WO2012104346A1 - A release agent, the preparation and use thereof - Google Patents

A release agent, the preparation and use thereof Download PDF

Info

Publication number
WO2012104346A1
WO2012104346A1 PCT/EP2012/051681 EP2012051681W WO2012104346A1 WO 2012104346 A1 WO2012104346 A1 WO 2012104346A1 EP 2012051681 W EP2012051681 W EP 2012051681W WO 2012104346 A1 WO2012104346 A1 WO 2012104346A1
Authority
WO
WIPO (PCT)
Prior art keywords
release agent
group
hydrosilicone
catalyst
carbon atoms
Prior art date
Application number
PCT/EP2012/051681
Other languages
French (fr)
Inventor
Zhiming Li
Zheng Lu
Wentao Xing
Lirong Bao
Peng Wang
Jianyan Xu
Yong Zhang
Original Assignee
Henkel Ag & Co. Kgaa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Ag & Co. Kgaa filed Critical Henkel Ag & Co. Kgaa
Publication of WO2012104346A1 publication Critical patent/WO2012104346A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • B29C33/62Releasing, lubricating or separating agents based on polymers or oligomers
    • B29C33/64Silicone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/58Metal-containing linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M155/00Lubricating compositions characterised by the additive being a macromolecular compound containing atoms of elements not provided for in groups C10M143/00 - C10M153/00
    • C10M155/02Monomer containing silicon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/04Well-defined cycloaliphatic compounds
    • C10M2203/045Well-defined cycloaliphatic compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • C10M2203/065Well-defined aromatic compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/104Aromatic fractions
    • C10M2203/1045Aromatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/106Naphthenic fractions
    • C10M2203/1065Naphthenic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/0203Hydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/022Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
    • C10M2207/0225Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/0406Ethers; Acetals; Ortho-esters; Ortho-carbonates used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/08Aldehydes; Ketones
    • C10M2207/085Aldehydes; Ketones used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/2805Esters used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • C10M2207/2815Esters of (cyclo)aliphatic monocarboxylic acids used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/044Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms having cycloaliphatic groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/062Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups bound to the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/14Containing carbon-to-nitrogen double bounds, e.g. guanidines, hydrazones, semicarbazones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • C10M2215/222Triazines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • C10M2215/224Imidazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/08Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions having metal-to-carbon bonds
    • C10M2227/081Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions having metal-to-carbon bonds with a metal carbon bond belonging to a ring, e.g. ferocene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/08Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions having metal-to-carbon bonds
    • C10M2227/083Sn compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/044Siloxanes with specific structure containing silicon-to-hydrogen bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • C10M2229/052Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/02Groups 1 or 11
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/08Groups 4 or 14
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/14Group 7
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/36Release agents or mold release agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives

Definitions

  • a release agent the preparation and use thereof
  • the present invention provides a release agent, which comprises the following constituents: a hydrosilicone, a catalyst for dehydrogenation condensation, and a solvent.
  • the release agent of the present invention is a semi-permanent release agent, in addition, it has the advantages of simple composition, rapid curing under low temperature, low transferring of release agent, less amount of wax accumulation, convenient application and low cost.
  • Said release agent is especially suitable for the manufacturing of polyurethane foam article, representing a great breakthrough in the art, and the thus obtained article has a uniform open cell structure.
  • the present invention further provides a process for preparing said release agent as well as a use in the manufacturing of polyurethane foam article, epoxy resin articles, glass fiber reinforced epoxy resin articles, rubber articles, unsaturated polyester articles and other polyurethane articles.
  • the present invention relates to a release agent, a process for the preparation thereof together with its uses.
  • the present invention especially relates to a release agent suitable for use in mold- releasing of polyurethane foam article, a process for the preparation thereof together with its uses.
  • release agent is usually pre-coated onto the mold so that an adhesion between the article and the surface of the mold will not be formed, and further good quality of the article can be ensured.
  • Conventional release agent is mainly sacrificing release agent, and the so-called sacrificing release agent means when an article is formed in the mold, the release agent is used up or exhausted. The sacrificing release agent must be re-coated onto the surface of the mold before manufacturing other each article.
  • release agent which is removable from the mold repeatedly to some extent would overcome the above drawbacks to a great extent.
  • release agents which can be removed from a mold for several times.
  • Polyurethane foam system usually contains isocyanate radical (NCO), polyether polyol or polyester polyol segment, foaming agent, foam homogenizing agent, foam stabilizing agent, catalyst and etc. Due to the high reactivity of NCO radical, it can be reacted with various reactive groups, such as hydroxyl group, carboxyl group, amino group, and etc., as such, for a
  • semi-permanent release agent used for polyurethane foam system first, it is required that it does not react with NCO radical; second, the foam homogenizing agent and foam stabilizing agent are surface active materials functioning as promoting fine and uniform polyurethane foams, thus it is certainly required for the release agent to not to change the composition of the surface active materials of the polyurethane foam system, thus avoiding defoaming of polyurethane foam surface.
  • the composition of the foaming agent should not be changed, since the water remained in water-based release agent would not easily be evaporated in a short period of time (the molding temperature for polyurethane foam is relatively low, from room temperature to 80°C), thus it will affect the composition of the foaming agent.
  • various polyurethane foam system would have different requirements for application times of release agent (the time from the start of coating of release agent to the injection of polyurethane raw materials), some of them may last as short as tens of seconds, and some of them are relatively longer, thus, based on the particular requirements for the curing of polyurethane foam, it is necessary to take some volatile solvent as a base material for the release agent.
  • the semi-permanent release agent used for manufacturing polyurethane foam article need meet the following requirements:
  • polyurethane foam raw materials contain NCO groups which are reactive to most organic functional groups, including hydroxyl group, carboxyl group, amino group, and etc., thus in the release agent coatings, these reactive groups should be absent, the coating after the curing of release agent should be of high inertness, but these requirements usually cause the release agent unable to cure under low temperature.
  • the capillary action would be great, thus the release agent coating is further required to have enough strength so as to not be destroyed.
  • release agents currently adopted for polyurethane foam article are based on solvent-based microcrystalline wax or mixture of solvent-based microcrystalline wax and silicones. These release agents could basically satisfy the requirements of polyurethane foam system curing, however, they all belong to sacrificing release agents.
  • JP 2004034464 discloses dispersing polyethylene wax in organic solvents for the purpose of defoaming polyurethane.
  • DE 102006026870.9 discloses melting polyethylene wax and microcrystalline wax and adding them into hydrocarbon solvents for the purpose of defoaming polyurethane.
  • solvent-based release agent composition has been used for polyurethane foam article, which comprises multiple component polysiloxanes as a release agent, and this release agent can be reused for multiple times.
  • US 4,761,443 discloses a release agent composition for highly elastic polyurethane foam material, which comprises two polydimethylsiloxane end-capped with hydroxyl groups and hydrosilicone oil crosslinker as a release agent, said release agent composition forms on the surface of the mold reusable rapid curing mold-releasing coating.
  • the reactants of this composition contain multiple components, which need to be formulated prior to using, and the composition should be used within a certain period of time, otherwise, the formulated mixture will lead to a reaction. That is, the storage and use of the release agent is inconvenient.
  • the present invention provides a release agent, which comprises the following constituents: a hydrosilicone, a catalyst for dehydrogenation condensation, and a solvent.
  • the release agent according to the present invention is a semi-permanent release agent, that is, one-time of coating would be enough for achieving a plurality of times of mold-releasing, and, what is important is that the release agent of the present invention has the advantages of being simple in composition, rapid in curing under low temperature, having less transferring of release agent, having less accumulation of wax, being stable in storage and convenient in application. Said release agent represents a great breakthrough in the manufacturing of polyurethane foam article, and the polyurethane foam article obtained by using this release agent of the present invention has a homogeneous open cell.
  • the present invention further provides a process for manufacturing said release agent, including physical mixing constituents of the release agent with stirring, wherein the constituents comprises a hydrosilicone, a catalyst for dehydrogenation condensation, and a solvent.
  • the present invention further provides use of said release agent in the manufacturing of polyurethane articles, epoxy resin articles, rubber articles and polyester articles, and etc.
  • the term "semi-permanent release agent" used herein means that the release agent will not be used up after one cycle of molding processing, that is, one-time coating of the release agent, the mold-releasing operation can be last for a plurality of times.
  • the Si-H bond is highly reactive, under the combined actions of catalyst and water molecule, it forms a Si-hydroxy radical, then it further reacts with the unreacted Si-H group to conduct a dehydro-reaction, forming a self- crosslinked coating, so as to obtain a semi-permanent coating of the release agent. Due to the use of the self-crosslinkable hydrosilicone, the amount of conventional crosslinkers, such as alkoxysilane, can be reduced or even be avoided.
  • Said hydrosilicone has an average compositional formula (I) as follows:
  • the content of the hydrogen atoms directly bonded to Si-atoms is preferably from 0.01 to 1. 63 wt% on the basis of the total mass of the hydrosilicone, more preferably, the content of the hydrogen atoms directly bonded to Si-atoms is preferably from 0.1 to 1.6 wt% on the basis of the total mass of the hydrosilicone.
  • the hydrosilicone has a weight-average molecular weight of
  • the expression “in each case” indicates that every one of "R ⁇ o R 6 " and every existence of "R ⁇ o R 6 " are independent from each other, it may be the identical or different.
  • the organic groups for R 1 to R 6 are preferably selected from the group consisting of linear or branched alkyls having 1-20 carbon atoms, alkenyls having 2-20 carbon atoms, cycloalkyls having 5-25 carbon atoms, cycloalkenyls having 5-25 carbon atoms, aryls having 6-30 carbon atoms, arylalkyls having 7-30 carbon atoms, and halides of said alkyls, alkenyls, cycloalcyls, cycloalkenyls, aryls and arylalkyls.
  • the organic groups for R 1 to R 6 are independently selected from the group consisting of linear or branched alkyls having 1-8 carbon atoms, alkenyls having 2-8 carbon atoms, cycloalkyls or cycloalkenyls having 5-10 carbon atoms, aryls having 6-10 carbon atoms, and arylalkyls having 7-30 carbon atoms.
  • the organic groups for R 1 to R 6 in general formula ( 1) is independently methyl, ethyl, propyl, n-butyl, i-butyl, t-butyl, pentyl, i-pentyl, neopentyl, hexyl, i-hexyl, heptyl, i-heptyl, octyl, i-octyl, nonyl, decyl, vinyl, allyl, hexenyl, cyclopentyl, cyclohexyl, cyclooctyl, dicyclopentyl, cyclopentenyl, cyclohexenyl, phenyl, tolyl, ethyl phenyl, or halides of the above groups, more preferably methyl, ethyl, propyl, phenyl or vinyl, most preferably methyl, ethyl, propyl, pheny
  • halides used in the present invention refers to mono- or multiple halogen-substituted groups, wherein the halogen is selected from fluoro-, chloro-, bromo- or iodo- radicals, preferably from fluoro-, chloro-, or bromo-.
  • M is from 0.01 to 0.5
  • D is from 0.1 to 0.8
  • T is from 0.1 to 0.7
  • Q is from 0 to 0.5
  • more preferably M is from 0.1 to 0.3
  • D is from 0.1 to 0.6
  • T is from 0.1 to 0.6
  • Q is from 0 to 0.3.
  • the content of said hydrosilicone is not particularly restricted; preferably it is from 0.1 to 80.0% of the total mass of release agent, more preferably from 1.0 to 50.0%, most preferably from 2.0 to 40.0%.
  • Said hydrosilicone can be liquid or solid, as long as it could be dispersed in a suitable solvent.
  • Said hydrosilicone is prepared as follows: dispersing at least one hydrosilicone oil, at least one hydroxyl silicone resin and at least one dehydrogenation catalyst in a solvent to form a dispersion, allowing the dispersion to react, then removing the solvent and the catalyst, and obtaining the desired hydrosilicone; wherein the hydrosilicone oil comprises a linear hydrosilicone oil of the following formula (II):
  • R is methyl or hydrogen
  • the hydroxyl silicone resin has an average compositional formula (IV):
  • R ⁇ to R' 6 are identical or different radicals independently selected from the group consisting of organic groups and hydroxyl group, and at least one of R' Ho R' 6 is a hydroxyl group;
  • the catalyst according to the present invention is a commonly used catalyst derived from the
  • dehydrogenation condensation of Si-H radical and Si-OH radical it is not particularly restricted, and preferably includes amine catalyst and/or organometallic catalyst.
  • said amine catalyst is one or more selected from the group consisting of:
  • N-methyldicyclohexylamine pentamethyldiethylenetriamine, pentamethyldipropylenetriamine, tetramethylethanediamine, tetramethylpropanediamine, tetramethylhexanediamine, N-methylmorpholine, N-ethylmorpholine, 2,2-bis(morpholino)diethyl ether, cocomorpholine, N-methylimidazole,
  • N-methyl-N-(N,N-dimethylaminoethyl)ethanolamine N,N-dimethylbenzylamine
  • organometallic catalysts are one or more preferably selected from: dibutyltin dilauryl, stannous octanoate, di(dodecylthio)dibutyltin, dibutyltin diacetate, potassium isooctanoate, potassium acetate, potassium oleate, lead isooctanoate, zinc isooctanoate, phenylmercuricacetate, tetrabutyl titanate, tetraisopropyl titanate, platinum catalyst, and rhodium catalyst.
  • the catalyst according to the present invention is one or more catalysts preferably selected from of: triethylenediamine, stannous octanoate, 1, 1,3,3-tetramethylguanidine,
  • vinyltris(methylethylketoximie)silane zinc isooctanoate, tetramethyliminodipropylamine, tetrabutyl titanate, triethylamine, and dibutyltin diacatate.
  • the platinum catalyst of the present invention is selected from platinum dioxide, chloroplatinic acid, complex of chloroplatinic acid and diene, or platinum bis(acetylacetonate).
  • the contents of said catalyst is not particularly restricted, preferably it is from 0.01 to 5.0% of the total mass of the release agent, more preferably is from 0.1 to 2.0%, most preferably is from 0.1 to 1.0%.
  • the solvent of the present invention is chosen to allow said solvent to disperse the constituents of hydrosilicone, catalyst, and etc. uniformly, and it is volatile, and this solvent should be inert to reactants.
  • the solvent is one or more selected from alcohols, alcohol ethers, ketones, esters, aliphatic hydrocarbons, cycloaliphatic hydrocarbons, aromatic hydrocarbons and ethers.
  • said alcohol solvents are one or more selected from ethanol, isopropanol, propylene glycol, butanol, 1,4-butanediol, 1,3-butanediol and glycerol; said alcohol ether solvents are preferably the following one or more: ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether; said ketone solvents are preferably the following one or more: acetone, methylethyl ketone, methylisobutyl ketone and cyclohexanone; said ester solvents are preferably the following one or more: methyl acetate, ethyl acetate and butyl acetate; said aliphatic hydrocarbon solvents are preferably the following one or more: n-hexane, carbon tetrachloride, petroleum ether and isomeric alkane solvents (such as Isopar C, Isopar E
  • the content of said solvents preferably is from 10.0 to 99.85%, more preferably from 40.0 to 99.0%, most preferably from 50.0 to 98.0% of the total mass of the release agent.
  • the release agent of the present invention may further comprise other additives, as long as the use thereof does not significantly cause negative influences on the release agent of the present invention.
  • Said other additives preferably include the following one or more: pigments, silanes, level agents, anti-ageing agents, tackifier, release agent transferring indicators, and etc.
  • the constituents of the release agent including hydrosilicone, catalyst for dehydrogenation condensation, and solvent, are physically mixed under stirring.
  • Said physical mixing should be conducted at a temperature lower than the boiling point of the chosen solvent, and it is not particularly restricted.
  • the temperature of mixing is from 0 to 100°C, more preferably from 0 to 70°C.
  • the stirring speed of mixing is not particularly restricted as well, preferably it is from 10 to 1500rpm, more preferably from 100 to lOOOrpm.
  • the reaction time is not particularly restricted too, preferably it is from 1 to 500mins, more preferably 120mins.
  • One preferable process for the preparation of the release agent is conducted under a temperature of 0-100°C, a speed of 10- 1500rpm stirring for l-500min mixing.
  • the mixing temperature is from 0 to 70°C
  • stirring speed is from 100 to lOOOrpm
  • time of mixing is from 1 to 120mins.
  • hydrosilicone and solvent may mixed up first, that is, solvent is used to dilute the hydrosilicone, then catalyst is added; or each constituents are added simultaneously; or hydrosilicone and catalyst are added together, then solvent is added for dilution; preferably said physical mixing is conducted in a dry and sealed container.
  • the present invention further provides a use of said release agent in the manufacture of polymeric articles.
  • the release agent of the present invention could preferably be used for the manufacturing of polyurethane articles, epoxy resin articles, glass fiber reinforced epoxy resin articles, rubber articles, saturated or unsaturated polyester articles, and etc.
  • the release agent used in the present invention is coated or sprayed on a mold of the molding process, said mold is generally made of metals, such as alumina, brass, and etc, and non-metallic materials may also be adopted, such as resin materials.
  • the release agent obtained in the present invention is a semi-permanent release agent, with one time of coating, multiple times (more than 5 times) mold-releasing operation could be achieved, so it is convenient to apply the release agent.
  • This release agent has the advantages of simple composition and rapid curing under low temperature, thus reducing the amount of coating of the release agent as well as the discharge of VOC, reducing wax accumulation on the surface of the mold, shortening the duration for mold cleaning, and enhancing the using efficiency of the mold and production output. Due to the extremely low transferring amount of the release agent, the amount of the release agent remained on the surface of the article is extremely low, thus, post-processing for the article will not be negatively affected.
  • the release agent of the present invention is especially suitable for polyurethane foam material and polyurethane elastomer, which are polymer materials having special requirements for molding process.
  • polyurethane foam material and polyurethane elastomer which are polymer materials having special requirements for molding process.
  • it will certainly be more suitable for the molding process of other common polymer articles, such as epoxy resin articles, glass fiber reinforced epoxy resin articles, rubber articles, saturated and or unsaturated polyester articles, and etc.
  • the molecular weight of the hydrosilicone is determined by size exclusion chromatography (SEC), or specifically gel permeation chromatography (GPC) under the following conditions:
  • hydrosilicones used in the examples were:
  • the formulation of the semi-permanent release agent is shown in table 1 below.
  • hydrosilicone was added to a dispersing kettle containing solvent therein, then catalyst was added with stirring at lOOrpm; under a temperature of
  • the formulation of the semi-permanent release agent is shown in table 2 below.
  • the formulation of the semi-permanent release agent is shown in table 3 below.
  • the formulation of the semi-permanent release agent is shown in table 4 below.
  • the formulation of the semi-permanent release agent is shown in table 5 below.
  • hydrosilicone, solvent and catalyst were added to a dispersing kettle; under a temperature of 20°C, stirring was conducted for 8 mins at 300rpm, thus obtaining a semi-permanent release agent.
  • the formulation of the semi-permanent release agent is shown in table 6 below.
  • hydrosilicone was added to a dispersing kettle containing solvent therein, then catalyst was added with stirring at 300rpm; under a temperature of
  • the formulation of the semi-permanent release agent is shown in table 7 below.
  • hydrosilicone was added to a dispersing kettle containing solvent therein, then catalyst was added with stirring at 300rpm; under a temperature of
  • the formulation of the semi-permanent release agent is shown in table 8 below.
  • hydrosilicone was added to a dispersing kettle containing solvent therein, then catalyst was added with stirring at 300rpm; under a temperature of
  • Sacrificing release agent for polyurethane flexible foam KP-GHT (Xiamen KaPin chemical company).
  • the effective constituent for this release agent is linear aliphatic paraffin (C20H42-C36H74), the content thereof is 1.5% by weight, the solvent is hydrocarbon solvent.
  • a mold made of alumina was heated to 50-60°C, a 0.5mm nozzle was used to spray the release agents of examples 1-11 and comparative example 1 (at an amount of 5g/m 2 ) onto the surface of the mold, after curing for l-2mins, foamable polyurethane system was injected onto the surface of the alumina mold coated with the release agents, after 4mins foaming, the polyurethane foam was removed from the mold.
  • the release agent of the present invention was placed in a sealed bottle, and stored in an oven at a temperature of 60°C for 2 months; however, the mold-releasing effect was not negatively affected significantly, indicating the release agents are stable in storage.
  • the release agent of the present invention was placed in opened bottle, and stored at room

Abstract

The present invention provides a release agent, which comprises the following constituents: a hydrosilicone, a catalyst for dehydrogenation condensation, and a solvent. The release agent of the present invention is a semi-permanent release agent, in addition, it has the advantages of simple composition, rapid curing under low temperature, low transferring of release agent, less amount of wax accumulation, convenient application and low cost. Said release agent is especially suitable for the manufacturing of polyurethane foam article, representing a great breakthrough in the art, and the thus obtained article has a uniform open cell structure. The present invention further provides a process for preparing said release agent as well as a use in the manufacturing of polyurethane foam article, epoxy resin articles, glass fiber reinforced epoxy resin articles, rubber articles, unsaturated polyester articles and other polyurethane articles.

Description

A release agent, the preparation and use thereof
The present invention provides a release agent, which comprises the following constituents: a hydrosilicone, a catalyst for dehydrogenation condensation, and a solvent. The release agent of the present invention is a semi-permanent release agent, in addition, it has the advantages of simple composition, rapid curing under low temperature, low transferring of release agent, less amount of wax accumulation, convenient application and low cost. Said release agent is especially suitable for the manufacturing of polyurethane foam article, representing a great breakthrough in the art, and the thus obtained article has a uniform open cell structure. The present invention further provides a process for preparing said release agent as well as a use in the manufacturing of polyurethane foam article, epoxy resin articles, glass fiber reinforced epoxy resin articles, rubber articles, unsaturated polyester articles and other polyurethane articles.
Description
The present invention relates to a release agent, a process for the preparation thereof together with its uses. To be specific, the present invention especially relates to a release agent suitable for use in mold- releasing of polyurethane foam article, a process for the preparation thereof together with its uses.
In the fabrication of polymer material articles, usually molding processing is adopted: materials in melt or solution form are poured into a mold, after curing and shaping, the formed article is removed from the mold. In order to remove the article from the mold, release agent is usually pre-coated onto the mold so that an adhesion between the article and the surface of the mold will not be formed, and further good quality of the article can be ensured. Conventional release agent is mainly sacrificing release agent, and the so-called sacrificing release agent means when an article is formed in the mold, the release agent is used up or exhausted. The sacrificing release agent must be re-coated onto the surface of the mold before manufacturing other each article. Unfortunately, the use of sacrificing release agent would lead to a number of questions: 1) with the repeated use of release agent, the release agent will accumulate on the surface of the mold, forming a scale, causing the fine characteristics of mold vague, so that the characteristic structure of the mold surface is unable to be duplicated onto the surface of polymer article, and thus the integrity of the article surface will be destroyed; 2) due to the existence of the scale, the mold needs to be cleaned periodically, causing an increase of manpower and expense, and further a decrease of output; in addition, during the cleaning of a mold, the mold will be destroyed more or less, causing the shortening of the life time of the mold; 3) due to the transferring of sacrificing release agent onto the surface of polymer material article, the subsequent processing for the article will be inevitably affected; 4) due to the need for re-coating of sacrificing release agent onto the surface of the mold before the fabricating of each article, the amount of release agent needed increases greatly, in the meantime, it will also increases the discharge of volatile organic chemicals (VOC, such as the solvents in the release agent), and thus further increasing the cost of production together with the pressure in terms of environmental protection.
Therefore, the development of a release agent which is removable from the mold repeatedly to some extent would overcome the above drawbacks to a great extent. For some polymer articles, such as epoxy resin articles, glass fiber reinforced epoxy resin articles and rubber articles, there have developed release agents which can be removed from a mold for several times.
However, for polyurethane foam article, the situation is quite different, since it well known in the art that, it is much difficult to try to develop a semi-permanent release agent which can be conveniently used in polyurethane foam article.
Polyurethane foam system usually contains isocyanate radical (NCO), polyether polyol or polyester polyol segment, foaming agent, foam homogenizing agent, foam stabilizing agent, catalyst and etc. Due to the high reactivity of NCO radical, it can be reacted with various reactive groups, such as hydroxyl group, carboxyl group, amino group, and etc., as such, for a
semi-permanent release agent used for polyurethane foam system, first, it is required that it does not react with NCO radical; second, the foam homogenizing agent and foam stabilizing agent are surface active materials functioning as promoting fine and uniform polyurethane foams, thus it is certainly required for the release agent to not to change the composition of the surface active materials of the polyurethane foam system, thus avoiding defoaming of polyurethane foam surface. Furthermore, water and some solvents with low boiling points are usually used as a foaming agent or blowing agent in polyurethane foam materials, thus for the desired semi- permanent release agent, the composition of the foaming agent should not be changed, since the water remained in water-based release agent would not easily be evaporated in a short period of time (the molding temperature for polyurethane foam is relatively low, from room temperature to 80°C), thus it will affect the composition of the foaming agent. In addition, various polyurethane foam system would have different requirements for application times of release agent (the time from the start of coating of release agent to the injection of polyurethane raw materials), some of them may last as short as tens of seconds, and some of them are relatively longer, thus, based on the particular requirements for the curing of polyurethane foam, it is necessary to take some volatile solvent as a base material for the release agent.
Furthermore, the semi-permanent release agent used for manufacturing polyurethane foam article need meet the following requirements:
1) High reactivity of release agent
Since the mold temperature for manufacturing polyurethane foam article is relatively low (from room temperature to 80°C), whereas the curing time for a semi-permanent polyurethane release agent after coating is required to be short, rapid curing under low temperature must be met for semi-permanent polyurethane foam release agent. Thus, such a release agent should not be reactive with NCO radical, in the meantime, it should have high reactivity per se as well.
2) High inertness of release agent coating
Since polyurethane foam raw materials contain NCO groups which are reactive to most organic functional groups, including hydroxyl group, carboxyl group, amino group, and etc., thus in the release agent coatings, these reactive groups should be absent, the coating after the curing of release agent should be of high inertness, but these requirements usually cause the release agent unable to cure under low temperature.
3) High crosslinking degree of release agent coating The surface open cell of polyurethane foam should be homogeneous, serious defects should be avoided. When free low-surface-energy substance remains in release agent, it will be easily adsorbed by the foams generated during the foaming of polyurethane foam through capillary action, thus changing the surface tension of the original foaming system, causing polyurethane article surface to skin or collapse. This requires an extremely high degree of crosslinking in the release agent coating, leaving almost no residues.
4) High strength of release agent coating
It is a fundamental requirement for the semi-permanent release agent to have a strong interaction with mold; in addition, since polyurethane foam article would form a large amount of
micro-bubbles during manufacturing process, the capillary action would be great, thus the release agent coating is further required to have enough strength so as to not be destroyed.
Generally speaking, the release agents currently adopted for polyurethane foam article are based on solvent-based microcrystalline wax or mixture of solvent-based microcrystalline wax and silicones. These release agents could basically satisfy the requirements of polyurethane foam system curing, however, they all belong to sacrificing release agents.
JP 2004034464 discloses dispersing polyethylene wax in organic solvents for the purpose of defoaming polyurethane. Again, such as DE 102006026870.9 discloses melting polyethylene wax and microcrystalline wax and adding them into hydrocarbon solvents for the purpose of defoaming polyurethane.
On the other hand, it is also reported that solvent-based release agent composition has been used for polyurethane foam article, which comprises multiple component polysiloxanes as a release agent, and this release agent can be reused for multiple times. For example, US 4,761,443 discloses a release agent composition for highly elastic polyurethane foam material, which comprises two polydimethylsiloxane end-capped with hydroxyl groups and hydrosilicone oil crosslinker as a release agent, said release agent composition forms on the surface of the mold reusable rapid curing mold-releasing coating. However, the reactants of this composition contain multiple components, which need to be formulated prior to using, and the composition should be used within a certain period of time, otherwise, the formulated mixture will lead to a reaction. That is, the storage and use of the release agent is inconvenient.
Thus, it would be a desirable breakthrough to obtain a semi-permanent release agent for polyurethane foam, which is simple in composition, stable in storage and easy to use. In addition, in usual cases, if a release agent could be used for polyurethane foam article mold-releasing for multiple times, it would be also applicable for other polymer articles, such as epoxy resin articles, glass fiber reinforced epoxy resin articles, rubber articles, unsaturated polyester articles and other polyurethane article, and etc.
The present invention provides a release agent, which comprises the following constituents: a hydrosilicone, a catalyst for dehydrogenation condensation, and a solvent.
The release agent according to the present invention is a semi-permanent release agent, that is, one-time of coating would be enough for achieving a plurality of times of mold-releasing, and, what is important is that the release agent of the present invention has the advantages of being simple in composition, rapid in curing under low temperature, having less transferring of release agent, having less accumulation of wax, being stable in storage and convenient in application. Said release agent represents a great breakthrough in the manufacturing of polyurethane foam article, and the polyurethane foam article obtained by using this release agent of the present invention has a homogeneous open cell.
The present invention further provides a process for manufacturing said release agent, including physical mixing constituents of the release agent with stirring, wherein the constituents comprises a hydrosilicone, a catalyst for dehydrogenation condensation, and a solvent.
The present invention further provides use of said release agent in the manufacturing of polyurethane articles, epoxy resin articles, rubber articles and polyester articles, and etc.
In the present invention, the term "semi-permanent release agent" used herein means that the release agent will not be used up after one cycle of molding processing, that is, one-time coating of the release agent, the mold-releasing operation can be last for a plurality of times.
In the hydrosilicone used in the release agent of the present invention, the Si-H bond is highly reactive, under the combined actions of catalyst and water molecule, it forms a Si-hydroxy radical, then it further reacts with the unreacted Si-H group to conduct a dehydro-reaction, forming a self- crosslinked coating, so as to obtain a semi-permanent coating of the release agent. Due to the use of the self-crosslinkable hydrosilicone, the amount of conventional crosslinkers, such as alkoxysilane, can be reduced or even be avoided.
Said hydrosilicone has an average compositional formula (I) as follows:
(R1R2R3SI01/2)M (R4R5SI02/2)D (R6SI03/2)T (SI04/2)Q (1),
wherein R1 to R6 in each case are radicals independently selected from the group consisting of organic groups and a hydrogen atom, with the proviso that at least one of the radicals R1 to R6 is a hydrogen atom bonded directly to a silicon atom and thus forming a Si-H bond, and in the polysiloxane constituted by formula (I), there has at least two hydrogen atoms bonded directly to a silicon atom on average per molecule, and not all of R1 to R6 is a hydrogen atom; and M, T, and Q each represent a number ranging from 0 to less than 1, D represents a number greater than 0 and less than 1, M+D+T+Q = 1, and T+Q > 0.
In the above general formula (I), the content of the hydrogen atoms directly bonded to Si-atoms is preferably from 0.01 to 1. 63 wt% on the basis of the total mass of the hydrosilicone, more preferably, the content of the hydrogen atoms directly bonded to Si-atoms is preferably from 0.1 to 1.6 wt% on the basis of the total mass of the hydrosilicone.
In the above general formula (I), the hydrosilicone has a weight-average molecular weight of
400-500,000 g/mol, more preferably 10,000-300,000 g/mol.
In the above general formula (I), the expression "in each case" indicates that every one of "R^o R6" and every existence of "R^o R6" are independent from each other, it may be the identical or different. In a preferred embodiment, the organic groups for R1 to R6 are preferably selected from the group consisting of linear or branched alkyls having 1-20 carbon atoms, alkenyls having 2-20 carbon atoms, cycloalkyls having 5-25 carbon atoms, cycloalkenyls having 5-25 carbon atoms, aryls having 6-30 carbon atoms, arylalkyls having 7-30 carbon atoms, and halides of said alkyls, alkenyls, cycloalcyls, cycloalkenyls, aryls and arylalkyls.
In a more preferred embodiment, the organic groups for R1 to R6 are independently selected from the group consisting of linear or branched alkyls having 1-8 carbon atoms, alkenyls having 2-8 carbon atoms, cycloalkyls or cycloalkenyls having 5-10 carbon atoms, aryls having 6-10 carbon atoms, and arylalkyls having 7-30 carbon atoms.
In a more preferred embodiment, the organic groups for R1 to R6 in general formula ( 1) is independently methyl, ethyl, propyl, n-butyl, i-butyl, t-butyl, pentyl, i-pentyl, neopentyl, hexyl, i-hexyl, heptyl, i-heptyl, octyl, i-octyl, nonyl, decyl, vinyl, allyl, hexenyl, cyclopentyl, cyclohexyl, cyclooctyl, dicyclopentyl, cyclopentenyl, cyclohexenyl, phenyl, tolyl, ethyl phenyl, or halides of the above groups, more preferably methyl, ethyl, propyl, phenyl or vinyl, most preferably methyl, ethyl, propyl, or phenyl.
The term "halides" used in the present invention refers to mono- or multiple halogen-substituted groups, wherein the halogen is selected from fluoro-, chloro-, bromo- or iodo- radicals, preferably from fluoro-, chloro-, or bromo-.
In the above general formula (I), M, T, and Q each represent a number ranging from 0 to less than 1, D represents a number greater than 0 and less than 1, M+D+T+Q = 1, and T+Q > 0. In a preferred embodiment, M is from 0.01 to 0.5, D is from 0.1 to 0.8, T is from 0.1 to 0.7, Q is from 0 to 0.5, more preferably M is from 0.1 to 0.3, D is from 0.1 to 0.6, T is from 0.1 to 0.6, Q is from 0 to 0.3.
The content of said hydrosilicone is not particularly restricted; preferably it is from 0.1 to 80.0% of the total mass of release agent, more preferably from 1.0 to 50.0%, most preferably from 2.0 to 40.0%. Said hydrosilicone can be liquid or solid, as long as it could be dispersed in a suitable solvent.
Said hydrosilicone is prepared as follows: dispersing at least one hydrosilicone oil, at least one hydroxyl silicone resin and at least one dehydrogenation catalyst in a solvent to form a dispersion, allowing the dispersion to react, then removing the solvent and the catalyst, and obtaining the desired hydrosilicone; wherein the hydrosilicone oil comprises a linear hydrosilicone oil of the following formula (II):
Figure imgf000009_0001
(II)
in which R is methyl or hydrogen, m > 0, n > 0, the number of Si-H groups per molecule is > 3, and the content of the hydrogen atoms directly bonded to Si-atoms is 0.1-1.6 % on the basis of the total mass of the hydrosilicone oil;
and/or a cyclic hydrosilicone oil of the following formula (III):
Figure imgf000009_0002
(HI)
in which x > 0, y > 0, the number of Si-H groups per molecule is > 3, and the content of the hydrogen atoms directly bonded to Si-atoms is 0.1-1.6 % on the basis of the total mass of the hydrosilicone;
the hydroxyl silicone resin has an average compositional formula (IV):
(R' 1R'2R'3SI01/2)M (R,4R, 5SI02/2)D (R'6SI03/2)T (SI04/2)Q , (IV)
in which R^ to R'6 are identical or different radicals independently selected from the group consisting of organic groups and hydroxyl group, and at least one of R' Ho R'6 is a hydroxyl group;
M', D', T and Q' each represent a number ranging from 0 to less than 1, M'+D'+T'+Q' = 1, and T'+Q' > 0, and the number of Si-OH groups per molecule of the hydroxyl silicone resin is > 3; with the proviso that the molar ratio of the Si-H groups in the hydrosilicone oil to the Si-OH groups in the hydroxyl silicone resin is from 1.0 to 100.0.
The catalyst according to the present invention is a commonly used catalyst derived from the
dehydrogenation condensation of Si-H radical and Si-OH radical, it is not particularly restricted, and preferably includes amine catalyst and/or organometallic catalyst.
Preferably, said amine catalyst is one or more selected from the group consisting of:
triethylenediamine, bis(dimethylaminoethylether), dimethylcyclohexylamine,
N-methyldicyclohexylamine, pentamethyldiethylenetriamine, pentamethyldipropylenetriamine, tetramethylethanediamine, tetramethylpropanediamine, tetramethylhexanediamine, N-methylmorpholine, N-ethylmorpholine, 2,2-bis(morpholino)diethyl ether, cocomorpholine, N-methylimidazole,
1,2-dimethylimidazole, 1,4-dimethylpiperazidine, l ,8-diazabicyclo[5.4.0]undec-7-ene,
1, 1 ,3,3-tetramethylguanidine, 2,4,6-tris(dimethylaminomethyl) phenol,
1,3,5 -tris(dimethylaminopropyl)- 1 ,3 ,5 -hexahydrotriazine, N,N-dimethylethanolamine,
Ν,Ν-dimethylaminoethyl ethylene glycol, tri-methylethylolpropanediamine,
N-methyl-N-(N,N-dimethylaminoethyl)ethanolamine, N,N-dimethylbenzylamine,
tris(diaminopropyl)amine, triethylamine, N,N-dimethylcetylamine,
vinyltris(methylethylketoximie)silane, and tetramethyliminodipropylamine; said organometallic catalysts are one or more preferably selected from: dibutyltin dilauryl, stannous octanoate, di(dodecylthio)dibutyltin, dibutyltin diacetate, potassium isooctanoate, potassium acetate, potassium oleate, lead isooctanoate, zinc isooctanoate, phenylmercuricacetate, tetrabutyl titanate, tetraisopropyl titanate, platinum catalyst, and rhodium catalyst.
The catalyst according to the present invention is one or more catalysts preferably selected from of: triethylenediamine, stannous octanoate, 1, 1,3,3-tetramethylguanidine,
vinyltris(methylethylketoximie)silane, zinc isooctanoate, tetramethyliminodipropylamine, tetrabutyl titanate, triethylamine, and dibutyltin diacatate.
The platinum catalyst of the present invention is selected from platinum dioxide, chloroplatinic acid, complex of chloroplatinic acid and diene, or platinum bis(acetylacetonate).
The contents of said catalyst is not particularly restricted, preferably it is from 0.01 to 5.0% of the total mass of the release agent, more preferably is from 0.1 to 2.0%, most preferably is from 0.1 to 1.0%.
The solvent of the present invention is chosen to allow said solvent to disperse the constituents of hydrosilicone, catalyst, and etc. uniformly, and it is volatile, and this solvent should be inert to reactants. Preferably the solvent is one or more selected from alcohols, alcohol ethers, ketones, esters, aliphatic hydrocarbons, cycloaliphatic hydrocarbons, aromatic hydrocarbons and ethers.
Preferably said alcohol solvents are one or more selected from ethanol, isopropanol, propylene glycol, butanol, 1,4-butanediol, 1,3-butanediol and glycerol; said alcohol ether solvents are preferably the following one or more: ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether; said ketone solvents are preferably the following one or more: acetone, methylethyl ketone, methylisobutyl ketone and cyclohexanone; said ester solvents are preferably the following one or more: methyl acetate, ethyl acetate and butyl acetate; said aliphatic hydrocarbon solvents are preferably the following one or more: n-hexane, carbon tetrachloride, petroleum ether and isomeric alkane solvents (such as Isopar C, Isopar E, Isopar H); said cycloaliphatic hydrocarbon solvents are preferably the following one or more: cyclopentane and clcyohexane; said aromatic hydrocarbon solvents are preferably the following one or more: toluene and xylene; said ether solvents are preferably the following one or more: tetrahydrofuran, diisopropyl ether and dibutyl ether.
The content of said solvents preferably is from 10.0 to 99.85%, more preferably from 40.0 to 99.0%, most preferably from 50.0 to 98.0% of the total mass of the release agent.
The release agent of the present invention may further comprise other additives, as long as the use thereof does not significantly cause negative influences on the release agent of the present invention. Said other additives preferably include the following one or more: pigments, silanes, level agents, anti-ageing agents, tackifier, release agent transferring indicators, and etc.
In the preparation of the release agent of the present invention, the constituents of the release agent, including hydrosilicone, catalyst for dehydrogenation condensation, and solvent, are physically mixed under stirring. Said physical mixing should be conducted at a temperature lower than the boiling point of the chosen solvent, and it is not particularly restricted. Preferably the temperature of mixing is from 0 to 100°C, more preferably from 0 to 70°C. The stirring speed of mixing is not particularly restricted as well, preferably it is from 10 to 1500rpm, more preferably from 100 to lOOOrpm. The reaction time is not particularly restricted too, preferably it is from 1 to 500mins, more preferably 120mins.
One preferable process for the preparation of the release agent is conducted under a temperature of 0-100°C, a speed of 10- 1500rpm stirring for l-500min mixing. In a more preferred embodiment, the mixing temperature is from 0 to 70°C, stirring speed is from 100 to lOOOrpm, and time of mixing is from 1 to 120mins.
The sequence for mixing is not particularly restricted, for example, hydrosilicone and solvent may mixed up first, that is, solvent is used to dilute the hydrosilicone, then catalyst is added; or each constituents are added simultaneously; or hydrosilicone and catalyst are added together, then solvent is added for dilution; preferably said physical mixing is conducted in a dry and sealed container.
The present invention further provides a use of said release agent in the manufacture of polymeric articles. The release agent of the present invention could preferably be used for the manufacturing of polyurethane articles, epoxy resin articles, glass fiber reinforced epoxy resin articles, rubber articles, saturated or unsaturated polyester articles, and etc.
The release agent used in the present invention is coated or sprayed on a mold of the molding process, said mold is generally made of metals, such as alumina, brass, and etc, and non-metallic materials may also be adopted, such as resin materials. The release agent obtained in the present invention is a semi-permanent release agent, with one time of coating, multiple times (more than 5 times) mold-releasing operation could be achieved, so it is convenient to apply the release agent. This release agent has the advantages of simple composition and rapid curing under low temperature, thus reducing the amount of coating of the release agent as well as the discharge of VOC, reducing wax accumulation on the surface of the mold, shortening the duration for mold cleaning, and enhancing the using efficiency of the mold and production output. Due to the extremely low transferring amount of the release agent, the amount of the release agent remained on the surface of the article is extremely low, thus, post-processing for the article will not be negatively affected.
The release agent of the present invention is especially suitable for polyurethane foam material and polyurethane elastomer, which are polymer materials having special requirements for molding process. Of course, it will certainly be more suitable for the molding process of other common polymer articles, such as epoxy resin articles, glass fiber reinforced epoxy resin articles, rubber articles, saturated and or unsaturated polyester articles, and etc.
Examples
The present invention is further described by way of examples below, without any intention to limit the scope of the present invention by the examples.
Testing Method
In the present invention, the molecular weight of the hydrosilicone is determined by size exclusion chromatography (SEC), or specifically gel permeation chromatography (GPC) under the following conditions:
- eluent: THF (tetrahydrofurane)
- standard: Polystyrene
- temperature : 35 °C (column and RI) .
Further parameters are preferably:
- flow-rate: 0.8 ml/min detection: RI (refractive index)
- columns: 3 Plgel mixed-D columns in series
(Polymer laboratories, 7.5*300
sample preparation: 2.5 mg/ml in THF
injection volume: 100 μΐ.
The hydrosilicones used in the examples were:
SiH-1 :
((CH3)3SiOi/2)o.o63((CH3)2Si02/2)o.i55(HCH3Si02/2)o.52o(CH3Si03/2)o.262, it has a weight average molecular weight of 87000, the content of the hydrogen atom in Si-H bond of the hydrosilicone is 0.79%.
SiH-2:
((CH3)3SiOi/2)o.o63((CH3)2Si02/2)o.i53(HCH3Si02/2)o.52o(CH3Si03/2)o.i5o(PhSi03/2)o.ii4, it has a weight average molecular weight of 50000, the content of the hydrogen atom in Si-H bond of the hydrosilicone is 0.72%.
SiH-3 :
((CH3)3SiOi/2)o.oo5((CH3)2Si02/2)o.23o(HCH3Si02/2)o.265(CH3Si03/2)o.305(PhSi03/2)o.i 5, it has a weight average molecular weight of 210000, the content of the hydrogen atom in Si-H bond of the hydrosilicone is 0.33%
SiH-4:
((CH3)3SiOi/2)o.oo6((CH3)2Si02/2)o.26o(HCH3Si02/2)o.334(CH3Si03/2)o244(PhSi03/2)o.i56, it has a weight average molecular weight of 12000, the content of the hydrogen atom in Si-H bond of the hydrosilicone is 0.43%.
SiH-5 :
((CH3)3SiOi/2)o.o5o((CH3)2Si02/2)o.i5o(HCH3Si02/2)o.33o(PhSi03/2)o.37o(Si04/2)o.ioo, it has a weight average molecular weight of 94000, the content of the hydrogen atom in Si-H bond of the hydrosilicone is 0.36%.
SiH-6:
((CH3)3SiO]/2)o.o8o((CH3)(C3H7)Si02/2)o.35o(HCH3Si02/2)o.43o(CH3Si03/2)o.o4o(Si04/2)o.ioo, it has a weight average molecular weight of 73000, the content of the hydrogen atom in Si-H bond of the hydrosilicone is 0.56%.
SiH-7:
((CH3)3SiOi/2)o.o2o((CH3)2Si02/2)o.43o(HCH3Si02/2)o.i3o(PhSi03/2)o.i2o(Si04/2)o.3oo, it has a weight average molecular weight of 320000, the content of the hydrogen atom in Si-H bond of the hydrosilicone is 0.17%.
SiH-8:
((CH3)3SiOi/2)o.oio((CH3)2Si02/2)o.25o(HCH3Si02/2)o.i o(CH3Si03/2)o.o5o(Si04/2)o.5oo, it has a weight average molecular weight of 18000, the content of the hydrogen atom in Si-H bond of the hydrosilicone is 0.30%.
Example 1
The formulation of the semi-permanent release agent is shown in table 1 below.
According to the amounts as showed in table 1 , hydrosilicone was added to a dispersing kettle containing solvent therein, then catalyst was added with stirring at lOOrpm; under a temperature of
20°C, the stirring was continued for 5 mins at l OOrpm, thus obtaining a semi-permanent release agent.
Table 1
Example Hydrosilicone Catalyst Solvent Amount Amount Amount
Species Species Species
(g) (g) (g) ethylene glycol
triethylene 10.0
SiH-1 5.0 0.2 monobutyl ether
diamine
acetone 84.8
Example 2
The formulation of the semi-permanent release agent is shown in table 2 below.
According to the amounts as showed in table 2, hydrosilicone was added to a dispersing kettle containing solvent therein, then catalyst was added with stirring at 200rpm; under a temperature of
25°C, the stirring was continued for 6 mins at 200rpm, thus obtaining a semi-permanent release agent.
Table 2
Hydrosilicone Catalyst Solvent
Example Amount Amount Amount
Species Species Species
(g) (g) (g)
stannous
2 SiH-2 6.6 0.4 cyclohexane 93.0
octanoate
Example 3
The formulation of the semi-permanent release agent is shown in table 3 below.
According to the amounts as showed in table 3, hydrosilicone was added to a dispersing kettle containing solvent therein, then catalyst and silane were added with stirring at 250rpm; under a temperature of 30°C, the stirring was continued for 7 mins at 250rpm, thus obtaining a
semi-permanent release agent.
Table 3
Figure imgf000017_0001
Example 4
The formulation of the semi-permanent release agent is shown in table 4 below.
According to the amounts as showed in table 4, hydrosilicone was added to a dispersing kettle containing solvent therein, then catalyst was added with stirring at 250rpm; under a temperature of
20°C, the stirring was continued for 3 mins at 250rpm, thus obtaining a semi-permanent release agent.
Table 4
Hydrosilicone Catalyst Solvent
Example Amount Amount Amount
Species Species Species
(g) (g) (g)
tetramethyl- ethyl
4 SiH-4 6.0 0.3 93.7
guanidine acetate Example 5
The formulation of the semi-permanent release agent is shown in table 5 below.
According to the amounts as showed in table 5, hydrosilicone, solvent and catalyst were added to a dispersing kettle; under a temperature of 20°C, stirring was conducted for 8 mins at 300rpm, thus obtaining a semi-permanent release agent.
Table 5
Figure imgf000018_0001
Example 6
The formulation of the semi-permanent release agent is shown in table 6 below.
According to the amounts as showed in table 6, hydrosilicone was added to a dispersing kettle containing solvent therein, then catalyst was added with stirring at 300rpm; under a temperature of
20°C, the stirring was continued for 1 min at 300rpm, thus obtaining a semi-permanent release agent.
Table 6
Hydrosilicone Catalyst Solvent
Example Amount Amount Amount
Species Species Species
(g) (g) (g)
zinc iso- methyl
6 SiH-6 4.0 0.2 95.8
octanoate acetate Example 7
The formulation of the semi-permanent release agent is shown in table 7 below.
According to the amounts as showed in table 7, hydrosilicone was added to a dispersing kettle containing solvent therein, then catalyst was added with stirring at 300rpm; under a temperature of
30°C, the stirring was continued for 1 min at 300rpm, thus obtaining a semi-permanent release agent.
Table 7
Figure imgf000019_0001
Example 8
The formulation of the semi-permanent release agent is shown in table 8 below.
According to the amounts as showed in table 8, hydrosilicone was added to a dispersing kettle containing solvent therein, then catalyst was added with stirring at 300rpm; under a temperature of
10°C, the stirring was continued for 5 mins at 300rpm, thus obtaining a semi-permanent release agent.
Table 8
Hydrosilicone Catalyst Solvent
Example Amount Amount Amount
Species Species Species
(g) (g) (g)
tetrabutyl
8 SiH-8 14.0 0.6 xylene 79.4
titanate Comparative Example 1
Sacrificing release agent for polyurethane flexible foam: KP-GHT (Xiamen KaPin chemical company). The effective constituent for this release agent is linear aliphatic paraffin (C20H42-C36H74), the content thereof is 1.5% by weight, the solvent is hydrocarbon solvent.
Effect Example
Effect testing of the release agent
A mold made of alumina was heated to 50-60°C, a 0.5mm nozzle was used to spray the release agents of examples 1-11 and comparative example 1 (at an amount of 5g/m2) onto the surface of the mold, after curing for l-2mins, foamable polyurethane system was injected onto the surface of the alumina mold coated with the release agents, after 4mins foaming, the polyurethane foam was removed from the mold.
Table 12 Testing result of mold-releasing
Figure imgf000020_0001
From table 12 it can be seen that, semi -permanent mold-releasing can be achieved by adopting the release agents through the formulation of the release agent per the present invention as well as the preparation process thereof, without the need to re-coat the release agent for each time, it is convenient for implement, thus reducing the coating amount of release agent and the accumulation of wax on the surface. The thus obtained article has a fine open cell, and is dry, which indicates that the amount of the remained release agent on the surface of the article surface is low, and the transferring of the release agent is extremely less.
The release agent of the present invention was placed in a sealed bottle, and stored in an oven at a temperature of 60°C for 2 months; however, the mold-releasing effect was not negatively affected significantly, indicating the release agents are stable in storage.
The release agent of the present invention was placed in opened bottle, and stored at room
temperature for 8 hours; the releasing effect is not negatively affected significantly as well, which could meet the operation requirements for release agent.

Claims

What is claimed is:
1. A release agent, comprising the following constituents: a hydrosilicone, a catalyst for
dehydrogenation condensation, and a solvent.
2. The release agent as claimed in claim 1, wherein the hydrosilicone has an average compositional general formula (1):
(R1R2R3SI01/2)M (R4R5SI02/2)D (R6SI03/2)T (SI04/2)Q (1),
wherein R1 to R6 in each case are radicals independently selected from the group consisting of a hydrogen atom and organic groups, with the proviso that:
at least one of the radicals R1 to R6 is a hydrogen atom bonded directly to a silicon atom and thus forming a Si-H bond; and in the hydrosilicone represented by above formula (1), there is at least two Si-H bonds on average per molecule, and not all radicals R1 to R6 are hydrogen atom, and M, T, and Q each represent a number ranging from 0 to less than 1, D represents a number greater than 0 and less than 1, M+D+T+Q = 1, and T+Q > 0.
3. The release agent as claimed in claim 2, wherein the content of the hydrogen atoms directly bonded to Si-atoms is from 0.01 to 1.63%, preferably from 0.1 to 1.6%, on the basis of the total mass of the hydrosilicone.
4. The release agent as claimed in claim 2, wherein the hydrosilicone has a weight average molecular weight of 400-500,000 g/mol, preferably a weight average molecular weight of 10,000-300,000 g/mol.
5. The release agent as claimed in claim 2, wherein the organic groups are selected from the group
consisting of linear or branched alkyls having 1-20 carbon atoms, alkenyls having 2-20 carbon atoms, cycloalkyls or cycloalkenyls having 5-25 carbon atoms, aryls having 6-30 carbon atoms, arylalkyls having 7-30 carbon atoms and halides thereof.
6. The release agent as claimed in claim 5, wherein the organic groups are selected from the group
consisting of linear or branched alkyls having 1-8 carbon atoms, alkenyls having 2-8 carbon atoms, cycloalkyls or cycloalkenyls having 5-10 carbon atoms, aryls having 6-10 carbon atoms, arylalkyls having 7-30 carbon atoms.
7. The release agent as claimed in any one of claims 1-6, wherein the hydrosilicone is used in an amount of from 0.1 to 80.0%, preferably in an amount of from 1.0 to 50.0%, relative to the total mass of the release agent.
8. The release agent as claimed in any one of claims 1-6, wherein the catalyst for dehydrogenation condensation is an amine and/or an organometallic catalyst.
9. The release agent as claimed in claim 8, wherein the amine catalyst is one or more selected from the group consisting of triethylenediamine, bis(dimethylaminoethylether), dimethylcyclohexylamine, N-methyldicyclohexyl- amine, pentamethyldiethylenetriamine, pentamethyldipropylenetriamine, tetramethylethanediamine, tetramethylpropanediamine, tetramethyl- hexanediamine,
N-methylmorpholine, N-ethylmorpholine, 2,2-bis(morpholino) diethyl ether, cocomorpholine, N-methylimidazole, 1,2-dimethylimidazole, 1,4-dimethylpiperazidine,
l,8-diazabicyclo[5.4.0]undec-7-ene, 1, 1 ,3,3-tetra- methylguanidine, 2,4,6-tris
(dimethylaminomethyl)phenol, 1,3,5-tris (dimethylaminopropyl)- l,3,5- hexahydrotriazine, N,N-dimethylethanolamine, Ν,Ν-dimethylaminoethyl ethylene glycol,
trimethylethylolpropanediamine, N-methyl-N-(N,N-dimethylaminoethyl)ethanolamine, Ν,Ν-dimethylbenzyl- amine, tris(diamino-propyl)amine, triethylamine,
Ν,Ν-dimethylcetylamine, vinyltris(methylethyl-ketoximie)silane, and
tetramethyliminodipropylamine; said organometallic catalyst is one or more selected from the group consisting of dibutyltin dilauryl, stannous octanoate, di(dodecylthio)dibutyltin, dibutyltin diacetate, potassium isooctanoate, potassium acetate, potassium oleate, lead isooctanoate, zinc isooctanoate, phenylmercuricacetate, tetrabutyl titanate, tetraisopropyl titanate, and platinum catalyst.
10. The release agent as claimed in claim 9, wherein the platinum catalyst is selected from the group consisting of platinum dioxide, chloroplatinic acid, complex of chloroplatinic acid and dienes, or platinum bis(acetylacetonate).
11.The release agent as claimed in claim 9, wherein the catalyst is one or more selected from the group consisting of triethylenediamine, stannous octanoate, 1, 1 ,3,3-tetramethylguanidine, vinyltris(methylethylketoximie)- silane, zinc isooctanoate, tetramethyliminodipropylamine, tetrabutyl titanate, triethylamine, dibutyltin diacatate and platinum bis(acetylacetonate).
12. The release agent as claimed in any one of claims 1-6, wherein the catalyst is used in an amount of from 0.01 to 5%, preferably in an amount of 0.1 -2.0%, relative to the total mass of the release agent.
13. The release agent as claimed in any one of claims 1-6, wherein the solvent is one or more selected from the group consisting of alcohols, alcohol ethers, ketones, esters, aliphatic hydrocarbons, cycloaliphatic hydrocarbons, , aromatic hydrocarbons and ethers.
14. The release agent as claimed in claim 13, wherein the alcohol solvents are one or more selected from the group consisting of ethanol, isopropanol, propylene glycol, butanol, 1,4-butanediol, 1,3-butanediol and glycerol; the alcohol ether solvents are one or more selected from the group consisting of ethyleneglycol monobutylether, propylene glycol monomethylether and propyleneglycol monombutylether; the ketone solvents are one or more selected from the group consisting of acetone, methylethyl ketone, methylisobutyl ketone and cyclohexanone; the ester solvents are one or more selected from the group consisting of methyl acetate, ethyl acetate and butyl acetate, the aliphatic hydrocarbon solvents are one or more selected from the group consisting of n-hexane, carbon tetrachloride, petroleum ether and isomeric alkane solvents; the cycloaliphatic hydrocarbon solvents are one or more selected from the group consisting of cyclopentane and cyclohexane; the aromatic hydrocarbon solvents are one or more selected from the group consisting of toluene and xylene; and the ether solvents are one or more selected from the group consisting of tetrahydrofuran, diisopropylether and dibutylether.
15. The release agent as claimed in claim 13 or 14, wherein the solvent is used in an amount of from 10.0 to 99.85%, preferably in an amount of from 40.0 to 99.0%, relative to the total mass of the release agent.
16. The use of the release agent as claimed in any one of claims 1 -15 in the manufacturing of polyurethane articles, epoxy resin articles, rubber articles and polyester articles to promote the mold-releasing of polymer materials.
PCT/EP2012/051681 2011-02-01 2012-02-01 A release agent, the preparation and use thereof WO2012104346A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011100361006A CN102615747A (en) 2011-02-01 2011-02-01 Mould release agent, its preparation method and its purpose
CN201110036100.6 2011-02-01

Publications (1)

Publication Number Publication Date
WO2012104346A1 true WO2012104346A1 (en) 2012-08-09

Family

ID=45567001

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2012/070813 WO2012103808A1 (en) 2011-02-01 2012-02-01 Release agent, preparation and use thereof
PCT/EP2012/051681 WO2012104346A1 (en) 2011-02-01 2012-02-01 A release agent, the preparation and use thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070813 WO2012103808A1 (en) 2011-02-01 2012-02-01 Release agent, preparation and use thereof

Country Status (2)

Country Link
CN (1) CN102615747A (en)
WO (2) WO2012103808A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9901912B2 (en) 2015-06-02 2018-02-27 Momentive Performance Materials Inc. Super acids and bases as dehydrocondensation catalysts
CN107914353A (en) * 2017-12-13 2018-04-17 安徽新胜塑料科技有限公司 A kind of releasing agent for acrylic production

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103419307A (en) * 2012-05-24 2013-12-04 上海立汰新模具材料有限公司 Polyurethane waxy release agent and application thereof
CN103317083B (en) * 2013-06-13 2015-09-09 济南圣泉集团股份有限公司 A kind of method improving amine method cold core box core release property
CN104498162A (en) * 2014-12-18 2015-04-08 蒙城县科技创业服务中心 Water-based concrete demoulding agent and preparation method thereof
CN104742379B (en) * 2015-03-25 2018-04-17 上海德竑玻璃钢制品有限公司 The preparation method of fiberglass mould and fiberglass
CN105295723B (en) * 2015-11-27 2017-07-07 怀化学院 A kind of curing type coating composition and its application
CN105623828B (en) * 2016-02-05 2018-04-06 东南大学 A kind of releasing agent for high-adhesiveness resin-based materials and preparation method thereof
DE102016105785B4 (en) * 2016-03-30 2019-02-14 Webasto SE Method for producing a roof element of a motor vehicle and roof element with mold section
CN105818305B (en) * 2016-04-13 2018-08-31 黄超 A kind of neo-epoxy resin releasing agent and its preparation method and application
CN106985264A (en) * 2017-03-30 2017-07-28 佛山市蓝海石英石材有限公司 A kind of quartz aqueous release agent and preparation method thereof
CN106916310B (en) * 2017-04-18 2020-10-16 广州天赐高新材料股份有限公司 Titanate siloxane catalyst and method for preparing Si-O-C type polyether silicon wax by using same
CN109207244B (en) * 2017-06-30 2021-10-26 北京市建筑工程研究院有限责任公司 Water-based release agent for concrete prefabricated part
CN109016278B (en) * 2018-08-16 2020-10-23 怀化学院 Release agent and spray type release agent
US20220010169A1 (en) * 2018-11-26 2022-01-13 3M Innovative Properties Company Curable coating compositions, methods, and articles
CN112642669A (en) * 2020-04-13 2021-04-13 肯天化工(上海)有限公司 Method for spraying release agent
CN111303432A (en) * 2020-04-24 2020-06-19 厦门市豪尔新材料股份有限公司 Polysiloxane prepolymer, release agent containing polysiloxane prepolymer and preparation method of release agent
CN113071030B (en) * 2021-03-25 2023-03-17 东莞市凯文化工有限公司 Hole sealing release agent and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030065117A1 (en) * 2000-03-09 2003-04-03 Poreddy Narsi Reddy Modified silicone compound, process of producing the same, and cured object obtained therefrom

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827921A (en) * 1995-11-29 1998-10-27 Shin-Etsu Chemical Co., Ltd. Silicone-based aqueous emulsion composition
US20090171010A1 (en) * 2007-12-31 2009-07-02 John Kilgour Low temperature cure silicone release coatings containing branched silylhydrides
CN101875220B (en) * 2009-04-28 2014-07-09 汉高股份有限公司 Mold release agent and preparation method and application thereof
CN101892115A (en) * 2009-05-22 2010-11-24 汉高(中国)投资有限公司 Release agent and application thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030065117A1 (en) * 2000-03-09 2003-04-03 Poreddy Narsi Reddy Modified silicone compound, process of producing the same, and cured object obtained therefrom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9901912B2 (en) 2015-06-02 2018-02-27 Momentive Performance Materials Inc. Super acids and bases as dehydrocondensation catalysts
CN107914353A (en) * 2017-12-13 2018-04-17 安徽新胜塑料科技有限公司 A kind of releasing agent for acrylic production

Also Published As

Publication number Publication date
CN102615747A (en) 2012-08-01
WO2012103808A1 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
WO2012104346A1 (en) A release agent, the preparation and use thereof
CN101875220B (en) Mold release agent and preparation method and application thereof
US5300608A (en) Process for preparing alkoxy-terminated organosiloxane fluids using organo-lithium reagents
US9926410B2 (en) Organosiloxane compositions and coatings, manufactured articles, methods and uses
US7754778B2 (en) Linear polydimethylsiloxane-polyoxyalkylene block copolymers linked via Si-C groups and via carboxylic ester groups, a process for preparing them and their use
TWI535812B (en) Self-crosslinking silicone pressure sensitive adhesive compositions, process for making and articles made thereof
US6706798B2 (en) Water repellent silicone coating agent composition
CN108688027B (en) Water-based release agent and preparation method thereof
JPH08143672A (en) Additive for accelerating adhesion and curable organosiloxane composition contained therein
US9321936B2 (en) Addition curable silicone emulsion release composition and release film
US20070270555A1 (en) Silicone composition which can be crosslinked to give an adhesive gel
CA1296825C (en) Multiple release mold coating for high water, high resiliency polyurethane foam
EP0228652A2 (en) Multiple release mold coating
US20040158018A1 (en) Liquid alkoxysilyl -functional silicone resins, method for their preparation, and curable silicone resin compositions
CN103753741B (en) A kind of Art Stone polyurethane rubber mould releasing agent and using method
JPS61146509A (en) Organopolysiloxane composition which can be used for mold-release treatment of mold wall
TWI557201B (en) Low-temperature hardening coating composition and hardened articles
KR102470706B1 (en) Method of preparing condensation cross-linked particles
CN103834355B (en) A kind of fabrication & properties control method of organic pressure-sensitive gel
US6306999B1 (en) Room temperature curable organopolysiloxane composition
JPWO2019131641A1 (en) Film-forming composition
JP5763193B2 (en) Emulsion of organopolysiloxane having acidic and basic groups and production thereof
KR101757676B1 (en) Silicone elastomer composition, silicone elastomer and silicone paste prepared using the same
CN115090827A (en) Mold release agent and preparation method thereof
CN114656642A (en) Organic fluorine-silicon emulsion release agent and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12702809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12702809

Country of ref document: EP

Kind code of ref document: A1