WO2012101835A1 - Protection device in lithium ion secondary battery - Google Patents
Protection device in lithium ion secondary battery Download PDFInfo
- Publication number
- WO2012101835A1 WO2012101835A1 PCT/JP2011/052448 JP2011052448W WO2012101835A1 WO 2012101835 A1 WO2012101835 A1 WO 2012101835A1 JP 2011052448 W JP2011052448 W JP 2011052448W WO 2012101835 A1 WO2012101835 A1 WO 2012101835A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- secondary battery
- lithium ion
- ion secondary
- protection device
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/18—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/574—Devices or arrangements for the interruption of current
- H01M50/583—Devices or arrangements for the interruption of current in response to current, e.g. fuses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a protection device for a lithium ion secondary battery, and particularly to a protection device that can be easily reset.
- Lithium-ion secondary batteries are widely used as power sources for all products from lighting equipment, communication equipment, laptop computers to vehicles because they have high energy density and good discharge characteristics. Yes.
- the lithium ion secondary battery needs to be controlled so as not to be overcharged or overdischarged due to its characteristics.
- a fuse is conventionally used in a lithium ion secondary battery.
- fuses are easily blown by a large current for a moment, there is a tendency to use larger specifications (those with large current value ratings).
- a fuse with a large specification if an abnormal current occurs, it takes time to shut down, during which time the above secondary battery may be consumed or the circuit may break down.
- FIG. 7 An example of a lithium ion secondary battery provided with a protection circuit including a conventional battery protection monitoring IC is shown in FIG.
- the lithium ion secondary battery in FIG. 7 measures a plurality of cells a and the voltage of each cell, and prevents overcharge when the voltage exceeds the specified voltage and prevents overdischarge when the voltage falls below the specified voltage.
- Battery protection monitoring IC b and control switch c.
- the IC when the IC: b cannot be controlled for some reason, the IC includes a second protection IC: d, a control switch e, and fuses f1 and f2, and has a protection function against overcharge and overdischarge. It is a working configuration. However, in the above configuration, there is a problem that the fuses f1 and f2 are partially cut or the fact that they are blown cannot be determined. In addition, g shows a charger. In the above conventional method, a control circuit dedicated to interruption is provided on the IC: b side for ensuring, and the heating elements h1 and h2 are used together with the fuse so as to be easily blown on the fuse side.
- the fuse may be blown with a delay on the circuit side.
- the power of the IC: b can be supplied from the fuse side or from the charging side (or discharging side)
- the certainty is not guaranteed when the power is cut off.
- the overcharge usually occurs at the time of charging, but at the time of discharging, it may occur at the time of starting or stopping the load depending on the characteristics of the load used. In such a case, a high pressure may be generated although it is a single hour. In such a case, an excessive voltage is applied to the battery, which adversely affects the battery. Of course, it is also conceivable that a potential higher than necessary is applied to the secondary battery. This is a phenomenon that can actually occur when an electric motor or the like is operated with a large battery. If a secondary battery malfunctions, it can cause a fatal accident if it is used as a power source for a life support device.
- a breaker may be used instead of a fuse in the case where conditions where the merits and demerits contradict each other.
- the conventional breaker has a structure that assumes a commercial power supply, and is heavy and large, so it is not suitable for the lithium ion secondary battery that emphasizes mobility this time.
- the design of the conventional breaker is based on the assumption that the reset lever and knob are also attached to the control panel, so it is difficult to say that the design is suitable for lithium secondary batteries. Therefore, a lithium-ion battery is a low voltage circuit (for example, 14.8V with four DC 3.7Vs connected in series) and cannot be used as it is.
- the battery pack and its control circuit on the same printed circuit board (PCB) in order to achieve miniaturization.
- PCB printed circuit board
- the specifications required for the protection device in the lithium ion secondary battery are not only electrical numbers, but are small and attached to the PCB as described above, and a reset unit that can be operated immediately by the user after the protection device is activated. Should be prepared.
- the present invention has been made paying attention to the above points, and the problem is that the pack of the lithium ion secondary battery and its control circuit are miniaturized to the extent that they are mounted on the same printed circuit board (PCB). It is providing the protection apparatus in a lithium ion secondary battery provided with the circuit protector. Another object of the present invention is to provide a protection device in a lithium ion secondary battery that can be operated immediately and has a reset function that is easy to recover. Another object of the present invention is to use it as a backup power source for use in lighting in case of distress, mobile phone, transceiver, signal light for marine accident work, power cable-less stand-alone equipment using solar panels, and other equipment. It is providing the protection apparatus in the lithium ion secondary battery which can be performed.
- the present invention provides a battery protection monitoring IC having a cell that can be charged and discharged, measuring the voltage of the cell to prevent overcharge and overdischarge, and overcharge and overdischarge control. Protection for protecting a secondary battery in a lithium ion secondary battery having a switch for use, a second protection IC that operates when the IC cannot be controlled, and a circuit breaker that opens a circuit when an abnormal current occurs
- a circuit protector comprising two switches as the circuit breaker is arranged in a circuit passing through the secondary battery side and the load side, and the circuit protector includes a reset unit. It was taken.
- the lithium ion secondary battery that is the subject of the present invention only needs to have at least one cell, but in general, a battery having a plurality of cells will often be the subject. .
- the lithium-ion secondary battery has a battery protection monitoring IC that measures the voltage of each cell constituting the battery and prevents overcharge and overdischarge, a control switch, and the IC when the IC becomes uncontrollable.
- a second protection IC that operates and a circuit breaker that opens the circuit when an abnormal current occurs are provided. Therefore, overcharge and overdischarge during normal use are protected by a battery protection monitoring IC, a control switch, and a second protection IC that operates when the IC cannot be controlled. Is provided with the protection device of the present invention.
- a circuit protector composed of two switches is connected to a circuit passing through the secondary battery side and the load side.
- the protective device can be miniaturized, but as such a circuit protector, for example, our mini-breaker is small and weighs about 5 grams, so a printed circuit board (PCB) It is suitable for mounting on).
- PCB printed circuit board
- the present invention is not limited to the above-described mini-breaker, and can be used in the protective device of the present invention in the same manner as long as it is a small breaker of the same level.
- two switches are connected in series to a circuit passing through the secondary battery side and the load side, and the middle (connection end side) and ground side of the two switches are connected.
- a switch made of any one of a thermal type, an electromagnetic type and a hybrid type is used.
- a thermal relay using bimetal can be used.
- electromagnetic switches for example, electromagnetic relays can be used.
- hybrid switches for example, a thermal-magnetic type protector can be used.
- an electrothermal-electromagnetic hybrid structure composed of a combination of a bimetal and an electromagnet.
- the trip time can be set in two stages, the electromagnetic coil reacts instantaneously to high overcurrents, and the trip time is delayed until the bimetal reacts to low overcurrents. Can do. For this reason, the hybrid system is suitable for applications that require accurate operations such as communication and process control.
- the circuit protector also needs to include a manual return switch as a reset unit. This is a matter to be considered when packaging the protective device in the lithium ion secondary battery of the present invention. By placing a resettable protector by a manual return switch on the end face of the printed circuit board (PCB), The exposed portion required for operation can be minimized. Therefore, it is desirable to arrange connectors for input / output on the end face of the printed circuit board (PCB).
- the circuit protector is miniaturized to such an extent that the pack of the lithium ion secondary battery and its control circuit are mounted on the same printed circuit board (PCB). It is possible to provide a protective device for a lithium ion secondary battery. Further, according to the present invention, it is possible to provide a protection device for a lithium ion secondary battery that can be operated immediately and has a reset part that can be easily restored. In addition, according to the present invention, it is possible to provide a protection device for a lithium ion secondary battery that can be used as a backup power source used in equipment such as lighting in a disaster, a mobile phone, a transceiver, and a signal light for marine accident work. There is an effect that can be done.
- FIG. 1 is a schematic circuit diagram showing Example 1 of a protection device in a lithium ion secondary battery according to the present invention.
- FIG. 2 is a schematic circuit diagram showing a thermal type switch applied to Example 2 of the protection device in the lithium ion secondary battery according to the present invention.
- FIG. 3 is a schematic circuit diagram showing an example of a protective device for a lithium ion secondary battery according to the present invention, which is an electromagnetic switch applied thereto.
- FIG. 4 is a schematic circuit diagram showing Example 4 of the protection device in the lithium ion secondary battery according to the present invention.
- FIG. 5 is a schematic circuit diagram showing Example 5 of the protection device in the lithium ion secondary battery according to the present invention.
- FIG. 6 is a timing chart for explaining the operation of the protective device in Example 5.
- FIG. 7 is a schematic circuit diagram showing an example of a protection device in a conventional lithium ion secondary battery.
- FIG. 1 shows an example 1 of a protection device 10 in a lithium ion secondary battery
- 11 is a lithium ion battery comprising a plurality of cells, and usually takes the shape and structure of a so-called pack.
- the anode (cathode) and cathode (anode) in the lithium ion battery 11 are connected to connector terminals 14 and 15 by wirings 12 and 13, respectively.
- Reference numeral 16 denotes a battery protection monitoring IC that measures the voltage for each cell to prevent overcharging, and is connected to the wiring 13 via a charge / discharge switch 17 formed of a MOSFET.
- the battery protection monitoring IC also serves as protection against a short circuit and large current.
- the two circuit protectors 20-1 and 20-2 in Example 1 have two sets of two-terminal type thermal relays 18 and 19 as switches and are arranged in series together with the switching units 21 and 22, and The circuit protectors 20-1 and 20-2 are connected to the ground side by an intermediate wiring 23 between them (connection end side), and are T-shaped wirings sharing the terminals.
- the circuit of the protection device 10 in the lithium ion secondary battery uses a second protection IC 24 and a control switch 25 made of a MOSFET, in order to cope with the case where the IC 16 can no longer be controlled.
- a circuit can also be opened and closed in the intermediate wiring 23.
- a mini-breaker (model number: 1620) made by our company is suitable for the circuit protectors 20-1 and 20-2.
- This mini breaker is equipped with a manual return switch as a reset part, and the resettable breaker by the manual return switch is arranged on the end face of the printed circuit board (PCB) as a circuit protector to minimize the exposed part necessary for external operation.
- the connector for input / output is also arranged on the end face of the printed circuit board (PCB). Furthermore, the potential between the external terminal 26 and the ground can be monitored by installing the external terminal 26 in the intermediate wiring 23 between the circuit protectors.
- Reference numeral 27 denotes a charger, which is connected to the connector terminal 14 side of the wiring 12.
- the thermal relays 18 and 19 of the same standard are used, and the circuit on the battery side and the load side can be shut off by using a T-shaped wiring with a common terminal connected in series. it can. That is, since current flows to the battery side through the two circuit protectors 20-1 and 20-2 during normal charging, the circuit protector 20 does not flow to the control switch 25 side and becomes overvoltage or short-circuited. -1, 20-2, or both, trips and breaks the circuit. In particular, in the event of an abnormality due to overcharge, in order to cut off the current to the lithium ion battery 11 side, control is performed so that the current flows to the control switch 25 side to protect the lithium ion battery.
- Example 2 shows Example 2 of the present invention
- the circuit protector 30 is the same as the circuit protectors 20-1 and 20-2 used in Example 1 described above.
- This is an example of a thermal switch, and the two thermal relays 18 and 19 are of the same standard, and they are connected in series with the switching units 28 and 29 and combined with a manual return switch 31 that trips two poles simultaneously.
- the circuit protector 30 of Example 2 is configured.
- Reference numerals 32a, 32b, and 32c denote three terminals. Since the trip mechanism of the thermal relays 18 and 19 is bimetal and does not trip for a certain period of time against temporary inrush power, the device can be effectively protected. Therefore, it is optimal for applications such as motors, transformers, and low voltage wiring.
- Example 3 shows Example 3 of the present invention, which is an example in which the circuit protectors 20-1 and 20-2 are electromagnetic (magnetic type) switches as switches.
- the electromagnetic circuit protector 30 'of the third example is an electromagnetic coil wound around the outer periphery of the pipe, a movable iron core disposed in the pipe, a spring, a fixed iron core, silicon oil sealed in the pipe, and opened and closed outside the pipe. It has the magnetic relays 33 and 34 comprised with the operating plate connected with the engaging end of the mechanism part, and also the operating iron piece connected with the operating plate. Similarly to Example 2, the magnetic relays 33 and 34 are provided with a manual return switch 37 that is combined with the open / close portions 35 and 36 and trips two poles simultaneously.
- Reference numerals 38a, 38b, and 38c denote three terminals.
- the movable iron core is attracted to the fixed iron core, the magnetic resistance is reduced, the operating iron piece is attracted, the operating plate is moved, the engagement end of the open / close mechanism is released, and the movable contact opens in conjunction with this.
- the circuit is interrupted. Therefore, when a current such as a short circuit accident current flows, the operating iron piece is immediately drawn and tripped.
- the sealing of the silicone oil is for the purpose of giving a time delay characteristic to the movement of the movable iron core due to its viscosity.
- the electromagnetic type is compared with the thermal type, it has the following characteristics. 1) Not affected by ambient temperature.
- the operating current of the circuit protectors 20-1 and 20-2 is determined only by the magnitude of the current and does not change depending on the ambient temperature, there is no need for temperature correction of the rated current. 2) Immediate re-restoration Even after a shut-off operation (trip), if the current is less than the rated current, it can be re-reacted immediately without requiring standby time. 3) Immediate shut-off characteristics When a large current flows through the coil, it does not wait for the movement of the movable iron core, and the working iron piece is absorbed instantly and the working plate is moved.
- hybrid protectors can also be applied as the circuit protectors 20-1 and 20-2 in the present invention.
- FIG. 4 shows Example 4 of the present invention.
- two circuit protectors 20-1 and 20-2 are replaced with one T-shaped (three-terminal type) protector 40. Since the other configuration is the same as that of Example 1, reference numerals are used and detailed description will not be repeated.
- the details of one T-shaped (three-terminal type) protector 40 are substantially shown in FIG. 2 or FIG. By using this protector 40, the battery side and load side circuits can be interrupted by three instead of four.
- FIG. 5 shows Example 5 of the present invention.
- Example 5 is an example of a stacked lithium ion secondary battery 42 in which one battery pack 41 shown in FIG. 1 or FIG. 4 is connected in parallel and stacked.
- the individual battery packs 41 and 41 are sequentially connected to the wiring 12 of the battery pack 41 of the next layer by extending the intermediate wiring 23 to constitute one parallel-type stacked lithium ion secondary battery 42 as a whole. .
- two circuit protectors (these are denoted by reference numerals 20-1 and 20-). 2 or 20-3 or 20-4) or one or both of them may trip and break the circuit.
- the circuit protector 20-1 on the first layer trips and the other circuit protector 20-2 and the circuit protectors 20-3 and 20-4 on the second layer do not trip when shutting off.
- the circuit protector 20-2 is not tripped. A voltage is applied. That is, the external terminal 44 cannot correctly measure the potential of the first layer circuit (see the timing chart in FIG. 6).
- a laminated battery pack always requires a circuit protector that trips two poles simultaneously.
- stacking in series connection is also conceivable.
- a battery pack is configured by a pair of protectors and one control IC.
- the protection device for a lithium ion secondary battery according to the present invention is capable of mounting the battery pack and its control circuit on the same printed circuit board (PCB), and has an object without impairing the miniaturization of the lithium ion secondary battery. Can be achieved. Therefore, the design suitable for the lithium ion secondary battery can be summarized with a margin, and it is also suitable as a lithium ion secondary battery with emphasis on mobility, coupled with the fact that so-called reset can be easily performed, It will have excellent properties for practical use.
- the lithium-ion secondary battery equipped with the protection device of the present invention can be used as a power source for all products as described at the beginning of this document, and since it is easy to reset, it is a harsh that does not have alternative means such as sea and mountains It is suitable as a battery for equipment used in various situations. Also, paying attention to the fact that the circuit protector has several hundreds of reset endurance cycles and that the LiBs itself has a very long characteristic retention period (about 10 years), various connectors and reset knobs exposed to the outside have been made waterproof. If a completely sealed structure is adopted, it can be used in a flooded state as a resettable marine work battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Protection Of Static Devices (AREA)
Abstract
Provided is a protection device in a lithium ion secondary battery, which is provided with a circuit protector that is miniaturized to the extent of having a lithium ion secondary battery pack and a control circuit thereof mounted on a same printed board (PCB). The protection device protects the secondary battery, which has a chargeable/dischargeable cell (11), and which is provided with: a battery protection monitoring IC (16), which measures the voltage of the cell, and eliminates overcharge and overdischarge; a switch for controlling the overcharge and the overdischarge; an IC for second protection, which operates in the case where the battery protection monitoring IC cannot perform the control; and a breaker, which opens a circuit when an abnormal current is generated. As the breaker, the circuit protector configured of two opening/closing devices is disposed in a circuit that connects the secondary battery side and the load side with each other, and the circuit protector is provided with a resetting section.
Description
本発明はリチウムイオン二次電池における保護装置に関するもので、特に、リセットの容易な保護装置に関するものである
The present invention relates to a protection device for a lithium ion secondary battery, and particularly to a protection device that can be easily reset.
リチウムイオン二次電池(LiBs:Lithium ion Battery system)は高いエネルギー密度が得られ、放電特性も良いため、照明器具、通信用機器、ノートパソコンから車両に至るあらゆる商品の電源として広範に採用されている。リチウムイオン二次電池はその特性上、過充電、過放電状態に至らないように制御する必要がある。
そのための保護装置として、リチウムイオン二次電池には従来からヒューズが使われている。しかし、ヒューズは一瞬の大きな電流で切れやすいので、大き目の仕様(大きな電流値定格のもの)を使う傾向がある。ところが、仕様の大きいヒューズでは、異常電流が発生した場合、遮断するまでに時間がかかり、その間に上記二次電池が消耗するか、回路が故障に至るという問題が起こり、と言って小さめの仕様では頻繁に切れることになるので、仕様の大きいものと小さいものとどちらを選択するかについてはディレンマに陥り勝ちである。
従来の電池保護監視ICを含む保護回路を備えたリチウムイオン二次電池の例を図7に示す。図7におけるリチウムイオン二次電池は複数個のセルaと、1セル毎の電圧を測定し、規定以上の電圧になった場合の過充電防止と規定以下の電圧になった場合の過放電防止を防止する電池保護監視IC:b、制御スイッチcを有している。また、何らかの理由で上記IC:bが制御できなくなった場合のために、セカンドプロテクト用IC:dと制御スイッチe、ヒューズf1、f2を備えており、過充電、過放電に対して保護機能が働く構成である。しかし、上記の構成ではヒューズf1、f2の片切りが発生したり、切れたこと自体を判別できなかったりするという問題がある。なお、gは充電器を示す。
上記の従来方式では、確実化のために、IC:b側に遮断専用の制御回路を設け、また、ヒューズ側には溶断しやすいようにヒューズと併せて発熱体h1、h2を用い、さらに、ヒューズf1、f2の遮断をより一層確実にするために回路側で遅延を持たせてヒューズを切ることもある。しかしながら、そのIC:bの電源はヒューズ側から、或いは、充電側(或いは放電側)から供給され得るので、その電源が断たれた場合、確実性は保証されない。また、充電時に充電側のヒューズf1を遮断することは可能であるが、放電時は二次電池側からの電源からのみエネルギーが供給されるため二次電池側のヒューズf1が先に切れてしまうと、充放電側のヒューズf2が切れなくなることが起こる。
ところで、過充電は、通常、充電時に発生するが、放電時は利用する負荷側の特性によっては、負荷の起動時や停止時に発生することもある。そのような場合、単時間ではあるが、高圧を発生させることもある。そうしたケースでは、バッテリーに過大な電圧を加え、バッテリーに悪影響を及ぼす。また、当然であるが、二次電池に必要以上の電位が加わることも考えられる。これは、大きなバッテリーで電動機などを動作させる場合などでは実際に起こり得る現象である。
二次電池に不具合が発生すると、それが生命維持器具の電源として使われている場合には致命的な事故の原因となる。異常電流を運良くヒューズで遮断できても、ヒューズを取り替えるには、まず、同じ仕様のヒューズを用意し、感電しないようにケースの蓋を外し、溶断したヒューズを手で交換しなければならず、極めて専門的な作業が必要となる。この作業は普通環境でも難しい作業であり、緊急を要する環境下ではパニックに陥ることも考えられるので、一層困難さの増した作業になることが予測される。このように、ヒューズの使用に伴う問題は非常に多い。
特に、本当の異常電流が流れても、切れるまでに時間を要するというデメリットは、その間に二次電池やその制御回路が焼損したり、最悪の場合には、爆発したりするという問題につながることである。このため、メリット、デメリットが背反する条件が同居するケースでは、ヒューズの代わりにブレーカーを使用することがある。しかし、従来のブレーカーは商用電源を想定した構造であり、重くて大きいため、今回のモバイル性を重視したリチウムイオン二次電池には向かない。また、従来のブレーカーはリセットレバーやノブも制御盤に取り付けることが前提のデザインであるから、リチウム二次電池に適合したデザインとは言い難く、これを我慢したとしても、AC100Vを想定した機器であるからリチウムイオン・バッテリは低い電圧回路(例えば、DC3.7Vを4個直列接続として14.8V)であるから、そのままでは使うことができない。
また、モバイル性を重視したバッテリーシステムについては、小型化を実現するためにバッテリーパックとその制御回路を同一のプリント基板(PCB)に搭載することが望ましい。即ち、リチウムイオン二次電池における保護装置に求められる仕様は電気的な数字だけではなく、小型で、上記のようなPCBに取り付けられるとともに、保護装置の作動後、ユーザーが直ぐに操作できるリセット部を備えるべきである。 Lithium-ion secondary batteries (LiBs) are widely used as power sources for all products from lighting equipment, communication equipment, laptop computers to vehicles because they have high energy density and good discharge characteristics. Yes. The lithium ion secondary battery needs to be controlled so as not to be overcharged or overdischarged due to its characteristics.
As a protection device for that purpose, a fuse is conventionally used in a lithium ion secondary battery. However, since fuses are easily blown by a large current for a moment, there is a tendency to use larger specifications (those with large current value ratings). However, in the case of a fuse with a large specification, if an abnormal current occurs, it takes time to shut down, during which time the above secondary battery may be consumed or the circuit may break down. Then, because it will be cut frequently, it is easy to fall into a dilemma as to whether to choose the one with a large specification or the one with a small specification.
An example of a lithium ion secondary battery provided with a protection circuit including a conventional battery protection monitoring IC is shown in FIG. The lithium ion secondary battery in FIG. 7 measures a plurality of cells a and the voltage of each cell, and prevents overcharge when the voltage exceeds the specified voltage and prevents overdischarge when the voltage falls below the specified voltage. Battery protection monitoring IC: b and control switch c. In addition, when the IC: b cannot be controlled for some reason, the IC includes a second protection IC: d, a control switch e, and fuses f1 and f2, and has a protection function against overcharge and overdischarge. It is a working configuration. However, in the above configuration, there is a problem that the fuses f1 and f2 are partially cut or the fact that they are blown cannot be determined. In addition, g shows a charger.
In the above conventional method, a control circuit dedicated to interruption is provided on the IC: b side for ensuring, and the heating elements h1 and h2 are used together with the fuse so as to be easily blown on the fuse side. In order to further reliably cut off the fuses f1 and f2, the fuse may be blown with a delay on the circuit side. However, since the power of the IC: b can be supplied from the fuse side or from the charging side (or discharging side), the certainty is not guaranteed when the power is cut off. In addition, it is possible to cut off the charging side fuse f1 during charging, but during discharging, energy is supplied only from the power source from the secondary battery side, so the secondary battery side fuse f1 is blown first. Then, the charge / discharge side fuse f2 may not be blown.
By the way, the overcharge usually occurs at the time of charging, but at the time of discharging, it may occur at the time of starting or stopping the load depending on the characteristics of the load used. In such a case, a high pressure may be generated although it is a single hour. In such a case, an excessive voltage is applied to the battery, which adversely affects the battery. Of course, it is also conceivable that a potential higher than necessary is applied to the secondary battery. This is a phenomenon that can actually occur when an electric motor or the like is operated with a large battery.
If a secondary battery malfunctions, it can cause a fatal accident if it is used as a power source for a life support device. Even if the abnormal current can be forcibly interrupted by the fuse, to replace the fuse, you must first prepare a fuse with the same specifications, remove the case lid to avoid electric shock, and replace the blown fuse by hand. , Extremely specialized work is required. This work is difficult even in a normal environment, and it may be panicked in an urgent environment, so it is predicted that the work will become more difficult. Thus, the problems associated with the use of fuses are numerous.
In particular, even if a true abnormal current flows, the demerit that it takes time to run out can lead to problems such as the secondary battery and its control circuit being burned out or exploding in the worst case. It is. For this reason, a breaker may be used instead of a fuse in the case where conditions where the merits and demerits contradict each other. However, the conventional breaker has a structure that assumes a commercial power supply, and is heavy and large, so it is not suitable for the lithium ion secondary battery that emphasizes mobility this time. In addition, the design of the conventional breaker is based on the assumption that the reset lever and knob are also attached to the control panel, so it is difficult to say that the design is suitable for lithium secondary batteries. Therefore, a lithium-ion battery is a low voltage circuit (for example, 14.8V with four DC 3.7Vs connected in series) and cannot be used as it is.
For battery systems that place emphasis on mobility, it is desirable to mount the battery pack and its control circuit on the same printed circuit board (PCB) in order to achieve miniaturization. In other words, the specifications required for the protection device in the lithium ion secondary battery are not only electrical numbers, but are small and attached to the PCB as described above, and a reset unit that can be operated immediately by the user after the protection device is activated. Should be prepared.
そのための保護装置として、リチウムイオン二次電池には従来からヒューズが使われている。しかし、ヒューズは一瞬の大きな電流で切れやすいので、大き目の仕様(大きな電流値定格のもの)を使う傾向がある。ところが、仕様の大きいヒューズでは、異常電流が発生した場合、遮断するまでに時間がかかり、その間に上記二次電池が消耗するか、回路が故障に至るという問題が起こり、と言って小さめの仕様では頻繁に切れることになるので、仕様の大きいものと小さいものとどちらを選択するかについてはディレンマに陥り勝ちである。
従来の電池保護監視ICを含む保護回路を備えたリチウムイオン二次電池の例を図7に示す。図7におけるリチウムイオン二次電池は複数個のセルaと、1セル毎の電圧を測定し、規定以上の電圧になった場合の過充電防止と規定以下の電圧になった場合の過放電防止を防止する電池保護監視IC:b、制御スイッチcを有している。また、何らかの理由で上記IC:bが制御できなくなった場合のために、セカンドプロテクト用IC:dと制御スイッチe、ヒューズf1、f2を備えており、過充電、過放電に対して保護機能が働く構成である。しかし、上記の構成ではヒューズf1、f2の片切りが発生したり、切れたこと自体を判別できなかったりするという問題がある。なお、gは充電器を示す。
上記の従来方式では、確実化のために、IC:b側に遮断専用の制御回路を設け、また、ヒューズ側には溶断しやすいようにヒューズと併せて発熱体h1、h2を用い、さらに、ヒューズf1、f2の遮断をより一層確実にするために回路側で遅延を持たせてヒューズを切ることもある。しかしながら、そのIC:bの電源はヒューズ側から、或いは、充電側(或いは放電側)から供給され得るので、その電源が断たれた場合、確実性は保証されない。また、充電時に充電側のヒューズf1を遮断することは可能であるが、放電時は二次電池側からの電源からのみエネルギーが供給されるため二次電池側のヒューズf1が先に切れてしまうと、充放電側のヒューズf2が切れなくなることが起こる。
ところで、過充電は、通常、充電時に発生するが、放電時は利用する負荷側の特性によっては、負荷の起動時や停止時に発生することもある。そのような場合、単時間ではあるが、高圧を発生させることもある。そうしたケースでは、バッテリーに過大な電圧を加え、バッテリーに悪影響を及ぼす。また、当然であるが、二次電池に必要以上の電位が加わることも考えられる。これは、大きなバッテリーで電動機などを動作させる場合などでは実際に起こり得る現象である。
二次電池に不具合が発生すると、それが生命維持器具の電源として使われている場合には致命的な事故の原因となる。異常電流を運良くヒューズで遮断できても、ヒューズを取り替えるには、まず、同じ仕様のヒューズを用意し、感電しないようにケースの蓋を外し、溶断したヒューズを手で交換しなければならず、極めて専門的な作業が必要となる。この作業は普通環境でも難しい作業であり、緊急を要する環境下ではパニックに陥ることも考えられるので、一層困難さの増した作業になることが予測される。このように、ヒューズの使用に伴う問題は非常に多い。
特に、本当の異常電流が流れても、切れるまでに時間を要するというデメリットは、その間に二次電池やその制御回路が焼損したり、最悪の場合には、爆発したりするという問題につながることである。このため、メリット、デメリットが背反する条件が同居するケースでは、ヒューズの代わりにブレーカーを使用することがある。しかし、従来のブレーカーは商用電源を想定した構造であり、重くて大きいため、今回のモバイル性を重視したリチウムイオン二次電池には向かない。また、従来のブレーカーはリセットレバーやノブも制御盤に取り付けることが前提のデザインであるから、リチウム二次電池に適合したデザインとは言い難く、これを我慢したとしても、AC100Vを想定した機器であるからリチウムイオン・バッテリは低い電圧回路(例えば、DC3.7Vを4個直列接続として14.8V)であるから、そのままでは使うことができない。
また、モバイル性を重視したバッテリーシステムについては、小型化を実現するためにバッテリーパックとその制御回路を同一のプリント基板(PCB)に搭載することが望ましい。即ち、リチウムイオン二次電池における保護装置に求められる仕様は電気的な数字だけではなく、小型で、上記のようなPCBに取り付けられるとともに、保護装置の作動後、ユーザーが直ぐに操作できるリセット部を備えるべきである。 Lithium-ion secondary batteries (LiBs) are widely used as power sources for all products from lighting equipment, communication equipment, laptop computers to vehicles because they have high energy density and good discharge characteristics. Yes. The lithium ion secondary battery needs to be controlled so as not to be overcharged or overdischarged due to its characteristics.
As a protection device for that purpose, a fuse is conventionally used in a lithium ion secondary battery. However, since fuses are easily blown by a large current for a moment, there is a tendency to use larger specifications (those with large current value ratings). However, in the case of a fuse with a large specification, if an abnormal current occurs, it takes time to shut down, during which time the above secondary battery may be consumed or the circuit may break down. Then, because it will be cut frequently, it is easy to fall into a dilemma as to whether to choose the one with a large specification or the one with a small specification.
An example of a lithium ion secondary battery provided with a protection circuit including a conventional battery protection monitoring IC is shown in FIG. The lithium ion secondary battery in FIG. 7 measures a plurality of cells a and the voltage of each cell, and prevents overcharge when the voltage exceeds the specified voltage and prevents overdischarge when the voltage falls below the specified voltage. Battery protection monitoring IC: b and control switch c. In addition, when the IC: b cannot be controlled for some reason, the IC includes a second protection IC: d, a control switch e, and fuses f1 and f2, and has a protection function against overcharge and overdischarge. It is a working configuration. However, in the above configuration, there is a problem that the fuses f1 and f2 are partially cut or the fact that they are blown cannot be determined. In addition, g shows a charger.
In the above conventional method, a control circuit dedicated to interruption is provided on the IC: b side for ensuring, and the heating elements h1 and h2 are used together with the fuse so as to be easily blown on the fuse side. In order to further reliably cut off the fuses f1 and f2, the fuse may be blown with a delay on the circuit side. However, since the power of the IC: b can be supplied from the fuse side or from the charging side (or discharging side), the certainty is not guaranteed when the power is cut off. In addition, it is possible to cut off the charging side fuse f1 during charging, but during discharging, energy is supplied only from the power source from the secondary battery side, so the secondary battery side fuse f1 is blown first. Then, the charge / discharge side fuse f2 may not be blown.
By the way, the overcharge usually occurs at the time of charging, but at the time of discharging, it may occur at the time of starting or stopping the load depending on the characteristics of the load used. In such a case, a high pressure may be generated although it is a single hour. In such a case, an excessive voltage is applied to the battery, which adversely affects the battery. Of course, it is also conceivable that a potential higher than necessary is applied to the secondary battery. This is a phenomenon that can actually occur when an electric motor or the like is operated with a large battery.
If a secondary battery malfunctions, it can cause a fatal accident if it is used as a power source for a life support device. Even if the abnormal current can be forcibly interrupted by the fuse, to replace the fuse, you must first prepare a fuse with the same specifications, remove the case lid to avoid electric shock, and replace the blown fuse by hand. , Extremely specialized work is required. This work is difficult even in a normal environment, and it may be panicked in an urgent environment, so it is predicted that the work will become more difficult. Thus, the problems associated with the use of fuses are numerous.
In particular, even if a true abnormal current flows, the demerit that it takes time to run out can lead to problems such as the secondary battery and its control circuit being burned out or exploding in the worst case. It is. For this reason, a breaker may be used instead of a fuse in the case where conditions where the merits and demerits contradict each other. However, the conventional breaker has a structure that assumes a commercial power supply, and is heavy and large, so it is not suitable for the lithium ion secondary battery that emphasizes mobility this time. In addition, the design of the conventional breaker is based on the assumption that the reset lever and knob are also attached to the control panel, so it is difficult to say that the design is suitable for lithium secondary batteries. Therefore, a lithium-ion battery is a low voltage circuit (for example, 14.8V with four DC 3.7Vs connected in series) and cannot be used as it is.
For battery systems that place emphasis on mobility, it is desirable to mount the battery pack and its control circuit on the same printed circuit board (PCB) in order to achieve miniaturization. In other words, the specifications required for the protection device in the lithium ion secondary battery are not only electrical numbers, but are small and attached to the PCB as described above, and a reset unit that can be operated immediately by the user after the protection device is activated. Should be prepared.
本発明は前記の点に着目してなされたものであって、その課題は、リチウムイオン二次電池のパックとその制御回路が同一のプリント基板(PCB)に搭載される程度に小型化されたサーキットプロテクターを備えたリチウムイオン二次電池における保護装置を提供することである。また、本発明の他の課題は、直ぐに操作でき、復旧の容易なリセット機能を有するリチウムイオン二次電池における保護装置を提供することである。また、本発明の他の課題は、遭難時の照明、携帯電話、トランシーバー、海難作業用の信号灯、ソーラーパネルを併用する電源ケーブルレスのスタンドアロン機器、その他の機器に使用するバックアップ電源として使用することができるリチウムイオン二次電池における保護装置を提供することである。
The present invention has been made paying attention to the above points, and the problem is that the pack of the lithium ion secondary battery and its control circuit are miniaturized to the extent that they are mounted on the same printed circuit board (PCB). It is providing the protection apparatus in a lithium ion secondary battery provided with the circuit protector. Another object of the present invention is to provide a protection device in a lithium ion secondary battery that can be operated immediately and has a reset function that is easy to recover. Another object of the present invention is to use it as a backup power source for use in lighting in case of distress, mobile phone, transceiver, signal light for marine accident work, power cable-less stand-alone equipment using solar panels, and other equipment. It is providing the protection apparatus in the lithium ion secondary battery which can be performed.
前記の課題を解決するため、本発明は、充放電が可能なセルを有し、上記セルの電圧を測定して過充電及び過放電を防止する電池保護監視ICと、過充電及び過放電制御用のスイッチ、上記ICが制御できなくなった場合に作動するセカンドプロテクト用IC及び異常電流発生時に回路を開成する遮断器を備えたリチウムイオン二次電池において、当該二次電池を保護するための保護装置として、上記遮断器として2個の開閉器類から成るサーキットプロテクターを二次電池側と負荷側を通じる回路に配置して成り、上記サーキットプロテクターにはリセット部を具備して構成するという手段を講じたものである。
本発明の対象となるリチウムイオン二次電池は、少なくとも1個のセルを有していれば良いが、一般的には複数個のセルを有している電池が対象になることが多いであろう。上記リチウムイオン二次電池は、これを構成するセル1個毎の電圧を測定して過充電及び過放電を防止する電池保護監視ICと、制御用のスイッチ、上記ICが制御できなくなった場合に作動するセカンドプロテクト用IC及び異常電流発生時に回路を開成する遮断器を備えている。従って、通常使用時における過充電及び過放電は、電池保護監視ICと制御用のスイッチ、上記ICが制御できなくなった場合に作動するセカンドプロテクト用ICによって保護され、さらに異常電流発生時に対処するために本発明の保護装置が設けられる。
上記遮断器は、2個の開閉器類から成るサーキットプロテクターを二次電池側と負荷側を通じる回路に接続したものとする。サーキットプロテクターを用いることによって、保護装置を小型化することができるが、その様なサーキットプロテクターとしては、例えば当社製のミニブレーカーが小型であり、重量も5グラム程度であるため、プリント基板(PCB)へ搭載するにも支障がなく好適である。上記のミニブレーカーに限らず、同程度の小型ブレーカーであれば、同じように本発明の保護装置に使用することができることも勿論である。
上記のサーキットプロテクターは、2個の開閉器類を二次電池側と負荷側を通じる回路に2個直列に接続し、かつ、2個の開閉器類の中間(接続端側)と接地側を接続してT字型とした構成とすることが望まれる。T字型の場合、おのおの2個の端子の1個を共通化でき、構造が簡単になり部品点数も減少するので、コストの削減と小型化にも寄与する。
上記開閉器類には、サーマル式、電磁式又はハイブリッド式のうちの何れか一種から成るものを使用するものとする。サーマル式開閉器類としては、例えばバイメタルを使用するサーマルリレーを使用することができる。電磁式開閉器類としては、例えば電磁リレーを使用することができる。また、ハイブリッド式開閉器類としては、例えばサーマル−マグネチック式のプロテクターを使用することができる。
サーマル−マグネチック式の例としては、バイメタルと電磁石の組み合わせから成る電熱−電磁式ハイブリッド構造を挙げることができる。このような構成によって、トリップタイムを2段階に設定することができ、高い過電流に対しては電磁コイルが瞬時に反応し、低い過電流に対してはバイメタルが反応するまでトリップ時間を遅らせることができる。このため、ハイブリッド式は、通信、プロセスコントロールなどの正確な動作が必要とされる用途に適している。
上記サーキットプロテクターは、手動復帰スイッチをリセット部として具備していることも必要である。これは、本発明のリチウムイオン二次電池における保護装置のパッケージングする際に考慮すべき事項であるが、手動復帰スイッチによるリセッタブルプロテクターをプリント基板(PCB)の端面に配置することによって、外部操作に必要な露出部分を最小にすることができる。従って、入出力のためのコネクターもプリント基板(PCB)の端面に配置することが望ましい。
本発明は以上のように構成されかつ作用するものであるから、リチウムイオン二次電池のパックとその制御回路が同一のプリント基板(PCB)に搭載される程度に小型化されたサーキットプロテクターを備えたリチウムイオン二次電池における保護装置を提供することができる。また、本発明によれば、直ぐに操作できるとともに復旧の容易なリセット部を有するリチウムイオン二次電池における保護装置を提供することができる。また、本発明によれば、遭難時の照明、携帯電話、トランシーバー、海難作業用の信号灯などの機器に使用するバックアップ電源として使用することができるリチウムイオン二次電池における保護装置を提供することができるという効果を奏する。 In order to solve the above problems, the present invention provides a battery protection monitoring IC having a cell that can be charged and discharged, measuring the voltage of the cell to prevent overcharge and overdischarge, and overcharge and overdischarge control. Protection for protecting a secondary battery in a lithium ion secondary battery having a switch for use, a second protection IC that operates when the IC cannot be controlled, and a circuit breaker that opens a circuit when an abnormal current occurs As a device, a circuit protector comprising two switches as the circuit breaker is arranged in a circuit passing through the secondary battery side and the load side, and the circuit protector includes a reset unit. It was taken.
The lithium ion secondary battery that is the subject of the present invention only needs to have at least one cell, but in general, a battery having a plurality of cells will often be the subject. . The lithium-ion secondary battery has a battery protection monitoring IC that measures the voltage of each cell constituting the battery and prevents overcharge and overdischarge, a control switch, and the IC when the IC becomes uncontrollable. A second protection IC that operates and a circuit breaker that opens the circuit when an abnormal current occurs are provided. Therefore, overcharge and overdischarge during normal use are protected by a battery protection monitoring IC, a control switch, and a second protection IC that operates when the IC cannot be controlled. Is provided with the protection device of the present invention.
In the circuit breaker, a circuit protector composed of two switches is connected to a circuit passing through the secondary battery side and the load side. By using a circuit protector, the protective device can be miniaturized, but as such a circuit protector, for example, our mini-breaker is small and weighs about 5 grams, so a printed circuit board (PCB) It is suitable for mounting on). Of course, the present invention is not limited to the above-described mini-breaker, and can be used in the protective device of the present invention in the same manner as long as it is a small breaker of the same level.
In the above circuit protector, two switches are connected in series to a circuit passing through the secondary battery side and the load side, and the middle (connection end side) and ground side of the two switches are connected. It is desirable to connect to a T-shaped configuration. In the case of the T-shape, one of the two terminals can be shared, the structure is simplified and the number of parts is reduced, which contributes to cost reduction and miniaturization.
As the above-mentioned switches, a switch made of any one of a thermal type, an electromagnetic type and a hybrid type is used. As the thermal switch, for example, a thermal relay using bimetal can be used. As the electromagnetic switches, for example, electromagnetic relays can be used. As hybrid switches, for example, a thermal-magnetic type protector can be used.
As an example of the thermal-magnetic type, there can be mentioned an electrothermal-electromagnetic hybrid structure composed of a combination of a bimetal and an electromagnet. With such a configuration, the trip time can be set in two stages, the electromagnetic coil reacts instantaneously to high overcurrents, and the trip time is delayed until the bimetal reacts to low overcurrents. Can do. For this reason, the hybrid system is suitable for applications that require accurate operations such as communication and process control.
The circuit protector also needs to include a manual return switch as a reset unit. This is a matter to be considered when packaging the protective device in the lithium ion secondary battery of the present invention. By placing a resettable protector by a manual return switch on the end face of the printed circuit board (PCB), The exposed portion required for operation can be minimized. Therefore, it is desirable to arrange connectors for input / output on the end face of the printed circuit board (PCB).
Since the present invention is configured and operates as described above, the circuit protector is miniaturized to such an extent that the pack of the lithium ion secondary battery and its control circuit are mounted on the same printed circuit board (PCB). It is possible to provide a protective device for a lithium ion secondary battery. Further, according to the present invention, it is possible to provide a protection device for a lithium ion secondary battery that can be operated immediately and has a reset part that can be easily restored. In addition, according to the present invention, it is possible to provide a protection device for a lithium ion secondary battery that can be used as a backup power source used in equipment such as lighting in a disaster, a mobile phone, a transceiver, and a signal light for marine accident work. There is an effect that can be done.
本発明の対象となるリチウムイオン二次電池は、少なくとも1個のセルを有していれば良いが、一般的には複数個のセルを有している電池が対象になることが多いであろう。上記リチウムイオン二次電池は、これを構成するセル1個毎の電圧を測定して過充電及び過放電を防止する電池保護監視ICと、制御用のスイッチ、上記ICが制御できなくなった場合に作動するセカンドプロテクト用IC及び異常電流発生時に回路を開成する遮断器を備えている。従って、通常使用時における過充電及び過放電は、電池保護監視ICと制御用のスイッチ、上記ICが制御できなくなった場合に作動するセカンドプロテクト用ICによって保護され、さらに異常電流発生時に対処するために本発明の保護装置が設けられる。
上記遮断器は、2個の開閉器類から成るサーキットプロテクターを二次電池側と負荷側を通じる回路に接続したものとする。サーキットプロテクターを用いることによって、保護装置を小型化することができるが、その様なサーキットプロテクターとしては、例えば当社製のミニブレーカーが小型であり、重量も5グラム程度であるため、プリント基板(PCB)へ搭載するにも支障がなく好適である。上記のミニブレーカーに限らず、同程度の小型ブレーカーであれば、同じように本発明の保護装置に使用することができることも勿論である。
上記のサーキットプロテクターは、2個の開閉器類を二次電池側と負荷側を通じる回路に2個直列に接続し、かつ、2個の開閉器類の中間(接続端側)と接地側を接続してT字型とした構成とすることが望まれる。T字型の場合、おのおの2個の端子の1個を共通化でき、構造が簡単になり部品点数も減少するので、コストの削減と小型化にも寄与する。
上記開閉器類には、サーマル式、電磁式又はハイブリッド式のうちの何れか一種から成るものを使用するものとする。サーマル式開閉器類としては、例えばバイメタルを使用するサーマルリレーを使用することができる。電磁式開閉器類としては、例えば電磁リレーを使用することができる。また、ハイブリッド式開閉器類としては、例えばサーマル−マグネチック式のプロテクターを使用することができる。
サーマル−マグネチック式の例としては、バイメタルと電磁石の組み合わせから成る電熱−電磁式ハイブリッド構造を挙げることができる。このような構成によって、トリップタイムを2段階に設定することができ、高い過電流に対しては電磁コイルが瞬時に反応し、低い過電流に対してはバイメタルが反応するまでトリップ時間を遅らせることができる。このため、ハイブリッド式は、通信、プロセスコントロールなどの正確な動作が必要とされる用途に適している。
上記サーキットプロテクターは、手動復帰スイッチをリセット部として具備していることも必要である。これは、本発明のリチウムイオン二次電池における保護装置のパッケージングする際に考慮すべき事項であるが、手動復帰スイッチによるリセッタブルプロテクターをプリント基板(PCB)の端面に配置することによって、外部操作に必要な露出部分を最小にすることができる。従って、入出力のためのコネクターもプリント基板(PCB)の端面に配置することが望ましい。
本発明は以上のように構成されかつ作用するものであるから、リチウムイオン二次電池のパックとその制御回路が同一のプリント基板(PCB)に搭載される程度に小型化されたサーキットプロテクターを備えたリチウムイオン二次電池における保護装置を提供することができる。また、本発明によれば、直ぐに操作できるとともに復旧の容易なリセット部を有するリチウムイオン二次電池における保護装置を提供することができる。また、本発明によれば、遭難時の照明、携帯電話、トランシーバー、海難作業用の信号灯などの機器に使用するバックアップ電源として使用することができるリチウムイオン二次電池における保護装置を提供することができるという効果を奏する。 In order to solve the above problems, the present invention provides a battery protection monitoring IC having a cell that can be charged and discharged, measuring the voltage of the cell to prevent overcharge and overdischarge, and overcharge and overdischarge control. Protection for protecting a secondary battery in a lithium ion secondary battery having a switch for use, a second protection IC that operates when the IC cannot be controlled, and a circuit breaker that opens a circuit when an abnormal current occurs As a device, a circuit protector comprising two switches as the circuit breaker is arranged in a circuit passing through the secondary battery side and the load side, and the circuit protector includes a reset unit. It was taken.
The lithium ion secondary battery that is the subject of the present invention only needs to have at least one cell, but in general, a battery having a plurality of cells will often be the subject. . The lithium-ion secondary battery has a battery protection monitoring IC that measures the voltage of each cell constituting the battery and prevents overcharge and overdischarge, a control switch, and the IC when the IC becomes uncontrollable. A second protection IC that operates and a circuit breaker that opens the circuit when an abnormal current occurs are provided. Therefore, overcharge and overdischarge during normal use are protected by a battery protection monitoring IC, a control switch, and a second protection IC that operates when the IC cannot be controlled. Is provided with the protection device of the present invention.
In the circuit breaker, a circuit protector composed of two switches is connected to a circuit passing through the secondary battery side and the load side. By using a circuit protector, the protective device can be miniaturized, but as such a circuit protector, for example, our mini-breaker is small and weighs about 5 grams, so a printed circuit board (PCB) It is suitable for mounting on). Of course, the present invention is not limited to the above-described mini-breaker, and can be used in the protective device of the present invention in the same manner as long as it is a small breaker of the same level.
In the above circuit protector, two switches are connected in series to a circuit passing through the secondary battery side and the load side, and the middle (connection end side) and ground side of the two switches are connected. It is desirable to connect to a T-shaped configuration. In the case of the T-shape, one of the two terminals can be shared, the structure is simplified and the number of parts is reduced, which contributes to cost reduction and miniaturization.
As the above-mentioned switches, a switch made of any one of a thermal type, an electromagnetic type and a hybrid type is used. As the thermal switch, for example, a thermal relay using bimetal can be used. As the electromagnetic switches, for example, electromagnetic relays can be used. As hybrid switches, for example, a thermal-magnetic type protector can be used.
As an example of the thermal-magnetic type, there can be mentioned an electrothermal-electromagnetic hybrid structure composed of a combination of a bimetal and an electromagnet. With such a configuration, the trip time can be set in two stages, the electromagnetic coil reacts instantaneously to high overcurrents, and the trip time is delayed until the bimetal reacts to low overcurrents. Can do. For this reason, the hybrid system is suitable for applications that require accurate operations such as communication and process control.
The circuit protector also needs to include a manual return switch as a reset unit. This is a matter to be considered when packaging the protective device in the lithium ion secondary battery of the present invention. By placing a resettable protector by a manual return switch on the end face of the printed circuit board (PCB), The exposed portion required for operation can be minimized. Therefore, it is desirable to arrange connectors for input / output on the end face of the printed circuit board (PCB).
Since the present invention is configured and operates as described above, the circuit protector is miniaturized to such an extent that the pack of the lithium ion secondary battery and its control circuit are mounted on the same printed circuit board (PCB). It is possible to provide a protective device for a lithium ion secondary battery. Further, according to the present invention, it is possible to provide a protection device for a lithium ion secondary battery that can be operated immediately and has a reset part that can be easily restored. In addition, according to the present invention, it is possible to provide a protection device for a lithium ion secondary battery that can be used as a backup power source used in equipment such as lighting in a disaster, a mobile phone, a transceiver, and a signal light for marine accident work. There is an effect that can be done.
図1は本発明に係るリチウムイオン二次電池における保護装置の例1を示す概略的な回路図である。
図2は本発明に係るリチウムイオン二次電池における保護装置の例2であって、それに適用するサーマル式の開閉器類を示す概略的な回路図である。
図3は本発明に係るリチウムイオン二次電池における保護装置の例3であって、それに適用する電磁式の開閉器類を示す概略的な回路図である。
図4は本発明に係るリチウムイオン二次電池における保護装置の例4を示す概略的な回路図である。
図5は本発明に係るリチウムイオン二次電池における保護装置の例5を示す概略的な回路図である。
図6は上記例5における保護装置の作動を説明するためのタイミングチャートである。
図7は従来のリチウムイオン二次電池における保護装置の例を示す概略的な回路図である。 FIG. 1 is a schematic circuit diagram showing Example 1 of a protection device in a lithium ion secondary battery according to the present invention.
FIG. 2 is a schematic circuit diagram showing a thermal type switch applied to Example 2 of the protection device in the lithium ion secondary battery according to the present invention.
FIG. 3 is a schematic circuit diagram showing an example of a protective device for a lithium ion secondary battery according to the present invention, which is an electromagnetic switch applied thereto.
FIG. 4 is a schematic circuit diagram showing Example 4 of the protection device in the lithium ion secondary battery according to the present invention.
FIG. 5 is a schematic circuit diagram showing Example 5 of the protection device in the lithium ion secondary battery according to the present invention.
FIG. 6 is a timing chart for explaining the operation of the protective device in Example 5.
FIG. 7 is a schematic circuit diagram showing an example of a protection device in a conventional lithium ion secondary battery.
図2は本発明に係るリチウムイオン二次電池における保護装置の例2であって、それに適用するサーマル式の開閉器類を示す概略的な回路図である。
図3は本発明に係るリチウムイオン二次電池における保護装置の例3であって、それに適用する電磁式の開閉器類を示す概略的な回路図である。
図4は本発明に係るリチウムイオン二次電池における保護装置の例4を示す概略的な回路図である。
図5は本発明に係るリチウムイオン二次電池における保護装置の例5を示す概略的な回路図である。
図6は上記例5における保護装置の作動を説明するためのタイミングチャートである。
図7は従来のリチウムイオン二次電池における保護装置の例を示す概略的な回路図である。 FIG. 1 is a schematic circuit diagram showing Example 1 of a protection device in a lithium ion secondary battery according to the present invention.
FIG. 2 is a schematic circuit diagram showing a thermal type switch applied to Example 2 of the protection device in the lithium ion secondary battery according to the present invention.
FIG. 3 is a schematic circuit diagram showing an example of a protective device for a lithium ion secondary battery according to the present invention, which is an electromagnetic switch applied thereto.
FIG. 4 is a schematic circuit diagram showing Example 4 of the protection device in the lithium ion secondary battery according to the present invention.
FIG. 5 is a schematic circuit diagram showing Example 5 of the protection device in the lithium ion secondary battery according to the present invention.
FIG. 6 is a timing chart for explaining the operation of the protective device in Example 5.
FIG. 7 is a schematic circuit diagram showing an example of a protection device in a conventional lithium ion secondary battery.
以下、図示の実施形態によって本発明をより詳細に説明する。図1はリチウムイオン二次電池における保護装置10の例1を示すもので、11は複数個のセルから成るリチウムイオン電池であり、通常は、いわゆるパックの形状、構造を取る。リチウムイオン電池11におけるアノード(陰極)とカソード(陽極)はそれぞれ配線12、13によってコネクター端子14、15に接続されている。
16は1セル毎の電圧を測定して過充電を防止する電池保護監視ICであり、MOSFETから成る充放電スイッチ17を介して配線13に接続されている。なお、電池保護監視ICは短絡大電流などの保護も兼ねている。例1の2個のサーキットプロテクター20−1、20−2は、開閉器類として2端子型サーマルリレー18、19を、開閉部21、22とともに直列に二組配置し、かつまた、2個のサーキットプロテクター20−1、20−2をそれらの間(接続端側)にて中間配線23により接地側と接続し、端子を共有したT字型配線としている。また、このリチウムイオン二次電池における保護装置10の回路には、上記IC16で制御ができなくなった場合に対処するため、セカンドプロテクト用IC24を用いるとともに、MOSFETから成る制御用スイッチ25を介して、中間配線23においても回路を開閉可能に設けている。
上記のサーキットプロテクター20−1、20−2には当社製のミニブレーカー(型番:1620)が適している。このミニブレーカーは手動復帰スイッチをリセット部として具備し、かつ、手動復帰スイッチによるリセッタブルブレーカーを、サーキットプロテクターとしてプリント基板(PCB)の端面に配置することによって、外部操作に必要な露出部分を最小にしたもので、入出力のためのコネクターもプリント基板(PCB)の端面に配置されている。さらに、サーキットプロテクター間の中間配線23に外部端子26を設置することにより、外部端子26とグラウンド間の電位を監視することができる。なお、27は充電器を示しており、配線12のコネクター端子14の側に接続されている。
例1の保護装置10では、同じ規格のサーマルリレー18、19を使用し、直列接続する端子を共通化したT字型配線とすることによって、電池側と負荷側の回路をそれぞれ遮断することができる。即ち、正常な充電時には2個のサーキットプロテクター20−1、20−2を通じて電池側に電流が流れるので、制御用スイッチ25の側には流れず、過電圧や短絡状態になった場合、サーキットプロテクター20−1、20−2の一方、若しくは両方がトリップし、回路を遮断する。特に過充電による異常時には、リチウムイオン電池11側への電流を遮断するために、制御用スイッチ25の側へ電流が流れるように制御し、リチウムイオン電池を保護するが、万一、電池保護監視IC16による制御が不可能な場合でも、サーキットプロテクター20−1がトリップし、リチウムイオン電池11を保護する。さらに、その後も過電圧の状態が続くようなときには、制御用スイッチ25が破壊されてしまう恐れがあるが、それをサーキットプロテクター20−2が防止するため、制御用スイッチ25は保護される。
電池保護監視IC16が正常にもどった後や負荷側の異常が取り除かれた場合、これまでのヒューズと違い、手動で復帰ができるので利便性が高い。また、外部端子26によりそれとグラウンド(15)の間の電位を監視することができるので、例えば、上記電位が0Vのときは、両方のサーキットプロテクター20−1、20−2が作動しており、電池側と負荷側の回路が夫々遮断されていることを判別することができる。
図2は本発明の例2を示しており、サーキットプロテクター30は前述の例1に使用したサーキットプロテクター20−1、20−2と同じである。サーマル式開閉器類の一例として例示したもので、2個のサーマルリレー18、19は同一規格とし、これらと開閉部28、29を直列接続するとともに、2極同時にトリップさせる手動復帰スイッチ31を組み合わせて、例2のサーキットプロテクター30が構成されている。32a、32b、32cは3端子を示す。サーマルリレー18、19のトリップ機構はバイメタルであり、一時的な突入電力に対して一定時間トリップしないので、機器を有効に保護することができる。よって、モーター、トランスフォーマー、低電圧配線などの用途に最適である。
図3は本発明の例3を示すもので、これは開閉器類としてサーキットプロテクター20−1、20−2を電磁式(マグネチック式)とした例である。本例3の電磁式サーキットプロテクター30′はパイプの外周に巻回した電磁コイル、パイプ内に配置した可動鉄芯、ばね、固定鉄芯、パイプ内に封入したシリコンオイル、パイプ外にあって開閉機構部の係合端と連結されている作動板、さらに作動板と連結されている作動鉄片で構成されたマグネチックリレー33、34を有している。マグネチックリレー33、34には例2と同様に開閉部35、36と組み合わされ、2極同時にトリップさせる手動復帰スイッチ37を備えている。38a、38b、38cは3端子を示す。過電流が流れると可動鉄芯が固定鉄芯に引き寄せられ磁気抵抗が減少し、作動鉄片が吸引され、作動板を動かし開閉機構部の係合端が外れ、これに連動して可動接点が開き、回路が遮断される。よって、短絡事故電流のような電流が流れた場合には、作動鉄片が即座に引き寄せられてトリップすることになる。なお、シリコンオイルの封入は、その粘性により可動鉄芯の動きに時延特性を持たせる目的である。
電磁式をサーマル式と比較すると、以下のような特徴がある。
1)周囲温度の影響を受けない。
サーキットプロテクター20−1、20−2の動作電流が電流の大きさだけで決まり、周囲温度によって変化しないので、定格電流の温度補正の必要がない。
2)即時再復帰
遮断動作(トリップ)した後でも、定格電流以下の電流であれば、待機時間を要せずに即座に再復帰ができる。
3)即時遮断特性
大電流がコイルに流れた場合は可動鉄心の動きを待たず、瞬時に作動鉄片が吸収され作動板を動かすので、即時遮断を達成できる。
図示は省略するが、ハイブリッド式プロテクターも、本発明におけるサーキットプロテクター20−1、20−2として適用することができる。これは熱動式−電磁式のハイブリッド構造の例であり、バイメタルと電磁コイルを組み合わせることにより、既に言及していることであるが、2段階にトリップタイムを設定することができる。高い過電流に対しては電磁コイルが瞬時に反応し、低い過電流に対してはトリップ時間を遅らせることができるという特徴を有する。
図4は、本発明の例4を示している。例4は、2個のサーキットプロテクター20−1、20−2を1個のT字型(三端子型)プロテクター40に置き換えたものである。他の構成は例1と同様であるので、符号を援用し詳細な説明は繰り返さない。1個のT字型(三端子型)プロテクター40の詳細は、図2又は図3に実質的に示されている。このプロテクター40を用いることによって、電池側と負荷側の回路を4本ではなく3本で遮断することができる。当社は現在、既に2極同時にトリップ可能な小型のサーキットブレーカを製造しており、この技術を併用することによって、図2、図3に示した、内部の回路構成を持つT字型(3端子型)サーキットプロテクターを容易に製造することができる。2極同時にトリップさせることとT字型配線を組み合わせることは、リチウム電池保護回路に大きな利点をもたらし、大きな需要を見込むことも可能である。
図5は、本発明の例5を示している。例5は、図1又は図4に示されるものを1個の電池パック41とし、これを複数個並列に接続し、積層化させて構成した積層型リチウムイオン二次電池42の例である。個々の電池パック41、41同士は、中間配線23を延長して次層の電池パック41の配線12に順次接続され、全体として1個の並列接続した積層型リチウムイオン二次電池42を構成する。
このような電池パック41を積層化した積層型リチウムイオン二次電池42において、過電圧や短絡状態になった場合、各層の電池パック41では2個のサーキットプロテクター(これらを符号20−1、20−2又は20−3、20−4とする。)のどちらか一方又は両方がトリップし回路を遮断し得る。例えば、過充電において、遮断時に、1層目のサーキットプロテクター20−1がトリップして他のサーキットプロテクター20−2と2層目のサーキットプロテクター20−3、20−4はトリップしていない状態の場合を考慮すると、1層目の回路状態を把握する目的で、外部端子43とグランド間の電位を測定したとしても、サーキットプロテクター20−2がトリップしていないため、2層目の回路にも電圧が印加されている状態になる。即ち、外部端子44では1層目の回路の正しい電位測定ができないことになる(図6のタイミングチャート参照)。上記の理由で、積層化した電池パックにおいては必ず2極同時にトリップするサーキットプロテクターが必要である。また、上記の並列接続での積層化以外にも、直列接続での積層化も考えられるが、その場合には、1対のプロテクターと1つの制御ICで電池パックを構成する。
本発明のリチウムイオン二次電池における保護装置は、バッテリーパックとその制御回路を同一のプリント基板(PCB)に搭載することができるものであり、リチウムイオン二次電池の小型化を損なうことなく目的を達成することが可能なものである。よって、リチウムイオン二次電池に適合したデザインに余裕をもってまとめることができ、また、モバイル性を重視したリチウムイオン二次電池としても好適であり、いわゆるリセットが容易に行えることと相俟って、実用にも優れた特性を備えたものとなる。本発明の保護装置を備えたリチウムイオン二次電池は、本書冒頭に記載したとおりあらゆる商品の電源として使用することができるほか、リセットが容易であることから海や山など代替手段の存在しない過酷な状況で使用する機器類の電池として好適である。また、サーキットプロテクターのリセット耐久回数が数百回程度あること、LiBs自体の特性保持期間が極めて長い(10年程度)ことに着目して、外部に露出する各種コネクターやリセットノブを防水仕様にした完全密閉構造を採用すれば、リセットのできる海難作業用電池として浸水状態でも利用できるものとなる。 Hereinafter, the present invention will be described in more detail with reference to illustrated embodiments. FIG. 1 shows an example 1 of aprotection device 10 in a lithium ion secondary battery, 11 is a lithium ion battery comprising a plurality of cells, and usually takes the shape and structure of a so-called pack. The anode (cathode) and cathode (anode) in the lithium ion battery 11 are connected to connector terminals 14 and 15 by wirings 12 and 13, respectively.
Reference numeral 16 denotes a battery protection monitoring IC that measures the voltage for each cell to prevent overcharging, and is connected to the wiring 13 via a charge / discharge switch 17 formed of a MOSFET. Note that the battery protection monitoring IC also serves as protection against a short circuit and large current. The two circuit protectors 20-1 and 20-2 in Example 1 have two sets of two-terminal type thermal relays 18 and 19 as switches and are arranged in series together with the switching units 21 and 22, and The circuit protectors 20-1 and 20-2 are connected to the ground side by an intermediate wiring 23 between them (connection end side), and are T-shaped wirings sharing the terminals. In addition, the circuit of the protection device 10 in the lithium ion secondary battery uses a second protection IC 24 and a control switch 25 made of a MOSFET, in order to cope with the case where the IC 16 can no longer be controlled. A circuit can also be opened and closed in the intermediate wiring 23.
A mini-breaker (model number: 1620) made by our company is suitable for the circuit protectors 20-1 and 20-2. This mini breaker is equipped with a manual return switch as a reset part, and the resettable breaker by the manual return switch is arranged on the end face of the printed circuit board (PCB) as a circuit protector to minimize the exposed part necessary for external operation. The connector for input / output is also arranged on the end face of the printed circuit board (PCB). Furthermore, the potential between theexternal terminal 26 and the ground can be monitored by installing the external terminal 26 in the intermediate wiring 23 between the circuit protectors. Reference numeral 27 denotes a charger, which is connected to the connector terminal 14 side of the wiring 12.
In theprotective device 10 of Example 1, the thermal relays 18 and 19 of the same standard are used, and the circuit on the battery side and the load side can be shut off by using a T-shaped wiring with a common terminal connected in series. it can. That is, since current flows to the battery side through the two circuit protectors 20-1 and 20-2 during normal charging, the circuit protector 20 does not flow to the control switch 25 side and becomes overvoltage or short-circuited. -1, 20-2, or both, trips and breaks the circuit. In particular, in the event of an abnormality due to overcharge, in order to cut off the current to the lithium ion battery 11 side, control is performed so that the current flows to the control switch 25 side to protect the lithium ion battery. Even when the control by the IC 16 is impossible, the circuit protector 20-1 trips and protects the lithium ion battery 11. Further, when the overvoltage state continues thereafter, the control switch 25 may be destroyed, but the circuit protector 20-2 prevents this, so the control switch 25 is protected.
When the batteryprotection monitoring IC 16 returns to normal or when a load-side abnormality is removed, unlike the conventional fuse, it can be manually restored, so that convenience is high. Moreover, since the electric potential between it and the ground (15) can be monitored by the external terminal 26, for example, when the electric potential is 0V, both circuit protectors 20-1 and 20-2 are operating, It can be determined that the circuit on the battery side and the load side are shut off.
FIG. 2 shows Example 2 of the present invention, and thecircuit protector 30 is the same as the circuit protectors 20-1 and 20-2 used in Example 1 described above. This is an example of a thermal switch, and the two thermal relays 18 and 19 are of the same standard, and they are connected in series with the switching units 28 and 29 and combined with a manual return switch 31 that trips two poles simultaneously. Thus, the circuit protector 30 of Example 2 is configured. Reference numerals 32a, 32b, and 32c denote three terminals. Since the trip mechanism of the thermal relays 18 and 19 is bimetal and does not trip for a certain period of time against temporary inrush power, the device can be effectively protected. Therefore, it is optimal for applications such as motors, transformers, and low voltage wiring.
FIG. 3 shows Example 3 of the present invention, which is an example in which the circuit protectors 20-1 and 20-2 are electromagnetic (magnetic type) switches as switches. The electromagnetic circuit protector 30 'of the third example is an electromagnetic coil wound around the outer periphery of the pipe, a movable iron core disposed in the pipe, a spring, a fixed iron core, silicon oil sealed in the pipe, and opened and closed outside the pipe. It has the magnetic relays 33 and 34 comprised with the operating plate connected with the engaging end of the mechanism part, and also the operating iron piece connected with the operating plate. Similarly to Example 2, the magnetic relays 33 and 34 are provided with a manual return switch 37 that is combined with the open / close portions 35 and 36 and trips two poles simultaneously. Reference numerals 38a, 38b, and 38c denote three terminals. When an overcurrent flows, the movable iron core is attracted to the fixed iron core, the magnetic resistance is reduced, the operating iron piece is attracted, the operating plate is moved, the engagement end of the open / close mechanism is released, and the movable contact opens in conjunction with this. The circuit is interrupted. Therefore, when a current such as a short circuit accident current flows, the operating iron piece is immediately drawn and tripped. Note that the sealing of the silicone oil is for the purpose of giving a time delay characteristic to the movement of the movable iron core due to its viscosity.
When the electromagnetic type is compared with the thermal type, it has the following characteristics.
1) Not affected by ambient temperature.
Since the operating current of the circuit protectors 20-1 and 20-2 is determined only by the magnitude of the current and does not change depending on the ambient temperature, there is no need for temperature correction of the rated current.
2) Immediate re-restoration Even after a shut-off operation (trip), if the current is less than the rated current, it can be re-reacted immediately without requiring standby time.
3) Immediate shut-off characteristics When a large current flows through the coil, it does not wait for the movement of the movable iron core, and the working iron piece is absorbed instantly and the working plate is moved.
Although not shown, hybrid protectors can also be applied as the circuit protectors 20-1 and 20-2 in the present invention. This is an example of a thermal-electromagnetic hybrid structure, and as already mentioned by combining a bimetal and an electromagnetic coil, the trip time can be set in two stages. The electromagnetic coil reacts instantaneously to a high overcurrent, and the trip time can be delayed for a low overcurrent.
FIG. 4 shows Example 4 of the present invention. In Example 4, two circuit protectors 20-1 and 20-2 are replaced with one T-shaped (three-terminal type)protector 40. Since the other configuration is the same as that of Example 1, reference numerals are used and detailed description will not be repeated. The details of one T-shaped (three-terminal type) protector 40 are substantially shown in FIG. 2 or FIG. By using this protector 40, the battery side and load side circuits can be interrupted by three instead of four. Our company has already manufactured a small circuit breaker that can trip two poles at the same time. By using this technology together, the T-shaped (3-terminal) with the internal circuit configuration shown in Figs. Type) Circuit protector can be manufactured easily. The tripping of two poles at the same time and the combination of the T-shaped wiring bring a great advantage to the lithium battery protection circuit, and it is possible to expect a great demand.
FIG. 5 shows Example 5 of the present invention. Example 5 is an example of a stacked lithium ionsecondary battery 42 in which one battery pack 41 shown in FIG. 1 or FIG. 4 is connected in parallel and stacked. The individual battery packs 41 and 41 are sequentially connected to the wiring 12 of the battery pack 41 of the next layer by extending the intermediate wiring 23 to constitute one parallel-type stacked lithium ion secondary battery 42 as a whole. .
In the laminated lithium ionsecondary battery 42 in which such battery packs 41 are laminated, when the battery pack 41 of each layer is in an overvoltage or short-circuit state, two circuit protectors (these are denoted by reference numerals 20-1 and 20-). 2 or 20-3 or 20-4) or one or both of them may trip and break the circuit. For example, in overcharge, the circuit protector 20-1 on the first layer trips and the other circuit protector 20-2 and the circuit protectors 20-3 and 20-4 on the second layer do not trip when shutting off. Considering the case, even if the potential between the external terminal 43 and the ground is measured for the purpose of grasping the circuit state of the first layer, the circuit protector 20-2 is not tripped. A voltage is applied. That is, the external terminal 44 cannot correctly measure the potential of the first layer circuit (see the timing chart in FIG. 6). For the above reasons, a laminated battery pack always requires a circuit protector that trips two poles simultaneously. In addition to the above-described stacking in parallel connection, stacking in series connection is also conceivable. In that case, a battery pack is configured by a pair of protectors and one control IC.
The protection device for a lithium ion secondary battery according to the present invention is capable of mounting the battery pack and its control circuit on the same printed circuit board (PCB), and has an object without impairing the miniaturization of the lithium ion secondary battery. Can be achieved. Therefore, the design suitable for the lithium ion secondary battery can be summarized with a margin, and it is also suitable as a lithium ion secondary battery with emphasis on mobility, coupled with the fact that so-called reset can be easily performed, It will have excellent properties for practical use. The lithium-ion secondary battery equipped with the protection device of the present invention can be used as a power source for all products as described at the beginning of this document, and since it is easy to reset, it is a harsh that does not have alternative means such as sea and mountains It is suitable as a battery for equipment used in various situations. Also, paying attention to the fact that the circuit protector has several hundreds of reset endurance cycles and that the LiBs itself has a very long characteristic retention period (about 10 years), various connectors and reset knobs exposed to the outside have been made waterproof. If a completely sealed structure is adopted, it can be used in a flooded state as a resettable marine work battery.
16は1セル毎の電圧を測定して過充電を防止する電池保護監視ICであり、MOSFETから成る充放電スイッチ17を介して配線13に接続されている。なお、電池保護監視ICは短絡大電流などの保護も兼ねている。例1の2個のサーキットプロテクター20−1、20−2は、開閉器類として2端子型サーマルリレー18、19を、開閉部21、22とともに直列に二組配置し、かつまた、2個のサーキットプロテクター20−1、20−2をそれらの間(接続端側)にて中間配線23により接地側と接続し、端子を共有したT字型配線としている。また、このリチウムイオン二次電池における保護装置10の回路には、上記IC16で制御ができなくなった場合に対処するため、セカンドプロテクト用IC24を用いるとともに、MOSFETから成る制御用スイッチ25を介して、中間配線23においても回路を開閉可能に設けている。
上記のサーキットプロテクター20−1、20−2には当社製のミニブレーカー(型番:1620)が適している。このミニブレーカーは手動復帰スイッチをリセット部として具備し、かつ、手動復帰スイッチによるリセッタブルブレーカーを、サーキットプロテクターとしてプリント基板(PCB)の端面に配置することによって、外部操作に必要な露出部分を最小にしたもので、入出力のためのコネクターもプリント基板(PCB)の端面に配置されている。さらに、サーキットプロテクター間の中間配線23に外部端子26を設置することにより、外部端子26とグラウンド間の電位を監視することができる。なお、27は充電器を示しており、配線12のコネクター端子14の側に接続されている。
例1の保護装置10では、同じ規格のサーマルリレー18、19を使用し、直列接続する端子を共通化したT字型配線とすることによって、電池側と負荷側の回路をそれぞれ遮断することができる。即ち、正常な充電時には2個のサーキットプロテクター20−1、20−2を通じて電池側に電流が流れるので、制御用スイッチ25の側には流れず、過電圧や短絡状態になった場合、サーキットプロテクター20−1、20−2の一方、若しくは両方がトリップし、回路を遮断する。特に過充電による異常時には、リチウムイオン電池11側への電流を遮断するために、制御用スイッチ25の側へ電流が流れるように制御し、リチウムイオン電池を保護するが、万一、電池保護監視IC16による制御が不可能な場合でも、サーキットプロテクター20−1がトリップし、リチウムイオン電池11を保護する。さらに、その後も過電圧の状態が続くようなときには、制御用スイッチ25が破壊されてしまう恐れがあるが、それをサーキットプロテクター20−2が防止するため、制御用スイッチ25は保護される。
電池保護監視IC16が正常にもどった後や負荷側の異常が取り除かれた場合、これまでのヒューズと違い、手動で復帰ができるので利便性が高い。また、外部端子26によりそれとグラウンド(15)の間の電位を監視することができるので、例えば、上記電位が0Vのときは、両方のサーキットプロテクター20−1、20−2が作動しており、電池側と負荷側の回路が夫々遮断されていることを判別することができる。
図2は本発明の例2を示しており、サーキットプロテクター30は前述の例1に使用したサーキットプロテクター20−1、20−2と同じである。サーマル式開閉器類の一例として例示したもので、2個のサーマルリレー18、19は同一規格とし、これらと開閉部28、29を直列接続するとともに、2極同時にトリップさせる手動復帰スイッチ31を組み合わせて、例2のサーキットプロテクター30が構成されている。32a、32b、32cは3端子を示す。サーマルリレー18、19のトリップ機構はバイメタルであり、一時的な突入電力に対して一定時間トリップしないので、機器を有効に保護することができる。よって、モーター、トランスフォーマー、低電圧配線などの用途に最適である。
図3は本発明の例3を示すもので、これは開閉器類としてサーキットプロテクター20−1、20−2を電磁式(マグネチック式)とした例である。本例3の電磁式サーキットプロテクター30′はパイプの外周に巻回した電磁コイル、パイプ内に配置した可動鉄芯、ばね、固定鉄芯、パイプ内に封入したシリコンオイル、パイプ外にあって開閉機構部の係合端と連結されている作動板、さらに作動板と連結されている作動鉄片で構成されたマグネチックリレー33、34を有している。マグネチックリレー33、34には例2と同様に開閉部35、36と組み合わされ、2極同時にトリップさせる手動復帰スイッチ37を備えている。38a、38b、38cは3端子を示す。過電流が流れると可動鉄芯が固定鉄芯に引き寄せられ磁気抵抗が減少し、作動鉄片が吸引され、作動板を動かし開閉機構部の係合端が外れ、これに連動して可動接点が開き、回路が遮断される。よって、短絡事故電流のような電流が流れた場合には、作動鉄片が即座に引き寄せられてトリップすることになる。なお、シリコンオイルの封入は、その粘性により可動鉄芯の動きに時延特性を持たせる目的である。
電磁式をサーマル式と比較すると、以下のような特徴がある。
1)周囲温度の影響を受けない。
サーキットプロテクター20−1、20−2の動作電流が電流の大きさだけで決まり、周囲温度によって変化しないので、定格電流の温度補正の必要がない。
2)即時再復帰
遮断動作(トリップ)した後でも、定格電流以下の電流であれば、待機時間を要せずに即座に再復帰ができる。
3)即時遮断特性
大電流がコイルに流れた場合は可動鉄心の動きを待たず、瞬時に作動鉄片が吸収され作動板を動かすので、即時遮断を達成できる。
図示は省略するが、ハイブリッド式プロテクターも、本発明におけるサーキットプロテクター20−1、20−2として適用することができる。これは熱動式−電磁式のハイブリッド構造の例であり、バイメタルと電磁コイルを組み合わせることにより、既に言及していることであるが、2段階にトリップタイムを設定することができる。高い過電流に対しては電磁コイルが瞬時に反応し、低い過電流に対してはトリップ時間を遅らせることができるという特徴を有する。
図4は、本発明の例4を示している。例4は、2個のサーキットプロテクター20−1、20−2を1個のT字型(三端子型)プロテクター40に置き換えたものである。他の構成は例1と同様であるので、符号を援用し詳細な説明は繰り返さない。1個のT字型(三端子型)プロテクター40の詳細は、図2又は図3に実質的に示されている。このプロテクター40を用いることによって、電池側と負荷側の回路を4本ではなく3本で遮断することができる。当社は現在、既に2極同時にトリップ可能な小型のサーキットブレーカを製造しており、この技術を併用することによって、図2、図3に示した、内部の回路構成を持つT字型(3端子型)サーキットプロテクターを容易に製造することができる。2極同時にトリップさせることとT字型配線を組み合わせることは、リチウム電池保護回路に大きな利点をもたらし、大きな需要を見込むことも可能である。
図5は、本発明の例5を示している。例5は、図1又は図4に示されるものを1個の電池パック41とし、これを複数個並列に接続し、積層化させて構成した積層型リチウムイオン二次電池42の例である。個々の電池パック41、41同士は、中間配線23を延長して次層の電池パック41の配線12に順次接続され、全体として1個の並列接続した積層型リチウムイオン二次電池42を構成する。
このような電池パック41を積層化した積層型リチウムイオン二次電池42において、過電圧や短絡状態になった場合、各層の電池パック41では2個のサーキットプロテクター(これらを符号20−1、20−2又は20−3、20−4とする。)のどちらか一方又は両方がトリップし回路を遮断し得る。例えば、過充電において、遮断時に、1層目のサーキットプロテクター20−1がトリップして他のサーキットプロテクター20−2と2層目のサーキットプロテクター20−3、20−4はトリップしていない状態の場合を考慮すると、1層目の回路状態を把握する目的で、外部端子43とグランド間の電位を測定したとしても、サーキットプロテクター20−2がトリップしていないため、2層目の回路にも電圧が印加されている状態になる。即ち、外部端子44では1層目の回路の正しい電位測定ができないことになる(図6のタイミングチャート参照)。上記の理由で、積層化した電池パックにおいては必ず2極同時にトリップするサーキットプロテクターが必要である。また、上記の並列接続での積層化以外にも、直列接続での積層化も考えられるが、その場合には、1対のプロテクターと1つの制御ICで電池パックを構成する。
本発明のリチウムイオン二次電池における保護装置は、バッテリーパックとその制御回路を同一のプリント基板(PCB)に搭載することができるものであり、リチウムイオン二次電池の小型化を損なうことなく目的を達成することが可能なものである。よって、リチウムイオン二次電池に適合したデザインに余裕をもってまとめることができ、また、モバイル性を重視したリチウムイオン二次電池としても好適であり、いわゆるリセットが容易に行えることと相俟って、実用にも優れた特性を備えたものとなる。本発明の保護装置を備えたリチウムイオン二次電池は、本書冒頭に記載したとおりあらゆる商品の電源として使用することができるほか、リセットが容易であることから海や山など代替手段の存在しない過酷な状況で使用する機器類の電池として好適である。また、サーキットプロテクターのリセット耐久回数が数百回程度あること、LiBs自体の特性保持期間が極めて長い(10年程度)ことに着目して、外部に露出する各種コネクターやリセットノブを防水仕様にした完全密閉構造を採用すれば、リセットのできる海難作業用電池として浸水状態でも利用できるものとなる。 Hereinafter, the present invention will be described in more detail with reference to illustrated embodiments. FIG. 1 shows an example 1 of a
A mini-breaker (model number: 1620) made by our company is suitable for the circuit protectors 20-1 and 20-2. This mini breaker is equipped with a manual return switch as a reset part, and the resettable breaker by the manual return switch is arranged on the end face of the printed circuit board (PCB) as a circuit protector to minimize the exposed part necessary for external operation. The connector for input / output is also arranged on the end face of the printed circuit board (PCB). Furthermore, the potential between the
In the
When the battery
FIG. 2 shows Example 2 of the present invention, and the
FIG. 3 shows Example 3 of the present invention, which is an example in which the circuit protectors 20-1 and 20-2 are electromagnetic (magnetic type) switches as switches. The electromagnetic circuit protector 30 'of the third example is an electromagnetic coil wound around the outer periphery of the pipe, a movable iron core disposed in the pipe, a spring, a fixed iron core, silicon oil sealed in the pipe, and opened and closed outside the pipe. It has the
When the electromagnetic type is compared with the thermal type, it has the following characteristics.
1) Not affected by ambient temperature.
Since the operating current of the circuit protectors 20-1 and 20-2 is determined only by the magnitude of the current and does not change depending on the ambient temperature, there is no need for temperature correction of the rated current.
2) Immediate re-restoration Even after a shut-off operation (trip), if the current is less than the rated current, it can be re-reacted immediately without requiring standby time.
3) Immediate shut-off characteristics When a large current flows through the coil, it does not wait for the movement of the movable iron core, and the working iron piece is absorbed instantly and the working plate is moved.
Although not shown, hybrid protectors can also be applied as the circuit protectors 20-1 and 20-2 in the present invention. This is an example of a thermal-electromagnetic hybrid structure, and as already mentioned by combining a bimetal and an electromagnetic coil, the trip time can be set in two stages. The electromagnetic coil reacts instantaneously to a high overcurrent, and the trip time can be delayed for a low overcurrent.
FIG. 4 shows Example 4 of the present invention. In Example 4, two circuit protectors 20-1 and 20-2 are replaced with one T-shaped (three-terminal type)
FIG. 5 shows Example 5 of the present invention. Example 5 is an example of a stacked lithium ion
In the laminated lithium ion
The protection device for a lithium ion secondary battery according to the present invention is capable of mounting the battery pack and its control circuit on the same printed circuit board (PCB), and has an object without impairing the miniaturization of the lithium ion secondary battery. Can be achieved. Therefore, the design suitable for the lithium ion secondary battery can be summarized with a margin, and it is also suitable as a lithium ion secondary battery with emphasis on mobility, coupled with the fact that so-called reset can be easily performed, It will have excellent properties for practical use. The lithium-ion secondary battery equipped with the protection device of the present invention can be used as a power source for all products as described at the beginning of this document, and since it is easy to reset, it is a harsh that does not have alternative means such as sea and mountains It is suitable as a battery for equipment used in various situations. Also, paying attention to the fact that the circuit protector has several hundreds of reset endurance cycles and that the LiBs itself has a very long characteristic retention period (about 10 years), various connectors and reset knobs exposed to the outside have been made waterproof. If a completely sealed structure is adopted, it can be used in a flooded state as a resettable marine work battery.
Claims (3)
- 充放電が可能なセルを有し、上記セルの電圧を測定して過充電及び過放電を防止する電池保護監視ICと、過充電及び過放電制御用のスイッチ、上記ICが制御できなくなった場合に作動するセカンドプロテクト用IC及び異常電流発生時に回路を開成する遮断器を備えたリチウムイオン二次電池において、当該二次電池を保護するための保護装置であって、
上記遮断器として2個の開閉器類から成るサーキットプロテクターを二次電池側と負荷側を通じる回路に配置して成り、
上記サーキットプロテクターはリセット部を具備していることを特徴とする
リチウムイオン二次電池における保護装置。 A battery protection monitoring IC that has a cell that can be charged and discharged, measures the voltage of the cell to prevent overcharge and overdischarge, a switch for overcharge and overdischarge control, and the IC cannot be controlled. In a lithium ion secondary battery provided with a second protection IC that operates in a normal state and a circuit breaker that opens a circuit when an abnormal current occurs, a protection device for protecting the secondary battery,
A circuit protector consisting of two switches as the circuit breaker is arranged in a circuit passing through the secondary battery side and the load side,
The circuit protector includes a reset unit, and a protection device for a lithium ion secondary battery. - サーキットプロテクターは、2個の開閉器類を二次電池側と負荷側を通じる回路に2個直列に接続し、かつ、2個の開閉器類の接続端側と接地側を接続してT字型とした構成を有する請求項1記載のリチウムイオン二次電池における保護装置。 The circuit protector connects two switches in series to the circuit that passes the secondary battery side and the load side, and connects the connection end side of the two switches and the ground side to form a T-shape. The protection device for a lithium ion secondary battery according to claim 1, which has a configuration of a mold.
- 開閉器類は、サーマル式、電磁式又はハイブリッド式のうちの何れか一種から成る請求項1又は2記載のリチウムイオン二次電池における保護装置。 The protection device for a lithium ion secondary battery according to claim 1 or 2, wherein the switches are any one of a thermal type, an electromagnetic type, and a hybrid type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/052448 WO2012101835A1 (en) | 2011-01-28 | 2011-01-28 | Protection device in lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/052448 WO2012101835A1 (en) | 2011-01-28 | 2011-01-28 | Protection device in lithium ion secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012101835A1 true WO2012101835A1 (en) | 2012-08-02 |
Family
ID=46580431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/052448 WO2012101835A1 (en) | 2011-01-28 | 2011-01-28 | Protection device in lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012101835A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9825273B2 (en) | 2013-09-06 | 2017-11-21 | Johnson Controls Technology Company | Systems, methods, and devices for constant current relay control of a battery module |
JP2019528672A (en) * | 2016-08-29 | 2019-10-10 | インテグレーテッド・デバイス・テクノロジー・インコーポレーテッド | Circuits and systems for low power magnetic secure transmission |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1056742A (en) * | 1996-08-06 | 1998-02-24 | Matsushita Electric Ind Co Ltd | Overcharge protective circuit for secondary circuit |
JP2001037096A (en) * | 1999-07-23 | 2001-02-09 | Matsushita Electric Ind Co Ltd | Battery protective circuit |
JP2002330540A (en) * | 2001-04-27 | 2002-11-15 | Sanyo Electric Co Ltd | Battery pack |
JP2002540756A (en) * | 1999-03-25 | 2002-11-26 | タイコ・エレクトロニクス・コーポレイション | Apparatus and method for protection of rechargeable devices |
-
2011
- 2011-01-28 WO PCT/JP2011/052448 patent/WO2012101835A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1056742A (en) * | 1996-08-06 | 1998-02-24 | Matsushita Electric Ind Co Ltd | Overcharge protective circuit for secondary circuit |
JP2002540756A (en) * | 1999-03-25 | 2002-11-26 | タイコ・エレクトロニクス・コーポレイション | Apparatus and method for protection of rechargeable devices |
JP2001037096A (en) * | 1999-07-23 | 2001-02-09 | Matsushita Electric Ind Co Ltd | Battery protective circuit |
JP2002330540A (en) * | 2001-04-27 | 2002-11-15 | Sanyo Electric Co Ltd | Battery pack |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9825273B2 (en) | 2013-09-06 | 2017-11-21 | Johnson Controls Technology Company | Systems, methods, and devices for constant current relay control of a battery module |
US10608231B2 (en) | 2013-09-06 | 2020-03-31 | Cps Technology Holdings Llc | Battery module constant current relay control systems and methods |
US11296389B2 (en) | 2013-09-06 | 2022-04-05 | Cps Technology Holdings Llc | Battery module constant current relay control systems and methods |
JP2019528672A (en) * | 2016-08-29 | 2019-10-10 | インテグレーテッド・デバイス・テクノロジー・インコーポレーテッド | Circuits and systems for low power magnetic secure transmission |
JP7212613B2 (en) | 2016-08-29 | 2023-01-25 | インテグレーテッド・デバイス・テクノロジー・インコーポレーテッド | Circuits and systems for low-power magnetic secure transmission |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9130383B2 (en) | Charging/discharging control device, battery pack, electrical equipment, and charging/discharging control method | |
CN105186588B (en) | Arc flash protection battery energy storage system, conversion system and protection method | |
CN102217118B (en) | Apparatus and method for protecting battery pack by sensing breakdown of sense resistor | |
CN104779587B (en) | Secondary battery protection with permanent failure | |
KR101213480B1 (en) | Battery protecting circuit and controlling method of the same | |
US9478996B2 (en) | Battery cell unit comprising a battery cell and a monitoring and actuation unit for monitoring the battery cell and method for monitoring a battery cell | |
WO2012050210A1 (en) | Electricity storage system and control device | |
EP2023460B1 (en) | Mems based battery monitoring | |
KR20130043258A (en) | Battery pack of improved safety | |
KR20140108704A (en) | Power supply switching device and switch board | |
JP5503430B2 (en) | Battery pack with output stop switch | |
JP5639390B2 (en) | Battery pack and connected battery pack | |
CN116848748A (en) | Battery protection device and control method thereof | |
AU2018235015B2 (en) | System for supplying electrical energy to an on-board network of a submarine | |
JP6848075B2 (en) | Storage battery device | |
WO2012101835A1 (en) | Protection device in lithium ion secondary battery | |
CN111384763A (en) | Electric energy conversion and control device and energy storage system with same | |
TWI469417B (en) | Secondary battery structure with an over-charging security circuit | |
JP2012182890A (en) | Protective device for secondary battery, secondary battery device, and secondary battery | |
JP2006174664A (en) | Battery pack | |
KR20170025805A (en) | Battery cell protection circuit | |
KR100898285B1 (en) | A battery pack for a portable electronic device | |
JP2007305451A (en) | Secondary battery pack with overcharge protection function | |
JP7570295B2 (en) | Protection Circuit | |
US11509159B2 (en) | System and method for thermal cutoff protection device control from an external component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11857336 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11857336 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |