WO2012102557A2 - Optical network system between optical line terminals in a time division passive optical network - Google Patents

Optical network system between optical line terminals in a time division passive optical network Download PDF

Info

Publication number
WO2012102557A2
WO2012102557A2 PCT/KR2012/000613 KR2012000613W WO2012102557A2 WO 2012102557 A2 WO2012102557 A2 WO 2012102557A2 KR 2012000613 W KR2012000613 W KR 2012000613W WO 2012102557 A2 WO2012102557 A2 WO 2012102557A2
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
communication channel
wavelength
multiplexing
Prior art date
Application number
PCT/KR2012/000613
Other languages
French (fr)
Korean (ko)
Other versions
WO2012102557A3 (en
Inventor
조원국
양광진
조주철
Original Assignee
(주)옵토위즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120006707A external-priority patent/KR101357996B1/en
Application filed by (주)옵토위즈 filed Critical (주)옵토위즈
Publication of WO2012102557A2 publication Critical patent/WO2012102557A2/en
Publication of WO2012102557A3 publication Critical patent/WO2012102557A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0279WDM point-to-point architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J2014/0253Allocation of downstream wavelengths for upstream transmission

Definitions

  • the present invention provides an optical line termination device in a time division passive optical network.
  • OLT Termination, hereinafter referred to as OLT
  • OLT a communication channel between OLTs existing in one of a plurality of optical subscriber networks constituting a time division passive optical communication network system.
  • the present invention relates to an optical network system that provides a more economical and efficient optical network environment between OLTs by being formed based on Wavelength Division Multiplexing.
  • PON Passive Optical Network
  • OSP OutSide Plant
  • PON offers fiber-based high-speed services to businesses, SOHO and homes.
  • a splitter is used to allow a single OLT to connect a subscriber network (optical network unit).
  • [5] ⁇ systems typically include Giga-bit Passive Optical Network (GPON)
  • EPON IEEE 802.3 Ethernet Passive Optical Network
  • ITU International Telecommunication Union
  • FIG. 1 illustrates a configuration of one optical subscriber network in a multiplexing-PON (hereinafter, referred to as a 'TDM-PON').
  • the TDM-PON according to the prior art has a light path on the side of a national company.
  • the fiber optic termination device (10) includes TI) M-PON MAC & PHY modules (11) and TDM-PON
  • An optical transceiver (TDM-PON TR BMR ) 12 is made up of TDM-PON ONT 20, which consists of a TDM-PON MAC & PHY module 21 and a TDM-PON optical transceiver (TDM-PON TR BMT ) 22.
  • the TDM-PON is a structure in which a plurality of subscriber-side optical line subscriber devices 20 share an optical fiber with an optical fiber termination device 10 on the domestic side by using a time division technique, and B-PON standardized in ITU-T. And G-PON, and the E-PON standardized by the IEEE are currently in use.
  • the optical fiber terminator 10 broadcasts the traffic transmitted to each optical fiber subscriber device 20, and remotely.
  • ⁇ splitters 30 are provided to split the optical power, and distribute the downlink signals received from the optical line terminating device 10 to N subscriber lines, and receive the down signal received from the optical line subscriber device 20 to itself. Only the frames that are timed to them are selectively delivered to subscribers.
  • the optical line subscriber device 20 Refer 11] Looking at the point of view of the upstream signal, the optical line subscriber device 20
  • TDM-PON Optical Transceiver TDM-PON Optical Transceiver
  • TDM-PON optical transceiver 22 of the optical subscriber unit 20 is equipped with a burst mode transmission (TR BMT ) transceiver with burst. -mode transmitter).
  • TR BMT burst mode transmission
  • the TDM-PON optical transmitter 12 of the optical fiber terminator 10 has a burst mode receiving function in order to support the uplink signal having the burst mode characteristics. It is implemented as a fully equipped optical transceiver (TR BMi ) with a burst-mode receiver.
  • a fixed wavelength light source of 1480 nm to 1500 nm band is normally used for the optical fiber terminating device 10
  • a fixed wavelength light source of 1260 nm to 1360 nm band is used for the optical line subscriber device 20.
  • the standardization mechanism for the next-generation TDM-PON discusses the possibility of changing the uplink wavelength and the downlink wavelength, and measures for increasing the bandwidth by distributing the downlink signal to multiple wavelength optical transmitters.
  • optical network configuration is divided into two.
  • OLTs optical line termination devices
  • ONU optical fiber subscriber equipment
  • each communication channel Point-to-Point type structure is connected, and the optical network configuration between one optical line terminator (OLT) and multiple optical subscriber units (ONU) in the optical subscriber network is point-to-point. to-Multi-Point) structure.
  • the present invention provides a wavelength division multiplexing scheme in which optical fiber termination devices (OLTs), one for each optical subscriber network constituting a time division passive optical communication network system, form a communication channel with each other. It is configured to be formed on the basis of.
  • OLTs optical fiber termination devices
  • the aim is to provide an optical network system between optical fiber end devices that provides a more economical and efficient optical network environment between optical fiber ⁇ end devices (OLTs). .
  • an optical network system between optical fiber termination devices in a time division passive optical communication network exists in a first optical subscriber network in a time division passive optical communication network having a plurality of optical subscriber networks.
  • First ray termination device A second optical fiber terminal device present in the second optical subscriber network; Receives transmission signals having a transmission wavelength preset for each communication channel from a plurality of communication channels of the first optical fiber terminal device, multiplies the received plurality of transmission signals, and transmits them on one optical cable;
  • a first multiplexing and demultiplexing device for demultiplexing a reception signal received through the one optical cable and transmitting a signal corresponding to a reception wavelength of each communication channel to each communication channel of the first optical fiber terminal; And receiving the multiplexed signal transmitted by the first multiplexing / demultiplexing device through the one optical cable, and demultiplexing the received signal to each communication channel of the second optical fiber termination device.
  • the first optical fiber terminal device and the second optical fiber cable terminal device include a plurality of optical transceivers forming a communication channel, and the optical transceiver includes CWDM (Coarse Wavelength). Division Multiplexing) A bidirectional optical transmitter and receiver that forms a communication channel in which the transmission signal and the reception signal have different wavelengths.
  • CWDM Coarse Wavelength). Division Multiplexing
  • the first optical fiber terminal device and the low] two optical fiber terminal device includes a plurality of optical transceivers forming a communication channel, wherein the optical transmitter, It is a CWDM (Coarse Wavelength Division Multiplexing) communication channel and a bidirectional optical transmitter / receiver that forms a communication channel in which a transmission signal and a reception signal have the same wavelength.
  • the optical transmitter It is a CWDM (Coarse Wavelength Division Multiplexing) communication channel and a bidirectional optical transmitter / receiver that forms a communication channel in which a transmission signal and a reception signal have the same wavelength.
  • CWDM Coarse Wavelength Division Multiplexing
  • the first multiplexing and demultiplexing apparatus and the second multiplexing and demultiplexing apparatus may be configured by using a thin film filter.
  • the first multiplexing and demultiplexing apparatus and the second multiplexing and demultiplexing apparatus may be configured of an arrayed waveguide grating (AWG).
  • AWG arrayed waveguide grating
  • a plurality of communication channels between optical fiber termination devices in a time division passive optical communication network can be connected to each other through a single optical cable. Therefore, the cost of embedding optical cables is reduced compared to forming an optical network one-to-one using optical cables by the number of communication channels.
  • a plurality of communication channels are provided through one optical cable. Increases efficiency by enabling connectivity.
  • Multiplexing-PON is a view showing the configuration of one optical subscriber network.
  • FIG. 2 is a diagram illustrating an optical network system between an optical line termination device (OLT) according to a first embodiment of the present invention.
  • OLT optical line termination device
  • FIG 3 is a diagram illustrating an optical network system between an optical path terminating apparatus (OLT) according to a second embodiment of the present invention.
  • OLT optical path terminating apparatus
  • FIG. 2 is a diagram illustrating an optical network system between an optical line termination device (OLT) according to a first embodiment of the present invention.
  • OLT optical line termination device
  • first, optical transmitters in which the first optical fiber terminal 100 and the second optical fiber terminal 200 form a communication channel therebetween.
  • Optical receiver, .. ninth optical transmitter) CWDM (Coarse Wavelength Division) Multiplexing) is shown with two-way optical transceivers forming a communication channel.
  • the wavelength of CWDM is about 20nm between 1270nm and 1610nm.
  • the optical fiber terminator (OLT) 100,200 communicates with CWDM.
  • the optical path terminators 100 and 200 have a maximum of 9 Communication channels can be formed.
  • the first multiplexing / demultiplexing apparatus 300 receives transmission signals having a predetermined unique transmission wavelength for each communication channel from up to nine communication channels of the first optical fiber terminal 100.
  • the plurality of transmission signals are wavelength-division multiplexed and then transmitted through one optical cable.
  • the second multiplexing / demultiplexing apparatus 400 provides a low U through the one optical cable.
  • the second multiplexing / demultiplexing apparatus 400 receives transmission signals having a predetermined unique transmission wavelength for each communication channel from up to nine communication channels of the second optical fiber terminal 200.
  • the plurality of transmission signals are wavelength-division multiplexed and then transmitted through one optical cable.
  • the first multiplexing / demultiplexing device 300 is connected to the low-frequency cable via the optical cable.
  • the multiplexing / demultiplexing apparatus 400 may have a configuration including an arrayed waveguide grating (AWG), thereby minimizing the cost of a light source when forming an optical network.
  • ABG arrayed waveguide grating
  • the device 400 is equipped with a thin film filter to perform multiplexing / demultiplexing. It is desirable to have a configuration to perform.
  • optical transceivers are configured to have a transmission speed of 1.25Gbps or 2.5Gbps, and the present invention can be applied to both GPON and EPON, which are time division passive optical communication networks.
  • optical fiber terminators 100,200 and
  • the optical path subscriber device (ONU) (not shown) communicates with a wavelength of 1490 nm as the downlink signal and 1310 nm as the wavelength of the uplink signal. Therefore, the optical fiber termination device (OLT) 100,200 is configured to have a wavelength converter (not shown), so that the optical network system between the optical fiber termination device (OLT) 100,200 according to the present invention is a conventional time division passive type. It can be configured to be applied to the optical network system as it is.
  • the wavelength converter (not shown) in the optical fiber terminator (OLT) 100,200 is an optical / electric / optical light.
  • the wavelength conversion unit (not shown) converts only the wavelength of the received optical signal and retransmits it, the 2R method of changing and retransmitting the wavelength and signal type at the same time, and the wavelength, signal type and timing at the same time. Configurable in 3R mode to change and retransmit.
  • the wavelength conversion unit (not shown) be configured in a 2R or 3R scheme which is mainly used.
  • the present invention terminates the first optical path in a time division passive optical communication network.
  • a plurality of communication channels between the device 100 and the second optical fiber termination device 200 enables connection with each other via a single optical cable. Therefore, the cost of laying the optical cable is reduced compared to forming the optical network in a one-to-one manner by using the optical cable by the number of communication channels. In addition, in terms of optical cable usage, it is possible to increase the efficiency by allowing a plurality of communication channels to be connected through a single optical cable between optical fiber termination devices.
  • FIG 3 is a diagram illustrating an optical network system between an optical line termination device (OLT) according to a second embodiment of the present invention.
  • OLT optical line termination device
  • the optical fiber terminators (OLTs) 100 and 200 have the same bidirectional optical transceivers forming a CWDM communication channel.
  • the optical transmitters (first optical receiver, second optical receiver, .. 18th optical receiver) provided in the optical path terminator (OLT) 100,200 of FIG. 3 have the same wavelength as the transmission signal and the reception signal.
  • the branch is characterized by forming a communication channel.
  • an optical transmitter that forms a CWDM communication channel and uses the same wavelength in a transmission signal and a reception signal will be referred to as a CWDM same wavelength bidirectional optical transmitter.
  • the CWDM co-wavelength optical transceiver uses the straightness of light to separate the transmission signal and the reception signal, so the reflection loss should be minimized when connecting the connector to the outside.
  • CWDM equal wavelength bidirectionality in optical fiber termination (OLT) 100,200 If you have an optical transceiver, it is recommended that you use the APC (Angled Physical Contact) type.
  • the optical fiber terminator (OLT) 10Q, 200 is equipped with a CWDM co-wavelength bidirectional optical transceiver to provide the first optical fiber terminator 100 and the low twelve optical fiber terminator 200.
  • the first and second optical fiber terminators 100,200 can be configured to use up to 18 communication channels.
  • the function of the device 400 is as described above with reference to Fig. 2, except that the number of communication channels connected to the first and second optical fiber terminators 100 and 200 extends from 9 to 18 at most.
  • an optical transceiver allows an optical fiber terminator (OLT) to have more communication channels, and the present invention communicates in the formation of an optical network between optical cable terminators (OLTs), even though the communication channel of the optical fiber terminators (OLTs) increases.
  • the optical cable is not required as many as the number of channels, and one optical cable is used to form the optical network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

The present invention relates to an optical network system between optical line terminals in a time division passive optical network. The present invention comprises forming an optical network between optical line terminals (OLT), one of which exists in each optical network of multiple members comprised of a time division passive optical network, based on wavelength division multiplexing. According to the invention, more economic and efficient optical network conditions are provided between optical line terminals in a time division passive optical network.

Description

명 세서  Specification
발명의 명칭 : 시분할 수동형 광통신망에서 광선로 종단 장치 간에 광 네트워크 시스템  Name of the Invention: Optical Network System Between Fiber Optic Termination Devices in Time Division Passive Optical Networks
기술분야  Field of technology
[1] 본 발명은 시분할 수동형 광통신망에서 광선로 종단 장치 (Optical Line  [1] The present invention provides an optical line termination device in a time division passive optical network.
Termination, 이하 OLT라고 함.) 간에 광 네트워크 시스템에 관한 것으로,더욱 상세하게는,시분할 수동형 광통신망 시스템을 구성하는 복수 개의 광 가입자 망마다 하나씩 존재하는 OLT들 간의 통신 채널이 파장분할  Termination, hereinafter referred to as OLT), and more specifically, a communication channel between OLTs existing in one of a plurality of optical subscriber networks constituting a time division passive optical communication network system.
다중방식 (Wavelength Division Multiplexing)을 기초로 형성 되도록 함으로써,보다 경제적 이고 효율적 인 OLT 간의 광 네트워크 환경을 제공하는 광 네트워크 시스템에 관한 것이다.  The present invention relates to an optical network system that provides a more economical and efficient optical network environment between OLTs by being formed based on Wavelength Division Multiplexing.
[2]  [2]
배경기술  Background
[3] 인터 넷 트래픽 의 급격 한 증가와 방송,통신 융합 서 비스가 가시화되면서  [3] With the rapid increase in internet traffic and the convergence of broadcasting and telecommunications services,
통신망의 고속화가 활발히 이루어지고 있다. 이를 위 한 기술들 중에서 수동형 광 통신망 (Passive Optical Network, 이하 'PON'이 라 함.) 기술은 가입자에 게 높은 대역폭을 제공할 수 있을 뿐만 아니 라 OSP(OutSide Plant)가 수동 소자로만 구성되므로 망의 운용 비용을 크게 절감할 수 있다는 장점으로 인하여 도입 이 확산되고 있다.  The speed of the communication network is actively being made. Among these technologies, Passive Optical Network (PON) technology not only can provide high bandwidth to subscribers, but also because the OSP (OutSide Plant) consists only of passive elements. The introduction is spreading due to the advantage of greatly reducing the cost of operation.
[4] PON은 기 업 및 SOHO, 일반 가정에까지 광섬유 기 반의 초고속 서 비스를  [4] PON offers fiber-based high-speed services to businesses, SOHO and homes.
제공하는 광가입자 구축방식의 하나로, 간단하게 말하면, 광케이블에  One of the optical subscriber construction methods to provide, in simple terms,
스플리 터 (Splitter)를 사용해 하나의 OLT가 복수 개의 광선로 가입자 장치 (Optical Network Unit, 이하 ΌΝΙΓ라고 함)을 접속할 수 있게 하는 방식 이다.  A splitter is used to allow a single OLT to connect a subscriber network (optical network unit).
[5] ΡΟΝ 시스템에는 대표적으로 GPON(Giga-bit Passive Optical Network)과  [5] ΡΟΝ systems typically include Giga-bit Passive Optical Network (GPON)
EPON(IEEE 802.3 Ethernet Passive Optical Network) 2가지 규격 이 있다. GPON은 ITU(International Telecommunication Union)에 의해 규격화되 었으며 , EPON은 IEEE에 의 해서 진행되 었다.  There are two specifications of the EPON (IEEE 802.3 Ethernet Passive Optical Network). GPON was standardized by the International Telecommunication Union (ITU), and EPON was conducted by the IEEE.
[6] 도 1은 종래 기술에 따른 시분할 수동형 광 통신망 (Time Division  1 is a time division passive optical network according to the prior art (Time Division)
Multiplexing-PON, 이하' TDM-PON'이 라 함.)에서 하나의 광 가입자 망의 구성을 나타낸 도면이다.  FIG. 1 illustrates a configuration of one optical subscriber network in a multiplexing-PON (hereinafter, referred to as a 'TDM-PON').
[7] 도 1에 도시된 바와 같이 , 종래 기술에 따른 TDM-PON은 국사 측의 광선로  [7] As shown in FIG. 1, the TDM-PON according to the prior art has a light path on the side of a national company.
종단 장치 (TDM-PON OLTX10)와,각 가입자 측의 광선로 가입자 장치 (TDM-PON ONT)(20)와,광선로 종단 장치 (10) 및 광선로 가입자 장치 (20) 사이에 광신호 분배 (광신호 파워 분기,광신호 파워 결합)를 위 한 스플리 터 (splitter)(30)를 포함한다.  Optical signal distribution between the terminating device (TDM-PON OLTX10), the optical fiber subscriber device (TDM-PON ONT) 20 on each subscriber side, the optical fiber terminating device 10 and the optical fiber subscriber device 20 ( Splitter 30 for optical signal power branching, optical signal power coupling).
[8] 광선로 종단 장치 (10)는 TI)M-PON MAC&PHY 모들 (11) 및 TDM-PON 광송수신기 (TDM-PON TRBMR)(12)로이루어지며 TDM-PON ONT(20)는 TDM-PON MAC&PHY모들 (21)및 TDM-PON광송수신기 (TDM-PON TRBMT )(22)로이루어진다. [8] The fiber optic termination device (10) includes TI) M-PON MAC & PHY modules (11) and TDM-PON An optical transceiver (TDM-PON TR BMR ) 12 is made up of TDM-PON ONT 20, which consists of a TDM-PON MAC & PHY module 21 and a TDM-PON optical transceiver (TDM-PON TR BMT ) 22.
[9] TDM-PON은시분할기법을이용하여다수의가입자측각각의광선로가입자 장치 (20)가국사측의광선로종단장치 (10)와광섬유를공유하는구조로서 , ITU-T에서표준화된 B-PON과 G-PON,그리고 IEEE에서표준화된 E-PON등이 현재사용되고있다.  [9] The TDM-PON is a structure in which a plurality of subscriber-side optical line subscriber devices 20 share an optical fiber with an optical fiber termination device 10 on the domestic side by using a time division technique, and B-PON standardized in ITU-T. And G-PON, and the E-PON standardized by the IEEE are currently in use.
[10] TDM-PON에서의신호전송방식에대해간략히소개하기로한다.하향신호의 관점에서살펴보면,광선로종단장치 (10)가각광선로가입자장치 (20)로 전송되는트래픽을브로드캐스트 (broadcast)하고,원격지에단순히광파워를 분기하는 ΙχΝ스플리터 (30)가설치되어광선로종단장치 (10)로부터수신받은 하향신호를 N개의가입자선로로분배하고,광선로가입자장치 (20)에서 자신에게내려온하향신호를수신해자신에게시간할당된프레임만을 선택적으로가입자에게전달하게된다.  [10] The signal transmission method in the TDM-PON will be briefly described. In terms of the downward signal, the optical fiber terminator 10 broadcasts the traffic transmitted to each optical fiber subscriber device 20, and remotely. ΙχΝ splitters 30 are provided to split the optical power, and distribute the downlink signals received from the optical line terminating device 10 to N subscriber lines, and receive the down signal received from the optical line subscriber device 20 to itself. Only the frames that are timed to them are selectively delivered to subscribers.
[11] 상향신호의관점에서살펴보면,각광선로가입자장치 (20)가  [11] Looking at the point of view of the upstream signal, the optical line subscriber device 20
레인징 (ranging)과동적대역폭할당 (DBA: dynamic bandwidth allocation)과정 등을통해자신만의전용시간슬롯 (slot)을광선로종단장치 (10)로부터사전에 할당받은상태에서,자신에게할당된시간슬롯이도래할때에만상향신호를 전송하고자신의슬롯이아닐때에는 TDM-PON광송수신기 (TDM-PON  The time slots assigned to them, with their own dedicated time slots pre-assigned from the fiber terminator 10 through ranging and dynamic bandwidth allocation (DBA) processes, etc. TDM-PON Optical Transceiver (TDM-PON)
TRBMT)(22)를완전히끄게된다 [shut down].이를지원하기위해광선로가입자 장치 (20)의 TDM-PON광송수신기 (22)는버스트모드전송기능이구비된 광송수신기 (TRBMT: transceiver with burst-mode transmitter)로구현된다. [Shut down] is completely turned off. To support this, the TDM-PON optical transceiver 22 of the optical subscriber unit 20 is equipped with a burst mode transmission (TR BMT ) transceiver with burst. -mode transmitter).
[12] 각광선로가입자장치 (20)로부터올라온상향신호는원격지의  [12] The upward signal from each optical line subscriber device 20
스플리터 (30)에서결합되어광선로종단장치 (10)로전송된다.이러한버스트 모드특성을갖는상향신호수신을지원하기위해광선로종단장치 (10)의 TDM-PON광송수신기 (12)는버스트모드수신기능이구비된광송수신기 (TRBMi : transceiver with burst-mode receiver)로구현된다. The TDM-PON optical transmitter 12 of the optical fiber terminator 10 has a burst mode receiving function in order to support the uplink signal having the burst mode characteristics. It is implemented as a fully equipped optical transceiver (TR BMi ) with a burst-mode receiver.
[13] 한편,통상적으로광선로종단장치 (10)에는 1480nm내지 1500nm대역의고정 파장광원이사용되며,광선로가입자장치 (20)에는 1260nm내지 1360nm대역의 고정파장광원이사용된다.  On the other hand, a fixed wavelength light source of 1480 nm to 1500 nm band is normally used for the optical fiber terminating device 10, and a fixed wavelength light source of 1260 nm to 1360 nm band is used for the optical line subscriber device 20.
[14] 차세대 TDM-PON을위한표준화기구에서는상향파장,하향파장을변경할 가능성과하향신호를여러파장의광송수신기에분산전송하여대역폭을 증대시키기위한방안등이논의되고있다.  [14] The standardization mechanism for the next-generation TDM-PON discusses the possibility of changing the uplink wavelength and the downlink wavelength, and measures for increasing the bandwidth by distributing the downlink signal to multiple wavelength optical transmitters.
[15] 시분할수동형광통신망에서광통신망구성은두가지로나눠진다.첫째는  [15] In time-division passive optical network, optical network configuration is divided into two.
광선로종단장치 (OLT)들간의광통신망구성과,둘째는광가입자망내에 하나의광선로종단장치 (OLT)와복수개의광선로가입자장치 (ONU)간에 광통신망구성이다.  An optical communication network configuration between optical line termination devices (OLTs) and a second optical communication network configuration between an optical fiber termination device (OLT) and a plurality of optical fiber subscriber equipment (ONU) in the optical subscriber network.
[16] 광선로종단장치 (OLT)들간의광통신망구성을살펴보면각각의통신채널이 점 대점 (Point-to-Point) 형 태로 연결되는 구조이고,광 가입자 망 내에 하나의 광선로 종단 장치 (OLT)와 복수 개의 광선로 가입자 장치 (ONU) 간의 광통신망 구성은 점 대다점 (Point-to-Multi-Point) 형 태로 연결되는 구조이다. [16] Looking at the optical network configuration between optical fiber terminators (OLTs), each communication channel Point-to-Point type structure is connected, and the optical network configuration between one optical line terminator (OLT) and multiple optical subscriber units (ONU) in the optical subscriber network is point-to-point. to-Multi-Point) structure.
[17] 따라서,광선로 종단 장치들 간에는 통신 채널 수만큼 광케이블을 [17] Therefore, the number of optical cables should be
요구함으로써 , 광 네트워크를 형성하는데 있어서 비 효율적 이고 고비용을 요구하는 문제가 있다.  By doing so, there is a problem of inefficient and high cost in forming an optical network.
발명의 상세한 설명  Detailed description of the invention
기술적 과제  Technical challenges
[18] 본 발명은 시분할 수동형 광통신망 시스템을 구성하는 복수 개의 광 가입자 망마다 하나씩 존재하는 광선로 종단 장치 (OLT)들이 서로 간에 통신 채 널을 형성 함에 있어서,파장분할 다중방식 (Wavelength Division Multiplexing)을 기초로 형성 되도록 구성 한다. 그럼으로써,보다 경 제적 이고 효율적 인 광선로 ^단 장치 (OLT)들 간의 광 네트워크 환경을 제공하는 광선로 종단 장치 간에 광 네트워크 시스템을 제공하는데 그 목적 이 있다. . [18] The present invention provides a wavelength division multiplexing scheme in which optical fiber termination devices (OLTs), one for each optical subscriber network constituting a time division passive optical communication network system, form a communication channel with each other. It is configured to be formed on the basis of. The aim is to provide an optical network system between optical fiber end devices that provides a more economical and efficient optical network environment between optical fiber ^ end devices (OLTs). .
과제 해결 수단  Challenge solution
[19] 상기 의 목적을 달성하기 위해서,본 발명에 따른 시분할 수동형 광통신망에서 광선로 종단 장치 간에 광 네트워크 시스템은 복수 개의 광 가입자망을 가진 시분할 수동형 광통신망에서,제 1 광 가입자망에 존재하는 제 1 광선로 종단 장치 ; 제 2 광 가입자망에 존재하는 제 2 광선로 종단 장치 ; 상기 제 1 광선로 종단 장치의 복수 개의 통신 채널로부터 각 통신 채널에 기 설정되어진 송신 파장을 가진 송신 신호들을 전송받고 그 전송받은 복수 개의 송신 신호들을 파장분할 다증화한 후 하나의 광케이블에 전송하거나,상기 하나의 광케이블을 통해 전송받은 수신 신호를 역다중화하여 상기 제 1 광선로 종단 장치의 각 통신 채 널로 각 통신 채 널의 수신 파장에 해당하는 신호를 전송하는 제 1 다중화 및 역다중화 장치 ; 및 상기 하나의 광케이블을 통해 상기 제 1 다중화 /역다중화 장치가 전송한 다증화된 신호를 수신받고 그 수신받은 신호를 역다중화하여 상기 제 2 광선로 종단 장치의 각 통신 채널로 각 통신 채 널의 수신 파장에 해당하는 신호를 전송하거나, 상기 제 2 광선로 종단 장치 의 복수 개의 통신 채 널로부터 각 통신 채널에 기 설정된 고유 송신 파장을 가진 송신 신호들을 전송받고 그 전송받은 복수 개의 송신 신호들을 파장분할 다중화한 후 상기 하나의 광케이블에 전송하는 제 2 다중화 및 역다중화 장치 ;를 포함하여 이루어진다.  In order to achieve the above object, an optical network system between optical fiber termination devices in a time division passive optical communication network according to the present invention exists in a first optical subscriber network in a time division passive optical communication network having a plurality of optical subscriber networks. First ray termination device; A second optical fiber terminal device present in the second optical subscriber network; Receives transmission signals having a transmission wavelength preset for each communication channel from a plurality of communication channels of the first optical fiber terminal device, multiplies the received plurality of transmission signals, and transmits them on one optical cable; A first multiplexing and demultiplexing device for demultiplexing a reception signal received through the one optical cable and transmitting a signal corresponding to a reception wavelength of each communication channel to each communication channel of the first optical fiber terminal; And receiving the multiplexed signal transmitted by the first multiplexing / demultiplexing device through the one optical cable, and demultiplexing the received signal to each communication channel of the second optical fiber termination device. Transmit a signal corresponding to a reception wavelength, or receive transmission signals having a unique transmission wavelength preset for each communication channel from a plurality of communication channels of the second optical fiber terminal, and split the plurality of transmission signals. And a second multiplexing and demultiplexing device for multiplexing and then transmitting the single optical cable.
[2이 본 발명의 실시 예에 따르면, 상기 제 1 광선로 종단 장치 및 제 2 광선로 종단 장치는,통신 채 널을 형성하는 복수 개의 광송수신기를 포함하고,상기 광송수신기는, CWDM(Coarse Wavelength Division Multiplexing) 통신 채 널이며 송신 신호와 수신 신호가 서로 다른 파장을 가지는 통신 채 널을 형성하는 양방향성 광송수신기 이다. [21] 본 발명 의 또 다른 실시 예에 따르면,상기 제 1 광선로 종단 장치 및 상기 저]2 광선로 종단 장치는,통신 채 널을 형성하는 복수 개의 광송수신기를 포함하고, 상기 광송수신기는, CWDM(Coarse Wavelength Division Multiplexing) 통신 채널이며 송신 신호와 수신 신호가 서로 동일한 파장을 가지는 통신 채널을 형성하는 양방향성 광송수신기 이 다. [2] According to an embodiment of the present invention, the first optical fiber terminal device and the second optical fiber cable terminal device include a plurality of optical transceivers forming a communication channel, and the optical transceiver includes CWDM (Coarse Wavelength). Division Multiplexing) A bidirectional optical transmitter and receiver that forms a communication channel in which the transmission signal and the reception signal have different wavelengths. According to another embodiment of the present invention, the first optical fiber terminal device and the low] two optical fiber terminal device includes a plurality of optical transceivers forming a communication channel, wherein the optical transmitter, It is a CWDM (Coarse Wavelength Division Multiplexing) communication channel and a bidirectional optical transmitter / receiver that forms a communication channel in which a transmission signal and a reception signal have the same wavelength.
[22] 바람직하게, 상기 제 1 다중화 및 역다중화 장치와 상기 제 2 다중화 및 역다중화 장치는,박막 필름 필터 (Thin Film Filter)를 이용하여 구성 될 수 있다. 또한, 상기 제 1 다중화 및 역다중화 장치와 상기 제 2 다증화 및 역다중화 장치는 도파로형 회 절격자 (Arrayed Waveguide Grating, AWG)로 구성 될 수도 있다.  Preferably, the first multiplexing and demultiplexing apparatus and the second multiplexing and demultiplexing apparatus may be configured by using a thin film filter. In addition, the first multiplexing and demultiplexing apparatus and the second multiplexing and demultiplexing apparatus may be configured of an arrayed waveguide grating (AWG).
[23]  [23]
발명의 효과  Effects of the Invention
[24] 본 발명 에 따르면,시분할 수동형 광통신망에서 광선로 종단 장치 간에 복수 개의 통신 채 널을 하나의 광케이블을 통해 서로 연결이 가능하도록 해 준다. 따라서,복수 개의 통신 채널 수만큼 광케 이블을 사용하여 일대일로 광 네트워크를 형성하는 것에 비해 광케 이블 매설 비용을 절감시 켜 준다. 그리고, 광케이블 이용 면에 있어서도 하나의 광케 이블을 통해 복수 개의 통신 채널 . 연결이 가능하게 함으로써 효율성을 높인다.  According to the present invention, a plurality of communication channels between optical fiber termination devices in a time division passive optical communication network can be connected to each other through a single optical cable. Therefore, the cost of embedding optical cables is reduced compared to forming an optical network one-to-one using optical cables by the number of communication channels. In addition, in terms of optical cable utilization, a plurality of communication channels are provided through one optical cable. Increases efficiency by enabling connectivity.
[25]  [25]
도면의 간단한 설명  Brief description of the drawings
[26] 도 1은 종래 기술에 따른 시분할 수동형 광 통신망 (Time Division 1 is a time division passive optical network according to the prior art (Time Division)
Multiplexing-PON)에서 하나의 광 가입자 망의 구성을 나타낸 도면이다.  Multiplexing-PON) is a view showing the configuration of one optical subscriber network.
[27] 도 2는 본 발명의 제 1 실시 예에 따른 광선로 종단 장치 (OLT) 간에 광 네트워크 시스템을 도시 한 도면이다. FIG. 2 is a diagram illustrating an optical network system between an optical line termination device (OLT) according to a first embodiment of the present invention.
[28] 도 3은 본 발명의 제 2 실시 예에 따른 광선로 종단 장치 (OLT) 간에 광 네트워크 시스템을 도시 한 도면이다. 3 is a diagram illustrating an optical network system between an optical path terminating apparatus (OLT) according to a second embodiment of the present invention.
[29]  [29]
발명의 실시를 위한 형 태  Form for the implementation of the invention
[30] 이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명 한다. 도면들 중 동일한 구성요소들은 가능한 한 어 느 곳에서든지 동일한 부호들로 나타내고 있음에 유의 해야 한다. 또한 본 발명 의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성 에 대한 상세한 설명은 생략한다. Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings. It should be noted that the same elements in the figures are represented by the same reference numerals as much as possible. In addition, detailed descriptions of well-known functions and configurations that may unnecessarily obscure the subject matter of the present invention will be omitted.
[31]  [31]
[32] 도 2는 본 발명의 제 1 실시 예에 따른 광선로 종단 장치 (OLT) 간에 광 네트워크 시스템을 도시 한 도면이다.  FIG. 2 is a diagram illustrating an optical network system between an optical line termination device (OLT) according to a first embodiment of the present invention.
[33] 도 2에서는 우선,제 1 광선로 종단 장치 (100) 및 제 2 광선로 종단 장치 (200)가 그들 간에 통신 채 널을 형성하는 광송수신기들 (제 1 광송수신기,제 2  In FIG. 2, first, optical transmitters (first optical receiver, second) in which the first optical fiber terminal 100 and the second optical fiber terminal 200 form a communication channel therebetween.
광송수신기 ,..제 9 광송수신기 )을 CWDM(Coarse Wavelength Division Multiplexing) 통신 채널을 형성하는 양방향성 광송수신기들로 구비 한 모습올 도시하고 있다. Optical receiver, .. ninth optical transmitter) CWDM (Coarse Wavelength Division) Multiplexing) is shown with two-way optical transceivers forming a communication channel.
[34] CWDM 파장은 파장은 1270nm 대 역부터 1610nm 대역 사이의 각 20nm  [34] The wavelength of CWDM is about 20nm between 1270nm and 1610nm.
간격으로 총 18개 파장 (λ ^.,λ^)으로 구성 되며 실제 파장은 1271nm, 1291nm, 131 lnm, 1331nm, 1351nm, 1371nm, 1391nm, 141 lnm, 1431nm, 1451nm, 1471nm, 1491nm, 1511nm, 153 lnm, 1551nm, 157 lnm, 1591nm, 1611nm이다.  It consists of a total of 18 wavelengths (λ ^., Λ ^) at intervals and the actual wavelength is 1271nm, 1291nm, 131 lnm, 1331nm, 1351nm, 1371nm, 1391nm, 141 lnm, 1431nm, 1451nm, 1471nm, 1491nm, 1511nm, 153 lnm , 1551 nm, 157 lnm, 1591 nm, and 1611 nm.
[35] 따라서,도면에서와 같이 , 광선로 종단 장치 (OLT)(100,200)가 CWDM 통신  [35] Thus, as shown in the drawing, the optical fiber terminator (OLT) 100,200 communicates with CWDM.
채 널을 형성하는 양방향성 광송수신기를 구비하고,상기 광송수신기가 송신신호와 수신신호의 파장이 서로 다른 파장을 가지는 통신 채 널을 형성하는 경우,최종적으로 광선로 종단 장치 (100,200)는 최 대 9개의 통신 채 널을 형성 할 수 있게 된다.  When a bidirectional optical transceiver having a channel is formed, and the optical transceiver forms a communication channel having a wavelength different from that of a transmission signal and a reception signal, the optical path terminators 100 and 200 have a maximum of 9 Communication channels can be formed.
[36] 제 1 광선로 종단 장치 (100)의 통신 채 널에 설정된 송신 신호 (Tx) 파장이 인 경우 제 2 광선로 종단 장치 (100)에 연결되는 통신 채 널의 수신 신호 (Rx) 파장은 λ ,으로 설정 된다. 이와 반대의 경우도 대칭 되는 형 태로 당연히 예측 가능할 것이다.  [36] When the transmission signal (Tx) wavelength set in the communication channel of the first optical fiber terminal 100 is equal to, the reception signal Rx wavelength of the communication channel connected to the second optical fiber terminal 100 is is set to λ. On the contrary, the symmetrical form will naturally be predictable.
[37] 제 1 다중화 /역 다중화 장치 (300)는 제 1 광선로 종단 장치 (100)의 최 대 9개 통신 채 널로부터 통신 채널마다 기 설정된 고유 송신 파장을 가진 송신 신호들을 수신받는다. 그리고 수신한 복수 개의 송신 신호들을 파장분할 다중화한 후 하나의 광케이블을 통해 전송한다.  The first multiplexing / demultiplexing apparatus 300 receives transmission signals having a predetermined unique transmission wavelength for each communication channel from up to nine communication channels of the first optical fiber terminal 100. The plurality of transmission signals are wavelength-division multiplexed and then transmitted through one optical cable.
[38] 제 2 다중화 /역다증화 장치 (400)는 상기 하나의 광케이블을 통해서 저 U  [0038] The second multiplexing / demultiplexing apparatus 400 provides a low U through the one optical cable.
다중화 /역다중화 장치 (300)에서 전송된 다중화된 신호를 수신받고,수신받은 신호를 역다증화하여 제 2 광선로 종단 장치 (400)의 각 통신 채 널로 각 통신 채 널의 수신 파장에 해당하는 신호를 전송한다.  Receives the multiplexed signal transmitted from the multiplexing / demultiplexing device 300, demultiplexes the received signal, and transmits the signal corresponding to the reception wavelength of each communication channel to each communication channel of the second optical fiber terminal 400. Send it.
[39] 이와 반대의 경우도 마찬가지 이다.  [39] The reverse is also true.
[40] 제 2 다중화 /역다중화 장치 (400)는 제 2 광선로 종단 장치 (200)의 최 대 9개 통신 채 널로부터 통신 채 널마다 기 설정된 고유 송신 파장을 가진 송신 신호들을 수신받는다. 그리고 수신한 복수 개의 송신 신호들을 파장분할 다중화한 후 하나의 광케이블을 통해 전송한다.  The second multiplexing / demultiplexing apparatus 400 receives transmission signals having a predetermined unique transmission wavelength for each communication channel from up to nine communication channels of the second optical fiber terminal 200. The plurality of transmission signals are wavelength-division multiplexed and then transmitted through one optical cable.
[41] 제 1 다중화 /역다중화 장치 (300)는 상기 광케이블을 통해서 저 12  The first multiplexing / demultiplexing device 300 is connected to the low-frequency cable via the optical cable.
다중화 /역다중화 장치 (400)에서 전송된 다중화된 신호를 수신받고, 수신받은 신호를 역다증화하여 제 1 광선로 종단 장치 (100)의 각 통신 채널로 각 통신 채널의 수신 파장에 해당하는 신호를 전송한다.  Receives the multiplexed signal transmitted from the multiplexing / demultiplexing apparatus 400, demultiplexes the received signal, and transmits a signal corresponding to the reception wavelength of each communication channel to each communication channel of the first optical fiber terminal 100. send.
[42] 바람직하게,본 발명 에서 제 1 다중화 /역다중화 장치 (300) 및 제 2  [42] Preferably, in the present invention, the first multiplexing / demultiplexing apparatus 300 and the second
다중화 /역다중화 장치 (400)는 도파로형 회 절격자 (Arrayed Waveguide Grating, AWG)를 구비 하는 구성을 가져,광 네트워크 형성시 광원의 비용을 최소화할 수 있을 것이다.  The multiplexing / demultiplexing apparatus 400 may have a configuration including an arrayed waveguide grating (AWG), thereby minimizing the cost of a light source when forming an optical network.
[43] 또한, 본 발명에서 제 1 다중화 /역다중화 장치 (300) 및 제 2 다증화 /역다중화  In addition, in the present invention, the first multiplexing / demultiplexing apparatus 300 and the second multiplexing / demultiplexing
장치 (400)는 박막 필름 필터 (Thin Film Filter)를 구비하여 다중화 /역다중화를 수행하도는 구성을 가지는 것이 바람직하겠다. The device 400 is equipped with a thin film filter to perform multiplexing / demultiplexing. It is desirable to have a configuration to perform.
[44] 그리고, 상기 광송수신기들은 1.25Gbps 또는 2.5Gbps의 전송 속도를 가지도록 구성 되 어,본 발명은 시분할 수동형 광통신망인 GPON, EPON 모두에 적용할 수 있다.  In addition, the optical transceivers are configured to have a transmission speed of 1.25Gbps or 2.5Gbps, and the present invention can be applied to both GPON and EPON, which are time division passive optical communication networks.
[45] 한편,시분할 수동형 광통신망에서는 광선로 종단 장치 (OLT)(100,200)와  [45] On the other hand, in time-division passive optical networks, optical fiber terminators (OLTs) 100,200 and
광선로 가입자 장치 (ONU) (미도시) 간에 1490nm 파장을 하향 신호의 파장으로, 1310nm 파장을 상향 신호의 파장으로 하여 통신하고 있다. 따라서,광선로 종단 장치 (OLT)(100,200)는 파장 변환부 (미도시)를 구비하도록 구성되 어 , 본 발명에 따른 광선로 종단 장치 (OLT)(100,200) 간의 광 네트워크 시스템이 기존의 시분할 수동형 광통신망 시스템에 그대로 적용이 가능하도록 구성 가능하다.  The optical path subscriber device (ONU) (not shown) communicates with a wavelength of 1490 nm as the downlink signal and 1310 nm as the wavelength of the uplink signal. Therefore, the optical fiber termination device (OLT) 100,200 is configured to have a wavelength converter (not shown), so that the optical network system between the optical fiber termination device (OLT) 100,200 according to the present invention is a conventional time division passive type. It can be configured to be applied to the optical network system as it is.
[46] 광선로 종단 장치 (OLT)(100,200) 내에 파장 변환부 (미도시 )는 광 /전 /광  [46] The wavelength converter (not shown) in the optical fiber terminator (OLT) 100,200 is an optical / electric / optical light.
방식으로 신호를 변경 한다. 그리고 상기 파장 변환부 (미도시 )는 수신한 광신호의 파장만을 변환하여 재전송하는 1R 방식과, 파장 및 신호 형 태를 동시에 변경하여 재전송하는 2R 방식,그리고 파장,신호 형 태 및 타이 밍을 동시에 바꾸고 재전송하는 3R 방식으로 구성 가능하다. 특히,파장 변환부 (미도시 )는 주로 사용되는 2R 또는 3R 방식으로 구성 됨 이 바람직 할 것이 다.  Change the signal in a manner. The wavelength conversion unit (not shown) converts only the wavelength of the received optical signal and retransmits it, the 2R method of changing and retransmitting the wavelength and signal type at the same time, and the wavelength, signal type and timing at the same time. Configurable in 3R mode to change and retransmit. In particular, it is preferable that the wavelength conversion unit (not shown) be configured in a 2R or 3R scheme which is mainly used.
[47] 이와 같이 , 본 발명은 시분할 수동형 광통신망에서 제 1 광선로 종단  As described above, the present invention terminates the first optical path in a time division passive optical communication network.
장치 (100)와 제 2 광선로 종단 장치 (200) 간에 복수 개의 통신 채 널이 하나의 광케이블을 통해 서로 연결이 가능하도록 해 준다. 따라서 , 복수 개의 통신 채 널 수만큼 광케이블을 사용하여 일대 일로 광 네트워크를 형성하는 것에 비 해 광케이블 매설 비용을 절감시 켜 준다. 또한,광케 이블 이용 면에 있어서도 광선로 종단 장치들 간에 하나의 광케이블을 통해 복수 개의 통신 채 널 연결이 가능하게 함으로써 보다 효율성을 증대시켜준다.  A plurality of communication channels between the device 100 and the second optical fiber termination device 200 enables connection with each other via a single optical cable. Therefore, the cost of laying the optical cable is reduced compared to forming the optical network in a one-to-one manner by using the optical cable by the number of communication channels. In addition, in terms of optical cable usage, it is possible to increase the efficiency by allowing a plurality of communication channels to be connected through a single optical cable between optical fiber termination devices.
[48] 도 3은 본 발명의 제 2 실시 예에 따른 광선로 종단 장치 (OLT) 간에 광 네트워크 시스템을 도시 한 도면이다.  3 is a diagram illustrating an optical network system between an optical line termination device (OLT) according to a second embodiment of the present invention.
[49] 도 2에 도시 된 도면과 비교해 보면,광선로 종단 장치 (OLT)(100,200)는 CWDM 통신 채 널을 형성하는 양방향성 광송수신기를 구비 함은 동일하다. 그러나,도 3의 광선로 종단 장치 (OLT)(100,200)에 구비된 광송수신기들 (제 1 광송수신기, 제 2 광송수신기 ,..제 18 광송수신기)은 송신 신호와 수신 신호가 서로 동일한 파장을 가지는 통신 채 널을 형성하는 것을 특징으로 한다.  Compared with the diagram shown in FIG. 2, the optical fiber terminators (OLTs) 100 and 200 have the same bidirectional optical transceivers forming a CWDM communication channel. However, the optical transmitters (first optical receiver, second optical receiver, .. 18th optical receiver) provided in the optical path terminator (OLT) 100,200 of FIG. 3 have the same wavelength as the transmission signal and the reception signal. The branch is characterized by forming a communication channel.
[50] 이하, CWDM 통신 채널을 형성하며 송신 신호와 수신 신호에 동일한 파장을 사용하는 광송수신기를 CWDM 동일 파장 양방향성 광송수신기 라고 하겠다.  Hereinafter, an optical transmitter that forms a CWDM communication channel and uses the same wavelength in a transmission signal and a reception signal will be referred to as a CWDM same wavelength bidirectional optical transmitter.
[51] CWDM 동일 파장 양방향성 광송수신기는 광의 직진성올 이용하여 송신  [51] CWDM co-wavelength optical transceivers transmit light using linear
신호와 수신 신호에 모두 동일한 파장을 사용할 수 있다. 이 때에, CWDM 동일 파장 양방향성 광송수신기는 광의 직진성을 이용하여 송신 신호와 수신 신호를 분리하기 때문에 외부와의 커 넥터 (Connector) 연결시 반사 손실을 최소한으로 하여 야 한다.  The same wavelength can be used for both the signal and the received signal. At this time, the CWDM co-wavelength optical transceiver uses the straightness of light to separate the transmission signal and the reception signal, so the reflection loss should be minimized when connecting the connector to the outside.
[52] 따라서,광선로 종단 장치 (OLT)(100,200)에 CWDM 동일 파장 양방향성 광송수신기를구비하는경우광케이블커넥터의타입은 APC(Angled Physical Contact)타입을사용함이바람직하다. [52] CWDM equal wavelength bidirectionality in optical fiber termination (OLT) 100,200 If you have an optical transceiver, it is recommended that you use the APC (Angled Physical Contact) type.
[53] 그리고,도 3에도시된바와같이,광선로종단장치 (OLT)(10Q,200)에 CWDM 동일파장양방향성광송수신기를구비하여제 1광선로종단장치 (100)와저 12 광선로종단장치 (200)간에광네트워크를형성하면,제 1및제 2광선로종단 장치 (100,200)에서최대 18개의통신채널을사용하도록구성할수가있다.  As shown in Fig. 3, the optical fiber terminator (OLT) 10Q, 200 is equipped with a CWDM co-wavelength bidirectional optical transceiver to provide the first optical fiber terminator 100 and the low twelve optical fiber terminator 200. Once the optical network is established, the first and second optical fiber terminators 100,200 can be configured to use up to 18 communication channels.
[54] 도 3에도시된제 1다중화 /역다중화장치 (300)와제 2다증화 /역다중화  [54] The first multiplexing / demultiplexing apparatus 300 and the second multiplexing / demultiplexing illustrated in FIG.
장치 (400)의기능은도 2를참조하여앞서설명한바와같고,단지차이점은제 1 및제 2광선로종단장치 (100,200)와연결되는통신채널의수가최대 9개에서 18개로늘어난점이다.  The function of the device 400 is as described above with reference to Fig. 2, except that the number of communication channels connected to the first and second optical fiber terminators 100 and 200 extends from 9 to 18 at most.
[55] 본발명에서광선로종단장치 (OLT)에 CWDM동일파장양방향성  [55] CWDM same wavelength bidirectionality in the optical fiber termination device (OLT) in the present invention
광송수신기를구비하는것은광선로종단장치 (OLT)가더많은통신채널을 가지도록해준다.그리고본발명은광선로종단장치 (OLT)의통신채널이 늘어남에도광선로종단장치 (OLT)간의광네트워크형성시에통신채널수 만큼의광케이블이요구되지않고하나의광케이블을이용해서광네트워크 형성을가능하게한다.  The provision of an optical transceiver allows an optical fiber terminator (OLT) to have more communication channels, and the present invention communicates in the formation of an optical network between optical cable terminators (OLTs), even though the communication channel of the optical fiber terminators (OLTs) increases. The optical cable is not required as many as the number of channels, and one optical cable is used to form the optical network.
[56]  [56]
[57] 본발명에서사용한용어는단지특정한실시예를설명하기위해사용된  [57] The terms used in the present invention are merely used to describe specific embodiments.
것으로본발명은한정하려는의도가아니다.단수의표현은문맥상명백하게 다르게뜻하지않는한,복수의표현을포함한다.본출원에서 "포함하다"또는 "가지다''등의용어는명세서상에기재된특징,숫자,단계,동작,구성요소,부품 또는이들을조합한것이존재함을지정하려는것이지,하나또는그이상의 다른특징들이나숫자,단계,동작,구성요소,부품또는이들을조합한것들의 존재또는부가가능성을미리배제하지않는것으로이해되어야한다.  The present invention is not intended to be limiting. The singular forms "a," "an," and "the" include plural expressions unless the context clearly dictates otherwise. Terms such as "include" or "have" in this application are described in the specification. To specify that a number, step, action, component, part, or combination thereof exists, or to determine the presence or addition of one or more other features or numbers, steps, actions, components, parts, or combinations thereof. It should be understood that it is not excluded beforehand.

Claims

청구범위 Claim
복수개의광가입자망올가진시분할수동형광통신망에서, 제 1광가입자망에존재하는제 1광선로종단장치; A first optical fiber termination device existing in the first optical subscriber network in a time division passive optical communication network having a plurality of optical subscriber networks;
제 2광가입자망에존재하는제 2광선로종단장치 ; A second optical fiber termination device existing in the second optical subscriber network;
상기제 1광선로종단장치의복수개의통신채널로부터각통신 채널에기설정되어진송신파장을가진송신 ^호들을전송받고 그전송받은복수개의송신신호들을파장분할다증화한후 하나의광케이블에전송하거나,상기하나의광케이블을통해 전송받은수신신호를역다중화하여상기제 1광선로종단장치의 각통신채널로각통신채널의수신파장에해당하는신호를 전송하는제 1다중화및역다중화장치 ;및 Receives transmission signals having a transmission wavelength set in each communication channel from a plurality of communication channels of the first optical fiber terminating device, and multiplies the received plurality of transmission signals and transmits them to one optical cable, or A first multiplexing and demultiplexing device for demultiplexing a received signal transmitted through the one optical cable and transmitting a signal corresponding to a reception wavelength of each communication channel to each communication channel of the first optical fiber termination device; and
상기하나의광케이블을통해상기계 1다증화 /역다중화장치가 전송한다중화된신호를수신받고그수신받은신호를 The first multiplexer / demultiplexer transmits the received signal through the one optical cable and receives the received signal.
역다중화하여상기제 2광선로종단장치의각통신채널로각 통신채널의수신파장에해당하는신호를전송하거나,상기제 2 광선로종단장치의복수개의통신채널로부터각통신채널에기 설정된고유송신파장을가진송신신호들을전송받고그 전송받은복수개의송신신호들을파장분할다중화한후상기 하나의광케이블에전송하는제 2다증화및역다중화장치 ;를 포함하는광선로종단장치간에광네트워크시스템. Demultiplexing transmits a signal corresponding to a reception wavelength of each communication channel to each communication channel of the second optical fiber terminator, or transmits a unique transmission wavelength set in each communication channel from a plurality of communication channels of the second optical fiber terminator. And a second multiplexing and demultiplexing device for receiving the received transmission signals and splitting the received plurality of transmission signals into wavelength division multiplexes and transmitting them to the single optical cable.
제 1항에있어서, According to claim 1,
상기제 1광선로종단장치및제 2광선로종단장치는, 통신채널을형성하는복수개의광송수신기를포함하고, 상기광송수신기는, The first optical fiber terminating device and the second optical fiber terminating device include a plurality of optical transmitters for forming a communication channel, and the optical transmitters,
CWDM(Coarse Wavelength Division Multiplexing)통신채널이며 송신신호와수신신호가서로다른파장을가지는통신채널을 형성하는양방향성광송수신기인광선로종단장치간에광 네트워크시스템.  Optical network system between optical fiber terminators, which is a CWDM (Coarse Wavelength Division Multiplexing) communication channel and a bidirectional optical transmitter that forms a communication channel having a different wavelength between transmit and receive signals.
제 1항에있어서, According to claim 1,
상기제 1광선로종단장치및상기제 2광선로종단장치는, 통신채널올형성하는복수개의광송수신기를포함하고, 상기광송수신기는, The first optical path terminating device and the second optical path terminating device include a plurality of optical transmitters for forming a communication channel, wherein the optical transmitters
CWDM(Coarse Wavelength Division Multiplexing)통신채널이며 송신신호와수신신호가서로동일한파장을가지는통신채널을 형성하는양방향성광송수신기인광선로종단장치간에광 네트워크시스템.  Optical network system between optical fiber terminators, which is a CWDM (Coarse Wavelength Division Multiplexing) communication channel and a bidirectional optical transmitter / receiver that forms a communication channel in which transmit and receive signals have the same wavelength.
제 3항에있어서, 상기광송수신기는, According to claim 3, The optical transmitter,
외부광케이블커넥터 (Connector)로 APC( Angled Physical Contact) 타입의커넥터을구비한것인광선로종단장치간에광네트워크 시스템.  Optical network system between optical fiber terminators equipped with an APC (angled physical contact) type connector with an external optical cable connector.
[청구항 5] 제 1항에있어서,  [Claim 5] In paragraph 1,
상기제 1다증화및역다중화장치와상기제 2다증화및역다중화 장치는,  The first multiplier and demultiplexer and the second multiplier and demultiplexer,
도파로형회절격자 (Arrayed Waveguide Grating, AWG)로구성된 것인광선로종단장치간에광네트워크시스템.  An optical network system between optical fiber terminators, consisting of an arrayed waveguide grating (AWG).
[청구항 6] 제 1항에있어서, [Claim 6] In paragraph 1,
상기제 1다중화및역다중화장치와상기제 2다중화및역다중화 장치는,  The first multiplexing and demultiplexing device and the second multiplexing and demultiplexing device,
박막필름필터 (Thin Film Filter)로구성된것인광선로종단장치 간에광네트워크시스템.  Optical network system between optical fiber terminators consisting of thin film filters.
PCT/KR2012/000613 2011-01-26 2012-01-26 Optical network system between optical line terminals in a time division passive optical network WO2012102557A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0007955 2011-01-26
KR20110007955 2011-01-26
KR1020120006707A KR101357996B1 (en) 2011-01-26 2012-01-20 Optical network system for optical line terminal-to-optical line terminal in tdm-pon
KR10-2012-0006707 2012-01-20

Publications (2)

Publication Number Publication Date
WO2012102557A2 true WO2012102557A2 (en) 2012-08-02
WO2012102557A3 WO2012102557A3 (en) 2012-11-29

Family

ID=46581291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000613 WO2012102557A2 (en) 2011-01-26 2012-01-26 Optical network system between optical line terminals in a time division passive optical network

Country Status (1)

Country Link
WO (1) WO2012102557A2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202782A (en) * 1990-01-19 1993-04-13 Canon Kabushiki Kaisha Optical communication method and optical communication system
JPH1041920A (en) * 1996-07-19 1998-02-13 Nec Corp Optical network
JP2001313660A (en) * 2000-02-21 2001-11-09 Nippon Telegr & Teleph Corp <Ntt> Wavelength multiplexed optical network
KR20080109377A (en) * 2007-06-13 2008-12-17 한국과학기술원 A low-cost wavelength division multiplexing-passive optical network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202782A (en) * 1990-01-19 1993-04-13 Canon Kabushiki Kaisha Optical communication method and optical communication system
JPH1041920A (en) * 1996-07-19 1998-02-13 Nec Corp Optical network
JP2001313660A (en) * 2000-02-21 2001-11-09 Nippon Telegr & Teleph Corp <Ntt> Wavelength multiplexed optical network
KR20080109377A (en) * 2007-06-13 2008-12-17 한국과학기술원 A low-cost wavelength division multiplexing-passive optical network

Also Published As

Publication number Publication date
WO2012102557A3 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
US7684706B2 (en) System and method for traffic distribution in an optical network
US8554079B2 (en) Wavelength division and time division multiplex mixing passive optical network system, terminal and signal transmission method
US8554078B2 (en) Passive optical network with plural optical line terminals
US8600234B2 (en) Method and apparatus for link sharing among multiple epons
US8532489B2 (en) Multi-fiber ten gigabit passive optical network optical line terminal for optical distribution network coexistence with gigabit passive optical network
US7970281B2 (en) System and method for managing different transmission architectures in a passive optical network
KR100948831B1 (en) Tdm and wdma passive optical network appratus
US8005363B2 (en) Passive optical network with wavelength division multiplexing
KR100738559B1 (en) Method and apparatus for setting up bandwidth in epon system
KR20030076762A (en) Wavelength division multiplexing passive optical network system
US9819437B2 (en) Rogue optical network unit mitigation in passive optical networks
WO2011110005A1 (en) Passive optical network and device
KR101727779B1 (en) PON Reach Extender and method thereof based on Tunable Optical Transceiver
US9699532B2 (en) Systems and methods of hybrid DWDM aggregation and extension for time division multiplexing passive optical networks
TW201729602A (en) Upgrading PON systems using a multi-cycle field AWG
JP2009141937A (en) Optical filtering apparatus and optical communication system
JP5846007B2 (en) Subscriber side apparatus registration method and optical network system
CN102104814B (en) Passive optical network
US20120163818A1 (en) Passive optical network apparatus for transmitting optical signal
KR100767898B1 (en) Optical transmission system and method for sharing optical fiber cable between hybrid fiber coaxial network and coarse wavelength division multiplexing passive optical network
KR101357996B1 (en) Optical network system for optical line terminal-to-optical line terminal in tdm-pon
WO2012102557A2 (en) Optical network system between optical line terminals in a time division passive optical network
CN107911190A (en) A kind of optical line terminal for supporting ultra dense wavelength division multiple
KR20150085689A (en) Optical transmission apparatus and wdm-pon system for the same
JP2013046132A (en) Communication system and master station device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739772

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739772

Country of ref document: EP

Kind code of ref document: A2