠す必要があるためである。
 また、上記(2)の場合も、(1)の場合と同様に、60Hz(1秒間に60枚の画像)のフレームレートを実現する場合、プラズマディスプレイでは2倍の120Hzで左右の画像を切換えることで対処できるが、液晶ディスプレイでは、4倍の240Hzにする必要がある。
 また、実質的に単色の立体画像表示法として、アナグリフが知られている。これは、互いに補色となる色彩の画像を観察者に提示し、その補色のどちらか一方、あるいは他方を透過する各々のフィルタを介して右目と左目とにそれぞれの画像を提示するものである。また、アナグリフによってカラーの立体画像表示ができるものとして、ドルビー3Dが知られている。これは、赤、緑、青の3原色の第1組と、この組のそれぞれから波長を僅かにずらした3原色の第2組を、それぞれ右目用と左目用とに用いて立体画像を提示するもので、波長多重化によって立体画像を表示するものである。
 特許文献1には、上記の3原色の第1組と第2組の光源をLEDセットで構成し、そのLEDを同じ表示パネル状に交互に配置し、第1組または第2組の一方の組の2セットのLEDと、他の組の1セットのLEDを活性化させることを交互に行ってフルカラーの立体画像を表示する方法が開示されている。そのLEDセットの選択の仕方は、例えば、第1組の赤LEDセットと青LEDセットと第2組の緑LEDセット、などである。
 図4に液晶ディスプレイの構造例を示す。これは、偏光フィルタ1、ガラス基盤2、透明電極3、配向膜4、液晶5、スペーサー6、カラーフィルタ7、バックライト、から成っている。
 図5にカラーLCDパネルのカラーフィルタに使われるレジストの透過分光特性例を示す。この図から、透過特性に僅かに重なりはあるものの、カラーレジストにより分光できることが分る。この透過特性の重なりは、なるべく小さいことが望ましい。
 図6に液晶ディスプレイに使われる発光ダイオード(LED)光源のスペクトル例を示す。また、図7に、青色LEDと緑色蛍光体と赤色蛍光体を用いた白色LED素子のスペクトル例を示す。後に説明する様に、本発明に用いる光源のスペクトルは、種々のバックライトで、つまりエッジライト型バックライト方式の場合も直下型バックライト方式の場合も、赤(R)、緑(G)、青(B)間の境界が明確であることが望ましい。この様に明確であることが望ましいのは、プラズマディスプレイやカラー化された有機ELディスプレイを本発明に適用する場合も同様である。
The history of stereoscopic image display devices is long, and various devices have been invented since the end of the 19th century. Among them, a stereoscopic image display device using a display device such as a cathode ray tube, a liquid crystal display panel, a plasma display panel, or a digital micromirror device (DMD: Digital Micromirror Device) is used as a device capable of displaying a color stereoscopic image. The video projector type stereoscopic image display device used is well known.
In order to display a stereoscopic image using these display devices, images for the right eye and the left eye are displayed to the observer. In this case, time-division display is often performed in order to display the pixels of the display device with high resolution without dividing the pixels of the right eye and left eye into two. In this case, in order to separate the time-division displayed image for the right eye and the left eye, shutters synchronized with the above time division are provided for the right eye and the left eye. In addition, the time-division display includes a frame sequential method in which left and right switching is performed for each frame and a field sequential method in which each field is switched, but the shutter switching frequency in the latter field sequential method is higher than that of the former. It will be higher except in special cases. For this reason, a shutter system that uses a right-eye shutter and a left-eye shutter in a time sequential display of a frame sequential system is often used. This shutter is realized by, for example, electrically controlling the polarization characteristics of the liquid crystal. (1) When the observer wears a liquid crystal shutter that opens and closes to the left and right, and (2) the observer. In some cases, a polarizing filter is used, that is, polarizing glasses that transmit circularly polarized light in the opposite directions on the left and right sides are applied, and the circularly polarized state of the light emitted from the display surface is switched on the display device side.
Here, in the case of (1) above, when a frame rate of 60 Hz (60 images per second) is realized, the plasma display is suitable for liquid crystal shutter glasses by switching the left and right images at twice 120 Hz. Image. This is because the plasma display uses an impulse display method, and all pixels simultaneously discharge plasma for a short time and then turn off. On the other hand, in a liquid crystal display, it is necessary to make it 240 times of 240 Hz. This is because the liquid crystal display rewrites the image for the left or right eye after the drawing of the image for the right or left eye is finished, and thus needs to hide the image being rewritten.
Also, in the case of (2), as in the case of (1), when realizing a frame rate of 60 Hz (60 images per second), the plasma display switches the left and right images at 120 Hz, which is doubled. However, in a liquid crystal display, it is necessary to make the frequency 240 times that of 240 Hz.
Anaglyph is known as a substantially monochromatic stereoscopic image display method. In this method, images of colors complementary to each other are presented to the observer, and the respective images are presented to the right eye and the left eye via filters that transmit either one of the complementary colors or the other. In addition, Dolby 3D is known as an anaglyph capable of displaying a color stereoscopic image. This presents a three-dimensional image using the first set of three primary colors of red, green, and blue and the second set of three primary colors slightly shifted in wavelength from each set for the right eye and the left eye, respectively. Therefore, a stereoscopic image is displayed by wavelength multiplexing.
In Patent Document 1, the first set and the second set of light sources of the three primary colors are configured as LED sets, and the LEDs are alternately arranged in the same display panel shape, and one of the first set and the second set is arranged. A method of displaying a full-color stereoscopic image by alternately activating two sets of LEDs and another set of LEDs is disclosed. The method of selecting the LED set is, for example, a first set of red LED sets, a blue LED set, a second set of green LED sets, or the like.
FIG. 4 shows a structural example of a liquid crystal display. This comprises a polarizing filter 1, a glass substrate 2, a transparent electrode 3, an alignment film 4, a liquid crystal 5, a spacer 6, a color filter 7, and a backlight.
FIG. 5 shows an example of transmission spectral characteristics of a resist used for a color filter of a color LCD panel. From this figure, it can be seen that although there is a slight overlap in the transmission characteristics, it can be spectrally separated by the color resist. It is desirable that the overlap of the transmission characteristics is as small as possible.
FIG. 6 shows a spectrum example of a light emitting diode (LED) light source used in a liquid crystal display. FIG. 7 shows a spectrum example of a white LED element using a blue LED, a green phosphor, and a red phosphor. As will be described later, the spectrum of the light source used in the present invention has various backlights, that is, in the case of the edge light type backlight method and the direct type backlight method, red (R), green (G), It is desirable that the boundary between blue (B) is clear. It is desirable to be clear in this way when a plasma display or a colored organic EL display is applied to the present invention.
米国特許出願公開第2009/0085912号明細書US Patent Application Publication No. 2009/0085912
 本発明は、1組の表示原色数(例えば3原色や4原色)の表示装置、つまり、通常のカラー表示装置で、しかも、立体画像用に特別に高いリフレッシュレートを用いることなく、通常のリフレッシュレートのディスプレイ装置で、アナグリフ型のカラー立体画像表示装置を実現するものである。 The present invention is a display device having a set of display primary colors (for example, three primary colors or four primary colors), that is, a normal color display device, and a normal refresh without using a particularly high refresh rate for stereoscopic images. A rate display device realizes an anaglyph type color stereoscopic image display device.
 本発明の立体画像表示装置は、時分割多重アナグリフによる立体画像表示装置で、時分割多重画像表示手段と、時分割多重画像分離手段と、前記立体画像表示装置を制御する第1制御装置と、前記時分割多重画像表示手段を制御する第2制御装置と、第1制御装置と第2制御装置間で同期をとる同期手段とを具備するものである。また、前記時分割多重画像表示手段は、右目用画像あるいは左目用画像のいずれか一方の画像について、表示しようとする赤緑青の少なくとも1つの画像を含む複数のカラー立体画像を1つの表示画面上に時分割多重で表示するものであり、右目用画像と左目用画像とは、互いに補色の画像となるように、同時に表示し、時分割多重で左目用画像と右目用画像とを交互に表示するものである。また、上記の時分割多重画像分離手段は、右目用のものと左目用のものとがあり、そのそれぞれは、周期的に透過波長特性の変化するカラーフィルタであって、上記立体画像表示装置の時分割多重に同期して上記透過波長が変化し、右目用または左目用の上記カラーフィルタの上記透過波長は、それぞれ右目用または左目用に表示された上記画像の色の透過率が他の色の透過率よりも高い、ことを特徴とするものである。
 上記立体画像表示装置は、カラー画像表示用の液晶パネルを表示面に用いることで容易に実現することができる。
 また、上記カラー画像表示用の液晶パネルのバックライトは、上記赤緑青のそれぞれの光を発光する発光ダイオードまたはダイオードレーザの集合を光源とすることで、赤緑青の分離が容易になる。また、この場合、当然のことながら、上記時分割多重画像表示手段は、上記光源からの赤緑青のそれぞれの光を選択的に透過するものである。
 また、上記時分割多重画像表示手段には、例えば、カラー液晶ディスプレイからバックライトを除いた液晶パネルの様に、上記赤緑青のそれぞれの光を選択的に透過するそれぞれの物質をモザイク状に設けたもので、該モザイク状に配列したそれぞれの物質を透過するそれぞれの光をそれぞれの液晶シャッターで強度変調するそれぞれの強度変調素子を備えるものである。
 上記表示画面上での時分割多重での表示は、低リフレッシュレートでのフリッカを最も低減できる構成であり、右目用画像の緑色画像と左目用画像の赤色画像と青色画像とを表示する第1期間と、右目用画像の赤色画像と青色画像と左目用画像の緑色画像を表示するする第2期間とを交互に配列した時分割多重とする。
 上記第1期間に同期して、右目用または左目用のカラーフィルタの上記緑色画像の緑色光の透過率は、上記左目用画像の赤色画像の赤色光および青色画像の青色光の透過率よりもそれぞれ高くまたは低く、また、上記第2期間に同期して、右目用または左目用のカラーフィルタの上記緑色画像の緑色光の透過率は、上記左目用画像の赤色画像の赤色光または青色画像の青色光の透過率よりもそれぞれ低くまたは高く、する。
 上記時分割における各タイムスロットはさらに時分割(以下、第2時分割)され、上記カラーフィルタは、第2時分割における各タイムスロットに従って変化する複数の領域に分割され、上記時分割多重画像表示手段は、上記複数の領域のそれぞれを透過するそれぞれの表示を行う複数の領域に分割され、該複数の領域は第2時分割における各タイムスロットに従って変化するものであるように構成し、
 第2時分割における各タイムスロットに従って、上記カラーフィルタの分割された領域と上記時分割多重画像表示手段の分割された領域とを、順次切り替えることによって、視野角を大きくすることができる。
The stereoscopic image display device of the present invention is a stereoscopic image display device based on time-division multiplex anaglyph, which is a time-division multiplex image display means, a time-division multiplex image separation means, a first control device that controls the stereoscopic image display device, A second control device for controlling the time-division multiplexed image display means; and a synchronization means for synchronizing the first control device and the second control device. Further, the time-division multiplex image display means displays, on one display screen, a plurality of color stereoscopic images including at least one image of red, green and blue to be displayed for one of the right-eye image and the left-eye image. The right-eye image and the left-eye image are displayed simultaneously so that they are complementary colors, and the left-eye image and the right-eye image are alternately displayed by time-division multiplexing. To do. The time-division multiplex image separation means includes a right-eye and a left-eye, each of which is a color filter whose transmission wavelength characteristic changes periodically, and is a feature of the stereoscopic image display device. The transmission wavelength changes in synchronization with time-division multiplexing, and the transmission wavelength of the color filter for the right eye or the left eye is different from that of the color of the image displayed for the right eye or the left eye, respectively. It is characterized by being higher than the transmittance.
The stereoscopic image display device can be easily realized by using a liquid crystal panel for color image display on the display surface.
Further, the backlight of the color image display liquid crystal panel can easily separate red, green and blue by using a set of light emitting diodes or diode lasers emitting the red, green and blue light as light sources. In this case, as a matter of course, the time-division multiplex image display means selectively transmits red, green and blue light from the light source.
The time-division multiplex image display means is provided with each material that selectively transmits the red, green, and blue light in a mosaic pattern, such as a liquid crystal panel that excludes a backlight from a color liquid crystal display. In addition, each intensity modulation element that modulates the intensity of each light transmitted through each of the substances arranged in the mosaic pattern with each liquid crystal shutter is provided.
The time-division multiplexing display on the display screen has a configuration that can reduce flicker at a low refresh rate most, and the first image that displays the green image of the right-eye image, the red image, and the blue image of the left-eye image. Time division multiplexing is performed in which the period and the second period in which the red image, the blue image, and the green image of the left eye image are displayed are alternately arranged.
In synchronization with the first period, the green light transmittance of the green image of the right-eye or left-eye color filter is greater than the red light transmittance of the red image and the blue light transmittance of the blue image of the left-eye image. The green light transmittance of the green image of the right-eye or left-eye color filter is higher or lower than the second period, respectively, and the red light or blue image of the red image of the left-eye image is synchronized with the second period. Lower or higher than the blue light transmittance, respectively.
Each time slot in the time division is further time divided (hereinafter referred to as second time division), and the color filter is divided into a plurality of regions that change according to each time slot in the second time division, and the time division multiplexed image display is performed. The means is configured to be divided into a plurality of areas that perform respective displays that pass through each of the plurality of areas, and the plurality of areas change according to each time slot in the second time division,
The viewing angle can be increased by sequentially switching the divided area of the color filter and the divided area of the time-division multiplexed image display means according to each time slot in the second time division.
 本発明により、例えば通常のカラー液晶表示装置に表示した時分割型カラーアナグリフ立体画像を、本発明の特徴の1つである時分割型カラーフィルタ眼鏡を通して鑑賞することで、通常のリフレッシュレートでもフリッカを感じないカラー立体画像の鑑賞ができる。 According to the present invention, for example, a time-division color anaglyph stereoscopic image displayed on a normal color liquid crystal display device is viewed through the time-division color filter glasses which is one of the features of the present invention, so that flicker can be achieved even at a normal refresh rate. Appreciate color 3D images without feeling.
 図1は、本発明の立体画像表示装置のブロック図を示す。
 図2は、図1の例の動作タイミング図を示す。
 図3は、液晶パネル11とカラーフィルタ13の透過特性について、同期した動作とする場合の動作タイミング図で、図2と僅かに異なるタイムチャートの例である。
 図4は、液晶ディスプレイ10の構造を示す図である。これは、カラーフィルタ13にも使用できる構造である。
 図5は、液晶ディスプレイ10のカラーフィルタの透過スペクトル例を示す。
 図6は、3原色ともLEDを光源とするバックライトの発光スペクトルを示す模式図である。
 図7は、青色LEDと緑色蛍光体と赤色蛍光体を用いた白色LED光源のバックライトの発光スペクトルを示す模式図である。
 図8は、カラーフィルタ13のRGB端での透過特性の重なり部分がある場合に、その部分を透過した光によるゴースト映像が見える場合があることを示す図である。これを避けるためには、透過率の分光特性において、B−G間、G−R間での重なりが無視できるカラーフィルタを用いることが望ましい。
FIG. 1 shows a block diagram of a stereoscopic image display apparatus of the present invention.
FIG. 2 shows an operation timing diagram of the example of FIG.
FIG. 3 is an operation timing chart in the case where the transmission characteristics of the liquid crystal panel 11 and the color filter 13 are synchronized, and is an example of a time chart slightly different from FIG.
FIG. 4 is a diagram showing the structure of the liquid crystal display 10. This is a structure that can also be used for the color filter 13.
FIG. 5 shows an example of the transmission spectrum of the color filter of the liquid crystal display 10.
FIG. 6 is a schematic diagram showing an emission spectrum of a backlight using LEDs as light sources for all three primary colors.
FIG. 7 is a schematic diagram showing an emission spectrum of a backlight of a white LED light source using a blue LED, a green phosphor, and a red phosphor.
FIG. 8 is a diagram illustrating that when there is an overlapping portion of the transmission characteristics at the RGB ends of the color filter 13, a ghost image due to light transmitted through the portion may be seen. In order to avoid this, it is desirable to use a color filter in which the overlap between BG and GR is negligible in the spectral characteristics of transmittance.
 以下に、この発明の実施の形態を図面に基づいて詳細に説明する。以下の説明においては、同じ機能あるいは類似の機能をもった装置に、特別な理由がない場合には、同じ符号を用いるものとする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, devices having the same function or similar functions are denoted by the same reference numerals unless there is a special reason.
 図1に本発明の1例の立体画像表示装置のブロック図を示す。また、図2に、その動作タイミング例を示す。本発明の立体画像表示装置は、時分割多重アナグリフによる立体画像表示装置で、時分割多重画像表示手段(液晶ディスプレイ10)と、時分割多重画像分離手段(カラーフィルタメガネ12)と、前記立体画像表示装置を制御する第1制御装置16と、前記時分割多重画像表示手段を制御する第2制御装置と15、第1制御装置と第2制御装置間で同期をとる同期手段(同期回路18)とを具備するものである。同期回路18は有線でも無線でもよい。液晶ディスプレイ10は、バックライト17からの光の3原色の赤(R)緑(G)青(B)を含む光を液晶表示パネル11にカラーで表示された画像で変調して、観察者14が、左右のカラーフィルタ13を介して観察するものである。液晶表示パネル13に表示する画像は、第1制御装置16の出力であり、カラーフィルタメガネ12を構成する液晶表示パネル13は、第2制御装置16で制御される。
 ここで用いるバックライトは、例えば、よく知られた冷陰極蛍光管である。その他、図6の模式図に示すスペクトルを持った光源で、3原色ともLEDやレーザーダイオードを光源とするものでもよい。また、図7の模式図に示すスペクトルを持った光源で、青色LEDと緑色蛍光体と赤色蛍光体を用いた白色LED光源であってもよい。
 また、液晶ディスプレイ10は、例えば図4の構造をもつものである。そのカラーフィルタの透過スペクトルは、図5の様に、赤と緑、または、緑と青の各スペクトル間に僅かな重なりがある場合でも使用できるが、この重なりは、なるべく小さいことが望ましい。また、バックライトの赤緑青の発光スペクトル間に重なりが無い場合は、発光スペクトルと透過スペクトルの積のスペクトルについて切り分けが容易にできるため、カラーフィルタの赤緑青の各透過スペクトル間の重なりは、無視しうる問題になる。
 カラーフィルタメガネ12は、図4の液晶ディスプレイと同様の構造をもったものを、右目用と左眼用と用意してメガネ状にしたものである。この場合のカラーフィルタ13の透過特性は、液晶ディスプレイ10のカラーフィルタの場合の上記の透過特性と同様の場合でもカラー立体画像鑑賞は可能であるが、カラーフィルタ13のRGB端の透過特性の重なり部分がある場合に、その部分を透過した光によるゴースト映像が見える場合がある。これを避けるためには、図8に示すように、透過率の分光特性において、B−G間、G−R間での重なりが無視出来るほどに小さいカラーフィルタを用いることが望ましい。また、この様なカラーフィルタを用いない場合は、カラーフィルタメガネ12のガラス基板に誘電体多層膜フィルタを設けて、B−G間、G−R間の上記重なり部分での光の透過を遮断するようにしてもよい。
 液晶ディスプレイ10に表示する画像とカラーフィルタ13の透過特性については、図2に示すように、以下の様に、同期した動作とする。この同期は、第1制御装置16と第2制御装置間15間で同期回路18を介して同期をとるものである。
(1)t1区間では、
 液晶表示パネル11の
    右では、緑を透過、赤と青を遮断、
    左では、緑を遮断、赤と青を透過、
 カラーフィルタ13の
    右では、緑を透過、赤と青を遮断、
    左では、緑を遮断、赤と青を透過、
(2)t2区間では、
 液晶表示パネル11の
    右では、緑を遮断、赤と青を透過、
    左では、緑を透過、赤と青を遮断、
 カラーフィルタ13の
    右では、緑を遮断、赤と青を透過、
    左では、緑を透過、赤と青を遮断、
とし、これらの区間を繰り返す。
FIG. 1 is a block diagram of a stereoscopic image display apparatus as an example of the present invention. FIG. 2 shows an example of the operation timing. The stereoscopic image display apparatus of the present invention is a stereoscopic image display apparatus based on time-division multiplex anaglyph, which is time-division multiplex image display means (liquid crystal display 10), time-division multiplex image separation means (color filter glasses 12), and the stereoscopic image. A first control device 16 for controlling the display device, a second control device 15 for controlling the time-division multiplexed image display means, and a synchronizing means (synchronizing circuit 18) for synchronizing the first control device and the second control device It comprises. The synchronization circuit 18 may be wired or wireless. The liquid crystal display 10 modulates light including red (R), green (G), and blue (B) of the three primary colors of light from the backlight 17 with an image displayed in color on the liquid crystal display panel 11, and the observer 14 Is observed through the left and right color filters 13. The image displayed on the liquid crystal display panel 13 is the output of the first control device 16, and the liquid crystal display panel 13 constituting the color filter glasses 12 is controlled by the second control device 16.
The backlight used here is, for example, a well-known cold cathode fluorescent tube. In addition, a light source having a spectrum shown in the schematic diagram of FIG. 6 may be used in which the three primary colors are LEDs or laser diodes. Further, the light source having a spectrum shown in the schematic diagram of FIG. 7 may be a white LED light source using a blue LED, a green phosphor, and a red phosphor.
The liquid crystal display 10 has, for example, the structure shown in FIG. The transmission spectrum of the color filter can be used even when there is a slight overlap between the red and green or green and blue spectra as shown in FIG. 5, but this overlap is preferably as small as possible. In addition, if there is no overlap between the red, green and blue emission spectra of the backlight, the spectrum of the product of the emission spectrum and the transmission spectrum can be easily separated, so the overlap between the red, green and blue transmission spectra of the color filter is ignored. It becomes a possible problem.
The color filter glasses 12 are glasses having a structure similar to that of the liquid crystal display of FIG. 4 and are prepared for the right eye and the left eye. In this case, the transmission characteristics of the color filter 13 allow viewing of a color stereoscopic image even when the transmission characteristics of the color filter of the liquid crystal display 10 are similar to those described above. However, the transmission characteristics at the RGB edges of the color filter 13 overlap. When there is a part, a ghost image by light transmitted through the part may be seen. In order to avoid this, as shown in FIG. 8, it is desirable to use a color filter that is small enough that the overlap between BG and GR is negligible in the spectral characteristics of transmittance. When such a color filter is not used, a dielectric multilayer film filter is provided on the glass substrate of the color filter glasses 12 so as to block light transmission between the BG and the G-R overlapping portions. You may make it do.
As shown in FIG. 2, the image displayed on the liquid crystal display 10 and the transmission characteristics of the color filter 13 are synchronized as follows. This synchronization is achieved between the first control device 16 and the second control device 15 via the synchronization circuit 18.
(1) In t1 section,
On the right side of the LCD panel 11, green is transmitted, red and blue are blocked,
On the left, green is blocked, red and blue are transmitted,
On the right side of the color filter 13, green is transmitted, red and blue are blocked,
On the left, green is blocked, red and blue are transmitted,
(2) In t2 section,
On the right side of the LCD panel 11, green is cut off, red and blue are transmitted,
On the left, green is transmitted, red and blue are blocked,
On the right side of the color filter 13, the green is blocked, the red and blue are transmitted,
On the left, green is transmitted, red and blue are blocked,
And repeat these intervals.
 液晶ディスプレイ10に表示する画像とカラーフィルタ13の透過特性については、図3に示すように、同期した動作としてもよい。
(1)t1区間では、
 液晶表示パネル11の
    右では、緑と青を透過、赤を遮断、
    左では、緑と青を遮断、赤を透過、
 カラーフィルタ13の
    右では、緑と青を透過、赤を遮断、
    左では、緑と青を遮断、赤を透過、
(2)t2区間では、
 液晶表示パネル11の
    右では、緑と青を遮断、赤を透過、
    左では、緑と青を透過、赤を遮断、
 カラーフィルタ13の
    右では、緑と青を遮断、赤を透過、
    左では、緑と青を透過、赤を遮断、
とし、これらの区間を繰り返す。
 以上、特定の説明用の実施例を参照して本発明を説明したが、特許請求の範囲に規定される本発明の技術的範囲を逸脱せずに上述の実施例に種々の変更や修整を施しうることは、本発明の属する分野の技術者にとって自明である。
The image displayed on the liquid crystal display 10 and the transmission characteristics of the color filter 13 may be synchronized as shown in FIG.
(1) In t1 section,
On the right side of the LCD panel 11, green and blue are transmitted and red is blocked.
On the left, green and blue are blocked, red is transmitted,
On the right side of the color filter 13, green and blue are transmitted, red is blocked,
On the left, green and blue are blocked, red is transmitted,
(2) In t2 section,
On the right side of the LCD panel 11, green and blue are blocked, red is transmitted,
On the left, green and blue are transmitted, red is blocked,
On the right side of the color filter 13, green and blue are blocked, red is transmitted,
On the left, green and blue are transmitted, red is blocked,
And repeat these intervals.
Although the present invention has been described with reference to specific illustrative embodiments, various changes and modifications may be made to the above-described embodiments without departing from the technical scope of the present invention as defined in the claims. What can be done is obvious to those skilled in the field to which the present invention belongs.
 上記の説明は3原色についてのものであるが、4原色の場合は以下の様にすればよい。ここで、上記のRGBに加えて黄色(Y)を用いるものとする。
 例えば、上記の実施例1の場合は、光源に黄色(Y)を含むものを用い、液晶表示パネル11のカラーフィルタおよびカラーフィルタ13には、RGBに加えて黄色(Y)のものを用いる。また、透過、遮断のタイミングとしては、例えば、緑色のものと同期させればよい。
The above description is for the three primary colors, but in the case of the four primary colors, the following may be used. Here, yellow (Y) is used in addition to the above RGB.
For example, in the case of the first embodiment, a light source containing yellow (Y) is used, and the color filter and the color filter 13 of the liquid crystal display panel 11 are yellow (Y) in addition to RGB. Moreover, what is necessary is just to synchronize with the green thing as the timing of permeation | transmission and interruption | blocking, for example.
 1  偏光フィルタ
 2  ガラス基盤
 3  透明電極
 4  配向膜
 5  液晶
 6  スペーサー
 7  カラーフィルタ
 10 液晶ディスプレイ
 11 液晶表示パネル
 12 カラーフィルタメガネ
 13 カラーフィルタ
 14 観察者
 15 第2制御装置
 16 第1制御装置
 17 バックライト
 18 同期回路
DESCRIPTION OF SYMBOLS 1 Polarizing filter 2 Glass substrate 3 Transparent electrode 4 Alignment film 5 Liquid crystal 6 Spacer 7 Color filter 10 Liquid crystal display 11 Liquid crystal display panel 12 Color filter glasses 13 Color filter 14 Observer 15 Second controller 16 First controller 17 Backlight 18 Synchronous circuit

Claims (7)

  1.  時分割多重アナグリフによる立体画像表示装置で、時分割多重画像表示手段と、時分割多重画像分離手段と、前記立体画像表示装置を制御する第1制御装置と、前記時分割多重画像表示手段を制御する第2制御装置と、第1制御装置と第2制御装置間で同期をとる同期手段とを具備し、
     前記時分割多重画像表示手段は、右目用画像あるいは左目用画像のいずれか一方の画像について、表示しようとする赤緑青の少なくとも1つの画像を含む複数のカラー立体画像を1つの表示画面上に時分割多重で表示するものであり、
     右目用画像と左目用画像とは、互いに異なる色の画像となるように、同時に表示し、
    時分割多重で左目用画像と右目用画像とを交互に表示するものであって、
     上記の時分割多重画像分離手段は、右目用のものと左目用のものとがあり、そのそれぞれは、周期的に透過波長の変化するカラーフィルタであって、上記立体画像表示装置の時分割多重に同期して上記透過波長が変化し、右目用または左目用の上記カラーフィルタの上記透過波長は、それぞれ右目用または左目用に表示された上記画像の色の透過率が他の色の透過率よりも高い、ことを特徴とする立体画像表示装置。
    A stereoscopic image display device using time-division multiplexed anaglyph, which controls time-division multiplexed image display means, time-division multiplexed image separation means, a first control device for controlling the stereoscopic image display device, and the time-division multiplexed image display means. A second control device, and synchronization means for synchronizing between the first control device and the second control device,
    The time-division multiplex image display means displays a plurality of color stereoscopic images including at least one image of red, green and blue to be displayed on one display screen for either one of the right-eye image and the left-eye image. It is displayed with division multiplexing.
    The image for the right eye and the image for the left eye are displayed at the same time so as to be different color images,
    The left-eye image and the right-eye image are alternately displayed in time division multiplexing,
    The time-division multiplexed image separation means includes a right-eye type and a left-eye type, each of which is a color filter whose transmission wavelength changes periodically, and is a time-division multiplexing of the stereoscopic image display device. The transmission wavelength of the color filter for the right eye or the left eye changes in synchronization with the transmission wavelength of the color of the image displayed for the right eye or the left eye, respectively. A stereoscopic image display device characterized by being higher than that.
  2.  上記立体画像表示装置は、カラー画像表示用の液晶パネルを表示面に用いたものであることを特徴とする請求項1に記載の立体画像表示装置。 The stereoscopic image display device according to claim 1, wherein the stereoscopic image display device uses a liquid crystal panel for color image display as a display surface.
  3.  上記カラー画像表示用の液晶パネルのバックライトは、上記赤緑青のそれぞれの光を発光する発光ダイオードまたはダイオードレーザを光源とするものであり、
     上記時分割多重画像表示手段は、上記光源からの赤緑青のそれぞれの光を選択的に透過するものであることを特徴とする請求項1または2のいずれか1つに記載の立体画像表示装置。
    The backlight of the liquid crystal panel for color image display uses a light emitting diode or a diode laser that emits each of the red, green, and blue light as a light source,
    3. The stereoscopic image display device according to claim 1, wherein the time-division multiplex image display means selectively transmits each of red, green, and blue light from the light source. .
  4.  上記時分割多重画像表示手段は、上記赤緑青のそれぞれの光を選択的に透過するそれぞれの物質をモザイク状に設けたもので、該モザイク状に配列したそれぞれの物質を透過するそれぞれの光をそれぞれの液晶シャッターで強度変調するそれぞれの強度変調素子を備えるものであることを特徴とする請求項1から3のいずれか1つに記載の立体画像表示装置。 The time-division multiplex image display means is provided with each material that selectively transmits the red, green, and blue light in a mosaic shape, and each light that transmits each material arranged in the mosaic shape. 4. The stereoscopic image display device according to claim 1, comprising each intensity modulation element that modulates the intensity with each liquid crystal shutter. 5.
  5.  上記表示画面上での時分割多重での表示は、
    右目用画像の緑色画像と左目用画像の赤色画像と青色画像とを表示する第1期間と、
    右目用画像の赤色画像と青色画像と左目用画像の緑色画像を表示するする第2期間と、
    が交互に配列されることを特徴とする請求項1から4のいずれか1つに記載の立体画像表示装置。
    The time division multiplex display on the above display screen is
    A first period for displaying a green image for the right eye image, a red image and a blue image for the left eye image,
    A second period of displaying a red image and a blue image of the right-eye image and a green image of the left-eye image;
    The three-dimensional image display device according to any one of claims 1 to 4, wherein are arranged alternately.
  6.  上記第1期間に同期して、
    右目用のカラーフィルタの上記緑色画像の緑色光の透過率は、上記左目用画像の赤色画像の赤色光および青色画像の青色光の透過率よりも高く、
     上記第2期間に同期して、
    右目用のカラーフィルタの上記緑色画像の緑色光の透過率は、上記左目用画像の赤色画像の赤色光または青色画像の青色光の透過率よりも低く、
    することを特徴とする請求項5に記載の立体画像表示装置。
    In synchronization with the first period,
    The transmittance of green light of the green image of the color filter for the right eye is higher than the transmittance of red light of the red image of the left eye image and blue light of the blue image,
    In synchronization with the second period,
    The transmittance of green light of the green image of the color filter for the right eye is lower than the transmittance of red light of the red image of the left eye image or blue light of the blue image,
    The stereoscopic image display device according to claim 5, wherein
  7.  上記第1期間に同期して、
    左目用のカラーフィルタの上記緑色画像の緑色光の透過率は、上記左目用画像の赤色画像の赤色光および青色画像の青色光の透過率よりも低く、
     上記第2期間に同期して、
    左目用のカラーフィルタの上記緑色画像の緑色光の透過率は、上記左目用画像の赤色画像の赤色光または青色画像の青色光の透過率よりも高く、
    することを特徴とする請求項5に記載の立体画像表示装置。
    In synchronization with the first period,
    The transmittance of green light of the green image of the color filter for the left eye is lower than the transmittance of red light of the red image of the left eye image and blue light of the blue image,
    In synchronization with the second period,
    The transmittance of the green light of the green image of the color filter for the left eye is higher than the transmittance of the red light of the red image of the left eye image or the blue light of the blue image,
    The stereoscopic image display device according to claim 5, wherein
PCT/JP2012/052801 2011-02-02 2012-02-01 Three-dimensional image display device WO2012105720A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011020650A JP2012159776A (en) 2011-02-02 2011-02-02 Stereoscopic image display device
JP2011-020650 2011-02-02

Publications (1)

Publication Number Publication Date
WO2012105720A1 true WO2012105720A1 (en) 2012-08-09

Family

ID=46602916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052801 WO2012105720A1 (en) 2011-02-02 2012-02-01 Three-dimensional image display device

Country Status (2)

Country Link
JP (1) JP2012159776A (en)
WO (1) WO2012105720A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111198489A (en) * 2018-11-16 2020-05-26 青岛海信激光显示股份有限公司 Holographic display system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6411025B2 (en) * 2013-12-27 2018-10-24 国立大学法人 筑波大学 Time-division parallax barrier autostereoscopic image display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508617A (en) * 1997-01-22 2001-06-26 ダイナミック ディジタル デプス リサーチ プロプライエタリー リミテッド Method and apparatus for creating stereoscopic images
WO2009045451A1 (en) * 2007-10-01 2009-04-09 Doubleshot, Inc. Full-color anaglyph three-dimensional display

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001508617A (en) * 1997-01-22 2001-06-26 ダイナミック ディジタル デプス リサーチ プロプライエタリー リミテッド Method and apparatus for creating stereoscopic images
WO2009045451A1 (en) * 2007-10-01 2009-04-09 Doubleshot, Inc. Full-color anaglyph three-dimensional display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111198489A (en) * 2018-11-16 2020-05-26 青岛海信激光显示股份有限公司 Holographic display system and method

Also Published As

Publication number Publication date
JP2012159776A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
US10614767B2 (en) Multi-primary backlight for multi-functional active-matrix liquid crystal displays
US8610762B2 (en) Multi-functional active matrix liquid crystal displays
US9116356B2 (en) System for reproducing stereographic images
EP2259598B1 (en) Stereoscopic display and stereoscopic display method
US20110205251A1 (en) Passive eyewear stereoscopic viewing system with frequency selective emitter
TWI342972B (en) Method of increasing a color gamut of a display panel, backlight system for a display screen, and display screen
US20130063573A1 (en) High Dynamic Range Displays Having Improved Field Sequential Processing
EP2922295A1 (en) A system for forming stereoscopic images
US20080151193A1 (en) Stereoscopic imaging systems utilizing solid-state illumination and passive glasses
KR100696926B1 (en) Display unit method for controlling display unit
KR20070034484A (en) Stereoscopic Television Signal Processing Method, Transmission System and Viewer Enhancement
WO2009045451A1 (en) Full-color anaglyph three-dimensional display
US10345608B2 (en) Methods and systems for full-color three-dimensional image display
WO2012105720A1 (en) Three-dimensional image display device
JP2013190636A (en) Wavelength separation device, projector and image display system
WO2013080856A1 (en) 3-d display device and 3-d display system
JP2012145725A (en) Led display device and stereoscopic glasses
WO2023284044A1 (en) 3d display system and display method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742683

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12742683

Country of ref document: EP

Kind code of ref document: A1