WO2012103759A1 - 光控核聚变方法 - Google Patents

光控核聚变方法 Download PDF

Info

Publication number
WO2012103759A1
WO2012103759A1 PCT/CN2011/081670 CN2011081670W WO2012103759A1 WO 2012103759 A1 WO2012103759 A1 WO 2012103759A1 CN 2011081670 W CN2011081670 W CN 2011081670W WO 2012103759 A1 WO2012103759 A1 WO 2012103759A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleus
light
oscillating
incident light
nuclear
Prior art date
Application number
PCT/CN2011/081670
Other languages
English (en)
French (fr)
Inventor
龚炳新
Original Assignee
Gong Bingxin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gong Bingxin filed Critical Gong Bingxin
Priority to EP11857867.3A priority Critical patent/EP2672489B1/en
Publication of WO2012103759A1 publication Critical patent/WO2012103759A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B3/00Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
    • G21B3/006Fusion by impact, e.g. cluster/beam interaction, ion beam collisions, impact on a target
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the present invention provides a novel nuclear fusion method for controlling nuclear fusion by controlling the kinetic energy and density of a nucleus or electron and the electric field strength and frequency of incident light.
  • This nuclear fusion method utilizes high-density nuclear beam beams that are collided by electromagnetic wave irradiation to accelerate, and can also use high-density electron beams and light nuclear beams that are collided by electromagnetic wave irradiation to accelerate, and these charged particles will be forced under electromagnetic wave irradiation.
  • the harmonic motion similar to an oscillating electric dipole, and will emit a secondary electromagnetic wave
  • the nucleus in the near-field of the oscillating electric dipole will absorb the electromagnetic energy of the oscillating electric dipole near the field, when the nucleus absorbs the electromagnetic
  • the energy is greater than the Coulomb barrier between the nuclei, the nuclei will fuse.
  • thermonuclear fusion requires that the temperature and density of the plasma be sufficiently high, and the confinement time is long enough.
  • the current device cannot achieve the same energy gain and loss, and controlled thermonuclear fusion has not been realized so far.
  • the present invention provides a photo-controlled nuclear fusion method that controls nuclear fusion by controlling the kinetic energy and density of a nucleus or electron and the electric field strength and frequency of incident light.
  • This photo-controlled nuclear fusion method is based on the following principles:
  • the nucleus is positively charged. Under the illumination of incident light, the nucleus will be forced to vibrate, similar to an oscillating electric dipole, and will emit secondary electromagnetic waves.
  • the low-speed accelerating charge can be considered as an oscillating electric dipole.
  • the electric field of the high-speed accelerating electric charge is formed by superimposing the Coulomb field and the oscillating electric dipole radiation field obtained by Lorentz transformation. Since the intensity of light is proportional to the square of the amplitude of the electric field strength, the amplitude of the electric field strength is proportional to the square of the frequency, so the intensity of the light must be frequency dependent.
  • High-speed accelerating charges usually exist only in electron accelerators and other high-energy particle accelerators or in space. Ordinary laboratory sources, such as ultraviolet light, can be thought of as being generated by low-speed accelerating charges.
  • the low-speed accelerating charge can be considered as an oscillating electric dipole.
  • the low-speed accelerating charge charge amount be G
  • the amplitude is ⁇
  • the frequency is w
  • the radiant electric field of this oscillating electric dipole is ⁇ 0
  • E(t) ⁇ cos cot
  • the electric field strength will cause the nucleus to be forced to vibrate, similar to an oscillating electric dipole whose oscillation frequency is equal to the frequency w of the incident light and will emit secondary electromagnetic waves.
  • Nuclear 1 can be a light or heavy nucleus.
  • the near-field electric field strength and magnetic field strength of the oscillating nucleus 1 are:
  • r is the distance from the observation point to the center of the oscillating nucleus 1
  • r "i,, r » i is the wavelength of the incident light.
  • Nucleus 2 can be a light or heavy nucleus. Let the oscillating nucleus 2 be at the observation point, so the distance between the oscillating nucleus 1 and the oscillating nucleus 2 is ⁇ , and r is also the distance when the oscillating nucleus 1 and the oscillating nucleus 2 collide.
  • E t) (8)
  • the oscillating nucleus 2 is subjected to harmonic vibration under the action of electric field strengths E ⁇ ⁇ and E r (), and its oscillation frequency
  • the amplitude of / is then the equation of motion of the oscillating nucleus 2 in the r direction is: ⁇ + ⁇ + (10)
  • ⁇ 3 ⁇ 4 is the natural frequency of the oscillating nucleus 2
  • is the damping coefficient
  • the oscillating nucleus 2 can be considered as an oscillating electric dipole, and the electric dipole moment of the oscillating nucleus 2 is defined as the parallel direction, then
  • the electric field strength ⁇ O) has no relationship with the distance ⁇ , so it does not give the force in the 2 r direction of the oscillating nucleus.
  • the near-field electric field strength of the oscillating nucleus 1 will give the force in the 2 r direction of the oscillating nucleus.
  • F, the electric field strength E ⁇ t), the electric moment of the oscillating nucleus 1 and the oscillating nucleus 2 are along the r line and in the same direction,
  • the interaction energy between the oscillating nucleus 1 and the oscillating nucleus 2 is
  • the Coulomb barrier between the oscillating nucleus 1 and the oscillating nucleus 2 is To make the nucleus 1 and the nucleus 2 fusion, it is required that ⁇ 10_ 15 w when the interaction energy between the oscillating nucleus 1 and the oscillating nucleus 2 is greater than the Coulomb barrier between the oscillating nucleus 1 and the oscillating nucleus 2, ie > ⁇ The oscillating nucleus 1 and the oscillating nucleus 2 will fuse.
  • the electron and the nucleus 1 are excited to vibrate under the irradiation of incident light, assuming that the distance between the oscillating electron and the oscillating nucleus 1 is r, since r « /i, the oscillating electron is in the oscillating nucleus 1 near the zone.
  • the mass of the electron W e, charge amount, amplitude / e, then the formula (13) may become Define the electric dipole moment of this oscillating electron as ⁇ "and along the direction, Bay U
  • the interaction energy between the oscillating nucleus 1 and the oscillating electron is
  • ⁇ 2 is the charge of the nucleus 2, it is possible to use a heavier atomic nucleus and a light nuclear nucleus or a heavier nucleus to collide with each other.
  • High-frequency incident light is used to illuminate the nuclear beam in the collision, but the distance between the oscillating nuclei is much smaller than the wavelength of the incident light, so that the oscillating nuclei are in the near-field of each other.
  • Increasing the charge amount ⁇ and amplitude of the accelerating charge that generates incident light can increase the attractive force and interaction energy between the oscillating nucleus 1 and the oscillating nucleus 2.
  • the direction of the electric field strength of the incident light and the electric moment of the oscillating nucleus in the relative collision are connected and aligned.
  • the high-frequency incident light can be used to illuminate the nuclear beam and the electron beam in the opposite collision, but it is ensured that the distance between the nucleus and the electron is much smaller than the wavelength of the incident light, so that the oscillating nucleus and the oscillating electron are in close proximity to each other.
  • the direction of the electric field strength of the incident light and the electric moment of the nucleus and electron in the relative collision are connected and reversed.
  • the electron when the frequency of the incident light is sufficiently high, the electron will absorb enough energy and break free of the metal to bind it and escape the metal surface.
  • another specific step of realizing this photo-controlled nuclear fusion is that, if a heavier nucleus and a light nucleus are selected, the photoelectron extraction work of the heavier nucleus can be determined first, and the incident light of the fusion can be determined. The lowest frequency and the minimum kinetic energy of the nucleus.
  • the light and heavy nuclei are first focused into a high-density light nuclear beam and a heavier nuclear beam, accelerating the light nuclear beam and the heavier nuclear beam, causing them to collide head-on, using appropriate incident light to illuminate the collision zone.
  • the heavier nucleus and the light nucleus is greater than the Coulomb barrier between the heavier nucleus and the light nucleus, the heavier nucleus and the light nucleus will fuse.
  • the electron beam and the light nuclear beam can be collided, and the collision light is irradiated with suitable incident light. At this time, a repulsive force will be generated between the oscillating electron and the oscillating light core 2 H, and the attraction between the oscillating light core 2 H will be generated. forces, attractive and repulsive force will cause the light beam 2 H nuclear light nuclei in the front and rear 2 H fusion.
  • Light nuclear beams can also be used to bombard heavier atomic targets.
  • Nuclear fusion is controlled by controlling the kinetic energy and density of the nucleus or electron and the electrical vector and frequency of the incident light.
  • the charge amount and amplitude of the accelerated charge generating incident light can be increased, and accordingly, the frequency of the incident light and The kinetic energy of the nucleus can be reduced. For example, if ⁇ is increased by 1000 times and loo is increased, the frequency of incident light can be reduced to iy ⁇ 5.14 x 10 16 /fe, and the kinetic energy of the nucleus can be reduced to ⁇ 3.45 10 _ 15 1 / (; 0.215 ⁇ ).
  • the electron beam and the light core 2 H beam collision may be selected, and the collision area may be illuminated by using appropriate incident light. Since the distance between the electron and the light core 2 H can be very close, it is ensured
  • F e is the electronic repulsion between the oscillation and the oscillation light nuclei ⁇ ⁇
  • e is the electron oscillation and the oscillation light nuclei ⁇ ⁇
  • Interaction energy, ⁇ q is between 9 Coulomb force between light nuclei 2 H, ⁇ between light nuclei 2 H 0 2 ⁇ e Q R Coulomb barrier, R ⁇ 10- 15 m, r and electronic
  • the electron beam and the light nuclear 2 H beam are accelerated and collided. Since the electrons and the light core 2 H have different charges, their distances can be very close. When their distances are very close, the appropriate incident light is used to illuminate the collision. In the region, at this time, the repulsive force will be generated between the oscillating electron and the oscillating light core 2 H.
  • the oscillating light nucleus between the 2 H will be attractive, and the repulsive force and attraction will make the light nucleus 2 H beam in front and behind.
  • Light nuclear 2 H fusion

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Lasers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明提供一种新的核聚变方法,它通过控制核子或电子的动能和密度及入射光的电场强度和频率来控制核聚变。这种核聚变方法利用电磁波照射加速后对撞的高密度核子束,也可以利用电磁波照射加速后对撞的高密度电子束和轻核束,这些带电粒子在电磁波照射下将会作受迫简谐振动,类似于一个振荡电偶极子,并将发射次级电磁波,处于振荡电偶极子近区场的核子将会吸收振荡电偶极子近区场的电磁能量,当核子吸收的电磁能量大于核子之间的库仑势垒时,核子将会聚变。

Description

说 明 书
光控核聚变方法 技术领域
本发明提供一种新的核聚变方法, 它通过控制核子或电子的动能和密度及 入射光的电场强度和频率来控制核聚变。这种核聚变方法利用电磁波照射加速后 对撞的高密度核子束,也可以利用电磁波照射加速后对撞的高密度电子束和轻核 束,这些带电粒子在电磁波照射下将会作受迫简谐振动,类似于一个振荡电偶极 子, 并将发射次级电磁波, 处于振荡电偶极子近区场的核子将会吸收振荡电偶极 子近区场的电磁能量, 当核子吸收的电磁能量大于核子之间的库仑势垒时, 核子 将会聚变。
背景技术
我们知道, 受控热核聚变要求等离子体的温度和密度足够高, 约束时间足够 长, 目前的装置无法实现能量得失相当, 受控热核聚变到目前为止还未能实现。
发明内容
为了实现能量得失相当的核聚变,本发明提供一种光控核聚变方法, 它通过 控制核子或电子的动能和密度及入射光的电场强度和频率来控制核聚变。
这种光控核聚变方法基于以下的原理:
核子带正电荷, 在入射光照射下, 核子将会作受迫振动, 类似于一个振荡电 偶极子, 并将发射次级电磁波.
当两个振荡电偶极子的电矩沿连线且同向时,两振荡电偶极子之间是相互吸 引的径向作用力, 也就是说, 两个振荡核子之间是相互吸引的径向作用力。
根据光的电磁理论,光是由加速电荷产生。低速加速电荷可以考虑为振荡电 偶极子,高速加速电荷的电场是由作洛仑兹变换而得的库仑场和振荡电偶极子辐 射场叠加而成的。 由于光的强度正比于电场强度振幅的平方值, 电场强度振幅正 比于频率的平方值, 因此光的强度必然是与频率有关的。高速加速电荷通常只存 在于电子加速器和其它高能粒子加速器或宇宙空间中,普通的实验室光源,例如 紫外光, 可以认为是由低速加速电荷产生的。
假设入射光由低速加速电荷产生, 低速加速电荷可以考虑为振荡电偶极子。 设低速加速电荷带电量为 G, 振幅为 α, 频率为 w, 则这个振荡电偶极子 的辐射电场为 ^0)
Figure imgf000002_0001
式中 £"。是真空介电常数, C是真空光速, ^是观察点到振荡电偶极子中心的距
Figure imgf000003_0001
则公式(1)变为
E(t) = Αύ cos cot 电场强度 将会使核子作受迫振动, 类似于一个振荡电偶极子, 它的振 荡频率等于入射光的频率 w, 并将发射次级电磁波。
设核子 1带电量为 , 振幅为 , 核子 1可以是轻核或较重核子。在球坐标 中, 振荡核子 1的近区电场强度和磁场强度分别为:
(4) r、 J 2πε0Γ3
(5) θ 4πε 3
-n—r xil ηθ t π,-τ
Figure imgf000003_0002
式中 r是观察点到振荡核子 1中心的距离, r》i、, r« i, 是入射光的波长。 核子 2可以是轻核或较重核子。 设振荡核子 2在观察点, 因此振荡核子 1 和振荡核子 2的距离是 Γ, r也是振荡核子 1和振荡核子 2碰撞时的距离。
当电场强度^ (0沿 r方向时, 6> = 0, 公式 (4)、 (5)和 (6)变为
Figure imgf000003_0003
E t) = (8)
Figure imgf000003_0004
振荡核子 2在电场强度 E{ }和 Er()作用下作简谐受迫振动, 其振荡频率 幅为 / , 则振荡核子 2在 r方向上的运动方程为: χ + γχ + (10)
Figure imgf000004_0001
式中 ί¾是振荡核子 2的固有频率, : Τ是阻尼系数,
Figure imgf000004_0002
因为 所以
Figure imgf000004_0003
m2 ^-o f+o r
因为振荡核子 2可以考虑为振荡电偶极子, 定义振荡核子 2 的电偶极矩为 并沿 方向, 则
Pi = q2l2 cos coir
Figure imgf000004_0004
m2 jic^-o f+o r 2πεΓ 电场强度 ^O)和距离 ^没有关系, 因此不会给振荡核子 2 r方向的力, 振荡核子 1的近区电场强度 将会给振荡核子 2 r方向的力 F, 电场 强度 E{t)、 振荡核子 1和振荡核子 2的电矩沿 r连线且同向,
F = q2l2 cos Ot(r»VEr (t) =^»VEr (t) (15) 式中 v=
or
Figure imgf000004_0005
由公式(16)可知, 振荡核子 1和振荡核子 2之间是 方向上的吸引力。 参考附图 Fig. 1
振荡核子 1和振荡核子 2之间的相互作用能是
W = P?»Er(t)
Figure imgf000005_0001
振荡核子 1和振荡核子 2之间的库仑势垒是
Figure imgf000005_0002
要使荡核子 1和振 核子 2聚变, 要求 ≤10_15w 当振荡核子 1和振荡核子 2之间的相互作用能大于振荡核子 1和振荡核子 2 之间的库仑势垒时, 即 > ^时, 振荡核子 1和振荡核子 2将会聚变。 当把振荡核子 2换成电子时,在入射光照射下, 电子和核子 1作简谐受迫振 动, 假设振荡电子和振荡核子 1的距离为 r, 由于 r « /i, 振荡电子处于振荡核 子 1的近区内。 设电子的质量为 We, 带电量为 , 振幅为 /e, 则公式(13)可变 为
Figure imgf000005_0003
定义此振荡电子的电偶极矩为^ "并沿 方向, 贝 U
Pe = qele cos a r
Figure imgf000005_0004
振荡核子 l的近区电场强度 Ε人 ή将会给振荡电子 r方向的力 Fe
Fe = qele cos (Ot{f'VEr{t) = 'VEr{t) (21) 因为 是负电荷, 因此电场强度 0)、振荡核子 1和振荡电子的电矩沿 r 连线且反向, '
Figure imgf000005_0005
由公式 (22)可知,振荡核子 1和振荡电子之间是 r方向上的排斥力。参考附 图 Fig. 2
振荡核子 1和振荡电子之间的相互作用能是
Figure imgf000006_0001
― ― ω +ωΥ 2τηεπε0Γ3 + 4me π2ε0 2ν6 用入射光照射相对碰撞中的核子束和电子束,当振荡核子和振荡电子之间的 排斥力和相互作用能大于振荡核子之间的库仑斥力和库仑势垒时, 核子也会聚 变。
从公式 (2)、 (16)、 (17)、 (22)、 (23)可以看到, F、 Fe、 和 随着 和 的增大而增大,随着距离 Γ的减少而增大, 随着 ρ的增大而增大,并且 随着 ^的增大而增大。 光控核聚变是利用上述事实和原理实现核聚变的一种方法。
因为 F、 Fe、 和 随着 和 的增大而增大, 随着距离 r的减少而增 大, 随着 ρ和 的增大而增大, 并且 随着 的增大而增大, 因此, 要增大
F和 , 可选择增大 和 , 并减少 。 因为 ^2是核子 2的带电量, 因此可以选用较重原子核和轻核对撞或较重原 子核互相对撞。
选用高频率的入射光照射相对碰撞中的核子束,但要保证振荡核子之间的距 离远小于入射光的波长, 使振荡核子处于彼此的近区场。
增大产生入射光的加速电荷的带电量 ρ和振幅 可以增大振荡核子 1 和振 荡核子 2之间的吸引力和相互作用能。
使入射光的电场强度方向和相对碰撞中的振荡核子的电矩沿连线且同向。 可选用高频率的入射光照射相对碰撞中的核子束和电子束,但要保证核子和 电子之间的距离远小于入射光的波长, 使振荡核子和振荡电子处于彼此的近区 场。
使入射光的电场强度方向和相对碰撞中的核子和电子的电矩沿连线且反向。 实现这光控核聚变的具体步骤是, 根据公式(17), 因为 iy= i¾时散射截面 有尖锐的极大值, 出现共振现象, 可先测定振荡核子 2的固有频率 因为 是可控的, 和 2是已知的, 因此可以推算出所需的 和 r, 而 r是和核子的 加速动能有关的, 因而可以得出聚变所需的核子的加速动能。
在光电效应中, 当入射光的频率足够高时, 电子将会吸收足够的能量并挣脱 金属对它的束缚, 逸出金属表面。
我们知道, 电子带负电荷, 原子核带正电荷, 电子和原子核之间存在库仑吸 引力。 但光的照射可以使电子挣脱金属对它的束缚, 逸出金属表面。 显然地, 光 的照射使电子和原子核之间产生了大于库仑吸引力的排斥力。
因此, 类比于光电效应, 实现这光控核聚变的另一具体步骤是, 如选择较重 核子和轻核对撞,可先测定较重核子的光电子脱出功, 并确定达致聚变的入射光 的最低频率及核子的最少动能。先把轻核和较重原子核聚焦成高密度轻核束和较 重原子核束, 加速轻核束和较重原子核束, 使它们迎头对撞, 使用合适的入射光 照射对撞区域。当较重核子和轻核之间的相互作用能大于较重核子和轻核之间的 库仑势垒时, 较重核子和轻核将会聚变。
可采用电子束和轻核束对撞,利用合适的入射光照射对撞区域,这时候振荡 电子和振荡轻核 2H之间将会产生排斥力,振荡轻核 2H之间将会产生吸引力,排 斥力和吸引力将会使轻核 2H束里前面和后面的轻核 2H聚变。
也可采用轻核束轰击较重原子靶。
通过控制核子或电子的动能和密度及入射光的电矢量和频率来控制核聚变。
具体实施方式
下面介绍两具体实施例, 具体实施方式不局限于此两例。
如选择较重原子核和轻核对撞, 较重原子核可选 6 ', 轻核可选 2H。 Li金 属的光电子脱出功为 2.13e , 红限为 5.14xl014/fe。 根据公式(23), 当 e≥2.13e 时, 电子将会逸出金属表面, 也就是 ≥ 2
Figure imgf000007_0001
因为电子在原子内, 电子和原子核的距离 « 10_luw, r = Rp ,
Figure imgf000007_0002
, we = 0.91χ10_30 , γ《ω, 电子是束 缚电子, ft»n≠0, 所以不管 w《 或 iy= i¾, 都有
Figure imgf000007_0003
所以
Figure imgf000008_0001
1 Aq^ql cos2 CM ^ >l. eV^r *mt
(27)
1 Aq^co 2 cot 2A3eV*lO-30m*0.9lxlO-30kg
(28) ω^-ω2)2 + ο γ2 2πε0 (5.14x10 对于 6£和 2H, 同理可得
(29)
Figure imgf000008_0002
要使 和 2H聚变, 要求
Figure imgf000008_0003
Rf<lQ-i5m 因为
1 Aq^q^cos2 cot l.UeV^lO-^m* 0.9lxl0~30 kg
(31) o^- o + ο/γ2 2πε0 ― (5.14xl014) 所以, 当
Figure imgf000008_0004
r≤10- 12w (33) 时, 6£和 2H聚变。 当 r = 10—12w时, 6£和 2H之间的库仑势垒是 q2<h =6.9x10- 16J (34)
4^£· *10" 要越过这个库仑势垒, 要求 6 '和 2H的动能 w≥3>A5x\0-l6J(2A5keV) (35) 综上所述, 加速 6£和 2H, 使它们的动能 vi^s^sxKr jp.is^ ), 并使它们对撞, 使用频率 iy≥5.14xl017/fe的入射光照射对撞区域, 入射光的 电场强度方向和相对碰撞中的核子的电矩沿连线且同向, 6Li和 2H将会聚变,
6Li+ 2H→24 He + 22AMe V (36) 由于 随着 G和 的增大而增大, 因此可以增大产生入射光的加速电荷的 带电量 和振幅 , 相应地, 入射光的频率和核子的动能可以减少。 例如, 如 果 β增大 1000倍, 增大 loo倍,入射光的频率可以减少到 iy≥5.14xl016/fe, 核子的动能可以减少到 ≥3.45 10_15 1/(;0.215^ )。 另外, 也可以选择电子束和轻核 2H束对撞, 并用使用合适的入射光照射对 撞区域。 由于电子和轻核 2H的距离可非常接近, 可确保
1 ^Aq ql丄丄co1 cos2 cot
(37)
Figure imgf000009_0001
式中 Fe是振荡电子和振荡轻核 ΊΗ之间的排斥力, e是振荡电子和振荡轻核 ΊΗ
2 2
之间的相互作用能, Λ q 9是轻核 2H之间的库仑力, 轻核 2H之间的 πε0 2 ^eQR 库仑势垒, R < 10-15m, r是电子和轻核 2H加速后对撞所能达到的最小距离。 先使电子束和轻核 2H束加速后对撞, 由于电子和轻核 2H带不同电荷, 它 们的距离可非常接近, 当它们的距离非常接近时, 再用合适的入射光照射对撞区 域,这时候振荡电子和振荡轻核 2H之间将会产生排斥力,振荡轻核 2H之间将会 产生吸引力, 排斥力和吸引力将会使轻核 2H束里前面和后面的轻核 2H聚变,
2H + 2H→3H + lH + 4Me V (39)

Claims

权 利 要 求 书
, 一种光控核聚变方法, 其特征在于: 它通过核子或电子的动能和密度及入射 光的电场强度和频率来控制核聚变;
, 根据权利要求 1所述的一种光控核聚变方法, 其特征在于: 利用入射光照射 加速后对撞的高密度核子束, 也可以利用入射光照射加速后对撞的高密度电 子束和轻核束, 并可以利用入射光照射被轻核束轰击的较重原子靶; , 根据权利要求 1所述的一种光控核聚变方法, 其特征在于: 选用高频率的入 射光照射相对碰撞中的核子束, 但要保证振荡核子之间的距离远小于入射光 的波长, 使振荡核子处于彼此的近区场;
, 根据权利要求 1所述的一种光控核聚变方法, 其特征在于: 入射光的电场强 度方向和相对碰撞中的振荡核子的电矩沿连线且同向;
, 根据权利要求 1所述的一种光控核聚变方法, 其特征在于: 增大产生入射光 的加速电荷的带电量和振幅, 以增大振荡核子之间的吸引力和相互作用能; , 根据权利要求 1所述的一种光控核聚变方法, 其特征在于: 可选用高频率的 入射光照射相对碰撞中的核子束和电子束, 但要保证核子和电子之间的距离 远小于入射光的波长, 使核子和电子处于彼此的近区场, 并且入射光的电场 强度方向和相对碰撞中的振荡核子和振荡电子的电矩沿连线且反向; , 根据权利要求 1所述的一种光控核聚变方法, 其特征在于: 先测定振荡核子 2 的固有频率, 推算出聚变所需的入射光的频率和核子的加速动能, 如选择 较重核子和轻核对撞, 可先测定较重核子的光电子脱出功, 并确定达致聚变 的入射光的最低频率及核子的最少动能。
PCT/CN2011/081670 2011-02-05 2011-11-02 光控核聚变方法 WO2012103759A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11857867.3A EP2672489B1 (en) 2011-02-05 2011-11-02 Method of light control nuclear fusion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110037019XA CN102142285A (zh) 2011-02-05 2011-02-05 光控核聚变方法
CN201110037019.X 2011-02-05

Publications (1)

Publication Number Publication Date
WO2012103759A1 true WO2012103759A1 (zh) 2012-08-09

Family

ID=44409728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081670 WO2012103759A1 (zh) 2011-02-05 2011-11-02 光控核聚变方法

Country Status (3)

Country Link
EP (1) EP2672489B1 (zh)
CN (1) CN102142285A (zh)
WO (1) WO2012103759A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015195171A3 (en) * 2014-03-20 2016-04-07 Massachusetts Institute Of Technology Conversion of vibrational energy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142285A (zh) * 2011-02-05 2011-08-03 龚炳新 光控核聚变方法
WO2022183994A1 (zh) * 2021-03-04 2022-09-09 姜卫 一种化学元素转化的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1060920A (zh) * 1990-10-17 1992-05-06 阿普里科特公司 增强氘聚变/衰变率的方法
JP2000261083A (ja) * 1999-03-10 2000-09-22 Kosaku Hiramura 強力レーザ光線の発生方法と装置及びそれを用いた核融合方法と装置。
CN1309398A (zh) * 2000-02-17 2001-08-22 李先克 可控热核聚变反应锅炉
US20020181655A1 (en) * 2000-11-22 2002-12-05 Schoen Neil C. Laser accelerator produced colliding ion beams fusion device
CN102142285A (zh) * 2011-02-05 2011-08-03 龚炳新 光控核聚变方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1060920A (zh) * 1990-10-17 1992-05-06 阿普里科特公司 增强氘聚变/衰变率的方法
JP2000261083A (ja) * 1999-03-10 2000-09-22 Kosaku Hiramura 強力レーザ光線の発生方法と装置及びそれを用いた核融合方法と装置。
CN1309398A (zh) * 2000-02-17 2001-08-22 李先克 可控热核聚变反应锅炉
US20020181655A1 (en) * 2000-11-22 2002-12-05 Schoen Neil C. Laser accelerator produced colliding ion beams fusion device
CN102142285A (zh) * 2011-02-05 2011-08-03 龚炳新 光控核聚变方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015195171A3 (en) * 2014-03-20 2016-04-07 Massachusetts Institute Of Technology Conversion of vibrational energy

Also Published As

Publication number Publication date
EP2672489B1 (en) 2018-03-14
EP2672489A1 (en) 2013-12-11
EP2672489A4 (en) 2015-06-10
CN102142285A (zh) 2011-08-03

Similar Documents

Publication Publication Date Title
Olson et al. Collective ion acceleration
WO2012103759A1 (zh) 光控核聚变方法
Ghotra et al. Effects of laser-polarization and wiggler magnetic fields on electron acceleration in laser-cluster interaction
Baumann et al. Influence of e− e+ creation on the radiative trapping in ultraintense fields of colliding laser pulses
Kong et al. Electron bunch acceleration and trapping by the ponderomotive force of an intense short-pulse laser
Schroeder et al. Efficiency considerations for high-energy physics applications of laser-plasma accelerators
Yamagiwa et al. Ion explosion and multi-mega-electron-volt ion generation from an underdense plasma layer irradiated by a relativistically intense short-pulse laser
Lin et al. Directional transport of fast electrons at the front target surface irradiated by intense femtosecond laser pulses with preformed plasma
Furman et al. Ionic diode
Wan et al. Quasimonoenergetic proton acceleration via quantum radiative compression
Tian et al. Generation mechanism of 100 MG magnetic fields in the interaction of ultra-intense laser pulse with nanostructured target
Smirnov et al. Hot electron generation in laser cluster plasma
Yang et al. Simulation of relativistically colliding laser-generated electron flows
Venkat et al. Interaction of xenon clusters with intense sub-cycle laser pulses
Kumar et al. Effect of betatron resonance on plasma wave acceleration of electrons in an ion channel
Malka et al. Principles of laser–plasma accelerators
Krainov Generation of high-order harmonics in plasmas of multicharged atomic ions produced by an intense laser pulse
CN219872901U (zh) 一种正电子捕获系统
Mora Particle acceleration in ultra-intense laser plasma interaction
Krainov Laser induced fusion in boron-hydrogen mixture
Kontar et al. Weakly turbulent electron cloud transport in a plasma with an external electric field
Weimin et al. Acceleration of Protons from a Double-Layer or Multi-Ion-Mixed Foil Irradiated by Ultraintense Lasers
Lagos et al. Ultrafast Plasmonic Forces Imposed by Fast Electrons on Metal Particles
Feng et al. Electron acceleration by a focused Gaussian laser pulse in vacuum
Tarasov et al. On the role of runaway electrons in stimulating the RF breakdown and plasma formation in torsatrons Uragan-3M, Uragan-2M

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011857867

Country of ref document: EP