WO2012104449A1 - Apparatus and method for tracking facing laser beams - Google Patents

Apparatus and method for tracking facing laser beams Download PDF

Info

Publication number
WO2012104449A1
WO2012104449A1 PCT/ES2012/000019 ES2012000019W WO2012104449A1 WO 2012104449 A1 WO2012104449 A1 WO 2012104449A1 ES 2012000019 W ES2012000019 W ES 2012000019W WO 2012104449 A1 WO2012104449 A1 WO 2012104449A1
Authority
WO
WIPO (PCT)
Prior art keywords
tracking
power
iterations
received
iteration
Prior art date
Application number
PCT/ES2012/000019
Other languages
Spanish (es)
French (fr)
Inventor
Jorge ROMERO SÁNCHEZ
Raquel FERNÁNDEZ RAMOS
Francisco Javier RÍOS GOMEZ
José Francisco MARTIN CANALES
Francisco Javier MARÍN MARTIN
Original Assignee
Universidad De Malaga
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Malaga filed Critical Universidad De Malaga
Publication of WO2012104449A1 publication Critical patent/WO2012104449A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/02Means for marking measuring points
    • G01C15/06Surveyors' staffs; Movable markers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1123Bidirectional transmission
    • H04B10/1125Bidirectional transmission using a single common optical path

Definitions

  • the invention presented is framed in the field of mechanical, electronic and optical industry in control instrumentation applications for tracking light beams.
  • Laser-based tracking systems are used in a wide range of industrial applications where it is necessary to specify or measure the position of a moving or moving object. Let us distinguish between alignment and tracking systems. While the former are limited to placing the systems on a common concrete axis of space, the latter try, once aligned, to keep them in line over time through electronic, optical and mechanical procedures.
  • a laser transceiver is a system that establishes two-way optical communication.
  • Optical transceivers are located on the roofs of buildings anchored to solid structures. However, these structures are subject to spatial changes caused by the geodynamic movements of the foundation and expansion-compression phenomena caused by thermal changes between day and night. If two remote transceivers located at a great distance (more than 100 meters), are aligned effectively establishing communication, the mentioned phenomena divert the beam causing the communication to degrade or be lost. We must avoid this situation by proposing dynamic beam tracking solutions that maintain the link optimal regardless of the possible movements of the structures that support the transceivers.
  • the present invention solves said problem of laser beam tracking between two remote optical transceivers.
  • the purpose of the device and the follow-up procedure presented here is the maintenance of the beams faced independently of the possible movements that may exist in the bases that support said monitoring devices.
  • the present invention consists of an apparatus and a method of tracking opposing laser beams based on embedded control.
  • the tracking apparatus is installed in an optical transceiver consisting of an electronically controlled micrometric guidance system on which an optical duplexer apparatus is supported that allows simultaneous transmission and reception of laser beams.
  • the optical duplexer of an optical transceiver transmits a laser beam and receives at the same time another laser beam from a duplexer of a homologous optical transceiver.
  • the beam tracking procedure described here involves two facing laser beams that line up initially and then follow each other to remain aligned in time.
  • the tracking algorithm is applied in duplicate in each transmitter-receiver pair and acts independently in each of them.
  • the micrometric guidance apparatus allows the lifting movement, and of Azimuth with precision of the microradián, being activated by drivers in their corresponding motors by means of a microcontroller.
  • the transmitting apparatus is an electronic circuit based on a solid state laser that emits a power beam controlled by a microcontroller.
  • the device is an electronic circuit based on a solid state laser that emits a power beam controlled by a microcontroller.
  • receiver is an electronic circuit that manages the power received by a
  • the tracking procedure presented is based on the Friis transmission equation applied to an optical system. This equation determines the power received by a radiant system as a function of that transmitted by another radiant system.
  • the power P r received by the receiver is given by:
  • Equation (1) Considering that there are no changes in the reflections, polarizations and directivity of the transmitter we can simplify equation (1) to:
  • K is a constant in the first instance that encompasses all the aforementioned factors.
  • the received power is proportional to the
  • a coordinate origin must be set that will determine a maximum value of the received power.
  • the alignment process must be done manually by optical means before performing the tracking process. If the value of the received power is the objective is to achieve the maximum that occurs in
  • a change in the direction of the transmitter implies a coordinate shift from the position to the position.
  • Tracking mechanism is a dynamic process.
  • the maximum search must be done in polar coordinates and the search process must be sequential.
  • the method presented in this invention is based on a maximization technique known as the 'gradient method' which consists in successively iterating the following equation:
  • the tracking device is controlled by a microcontroller that acts on a micrometric guidance device that directs an optical system based on a duplexer device that focuses the received laser beam, which is processed by a receiver device based on avalanche photodiode that estimates the beam power
  • the tracking device directs a transmitting device that emits a power laser beam which focuses through the same optical duplexer system towards another remote tracking device that performs the same function.
  • a pair of tracking devices are formed located at remote points that emit and receive opposing laser beams.
  • the microcontroller that executes the tracking procedure is inserted in a control loop that includes the drivers that act on the stepper motors of elevation and azimuth of a guiding apparatus and can act on them by setting the angular values respectively after an alignment and initialization process.
  • the microcontroller receives information on the value of the received power supplied by the receiving device. Given an angular position, the power received will be
  • the microcontroller applies the monitoring procedure every certain interval of time or sampling. This must be lower than the level that verifies the Nyquist condition; that is, s is the maximum expected frequency in the position variation
  • the microcontroller To estimate this sampling interval it is necessary to store the value of without activating the tracking process (in open loop), so that you have an estimate of the temporal evolution of the maximum value. A spectral analysis is then carried out to extract and, therefore, the value of On the other hand, once the monitoring process is active, the microcontroller also stores the maximum positions that represent the evolution of the angular trajectory of the system over time. Interesting data that can be used to optimize the parameters of the monitoring procedure presented here.
  • Figure 1 shows a tracking device installed in an optical transceiver device.
  • Figure 2 shows two monitoring devices installed in two optical transceiver devices with opposite beams as they are located between two remote points.
  • FIG. 3 shows a functional block diagram of the monitoring apparatus and the optical transceiver where it is installed.
  • Figures 4A and 4B show two views of the optical transceiver comprising two drivers, a microcontroller-based control unit, a guidance device, an optical duplexer, a transmitting device and a receiving device.
  • FIGS 5A, 5B and 5C show the microcontroller and the drivers of the motors implemented on printed circuit boards.
  • FIG. 1 shows the tracking device installed in an intelligent optical transceiver 24.
  • Figure 2 shows two tracking devices, each installed in an optical transceiver (24,24 '), with laser beams facing each other as they are located in remote locations for the establishment of simultaneous monitoring of both devices.
  • the laser beam 2 is sent by the optical transceiver tracking device 24 'and received by the optical transceiver tracking device 24.
  • the laser beam 2' is sent by the optical transceiver tracking device 24 and received by the optical device. 24 'optical transceiver tracking. Simultaneous monitoring of the two 2-2 'laser beams when both devices execute separately the tracking procedure presented here.
  • FIG. 3 A functional block diagram of the optical transceiver 24 is shown in Figure 3, comprising a guiding apparatus 3, such as that disclosed in Spanish patent application P20101622, which allows the movement of angular precision of elevation and azimuth by means of a system mechanical and two actuator motors, an optical duplexer 4, such as that disclosed in Spanish patent application P201001619, which allows the treatment of polarized laser beams emitted 2 'and received 2 by a laser transmitter 5 and a photodiode-based receiver 6 of avalanche, respectively.
  • the control circuit 8 acts at the same time the motors that fix said position through two power driver circuits 7.7 '.
  • the control circuit 8 thus forms a control loop composed of the received power (sensor) and the action on the angular positions on which it depends (actuation).
  • Figures 4A and 4B show two views of the arrangement of the elements constituting the optical transceiver 24 and the tracking device 1.
  • the guiding device 3 supports the duplexer 4 containing the transmitting device 5.
  • the receiver 6 receives the signal provided by the duplexer 4 and sends it to the control circuit 8. This, after executing the tracking algorithm presented here, acts on the elevation and azimuth motors of the guidance apparatus through the power driver circuits 7, 7 '.
  • Figures 5A, 5B and 5C show detailed views of the elements that make up the control circuit 8 ( Figures 5A and 5B) and the driver circuits of the 7.7 'motors ( Figure 5C); a driver for each of the engines (a motor for the elevation coordinate another engine for ).
  • the elements of the control circuit 8 have been implemented in a printed circuit card 9 of characteristic FR4.
  • the microcontroller 18 receives power through the connectors 13 being regulated by a voltage regulator 17.
  • the light emitting diode indicates the operating condition.
  • the luminescent diodes 11 monitor the state of the microcontroller 18 under different actions.
  • the push-button 14 establishes the initial condition of the microcontroller 18.
  • the time circuits are activated by glass 15.
  • the programming of the microcontroller 18 is established by means of a serial connector 16.
  • the connection paths 12 allow the microcontroller 18 to communicate with the circuits. 7,7 'motor driver and through the I2C standard form part of a microcontroller structure in master-slave condition.
  • the microcontroller 18 is combined with a series of switching circuits 19 to adequately perform the control functions.
  • Each driver circuit (7.7 ') consists of an integrated driver 20 formed by power transistors that act on the windings of the stepper motors of the guidance device through the connector 21.
  • the power supply for the motors is carried out via the power connector 22 and the communications with the control circuit 8 are established via the connection paths 23.
  • This parameter is a constant.
  • e s a constant parameter that indicates the tolerance at the maximum position.
  • store the increment that, from the current position, must be made at the elevation angle and the azimuth angle, respectively, to
  • the monitoring procedure which will be repeated every sampling time interval m is as follows:

Abstract

The invention relates to an apparatus and method for tracking facing laser beams polarised with annular irradiance and emitted by two optical transceivers (24, 24'). The method comprises: (a) initialising a variable ε, and (b) while ε>εmin iterating the following steps: acquiring the local value of the power Pr received by the receiving apparatus (6) in iteration n; estimating the gradient power vector (formula 1) in the actual position of iteration n (formula 2); obtaining the variations (formula 3) in the angle of elevation θ and azimuth φ respectively, to be taken from the actual position in iteration n (formula 2) in order to come up to the maximum power in the subsequent iteration n+1; acting on the elevation and azimuth motors of the guide apparatus (3) in order to position the catadioptric reflector tube (25) in the position (formula 4); and updating the estimated value of the square modulus of the gradient ε.

Description

Aparato y procedimiento de seguimiento de haces láser enfrentados  Apparatus and procedure for tracking laser beams facing each other
Campo de la invención Field of the Invention
La invención presentada se enmarca en el campo de la industria mecánica, electrónica y óptica en aplicaciones de instrumentación de control para el seguimiento de haces luminosos.  The invention presented is framed in the field of mechanical, electronic and optical industry in control instrumentation applications for tracking light beams.
Antecedentes de la invención Background of the invention
Unos de los problemas más comunes en ingeniería es encontrar solución al alineamiento entre objetos en el espacio. El alineamiento entre ejes de revolución, alas de un avión o elementos de construcción son ejemplos típicos. La aplicación de láseres de estado sólido en la industria para solucionar problemas de alineamiento con el fin de conocer el desplazamiento de una línea o de un plano de referencia, ha desechado a otros métodos mecánicos y/u ópticos más complicados o tediosos. Estas aplicaciones son posibles por las propiedades de la radiación láser: su directivídad y su alta radiancia.  One of the most common engineering problems is finding a solution to the alignment between objects in space. The alignment between axes of revolution, wings of an airplane or building elements are typical examples. The application of solid-state lasers in the industry to solve alignment problems in order to know the displacement of a line or a reference plane, has discarded other more complicated or tedious mechanical and / or optical methods. These applications are possible due to the properties of laser radiation: their directivity and high radiance.
Los sistemas de seguimiento basados en láser se utilizan en un amplio abanico de aplicaciones industriales en las que es necesario precisar o medir la posición de un objeto en movimiento o susceptible de moverse. Distingamos entre los sistemas de alineamiento y los de seguimiento. Mientras los primeros se limitan a situar a los sistemas en un eje concreto común del espacio, los segundos tratan de, una vez alineados, mantenerlos en línea a lo largo del tiempo mediante procedimientos electrónicos, ópticos y mecánicos.  Laser-based tracking systems are used in a wide range of industrial applications where it is necessary to specify or measure the position of a moving or moving object. Let us distinguish between alignment and tracking systems. While the former are limited to placing the systems on a common concrete axis of space, the latter try, once aligned, to keep them in line over time through electronic, optical and mechanical procedures.
Las comunicaciones ópticas en el espacio libre mediante haces láser modulados se presentan como una alternativa a la fibra óptica y al cable si éstos ofrecen parámetros de calidad similares. Un transceptor láser es un sistema que establece una comunicación óptica bidireccional. Los transceptores ópticos se sitúan en las cubiertas de los edificios anclados a estructuras sólidas. Sin embargo, estas estructuras están sometidas a cambios espaciales provocados por los movimientos geodinámicos de la cimentación y fenómenos de dilatación-compresión provocados por los cambios térmicos entre el día y la noche. Si dos transceptores remotos situados a gran distancia (más de 100 metros), se alinean de forma efectiva estableciendo comunicación, los fenómenos mencionados desvían el haz haciendo que la comunicación se degrade o se pierda. Hemos de evitar esta situación planteando soluciones dinámicas de seguimiento del haz que mantengan el enlace óptimo con independencia de los posibles movimientos de las estructuras que soportan a los transceptores. Optical communications in free space using modulated laser beams are presented as an alternative to fiber optics and cable if they offer similar quality parameters. A laser transceiver is a system that establishes two-way optical communication. Optical transceivers are located on the roofs of buildings anchored to solid structures. However, these structures are subject to spatial changes caused by the geodynamic movements of the foundation and expansion-compression phenomena caused by thermal changes between day and night. If two remote transceivers located at a great distance (more than 100 meters), are aligned effectively establishing communication, the mentioned phenomena divert the beam causing the communication to degrade or be lost. We must avoid this situation by proposing dynamic beam tracking solutions that maintain the link optimal regardless of the possible movements of the structures that support the transceivers.
La presente invención soluciona dicho problema del seguimiento del haz láser entre dos transceptores ópticos remotos. El objeto del aparato y procedimiento de seguimiento que aquí se presenta es el mantenimiento de los haces enfrentados con independencia de los posibles movimientos que puedan existir en las bases que sustentan a dichos aparatos de seguimiento.  The present invention solves said problem of laser beam tracking between two remote optical transceivers. The purpose of the device and the follow-up procedure presented here is the maintenance of the beams faced independently of the possible movements that may exist in the bases that support said monitoring devices.
Descripción de la invención Description of the invention
La presente invención consiste en un aparato y un procedimiento de seguimiento de haces láser enfrentados basado en control embebido. El aparato de seguimiento está instalado en un transceptor óptico que consta de un sistema de guiado micrométrico electrónicamente controlado sobre el que se sustenta un aparato duplexor óptico que permite la transmisión y recepción simultánea de haces láser. Así, el aparato duplexor óptico de un transceptor óptico transmite un haz láser y recibe a la vez otro haz láser procedente de un aparato duplexor de un transceptor óptico homólogo. El procedimiento de seguimiento de haz que aquí se describe implica a dos haces láser enfrentados que se alinean inicialmente y después se siguen mutuamente para permanecer alineados en el tiempo. El algoritmo de seguimiento se aplica por duplicado en cada pareja transmisor-receptor y actúa de forma independiente en cada una de ellas.  The present invention consists of an apparatus and a method of tracking opposing laser beams based on embedded control. The tracking apparatus is installed in an optical transceiver consisting of an electronically controlled micrometric guidance system on which an optical duplexer apparatus is supported that allows simultaneous transmission and reception of laser beams. Thus, the optical duplexer of an optical transceiver transmits a laser beam and receives at the same time another laser beam from a duplexer of a homologous optical transceiver. The beam tracking procedure described here involves two facing laser beams that line up initially and then follow each other to remain aligned in time. The tracking algorithm is applied in duplicate in each transmitter-receiver pair and acts independently in each of them.
El aparato de guiado micrométrico permite el movimiento de elevación, y de
Figure imgf000004_0003
acimut con precisión del microradián, siendo activado por drivers en sus correspondientes motores mediante un microcontrolador.
The micrometric guidance apparatus allows the lifting movement, and of
Figure imgf000004_0003
Azimuth with precision of the microradián, being activated by drivers in their corresponding motors by means of a microcontroller.
El aparato transmisor es un circuito electrónico basado en un láser de estado sólido que emite un haz de potencia controlado por un microcontrolador. El aparato
Figure imgf000004_0001
The transmitting apparatus is an electronic circuit based on a solid state laser that emits a power beam controlled by a microcontroller. The device
Figure imgf000004_0001
receptor es un circuito electrónico que gestiona la potencia recibida por un
Figure imgf000004_0002
receiver is an electronic circuit that manages the power received by a
Figure imgf000004_0002
fotodiodo de avalancha mediante un microcontrolador. Avalanche photodiode using a microcontroller.
Consideremos una pareja de aparatos de seguimiento situados a una distancia uno de ellos actuando como transmisor enviando una potencia , y otro como
Figure imgf000004_0004
Consider a pair of tracking devices located at a distance one of them acting as a transmitter sending a power, and another as
Figure imgf000004_0004
receptor recibiendo una potencia
Figure imgf000004_0005
receiver receiving a power
Figure imgf000004_0005
El procedimiento de seguimiento presentado se basa en la ecuación de transmisión de Friis aplicada a un sistema óptico. Esta ecuación determina la potencia recibida por un sistema radiante en función de la transmitida por otro sistema radiante. La potencia Pr recibida por el receptor viene dada por:
Figure imgf000005_0001
The tracking procedure presented is based on the Friis transmission equation applied to an optical system. This equation determines the power received by a radiant system as a function of that transmitted by another radiant system. The power P r received by the receiver is given by:
Figure imgf000005_0001
siendo la potencia transmitida,
Figure imgf000005_0006
los coeficientes de pérdidas por reflexión,
Figure imgf000005_0005
la longitud de onda,
Figure imgf000005_0007
la separación entre el transmisor y el receptor, los
Figure imgf000005_0004
being the transmitted power,
Figure imgf000005_0006
reflection loss coefficients,
Figure imgf000005_0005
the wavelength,
Figure imgf000005_0007
the separation between the transmitter and the receiver, the
Figure imgf000005_0004
diagramas de radiación o directividades del transmisor y receptor respectivamente,
Figure imgf000005_0008
los ángulos de elevación y acimut del transmisor y del receptor,
radiation diagrams or directivities of the transmitter and receiver respectively,
Figure imgf000005_0008
the elevation and azimuth angles of the transmitter and receiver,
Figure imgf000005_0003
los vectores de polarización del transmisor y del receptor.
Figure imgf000005_0003
the polarization vectors of the transmitter and receiver.
Considerando que no existen cambios en las reflexiones, polarizaciones y directividad del transmisor podemos simplificar la ecuación (1) a:
Figure imgf000005_0002
Considering that there are no changes in the reflections, polarizations and directivity of the transmitter we can simplify equation (1) to:
Figure imgf000005_0002
donde K es una constante en primera instancia que engloba todos los factores antes mencionados. En estas circunstancias, la potencia recibida es proporcional al
Figure imgf000005_0016
where K is a constant in the first instance that encompasses all the aforementioned factors. In these circumstances, the received power is proportional to the
Figure imgf000005_0016
diagrama de radiación del receptor independientemente de la orientación del transmisor.  radiation pattern of the receiver regardless of the orientation of the transmitter.
Distingamos entre proceso de alineamiento y proceso de seguimiento. En el primero, se debe fijar un origen de coordenadas que determinará un valor máximo de la potencia recibida. El proceso de alineamiento debe hacerse manualmente por medios ópticos antes de realizar el proceso de seguimiento. Si el valor de la potencia recibida es el objetivo es conseguir el máximo que ocurre en
Figure imgf000005_0009
Let's distinguish between alignment process and monitoring process. In the first, a coordinate origin must be set that will determine a maximum value of the received power. The alignment process must be done manually by optical means before performing the tracking process. If the value of the received power is the objective is to achieve the maximum that occurs in
Figure imgf000005_0009
Una vez alineado este valor será el origen de coordenadas y el
Figure imgf000005_0010
Once aligned this value will be the origin of coordinates and the
Figure imgf000005_0010
objetivo de maximizar la potencia recibida se verá cumplido.  aim to maximize the received power will be met.
Un cambio en la dirección del transmisor implica un desplazamiento de coordenadas desde la posición ) a la posición . El proceso
Figure imgf000005_0011
Figure imgf000005_0012
A change in the direction of the transmitter implies a coordinate shift from the position to the position. The process
Figure imgf000005_0011
Figure imgf000005_0012
de seguimiento implica determinar los valores de mediante el procedimiento
Figure imgf000005_0013
Follow-up involves determining the values through the procedure
Figure imgf000005_0013
objeto de esta invención y hacer que esas diferencias sean lo más pequeña posibles. Las variables son dependientes del tiempo por lo que el
Figure imgf000005_0015
Figure imgf000005_0014
object of this invention and make those differences as small as possible. Variables are time dependent, so the
Figure imgf000005_0015
Figure imgf000005_0014
mecanismo de seguimiento es un proceso dinámico.  Tracking mechanism is a dynamic process.
La búsqueda del máximo debe hacerse en coordenadas polares y el proceso de búsqueda debe ser secuencial. El método que se presenta en esta invención está basado en una técnica de maximización conocida como 'método del gradiente' que consiste en iterar sucesivamente la siguiente ecuación:
Figure imgf000006_0001
The maximum search must be done in polar coordinates and the search process must be sequential. The method presented in this invention is based on a maximization technique known as the 'gradient method' which consists in successively iterating the following equation:
Figure imgf000006_0001
siendo el número de iteración,
Figure imgf000006_0002
un escalar que indica la longitud del paso en cada iteración (dimensionado en unidades angulares por unidad de potencia) y el
Figure imgf000006_0004
operador gradiente. A medida que iteramos la ecuación nos acercamos cada vez más a la posición objetivo
Figure imgf000006_0003
being the iteration number,
Figure imgf000006_0002
a scalar that indicates the length of the step in each iteration (dimensioned in angular units per unit of power) and the
Figure imgf000006_0004
gradient operator As we iterate the equation we get closer and closer to the objective position
Figure imgf000006_0003
El aparato de seguimiento está controlado por un microcontrolador que actúa sobre un aparato de guiado micrométrico que dirige a un sistema óptico basado en un aparato duplexor que focaliza el haz láser recibido, siendo éste procesado por un aparato receptor basado en fotodiodo de avalancha que estima la potencia del haz
Figure imgf000006_0005
A la vez, el aparato de seguimiento dirige a un aparato transmisor que emite un haz láser de potencia
Figure imgf000006_0006
que se focaliza a través del mismo sistema óptico duplexor hacia otro aparato de seguimiento remoto que realiza la misma función. Se forma así un par de aparatos de seguimiento situados en puntos remotos que emiten y reciben haces láser enfrentados.
The tracking device is controlled by a microcontroller that acts on a micrometric guidance device that directs an optical system based on a duplexer device that focuses the received laser beam, which is processed by a receiver device based on avalanche photodiode that estimates the beam power
Figure imgf000006_0005
At the same time, the tracking device directs a transmitting device that emits a power laser beam
Figure imgf000006_0006
which focuses through the same optical duplexer system towards another remote tracking device that performs the same function. Thus, a pair of tracking devices are formed located at remote points that emit and receive opposing laser beams.
El microcontrolador que ejecuta el procedimiento de seguimiento se encuentra insertado en un lazo de control que incluye a los drivers que actúan sobre los motores paso a paso de elevación y acimut de un aparato de guiado pudiendo actuar en ellos fijando los valores angulares
Figure imgf000006_0007
respectivamente tras un proceso de alineamiento e inicialización. Por otro lado, el microcontrolador recibe la información del valor de la potencia recibida
Figure imgf000006_0009
suministrada por el aparato receptor. Dada una posición angular, la potencia recibida será
Figure imgf000006_0008
The microcontroller that executes the tracking procedure is inserted in a control loop that includes the drivers that act on the stepper motors of elevation and azimuth of a guiding apparatus and can act on them by setting the angular values
Figure imgf000006_0007
respectively after an alignment and initialization process. On the other hand, the microcontroller receives information on the value of the received power
Figure imgf000006_0009
supplied by the receiving device. Given an angular position, the power received will be
Figure imgf000006_0008
El microcontrolador aplica el procedimiento de seguimiento cada cierto intervalo de tiempo o de muestreo. Éste ha de ser inferior a la cota que verifica la condición de Nyquist; es decir, s es la máxima frecuencia esperada en la variación de la posición
Figure imgf000006_0012
The microcontroller applies the monitoring procedure every certain interval of time or sampling. This must be lower than the level that verifies the Nyquist condition; that is, s is the maximum expected frequency in the position variation
Figure imgf000006_0012
del máximo de potencia, el período de muestreo
Figure imgf000006_0011
ha de cumplir
of the maximum power, the sampling period
Figure imgf000006_0011
has to comply
Figure imgf000006_0010
Figure imgf000006_0010
Para estimar dicho intervalo de muestreo es necesario almacenar el valor de
Figure imgf000006_0013
sin activar el proceso de seguimiento (en bucle abierto), de manera que se tenga una estimación de la evolución temporal del valor del máximo. A continuación se realiza un análisis espectral para extraer y, por tanto, el valor de
Figure imgf000006_0014
Por otro lado, una vez activo el proceso de seguimiento, el microcontrolador también realiza el almacenamiento de las posiciones del máximo que representan la evolución de la trayectoria angular del sistema a lo largo del tiempo. Datos interesantes que podrán ser utilizados para la optimización de los parámetros del procedimiento de seguimiento que aquí se presenta.
To estimate this sampling interval it is necessary to store the value of
Figure imgf000006_0013
without activating the tracking process (in open loop), so that you have an estimate of the temporal evolution of the maximum value. A spectral analysis is then carried out to extract and, therefore, the value of
Figure imgf000006_0014
On the other hand, once the monitoring process is active, the microcontroller also stores the maximum positions that represent the evolution of the angular trajectory of the system over time. Interesting data that can be used to optimize the parameters of the monitoring procedure presented here.
Breve descripción de los dibujos Brief description of the drawings
A continuación se pasa a describir de manera muy breve una serie de dibujos que ayudan a comprender mejor la invención y que se relacionan expresamente con una realización de dicha invención que se presenta como un ejemplo no limitativo de ésta.  A series of drawings that help to better understand the invention and that expressly relate to an embodiment of said invention which is presented as a non-limiting example thereof is described very briefly below.
La Figura 1 muestra un aparato de seguimiento instalado en un aparato transceptor óptico.  Figure 1 shows a tracking device installed in an optical transceiver device.
La Figura 2 muestra dos aparatos de seguimiento instalados en sendos aparatos transceptores ópticos con haces enfrentados tal como se sitúan entre dos puntos remotos.  Figure 2 shows two monitoring devices installed in two optical transceiver devices with opposite beams as they are located between two remote points.
La Figura 3 muestra un diagrama funcional de bloques del aparato de seguimiento y del transceptor óptico donde está instalado.  Figure 3 shows a functional block diagram of the monitoring apparatus and the optical transceiver where it is installed.
Las Figuras 4A y 4B muestran dos vistas del transceptor óptico que comprende dos drivers, una unidad de control basada en microcontrolador, un aparato de guiado, un aparato duplexor óptico, un aparato transmisor y un aparato receptor.  Figures 4A and 4B show two views of the optical transceiver comprising two drivers, a microcontroller-based control unit, a guidance device, an optical duplexer, a transmitting device and a receiving device.
Las Figuras 5A, 5B y 5C muestran el microcontrolador y los drivers de los motores implementados sobre tarjetas de circuito impreso.  Figures 5A, 5B and 5C show the microcontroller and the drivers of the motors implemented on printed circuit boards.
Descripción detallada de la invención Detailed description of the invention
El aparato y procedimiento de seguimiento de haces láser enfrentados basado en control embebido que se presenta, tiene como objeto el establecimiento efectivo y permanente de comunicaciones de alta velocidad realizadas en el espacio libre por los transceptores de una red de comunicación óptica. La Figura 1 muestra el aparato de seguimiento instalado en un transceptor óptico inteligente 24. La Figura 2 muestra dos aparatos de seguimiento, instalado cada uno en un transceptor óptico (24,24'), con haces láser enfrentados tal como se sitúan en lugares remotos para el establecimiento de un seguimiento simultáneo de ambos aparatos. El haz láser 2 es enviado por el aparato de seguimiento del transceptor óptico 24' y recibido por el aparato de seguimiento del transceptor óptico 24. El haz láser 2' es enviado por el aparato de seguimiento del transceptor óptico 24 y recibido por el aparato de seguimiento del transceptor óptico 24'. Se establece de esta manera un seguimiento simultáneo de los dos haces láser 2-2' cuando ambos aparatos ejecutan por separado el procedimiento de seguimiento que aquí se presenta. The apparatus and procedure for tracking laser beams based on embedded control that is presented, has as its objective the effective and permanent establishment of high-speed communications carried out in the free space by the transceivers of an optical communication network. Figure 1 shows the tracking device installed in an intelligent optical transceiver 24. Figure 2 shows two tracking devices, each installed in an optical transceiver (24,24 '), with laser beams facing each other as they are located in remote locations for the establishment of simultaneous monitoring of both devices. The laser beam 2 is sent by the optical transceiver tracking device 24 'and received by the optical transceiver tracking device 24. The laser beam 2' is sent by the optical transceiver tracking device 24 and received by the optical device. 24 'optical transceiver tracking. Simultaneous monitoring of the two 2-2 'laser beams when both devices execute separately the tracking procedure presented here.
En la Figura 3 se muestra un diagrama funcional de bloques del transceptor óptico 24, que comprende un aparato de guiado 3, tal como el divulgado en la solicitud de patente española P20101622, que permite el movimiento de precisión angular de elevación y acimut mediante un sistema mecánico y dos motores actuadores, un aparato duplexor óptico 4, tal como el divulgado en la solicitud de patente española P201001619, que permite el tratamiento de haces láser polarizados emitidos 2' y recibidos 2 por un transmisor láser 5 y un receptor 6 basado en fotodiodo de avalancha, respectivamente. Un circuito de control 8, gobernado por un microcontrolador 18, procesa la potencia recibida por el receptor A functional block diagram of the optical transceiver 24 is shown in Figure 3, comprising a guiding apparatus 3, such as that disclosed in Spanish patent application P20101622, which allows the movement of angular precision of elevation and azimuth by means of a system mechanical and two actuator motors, an optical duplexer 4, such as that disclosed in Spanish patent application P201001619, which allows the treatment of polarized laser beams emitted 2 'and received 2 by a laser transmitter 5 and a photodiode-based receiver 6 of avalanche, respectively. A control circuit 8, governed by a microcontroller 18, processes the power received by the receiver
Figure imgf000008_0001
dependiente de la posición angular del aparato de guiado 3 sobre el que se
Figure imgf000008_0002
Figure imgf000008_0001
dependent on the angular position of the guiding apparatus 3 on which
Figure imgf000008_0002
sitúa el duplexor óptico 4. El circuito de control 8 actúa a la vez los motores que fijan dicha posición a través de dos circuitos driver de potencia 7,7'. El circuito de control 8 forma así de un lazo de control compuesto por la potencia recibida (sensor) y la acción sobre la posiciones angulares de las que depende (actuación). it locates the optical duplexer 4. The control circuit 8 acts at the same time the motors that fix said position through two power driver circuits 7.7 '. The control circuit 8 thus forms a control loop composed of the received power (sensor) and the action on the angular positions on which it depends (actuation).
Las Figuras 4A y 4B muestran dos vistas de la disposición de los elementos que constituyen el transceptor óptico 24 y el aparato de seguimiento 1. El aparato de guiado 3 soporta al aparato duplexor 4 que contiene al aparato transmisor 5. El receptor 6 recibe la señal proporcionada por el aparato duplexor 4 y la envía al circuito de control 8. Éste, tras ejecutar el algoritmo de seguimiento que aquí se presenta, actúa sobre los motores de elevación y acimut del aparato de guiado a través de los circuitos driver de potencia 7,7'.  Figures 4A and 4B show two views of the arrangement of the elements constituting the optical transceiver 24 and the tracking device 1. The guiding device 3 supports the duplexer 4 containing the transmitting device 5. The receiver 6 receives the signal provided by the duplexer 4 and sends it to the control circuit 8. This, after executing the tracking algorithm presented here, acts on the elevation and azimuth motors of the guidance apparatus through the power driver circuits 7, 7 '.
Las Figuras 5A, 5B y 5C muestran vistas detalladas de los elementos que componen el circuito de control 8 (Figuras 5A y 5B) y los circuitos driver de los motores 7,7' (Figura 5C); un driver para cada uno de los motores (un motor para la coordenada de elevación
Figure imgf000008_0003
otro motor para
Figure imgf000008_0004
). Los elementos del circuito de control 8 se han implementado en una tarjeta de circuito impreso 9 de característica FR4. El microcontrolador 18 recibe la alimentación por los conectores 13 siendo regulada por un regulador de tensión 17. El diodo luminiscente indica la condición de funcionamiento. Los diodos luminiscentes 11 monitorizan el estado del microcontrolador 18 bajo distintas acciones. El pulsador 14 establece la condición inicial del microcontrolador 18. Los circuitos de tiempo se activan mediante cristal 15. La programación del microcontrolador 18 se establece mediante un conector serie 16. Las vías de conexión 12 permiten comunicar al microcontrolador 18 con los circuitos driver de los motores 7,7' y mediante el estándar I2C formar parte de una estructura de microcontroladores en condición de maestro-esclavo. El microcontroiador 18 se conjuga con una serie de circuitos de conmutación 19 para realizar adecuadamente las funciones de control. Cada circuito driver (7,7') consta de un driver integrado 20 formado por transistores de potencia que actúan sobre los devanados de los motores paso a paso del aparato de guiado a través del conector 21. La alimentación de potencia para los motores se efectúa a través del conector de alimentación 22 y las comunicaciones con el circuito de control 8 se establecen mediante las vías de conexión 23.
Figures 5A, 5B and 5C show detailed views of the elements that make up the control circuit 8 (Figures 5A and 5B) and the driver circuits of the 7.7 'motors (Figure 5C); a driver for each of the engines (a motor for the elevation coordinate
Figure imgf000008_0003
another engine for
Figure imgf000008_0004
). The elements of the control circuit 8 have been implemented in a printed circuit card 9 of characteristic FR4. The microcontroller 18 receives power through the connectors 13 being regulated by a voltage regulator 17. The light emitting diode indicates the operating condition. The luminescent diodes 11 monitor the state of the microcontroller 18 under different actions. The push-button 14 establishes the initial condition of the microcontroller 18. The time circuits are activated by glass 15. The programming of the microcontroller 18 is established by means of a serial connector 16. The connection paths 12 allow the microcontroller 18 to communicate with the circuits. 7,7 'motor driver and through the I2C standard form part of a microcontroller structure in master-slave condition. The microcontroller 18 is combined with a series of switching circuits 19 to adequately perform the control functions. Each driver circuit (7.7 ') consists of an integrated driver 20 formed by power transistors that act on the windings of the stepper motors of the guidance device through the connector 21. The power supply for the motors is carried out via the power connector 22 and the communications with the control circuit 8 are established via the connection paths 23.
Presentamos a continuación el procedimiento de seguimiento detallado ejecutado por el microcontroiador 18. Se enumeran previamente los parámetros y las variables implicadas en el mismo:  We present below the detailed monitoring procedure executed by microcontroller 18. The parameters and variables involved in it are previously listed:
es el número de iteración actual.  It is the current iteration number.
es el incremento respecto a la posición local actual de la coordenada de elevación
Figure imgf000009_0001
Este parámetro es una constante.
is the increase with respect to the current local position of the elevation coordinate
Figure imgf000009_0001
This parameter is a constant.
es el incremento respecto a la posición local actual de la coordenada acimutal
Figure imgf000009_0002
Este parámetro es una constante.
is the increase with respect to the current local position of the azimuth coordinate
Figure imgf000009_0002
This parameter is a constant.
es un parámetro constante que permite acelerar la localización del máximo. es el módulo al cuadrado del gradiente estimado que indica cómo de cerca está el sistema del máximo. Es una variable.  It is a constant parameter that allows to accelerate the location of the maximum. it is the squared module of the estimated gradient that indicates how closely the maximum system is. It is a variable.
es un parámetro constante que indica la tolerancia en la posición del máximo.e s a constant parameter that indicates the tolerance at the maximum position.
Figure imgf000009_0003
es un parámetro constante que indica el número máximo de iteraciones que se pueden realizar sin que se active una alarma de seguimiento fallido.
Figure imgf000009_0004
almacenan respectivamente el ángulo de elevación y de acimut en
Figure imgf000009_0008
Figure imgf000009_0009
el paso
Figure imgf000009_0005
, respectivamente.
Figure imgf000009_0003
It is a constant parameter that indicates the maximum number of iterations that can be performed without activating a failed tracking alarm.
Figure imgf000009_0004
respectively store the elevation and azimuth angle in
Figure imgf000009_0008
Figure imgf000009_0009
step
Figure imgf000009_0005
respectively.
Figure imgf000009_0006
ι almacenan el incremento que, desde la posición actual, hay que realizar en el ángulo de elevación y en el de acimut , respectivamente, para
Figure imgf000009_0007
Figure imgf000009_0010
Figure imgf000009_0006
ι store the increment that, from the current position, must be made at the elevation angle and the azimuth angle, respectively, to
Figure imgf000009_0007
Figure imgf000009_0010
aproximarnos al máximo en la iteración
Figure imgf000009_0011
.
approach the maximum in the iteration
Figure imgf000009_0011
.
El procedimiento de seguimiento, que se repetirá cada intervalo de tiempo de muestreo
Figure imgf000009_0012
m es el siguiente:
The monitoring procedure, which will be repeated every sampling time interval
Figure imgf000009_0012
m is as follows:
0. Inicialización de variables:0. Initialization of variables:
Figure imgf000009_0013
1. Bucle: iterar los siguientes pasos mientras no se alcance el máximo
Figure imgf000009_0013
1. Loop: iterate the following steps until maximum is reached
Figure imgf000010_0001
Figure imgf000010_0001
no se supere el número máximo de iteraciones
Figure imgf000010_0002
the maximum number of iterations is not exceeded
Figure imgf000010_0002
2. Adquisición del valor local de la potencia recibida en el paso
Figure imgf000010_0003
2. Acquisition of the local value of the power received in the step
Figure imgf000010_0003
Figure imgf000010_0004
Figure imgf000010_0004
3. Estimación del vector gradiente mediante diferencias centrales:  3. Estimation of the gradient vector through central differences:
Figure imgf000010_0005
Figure imgf000010_0005
4. Actualización de la posición en curso:  4. Update of the current position:
Figure imgf000010_0006
Figure imgf000010_0006
5. Actualización de:
Figure imgf000010_0007
5. Update of:
Figure imgf000010_0007
6. Fin de bucle.  6. End of loop.
7. Evaluación de la condición de salida: Activar condición de seguimiento fallido si
Figure imgf000010_0008
, indicando que no se ha podido realizar correctamente el seguimiento. En caso contrario se alcanzó el máximo.
7. Evaluation of the exit condition: Activate failed tracking condition if
Figure imgf000010_0008
, indicating that the tracking could not be performed correctly. Otherwise the maximum was reached.

Claims

REIVINDICACIONES
1.- Aparato de seguimiento de haces láser enfrentados, polarizados con irradiancia anular y emitidos por dos transceptores ópticos (24,24') que disponen de: 1.- Apparatus for tracking laser beams facing each other, polarized with annular irradiance and emitted by two optical transceivers (24,24 ') that have:
- un aparato duplexor óptico (4) con un tubo reflector catadióptrico (25) para la recepción del haz láser recibido (2) y la transmisión del haz láser transmitido (2');  - an optical duplexer (4) with a catadioptric reflector tube (25) for the reception of the received laser beam (2) and the transmission of the transmitted laser beam (2 ');
- un aparato de guiado (3) del tubo reflector catadióptrico (25), con un motor de elevación y un motor de acimut para modificar, respectivamente, el ángulo de elevación
Figure imgf000011_0001
y el ángulo de acimut
Figure imgf000011_0002
del tubo reflector catadióptrico (25);
- a guiding apparatus (3) of the catadioptric reflector tube (25), with a lifting motor and an azimuth motor to modify, respectively, the elevation angle
Figure imgf000011_0001
and the azimuth angle
Figure imgf000011_0002
of the catadioptric reflector tube (25);
- un transmisor láser (5);  - a laser transmitter (5);
- un aparato receptor (6) encargado de obtener la potencia
Figure imgf000011_0012
recibida proveniente del haz láser recibido (2);
- a receiving device (6) responsible for obtaining the power
Figure imgf000011_0012
received from the received laser beam (2);
estando el aparato de seguimiento (1) instalado en cada transceptor óptico (24,24'), caracterizado por que dicho aparato de seguimiento (1) comprende un circuito de control (8) encargado de obtener del aparato receptor (6) el valor de la potencia
Figure imgf000011_0013
recibida por el mismo y de aplicar periódicamente un algoritmo de seguimiento, dicho algoritmo de seguimiento comprendiendo:
the tracking device (1) being installed in each optical transceiver (24,24 '), characterized in that said tracking device (1) comprises a control circuit (8) responsible for obtaining the value of the receiving device (6) from the power
Figure imgf000011_0013
received by it and to periodically apply a tracking algorithm, said tracking algorithm comprising:
- inicializar una variable que representa el valor estimado del módulo al
Figure imgf000011_0016
- initialize a variable that represents the estimated value of the module at
Figure imgf000011_0016
cuadrado del gradiente; gradient square;
- iterar mientras siendo un valor predeterminado, los siguientes
Figure imgf000011_0014
Figure imgf000011_0015
- iterate while being a default, the following
Figure imgf000011_0014
Figure imgf000011_0015
pasos: Steps:
• adquirir el valor local de la potencia recibida en la iteración n, • acquire the local value of the power received in iteration n,
• estimar el vector gradiente de potencia en la
Figure imgf000011_0003
• estimate the power gradient vector in the
Figure imgf000011_0003
posición actual de la iteración n con respecto a la variación del
Figure imgf000011_0004
current position of iteration n with respect to the variation of
Figure imgf000011_0004
ángulo de elevación y de acimutlifting angle and azimuth
Figure imgf000011_0006
Figure imgf000011_0006
• obtener, a partir de dicho vector gradiente de potencia, las variaciones
Figure imgf000011_0009
en el ángulo de elevación
Figure imgf000011_0007
y de acimut
Figure imgf000011_0008
respectivamente, que hay que realizar desde la posición actual en la iteración n
Figure imgf000011_0010
para aproximarse al máximo de potencia en la siguiente iteración n+1;
• obtain, from said power gradient vector, the variations
Figure imgf000011_0009
at the elevation angle
Figure imgf000011_0007
and azimuth
Figure imgf000011_0008
respectively, to be done from the current position in the iteration n
Figure imgf000011_0010
to approximate the maximum power in the next iteration n + 1;
• actuar sobre los motores de elevación y acimut del aparato de guiado (3) para posicionar el tubo reflector catadióptrico (25) en la posición
Figure imgf000011_0011
• actualizar el valor estimado del módulo al cuadrado del gradiente ε.
• act on the lifting and azimuth motors of the guiding device (3) to position the catadioptric reflector tube (25) in the position
Figure imgf000011_0011
• update the estimated value of the squared module of the gradient ε.
2. - Aparato de seguimiento según la reivindicación 1 , donde las iteraciones del algoritmo de seguimiento se realizan mientras el número de iteraciones n no supere un número máximo de iteraciones n_MAX, estando configurado el circuito de control (8) para, en caso de que el número de iteraciones supere el número máximo de iteraciones n_MAX, activar un estado de seguimiento fallido que indique el fallo en el seguimiento del haz láser. 2. - Monitoring device according to claim 1, wherein the iterations of the tracking algorithm are performed while the number of iterations n does not exceed a maximum number of iterations n_MAX, the control circuit (8) being configured for, in case The number of iterations exceeds the maximum number of iterations n_MAX, activate a failed tracking state that indicates the failure in laser beam tracking.
3. - Aparato de seguimiento según cualquiera de las reivindicaciones anteriores, que comprende adicionalmente unos circuitos driver de potencia (7,7') a través de los cuales el circuito de control (8) actúa sobre los motores de elevación y de acimut del aparato de guiado (3). 3. - Monitoring device according to any of the preceding claims, further comprising power driver circuits (7.7 ') through which the control circuit (8) acts on the lifting and azimuth motors of the apparatus of guidance (3).
4. - Aparato de seguimiento según cualquiera de las reivindicaciones anteriores, donde la etapa de adquisición del valor local de la potencia recibida en la iteración n, en las iteraciones del algoritmo de seguimiento, comprende:  4. - Monitoring device according to any of the preceding claims, wherein the stage of acquiring the local value of the power received in iteration n, in the iterations of the tracking algorithm, comprises:
- adquirir, en la posición actual de la iteración n la potencia recibida
Figure imgf000012_0001
- acquire, in the current position of the iteration n the received power
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0002
- actuar sobre los motores de elevación y acimut del aparato de guiado (3) para posicionar el tubo reflector catadióptrico (25) en las posiciones y adquirir para cada una
Figure imgf000012_0003
- act on the lifting and azimuth motors of the guidance apparatus (3) to position the catadioptric reflector tube (25) in the positions and acquire for each
Figure imgf000012_0003
de dichas posiciones la potencia recibida, siendo respectivamente siendo of these positions the received power, being respectively being
Figure imgf000012_0005
Figure imgf000012_0004
unos valores predeterminados.
Figure imgf000012_0005
Figure imgf000012_0004
Default values.
5. - Aparato de seguimiento según la reivindicación anterior, donde la etapa de estimación el vector gradiente de potencia
Figure imgf000012_0007
en las iteraciones del algoritmo de seguimiento, se realiza mediante diferencias centrales, cumpliéndose:
Figure imgf000012_0006
5. - Monitoring device according to the preceding claim, wherein the step of estimating the power gradient vector
Figure imgf000012_0007
in the iterations of the tracking algorithm, it is done through central differences, fulfilling:
Figure imgf000012_0006
6. - Aparato de seguimiento según cualquiera de las reivindicaciones anteriores, donde la etapa de obtención de las variaciones en las iteraciones del
Figure imgf000012_0008
algoritmo de seguimiento, se realiza según las siguientes ecuaciones:
Figure imgf000013_0001
6. - Monitoring device according to any of the preceding claims, wherein the step of obtaining the variations in the iterations of the
Figure imgf000012_0008
Tracking algorithm, is performed according to the following equations:
Figure imgf000013_0001
siendo h un valor predeterminado. h being a default value.
7. - Aparato de seguimiento según cualquiera de las reivindicaciones anteriores, donde el circuito de control (8) está configurado para aplicar el algoritmo de seguimiento según un período de muestreo
Figure imgf000013_0002
cumpliéndose siendo
Figure imgf000013_0003
7. - Monitoring device according to any of the preceding claims, wherein the control circuit (8) is configured to apply the tracking algorithm according to a sampling period
Figure imgf000013_0002
fulfilling being
Figure imgf000013_0003
la máxima frecuencia esperada en la variación de la posición del máximo de potencia.  the maximum expected frequency in the variation of the position of the maximum power.
8. - Aparato de seguimiento según cualquiera de las reivindicaciones anteriores, donde el circuito de control (8) comprende un microcontrolador (18). 8. - Monitoring device according to any of the preceding claims, wherein the control circuit (8) comprises a microcontroller (18).
9. - Transceptor óptico con capacidad de efectuar el seguimiento de haces láser enfrentados, polarizados con irradiancia anular, que dispone de: 9. - Optical transceiver capable of tracking opposing laser beams, polarized with annular irradiance, which has:
- un aparato duplexor óptico (4) con un tubo reflector catadióptrico (25) para la recepción del haz láser recibido (2) y la transmisión del haz láser transmitido (2');  - an optical duplexer (4) with a catadioptric reflector tube (25) for the reception of the received laser beam (2) and the transmission of the transmitted laser beam (2 ');
- un aparato de guiado (3) del tubo reflector catadióptrico (25), con un motor de elevación y un motor de acimut para modificar, respectivamente, el ángulo de elevación
Figure imgf000013_0005
y el ángulo de acimut del tubo reflector catadióptrico (25);
- a guiding apparatus (3) of the catadioptric reflector tube (25), with a lifting motor and an azimuth motor to modify, respectively, the elevation angle
Figure imgf000013_0005
and the azimuth angle of the catadioptric reflector tube (25);
Figure imgf000013_0004
Figure imgf000013_0004
- un transmisor láser (5);  - a laser transmitter (5);
- un aparato receptor (6) encargado de obtener la potencia recibida
Figure imgf000013_0006
- a receiving device (6) responsible for obtaining the received power
Figure imgf000013_0006
proveniente del haz láser recibido (2); from the received laser beam (2);
caracterizado por que comprende el aparato de seguimiento de haces láser enfrentados según cualquiera de las reivindicaciones 1 a 8. characterized in that it comprises the facing laser beam tracking apparatus according to any one of claims 1 to 8.
10. - Procedimiento de seguimiento de haces láser enfrentados, polarizados con irradiancia anular y emitidos por dos transceptores ópticos (24,24') que disponen de: 10. - Procedure for monitoring opposing laser beams, polarized with annular irradiance and emitted by two optical transceivers (24,24 ') that have:
- un aparato duplexor óptico (4) con un tubo reflector catadióptrico (25) para la recepción del haz láser recibido (2) y la transmisión del haz láser transmitido (2');  - an optical duplexer (4) with a catadioptric reflector tube (25) for the reception of the received laser beam (2) and the transmission of the transmitted laser beam (2 ');
- un aparato de guiado (3) del tubo reflector catadióptrico (25), con un motor de elevación y un motor de acimut para modificar, respectivamente, el ángulo de elevación y el ángulo de acimut del tubo reflector catadióptrico (25); - a guiding apparatus (3) of the catadioptric reflector tube (25), with a lifting motor and an azimuth motor for modifying, respectively, the elevation angle and the azimuth angle of the catadioptric reflector tube (25);
Figure imgf000013_0007
- un transmisor láser (5);
Figure imgf000013_0007
- a laser transmitter (5);
- un aparato receptor (6) encargado de obtener la potencia recibida
Figure imgf000014_0001
- a receiving device (6) responsible for obtaining the received power
Figure imgf000014_0001
proveniente del haz láser recibido (2); from the received laser beam (2);
caracterizado por que dicho procedimiento de seguimiento comprende aplicar periódicamente un algoritmo de seguimiento, dicho algoritmo de seguimiento comprendiendo: characterized in that said tracking procedure comprises periodically applying a tracking algorithm, said tracking algorithm comprising:
- inicializar una variable
Figure imgf000014_0005
que representa el valor estimado del módulo al cuadrado del gradiente;
- initialize a variable
Figure imgf000014_0005
which represents the estimated value of the squared module of the gradient;
- iterar mientras siendo un valor predeterminado, los siguientes
Figure imgf000014_0003
Figure imgf000014_0004
- iterate while being a default, the following
Figure imgf000014_0003
Figure imgf000014_0004
pasos: Steps:
• adquirir el valor local de la potencia
Figure imgf000014_0002
recibida por el aparato receptor (6) en la iteración n,
• acquire the local value of the power
Figure imgf000014_0002
received by the receiving apparatus (6) in iteration n,
• estimar el vector gradiente de potencia en la
Figure imgf000014_0006
• estimate the power gradient vector in the
Figure imgf000014_0006
posición actual de la iteración n
Figure imgf000014_0007
con respecto a la variación del ángulo de elevación
Figure imgf000014_0008
y de acimut
current position of the iteration n
Figure imgf000014_0007
with respect to the variation of the elevation angle
Figure imgf000014_0008
and azimuth
Figure imgf000014_0009
Figure imgf000014_0009
• obtener, a partir de dicho vector gradiente de potencia, las variaciones
Figure imgf000014_0010
en el ángulo de elevación y de acimut
Figure imgf000014_0011
Figure imgf000014_0012
respectivamente, que hay que realizar desde la posición actual en la iteración n
Figure imgf000014_0013
para aproximarse al máximo de potencia en la siguiente iteración n+1;
• obtain, from said power gradient vector, the variations
Figure imgf000014_0010
at the elevation and azimuth angle
Figure imgf000014_0011
Figure imgf000014_0012
respectively, to be done from the current position in the iteration n
Figure imgf000014_0013
to approximate the maximum power in the next iteration n + 1;
• actuar sobre los motores de elevación y acimut del aparato de guiado (3) para posicionar el tubo reflector catadióptrico (25) en la posición
Figure imgf000014_0014
• act on the lifting and azimuth motors of the guiding device (3) to position the catadioptric reflector tube (25) in the position
Figure imgf000014_0014
• actualizar el valor estimado del módulo al cuadrado del gradiente ε.  • update the estimated value of the squared module of the gradient ε.
11. - Procedimiento de seguimiento según la reivindicación 10, donde las iteraciones del algoritmo de seguimiento se realizan mientras el número de iteraciones n no supere un número máximo de iteraciones n_MAX, y donde el procedimiento comprende, en caso de que el número de iteraciones supere el número máximo de iteraciones n_MAX, activar un estado de seguimiento fallido que indique el fallo en el seguimiento del haz láser. 11. - Tracking procedure according to claim 10, wherein the iterations of the tracking algorithm are performed as long as the number of iterations n does not exceed a maximum number of iterations n_MAX, and where the procedure comprises, in case the number of iterations exceeds the maximum number of iterations n_MAX, activate a failed tracking state that indicates the failure in the laser beam tracking.
12. - Procedimiento de seguimiento según cualquiera de las reivindicaciones 10 a 11 , donde la etapa de adquisición del valor local de la potencia recibida en la iteración n, en las iteraciones del algoritmo de seguimiento, comprende: 12. - Follow-up procedure according to any of claims 10 to 11, where the stage of acquiring the local value of the power received in the iteration n, in the iterations of the tracking algorithm, comprises:
- adquirir, en la posición actual de la iteración n ( 'a potencia recibida
Figure imgf000015_0003
- acquire, at the current position of the iteration n (' at received power
Figure imgf000015_0003
Figure imgf000015_0001
Figure imgf000015_0001
- actuar sobre los motores de elevación y acimut del aparato de guiado (3) para posicionar el tubo reflector catadióptrico (25) en las posiciones y adquirir para cada una
Figure imgf000015_0002
- act on the lifting and azimuth motors of the guidance apparatus (3) to position the catadioptric reflector tube (25) in the positions and acquire for each
Figure imgf000015_0002
de dichas posiciones la potencia recibida, siendo respectivamente siendo
Figure imgf000015_0004
Figure imgf000015_0005
unos valores predeterminados.
of these positions the received power, being respectively being
Figure imgf000015_0004
Figure imgf000015_0005
Default values.
13. - Procedimiento de seguimiento según la reivindicación anterior, donde la etapa de estimación el vector gradiente de potencia en las
Figure imgf000015_0006
13. - Follow-up method according to the preceding claim, wherein the step of estimating the power gradient vector in the
Figure imgf000015_0006
iteraciones del algoritmo de seguimiento, se realiza mediante diferencias centrales, cumpliéndose:
Figure imgf000015_0007
iterations of the tracking algorithm, is done through central differences, complying with:
Figure imgf000015_0007
14. - Procedimiento de seguimiento según cualquiera de las reivindicaciones 10 a 13, donde la etapa de obtención de las variaciones en las iteraciones
Figure imgf000015_0008
14. - Follow-up procedure according to any of claims 10 to 13, wherein the step of obtaining the variations in the iterations
Figure imgf000015_0008
del algoritmo de seguimiento, se realiza según las siguientes ecuaciones:
Figure imgf000015_0009
of the tracking algorithm, is performed according to the following equations:
Figure imgf000015_0009
siendo h un valor predeterminado. h being a default value.
15. - Procedimiento de seguimiento según cualquiera de las reivindicaciones 10 a 14, donde el algoritmo de seguimiento se aplica según un período de muestreo
Figure imgf000015_0012
cumpliéndose
Figure imgf000015_0010
, siendo
Figure imgf000015_0011
la máxima frecuencia esperada en la variación de la posición del máximo de potencia.
15. - Monitoring procedure according to any of claims 10 to 14, wherein the tracking algorithm is applied according to a sampling period
Figure imgf000015_0012
fulfilling
Figure imgf000015_0010
, being
Figure imgf000015_0011
the maximum expected frequency in the variation of the position of the maximum power.
PCT/ES2012/000019 2011-01-31 2012-01-30 Apparatus and method for tracking facing laser beams WO2012104449A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201100111A ES2386747B1 (en) 2011-01-31 2011-01-31 Apparatus and procedure for tracking laser beams facing each other
ESP201100111 2011-01-31

Publications (1)

Publication Number Publication Date
WO2012104449A1 true WO2012104449A1 (en) 2012-08-09

Family

ID=46602088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/000019 WO2012104449A1 (en) 2011-01-31 2012-01-30 Apparatus and method for tracking facing laser beams

Country Status (2)

Country Link
ES (1) ES2386747B1 (en)
WO (1) WO2012104449A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004028045A1 (en) * 2002-09-18 2004-04-01 Incucomm, Inc. Control processor for use with a transceiver in an optical wireless network
US20040120719A1 (en) * 2002-12-20 2004-06-24 Lightpointe Communications, Inc. Method and apparatus for maintaining optical alignment for free-space optical communication
US20060018663A1 (en) * 2003-05-30 2006-01-26 Omnilux, Inc. Acquisition of a wireless network node
US20060291864A1 (en) * 2000-10-16 2006-12-28 Kiribati Wireless Ventures Llc Establishment and maintenance of optical links between optical transceiver nodes in free-space optical communications networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060291864A1 (en) * 2000-10-16 2006-12-28 Kiribati Wireless Ventures Llc Establishment and maintenance of optical links between optical transceiver nodes in free-space optical communications networks
WO2004028045A1 (en) * 2002-09-18 2004-04-01 Incucomm, Inc. Control processor for use with a transceiver in an optical wireless network
US20040120719A1 (en) * 2002-12-20 2004-06-24 Lightpointe Communications, Inc. Method and apparatus for maintaining optical alignment for free-space optical communication
US20060018663A1 (en) * 2003-05-30 2006-01-26 Omnilux, Inc. Acquisition of a wireless network node

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIYONG LI ET AL.: "Maximum Power Point Tracking of Photovoltaic Generation Based on the Optimal Gradient Method", POWER AND ENERGY ENGINEERING CONFERENCE, 2009. APPEEC 2009. ASIA-PACIFIC, 27 March 2009 (2009-03-27), PISCATAWAY, NJ, USA, pages 1 - 4 *

Also Published As

Publication number Publication date
ES2386747A1 (en) 2012-08-29
ES2386747B1 (en) 2013-07-12

Similar Documents

Publication Publication Date Title
US11834173B2 (en) Anchored aerial countermeasures for rapid deployment and neutralizing of target aerial vehicles
EP3633394B1 (en) Radio wave measurement system and wireless power transmission device
US10404369B2 (en) Systems and methods for using drones for determining line-of-sight conditions in wireless networks
US8155527B2 (en) Apparatus and method for sending and receiving free space optical signals
US9825701B2 (en) Free space optical communication
US20180123692A1 (en) Systems and methods for communicating through a glass window barrier
US8948601B2 (en) Method and system for indoor wireless optical links
US9571192B2 (en) Simultaneous multi-channel optical communications system with beam pointing, switching, and tracking using moving focal plane devices
CN105874349B (en) Detection device, detection system, detection method and movable equipment
US8995841B1 (en) Beam path adaptation system and method for free space optical communications systems
Khan et al. Maintaining a free-space-optical communication link between two autonomous mobiles
US20190043328A1 (en) Autonomous sensor placement discovery method and apparatus
US10527712B2 (en) Ray-surface positioning systems and methods
KR101737219B1 (en) radio wave measuring system using drone
KR20140094259A (en) Apparatus for measuring position of other apparatus and method for measuring of other apparatus
CN106209225A (en) A kind of wireless optical channel construction method and device
JP2023113608A (en) flying object
WO2012104449A1 (en) Apparatus and method for tracking facing laser beams
US20240031040A1 (en) Methods of aligning an articulated antenna device
JP6545884B1 (en) Flying body
CN110557569A (en) Intelligent monitoring system and method integrating ultra-wideband AoA positioning and video tracking
US11855461B1 (en) Automated installation of electronic devices on infrastructure components
US20220373686A1 (en) Scanning system for enhanced antenna placement in a wireless communication environment
KR20160118558A (en) Lidar system
Khan et al. In-band autonomous maintenance of mobile free-space-optical links: a prototype

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12742693

Country of ref document: EP

Kind code of ref document: A1