WO2012103729A1 - 隧道配置方法及装置 - Google Patents

隧道配置方法及装置 Download PDF

Info

Publication number
WO2012103729A1
WO2012103729A1 PCT/CN2011/076655 CN2011076655W WO2012103729A1 WO 2012103729 A1 WO2012103729 A1 WO 2012103729A1 CN 2011076655 W CN2011076655 W CN 2011076655W WO 2012103729 A1 WO2012103729 A1 WO 2012103729A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
tunnel
group
link
connection
Prior art date
Application number
PCT/CN2011/076655
Other languages
English (en)
French (fr)
Inventor
李振斌
余璟明
薛建国
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/076655 priority Critical patent/WO2012103729A1/zh
Priority to CN201180001039.XA priority patent/CN102301657B/zh
Publication of WO2012103729A1 publication Critical patent/WO2012103729A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing

Definitions

  • the present invention relates to the field of network communications, and in particular, to a tunnel configuration method and apparatus.
  • VPN Virtual Private Network
  • a VPN tunnel generally refers to a virtual connection established between a VPN node of a PSN (Packet Switched Network) backbone network (generally a service provider edge node PE) or between a VPN node and a user node to transmit VPN data.
  • PSN Packet Switched Network
  • PE service provider edge node
  • a tunnel policy is required to select a tunnel using a VPN.
  • One of the VPN tunnel policies is the VPN tunnel binding mode, that is, a tunnel is bound to a specific VPN service, and the bound tunnel is occupied by the service.
  • the VPN tunnel binding policy is a technology for implementing service-to-private tunnel mapping. However, when multiple identical services need to transmit data at the same time, because the corresponding tunnels are the same, it is easy to cause congestion of this tunnel, while other tunnels are It is idle, which makes the tunnel application less efficient.
  • an object of the present invention is to provide a tunnel configuration method and apparatus for implementing a high efficiency application of a tunnel, and the technical solution is as follows:
  • a tunnel configuration method includes:
  • the service provider edge node PE is divided into multiple PE groups corresponding to the service, and the PE group division letter is generated.
  • Interest rate is generated by the service provider edge node PE.
  • the plurality of connection links are configured using a tunnel template corresponding to the service to generate a plurality of tunnels.
  • the present invention provides a tunnel configuration apparatus, including: a PE group division module, a PE group selection module, a connection link generation module, and a tunnel configuration module.
  • the PE group division module divides the service provider edge node PE into multiple PE groups corresponding to the service, and generates PE group division information;
  • the PE group selection module is configured to select, according to the PE group division information, a PE group corresponding to the transmitted service
  • connection link generation module is configured to control a connection route between PEs in the PE group, and generate multiple connection links;
  • the tunnel configuration module is configured to configure the multiple connection links by using a tunnel template corresponding to the service to generate multiple tunnels.
  • the method and device for configuring a tunnel according to the present invention may select a corresponding PE group according to different services, and configure a connection link between the PE groups according to a tunnel template corresponding to the service, to generate a service communication suitable for the service.
  • Multiple tunnels Since each service corresponds to multiple tunnels, when multiple identical services need to be transmitted at the same time, multiple tunnels corresponding to them can be selected to simultaneously transmit multiple identical services, thereby realizing efficient application of the tunnel.
  • Embodiment 1 is a flowchart of Embodiment 1 of a tunnel configuration method according to the present invention
  • Embodiment 2 is a flowchart of Embodiment 2 of a tunnel configuration method according to the present invention
  • FIG. 3 is a flowchart of Embodiment 3 of a tunnel configuration method according to the present invention
  • 4 is a flowchart of Embodiment 4 of a tunnel configuration method according to the present invention
  • FIG. 5 is a schematic structural diagram of a service transmission network in an example of a tunnel configuration method according to the present invention
  • FIG. 6 is a schematic structural diagram of Embodiment 1 of a tunnel configuration apparatus according to the present invention.
  • Embodiment 7 is a schematic structural view of Embodiment 2 of a tunnel configuration apparatus according to the present invention.
  • Figure 8 is a block diagram showing the structure of a tunnel configuration apparatus according to a third embodiment of the present invention.
  • the present invention can be applied to various Internets using Multi-Protocol Label Switching (MPLS).
  • MPLS Multi-Protocol Label Switching
  • Embodiment 1 of a tunnel configuration method according to the present invention may include the following steps:
  • the PE of the edge of the service provider is divided into multiple PE groups corresponding to the service, and the PE group division information is generated.
  • a PE group division rule may be preset, and then the service provider edge node PE is divided into multiple PE groups corresponding to the service according to a preset rule.
  • the preset rule may include: a preset rule that is determined according to the usage information of the historical service on the PE. There are a plurality of specific implementation manners, such as: according to the historical service information on the number of times the PE is used, if a certain service in a history is transmitted a certain number of times, the number of using certain PEs exceeds a preset threshold, The PEs are divided into a group of PEs, and the PEs in the PE group corresponding to the service are considered to be PEs that are frequently used in the transmission of the service.
  • the PEs in the network may also be grouped by the technician according to the analysis of the communication network and the requirements of the service. For example, service 1 is required to be sent from PE1 to PE2, and multiple tunnels connecting the two will pass through PE3, PE4, and PE5. PE1, PE2, PE3, PE4, and PE5 can be grouped into one group, corresponding to service 1.
  • the PE group division information generated in step S101 can be stored in various storage devices.
  • the PE group partition information can be updated in real time or periodically.
  • connection route between PEs in the PE group to generate multiple connection links.
  • the system can directly control the corresponding service.
  • the PEs in the PE group are connected to each other to generate multiple connection links.
  • a connection command may be sent to each PE device in the same PE group to control the connection between the PE devices.
  • There are several ways to connect such as making a two-to-two connection or connecting when the distance between PEs is not greater than the preset threshold.
  • each PE can obtain the PE group division information, and then control the PEs in the PE group corresponding to the service to connect, and generate multiple connection links.
  • the tunnel belongs to one type of connection link.
  • each PE can obtain the PE group division information by performing data access on the storage device storing the PE group division information.
  • the PE group division information stored in the storage device may be sent to each PE, so that each PE obtains the PE group division information, which is not limited herein.
  • the PE group division information can be sent to each PE through an Interior Gateway Protocol (IGP).
  • IGP Interior Gateway Protocol
  • IGPs There are many types of IGPs, such as: Intermediate-to-Intermediate System (IS-IS) routing protocols and Open Shortest Path First (OSPE) protocols.
  • the PE group division information can also be sent to each PE through the Border Gateway Protocol (BGP) or other protocols.
  • BGP Border Gateway Protocol
  • Connections can be made between PEs in the same group to generate a connection link.
  • each PE is connected to all PEs in the same group, that is, each PE in the PE group performs two-two connections to generate a connection link; or for each PE, it is determined. Whether the distance between the PEs in the same group and the PE is not greater than the preset value. If yes, the PE is connected to the PEs whose distance is not greater than the preset value to generate a connection link. Otherwise, the connection is not performed.
  • PEs can be directly connected to each other to generate a connection link, or can be connected through the service provider backbone device P to generate a connection link.
  • the connection link it generates is also different.
  • the link parameters and/or link functions of the multiple connection links may be configured using a tunnel template corresponding to the service.
  • the link parameters may include: bandwidth, priority, and/or affinity attributes; the link functions may include: fast reroute FRR, backup label switched path LSP, and/or automatic bandwidth adjustment.
  • bandwidth is one of the basic attributes of MPLS TE.
  • CR-LSP Constraint-based Routed-Label Switched Path
  • RSVP-TE Resource ReSerVation Protocol-Traffic Engineering
  • CR-LSP can use the Setup Priority and keep the priority (Holding)
  • the priority value can be an integer from 0 to 7. The smaller the value, the higher the priority and 7 is the lowest priority.
  • the affinity attribute is used to indicate the color of the link. After the affinity attribute is configured for the connection link, when the service transmission system selects the connection link, the affinity attribute of the different connection link is compared with the connection link management group attribute of the service transmission system, and the specific affinity is determined or avoided. The link to the attribute. If a connection link is selected to transmit the service, the connection link can be configured with different affinity attributes from other connection links, so that the service is transmitted along the same connection link with the affinity attribute. The connection link with different affinity attributes is avoided, thereby realizing the selection of the connection link.
  • FRR Fast Reroute
  • TE FRR local protection mechanism
  • MPLS TE MPLS TE. It is used to protect the link and node faults of the CR-LSP, and can configure bandwidth protection for the primary LSP. Bandwidth protection.
  • TE FRR achieves the purpose of protecting the primary CR-LSP by pre-establishing a bypass function that bypasses the faulty link or the bypass function of the node.
  • traffic is allowed to continue to be transmitted from the bypass tunnel, and the head node can continue to initiate the reconstruction of the primary path while the data transmission is not affected.
  • the backup label switching path LSP is widely used in the TE.
  • the CR-LSP that backs up the primary CR-LSP in the same path is called the backup CR-LSP.
  • the backup CR-LSP is used to implement traffic protection for important LSPs. As an important part of the traffic protection, after the primary CR-LSP fails, the traffic needs to be switched to the backup path in time. When the ingress node senses that the primary CR-LSP is unavailable, the traffic is switched to the backup path. - After the LSP path is restored, the traffic is switched back to implement backup protection for the primary CR-LSP path.
  • Automatic bandwidth adjustment dynamically detects traffic and re-establishes paths based on actual bandwidth requirements based on the test results.
  • link parameters and link functions are partial attributes of the link, and some or all of the attributes may be different when the link corresponds to different services.
  • the bandwidth of the required link is low. In this case, only the bandwidth of the link is configured to be a lower bandwidth, and the text service can be smoothly transmitted.
  • the service to be transmitted is a video service
  • the bandwidth required by the service is high. In this case, the bandwidth of the link needs to be configured to ensure smooth transmission of the video service.
  • link attributes can also be configured according to the characteristics of the service to be transmitted to ensure smooth transmission of the service. No longer.
  • the invention provides a tunnel configuration method, which can select a corresponding PE group according to different services, and configure a connection link between the PE groups according to the tunnel template corresponding to the service, and generate a traffic suitable for the service communication.
  • Tunnel Since each service corresponds to multiple tunnels, when multiple services need to be transmitted at the same time, multiple tunnels corresponding to them can be selected to simultaneously transmit multiple identical services, thereby realizing efficient application of the tunnel.
  • Embodiment 2 of a tunnel configuration method according to the present invention may include the following steps:
  • the PE of the edge service node is divided into multiple PE groups corresponding to the service, and the PE group division information is generated.
  • Step S201 is the same as step S101 of Embodiment 1, and will not be described again.
  • Step S202 is the same as step S102 of Embodiment 1, and details are not described herein.
  • the PE group division information is sent to each PE by using an internal gateway protocol IGP.
  • the internal gateway protocol IGP is a protocol that can be used in an autonomous network system to exchange routing information, including: a routing information protocol RIP, open The shortest path first OSPF protocol, the internal gateway routing protocol IGRP, the enhanced gateway internal routing line protocol EIGRP and IS-IS.
  • S204 Control each PE in the PE group to perform two-two connections, and generate multiple connection links.
  • the link parameters and/or link functions of the link may be configured, and the link parameters may include: bandwidth, priority, and/or affinity attributes; the link function may include: fast reroute FRR, backup Label switched path LSP and/or automatic bandwidth adjustment.
  • the method used in this embodiment is to use the tunnel template to configure all the connection links generated in the same PE group. In other embodiments of the present invention, only the generated connection links are unoccupied and can be connected.
  • the connection link of the service destination address is configured to reduce the amount of configuration.
  • Embodiment 3 of a tunnel configuration method according to the present invention may include The following steps:
  • Step S301 is the same as step S101 of Embodiment 1, and will not be described again.
  • S303 Send the PE group division information to each PE by using an internal gateway protocol IGP.
  • S304 Control a connection route between PEs in the PE group, and generate multiple connection links.
  • this embodiment can effectively reduce the configuration amount of the connection link.
  • one or more connection links matching the number can be selected according to the number of services to be sent, and then configured using a tunnel template.
  • Embodiment 4 of a tunnel configuration method according to the present invention may include the following steps:
  • the PE of the edge node of the service is divided into multiple PE groups corresponding to the service, and the PE group division information is generated.
  • the present invention has generated a plurality of tunnels that can transmit the service, but since there may be a tunnel in the tunnel that is being occupied, if the occupied tunnel is used to transmit the service, the tunnel will be congested. There is also no way to transfer the service quickly and smoothly. Therefore, the present invention selects a tunnel in the unoccupied tunnel that can connect to the service destination address, and uses the tunnel to perform the transmission of the service. Those skilled in the art can understand that only when the tunnel can communicate with the service When the destination address is reached, the tunnel may transmit the service to the destination address.
  • the destination address can be the address of the destination router.
  • the tunnel can be selected in a variety of ways.
  • the tunnel generated after the priority is configured for the link will have priority.
  • the tunnel with the highest priority is selected to transmit the service.
  • several tunnels with higher priority can be selected to transmit these services at the same time, thus ensuring fast transmission of services.
  • the tunnel configuration method provided by the present invention may select a corresponding PE group according to different services, and configure a connection link between the PE groups according to the tunnel template corresponding to the service to generate multiple tunnels suitable for the service communication. . Since each service corresponds to multiple tunnels, when multiple identical services need to be transmitted at the same time, multiple tunnels corresponding to them can be selected to simultaneously transmit multiple identical services, thereby implementing efficient application of the tunnel.
  • the network with the service transmission function is composed of the control center 001, the service provider core device P1, the service provider core device P2, the service provider edge node PE1, the service provider edge node PE2, the service provider edge node PE3, and the service provider edge node PE4.
  • you can set _ P1 and P2 in the provincial capital of Fujian province PE1 and PE2 are located in the B area of the province (non-provincial city), and PE3 and PE4 are located in the C area (non-capital city) of the province.
  • Service 1 is a text service sent by PE1 to PE3
  • service 2 is a video service sent by PE1 to PE4
  • service 3 is a voice service sent by PE2 to PE1.
  • PE group 1 includes: PE1, PE2, and PE3, corresponding to service 1;
  • PE group 2 includes: PE1, PE2, and PE4, corresponding to service 2;
  • PE group 3 includes: PE1 and PE2, corresponding to service 3.
  • the above PE group division information is stored in the control center 001 and sent to each through the network.
  • connection route between PE1, PE2, and PE3 in PE group 1 is PE1-P1-PE3, PE1-P1-P2-PE3, PE1-PE2, and PE1-PE2-P2-PE3, and four connection links are generated.
  • the tunnel template 1 corresponding to service 1 can configure the bandwidth of the link to be 1M, so that the generated tunnel meets the requirements of service 1.
  • the tunnel template 1 is used to configure PE1-P1-PE3, PE1-P1-P2-PE3, PE1-PE2, and PE1-PE2-P2-PE3 to generate four tunnels with a bandwidth of 1M.
  • two services 1 need to be transmitted at the same time, only two tunnels capable of successfully transmitting service 1 among the four tunnels need to be selected to transmit two services 1 respectively.
  • PE1-PE2-P2-PE3 is being used in the four tunnels, and PE1-PE2 cannot transmit service 1 to PE3, so PE1-P1-PE3 and PE1-P1-P2-PE3 are selected. Two services 1 are transmitted, and each tunnel corresponds to one service, thereby ensuring efficient application of the tunnel.
  • the present invention further provides a tunnel configuration apparatus.
  • the apparatus may specifically include:
  • the PE group dividing module 100 is configured to divide the PE of the edge of the service provider into multiple PE groups corresponding to the service, and generate PE group division information.
  • a PE group division rule may be preset, and then the service provider edge node PE is divided into multiple PE groups corresponding to the service according to a preset rule.
  • the PE group division module 100 may be specifically configured to: divide the service provider edge node PE into multiple PE groups corresponding to the service according to the preset rule formulated by the history service for the PE usage information.
  • the PE group selection module 200 is configured to select, according to the PE group division information, a PE group corresponding to the transmitted service;
  • the PE group selection module 200 can find the corresponding PE group according to the service.
  • connection link generation module 300 configured to control a connection route between PEs in the PE group, and generate multiple connection links; It is known to those skilled in the art that after the PE group division information is obtained, the connection link generation module 300 can directly control the connection between the PEs in the PE group corresponding to the transmitted service, and generate multiple connection links. Of course, each PE can obtain the PE group division information, and then control the PEs in the PE group corresponding to the service to connect, and generate multiple connection links. It should be noted that the tunnel belongs to one type of connection link. Specifically, the connection link generation module 300 may send a connection command to each PE device in the same PE group to control connection between the PE devices. There are several ways to connect, such as making a two-to-two connection or connecting when the distance between PEs is not greater than a preset threshold.
  • the tunnel configuration module 400 is configured to configure the multiple connection links by using a tunnel template corresponding to the service to generate multiple tunnels.
  • the link parameters and/or link functions of the link may be configured, and the link parameters may include: bandwidth, priority, and/or affinity attributes; the link function may include: fast reroute FRR, backup Label switched path LSP and/or automatic bandwidth adjustment.
  • the tunnel configuration module 400 can use the tunnel template to configure all the connection links generated in the same PE group.
  • the tunnel template can be used to configure all the connection links generated in the same PE group.
  • only one of the generated connection links can successfully transmit the service.
  • multiple connection links are configured to reduce the amount of configuration.
  • the present invention provides a tunnel configuration apparatus, which can select a corresponding PE group according to different services, and configure a connection link between the PE groups according to the tunnel template corresponding to the service, and generate a traffic suitable for the service communication.
  • Tunnel Each of the services corresponds to multiple tunnels. When multiple services need to be transmitted at the same time, multiple tunnels corresponding to each other can be selected to simultaneously transmit multiple identical services to implement efficient tunnel application.
  • the present invention further provides a tunnel configuration apparatus Embodiment 2, which is different from Embodiment 1 of a tunnel configuration apparatus in that
  • the connection link generation module 300 includes: a PE group division information sending module 310, configured to send the PE group division information to each PE through an internal gateway protocol IGP;
  • the PE connection module 320 is configured to control each PE in the PE group to perform two-two connections, and generate multiple connection links.
  • IGP Internal Gateway Protocol
  • OSPF OSPF
  • IGRP IGRP
  • EIGRP EIGRP
  • IS-IS IS-IS
  • PE group division information can be stored in various storage devices.
  • the PE group partition information can be updated in real time or periodically.
  • the corresponding PE group can be found according to the service.
  • a person skilled in the art may know that after obtaining the PE group, the PEs in the PE group may be directly connected to each other to generate multiple connection links.
  • the PEs may also obtain PE group division information, and then control the PE.
  • Each PE in the group is connected to generate multiple connection links.
  • the connection link generation module 300 can send a connection command to each PE device in the same PE group to control the connection between the PE devices.
  • There are several ways to connect such as making a two-to-two connection or connecting when the distance between PEs is not greater than a preset threshold.
  • each PE can obtain specific PE group division information by performing data access to the storage device.
  • the PE group division information stored in the storage device may be sent to each PE, so that each PE obtains specific PE group division information, which is not limited herein.
  • the PE group division information can be sent to each PE through the internal gateway protocol IGP.
  • IGPs There are several types of IGPs, such as the IS-IS protocol and the OSPE protocol.
  • the present invention further provides a tunnel configuration apparatus embodiment 3, which is different from the tunnel configuration apparatus embodiment 1 in that: the tunnel selection module 500 is configured to be used in the multiple tunnels. A tunnel in the occupied tunnel that can connect to the service destination address is selected, and the service is transmitted by using the tunnel.
  • the present invention has generated multiple tunnels that can transmit the service, but since there may be tunnels in the tunnels that are being occupied, if the tunnel is selected to be occupied, This service will inevitably cause congestion in this tunnel, and there is no way to transmit the service quickly and smoothly. Therefore, the tunnel selection module 500 of the present embodiment selects a tunnel in the unoccupied tunnel that can connect to the service destination address, and uses the tunnel to perform the transmission of the service.
  • the tunnel can transmit the service to the destination address only when the tunnel can connect to the destination address of the service.
  • the destination address can be the address of the destination router.
  • the tunnel can be selected in a variety of ways.
  • the tunnel generated after the priority is configured for the link will have priority.
  • the tunnel with the highest priority is selected to transmit the service.
  • several tunnels with higher priority can be selected to transmit these services at the same time, thus ensuring fast transmission of services.
  • the tunnel configuration apparatus may select a corresponding PE group according to different services, and configure a connection link between the PE groups according to the tunnel template corresponding to the service, and generate multiple tunnels suitable for the service communication. . Since each service corresponds to multiple tunnels, when multiple identical services need to be transmitted at the same time, multiple tunnels corresponding to them can be selected to simultaneously transmit multiple identical services, thereby implementing efficient application of the tunnel.
  • the specific location of the tunnel configuration apparatus provided by the embodiments of the tunnel configuration apparatus of the present invention is not limited, and any position where the tunnel arrangement apparatus of the present invention can be implemented is within the scope of the disclosure and protection of the present invention.
  • the tunnel configuration device of the present invention may be located at the control center side of the service transmission network, or at the service provider core device side, or at the service provider edge node side.
  • the tunnel configuration device provided by all embodiments of the present invention is located at the control center side of the service transmission network.
  • the device embodiment since it basically corresponds to the method embodiment, reference may be made to the partial description of the method embodiment.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, ie may be located One place, or it can be distributed to multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.
  • the disclosed device and method may be implemented in other manners without departing from the spirit and scope of the invention.
  • the present embodiment is merely an illustrative example and should not be taken as limiting, and the specific content given should not limit the invention.
  • the goal of. the division of the unit or subunit is only a logical function division, and the actual implementation may have another division manner, for example, a plurality of units or a plurality of subunits are combined.
  • multiple units may or may be combined or integrated into another system, or some features may be omitted or not implemented.
  • the described apparatus and methods, and the schematic diagrams of various embodiments may be combined or integrated with other systems, modules, techniques or methods without departing from the scope of the invention.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

隧道配置方法及装置
技术领域 本发明属于网络通信领域, 尤其涉及一种隧道配置方法及装置。
背景技术 随着网络的发展,如何更好的使数据在网络设备间进行高效传递成为一个 十分重要的问题。 流量工程( Traffic Engineering ,ΤΕ )是一种对流量进行测量、 建模、 描述和控制, 以达到预定性能目标的技术。 为了能够有效保障网络信道 的畅通, 流量工程需要进行大量配置。 虚拟专用网 ( Virtual Private Network, VPN )技术能够有效简化流量工程 的配置。 VPN具有虚拟和专用两个特征, 可以把现有的 IP网络分解成逻辑上 分离的网络。 VPN 的基本原理是利用隧道技术, 把所要发送的业务数据封装 在隧道中, 利用 VPN骨干网建立的专用数据传输通道, 实现数据的透明传输。 具体来说, VPN隧道一般指在 PSN ( Packet Switched Network )骨干网的 VPN 节点(一般为服务商边缘节点 PE )之间或 VPN节点与用户节点之间建立的用 来传输 VPN数据的虚拟连接。
使用 VPN选择隧道需要使用隧道策略。 VPN隧道策略之一是 VPN隧道 绑定方式, 即, 将某条隧道与特定的 VPN业务绑定, 该绑定的隧道为该业务 所独自占用。 VPN 隧道绑定策略是实现业务到专用隧道映射的技术, 但当多 个相同业务需要同时进行数据传输时, 由于所对应的隧道为同一条, 所以容易 造成此条隧道的堵塞, 而其他隧道却处于闲置状态,从而使得隧道的应用效率 较低。
发明内容
有鉴于此, 本发明的目的在于提供一种隧道配置方法及装置, 以实现隧道 的高效率应用, 技术方案如下:
一种隧道配置方法, 包括:
将服务商边缘节点 PE划分为对应于业务的多个 PE组,生成 PE组划分信 息;
根据所述 PE组划分信息, 选择与被传输的业务相对应的 PE组; 控制所述 PE组中各 PE之间的连接路线, 生成多个连接链路;
使用与该业务相对应的隧道模版对所述多个连接链路进行配置,生成多个 隧道。
相应的, 本发明提供了一种隧道配置装置, 包括: PE组划分模块、 PE组 选择模块、 连接链路生成模块和隧道配置模块,
所述 PE组划分模块, 将服务商边缘节点 PE划分为对应于业务的多个 PE 组, 生成 PE组划分信息;
所述 PE组选择模块, 用于根据所述 PE组划分信息, 选择与被传输的业 务相对应的 PE组;
所述连接链路生成模块, 用于控制所述 PE组中各 PE之间的连接路线, 生成多个连接链路;
所述隧道配置模块,用于使用与该业务相对应的隧道模版对所述多个连接 链路进行配置, 生成多个隧道。
本发明提供的一种隧道配置方法及装置, 可以根据不同业务选择相应的 PE组, 并根据与所述业务对应的隧道模板对 PE组之间的连接链路进行配置, 生成适合所述业务通信的多个隧道。 由于每一个业务都对应于多个隧道, 因此 当多个相同业务同时需要传输时,可以选择与之对应的多个隧道对多个相同业 务同时进行传输, 实现了隧道的高效率应用。
附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明一种隧道配置方法实施例 1的流程图;
图 2是本发明一种隧道配置方法实施例 2的流程图;
图 3是本发明一种隧道配置方法实施例 3的流程图; 图 4是本发明一种隧道配置方法实施例 4的流程图;
图 5是本发明一种隧道配置方法的举例中的业务传输网络组成示意图; 图 6是本发明一种隧道配置装置实施例 1的结构示意图;
图 7是本发明一种隧道配置装置实施例 2的结构示意图;
图 8是本发明一种隧道配置装置实施例 3的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图 ,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅是本发明一部分实施例, 而不是全 部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造性 劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明可以应用于使用多协议标记交换 ( MPLS , Multi-Protocol Label Switching ) 的各种互联网中。
参考图 1 , 示出了本发明一种隧道配置方法实施例 1的流程图, 可以包括 以下步骤:
S101、 将 Λ良务商边缘节点 PE划分为对应于业务的多个 PE组, 生成 PE 组划分信息;
在实际应用中, 可以首先预设一个 PE组划分规则, 然后根据预设规则将 服务商边缘节点 PE划分为对应于业务的多个 PE组。 其中, 预设规则可以包 括: 根据历史业务对 PE的使用信息而制定的预设规则。 具体的实施方式有多 种, 如: 根据历史业务对 PE的使用次数信息而制定, 如果历史中某项业务在 传输一定次数的情况下, 使用某些 PE的次数超过一预设阈值, 则将这些 PE 划分为一组 PE, 对应于该业务, 可以认为该业务所对应的 PE组内的 PE为该 业务传输时经常用到的 PE。 当然,也可以根据历史业务使用 PE进行传输的效 率信息而制定, 如历史中该业务使用某些 PE进行传输的传输效率较高, 则可 以将这些 PE划分为一组, 对应于该业务, 可以认为该业务所对应的 PE组内 的 PE为传输该业务效率较高的 PE。 当然, 在实际应用中, 还可以釆用其他的 使用信息制定预设规则, 本发明在此不做限定。 当然,在实际应用中,还可以由技术人员根据对通信网络的分析及业务的 要求对网络中的 PE进行分组。 如: 业务 1要求从 PE1发送到 PE2, 而连接二 者的多个隧道将经过 PE3、 PE4和 PE5, 则可以将 PE1、 PE2、 PE3、 PE4和 PE5划分为一组, 对应于业务 1。
另外, 步骤 S101所生成的 PE组划分信息可以存储在各种存储设备中。
PE组划分信息可以进行实时或定时更新。
S102、 根据所述 PE组划分信息, 选择与被传输的业务相对应的 PE组; 本领域技术人员可以理解的是, 当有业务需要被传输时, 本发明根据该业 务便可以查找到与该业务相对应的 PE组。
S103、 控制所述 PE组中各 PE之间的连接路线, 生成多个连接链路; 本领域技术人员可知的是, 在获得 PE组划分信息以后, 系统就可以直接 控制被传输的业务所对应的 PE组中各 PE之间进行连接,生成多个连接链路。 具体的, 可以向相同 PE组中的各 PE设备发送连接命令,控制这些 PE设备之 间进行连接。 连接的方式有多种, 如进行两两连接或当 PE间距离不大于预设 阈值时, 则进行连接。 当然, 也可以让各 PE获得 PE组划分信息, 然后控制 该业务所对应的 PE组中各 PE之间进行连接, 生成多个连接链路。 需要说明 的一点是, 隧道属于连接链路的一种。
对于让各 PE获得 PE组划分信息的方式,本领域技术人员可以理解的是, 各 PE对存储 PE组划分信息的存储设备进行数据访问便可以获得 PE组划分信 息。 当然, 也可以将存储设备中存储的 PE组划分信息发送到各 PE中, 使各 PE获得 PE组划分信息, 本发明在此不做限定。 具体的, PE组划分信息可以 通过内部网关协议 (IGP , Interior Gateway Protocols)发送到各 PE中。 内部网 关协议 IGP可以有多种,如: 中间系统到中间系统( IS-IS , Intermediate System to Intermediate System )路由协议和开放式最短路径优先( OSPE, Open Shortest Path First )协议。 当然, PE组划分信息也可以通过边界网关协议 (BGP, Border Gateway Protocol)或其他协议发送到各 PE中, 本发明在此不做限定。
需要说明的是, 在获得具体的 PE分组信息以及相对应的业务信息后, 处 于同一组的各 PE之间便可以进行连接, 生成连接链路。 具体的, 连接的方式 可以有多种, 如: 每一 PE与同一组的所有 PE之间进行连接, 即 PE组中各 PE进行两两连接, 生成连接链路; 或对于每一 PE, 判断同一组的其他 PE与 该 PE之间距离是否不大于预设值, 如果是, 则该 PE与距离不大于该预设值 的 PE之间进行连接, 生成连接链路, 否则不进行连接。
本领域技术人员可以理解的是, PE之间可以直接彼此进行连接, 生成连 接链路, 也可以通过服务商骨干设备 P进行连接, 生成连接链路。 当一 PE通 过不同的 P连接另一 PE时, 其生成的连接链路也是不同的。
S104、使用与该业务相对应的隧道模版对所述多个连接链路进行配置,生 成多个隧道;
需要说明的是,可以使用与该业务相对应的隧道模版对所述多个连接链路 的链路参数和 /或链路功能进行配置。 当然, 也可以对连接链路的其他属性进 行配置。 具体的, 链路参数可以包括: 带宽、 优先级和 /或亲和属性; 链路功 能可以包括: 快速重路由 FRR、 备份标记交换路径 LSP和 /或自动带宽调整。 为帮助理解, 下面对部分链路参数和部分链路属性作简单介绍。
本领域技术人员可以理解的是, 带宽是 MPLS TE的基本属性之一。 在建 立基于约束路由的标签交换路径 ( CR-LSP , Constraint-based Routed-Label Switched Path ) 时, 可以指定 MPLS TE的带宽, 并根据带宽要求确定合适的 路径。 基于流量工程扩展的资源预留协议(RSVP-TE, Resource ReSerVation Protocol-Traffic Engineering )信令可以携带带宽信息, 在沿路径的各个节点实 施带宽预留。 CR-LSP建立成功后,能够为对应的业务提供所要求的带宽保证。
为了更好的管理连接链路, 可以为链路配置优先级。 如果在建立 CR-LSP 的过程中, 无法找到满足所需带宽要求的路径, 则拆除某一条优先级较低的 CR-LSP, 占用为它分配的带宽资源, 这种处理方式称为抢占 ( Preemption )。
CR-LSP 可以使用建立优先级 (Setup Priority ), 保持优先级(Holding
Priority )两个优先级属性来决定是否可以进行抢占。 优先级的取值可以为从 0 到 7的整数。 取值越小, 优先级越高, 7为最低优先级。 亲和属性用来表示连接链路的颜色。 为连接链路配置亲和属性后, 业务传 输系统选择连接链路时,将不同连接链路的亲和属性和业务传输系统的连接链 路管理组属性进行比较, 决定选择还是避开特定亲和属性的连接链路。如选择 某一连接链路对业务进行传输以后,可以为该连接链路配置与其他连接链路不 同的亲和属性, 这样该业务就会沿着亲和属性相同的连接链路进行传输, 而避 开亲和属性不同的连接链路, 从而实现了对连接链路的选择。
快速重路由 (FRR, Fast ReRoute )在 MPLS TE中是一种局部性保护机 制(也称 TE FRR ), 用于保护 CR-LSP的链路和节点故障, 而且可以对主 LSP 配置带宽保护或非带宽保护。 TE FRR通过预先建立绕过故障的链路或者节点 的旁路功能 Bypass隧道达到保护主 CR-LSP的目的。 当 CR-LSP链路或节点 故障时, 允许流量继续从旁路隧道传输, 同时头节点可以在数据传输不受影响 的同时继续发起主路径的重建。
备份标记交换路径 LSP 在 TE 中被广泛应用, 如: 同一条路径下对主 CR-LSP进行路径备份的 CR-LSP称为备份 CR-LSP„备份 CR-LSP用于实现对 重要 LSP的流量保护。作为流量保护的一个重要组成部分,在主 CR-LSP失败 后,流量需要及时被切换到备份路径上。当入节点感知到主 CR-LSP不可用时, 将流量切换到备份路径上, 当主 CR-LSP路径恢复后再将流量切换回来, 以实 现对主 CR-LSP路径的备份保护。
自动带宽调整可以动态检测流量,并根据检测结果按照实际的带宽需求重 新建立路径。
本领域技术人员可以理解的是,以上链路参数和链路功能均为链路的部分 属性, 当该链路对应于不同业务时,其部分或全部属性也可能不同。举例来说: 当要传输文字业务时, 其所要求的链路的带宽较低, 这时只需要将链路的带宽 配置为较低的带宽就可以顺畅的传输该文字业务。而当所要传输的业务是视频 业务时,该业务所要求的链路带宽较高,这时就需要将链路的带宽配置高一些, 以确保顺畅的传输该视频业务。 当然, 本领域技术人员可以理解, 其他链路属 性也可以根据所要传输业务的特性进行配置以确保该业务的顺畅传输,本发明 不再赘述。
本发明提供的一种隧道配置方法, 可以根据不同业务选择相应的 PE组, 并根据与所述业务对应的隧道模板对 PE组之间的连接链路进行配置, 生成适 合所述业务通信的多个隧道。 由于每一个业务都对应于多个隧道, 因此当多个 相同业务同时需要传输时,可以选择与之对应的多个隧道对多个相同业务同时 进行传输, 实现了隧道的高效率应用。
参考图 2, 示出了本发明一种隧道配置方法实施例 2的流程图, 可以包括 以下步骤:
5201、 将 Λ良务商边缘节点 PE划分为对应于业务的多个 PE组, 生成 PE 组划分信息;
步骤 S201与实施例 1的步骤 S101相同, 不再赘述。
5202、 根据所述 PE组划分信息, 选择与被传输的业务相对应的 PE组; 步骤 S202与实施例 1的步骤 S102相同, 不再赘述。
5203、 将所述 PE组划分信息通过内部网关协议 IGP发送到各 PE中; 内部网关协议 IGP是一种可以应用在自治网络系统中用于交换路由信息 的协议, 包括: 路由信息协议 RIP、 开放式最短路径优先 OSPF协议、 内部网 关路由协议 IGRP、 增强网关内部路由线路协议 EIGRP和 IS-IS等。
5204、 控制所述 PE组中各 PE进行两两连接, 生成多个连接链路;
5205、使用与该业务相对应的隧道模版对所述多个连接链路进行配置,生 成多个隧道。
具体的, 可以对连接链路的链路参数和 /或链路功能进行配置, 链路参数 可以包括:带宽、优先级和 /或亲和属性;链路功能可以包括: 快速重路由 FRR、 备份标记交换路径 LSP和 /或自动带宽调整。
本实施例所釆用的方法是使用隧道模版对同一 PE组中生成的所有连接链 路进行配置,在本发明其他实施例中,还可以仅仅对生成的连接链路中的未占 用且可以连通业务目的地址的连接链路进行配置, 这样可以减少配置量。
参考图 3 , 示出了本发明一种隧道配置方法实施例 3的流程图, 可以包括 以下步骤:
S301、 将 Λ良务商边缘节点 ΡΕ划分为对应于业务的多个 ΡΕ组, 生成 ΡΕ 组划分信息;
步骤 S301与实施例 1的步骤 S101相同, 不再赘述。
S302、 根据所述 PE组划分信息, 选择与被传输的业务相对应的 PE组;
5303、 将所述 PE组划分信息通过内部网关协议 IGP发送到各 PE中;
5304、 控制所述 PE组中的各 PE之间的连接路线, 生成多个连接链路;
5305、在所述多个连接链路中的未占用链路中选择可以连通所述业务目的 地址的连接链路并使用与该业务相对应的隧道模版对所选择的连接链路进行 配置, 生成隧道。
通过应用以上技术方案, 本实施例可以有效减少连接链路的配置量。在实 际应用中,可以根据所要发送业务的数量选择与该数量匹配的一个或多个连接 链路, 然后再使用隧道模版进行配置。
参考图 4, 示出了本发明一种隧道配置方法实施例 4的流程图, 可以包括 以下步骤:
5401、 将 Λ良务商边缘节点 PE划分为对应于业务的多个 PE组, 生成 PE 组划分信息;
5402、 根据所述 PE组划分信息, 选择与被传输的业务相对应的 PE组; S403、 控制所述 PE组中各 PE之间的连接路线 , 生成多个连接链路; S404、使用与该业务相对应的隧道模版对所述多个连接链路进行配置,生 成多个隧道;
S405、在所述多个隧道中的未占用隧道中选择可以连通所述业务目的地址 的隧道, 并用该隧道对所述业务进行传输。
通过步骤 S404, 本发明已经生成了可以传输所述业务的多条隧道, 但由 于这些隧道中可能有正在被占用的隧道, 如果选用被占用的隧道传输该业务, 必然造成这条隧道的拥堵, 也没有办法快速且顺畅的传输该业务。 所以, 本发 明选择未占用隧道中可以连通所述业务目的地址的隧道,使用该隧道进行所述 业务的传输。本领域技术人员可以理解的是, 只有当隧道可以连通所述业务的 目的地址时, 该隧道才可能将所述业务传输到目的地址处。 其中, 目的地址可 以为目的路由器的地址。
在实际应用中, 隧道的具体选择方式可以有多种, 如: 在为链路配置优先 级以后生成的隧道将具有优先级,我们可以在能够连通所述业务目的地址且未 占用的隧道中首先选择优先级最高的隧道对所述业务进行传输。当同时出现多 个相同业务时, 可以选择优先级较高的几个隧道同时对这些业务进行传输,从 而保证了业务的快速传输。
本发明提供的隧道配置方法, 可以根据不同业务选择相应的 PE组, 并根 据与所述业务对应的隧道模板对 PE组之间的连接链路进行配置, 生成适合所 述业务通信的多个隧道。 由于每一个业务都对应于多个隧道, 因此当多个相同 业务同时需要传输时,可以选择与之对应的多个隧道对多个相同业务同时进行 传输, 实现隧道的高效率应用。
为方便理解, 现举例说明: 如图 5所示:
具有业务传输功能的网络由控制中心 001、服务商核心设备 Pl、服务商核 心设备 P2、服务商边缘节点 PE1、服务商边缘节点 PE2、服务商边缘节点 PE3 和服务商边缘节点 PE4组成。 为方便理解, 可以^ _定 P1和 P2位于曱省的省 会城市 , PE1和 PE2位于该省的乙地区 (非省会城市 ) , PE3和 PE4位于该省 的丙地区 (非省会城市)。
业务 1为由 PE1发送至 PE3的文字业务, 业务 2为由 PE1发送至 PE4的 视频业务, 业务 3为由 PE2发送至 PE1的语音业务。
根据历史信息中三个业务所使用的 PE的次数分析, 对 PE分组如下: PE组 1包括: PE1、 PE2和 PE3 , 对应于业务 1 ;
PE组 2包括: PE1、 PE2和 PE4, 对应于业务 2;
PE组 3包括: PE1和 PE2, 对应于业务 3。
以上这些 PE组划分信息存储在控制中心 001中, 并通过网络已发送到各
PE中。
当同时出现两个业务 1需要传输时, 选择业务 1所对应的 PE组 1 , 控制 PE组 1中 PE1、 PE2和 PE3之间的连接路线为 PE1-P1-PE3 , PE1-P1-P2-PE3 , PE1-PE2和 PE1-PE2-P2-PE3 , 生成四个连接链路。
假设业务 1(文字业务)对应的隧道模版 1可以配置连接链路的带宽为 1M, 以使生成的隧道满足业务 1 的要求。 则使用隧道模版 1 对 PE1-P1-PE3、 PE1-P1-P2-PE3 , PE1-PE2和 PE1-PE2-P2-PE3进行配置, 生成四个隧道, 带宽 均为 1M。 当同时有两个业务 1需要传输时, 只需要选择这四个隧道中能够成 功传输业务 1的两个隧道分别对两个业务 1进行传输即可。具体的, 这四个隧 道中可能有隧道正在被占用, 而隧道 PE1-PE2无法将业务 1传输到 PE3 ,所以 不能成功传输业务 1。 举例来说: 假设这四个隧道中, PE1-PE2-P2-PE3正在被 占用, 而 PE1-PE2无法将业务 1 传输到 PE3 中, 所以选择 PE1-P1-PE3 和 PE1-P1-P2-PE3对两个业务 1进行传输, 每条隧道对应于一个业务, 从而保证 了隧道的高效应用。
与上述本发明一种隧道配置方法实施例 1所提供的方法相对应,参见图 6, 本发明还提供了一种隧道配置装置实施例 1 , 在本实施例中, 该装置具体可以 包括:
PE组划分模块 100, 将 Λ良务商边缘节点 PE划分为对应于业务的多个 PE 组, 生成 PE组划分信息;
在实际应用中, 可以首先预设一个 PE组划分规则, 然后根据预设规则将 服务商边缘节点 PE划分为对应于业务的多个 PE组。 PE组划分模块 100具体 可以设置为: 根据历史业务对 PE的使用信息而制定的预设规则, 将服务商边 缘节点 PE划分为对应于业务的多个 PE组。
PE组选择模块 200, 用于根据所述 PE组划分信息, 选择与被传输的业务 相对应的 PE组;
本领域技术人员可以理解的是, 当有业务需要被传输时, PE组选择模块 200便可以才艮据该业务查找到相对应的 PE组。
连接链路生成模块 300,用于控制所述 PE组中各 PE之间的连接路线,生 成多个连接链路; 本领域技术人员可知的是, 在获得 PE组划分信息以后, 连接链路生成模 块 300就可以直接控制被传输的业务所对应的 PE组中各 PE之间进行连接, 生成多个连接链路。 当然, 也可以让各 PE获得 PE组划分信息, 然后控制该 业务所对应的 PE组中各 PE之间进行连接, 生成多个连接链路。 需要说明的 一点是, 隧道属于连接链路的一种。 具体的, 连接链路生成模块 300可以向相 同 PE组中的各 PE设备发送连接命令,控制这些 PE设备之间进行连接。连接 的方式有多种, 如进行两两连接或当 PE间距离不大于预设阈值时, 则进行连 接。
隧道配置模块 400, 用于使用与该业务相对应的隧道模版对所述多个连接 链路进行配置, 生成多个隧道。
具体的, 可以对连接链路的链路参数和 /或链路功能进行配置, 链路参数 可以包括:带宽、优先级和 /或亲和属性;链路功能可以包括: 快速重路由 FRR、 备份标记交换路径 LSP和 /或自动带宽调整。
在实际应用中, 本实施例中隧道配置模块 400 可以使用隧道模版对同一 PE组中生成的所有连接链路进行配置, 当然, 还可以仅仅对生成的连接链路 中可以成功传输该业务的一个或多个连接链路进行配置, 这样可以减少配置 量。
本发明提供的一种隧道配置装置, 可以根据不同业务选择相应的 PE组, 并根据与所述业务对应的隧道模板对 PE组之间的连接链路进行配置, 生成适 合所述业务通信的多个隧道。 由于每一个业务都对应于多个隧道, 因此当多个 相同业务同时需要传输时,可以选择与之对应的多个隧道对多个相同业务同时 进行传输, 实现隧道的高效率应用。
与上述本发明一种隧道配置方法实施例 2所提供的方法相对应,参见图 7, 本发明还提供了一种隧道配置装置实施例 2, 与一种隧道配置装置实施例 1的 区别在于,本实施例提供的一种隧道配置装置中,连接链路生成模块 300包括: PE组划分信息发送模块 310,用于将所述 PE组划分信息通过内部网关协 议 IGP发送到各 PE中; PE连接模块 320, 用于控制所述 PE组中各 PE进行两两连接, 生成多个 连接链路。
内部网关协议 IGP是一种可以应用在自治网络系统中用于网关间交换数 据流转通道信息的协议, 包括: RIP、 OSPF、 IGRP、 EIGRP和 IS-IS等。
在实际应用中, PE组划分信息可以存储在各种存储设备中。 PE组划分信 息可以进行实时或定时更新。 当有业务需要被传输时,便可以根据该业务查找 到相对应的 PE组。 本领域技术人员可知的是, 在获得 PE组之后, 可以直接 控制该 PE组中各 PE之间进行连接, 生成多个连接链路; 也可以让各 PE获得 PE组划分信息,然后控制该 PE组中各 PE之间进行连接,生成多个连接链路。 具体的, 连接链路生成模块 300可以向相同 PE组中的各 PE设备发送连接命 令, 控制这些 PE设备之间进行连接。 连接的方式有多种, 如进行两两连接或 当 PE间距离不大于预设阈值时, 则进行连接。
对于让各 PE获得 PE组划分信息的方式,本领域技术人员可以理解的是, 各 PE对该存储设备进行数据访问便可以获得具体的 PE组划分信息。 当然, 也可以将存储设备中存储的 PE组划分信息发送到各 PE中 ,使各 PE获得具体 的 PE组划分信息, 本发明在此不做限定。 具体的, PE组划分信息可以通过 内部网关协议 IGP发送到各 PE中。 内部网关协议 IGP可以有多种, 如: IS-IS 协议和 OSPE协议。
参考图 8, 本发明还提供了一种隧道配置装置实施例 3 , 与一种隧道配置 装置实施例 1的区别在于, 还包括: 隧道选择模块 500, 用于在所述多个隧道 中的未占用隧道中选择可以连通所述业务目的地址的隧道,并用该隧道对所述 业务进行传输。
图 6所示的一种隧道配置装置实施例 1中,本发明已经生成了可以传输所 述业务的多条隧道,但由于这些隧道中可能有正在被占用的隧道,如果选用被 占用的隧道传输该业务, 必然造成这条隧道的拥堵,也没有办法快速且顺畅的 传输该业务。所以, 本实施例的隧道选择模块 500选择未占用隧道中可以连通 所述业务目的地址的隧道,使用该隧道进行所述业务的传输。本领域技术人员 可以理解的是, 只有当隧道可以连通所述业务的目的地址时, 该隧道才可能将 所述业务传输到目的地址处。 其中, 目的地址可以为目的路由器的地址。
在实际应用中, 隧道的具体选择方式可以有多种, 如: 在为链路配置优先 级以后生成的隧道将具有优先级,我们可以在能够连通所述业务目的地址且未 占用的隧道中首先选择优先级最高的隧道对所述业务进行传输。当同时出现多 个相同业务时, 可以选择优先级较高的几个隧道同时对这些业务进行传输,从 而保证了业务的快速传输。
本发明提供的隧道配置装置, 可以根据不同业务选择相应的 PE组, 并根 据与所述业务对应的隧道模板对 PE组之间的连接链路进行配置, 生成适合所 述业务通信的多个隧道。 由于每一个业务都对应于多个隧道, 因此当多个相同 业务同时需要传输时,可以选择与之对应的多个隧道对多个相同业务同时进行 传输, 实现隧道的高效率应用。
需要说明的一点是,本发明对各隧道配置装置实施例提供的隧道配置装置 的具体位置并不限定, 凡是能够实施本发明隧道配置装置的位置, 均是本发明 公开和保护的范围。具体的, 本发明的隧道配置装置可以位于业务传输网络的 控制中心一侧,也可以位于服务商核心设备一侧,也可以位于服务商边缘节点 一侧。优选的, 本发明所有实施例提供的隧道配置装置位于业务传输网络的控 制中心一侧。
对于装置实施例而言, 由于其基本相应于方法实施例, 所以相关之处参见 方法实施例的部分说明即可。 以上所描述的装置实施例仅仅是示意性的, 其中 所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元 显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可 以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块 来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况 下, 即可以理解并实施。
在本发明所提供的几个实施例中, 应该理解到, 所揭露的装置和方法, 在 没有超过本发明的精神和范围内, 可以通过其他的方式实现。 当前的实施例只 是一种示范性的例子, 不应该作为限制, 所给出的具体内容不应该限制本发明 的目的。 例如, 所述单元或子单元的划分, 仅仅为一种逻辑功能划分, 实际实 现时可以有另外的划分方式, 例如多个单元或多个子单元结合一起。 另外, 多 个单元可以或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽 略, 或不执行。
另外, 所描述装置和方法以及不同实施例的示意图,在不超出本发明的范 围内, 可以与其它系统, 模块, 技术或方法结合或集成。 另一点, 所显示或讨 论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元 的间接耦合或通信连接, 可以是电性, 机械或其它的形式。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1、 一种隧道配置方法, 其特征在于, 包括:
将月良务商边缘节点 PE划分为对应于业务的多个 PE组,并生成 PE组划分 信息;
根据所述 PE组划分信息, 选择与被传输的业务相对应的 PE组; 控制所述 PE组中各 PE之间的连接路线, 生成多个连接链路;
使用与该业务相对应的隧道模版对所述多个连接链路进行配置,生成多个 隧道。
2、 根据权利要求 1所述的方法, 其特征在于, 所述将服务商边缘节点 PE 划分为对应于业务的多个 PE组包括: 根据历史业务对 PE的使用信息, 将服 务商边缘节点 PE划分为对应于业务的多个 PE组。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述控制所述 PE组 中各 PE之间的连接路线, 生成多个连接链路包括:
将所述 PE组划分信息通过内部网关协议 IGP发送到各 PE中, 控制所述 PE组中各 PE进行两两连接, 生成多个连接链路。
4、 根据权利要求 1所述的方法, 其特征在于, 所述使用与该业务相对应 的隧道模版对所述多个连接链路进行配置, 生成多个隧道, 包括:
使用与该业务相对应的隧道模版对所述多个连接链路的链路参数和 /或链 路功能进行配置, 生成多个隧道;
所述链路参数包括: 带宽、 优先级和 /或亲和属性;
所述链路功能包括: 快速重路由 FRR、 备份标记交换路径 LSP和 /或自 动带宽调整。
5、 根据权利要求 1、 2或 4所述的方法, 其特征在于, 还包括: 在所述多个隧道中的未占用隧道中选择可以连通所述业务目的地址的隧 道, 并用该隧道对所述业务进行传输。
6、 一种隧道配置装置, 其特征在于, 包括: PE组划分模块、 PE组选择 模块、 连接链路生成模块和隧道配置模块, 所述 PE组划分模块, 将服务商边缘节点 PE划分为对应于业务的多个 PE 组, 生成 PE组划分信息;
所述 PE组选择模块, 用于根据所述 PE组划分信息, 选择与被传输的业 务相对应的 PE组;
所述连接链路生成模块, 用于控制所述 PE组中各 PE之间的连接路线, 生成多个连接链路;
所述隧道配置模块,用于使用与该业务相对应的隧道模版对所述多个连接 链路进行配置, 生成多个隧道。
7、 根据权利要求 6所述的装置, 其特征在于, 所述 PE组划分模块具体 设置为: 根据历史业务对 PE的使用信息, 将服务商边缘节点 PE划分为对应 于业务的多个 PE组。
8、 根据权利要求 6或 7所述的装置, 其特征在于, 所述连接链路生成模 块包括:
PE组划分信息发送模块, 用于将所述 PE组划分信息通过内部网关协议 IGP发送到各 PE中;
PE连接模块, 用于控制所述 PE组中各 PE进行两两连接, 生成多个连接 链路。
9、 根据权利要求 6所述的装置, 其特征在于, 所述隧道配置模块具体配 置为: 使用与该业务相对应的隧道模版对所述多个连接链路的链路参数和 /或 链路功能进行配置, 生成多个隧道;
所述链路参数包括: 带宽、 优先级和 /或亲和属性;
所述链路功能包括: 快速重路由 FRR、 备份标记交换路径 LSP和 /或自动 带宽调整。
10、 根据权利要求 6、 7或 9所述的装置, 其特征在于, 还包括: 隧道选 择模块,用于在所述多个隧道中的未占用隧道中选择可以连通所述业务目的地 址的隧道, 并用该隧道对所述业务进行传输。
PCT/CN2011/076655 2011-06-30 2011-06-30 隧道配置方法及装置 WO2012103729A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/076655 WO2012103729A1 (zh) 2011-06-30 2011-06-30 隧道配置方法及装置
CN201180001039.XA CN102301657B (zh) 2011-06-30 2011-06-30 隧道配置方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/076655 WO2012103729A1 (zh) 2011-06-30 2011-06-30 隧道配置方法及装置

Publications (1)

Publication Number Publication Date
WO2012103729A1 true WO2012103729A1 (zh) 2012-08-09

Family

ID=45360535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076655 WO2012103729A1 (zh) 2011-06-30 2011-06-30 隧道配置方法及装置

Country Status (2)

Country Link
CN (1) CN102301657B (zh)
WO (1) WO2012103729A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833173A (zh) * 2012-09-14 2012-12-19 中国联合网络通信集团有限公司 网络设备及隧道适配方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103380601B (zh) * 2012-02-24 2016-10-05 华为技术有限公司 确定建立多协议标签交换流量工程隧道的方法及设备
CN108683528B (zh) * 2018-04-26 2021-07-20 深圳银澎云计算有限公司 一种数据传输方法、中心服务器、服务器及数据传输系统
CN114697220A (zh) * 2020-12-29 2022-07-01 华为技术有限公司 一种报文处理方法及相关装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050265308A1 (en) * 2004-05-07 2005-12-01 Abdulkadev Barbir Selection techniques for logical grouping of VPN tunnels
CN101217470A (zh) * 2007-12-29 2008-07-09 华为技术有限公司 转发报文的方法和设备
CN101523803A (zh) * 2006-10-09 2009-09-02 艾利森电话股份有限公司 通信网络中的弹性方案
CN102065020A (zh) * 2011-01-24 2011-05-18 中兴通讯股份有限公司 一种mpls网络中使用隧道组传输l2vpn业务的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100438476C (zh) * 2003-11-04 2008-11-26 深圳市深信服电子科技有限公司 多路复用vpn隧道的连接方法
CN100466589C (zh) * 2006-04-12 2009-03-04 华为技术有限公司 一种实现虚拟专用网访问的方法
CN100550816C (zh) * 2007-07-12 2009-10-14 华为技术有限公司 一种保证虚拟专用网带宽和服务质量的方法和设备
CN101594289A (zh) * 2008-05-28 2009-12-02 华为技术有限公司 实现区分服务流量工程的方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050265308A1 (en) * 2004-05-07 2005-12-01 Abdulkadev Barbir Selection techniques for logical grouping of VPN tunnels
CN101523803A (zh) * 2006-10-09 2009-09-02 艾利森电话股份有限公司 通信网络中的弹性方案
CN101217470A (zh) * 2007-12-29 2008-07-09 华为技术有限公司 转发报文的方法和设备
CN102065020A (zh) * 2011-01-24 2011-05-18 中兴通讯股份有限公司 一种mpls网络中使用隧道组传输l2vpn业务的方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833173A (zh) * 2012-09-14 2012-12-19 中国联合网络通信集团有限公司 网络设备及隧道适配方法

Also Published As

Publication number Publication date
CN102301657A (zh) 2011-12-28
CN102301657B (zh) 2013-10-09

Similar Documents

Publication Publication Date Title
CN111385206B (zh) 报文转发的方法、网络系统、相关设备及计算机存储介质
US9178811B2 (en) Method, apparatus and system for generating label forwarding table on ring topology
WO2006007769A1 (fr) Reflecteur d'etiquette de pseudo-circuit, appareil de peripherie, reseau prive virtuel a deux couches, et procede de fourniture d'un service de pseudo-circuit
JP2018519763A (ja) ネットワークサービスのパス計算要素集中コントローラ(pcecc)
WO2009056034A1 (fr) Procédé, système et équipement pour établir une détection bfd pour un tunnel lsp
WO2007019769A1 (fr) Procede de transfert d'un message de donnees sur un tunnel d'ingenierie de trafic et dispositif noeud associe
WO2006017982A1 (fr) Procede de reacheminement dans le reseau multiprotocole a commutateur d'etiquettes
JP2006211661A (ja) Mpls基盤のvpn提供装置及びvpn提供方法
WO2014012207A1 (zh) 标记交换路径建立方法、数据转发方法及设备
US9571387B1 (en) Forwarding using maximally redundant trees
WO2009056053A1 (fr) Procédé, dispositif et système de commutateur de capacité de flux à ingénierie de trafic et commutation multiprotocole par étiquette
EP2689563B1 (en) Use of sub path maintenance elements (spmes) for multiprotocol label switching (mpls) shared mesh protection
WO2012079375A1 (zh) 虚拟专用网络的链路保护方法和系统
CN105323167A (zh) 多协议标签切换环
CN105323168A (zh) 多协议标签切换环
CN105282030A (zh) 多协议标签切换环
WO2007019758A1 (fr) Méthode, système et appareil d’implémentation d’ingénierie de trafic
Khan MPLS Traffic Engineering in ISP Network
WO2011120360A1 (zh) 集中式网络节点中实现热备份的方法及系统
EP1969746A2 (en) Resource sharing among network tunnels
WO2012103729A1 (zh) 隧道配置方法及装置
WO2015024440A1 (zh) 一种获取ip链路的链路开销值的方法及系统
JP2013545417A (ja) ネットワーク構成方法、リング型ネットワークシステム及びノード
Petersson MPLS based recovery mechanisms
Bongale et al. Analysis of link utilization in MPLS enabled network using OPNET IT Guru

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001039.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857668

Country of ref document: EP

Kind code of ref document: A1