WO2012105034A1 - Offshore downwind wind turbine system - Google Patents

Offshore downwind wind turbine system Download PDF

Info

Publication number
WO2012105034A1
WO2012105034A1 PCT/JP2011/052329 JP2011052329W WO2012105034A1 WO 2012105034 A1 WO2012105034 A1 WO 2012105034A1 JP 2011052329 W JP2011052329 W JP 2011052329W WO 2012105034 A1 WO2012105034 A1 WO 2012105034A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
wind power
offshore
foundation
generation system
Prior art date
Application number
PCT/JP2011/052329
Other languages
French (fr)
Japanese (ja)
Inventor
坂本 潔
隆 松信
卓司 柳橋
兼一 畔上
長谷川 勉
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2011/052329 priority Critical patent/WO2012105034A1/en
Publication of WO2012105034A1 publication Critical patent/WO2012105034A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/22Foundations specially adapted for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/221Rotors for wind turbines with horizontal axis
    • F05B2240/2213Rotors for wind turbines with horizontal axis and with the rotor downwind from the yaw pivot axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines

Definitions

  • the present invention relates to an offshore downwind type wind power system, and more particularly to an offshore downwind type wind power system suitable for a plurality of wind power generation facilities installed on the sea at various depths.
  • Non-Patent Document 1 describes a support structure for offshore wind power generation facilities, and monopile and gravity foundations are relatively shallow places with a water depth of 30 m or less, jacket type, tripod type and tripile type foundations. It is described that it can be applied to deep places in the range of 30 to 60 m in water depth.
  • Patent Document 1 and Non-Patent Document 1 describe a support structure for a single wind power generation facility, and support for installing a plurality of wind power generation facilities on the ocean with various water depths. No consideration is given to how.
  • other foundations are more expensive than monopile foundations, and even if various foundations described in Patent Literature 1 and Non-Patent Literature 1 are combined, the costs may increase.
  • the present invention has been made in view of the above points, and an object of the present invention is an offshore downwind type wind power generation that does not increase costs even when a plurality of wind power generation facilities are installed on the sea at various water depths. To provide a system.
  • the offshore downwind type wind power generation system of the present invention is the offshore downwind type wind power generation system in which a plurality of wind power generation facilities are installed on the ocean, and a rotor of the wind power generation facility is located on the leeward side.
  • the power generation facility is supported by a monopile foundation at a shallow water depth on the ocean, and supported by a caisson foundation at a deep water depth on the ocean, and is supported by the adjacent monopile foundation.
  • the wind power generation facility supported by the caisson foundation is connected by a cable.
  • the monopile foundation is used for shallow places where the water depth is 30 m or less
  • the caisson foundation is used for deep places where the water depth is 30 m or more.
  • FIG. 1 It is a side view which shows one Example of the offshore downwind type wind power generation system of this invention. It is a top view of FIG. It is an enlarged view which shows one wind power generation equipment employ
  • FIG. 1 to 4 show an embodiment of the offshore downwind type wind power generation system of the present invention.
  • the wind power generation equipment 1 employed in the offshore downwind type wind power generation system of the present embodiment includes a rotor 6 composed of a hub 6A and a blade 6B, and a main shaft connected to the hub 6A of the rotor 6 ( A generator 11 connected via a speed increasing gear (not shown), a nacelle 7 that houses the generator 11 and other electrical components, and supports the rotor 6 via the main shaft;
  • the wind turbine generator 1 is a downwind type wind power generation facility 1 that is configured roughly from a tower 8 that supports the nacelle 7 on the top and is fixed to the base 9 on the side opposite to the top, and in which a rotor 6 is installed on the leeward side. And it is installed on the ocean.
  • FIG. 1 and FIG. 2 show a state in which a plurality of wind power generation facilities 1 shown in FIG. 3 are installed on the ocean.
  • four wind power generation facilities 1a, 1c, 1d, and 1e are arranged so as to surround the wind power generation facility 1b.
  • the wind power generation facility 1b is supported by a structure of the seabed 3 with a depth of 30m or more deep from the water surface 2, and the other wind power generation facilities 1a, 1c, 1d, and 1e are less than 30m deep from the water surface 2. Supported by a structure on the seabed 3.
  • the monopile foundation 12 in which the foundation 9 is supported on the seabed 3 is used for the wind power generation facilities 1a, 1c, 1d, and 1e in a place where the depth of water from the water surface 2 is 30 m or less.
  • a caisson foundation 5 in which a foundation portion 9 is supported by a structure that reaches the seabed 3 is used in a wind power generation facility 1b at a depth of 30 m or more where the water depth from the water surface 2 is deep.
  • the monopile foundation 12 refers to a structure in which the tip of the foundation part 9 that supports the wind power generation equipment and the like is rooted to the support layer of the seabed ground, and a cylindrical column that is the foundation part 9 is driven into the seabed 3. This becomes the monopile foundation 12.
  • the caisson foundation 5 refers to a structure in which a hollow structure is constructed on the ground, the structure is submerged in the sea, and reaches the seabed 3.
  • the wind power generation facility 1b of the present embodiment cannot be stabilized by the caisson foundation 5 alone, the wind power generation equipment 1a, 1c, 1d, 1e supported by the adjacent monopile foundation 12 and the wind power supported by the caisson foundation 5 are used.
  • the power generation facility 1 b is connected with the cable 4. That is, a cable support ring 10 is provided on each base portion 9 of each wind power generation facility 1a, 1b, 1c, 1d, and 1e, and, as shown in FIG.
  • the wind power generation facility 1a is connected with the cable 4ab
  • the wind power generation facility 1b and the wind power generation facility 1c are connected with the cable 4bc
  • the wind power generation facility 1b and the wind power generation facility 1d are connected with the cable 4bd
  • the wind power generation facility 1b and the wind power generation facility 1e are connected with the cable 4be. Each is connected.
  • the monopile foundation 12 that can be constructed at a lower cost than other foundations is used at a shallow water depth, and the originally inexpensive caisson foundation at a relatively deep water depth where the cost is relatively high.
  • the total cost can be reduced because of this, and by combining these, offshore downwind wind power generation that does not increase the cost even when multiple wind power generation facilities are installed on the ocean at various water depths. A system can be realized.
  • the cable support ring 10 is provided on the underwater side from the water surface 2, so that the cables 4ab, 4bc, 4bd, and 4be are underwater and do not hinder the passage of the ship.
  • the main shaft connected to the hub 6A of the rotor 6 has a structure in which the tilt angle ⁇ t (for example, 5 to 10 degrees) is directed downward from the horizontal plane.
  • a buoyancy generating means for generating the buoyancy of the wind power generation facility 1b may be provided in the vicinity of the cable support ring 10 of the base portion 9 of the wind power generation facility 1b fixed to the caisson foundation 5.
  • the wind power generation facility 1b has been described as being centered on the four wind power generation facilities 1a, 1c, 1d, and 1e.
  • the present invention is not limited to this. Of course, there may be further wind power generation facilities around these wind power generation facilities.

Abstract

Provided is an offshore downwind wind turbine system which can be obtained without an increase in cost even if the system is formed by installing wind turbine facilities at offshore locations having a variety of water depths. The present offshore wind turbine system is configured in such a manner that wind turbine facilities are installed in an offshore area and the rotors of the wind turbine facilities are located on the downwind side. The offshore wind turbine facilities are characterized in that, at shallow water locations in the offshore area, wind turbine facilities are supported by monopile foundations, and at deep water locations in the offshore area, wind turbine facilities are supported by caisson foundations, and that a wind turbine facility which is supported by the caisson foundation and wind turbine facilities which are supported by the monopile foundations and which are adjacent to the wind turbine facility supported by the caisson foundation are connected by cables. Specifically, the monopile foundation is used for a shallow water location where the water depth is 30 m or less, and the caisson foundation is used for a deep water location where the water depth is 30 m or more.

Description

洋上ダウンウィンド型風力発電システムOffshore downwind wind power generation system
 本発明は洋上ダウンウィンド型風力システムに係り、特に、様々な水深の洋上に複数の風力発電設備が設置されるものに好適な洋上ダウンウィンド型風力発電システムに関する。 The present invention relates to an offshore downwind type wind power system, and more particularly to an offshore downwind type wind power system suitable for a plurality of wind power generation facilities installed on the sea at various depths.
 自然エネルギーの効果的利用が図られている昨今、風力発電設備は、特に採算性のある試みであるとして、世界各国で開発が進められているが、風力発電設備には、一定で強く安定した風が吹くことが求められる。 Recently, wind power generation facilities are being developed in countries around the world as a particularly profitable attempt, with the effective use of natural energy. The wind is required to blow.
 このような風力発電設備の設置場所として、陸上と洋上のいずれも可能であるが、洋上における風速は陸上の比べて強く、また、良好で安定した風が吹くという特徴がある。加えて、洋上には障害物が少なく、騒音、電波障害もない。更に、経済的理由から大型化しつつある風車の機材を運搬設置する施工コストも陸上よりも洋上の方が少ない。このように、洋上は陸上よりも風力発電設備に有利な条件を備えている。 As the installation location of such wind power generation facilities, both onshore and offshore are possible, but the wind speed on the ocean is stronger than onshore, and there is a feature that a good and stable wind blows. In addition, there are few obstacles on the ocean, and there is no noise or radio interference. Furthermore, the construction costs for transporting and installing wind turbine equipment that are becoming larger for economic reasons are lower on the ocean than on land. In this way, the offshore has more favorable conditions for wind power generation facilities than onshore.
 通常、洋上に風力発電設備を設置する場合には、沿岸から数百m~数kmの距離に設置されることが多いが、洋上の水深は様々であり、水深が深いところでは、30m以上にも及ぶ所がある。 Normally, when installing wind power generation facilities on the ocean, it is often installed at a distance of several hundred meters to several kilometers from the coast, but the depth of water on the ocean varies. There is also a place.
 このような水深が様々な洋上に風力発電設備を設置する際には、その設置の仕方を考える必要がある。 When installing wind power generation facilities on the ocean with various water depths, it is necessary to consider how to install them.
 従来から風力発電設備を洋上に設置する際には、特許文献1に記載されている如く、ケーソン式や組杭式、或いはモノパイル式の基礎が用いられている。また、その他の基礎として、ジャケット式、重力式、トリポット式及びトリパイル式があることが知られている。更に、非特許文献1には、洋上風力発電設備の支持構造について記載され、モノパイル式及び重力式の基礎は、水深30m以下の比較的浅い場所、ジャケット式、トリポット式及びトリパイル式の基礎は、水深30m~60mの範囲の深い場所に適用できることが記載されている。 Conventionally, when a wind power generation facility is installed on the ocean, as described in Patent Document 1, a caisson type, a group pile type, or a monopile type foundation is used. As other foundations, it is known that there are a jacket type, a gravity type, a tripod type, and a tripile type. Further, Non-Patent Document 1 describes a support structure for offshore wind power generation facilities, and monopile and gravity foundations are relatively shallow places with a water depth of 30 m or less, jacket type, tripod type and tripile type foundations. It is described that it can be applied to deep places in the range of 30 to 60 m in water depth.
特開2006-83603号公報JP 2006-83603 A
 しかしながら、特許文献1及び非特許文献1に記載のものは、風力発電設備単体の支持構造について記載されているものであり、水深が様々な洋上に複数の風力発電設備を設置する際の支持の仕方については、全く配慮されていない。しかも、モノパイル式の基礎に比べて他の基礎はコストが嵩み、特許文献1及び非特許文献1に記載されている種々の基礎を組み合わせたとしても、コストが増大する恐れがある。 However, those described in Patent Document 1 and Non-Patent Document 1 describe a support structure for a single wind power generation facility, and support for installing a plurality of wind power generation facilities on the ocean with various water depths. No consideration is given to how. In addition, other foundations are more expensive than monopile foundations, and even if various foundations described in Patent Literature 1 and Non-Patent Literature 1 are combined, the costs may increase.
 本発明は上述の点に鑑みなされたもので、その目的とするところは、水深が様々な洋上に複数の風力発電設備を設置する場合であっても、コストが増大しない洋上ダウンウィンド型風力発電システムを提供することにある。 The present invention has been made in view of the above points, and an object of the present invention is an offshore downwind type wind power generation that does not increase costs even when a plurality of wind power generation facilities are installed on the sea at various water depths. To provide a system.
 本発明の洋上ダウンウィンド型風力発電システムは、複数の風力発電設備が洋上に設置され、該風力発電設備のロータが風下側に位置している洋上ダウンウィンド型風力発電システムにおいて、前記複数の風力発電設備は、前記洋上の水深が浅い場所ではモノパイル基礎で支持されていると共に、前記洋上の水深が深い場所ではケーソン基礎で支持され、かつ、隣接する前記モノパイル基礎で支持された風力発電設備と前記ケーソン基礎で支持された風力発電設備とが、ケーブルで接続されていることを特徴とする。 The offshore downwind type wind power generation system of the present invention is the offshore downwind type wind power generation system in which a plurality of wind power generation facilities are installed on the ocean, and a rotor of the wind power generation facility is located on the leeward side. The power generation facility is supported by a monopile foundation at a shallow water depth on the ocean, and supported by a caisson foundation at a deep water depth on the ocean, and is supported by the adjacent monopile foundation. The wind power generation facility supported by the caisson foundation is connected by a cable.
 具体的には、水深が30m以下の浅い場所にはモノパイル基礎を、水深が30m以上の深い場所にはケーソン基礎を用いたものである。 Specifically, the monopile foundation is used for shallow places where the water depth is 30 m or less, and the caisson foundation is used for deep places where the water depth is 30 m or more.
 本発明によれば、水深が様々な洋上に複数の風力発電設備を設置する場合であっても、コストが増大しない洋上ダウンウィンド型風力発電システムを得ることができる。 According to the present invention, it is possible to obtain an offshore downwind type wind power generation system that does not increase the cost even when a plurality of wind power generation facilities are installed on the sea at various water depths.
本発明の洋上ダウンウィンド型風力発電システムの一実施例を示す側面図である。It is a side view which shows one Example of the offshore downwind type wind power generation system of this invention. 図1の平面図である。It is a top view of FIG. 本発明の洋上ダウンウィンド型風力発電システムに採用される一つの風力発電設備を示す拡大図である。It is an enlarged view which shows one wind power generation equipment employ | adopted for the offshore downwind type wind power generation system of this invention. 図3の状態からタワーが傾いた状態を示す図である。It is a figure which shows the state which the tower inclined from the state of FIG.
 以下、図示した実施例に基づき本発明の洋上ダウンウィンド型風力発電システムについて説明する。 Hereinafter, the offshore downwind type wind power generation system of the present invention will be described based on the illustrated embodiment.
 図1乃至図4に、本発明の洋上ダウンウィンド型風力発電システムの一実施例を示す。 1 to 4 show an embodiment of the offshore downwind type wind power generation system of the present invention.
 図3に示す如く、本実施例の洋上ダウンウィンド型風力発電システムに採用される風力発電設備1は、ハブ6Aとブレード6Bから成るロータ6と、このロータ6のハブ6Aに接続された主軸(図示せず)を増速ギヤ(図示せず)を介して接続される発電機11と、発電機11や他の電気品を収納し、主軸を介してロータ6を軸支するナセル7と、該ナセル7を頂部に支持し、その頂部とは反対側が基礎部9に固定されているタワー8から概略構成され、風下側にロータ6が設置されているダウンウィンド型の風力発電設備1であり、かつ、洋上に設置されているものである。 As shown in FIG. 3, the wind power generation equipment 1 employed in the offshore downwind type wind power generation system of the present embodiment includes a rotor 6 composed of a hub 6A and a blade 6B, and a main shaft connected to the hub 6A of the rotor 6 ( A generator 11 connected via a speed increasing gear (not shown), a nacelle 7 that houses the generator 11 and other electrical components, and supports the rotor 6 via the main shaft; The wind turbine generator 1 is a downwind type wind power generation facility 1 that is configured roughly from a tower 8 that supports the nacelle 7 on the top and is fixed to the base 9 on the side opposite to the top, and in which a rotor 6 is installed on the leeward side. And it is installed on the ocean.
 図3に示した風力発電設備1を、洋上に複数設置した状態を図1及び図2に示す。該図に示す如く、本実施例の洋上ダウンウィンド型風力発電システムは、風力発電設備1bを中心として、それを囲むように4つの風力発電設備1a、1c、1d、1eが配置されており、その内の風力発電設備1bが水面2からの水深が深い30m以上の海底3の構造物に支持され、その他の風力発電設備1a、1c、1d、1eが水面2からの水深が浅い30m以下の海底3の構造物に支持されている。 FIG. 1 and FIG. 2 show a state in which a plurality of wind power generation facilities 1 shown in FIG. 3 are installed on the ocean. As shown in the figure, in the offshore downwind type wind power generation system of this embodiment, four wind power generation facilities 1a, 1c, 1d, and 1e are arranged so as to surround the wind power generation facility 1b. Among them, the wind power generation facility 1b is supported by a structure of the seabed 3 with a depth of 30m or more deep from the water surface 2, and the other wind power generation facilities 1a, 1c, 1d, and 1e are less than 30m deep from the water surface 2. Supported by a structure on the seabed 3.
 そして、本実施例では、水面2からの水深が浅い30m以下の場所の風力発電設備1a、1c、1d、1eには、基礎部9が海底3に支持されているモノパイル基礎12が用いられ、水面2からの水深が深い30m以上の場所の風力発電設備1bには、基礎部9が海底3に到達している構造物に支持されているケーソン基礎5を用いている。 In the present embodiment, the monopile foundation 12 in which the foundation 9 is supported on the seabed 3 is used for the wind power generation facilities 1a, 1c, 1d, and 1e in a place where the depth of water from the water surface 2 is 30 m or less. A caisson foundation 5 in which a foundation portion 9 is supported by a structure that reaches the seabed 3 is used in a wind power generation facility 1b at a depth of 30 m or more where the water depth from the water surface 2 is deep.
 ここで、モノパイル基礎12とは、風力発電設備などを支持する基礎部9の先端を、海底地盤の支持層まで根入れした構造を言い、基礎部9である円筒状柱を海底3まで打ち込めば、それがモノパイル基礎12となる。また、ケーソン基礎5とは、中空の構造物を地上で構築し、この構造物を海中に沈下させ、海底3に到達させる構造を言う。 Here, the monopile foundation 12 refers to a structure in which the tip of the foundation part 9 that supports the wind power generation equipment and the like is rooted to the support layer of the seabed ground, and a cylindrical column that is the foundation part 9 is driven into the seabed 3. This becomes the monopile foundation 12. The caisson foundation 5 refers to a structure in which a hollow structure is constructed on the ground, the structure is submerged in the sea, and reaches the seabed 3.
 また、本実施例の風力発電設備1bは、ケーソン基礎5単体では安定化できないので、隣接するモノパイル基礎12で支持された風力発電設備1a、1c、1d、1eとケーソン基礎5で支持された風力発電設備1bとが、ケーブル4で接続されている。即ち、各風力発電設備1a、1b、1c、1d、1eの各々の基礎部9にケーブル支持リング10を設け、このケーブル支持リング10を介して、図2に示すように、風力発電設備1bと風力発電設備1aをケーブル4abで、風力発電設備1bと風力発電設備1cをケーブル4bcで、風力発電設備1bと風力発電設備1dをケーブル4bdで、風力発電設備1bと風力発電設備1eをケーブル4beでそれぞれ接続している。 In addition, since the wind power generation facility 1b of the present embodiment cannot be stabilized by the caisson foundation 5 alone, the wind power generation equipment 1a, 1c, 1d, 1e supported by the adjacent monopile foundation 12 and the wind power supported by the caisson foundation 5 are used. The power generation facility 1 b is connected with the cable 4. That is, a cable support ring 10 is provided on each base portion 9 of each wind power generation facility 1a, 1b, 1c, 1d, and 1e, and, as shown in FIG. The wind power generation facility 1a is connected with the cable 4ab, the wind power generation facility 1b and the wind power generation facility 1c are connected with the cable 4bc, the wind power generation facility 1b and the wind power generation facility 1d are connected with the cable 4bd, and the wind power generation facility 1b and the wind power generation facility 1e are connected with the cable 4be. Each is connected.
 尚、上記したケーブルは、風力発電設備群の外縁部に設置されている風力発電設備から出た場合は、一方の端は、海底3に固定されたアンカー(図示せず)に固定されるものである。 In addition, when the above-mentioned cable comes out of the wind power generation equipment installed in the outer edge part of a wind power generation equipment group, one end is fixed to the anchor (not shown) fixed to the seabed 3 It is.
 また、本実施例では、ケーブルを用いて接続する例を示しているが、ケーブル以外の連結物(例えば、ロープ等)であっても、効果は変わらない。 Further, in this embodiment, an example in which a cable is used for connection is shown, but the effect is not changed even if a connected object (for example, a rope) other than the cable is used.
 このような本実施例によれば、水深が浅い場所には、他の基礎に比べて安価に構築できるモノパイル基礎12を用い、比較的コストが嵩む水深が深い場所には、元々安価なケーソン基礎5を用いているので、トータルコストは安価にでき、これを組み合わせることにより、水深が様々な洋上に複数の風力発電設備を設置する場合であっても、コストが増大しない洋上ダウンウィンド型風力発電システムを実現できる。 According to the present embodiment, the monopile foundation 12 that can be constructed at a lower cost than other foundations is used at a shallow water depth, and the originally inexpensive caisson foundation at a relatively deep water depth where the cost is relatively high. The total cost can be reduced because of this, and by combining these, offshore downwind wind power generation that does not increase the cost even when multiple wind power generation facilities are installed on the ocean at various water depths. A system can be realized.
 また、本実施例では、ケーブル支持リング10を、水面2より海中側に設けており、これにより、ケーブル4ab、4bc、4bd、4beは海中となり、船舶の通行に妨げになることはない。 Further, in this embodiment, the cable support ring 10 is provided on the underwater side from the water surface 2, so that the cables 4ab, 4bc, 4bd, and 4be are underwater and do not hinder the passage of the ship.
 また、本実施例では、水深の深い場所に設置されている風力発電設備1bが、ケーソン基礎5とケーブル4で支えられる構造のため、風力発電設備1bは、風による力により図4の如く傾斜してしまうことが想定される。 Further, in this embodiment, since the wind power generation facility 1b installed in a deep water place is supported by the caisson foundation 5 and the cable 4, the wind power generation facility 1b is inclined as shown in FIG. It is assumed that
 しかしながら、本実施例では、図3に示す如く、ロータ6のハブ6Aに接続されている主軸は、水平面からチルト角θt(例えば、5~10度)下方を向いた構造としている。 However, in this embodiment, as shown in FIG. 3, the main shaft connected to the hub 6A of the rotor 6 has a structure in which the tilt angle θt (for example, 5 to 10 degrees) is directed downward from the horizontal plane.
 このような図3に示したダウンウィンド型風車を用いることにより、図4のようなタワー傾斜角が発生しても、主軸方向は風の方向と平行方向のため、発電効率は下がることはない。 By using such a downwind type windmill shown in FIG. 3, even if a tower inclination angle as shown in FIG. 4 occurs, the power generation efficiency does not decrease because the main axis direction is parallel to the wind direction. .
 また、ケーソン基礎5に固定された風力発電設備1bの基礎部9のケーブル支持リング10付近に、風力発電設備1bの浮力を発生させる浮力発生手段を設けても良い。 Further, a buoyancy generating means for generating the buoyancy of the wind power generation facility 1b may be provided in the vicinity of the cable support ring 10 of the base portion 9 of the wind power generation facility 1b fixed to the caisson foundation 5.
 この浮力発生手段を設けることにより、ケーソン基礎5に係る荷重を減らす効果が得られる。 By providing this buoyancy generating means, the effect of reducing the load on the caisson foundation 5 can be obtained.
 尚、上記した実施例では、風力発電設備1bを中心として、それを囲むように4つの風力発電設備1a、1c、1d、1eを配置したものについて説明したが、これに限定されるものではなく、これらの風力発電設備の周囲に、更に風力発電設備があっても良いことは勿論である。 In the above-described embodiment, the wind power generation facility 1b has been described as being centered on the four wind power generation facilities 1a, 1c, 1d, and 1e. However, the present invention is not limited to this. Of course, there may be further wind power generation facilities around these wind power generation facilities.
 1、1a、1b、1c、1d、1e…風力発電設備、2…水面、3…海底、4、4ab、4bc、4bd、4be…ケーブル、5…ケーソン基礎、6…ロータ、6A…ハブ、6B…ブレード、7…ナセル、8…タワー、9…基礎部、10…ケーブル支持リング、11…発電機、12…モノパイル基礎。 DESCRIPTION OF SYMBOLS 1, 1a, 1b, 1c, 1d, 1e ... Wind power generation equipment, 2 ... Water surface, 3 ... Submarine 4, 4ab, 4bc, 4bd, 4be ... Cable, 5 ... Caisson foundation, 6 ... Rotor, 6A ... Hub, 6B ... blade, 7 ... nacelle, 8 ... tower, 9 ... foundation part, 10 ... cable support ring, 11 ... generator, 12 ... monopile foundation.

Claims (6)

  1.  複数の風力発電設備が洋上に設置され、該風力発電設備のロータが風下側に位置している洋上ダウンウィンド型風力発電システムにおいて、
     前記複数の風力発電設備は、前記洋上の水深が浅い場所ではモノパイル基礎で支持されていると共に、前記洋上の水深が深い場所ではケーソン基礎で支持され、かつ、隣接する前記モノパイル基礎で支持された風力発電設備と前記ケーソン基礎で支持された風力発電設備とが、ケーブルで接続されていることを特徴とする洋上ダウンウィンド型風力発電システム。
    In the offshore downwind type wind power generation system in which a plurality of wind power generation facilities are installed on the ocean and the rotor of the wind power generation facility is located on the leeward side,
    The plurality of wind power generation facilities are supported by a monopile foundation at a shallow water depth on the ocean, supported by a caisson foundation at a deep water depth on the ocean, and supported by the adjacent monopile foundation. An offshore downwind type wind power generation system characterized in that a wind power generation facility and a wind power generation facility supported by the caisson foundation are connected by a cable.
  2.  請求項1に記載の洋上ダウンウィンド型風力発電システムにおいて、
     前記風力発電設備は、ハブとブレードから成るロータと、該ロータに前記ハブに接続された主軸を介して接続される発電機と、該発電機を少なくとも収納し、前記主軸を介して前記ロータを軸支するナセルと、該ナセルを頂部に支持し、その頂部とは反対側が基礎部に固定されているタワーとを備え、前記洋上の水深が浅い場所では、前記基礎部が海底に固定される前記モノパイル基礎を用い、かつ、前記洋上の水深が深い場所では、前記基礎部が海底に到達している構造物に固定される前記ケーソン基礎を用いていることを特徴とする洋上ダウンウィンド型風力発電システム。
    In the offshore downwind type wind power generation system according to claim 1,
    The wind power generation facility includes a rotor composed of a hub and blades, a generator connected to the rotor via a main shaft connected to the hub, and at least the generator, and the rotor via the main shaft. A nacelle that supports the nacelle and a tower that supports the nacelle on the top and is fixed to the foundation on the opposite side to the top, and the foundation is fixed to the sea floor at a shallow water depth on the ocean. Offshore downwind type wind power using the monopile foundation and using the caisson foundation fixed to a structure where the foundation reaches the seabed in a place where the water depth is deep on the ocean Power generation system.
  3.  請求項1又は2に記載の洋上ダウンウィンド型風力発電システムにおいて、
     前記基礎部にケーブル支持用リングを設け、このケーブル支持用リングを介して隣接する前記風力発電設備がケーブルで接続されていることを特徴とする洋上ダウンウィンド型風力発電システム。
    In the offshore downwind type wind power generation system according to claim 1 or 2,
    An offshore downwind type wind power generation system characterized in that a cable support ring is provided on the foundation and the adjacent wind power generation facilities are connected via a cable through the cable support ring.
  4.  請求項3に記載の洋上ダウンウィンド型風力発電システムにおいて、
     前記ケーブル支持用リングは、海中の前記基礎部に設けられていることを特徴とする洋上ダウンウィンド型風力発電システム。
    In the offshore downwind type wind power generation system according to claim 3,
    The offshore downwind type wind power generation system, wherein the cable support ring is provided on the foundation portion in the sea.
  5.  請求項2に記載の洋上ダウンウィンド型風力発電システムにおいて、
     前記主軸は、水平面からチルト角θt下方を向いていることを特徴とする洋上ダウンウィンド型風力発電システム。
    The offshore downwind type wind power generation system according to claim 2,
    The offshore downwind type wind power generation system characterized in that the main shaft faces a tilt angle θt below a horizontal plane.
  6.  請求項1又は2に記載の洋上ダウンウィンド型風力発電システムにおいて、
     前記洋上の水深が浅い場所と深い場所の境界は、水深30mであることを特徴とする洋上ダウンウィンド型風力発電システム。
    In the offshore downwind type wind power generation system according to claim 1 or 2,
    The offshore downwind type wind power generation system characterized in that the boundary between the shallow water and the deep water is 30 m deep.
PCT/JP2011/052329 2011-02-04 2011-02-04 Offshore downwind wind turbine system WO2012105034A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/052329 WO2012105034A1 (en) 2011-02-04 2011-02-04 Offshore downwind wind turbine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/052329 WO2012105034A1 (en) 2011-02-04 2011-02-04 Offshore downwind wind turbine system

Publications (1)

Publication Number Publication Date
WO2012105034A1 true WO2012105034A1 (en) 2012-08-09

Family

ID=46602275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052329 WO2012105034A1 (en) 2011-02-04 2011-02-04 Offshore downwind wind turbine system

Country Status (1)

Country Link
WO (1) WO2012105034A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7381490B2 (en) 2018-04-23 2023-11-15 オルステッド・ウィンド・パワー・エー/エス basics of structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037397A (en) * 2004-07-23 2006-02-09 Kinsho Bussan Kk Construction method of offshore wind power generation facility
JP2011503422A (en) * 2007-11-12 2011-01-27 オーシャン ウィンド テクノロジー, エルエルシー Power generation assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037397A (en) * 2004-07-23 2006-02-09 Kinsho Bussan Kk Construction method of offshore wind power generation facility
JP2011503422A (en) * 2007-11-12 2011-01-27 オーシャン ウィンド テクノロジー, エルエルシー Power generation assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7381490B2 (en) 2018-04-23 2023-11-15 オルステッド・ウィンド・パワー・エー/エス basics of structure

Similar Documents

Publication Publication Date Title
CA2743656C (en) Tower segments and method for off-shore wind turbines
US9670908B2 (en) Installation and method for exploiting wind energy
EP1509696B1 (en) A device for a wind power station placed in deep water
JP2021510793A (en) Multi-wind turbines for wind and solar power and floating platforms that self-align against the wind supporting solar, and how to build them
Cahay et al. Use of a vertical wind turbine in an offshore floating wind farm
KR101242064B1 (en) Apparatus for Reducing Drag of Offshore Wind Power System
EP2789847B1 (en) Floating type wind turbine generation apparatus and installation method thereof
KR101318111B1 (en) Substructure of hybrid offshore wind turbine with multi-pile for reducing wave forces, and constructing method for the same
EP2461031A2 (en) Technology for combined offshore floating wind power generation
JP2016113996A (en) Wind power generation system
US8439641B2 (en) Flow driven engine
KR20120102684A (en) Floating energy producing plant
EP2721288B1 (en) Alternative mechanical and electrical concept for offshore wind farms
BR112018010958B1 (en) RENEWABLE ENERGY BARGE
KR101369966B1 (en) Floating wind power generation unit
KR101509507B1 (en) Substructure of offshore wind turbine having multi-cylinders of various diameters, and constructing method for the same
CN201941953U (en) Marine combined floating wind power generation platform
WO2016135800A1 (en) Power generation system
US20140322012A1 (en) Flow Driven Engine
KR20140015505A (en) Wind power plant
JP2019515193A (en) Tidal generator
WO2012105034A1 (en) Offshore downwind wind turbine system
Bhavani et al. Off-shore wind power as a pillar of energy transmission using IOT (OSWPETIOT)
KR100849673B1 (en) Caisson for double-current tidal stream device
KR20160044241A (en) Underlying Structure of Floating Wind Turbine Generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP