WO2012101792A1 - Hybrid vehicle control device - Google Patents

Hybrid vehicle control device Download PDF

Info

Publication number
WO2012101792A1
WO2012101792A1 PCT/JP2011/051528 JP2011051528W WO2012101792A1 WO 2012101792 A1 WO2012101792 A1 WO 2012101792A1 JP 2011051528 W JP2011051528 W JP 2011051528W WO 2012101792 A1 WO2012101792 A1 WO 2012101792A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
engine
line
switching
electric motor
Prior art date
Application number
PCT/JP2011/051528
Other languages
French (fr)
Japanese (ja)
Inventor
寛英 小林
大坪 秀顕
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/051528 priority Critical patent/WO2012101792A1/en
Publication of WO2012101792A1 publication Critical patent/WO2012101792A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • B60W10/023Fluid clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a control apparatus for a hybrid vehicle including a stepped automatic transmission, and more particularly to an improvement for reducing a shock when switching a traveling mode.
  • Hybrid vehicles that use an engine and an electric motor selectively as driving sources for traveling are known.
  • a plurality of shift speeds may be selectively established in a power transmission path between the engine and the drive wheels based on a traveling state of the vehicle from a predetermined shift line.
  • One having a staged automatic transmission is known.
  • an EHV traveling mode using the engine and the electric motor as a driving source and an EV traveling mode exclusively using the electric motor as a driving source are selectively established.
  • the occurrence of a shock due to the engine stop at is a problem. Therefore, a technique for suppressing the occurrence of a shock at the time of switching from the EHV traveling mode to the EV traveling mode has been proposed.
  • the hybrid vehicle mode switching control device described in Patent Document 1 is the same. According to this technique, when releasing the first clutch when the engine is stopped when switching from the EHV travel mode to the EV travel mode, the engagement torque capacity of the second clutch provided on the automatic transmission side is reduced, It is said that the engine stop shock can be reduced.
  • the present invention has been made in the background of the above circumstances, and an object of the present invention is to reduce the shock at the time of switching the driving mode in a hybrid vehicle including a stepped automatic transmission. It is to provide a control device.
  • the gist of the invention according to claim 1 is that an engine, an electric motor functioning as a drive source, and a plurality of shifts based on a running state of the vehicle from a predetermined shift line.
  • a control device for a hybrid vehicle including a stepped automatic transmission that selectively establishes a stage, and an EV mode that uses the engine and an electric motor as driving sources and an EV that exclusively uses the electric motor as a driving source At least a part of the switching line for determining switching to the traveling mode and at least a part of the shift line are shared.
  • the engine, the electric motor functioning as a drive source, and the stepped automatic transmission that selectively establishes a plurality of shift stages based on the traveling state of the vehicle from a predetermined shift line.
  • the hybrid vehicle control apparatus at least a part of a switching line for determining switching between an EHV traveling mode using the engine and the electric motor as a driving source and an EV traveling mode exclusively using the electric motor as a driving source; Since at least a part of the shift line is shared, it is preferable that the engine stop control and the shift control are executed synchronously to suppress the occurrence of shock and make the control complicated. Can be prevented. That is, it is possible to provide a control device for a hybrid vehicle that reduces a shock when the travel mode is switched in a hybrid vehicle including a stepped automatic transmission.
  • the part is shared.
  • the shift line is determined so as to determine the shift stage based on a vehicle speed and a required amount of driving force, and the automatic transmission
  • the switching line for determining the switching from the EV traveling mode to the HEV traveling mode while the vehicle is maintained at the first speed is such that the automatic transmission is moved from the first speed while the vehicle is maintained in the EV traveling mode. Also, it is determined on the higher driving force request amount side than the shift line for determining the shift to the high speed stage. In this way, for example, when the vehicle is in the EV travel mode and the automatic transmission is at the first speed, the engine stop control and the shift control are synchronized when the vehicle speed increases and the accelerator is turned off. This is executed effectively to suppress the occurrence of shock.
  • the shift line includes a vehicle speed and The shift speed is determined based on the required driving force, and the portion of the shift line that is shared with the switching line gradually decreases the corresponding required driving force as the vehicle speed increases. It is determined to be. In this way, the engine stop control and the shift control are executed synchronously based on a practical relationship shared by the shift line and the switching line.
  • FIG. 2 is a cross-sectional view showing a part of the hybrid vehicle of FIG. It is a functional block diagram explaining the principal part of the control function with which the electronic control apparatus in the hybrid vehicle of FIG. 1 was equipped.
  • FIG. 2 is a diagram illustrating a shift map used for shift determination by an electronic control unit in the hybrid vehicle of FIG. 1 and a switching map used for travel mode switching determination.
  • FIG. 5 is a diagram illustrating specific shift control and travel mode switching control using the shift map and switching map shown in FIG. 4.
  • 2 is a time chart illustrating an example of a change with time of a turbine rotation speed and an engagement pressure of each hydraulic friction engagement element at the time of shifting of an automatic transmission in the hybrid vehicle of FIG. 1. It is a figure which shows collectively the other shift map used for the shift determination by the electronic controller in the hybrid vehicle of FIG. 1, and the switch map used for driving mode switch determination. 2 is a flowchart for explaining a main part of synchronous execution control of shift control and travel mode switching control by an electronic control unit in the hybrid vehicle of FIG. 1. It is a figure which shows notionally the structure of the drive system which concerns on the other hybrid vehicle to which this invention is applied suitably. It is a figure which shows notionally the structure of the drive system which concerns on another hybrid vehicle to which this invention is applied suitably. It is a figure which shows notionally the structure of the drive system which concerns on another hybrid vehicle to which this invention is applied suitably.
  • FIG. 1 is a diagram conceptually showing the structure of a drive system related to a hybrid vehicle 10 according to an embodiment of the present invention.
  • the hybrid vehicle 10 shown in FIG. 1 includes an engine 12 and an electric motor MG that function as a driving source, and the driving force generated by the engine 12 and the electric motor MG includes a torque converter 16, an automatic transmission 18, and a difference. It is configured to be transmitted to a pair of left and right drive wheels 24 via a moving gear device 20 and a pair of left and right axles 22, respectively. With this configuration, the hybrid vehicle 10 is driven using at least one of the engine 12 and the electric motor MG as a driving source for traveling.
  • the engine traveling exclusively using the engine 12 as a driving source for traveling the EV traveling (motor traveling) exclusively using the electric motor MG as a driving source for traveling, and the engine 12 and the electric motor MG.
  • Any one of EHV traveling (hybrid traveling) using as a driving source for traveling is selectively established.
  • the engine 12 is, for example, an internal combustion engine such as a direct injection gasoline engine or a diesel engine in which fuel is directly injected into a combustion chamber. Further, in order to control the drive (output torque) of the engine 12, output control including a throttle actuator that controls opening and closing of an electronic throttle valve, a fuel injection device that performs fuel injection control, an ignition device that performs ignition timing control, and the like. A device 14 is provided. The output control device 14 controls the opening and closing of the electronic throttle valve by the throttle actuator for throttle control in accordance with a command supplied from an electronic control device 58 to be described later, as well as the fuel from the fuel injection device for fuel injection control. The engine 12 is controlled for output by controlling injection and controlling the ignition timing by the ignition device for ignition timing control.
  • the electric motor MG is, for example, a motor generator having a function as a motor (motor) that generates driving force and a generator (generator) that generates reaction force, and has at least a function as a motor that generates driving force. is doing.
  • the power transmission path between the engine 12 and the electric motor MG is provided with a clutch K0 that controls power transmission in the power transmission path according to the engaged state. That is, the crankshaft 26 that is an output member of the engine 12 is selectively connected to the rotor 30 of the electric motor MG through the clutch K0.
  • the rotor 30 of the electric motor MG is connected to a front cover 32 that is an input member of the torque converter 16.
  • the clutch K0 is, for example, a multi-plate hydraulic friction engagement device whose engagement is controlled by a hydraulic actuator, and its engagement state is engaged (completely engaged) according to the hydraulic pressure supplied from the hydraulic control circuit 34. ), Slip engagement, or release (fully open).
  • the clutch K0 When the clutch K0 is engaged, power transmission in the power transmission path between the crankshaft 26 and the front cover 32 is performed (connected), while the clutch K0 is released, thereby The power transmission in the power transmission path between the crankshaft 26 and the front cover 32 is interrupted. Further, when the clutch K0 is slip-engaged, power transmission according to the transmission torque of the clutch K0 is performed in the power transmission path between the crankshaft 26 and the front cover 32.
  • the automatic transmission 18 is a stepped automatic transmission mechanism in which any one of a plurality of predetermined shift speeds (speed ratios) is selectively established, and a plurality of engagements are performed to perform such a shift. Constructed with elements. For example, a plurality of hydraulic friction engagement devices that are engaged and controlled by hydraulic actuators such as a multi-plate clutch and a brake are provided, and the plurality of hydraulic friction engagement devices according to the hydraulic pressure supplied from the hydraulic control circuit 34 are provided. By selectively engaging or disengaging the engagement device, a plurality of (for example, first to fourth speed) forward shift stages (forward gears) according to the combination state of the hydraulic friction engagement devices. Stage, forward travel gear stage) or reverse shift stage (reverse gear stage, reverse travel gear stage) is selectively established.
  • FIG. 2 is a cross-sectional view showing a part of the hybrid vehicle 10 of FIG. 1 with a part thereof cut away in order to explain the configuration in the vicinity of the electric motor MG and the torque converter 16.
  • the electric motor MG, the torque converter 16, the automatic transmission 18, and the crankshaft 26 are configured substantially symmetrically with respect to the common shaft center C. In FIG. It is omitted.
  • the electric motor MG, the torque converter 16, and the automatic transmission 18 are all housed in a transmission case 36.
  • the transmission case 36 is a split case made of aluminum die cast, for example, and is fixed to a non-rotating member such as a vehicle body.
  • the clutch K0 includes a cylindrical clutch drum 38, a cylindrical clutch hub 40 which is smaller in diameter than the clutch drum 38 and is concentrically provided with the clutch drum 38 so as to be rotatable relative to the clutch drum 38, and the clutch drum 38 and the clutch.
  • a frictional engagement member 42 provided in an annular gap between the hub 40 and a clutch piston 44 that presses the frictional engagement member 42 in the direction of the axis C is provided.
  • the clutch drum 38 is integrally fixed to the boss portion 30a of the rotor 30 of the electric motor MG, for example, by welding or the like, and can be rotated integrally with the rotor 30.
  • the friction engagement member 42 is provided between a plurality of annular plate-like separators engaged with the clutch drum 38 so as not to rotate relative to the clutch drum 38, and is rotated between the plurality of separators and rotated relative to the clutch hub 40. And a plurality of annular plate-like friction plates engaged with each other.
  • the friction engagement member 42 is pressed in the direction of the axis C by the clutch piston 44, and the separator and the friction plate are frictionally engaged with each other.
  • the relative rotation between the clutch drum 38 and the clutch hub 40 is suppressed. That is, the friction engagement between the separator of the friction engagement member 42 and the friction plate allows the power transmission between the clutch drum 38 and the clutch hub 40.
  • the clutch K0 is preferably a normally-closed (normally closed) clutch that is engaged when no command is output from the electronic control unit 58 described later.
  • the crankshaft 26 has an output end, that is, one end on the side of the electric motor MG, connected to a rotating shaft 48 that is rotated integrally with the clutch hub 40 of the clutch K0 via a drive plate 46 or the like. That is, the crankshaft 26 and the clutch hub 40 are connected via the drive plate 46 and the rotary shaft 48 so as to be rotated integrally around a common axis C. Further, a hydraulic pump 28 is connected to the pump impeller 16p of the torque converter 16, and the hydraulic pressure generated by the hydraulic pump 28 with the rotation of the pump impeller 16 is supplied to the hydraulic control circuit 34 as an original pressure. It has come to be supplied as.
  • a lockup clutch LU that is directly connected so that the pump impeller 16p and the turbine impeller 16t are rotated together.
  • the lock-up clutch LU is controlled so that its engagement state is engaged (completely engaged), slip-engaged, or released (completely released) according to the hydraulic pressure supplied from the hydraulic control circuit 34. It has become. That is, the lockup clutch LU is provided in a power transmission path between the electric motor MG and the drive wheel 24, and corresponds to a second clutch that controls power transmission in the power transmission path in accordance with the engaged state.
  • the electric motor MG is integrally fixed to the transmission case 36 on the outer peripheral side of the rotary shaft 48 and the rotor 30 rotatably supported around the axis C by the transmission case 36.
  • the stator 50 is provided.
  • the rotor 30 has a slight gap between a cylindrical boss portion 30a rotatably supported by the transmission case 36 via a pair of bearings 52 and the stator 50 on the inner peripheral side of the stator 50.
  • the rotor part 30b which has the some annular steel plate laminated
  • the rotor 30 is connected to the inner periphery of the rotor portion 30b and is connected to the front cover 32 via a transmission member 54 that is integrally fixed to the front cover 32 by, for example, welding.
  • the stator 50 is annularly wound around a core 50a in which a plurality of annular steel plates are respectively laminated in the direction of the axis C, and a part of the inner peripheral portion of the core 50a in the circumferential direction.
  • a plurality of coils 50b provided continuously.
  • the core 50a is integrally fixed to the transmission case 36 with bolts or the like at a plurality of locations in the circumferential direction.
  • the electric motor MG configured as described above is connected to a power storage device (not shown) such as a battery or a capacitor via an inverter 56 shown in FIG. 1, and the inverter 56 is controlled by an electronic control device 58 described later.
  • the drive of the electric motor MG is controlled by adjusting the drive current supplied to the coil 50b.
  • the output torque of the electric motor MG can be increased or decreased by controlling the inverter 56 by the electronic control unit 58.
  • the output torque from the electric motor MG is output only to the torque converter 16 when the clutch K0 is disengaged (not engaged), but when the clutch K0 is engaged, the output torque A part is output to the torque converter 16 and the other part is output to the engine 12.
  • the engine is engaged by the clutch K0. 12 starts. That is, when the clutch K0 is slip-engaged or completely engaged, the engine 12 is rotationally driven by the torque for starting the engine transmitted through the clutch K0, whereby the engine rotational speed NE is increased.
  • the engine 12 is started by controlling engine ignition, fuel supply, and the like while being pulled up. At this time, compensation torque is generated by the electric motor MG, and generation of acceleration (deceleration G) in the longitudinal direction of the vehicle is suppressed. That is, the engine 12 is started by the torque obtained from the explosion energy by ignition and the torque obtained from the engagement energy by the clutch K0, that is, the engine starting torque transmitted through the clutch K0. This is done by being driven.
  • the hybrid vehicle 10 includes a control system as illustrated in FIG.
  • the electronic control device 58 shown in FIG. 1 includes a so-called microcomputer having a CPU, a RAM, a ROM, an input / output interface, and the like.
  • the CPU uses a temporary storage function of the RAM and stores it in the ROM in advance.
  • the electronic control device 58 is supplied with various input signals detected by the sensors provided in the hybrid vehicle 10. For example, a signal representing the accelerator opening A CC detected by the accelerator opening sensor 60, a signal indicative of the rotational speed (motor rotation speed) N MG of the motor MG detected by motor rotation speed sensor 62, an engine rotational speed sensor A signal representing the rotational speed (engine rotational speed) N E of the engine 12 detected by 64, a rotational speed (turbine rotational speed) N T of the turbine impeller 16t of the torque converter 16 detected by a turbine rotational speed sensor 66.
  • a signal representing the accelerator opening A CC detected by the accelerator opening sensor 60 a signal indicative of the rotational speed (motor rotation speed) N MG of the motor MG detected by motor rotation speed sensor 62
  • the rotational speed N MG of the motor MG detected by motor rotation speed sensor 62 is an input rotational speed of the torque converter 16, which corresponds to the rotational speed of the pump impeller 16p in the torque converter 16.
  • the rotational speed NT of the turbine impeller 16 t detected by the turbine rotational speed sensor 66 is an output rotational speed of the torque converter 16 and corresponds to an input rotational speed of the automatic transmission 18.
  • various output signals are supplied from the electronic control device 58 to each device provided in the hybrid vehicle 10.
  • a signal supplied to the output control device 14 of the engine 12 for drive control of the engine 12 a signal supplied to the inverter 56 for drive control of the electric motor MG, a shift of the automatic transmission 18
  • a signal supplied to a plurality of electromagnetic control valves in the hydraulic control circuit 34 for control a signal supplied to the electromagnetic control valves in the hydraulic control circuit 34 for controlling the engagement of the clutch K0, and the lock-up A signal or the like supplied to the electromagnetic control valve in the hydraulic control circuit 34 for engagement control of the clutch LU is supplied from the electronic control unit 58 to each part.
  • FIG. 3 is a functional block diagram for explaining a main part of the control function provided in the electronic control unit 58.
  • the shift control means 80 shown in FIG. 3 executes shift control of the automatic transmission 18 based on the driving state (running state) of the hybrid vehicle 10 based on a predetermined relationship. For example, the vehicle speed V detected by the vehicle speed sensor 68 and the accelerator opening detected by the accelerator opening sensor 60 from a shift map 74 as shown in FIG. Based on the required driving force amount such as A CC , the shift speed to be established in the automatic transmission 18 is determined, and the hydraulic pressure supplied to the automatic transmission 18 is controlled so that the shift speed is established. .
  • each hydraulic friction engagement device in the automatic transmission 18 is controlled from the hydraulic control circuit 34.
  • the driving force requirement amount is a value indicating the driving force for traveling required for the hybrid vehicle 10 determined according to the driver's operation
  • values other than the accelerator opening degree A CC include: A depression amount of an accelerator pedal (not shown), an opening of an electronic throttle valve (throttle opening ⁇ TH ), or the like may be used.
  • Hybrid drive control means 82 executes hybrid drive control in the hybrid vehicle 10. That is, by controlling the drive of the engine 12 via the output control device 14 and controlling the operation of the electric motor MG via the inverter 56, at least one of the engine 12 and the electric motor MG is driven for traveling. Drive control of the hybrid vehicle 10 as a source is performed.
  • the engine 12 is stopped and the EV traveling (motor traveling) mode exclusively using the electric motor MG as a driving source for traveling, the engine traveling mode exclusively using the engine 12 as a driving source for traveling, the engine 12 and the electric motor
  • An EHV driving (hybrid driving) mode in which both MGs are used as driving sources for driving and regeneration (power generation) is performed by the electric motor MG according to the driving state is selectively established according to the driving state of the hybrid vehicle 10.
  • the hybrid drive control means 82 performs travel control of the hybrid vehicle 10 exclusively using the electric motor MG as a drive source for travel. That is, the required output shaft torque is determined based on the accelerator opening degree A cc and the vehicle speed V as the required driving force amount from the driving force map stored in advance, and the required charging shaft value is considered from the required output shaft torque. Calculate the required driving force. Then, the driving (output torque) of the electric motor MG is controlled so that the required driving force can be obtained.
  • the driving of the engine 12 is basically stopped and the clutch K0 is released (completely released). As a result, the power transmission path between the engine 12 and the electric motor MG is cut off, and no power is transmitted from the engine 12 to the lockup clutch 16 side. Conversely, from the lockup clutch 16 side to the engine 12. Torque transmission is not performed.
  • the hybrid drive control means 82 performs travel control of the hybrid vehicle 10 exclusively using the engine 12 as a drive source for travel. That is, the target engine output is calculated so as to obtain the required driving force obtained as described above, and the optimum engine 12 that has been experimentally obtained and stored in advance so as to achieve both drivability and fuel efficiency. While driving the engine 12 along the fuel consumption rate curve (fuel consumption map, relationship), the drive of the engine 12 is controlled so that the engine rotational speed NE and the engine torque at which the target engine output is obtained are obtained. In this engine running mode, the clutch K0 is engaged (completely engaged). Further, although the electric motor MG is idled, the electric motor MG may be operated so as to perform regeneration according to the traveling state.
  • the hybrid drive control means 82 performs travel control of the hybrid vehicle 10 using both the engine 12 and the electric motor MG as drive sources for travel. That is, the target engine output is calculated in consideration of transmission loss, auxiliary machine load, assist torque of the electric motor MG, etc. so that the required driving force required as described above can be obtained, thereby achieving both drivability and fuel efficiency.
  • the engine rotational speed NE and the engine output speed NE can be obtained while operating the engine 12 along the optimum fuel consumption rate curve (fuel consumption map, relationship) of the engine 12 that has been experimentally obtained and stored in advance.
  • the drive of the engine 12 and the electric motor MG is controlled so that the engine torque is obtained.
  • the electric motor MG does not always have to be used as a driving source for traveling, and control such as idling or regenerative operation according to the traveling state of the hybrid vehicle 10 is performed. May be used.
  • the hybrid drive control means 82 controls regeneration (power generation) by the electric motor MG. That is, when it is determined that regeneration is to be performed based on the accelerator opening degree A CC as the driving force requirement amount from a predetermined relationship, the operation is controlled so that regeneration is performed by the electric motor MG.
  • the electric energy generated by the regeneration of the electric motor MG in this way is stored in a power storage device (not shown) via the inverter 56.
  • the electric motor MG is used as a drive source, electric energy is supplied from the power storage device to the electric motor MG via the inverter 56 to generate a driving force.
  • FIG. 4 is a diagram showing a shift map 74 used for shift determination of the automatic transmission 18 by the shift control means 74 and a switching map 76 used for travel mode switching determination by the hybrid control means 76.
  • the shift map 74 shown in FIG. 4 is an upshift line, that is, a low speed stage (a gear stage having a relatively large gear ratio) to a high speed stage (a gear stage having a relatively small gear ratio) among the shift lines used for the shift determination. Only the shift line for determining the shift is shown, and the downshift line, that is, the shift line for determining the shift from the high speed to the low speed is omitted.
  • a shift line (1 ⁇ 2 upshift line) for determining a shift from the first speed to the second speed is a solid line
  • EV driving mode ( ⁇ 3 upshift line to 2 ⁇ 3 upshift line) is indicated by a one-dot chain line
  • a shift line (3 ⁇ 4 upshift line) for determining a shift from the third speed to the fourth speed is indicated by a two-dot chain line.
  • Switching lines for determining switching between the (EV region) and the EHV travel mode (EHV region) are indicated by broken lines.
  • the shift line (2 ⁇ 3 upshift line) for determining the shift from the second speed to the third speed of the automatic transmission 18 is determined.
  • a part of the switching line overlaps with a part of a switching line for determining switching from the EHV traveling mode to the EV traveling mode.
  • a part of a shift line (3 ⁇ 4 upshift line) for determining a shift from the third speed to the fourth speed of the automatic transmission 18 and switching from the EHV travel mode to the EV travel mode are performed.
  • a part of the determination switching line overlaps.
  • a part of each of the 2 ⁇ 3 upshift line and the 3 ⁇ 4 upshift line, and a switching line for determining switching from the EHV traveling mode to the EV traveling mode is stipulated to be shared with some.
  • FIG. 4 in order to show the line types of the respective lines in an easy-to-understand manner, such shared portions are shown slightly shifted, but preferably the shift line and the switching line have the same relationship (coincidence). The Further, there may be a difference that can be regarded as substantially the same relationship in practical use.
  • the common use of the shift line and the switching line means a relationship in which the shift determination and the traveling mode switching determination are performed substantially in synchronization, for example, within a predetermined error range with reference to the shift line (FIG. 4). Then, if a switching line is defined for the vehicle speed and the accelerator opening error, it can be said that the shift line and the switching line are shared. This is the same in the following description.
  • the vehicle speed V and the accelerator opening detected by the vehicle speed sensor 68 are used because they are shared as the 2 ⁇ 3 upshift line and the EHV ⁇ EV switching line.
  • the EV travel mode and the automatic transmission 18 are set to the third mode from the state in which the EHV travel mode and the automatic transmission 18 are in the second speed. It is determined that the transition to the state of speed is determined.
  • the vehicle speed V detected by the vehicle speed sensor 68 and the accelerator opening degree A CC detected by the accelerator opening degree sensor 60 based on the vehicle speed V detected by the vehicle speed sensor 68 and the accelerator opening degree A CC detected by the accelerator opening degree sensor 60. The transition from the state in which the vehicle is in the EHV traveling mode and the automatic transmission 18 is in the third speed to the state in which the vehicle is in the EV traveling mode and the automatic transmission 18 is in the fourth speed is determined. It has been established.
  • a switching line for determining switching from the EV traveling mode to the HEV traveling mode while the automatic transmission 18 is maintained at the first speed is the EV.
  • a switching line for determining switching from the EV traveling mode to the HEV traveling mode while the automatic transmission 18 is maintained at the fourth speed is maintained in the HEV traveling mode. It is determined on the lower driving force requirement side (low accelerator opening side) than the shift line (3 ⁇ 4 upshift line) for determining the shift from 18 third speed to fourth speed.
  • a part of the shift line of the shift map 74 shared with the switch line of the switch map 76 corresponds as the vehicle speed V increases. It is determined that the accelerator opening degree A CC that is the driving force requirement amount is gradually decreased (monotonically decreased). In other words, in the plane coordinates having the vehicle speed V shown in FIG. 4 as the horizontal axis and the accelerator opening degree A CC as the vertical axis, a portion of the shift line of the shift map 74 shared with the switching line of the switching map 76 is on the right. It is set so that it falls.
  • FIG. 5 is a diagram for explaining specific shift control and travel mode switching control using the shift map 74 and the switching map 76 shown in FIG.
  • the accelerator pedal is stepped back with the vehicle speed being substantially constant
  • the switching control from the EHV traveling mode to the EV traveling mode and the shifting control from the second speed to the third speed of the automatic transmission 18 are simultaneously determined or executed. .
  • FIG. 6 is a time chart showing an example of a change with time of the turbine rotation speed NT and the engagement pressure of each hydraulic friction engagement element during the shift of the automatic transmission 18.
  • the gripping of the hydraulic friction engagement element that is, the so-called clutch-to-clutch shift is illustrated as an example.
  • the engagement pressure is actually increased from the time t1 when the first fill of the release side clutch is started.
  • the automatic transmission 18 is in a substantially neutral state until time t2 when the ascent starts. That is, the power transmission path between the crankshaft 26 of the engine 12 and the differential gear device 20 is substantially cut off.
  • the transition from the EHV traveling mode to the EV traveling mode is executed while the automatic transmission 18 is in the substantially neutral state. That is, when the automatic transmission 18 is controlled to be shifted from the second speed to the third speed by the operation (1) shown in FIG. 5, the neutral state is established by changing the engagement element in the automatic transmission 18.
  • the engine 12 By stopping the engine 12 in the meantime, it is possible to suitably suppress the transmission of shock due to the stop to the output side, that is, the output shaft of the automatic transmission 18 or the differential gear device 20 side, and robustness against shock. Can be improved.
  • the robustness can be further improved by canceling the engine stop shock and the shift shock.
  • the accelerator pedal is depressed, and the EHV travel mode. And after the shift to the state where the automatic transmission 18 is in the first speed is determined, the accelerator pedal is stepped back to be in the EV traveling mode and the automatic transmission 18 is in the third speed.
  • the shift to the vehicle is judged, in the EV travel mode, after shifting from the relatively small accelerator opening degree A CC to the EHV travel mode, the transition to the EV travel mode and the 1 ⁇ 3 upshift are executed again. Therefore, drivability can be improved by reducing the number of shifts.
  • the gear ratio (speed ratio) ) Is large and the sensitivity of the shock is high, that is, the shock can be reduced when the engine is stopped from the state where the automatic transmission 18 is in the first speed and is in the EHV traveling mode.
  • a shock is generated by engaging the lock-up clutch LU during the shift of the automatic transmission 18.
  • FIG. 7 is a diagram showing another shift map 78 used for the shift determination of the automatic transmission 18 by the shift control means 74 and a switch map 76 used for the travel mode switching determination by the hybrid control means 76. It is.
  • the shift map 78 shown in FIG. 7 shows only the downshift line, that is, the shift line for determining the shift from the high speed stage to the low speed stage among the shift lines used for the shift determination, and the upshift line, that is, the low speed stage.
  • the shift line for determining the shift from the high speed to the high speed is omitted.
  • a shift line (2 ⁇ 1 downshift line) for determining a shift from the second speed to the first speed is a solid line
  • EV drive mode ( ⁇ 1 downshift line to 3 ⁇ 2 downshift line) is indicated by a one-dot chain line
  • a shift line (4 ⁇ 3 downshift line) for determining a shift from the fourth speed to the third speed is indicated by a two-dot chain line.
  • Switching lines for determining switching between the (EV region) and the EHV travel mode (EHV region) are indicated by broken lines.
  • the shift line (3 ⁇ 2 downshift line) for determining the shift from the third speed to the second speed of the automatic transmission 18 is determined.
  • a part of the switching line overlaps with a part of the switching line for determining switching from the EV traveling mode to the EHV traveling mode.
  • a part of a shift line (4 ⁇ 3 downshift line) for determining the shift from the fourth speed to the third speed of the automatic transmission 18 and switching from the EV travel mode to the EHV travel mode are performed.
  • a part of the determination switching line overlaps.
  • the vehicle speed V and the accelerator opening detected by the vehicle speed sensor 68 are used because they are shared as the 3 ⁇ 2 downshift line and the EV ⁇ EHV switching line.
  • the EV driving mode and the automatic transmission 18 are in the EHV driving mode and the automatic transmission 18 is in the second state from the state where the automatic transmission 18 is in the third speed. It is determined that the transition to the state of speed is determined.
  • the vehicle speed V detected by the vehicle speed sensor 68 and the accelerator opening degree A CC detected by the accelerator opening degree sensor 60 are used. The transition from the state in which the vehicle is in the EV traveling mode and the automatic transmission 18 is in the fourth speed to the state in which the automatic transmission 18 is in the EHV traveling mode and the automatic transmission 18 is in the third speed is determined. It has been established.
  • the automatic transmission 18 is in a substantially neutral state. Then, the transition from the EV traveling mode to the EHV traveling mode is executed. That is, for example, when the shift from the EV travel mode to the EHV travel mode is performed in synchronization with the shift control from the third speed to the second speed of the automatic transmission 18, the engagement element in the automatic transmission 18 is grasped. By starting the engine 12 while the neutral state is established by replacement, the shock caused by the start is transmitted to the output side, that is, the output shaft of the automatic transmission 18 to the differential gear device 20 side.
  • the robustness can be further improved by canceling the engine start shock and the shift shock.
  • FIG. 8 is a flowchart for explaining a main part of the synchronous execution control of the shift control and the traveling mode switching control by the electronic control unit 58, and is repeatedly executed at a predetermined cycle.
  • step (hereinafter step is omitted) S1 it is determined whether or not the vehicle travel mode is an EHV travel mode using the engine 12 and the electric motor MG as drive sources. If the determination at S1 is negative, the routine is terminated accordingly. If the determination at S1 is affirmative, whether or not the shift determination and the traveling mode switching determination are performed simultaneously at S2. That is, it is determined whether or not the shift of the automatic transmission 18 and the switching to the EV travel mode are determined based on the relationship shared as the shift line and the switching line. If the determination in S2 is negative, the routine is terminated accordingly. If the determination in S2 is affirmative, in S3, the transition from the EHV traveling mode to the EV traveling mode, that is, the engine.
  • S2 to S4 correspond to the operations of the shift control means 80 and the hybrid drive control means 82.
  • the engine 12 the electric motor MG functioning as a drive source, and the stepped gear that selectively establishes a plurality of shift speeds based on the traveling state of the vehicle from a predetermined shift line.
  • the control device of the hybrid vehicle 10 equipped with the automatic transmission 18 of the type switching between the EHV traveling mode using the engine 12 and the electric motor MG as a driving source and the EV traveling mode exclusively using the electric motor MG as a driving source is performed. Since at least a part of the switching line for determination and at least a part of the shift line are shared, the stop control and the shift control of the engine 12 are executed synchronously, thereby generating a shock. It is possible to suitably prevent the control from becoming complicated. That is, in the hybrid vehicle 10 including the stepped automatic transmission 18, it is possible to provide the electronic control device 58 that reduces the shock when the traveling mode is switched.
  • the shift line is determined so as to determine the shift stage based on the vehicle speed V and the accelerator opening degree A CC as the required driving force, and the automatic transmission 18 is set to the first speed.
  • a switching line for determining switching from the EV traveling mode to the HEV traveling mode while maintaining the automatic transmission 18 from the first speed to a higher speed is maintained while maintaining the EV traveling mode. For example, when the vehicle is in the EV travel mode and the automatic transmission 18 is at the first speed, the vehicle speed V is set to be higher than the shift line for determining the shift of the vehicle.
  • the stop control and the shift control of the engine 12 are executed synchronously, so that the occurrence of a shock can be suitably suppressed.
  • the portion shared with the switching line in the shift line is determined so that the corresponding accelerator opening degree A CC is gradually decreased as the vehicle speed V becomes higher, it is shared with the shift line and the switching line. Based on the practical relationship, the stop control and the shift control of the engine 12 are executed synchronously.
  • FIG. 9 is a diagram conceptually showing the structure of a drive system according to another hybrid vehicle 90 to which the present invention is preferably applied.
  • the hybrid vehicle 90 shown in FIG. 9 has a power transmission path between the crankshaft 26 of the engine 12 and the input shaft 92 of the automatic transmission 18 according to the engagement state. Is provided with a first clutch CL1. Further, in the automatic transmission 18, a power transmission path between the input shaft 92 and a drive shaft 94 which is an input shaft of the differential gear device 20 (an output shaft of the automatic transmission 18) is connected to the power transmission path.
  • a second clutch CL2 is provided for controlling power transmission in the power transmission path according to the combined state.
  • the rotor 30 of the electric motor MG is connected to the input shaft 92 of the automatic transmission 18.
  • the hybrid vehicle 90 configured as described above selectively establishes a plurality of shift stages based on the running state of the vehicle from the engine 12, the electric motor MG functioning as a drive source, and a predetermined shift line.
  • a stepped automatic transmission 18 is provided, and an EHV traveling mode using the engine 12 and the electric motor MG as a driving source and an EV traveling mode exclusively using the electric motor MG as a driving source are selectively established. . That is, similarly to the hybrid vehicle 10 described above, there are problems such as complication of control at the time of switching the traveling mode, generation of shock due to stop control of the engine 12, and the like.
  • the switching line for determining switching between the EHV traveling mode using the engine 12 and the electric motor MG as a driving source and the EV traveling mode exclusively using the electric motor MG and at least the shift line.
  • FIG. 10 is a diagram conceptually showing the configuration of a drive system according to still another hybrid vehicle 100 to which the present invention is preferably applied.
  • the hybrid vehicle 100 shown in FIG. 10 does not include the clutch K0 provided between the crankshaft 26 of the engine 12 and the electric motor MG in the hybrid vehicle 10 described above with reference to FIG.
  • a shaft 26 is connected to the input shaft of the torque converter 16. Further, the rotor 30 of the electric motor MG is coupled to the crankshaft 26 of the engine 12.
  • the hybrid vehicle 100 configured as described above selectively establishes a plurality of shift stages based on the running state of the vehicle from the engine 12, the electric motor MG functioning as a drive source, and a predetermined shift line.
  • a stepped automatic transmission 18 is provided, and an EHV traveling mode using the engine 12 and the electric motor MG as a driving source and an EV traveling mode exclusively using the electric motor MG as a driving source are selectively established. . That is, similarly to the hybrid vehicle 10 and the like described above, there are problems such as complicated control at the time of switching the traveling mode, occurrence of shock due to stop control of the engine 12, and the like.
  • FIG. 11 is a diagram conceptually showing the configuration of a drive system according to still another hybrid vehicle 110 to which the present invention is preferably applied.
  • a hybrid vehicle 110 shown in FIG. 11 includes a planetary gear device 112 that functions as a differential unit between the crankshaft 26 of the engine 12 and the input shaft 92 of the automatic transmission 18, and the planetary gear device.
  • the first electric motor MG1 and the second electric motor MG2 are connected to 112.
  • the rotor 30 of the first electric motor MG1 is connected to the sun gear S that is the first rotating element of the planetary gear unit 112, the crankshaft 26 of the engine 12 is connected to the carrier CA that is the second rotating element,
  • the rotor 30 of the second electric motor MG2 is connected to a ring gear R that is a three-rotation element.
  • the operation state of the first electric motor MG1 is controlled by the inverter 56, whereby the differential state between the rotation speed of the carrier CA and the rotation speed of the ring gear R is controlled, and the planetary gear unit 112 is controlled.
  • the second electric motor MG2 functions as a driving source that generates driving force for traveling in the EV traveling mode.
  • the hybrid vehicle 110 configured as described above selectively selects a plurality of shift speeds based on the running state of the vehicle from the engine 12, the second electric motor MG2 functioning as a drive source, and a predetermined shift line.
  • Selectively established that is, similarly to the hybrid vehicle 10 and the like described above, there are problems such as complicated control at the time of switching the traveling mode, occurrence of shock due to stop control of the engine 12, and the like.
  • a switching line for determining switching between the EHV traveling mode using the engine 12 and the second electric motor MG2 as a driving source and the EV traveling mode exclusively using the second electric motor MG2;
  • the hybrid vehicle 10 provided with the electric motor MG functioning as a drive source in the power transmission path between the engine 12 and the automatic transmission 18 has been described.
  • the present invention is applicable to a hybrid vehicle in which the automatic transmission 18 is provided in a power transmission path between the engine 12 and the front wheels, and the electric motor MG is connected to the rear wheels. It is preferably applied. That is, the present invention is widely applied to hybrid vehicles including an engine, an electric motor that functions as a drive source, and a stepped automatic transmission.
  • the above-described embodiment includes the automatic transmission 18 that includes a plurality of hydraulic friction engagement devices and selectively establishes a plurality of shift stages according to engagement or release of the hydraulic friction engagement devices.
  • the hybrid vehicle 10 and the like have been described.
  • a dual clutch transmission (Dual Clutch) having a synchronous mesh transmission (manual transmission) having a synchromesh mechanism and automatically shifting the synchronous mesh transmission.
  • the present invention is also suitably applied to a hybrid vehicle having Transmission (DCT).
  • the hybrid vehicle including the stepped automatic transmission that selectively establishes a plurality of shift speeds based on the running state of the vehicle from a predetermined shift line has the advantage of the present invention. .
  • the shift map 74 and the switching map 76 shown in FIG. 4 and the like described in the above-described embodiment are prepared for the purpose of easily explaining the features of the present invention, and in practical terms, the vehicle characteristics, etc. It goes without saying that more detailed relationships are used accordingly. That is, the shift map and switching map used in the hybrid vehicle control device of the present invention are appropriately determined according to various designs and the like as long as they have a portion shared by a part of each of the shift line and the switching line. is there.

Abstract

A hybrid vehicle (10) comprises: an engine (12); an electric motor (MG) functioning as a driving source; and a multistage automatic transmission (18) for selectively establishing a plurality of gear stages from predetermined speed change lines on the basis of vehicle traveling states. In a control device for the hybrid vehicle (10), at least part of a switching line and at least part of the speed change lines are shared with each other, the switching line being used for determining the switching between an EHV travel mode in which both the engine (12) and the electric motor (MG) are used as driving sources and an EV travel mode in which the electric motor (MG) is exclusively used as a driving source. The stop control and speed change control of the engine (12) are thereby synchronously executed, so that the occurrence of shock can be suppressed and the controls can be preferably prevented from becoming complicated.

Description

ハイブリッド車両の制御装置Control device for hybrid vehicle
 本発明は、有段式の自動変速機を備えたハイブリッド車両の制御装置に関し、特に、走行モードの切替時におけるショックを低減させるための改良に関する。 The present invention relates to a control apparatus for a hybrid vehicle including a stepped automatic transmission, and more particularly to an improvement for reducing a shock when switching a traveling mode.
 エンジン及び電動機を選択的に走行用の駆動源として用いるハイブリッド車両が知られている。また、斯かるハイブリッド車両の一態様として、上記エンジンと駆動輪との間の動力伝達経路に、予め定められた変速線から車両の走行状態に基づいて複数の変速段を選択的に成立させる有段式の自動変速機を備えたものが知られている。そのようなハイブリッド車両においては、上記エンジン及び電動機を駆動源とするEHV走行モードと、専ら上記電動機を駆動源とするEV走行モードとが選択的に成立させられるが、斯かる走行モードの切替時におけるエンジン停止に起因するショックの発生が問題となる。そこで、上記EHV走行モードからEV走行モードへの切替時におけるショックの発生を抑制するための技術が提案されている。例えば、特許文献1に記載されたハイブリッド車両のモード切り替え制御装置がそれである。この技術によれば、EHV走行モードからEV走行モードへの切替に際してのエンジン停止時に第1クラッチを開放する際、自動変速機側に設けられた第2クラッチの締結トルク容量を低下させることで、上記エンジンの停止ショックを低減できるとされている。 Hybrid vehicles that use an engine and an electric motor selectively as driving sources for traveling are known. In addition, as one aspect of such a hybrid vehicle, a plurality of shift speeds may be selectively established in a power transmission path between the engine and the drive wheels based on a traveling state of the vehicle from a predetermined shift line. One having a staged automatic transmission is known. In such a hybrid vehicle, an EHV traveling mode using the engine and the electric motor as a driving source and an EV traveling mode exclusively using the electric motor as a driving source are selectively established. The occurrence of a shock due to the engine stop at is a problem. Therefore, a technique for suppressing the occurrence of a shock at the time of switching from the EHV traveling mode to the EV traveling mode has been proposed. For example, the hybrid vehicle mode switching control device described in Patent Document 1 is the same. According to this technique, when releasing the first clutch when the engine is stopped when switching from the EHV travel mode to the EV travel mode, the engagement torque capacity of the second clutch provided on the automatic transmission side is reduced, It is said that the engine stop shock can be reduced.
特開2007-253780号公報JP 2007-253780 A
 しかしながら、前記従来の技術では、前記自動変速機の変速の有無によらず、前記エンジンが停止させられる場合には一律に前記第2クラッチの締結トルク容量を低下させるものであることから、斯かる第2クラッチの制御と併行して前記自動変速機の変速が行われるか否かに応じてそれぞれ制御パターンを定める必要があり、制御が複雑化するという弊害があった。更に、前記自動変速機の入力クラッチとして機能する前記第2クラッチの締結トルク容量を低下させることで、エンジン停止中の新たな変速を判断するための制御が複雑化したり、変速制御が遅延したりといった新たな問題を生じさせるものであった。このため、有段式の自動変速機を備えたハイブリッド車両において、走行モードの切替時におけるショックを低減させるハイブリッド車両の制御装置の開発が求められていた。 However, in the conventional technique, when the engine is stopped regardless of whether or not the automatic transmission is shifted, the engagement torque capacity of the second clutch is uniformly reduced. Along with the control of the second clutch, it is necessary to determine a control pattern according to whether or not the shift of the automatic transmission is performed, and there is an adverse effect that the control becomes complicated. Further, by reducing the engagement torque capacity of the second clutch that functions as an input clutch of the automatic transmission, the control for judging a new shift while the engine is stopped is complicated, or the shift control is delayed. It was a new problem. For this reason, in a hybrid vehicle equipped with a stepped automatic transmission, there has been a demand for development of a control device for the hybrid vehicle that reduces shocks when the travel mode is switched.
 本発明は、以上の事情を背景として為されたものであり、その目的とするところは、有段式の自動変速機を備えたハイブリッド車両において、走行モードの切替時におけるショックを低減させるハイブリッド車両の制御装置を提供することにある。 The present invention has been made in the background of the above circumstances, and an object of the present invention is to reduce the shock at the time of switching the driving mode in a hybrid vehicle including a stepped automatic transmission. It is to provide a control device.
 斯かる目的を達成するために、請求項1に係る発明の要旨とするところは、エンジンと、駆動源として機能する電動機と、予め定められた変速線から車両の走行状態に基づいて複数の変速段を選択的に成立させる有段式の自動変速機とを、備えたハイブリッド車両の制御装置であって、前記エンジン及び電動機を駆動源とするEHV走行モードと専ら前記電動機を駆動源とするEV走行モードとの切替を判定するための切替線の少なくとも一部と、前記変速線の少なくとも一部とが共用されることを特徴とするものである。 In order to achieve such an object, the gist of the invention according to claim 1 is that an engine, an electric motor functioning as a drive source, and a plurality of shifts based on a running state of the vehicle from a predetermined shift line. A control device for a hybrid vehicle including a stepped automatic transmission that selectively establishes a stage, and an EV mode that uses the engine and an electric motor as driving sources and an EV that exclusively uses the electric motor as a driving source At least a part of the switching line for determining switching to the traveling mode and at least a part of the shift line are shared.
 このようにすれば、エンジンと、駆動源として機能する電動機と、予め定められた変速線から車両の走行状態に基づいて複数の変速段を選択的に成立させる有段式の自動変速機とを、備えたハイブリッド車両の制御装置において、前記エンジン及び電動機を駆動源とするEHV走行モードと専ら前記電動機を駆動源とするEV走行モードとの切替を判定するための切替線の少なくとも一部と、前記変速線の少なくとも一部とが共用されることから、前記エンジンの停止制御等と変速制御とが同期的に実行されることで、ショックの発生を抑制できると共に制御が複雑になるのを好適に防ぐことができる。すなわち、有段式の自動変速機を備えたハイブリッド車両において、走行モードの切替時におけるショックを低減させるハイブリッド車両の制御装置を提供することができる。 In this case, the engine, the electric motor functioning as a drive source, and the stepped automatic transmission that selectively establishes a plurality of shift stages based on the traveling state of the vehicle from a predetermined shift line. In the hybrid vehicle control apparatus, at least a part of a switching line for determining switching between an EHV traveling mode using the engine and the electric motor as a driving source and an EV traveling mode exclusively using the electric motor as a driving source; Since at least a part of the shift line is shared, it is preferable that the engine stop control and the shift control are executed synchronously to suppress the occurrence of shock and make the control complicated. Can be prevented. That is, it is possible to provide a control device for a hybrid vehicle that reduces a shock when the travel mode is switched in a hybrid vehicle including a stepped automatic transmission.
 また、請求項1に係る発明において、好適には、前記EHV走行モードから前記EV走行モードへの切替を判定するための切替線の少なくとも一部と、前記変速線のうちアップシフト線の少なくとも一部とが共用されるものである。このようにすれば、前記エンジンの停止制御とアップ変速制御とが同期的に実行されることで、ショックの発生を更に好適に抑制できる。 In the invention according to claim 1, preferably, at least a part of a switching line for determining switching from the EHV traveling mode to the EV traveling mode, and at least one of upshift lines among the shift lines. The part is shared. By so doing, the engine stop control and the upshift control are executed synchronously, so that the occurrence of a shock can be more suitably suppressed.
 また、請求項1又は2に係る発明において、好適には、前記変速線は、車速及び駆動力要求量に基づいて前記変速段の判定を行うように定められたものであり、前記自動変速機が第1速に維持されたまま前記EV走行モードから前記HEV走行モードへの切替を判定するための切替線は、前記EV走行モードに維持されたまま前記自動変速機が第1速からそれよりも高速段への変速を判定するための変速線よりも高駆動力要求量側に定められたものである。このようにすれば、例えば前記EV走行モードであり且つ前記自動変速機が第1速である場合において車速が上昇すると共にアクセルがオフとされた際、前記エンジンの停止制御と変速制御とが同期的に実行されることで、ショックの発生を好適に抑制できる。 In the invention according to claim 1 or 2, preferably, the shift line is determined so as to determine the shift stage based on a vehicle speed and a required amount of driving force, and the automatic transmission The switching line for determining the switching from the EV traveling mode to the HEV traveling mode while the vehicle is maintained at the first speed is such that the automatic transmission is moved from the first speed while the vehicle is maintained in the EV traveling mode. Also, it is determined on the higher driving force request amount side than the shift line for determining the shift to the high speed stage. In this way, for example, when the vehicle is in the EV travel mode and the automatic transmission is at the first speed, the engine stop control and the shift control are synchronized when the vehicle speed increases and the accelerator is turned off. This is executed effectively to suppress the occurrence of shock.
 また、請求項1又は2に係る発明、請求項1に従属する請求項3に係る発明、乃至請求項2に従属する請求項3に係る発明において、好適には、前記変速線は、車速及び駆動力要求量に基づいて前記変速段の判定を行うように定められたものであり、その変速線において前記切替線と共用される部分は、車速が高くなるほど対応する駆動力要求量が漸減させられるように定められたものである。このようにすれば、前記変速線及び切替線に共用される実用的な関係に基づいて、前記エンジンの停止制御と変速制御とが同期的に実行される。 In the invention according to claim 1 or 2, the invention according to claim 3 dependent on claim 1, or the invention according to claim 3 dependent on claim 2, it is preferable that the shift line includes a vehicle speed and The shift speed is determined based on the required driving force, and the portion of the shift line that is shared with the switching line gradually decreases the corresponding required driving force as the vehicle speed increases. It is determined to be. In this way, the engine stop control and the shift control are executed synchronously based on a practical relationship shared by the shift line and the switching line.
本発明の一実施例であるハイブリッド車両に係る駆動系統の構成を概念的に示す図である。It is a figure which shows notionally the structure of the drive system which concerns on the hybrid vehicle which is one Example of this invention. 図1のハイブリッド車両における電動機及びトルクコンバータ付近の構成を説明するために、その一部を切り欠いて示す断面図である。FIG. 2 is a cross-sectional view showing a part of the hybrid vehicle of FIG. 図1のハイブリッド車両における電子制御装置に備えられた制御機能の要部を説明する機能ブロック線図である。It is a functional block diagram explaining the principal part of the control function with which the electronic control apparatus in the hybrid vehicle of FIG. 1 was equipped. 図1のハイブリッド車両における電子制御装置による変速判定に用いられる変速マップと、走行モード切替判定に用いられる切替マップとを併せて示す図である。FIG. 2 is a diagram illustrating a shift map used for shift determination by an electronic control unit in the hybrid vehicle of FIG. 1 and a switching map used for travel mode switching determination. 図4に示す変速マップ及び切替マップを用いた具体的な変速制御及び走行モード切替制御について説明する図である。FIG. 5 is a diagram illustrating specific shift control and travel mode switching control using the shift map and switching map shown in FIG. 4. 図1のハイブリッド車両における自動変速機の変速時におけるタービン回転速度及び各油圧式摩擦係合要素の係合圧の径時的変化の一例を示すタイムチャートである。2 is a time chart illustrating an example of a change with time of a turbine rotation speed and an engagement pressure of each hydraulic friction engagement element at the time of shifting of an automatic transmission in the hybrid vehicle of FIG. 1. 図1のハイブリッド車両における電子制御装置による変速判定に用いられる他の変速マップと、走行モード切替判定に用いられる切替マップとを併せて示す図である。It is a figure which shows collectively the other shift map used for the shift determination by the electronic controller in the hybrid vehicle of FIG. 1, and the switch map used for driving mode switch determination. 図1のハイブリッド車両における電子制御装置による変速制御及び走行モード切替制御の同期実行制御の要部を説明するフローチャートである。2 is a flowchart for explaining a main part of synchronous execution control of shift control and travel mode switching control by an electronic control unit in the hybrid vehicle of FIG. 1. 本発明が好適に適用される他のハイブリッド車両に係る駆動系統の構成を概念的に示す図である。It is a figure which shows notionally the structure of the drive system which concerns on the other hybrid vehicle to which this invention is applied suitably. 本発明が好適に適用される更に別のハイブリッド車両に係る駆動系統の構成を概念的に示す図である。It is a figure which shows notionally the structure of the drive system which concerns on another hybrid vehicle to which this invention is applied suitably. 本発明が好適に適用される更に別のハイブリッド車両に係る駆動系統の構成を概念的に示す図である。It is a figure which shows notionally the structure of the drive system which concerns on another hybrid vehicle to which this invention is applied suitably.
 以下、本発明の好適な実施例を図面に基づいて詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の一実施例であるハイブリッド車両10に係る駆動系統の構成を概念的に示す図である。この図1に示すハイブリッド車両10は、駆動源として機能するエンジン12及び電動機MGを備えており、それらエンジン12及び電動機MGにより発生させられた駆動力は、トルクコンバータ16、自動変速機18、差動歯車装置20、及び左右1対の車軸22をそれぞれ介して左右1対の駆動輪24へ伝達されるように構成されている。斯かる構成から、上記ハイブリッド車両10は、上記エンジン12及び電動機MGの少なくとも一方を走行用の駆動源として駆動される。すなわち、上記ハイブリッド車両10においては、専ら上記エンジン12を走行用の駆動源とするエンジン走行、専ら上記電動機MGを走行用の駆動源とするEV走行(モータ走行)、及び上記エンジン12及び電動機MGを走行用の駆動源とするEHV走行(ハイブリッド走行)の何れかが選択的に成立させられる。 FIG. 1 is a diagram conceptually showing the structure of a drive system related to a hybrid vehicle 10 according to an embodiment of the present invention. The hybrid vehicle 10 shown in FIG. 1 includes an engine 12 and an electric motor MG that function as a driving source, and the driving force generated by the engine 12 and the electric motor MG includes a torque converter 16, an automatic transmission 18, and a difference. It is configured to be transmitted to a pair of left and right drive wheels 24 via a moving gear device 20 and a pair of left and right axles 22, respectively. With this configuration, the hybrid vehicle 10 is driven using at least one of the engine 12 and the electric motor MG as a driving source for traveling. That is, in the hybrid vehicle 10, the engine traveling exclusively using the engine 12 as a driving source for traveling, the EV traveling (motor traveling) exclusively using the electric motor MG as a driving source for traveling, and the engine 12 and the electric motor MG. Any one of EHV traveling (hybrid traveling) using as a driving source for traveling is selectively established.
 上記エンジン12は、例えば、燃料が燃焼室内に直接噴射される筒内噴射型のガソリンエンジンやディーゼルエンジン等の内燃機関である。また、上記エンジン12の駆動(出力トルク)を制御するために、電子スロットル弁を開閉制御するスロットルアクチュエータ、燃料噴射制御を行う燃料噴射装置、及び点火時期制御を行う点火装置等を備えた出力制御装置14が設けられている。この出力制御装置14は、後述する電子制御装置58から供給される指令に従ってスロットル制御のために上記スロットルアクチュエータにより上記電子スロットル弁を開閉制御する他、燃料噴射制御のために上記燃料噴射装置による燃料噴射を制御し、点火時期制御のために上記点火装置による点火時期を制御する等して上記エンジン12の出力制御を実行する。 The engine 12 is, for example, an internal combustion engine such as a direct injection gasoline engine or a diesel engine in which fuel is directly injected into a combustion chamber. Further, in order to control the drive (output torque) of the engine 12, output control including a throttle actuator that controls opening and closing of an electronic throttle valve, a fuel injection device that performs fuel injection control, an ignition device that performs ignition timing control, and the like. A device 14 is provided. The output control device 14 controls the opening and closing of the electronic throttle valve by the throttle actuator for throttle control in accordance with a command supplied from an electronic control device 58 to be described later, as well as the fuel from the fuel injection device for fuel injection control. The engine 12 is controlled for output by controlling injection and controlling the ignition timing by the ignition device for ignition timing control.
 前記電動機MGは、例えば、駆動力を発生させるモータ(発動機)及び反力を発生させるジェネレータ(発電機)としての機能を有するモータジェネレータであり、少なくとも駆動力を発生させるモータとしての機能を有している。また、前記エンジン12とその電動機MGとの間の動力伝達経路には、係合状態に応じてその動力伝達経路における動力伝達を制御するクラッチK0が設けられている。すなわち、前記エンジン12の出力部材であるクランク軸26は、斯かるクラッチK0を介して前記電動機MGのロータ30に選択的に連結されるようになっている。また、その電動機MGのロータ30は、前記トルクコンバータ16の入力部材であるフロントカバー32に連結されている。 The electric motor MG is, for example, a motor generator having a function as a motor (motor) that generates driving force and a generator (generator) that generates reaction force, and has at least a function as a motor that generates driving force. is doing. The power transmission path between the engine 12 and the electric motor MG is provided with a clutch K0 that controls power transmission in the power transmission path according to the engaged state. That is, the crankshaft 26 that is an output member of the engine 12 is selectively connected to the rotor 30 of the electric motor MG through the clutch K0. The rotor 30 of the electric motor MG is connected to a front cover 32 that is an input member of the torque converter 16.
 上記クラッチK0は、例えば、油圧アクチュエータによって係合制御される多板式の油圧式摩擦係合装置であり、油圧制御回路34から供給される油圧に応じてその係合状態が係合(完全係合)、スリップ係合、乃至開放(完全開放)の間で制御されるようになっている。このクラッチK0が係合されることにより、上記クランク軸26とフロントカバー32との間の動力伝達経路における動力伝達が行われる(接続される)一方、上記クラッチK0が開放されることにより、上記クランク軸26とフロントカバー32との間の動力伝達経路における動力伝達が遮断される。また、上記クラッチK0がスリップ係合されることにより、上記クランク軸26とフロントカバー32との間の動力伝達経路においてそのクラッチK0の伝達トルクに応じた動力伝達が行われる。 The clutch K0 is, for example, a multi-plate hydraulic friction engagement device whose engagement is controlled by a hydraulic actuator, and its engagement state is engaged (completely engaged) according to the hydraulic pressure supplied from the hydraulic control circuit 34. ), Slip engagement, or release (fully open). When the clutch K0 is engaged, power transmission in the power transmission path between the crankshaft 26 and the front cover 32 is performed (connected), while the clutch K0 is released, thereby The power transmission in the power transmission path between the crankshaft 26 and the front cover 32 is interrupted. Further, when the clutch K0 is slip-engaged, power transmission according to the transmission torque of the clutch K0 is performed in the power transmission path between the crankshaft 26 and the front cover 32.
 前記自動変速機18は、予め定められた複数の変速段(変速比)の何れかが選択的に成立させられる有段式の自動変速機構であり、斯かる変速を行うために複数の係合要素を備えて構成されている。例えば、多板式のクラッチやブレーキ等の油圧アクチュエータによって係合制御される複数の油圧式摩擦係合装置を備えており、上記油圧制御回路34から供給される油圧に応じてそれら複数の油圧式摩擦係合装置が選択的に係合乃至開放されることにより、それら油圧式摩擦係合装置の連結状態の組合せに応じて複数(例えば、第1速から第4速)の前進変速段(前進ギヤ段、前進走行用ギヤ段)、或いは後進変速段(後進ギヤ段、後進走行用ギヤ段)の何れかが選択的に成立させられる。 The automatic transmission 18 is a stepped automatic transmission mechanism in which any one of a plurality of predetermined shift speeds (speed ratios) is selectively established, and a plurality of engagements are performed to perform such a shift. Constructed with elements. For example, a plurality of hydraulic friction engagement devices that are engaged and controlled by hydraulic actuators such as a multi-plate clutch and a brake are provided, and the plurality of hydraulic friction engagement devices according to the hydraulic pressure supplied from the hydraulic control circuit 34 are provided. By selectively engaging or disengaging the engagement device, a plurality of (for example, first to fourth speed) forward shift stages (forward gears) according to the combination state of the hydraulic friction engagement devices. Stage, forward travel gear stage) or reverse shift stage (reverse gear stage, reverse travel gear stage) is selectively established.
 図2は、図1のハイブリッド車両10における前記電動機MG及びトルクコンバータ16付近の構成を説明するために、その一部を切り欠いて示す断面図である。なお、前記電動機MG、トルクコンバータ16、自動変速機18、及びクランク軸26はそれらに共通の軸心Cに対して略対称的に構成されており、図2においては軸心Cの下半分が省略されている。この図2に示すように、前記電動機MG、トルクコンバータ16、及び自動変速機18は、何れもトランスミッションケース36内に収容されている。このトランスミッションケース36は、例えばアルミダイキャスト製の分割式ケースであり、車体等の非回転部材に固定されている。 FIG. 2 is a cross-sectional view showing a part of the hybrid vehicle 10 of FIG. 1 with a part thereof cut away in order to explain the configuration in the vicinity of the electric motor MG and the torque converter 16. The electric motor MG, the torque converter 16, the automatic transmission 18, and the crankshaft 26 are configured substantially symmetrically with respect to the common shaft center C. In FIG. It is omitted. As shown in FIG. 2, the electric motor MG, the torque converter 16, and the automatic transmission 18 are all housed in a transmission case 36. The transmission case 36 is a split case made of aluminum die cast, for example, and is fixed to a non-rotating member such as a vehicle body.
 前記クラッチK0は、円筒状のクラッチドラム38と、そのクラッチドラム38よりも小径であってクラッチドラム38と同心且つ相対回転可能に設けられた円筒状のクラッチハブ40と、それらクラッチドラム38とクラッチハブ40との間の円環状の間隙内に設けられた摩擦係合部材42と、その摩擦係合部材42を軸心C方向において押圧するクラッチピストン44とを、備えている。上記クラッチドラム38は、前記電動機MGのロータ30におけるボス部30aに例えば溶接等により一体的に固設されており、そのロータ30と一体回転させられるようになっている。また、上記摩擦係合部材42は、上記クラッチドラム38に相対回転不能に係合された複数の円環板状のセパレータと、それら複数のセパレータ間にそれぞれ設けられて上記クラッチハブ40に相対回転不能に係合された複数の円環板状の摩擦プレートとを、備えている。 The clutch K0 includes a cylindrical clutch drum 38, a cylindrical clutch hub 40 which is smaller in diameter than the clutch drum 38 and is concentrically provided with the clutch drum 38 so as to be rotatable relative to the clutch drum 38, and the clutch drum 38 and the clutch. A frictional engagement member 42 provided in an annular gap between the hub 40 and a clutch piston 44 that presses the frictional engagement member 42 in the direction of the axis C is provided. The clutch drum 38 is integrally fixed to the boss portion 30a of the rotor 30 of the electric motor MG, for example, by welding or the like, and can be rotated integrally with the rotor 30. The friction engagement member 42 is provided between a plurality of annular plate-like separators engaged with the clutch drum 38 so as not to rotate relative to the clutch drum 38, and is rotated between the plurality of separators and rotated relative to the clutch hub 40. And a plurality of annular plate-like friction plates engaged with each other.
 このように構成された前記クラッチK0においては、上記摩擦係合部材42が上記クラッチピストン44により軸心C方向に押圧されて上記セパレータと摩擦プレートとが相互に摩擦係合させられることで、上記クラッチドラム38とクラッチハブ40との間の相対回転が抑制されるようになっている。すなわち、上記摩擦係合部材42のセパレータと摩擦プレートとの摩擦係合により、上記クラッチドラム38とクラッチハブ40との間が相互に動力伝達可能な状態とされる。なお、このクラッチK0は、好適には、後述する電子制御装置58から指令が出力されない状態においては係合させられる常閉型(ノーマリークローズ)のクラッチとされる。 In the clutch K0 thus configured, the friction engagement member 42 is pressed in the direction of the axis C by the clutch piston 44, and the separator and the friction plate are frictionally engaged with each other. The relative rotation between the clutch drum 38 and the clutch hub 40 is suppressed. That is, the friction engagement between the separator of the friction engagement member 42 and the friction plate allows the power transmission between the clutch drum 38 and the clutch hub 40. The clutch K0 is preferably a normally-closed (normally closed) clutch that is engaged when no command is output from the electronic control unit 58 described later.
 前記クランク軸26は、その出力端部すなわち前記電動機MG側の一端部がドライブプレート46等を介して前記クラッチK0のクラッチハブ40と一体的に回転させられる回転軸48に連結されている。すなわち、前記クランク軸26とクラッチハブ40とは、共通の軸心Cまわりに一体的に回転させられるように上記ドライブプレート46及び回転軸48等を介して連結されている。また、前記トルクコンバータ16のポンプ翼車16pには油圧ポンプ28が連結されており、そのポンプ翼車16の回転に伴いその油圧ポンプ28により発生させられた油圧が前記油圧制御回路34に元圧として供給されるようになっている。 The crankshaft 26 has an output end, that is, one end on the side of the electric motor MG, connected to a rotating shaft 48 that is rotated integrally with the clutch hub 40 of the clutch K0 via a drive plate 46 or the like. That is, the crankshaft 26 and the clutch hub 40 are connected via the drive plate 46 and the rotary shaft 48 so as to be rotated integrally around a common axis C. Further, a hydraulic pump 28 is connected to the pump impeller 16p of the torque converter 16, and the hydraulic pressure generated by the hydraulic pump 28 with the rotation of the pump impeller 16 is supplied to the hydraulic control circuit 34 as an original pressure. It has come to be supplied as.
 また、前記トルクコンバータ16のポンプ翼車16pとタービン翼車16tとの間には、それらポンプ翼車16p及びタービン翼車16tが一体的に回転させられるように直結するロックアップクラッチLUが設けられている。このロックアップクラッチLUは、油圧制御回路34から供給される油圧に応じてその係合状態が係合(完全係合)、スリップ係合、乃至開放(完全開放)の間で制御されるようになっている。すなわち、上記ロックアップクラッチLUは、前記電動機MGと駆動輪24との間の動力伝達経路に設けられ、係合状態に応じてその動力伝達経路における動力伝達を制御する第2クラッチに相当する。 Further, between the pump impeller 16p and the turbine impeller 16t of the torque converter 16, there is provided a lockup clutch LU that is directly connected so that the pump impeller 16p and the turbine impeller 16t are rotated together. ing. The lock-up clutch LU is controlled so that its engagement state is engaged (completely engaged), slip-engaged, or released (completely released) according to the hydraulic pressure supplied from the hydraulic control circuit 34. It has become. That is, the lockup clutch LU is provided in a power transmission path between the electric motor MG and the drive wheel 24, and corresponds to a second clutch that controls power transmission in the power transmission path in accordance with the engaged state.
 前記電動機MGは、上記回転軸48の外周側において前記トランスミッションケース36により軸心Cまわりの回転可能に支持されたロータ30と、そのロータ30の外周側において前記トランスミッションケース36に一体的に固定されたステータ50とを、備えている。前記ロータ30は、1対の軸受52を介して前記トランスミッションケース36に回転可能に支持された円筒状のボス部30aと、上記ステータ50の内周側においてそのステータ50との間に僅かな隙間を隔てた状態で軸心C方向に積層された複数の円環状の鋼板を有するロータ部30bと、それらボス部30aとロータ部30bとを一体に連結する連結部30cとを、備えている。前記ロータ30は、上記ロータ部30bの内周側に連結されると共に例えば溶接等により前記フロントカバー32に一体的に固定された伝達部材54を介してそのフロントカバー32に連結されている。また、上記ステータ50は、複数の円環状の鋼板がそれぞれ軸心C方向に積層されたコア50aと、そのコア50aの内周部の周方向の一部に環状に巻き掛けられ、周方向に連続して複数設けられたコイル50bとを、備えている。このコア50aは、周方向の複数箇所においてボルト等により前記トランスミッションケース36に一体的に固定されている。 The electric motor MG is integrally fixed to the transmission case 36 on the outer peripheral side of the rotary shaft 48 and the rotor 30 rotatably supported around the axis C by the transmission case 36. The stator 50 is provided. The rotor 30 has a slight gap between a cylindrical boss portion 30a rotatably supported by the transmission case 36 via a pair of bearings 52 and the stator 50 on the inner peripheral side of the stator 50. The rotor part 30b which has the some annular steel plate laminated | stacked on the axial center C direction in the state which spaced apart, and the connection part 30c which connects these boss | hub parts 30a and the rotor part 30b integrally are provided. The rotor 30 is connected to the inner periphery of the rotor portion 30b and is connected to the front cover 32 via a transmission member 54 that is integrally fixed to the front cover 32 by, for example, welding. The stator 50 is annularly wound around a core 50a in which a plurality of annular steel plates are respectively laminated in the direction of the axis C, and a part of the inner peripheral portion of the core 50a in the circumferential direction. A plurality of coils 50b provided continuously. The core 50a is integrally fixed to the transmission case 36 with bolts or the like at a plurality of locations in the circumferential direction.
 このように構成された前記電動機MGは、図1に示すインバータ56を介してバッテリやコンデンサ等の図示しない蓄電装置に接続されており、後述する電子制御装置58によりそのインバータ56が制御されることで上記コイル50bに供給される駆動電流が調節されることにより、前記電動機MGの駆動が制御されるようになっている。換言すれば、上記電子制御装置58によりそのインバータ56が制御されることで前記電動機MGの出力トルクが増減させられるようになっている。なお、斯かる電動機MGからの出力トルクは、前記クラッチK0の開放時(非係合時)には前記トルクコンバータ16に対してのみ出力されるが、前記クラッチK0の係合時にはその出力トルクの一部が前記トルクコンバータ16に出力されると共に他部が前記エンジン12に出力される。 The electric motor MG configured as described above is connected to a power storage device (not shown) such as a battery or a capacitor via an inverter 56 shown in FIG. 1, and the inverter 56 is controlled by an electronic control device 58 described later. Thus, the drive of the electric motor MG is controlled by adjusting the drive current supplied to the coil 50b. In other words, the output torque of the electric motor MG can be increased or decreased by controlling the inverter 56 by the electronic control unit 58. The output torque from the electric motor MG is output only to the torque converter 16 when the clutch K0 is disengaged (not engaged), but when the clutch K0 is engaged, the output torque A part is output to the torque converter 16 and the other part is output to the engine 12.
 前記ハイブリッド車両10においては、例えば専ら前記電動機MGを走行用の駆動源とするEV走行から前記エンジン12を駆動源として用いるエンジン走行又はハイブリッド走行への移行に際して、前記クラッチK0の係合により前記エンジン12の始動が行われる。すなわち、前記クラッチK0がスリップ係合乃至完全係合させられることにより、そのクラッチK0を介して伝達されるエンジン始動のためのトルクにより前記エンジン12が回転駆動され、それによりエンジン回転速度NEが引き上げられつつエンジン点火や燃料供給等が制御されることで前記エンジン12が始動される。また、この際に前記電動機MGにより補償トルクが発生させられ、車両前後方向の加速度(減速G)の発生が抑制される。すなわち、前記エンジン12の始動は、着火による爆発エネルギから得られるトルクと、前記クラッチK0による係合エネルギから得られるトルクすなわちそのクラッチK0を介して伝達されるエンジン始動トルクとで前記エンジン12が回転駆動されることにより行われる。 In the hybrid vehicle 10, for example, when shifting from EV traveling using the electric motor MG as a driving source for traveling to engine traveling or hybrid traveling using the engine 12 as a driving source, the engine is engaged by the clutch K0. 12 starts. That is, when the clutch K0 is slip-engaged or completely engaged, the engine 12 is rotationally driven by the torque for starting the engine transmitted through the clutch K0, whereby the engine rotational speed NE is increased. The engine 12 is started by controlling engine ignition, fuel supply, and the like while being pulled up. At this time, compensation torque is generated by the electric motor MG, and generation of acceleration (deceleration G) in the longitudinal direction of the vehicle is suppressed. That is, the engine 12 is started by the torque obtained from the explosion energy by ignition and the torque obtained from the engagement energy by the clutch K0, that is, the engine starting torque transmitted through the clutch K0. This is done by being driven.
 また、前記ハイブリッド車両10は、図1に例示するような制御系統を備えている。この図1に示す電子制御装置58は、CPU、RAM、ROM、及び入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUがRAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことにより、前記エンジン12の駆動制御、前記電動機MGの駆動制御、前記自動変速機18の変速制御、前記クラッチK0の係合力制御、及び前記ロックアップクラッチLUの係合制御等の各種制御を実行する。 The hybrid vehicle 10 includes a control system as illustrated in FIG. The electronic control device 58 shown in FIG. 1 includes a so-called microcomputer having a CPU, a RAM, a ROM, an input / output interface, and the like. The CPU uses a temporary storage function of the RAM and stores it in the ROM in advance. By performing signal processing according to the stored program, the drive control of the engine 12, the drive control of the electric motor MG, the shift control of the automatic transmission 18, the engagement force control of the clutch K0, and the lock-up clutch LU Various controls such as engagement control are executed.
 図1に示すように、上記電子制御装置58には、前記ハイブリッド車両10に設けられた各センサにより検出される各種入力信号が供給されるようになっている。例えば、アクセル開度センサ60により検出されるアクセル開度ACCを表す信号、電動機回転速度センサ62により検出される前記電動機MGの回転速度(電動機回転速度)NMGを表す信号、エンジン回転速度センサ64により検出される前記エンジン12の回転速度(エンジン回転速度)NEを表す信号、タービン回転速度センサ66により検出される前記トルクコンバータ16のタービン翼車16tの回転速度(タービン回転速度)NTを表す信号、車速センサ68により検出される車速Vを表す信号、及び水温センサ70により検出される前記エンジン12の冷却水温TWを表す信号等が上記電子制御装置58に入力される。ここで、電動機回転速度センサ62により検出される前記電動機MGの回転速度NMGは、前記トルクコンバータ16の入力回転速度であり、そのトルクコンバータ16におけるポンプ翼車16pの回転速度に相当する。また、上記タービン回転速度センサ66により検出されるタービン翼車16tの回転速度NTは、前記トルクコンバータ16の出力回転速度であり、前記自動変速機18の入力回転速度に相当する。 As shown in FIG. 1, the electronic control device 58 is supplied with various input signals detected by the sensors provided in the hybrid vehicle 10. For example, a signal representing the accelerator opening A CC detected by the accelerator opening sensor 60, a signal indicative of the rotational speed (motor rotation speed) N MG of the motor MG detected by motor rotation speed sensor 62, an engine rotational speed sensor A signal representing the rotational speed (engine rotational speed) N E of the engine 12 detected by 64, a rotational speed (turbine rotational speed) N T of the turbine impeller 16t of the torque converter 16 detected by a turbine rotational speed sensor 66. signal representative of the signal representing the vehicle speed V detected by the vehicle speed sensor 68, and a signal or the like representing the cooling water temperature T W of the engine 12 detected by the water temperature sensor 70 is inputted to the electronic control unit 58. Here, the rotational speed N MG of the motor MG detected by motor rotation speed sensor 62 is an input rotational speed of the torque converter 16, which corresponds to the rotational speed of the pump impeller 16p in the torque converter 16. The rotational speed NT of the turbine impeller 16 t detected by the turbine rotational speed sensor 66 is an output rotational speed of the torque converter 16 and corresponds to an input rotational speed of the automatic transmission 18.
 また、前記電子制御装置58から、前記ハイブリッド車両10に設けられた各装置に各種出力信号が供給されるようになっている。例えば、前記エンジン12の駆動制御のためにそのエンジン12の出力制御装置14に供給される信号、前記電動機MGの駆動制御のために前記インバータ56に供給される信号、前記自動変速機18の変速制御のために前記油圧制御回路34における複数の電磁制御弁に供給される信号、前記クラッチK0の係合制御のために前記油圧制御回路34における電磁制御弁に供給される信号、及び前記ロックアップクラッチLUの係合制御のために前記油圧制御回路34における電磁制御弁に供給される信号等が、前記電子制御装置58から各部へ供給される。 Further, various output signals are supplied from the electronic control device 58 to each device provided in the hybrid vehicle 10. For example, a signal supplied to the output control device 14 of the engine 12 for drive control of the engine 12, a signal supplied to the inverter 56 for drive control of the electric motor MG, a shift of the automatic transmission 18 A signal supplied to a plurality of electromagnetic control valves in the hydraulic control circuit 34 for control, a signal supplied to the electromagnetic control valves in the hydraulic control circuit 34 for controlling the engagement of the clutch K0, and the lock-up A signal or the like supplied to the electromagnetic control valve in the hydraulic control circuit 34 for engagement control of the clutch LU is supplied from the electronic control unit 58 to each part.
 図3は、前記電子制御装置58に備えられた制御機能の要部を説明する機能ブロック線図である。この図3に示す変速制御手段80は、予め定められた関係から前記ハイブリッド車両10の駆動状態(走行状態)に基づいて前記自動変速機18の変速制御を実行する。例えば、予め定められて記憶装置72に記憶された後述する図4に示すような変速マップ74から、前記車速センサ68により検出される車速V及び前記アクセル開度センサ60により検出されるアクセル開度ACC等の駆動力要求量に基づいて、前記自動変速機18において成立させられるべき変速段を判定し、その変速段が成立させられるように前記自動変速機18へ供給される油圧を制御する。具体的には、前記油圧制御回路34に備えられた各電子制御弁の作動(出力油圧)を制御することで、その油圧制御回路34から前記自動変速機18における各油圧式摩擦係合装置の油圧アクチュエータへ供給される油圧を制御する。ここで、上記駆動力要求量は、運転者の操作に応じて定められる前記ハイブリッド車両10に要求される走行用の駆動力を示す値であり、上記アクセル開度ACC以外の値としては、図示しないアクセルペダルの踏込量や、電子スロットル弁の開度(スロットル開度θTH)等が用いられてもよい。 FIG. 3 is a functional block diagram for explaining a main part of the control function provided in the electronic control unit 58. The shift control means 80 shown in FIG. 3 executes shift control of the automatic transmission 18 based on the driving state (running state) of the hybrid vehicle 10 based on a predetermined relationship. For example, the vehicle speed V detected by the vehicle speed sensor 68 and the accelerator opening detected by the accelerator opening sensor 60 from a shift map 74 as shown in FIG. Based on the required driving force amount such as A CC , the shift speed to be established in the automatic transmission 18 is determined, and the hydraulic pressure supplied to the automatic transmission 18 is controlled so that the shift speed is established. . Specifically, by controlling the operation (output hydraulic pressure) of each electronic control valve provided in the hydraulic control circuit 34, each hydraulic friction engagement device in the automatic transmission 18 is controlled from the hydraulic control circuit 34. Controls the hydraulic pressure supplied to the hydraulic actuator. Here, the driving force requirement amount is a value indicating the driving force for traveling required for the hybrid vehicle 10 determined according to the driver's operation, and values other than the accelerator opening degree A CC include: A depression amount of an accelerator pedal (not shown), an opening of an electronic throttle valve (throttle opening θ TH ), or the like may be used.
 ハイブリッド駆動制御手段82は、前記ハイブリッド車両10におけるハイブリッド駆動制御を実行する。すなわち、前記出力制御装置14を介して前記エンジン12の駆動を制御すると共に前記インバータ56を介して前記電動機MGの作動を制御することで、それらエンジン12及び電動機MGの少なくとも一方を走行用の駆動源とする前記ハイブリッド車両10の駆動制御を行う。例えば、前記エンジン12を停止させると共に専ら前記電動機MGを走行用の駆動源とするEV走行(モータ走行)モード、専ら前記エンジン12を走行用の駆動源とするエンジン走行モード、前記エンジン12及び電動機MGを共に走行用の駆動源とすると共に走行状態に応じてその電動機MGにより回生(発電)を行うEHV走行(ハイブリッド走行)モード等を、前記ハイブリッド車両10の走行状態に応じて選択的に成立させる。 Hybrid drive control means 82 executes hybrid drive control in the hybrid vehicle 10. That is, by controlling the drive of the engine 12 via the output control device 14 and controlling the operation of the electric motor MG via the inverter 56, at least one of the engine 12 and the electric motor MG is driven for traveling. Drive control of the hybrid vehicle 10 as a source is performed. For example, the engine 12 is stopped and the EV traveling (motor traveling) mode exclusively using the electric motor MG as a driving source for traveling, the engine traveling mode exclusively using the engine 12 as a driving source for traveling, the engine 12 and the electric motor An EHV driving (hybrid driving) mode in which both MGs are used as driving sources for driving and regeneration (power generation) is performed by the electric motor MG according to the driving state is selectively established according to the driving state of the hybrid vehicle 10. Let
 上記EV走行モードにおいて、上記ハイブリッド駆動制御手段82は、専ら前記電動機MGを走行用の駆動源として前記ハイブリッド車両10の走行制御を行う。すなわち、予め記憶された駆動力マップから駆動力要求量としてのアクセル開度ACCや車速V等に基づいて要求出力軸トルクを決定し、その要求出力軸トルクから充電要求値等を考慮して要求駆動力を算出する。そして、その要求駆動力が得られるように前記電動機MGの駆動(出力トルク)を制御する。このEV走行モードにおいて、基本的には前記エンジン12の駆動は停止させられると共に前記クラッチK0は開放(完全開放)される。これにより、前記エンジン12と電動機MGとの間の動力伝達経路は遮断され、そのエンジン12から前記ロックアップクラッチ16側へ動力伝達は行われず、逆にそのロックアップクラッチ16側から前記エンジン12へのトルク伝達も行われない。 In the EV travel mode, the hybrid drive control means 82 performs travel control of the hybrid vehicle 10 exclusively using the electric motor MG as a drive source for travel. That is, the required output shaft torque is determined based on the accelerator opening degree A cc and the vehicle speed V as the required driving force amount from the driving force map stored in advance, and the required charging shaft value is considered from the required output shaft torque. Calculate the required driving force. Then, the driving (output torque) of the electric motor MG is controlled so that the required driving force can be obtained. In this EV travel mode, the driving of the engine 12 is basically stopped and the clutch K0 is released (completely released). As a result, the power transmission path between the engine 12 and the electric motor MG is cut off, and no power is transmitted from the engine 12 to the lockup clutch 16 side. Conversely, from the lockup clutch 16 side to the engine 12. Torque transmission is not performed.
 前記エンジン走行モードにおいて、前記ハイブリッド駆動制御手段82は、専ら前記エンジン12を走行用の駆動源として前記ハイブリッド車両10の走行制御を行う。すなわち、上述のようにして求められる要求駆動力が得られるように目標エンジン出力を算出し、運転性と燃費性とを両立するように予め実験的に求められて記憶された前記エンジン12の最適燃費率曲線(燃費マップ、関係)に沿ってそのエンジン12を作動させつつ上記目標エンジン出力が得られるエンジン回転速度NE及びエンジントルクとなるように前記エンジン12の駆動を制御する。このエンジン走行モードにおいて、前記クラッチK0は係合(完全係合)される。また、前記電動機MGは空転させられるが、走行状態に応じて回生を行うように作動させられるものであってもよい。 In the engine travel mode, the hybrid drive control means 82 performs travel control of the hybrid vehicle 10 exclusively using the engine 12 as a drive source for travel. That is, the target engine output is calculated so as to obtain the required driving force obtained as described above, and the optimum engine 12 that has been experimentally obtained and stored in advance so as to achieve both drivability and fuel efficiency. While driving the engine 12 along the fuel consumption rate curve (fuel consumption map, relationship), the drive of the engine 12 is controlled so that the engine rotational speed NE and the engine torque at which the target engine output is obtained are obtained. In this engine running mode, the clutch K0 is engaged (completely engaged). Further, although the electric motor MG is idled, the electric motor MG may be operated so as to perform regeneration according to the traveling state.
 前記EHV走行モードにおいて、前記ハイブリッド駆動制御手段82は、前記エンジン12及び電動機MGを共に走行用の駆動源として前記ハイブリッド車両10の走行制御を行う。すなわち、前述のようにして求められる要求駆動力が得られるように伝達損失、補機負荷、前記電動機MGのアシストトルク等を考慮して目標エンジン出力を算出し、運転性と燃費性とを両立するように予め実験的に求められて記憶された前記エンジン12の最適燃費率曲線(燃費マップ、関係)に沿ってそのエンジン12を作動させつつ上記目標エンジン出力が得られるエンジン回転速度NE及びエンジントルクとなるように前記エンジン12及び電動機MGの駆動を制御する。このEHV走行モードにおいて、前記電動機MGは必ずしも常に走行用の駆動源として用いられるものでなくともよく、前記ハイブリッド車両10の走行状態に応じて空転させられたり、回生作動させられる等の制御が行われるものであってもよい。 In the EHV travel mode, the hybrid drive control means 82 performs travel control of the hybrid vehicle 10 using both the engine 12 and the electric motor MG as drive sources for travel. That is, the target engine output is calculated in consideration of transmission loss, auxiliary machine load, assist torque of the electric motor MG, etc. so that the required driving force required as described above can be obtained, thereby achieving both drivability and fuel efficiency. The engine rotational speed NE and the engine output speed NE can be obtained while operating the engine 12 along the optimum fuel consumption rate curve (fuel consumption map, relationship) of the engine 12 that has been experimentally obtained and stored in advance. The drive of the engine 12 and the electric motor MG is controlled so that the engine torque is obtained. In this EHV traveling mode, the electric motor MG does not always have to be used as a driving source for traveling, and control such as idling or regenerative operation according to the traveling state of the hybrid vehicle 10 is performed. May be used.
 また、前記ハイブリッド駆動制御手段82は、前記電動機MGによる回生(発電)を制御する。すなわち、予め定められた関係から駆動力要求量としてのアクセル開度ACC等に基づいて回生の実行が判定された場合には、前記電動機MGにより回生が行われるようにその作動を制御する。このようにして前記電動機MGの回生により発生させられた電気エネルギは、前記インバータ56を介して図示しない蓄電装置に蓄積される。そして、前記電動機MGが駆動源として用いられる際に、蓄電装置から前記インバータ56を介してその電動機MGに電気エネルギが供給されて駆動力が発生させられる。 The hybrid drive control means 82 controls regeneration (power generation) by the electric motor MG. That is, when it is determined that regeneration is to be performed based on the accelerator opening degree A CC as the driving force requirement amount from a predetermined relationship, the operation is controlled so that regeneration is performed by the electric motor MG. The electric energy generated by the regeneration of the electric motor MG in this way is stored in a power storage device (not shown) via the inverter 56. When the electric motor MG is used as a drive source, electric energy is supplied from the power storage device to the electric motor MG via the inverter 56 to generate a driving force.
 図4は、前記変速制御手段74による前記自動変速機18の変速判定に用いられる変速マップ74と、前記ハイブリッド制御手段76による走行モード切替判定に用いられる切替マップ76とを併せて示す図である。この図4に示す変速マップ74は、変速判定に用いられる変速線のうちアップシフト線すなわち低速段(比較的変速比が大きい変速段)から高速段(比較的変速比が小さい変速段)への変速を判定するための変速線のみを示しており、ダウンシフト線すなわち高速段から低速段への変速を判定するための変速線を省略している。また、第1速から第2速への変速を判定する変速線(1→2アップシフト線)を実線で、第1速乃至第2速から第3速への変速を判定する変速線(1→3アップシフト線乃至2→3アップシフト線)を一点鎖線で、第3速から第4速への変速を判定する変速線(3→4アップシフト線)を二点鎖線で、EV走行モード(EV領域)とEHV走行モード(EHV領域)との切替を判定する切替線を破線でそれぞれ示している。 FIG. 4 is a diagram showing a shift map 74 used for shift determination of the automatic transmission 18 by the shift control means 74 and a switching map 76 used for travel mode switching determination by the hybrid control means 76. . The shift map 74 shown in FIG. 4 is an upshift line, that is, a low speed stage (a gear stage having a relatively large gear ratio) to a high speed stage (a gear stage having a relatively small gear ratio) among the shift lines used for the shift determination. Only the shift line for determining the shift is shown, and the downshift line, that is, the shift line for determining the shift from the high speed to the low speed is omitted. A shift line (1 → 2 upshift line) for determining a shift from the first speed to the second speed is a solid line, and a shift line (1 for determining a shift from the first speed to the second speed to the third speed). EV driving mode (→ 3 upshift line to 2 → 3 upshift line) is indicated by a one-dot chain line, and a shift line (3 → 4 upshift line) for determining a shift from the third speed to the fourth speed is indicated by a two-dot chain line. Switching lines for determining switching between the (EV region) and the EHV travel mode (EHV region) are indicated by broken lines.
 図4に示すように、上記変速マップ74及び切替マップ76においては、前記自動変速機18の第2速から第3速への変速を判定するための変速線(2→3アップシフト線)の一部と、前記EHV走行モードからEV走行モードへの切替を判定する切替線の一部とが重なっている。また、前記自動変速機18の第3速から第4速への変速を判定するための変速線(3→4アップシフト線)の一部と、前記EHV走行モードからEV走行モードへの切替を判定する切替線の一部とが重なっている。すなわち、前記変速判定及び走行モードの切替判定において、上記2→3アップシフト線及び3→4アップシフト線それぞれの一部と、前記EHV走行モードからEV走行モードへの切替を判定する切替線の一部とが共用されるように定められている。ここで、図4においては、各線の線種をわかりやすく図示するため、斯かる共用部分を若干ずらして示しているが、好適には変速線と切替線とが同一の関係(一致)とされる。また、実用上略同一の関係とみなすことができる程度の差異があってもよい。すなわち、変速線と切替線とが共用されるとは、前記変速判定と走行モードの切替判定とが略同期して行われる関係を言い、例えば変速線を基準として所定の誤差範囲内(図4では車速及びアクセル開度に関する誤差)に切替線が定められているのであれば変速線と切替線とが共用されるものであると言える。以下の説明において同じである。 As shown in FIG. 4, in the shift map 74 and the switching map 76, the shift line (2 → 3 upshift line) for determining the shift from the second speed to the third speed of the automatic transmission 18 is determined. A part of the switching line overlaps with a part of a switching line for determining switching from the EHV traveling mode to the EV traveling mode. In addition, a part of a shift line (3 → 4 upshift line) for determining a shift from the third speed to the fourth speed of the automatic transmission 18 and switching from the EHV travel mode to the EV travel mode are performed. A part of the determination switching line overlaps. That is, in the shift determination and the traveling mode switching determination, a part of each of the 2 → 3 upshift line and the 3 → 4 upshift line, and a switching line for determining switching from the EHV traveling mode to the EV traveling mode. It is stipulated to be shared with some. Here, in FIG. 4, in order to show the line types of the respective lines in an easy-to-understand manner, such shared portions are shown slightly shifted, but preferably the shift line and the switching line have the same relationship (coincidence). The Further, there may be a difference that can be regarded as substantially the same relationship in practical use. That is, the common use of the shift line and the switching line means a relationship in which the shift determination and the traveling mode switching determination are performed substantially in synchronization, for example, within a predetermined error range with reference to the shift line (FIG. 4). Then, if a switching line is defined for the vehicle speed and the accelerator opening error, it can be said that the shift line and the switching line are shared. This is the same in the following description.
 換言すれば、前記変速マップ74及び切替マップ76においては、2→3アップシフト線及びEHV→EV切替線として共用される関係から、前記前記車速センサ68により検出される車速V及び前記アクセル開度センサ60により検出されるアクセル開度ACCに基づいて、前記EHV走行モードであり且つ前記自動変速機18が第2速である状態から前記EV走行モードであり且つ前記自動変速機18が第3速である状態への移行が判定されるように定められている。また、3→4アップシフト線及びEHV→EV切替線として共用される関係から、前記前記車速センサ68により検出される車速V及び前記アクセル開度センサ60により検出されるアクセル開度ACCに基づいて、前記EHV走行モードであり且つ前記自動変速機18が第3速である状態から前記EV走行モードであり且つ前記自動変速機18が第4速である状態への移行が判定されるように定められている。 In other words, in the shift map 74 and the switching map 76, the vehicle speed V and the accelerator opening detected by the vehicle speed sensor 68 are used because they are shared as the 2 → 3 upshift line and the EHV → EV switching line. Based on the accelerator opening degree A CC detected by the sensor 60, the EV travel mode and the automatic transmission 18 are set to the third mode from the state in which the EHV travel mode and the automatic transmission 18 are in the second speed. It is determined that the transition to the state of speed is determined. Also, based on the relationship shared as the 3 → 4 upshift line and the EHV → EV switching line, based on the vehicle speed V detected by the vehicle speed sensor 68 and the accelerator opening degree A CC detected by the accelerator opening degree sensor 60. The transition from the state in which the vehicle is in the EHV traveling mode and the automatic transmission 18 is in the third speed to the state in which the vehicle is in the EV traveling mode and the automatic transmission 18 is in the fourth speed is determined. It has been established.
 また、前記変速マップ74及び切替マップ76においては、前記自動変速機18が第1速に維持されたまま前記EV走行モードから前記HEV走行モードへの切替を判定するための切替線が、前記EV走行モードに維持されたまま前記自動変速機18の第1速から第3速への変速を判定するための変速線(1→3アップシフト線)よりも高駆動力要求量側(高アクセル開度側)に定められている。また、前記自動変速機18が第4速に維持されたまま前記EV走行モードから前記HEV走行モードへの切替を判定するための切替線が、前記HEV走行モードに維持されたまま前記自動変速機18の第3速から第4速への変速を判定するための変速線(3→4アップシフト線)よりも低駆動力要求量側(低アクセル開度側)に定められている。また、前記変速マップ74の変速線において前記切替マップ76の切替線と共用される部分すなわち前記2→3アップシフト線及び3→4アップシフト線それぞれの一部は、車速Vが高くなるほど対応する駆動力要求量であるアクセル開度ACCが漸減(単調減少)させられるように定められている。換言すれば、図4に示す車速Vを横軸としアクセル開度ACCを縦軸とする平面座標において、前記変速マップ74の変速線において前記切替マップ76の切替線と共用される部分が右下がりとなるように定められている。 In the shift map 74 and the switching map 76, a switching line for determining switching from the EV traveling mode to the HEV traveling mode while the automatic transmission 18 is maintained at the first speed is the EV. A higher driving force demand amount side (high accelerator opening) than the shift line (1 → 3 upshift line) for determining the shift from the first speed to the third speed of the automatic transmission 18 while maintaining the traveling mode. (Degree side). In addition, a switching line for determining switching from the EV traveling mode to the HEV traveling mode while the automatic transmission 18 is maintained at the fourth speed is maintained in the HEV traveling mode. It is determined on the lower driving force requirement side (low accelerator opening side) than the shift line (3 → 4 upshift line) for determining the shift from 18 third speed to fourth speed. Further, a part of the shift line of the shift map 74 shared with the switch line of the switch map 76, that is, a part of each of the 2 → 3 upshift line and the 3 → 4 upshift line, corresponds as the vehicle speed V increases. It is determined that the accelerator opening degree A CC that is the driving force requirement amount is gradually decreased (monotonically decreased). In other words, in the plane coordinates having the vehicle speed V shown in FIG. 4 as the horizontal axis and the accelerator opening degree A CC as the vertical axis, a portion of the shift line of the shift map 74 shared with the switching line of the switching map 76 is on the right. It is set so that it falls.
 図5は、図4に示す変速マップ74及び切替マップ76を用いた具体的な変速制御及び走行モード切替制御について説明する図である。運転者により図5に示す操作(1)が行われた場合、すなわち前記EHV走行モードであり且つ前記自動変速機18が第2速である状態から車速が略一定でアクセルペダルが踏み戻される(アクセルオン→アクセルオフ)操作が行われた場合、前記EHV走行モードからEV走行モードへの切替制御及び前記自動変速機18の第2速から第3速への変速制御が同時に判定乃至実行される。 FIG. 5 is a diagram for explaining specific shift control and travel mode switching control using the shift map 74 and the switching map 76 shown in FIG. When the operation (1) shown in FIG. 5 is performed by the driver, that is, from the state where the vehicle is in the EHV traveling mode and the automatic transmission 18 is at the second speed, the accelerator pedal is stepped back with the vehicle speed being substantially constant ( When the operation of (accelerator on → accelerator off) is performed, the switching control from the EHV traveling mode to the EV traveling mode and the shifting control from the second speed to the third speed of the automatic transmission 18 are simultaneously determined or executed. .
 図6は、前記自動変速機18の変速時におけるタービン回転速度NT及び各油圧式摩擦係合要素の係合圧の径時的変化の一例を示すタイムチャートである。この図6においては、油圧式摩擦係合要素の掴み替えすなわち所謂クラッチ・ツゥ・クラッチ変速を例示しており、解放側クラッチの係合圧を実線で、係合側クラッチの係合圧を破線でそれぞれ示している。この図6に示すように、前記自動変速機18の変速に際して油圧式摩擦係合要素の掴み替えが行われる場合、例えば解放側クラッチのファーストフィルが開始される時点t1から実際に係合圧の上昇が開始される時点t2までの間、前記自動変速機18は略ニュートラル状態とされる。すなわち、前記エンジン12のクランク軸26と前記差動歯車装置20との間の動力伝達経路が実質的に遮断された状態となる。本実施例の制御では、このように前記自動変速機18が略ニュートラル状態とされている間に前記EHV走行モードからEV走行モードへの移行が実行される。すなわち、図5に示す操作(1)による前記自動変速機18の第2速から第3速への変速制御に際して、前記自動変速機18における係合要素の掴み替えによりニュートラル状態が成立している間に前記エンジン12を停止させることで、その停止に起因するショックが出力側すなわち前記自動変速機18の出力軸乃至差動歯車装置20側に伝達するのを好適に抑制でき、ショックに対するロバスト性を向上させることができる。特に、低速段から高速段へのアップシフトにおいては、前記自動変速機18が略ニュートラル状態とされている間のエンジン停止に起因して前記タービン回転速度NTが低下させられた後に高速段が成立させられるため、エンジン停止ショックと変速ショックとを相殺して更にロバスト性を向上させることができる。 FIG. 6 is a time chart showing an example of a change with time of the turbine rotation speed NT and the engagement pressure of each hydraulic friction engagement element during the shift of the automatic transmission 18. In FIG. 6, the gripping of the hydraulic friction engagement element, that is, the so-called clutch-to-clutch shift is illustrated as an example. Respectively. As shown in FIG. 6, when the hydraulic frictional engagement element is changed during the shift of the automatic transmission 18, for example, the engagement pressure is actually increased from the time t1 when the first fill of the release side clutch is started. The automatic transmission 18 is in a substantially neutral state until time t2 when the ascent starts. That is, the power transmission path between the crankshaft 26 of the engine 12 and the differential gear device 20 is substantially cut off. In the control of the present embodiment, the transition from the EHV traveling mode to the EV traveling mode is executed while the automatic transmission 18 is in the substantially neutral state. That is, when the automatic transmission 18 is controlled to be shifted from the second speed to the third speed by the operation (1) shown in FIG. 5, the neutral state is established by changing the engagement element in the automatic transmission 18. By stopping the engine 12 in the meantime, it is possible to suitably suppress the transmission of shock due to the stop to the output side, that is, the output shaft of the automatic transmission 18 or the differential gear device 20 side, and robustness against shock. Can be improved. In particular, in the upshift from the low speed stage to the high speed stage, the high speed stage is changed after the turbine rotational speed NT is lowered due to the engine stop while the automatic transmission 18 is in the substantially neutral state. Therefore, the robustness can be further improved by canceling the engine stop shock and the shift shock.
 また、運転者により図5に示す操作(2)が行われた場合、すなわち前記EV走行モードであり且つ前記自動変速機18が第1速である状態からアクセルペダルが踏み込まれ、前記EHV走行モードであり且つ前記自動変速機18が第1速である状態への移行が判定された後、アクセルペダルが踏み戻されて前記EV走行モードであり且つ前記自動変速機18が第3速である状態への移行が判定された場合を考えると、EV走行モードにおいてアクセル開度ACCが比較的小さい状態からEHV走行モードに移行した後、再びEV走行モードへの移行及び1→3アップシフトが実行されることから、変速回数を減らしてドライバビリティを向上させることができる。すなわち、EHV走行モードからEV走行モードへの移行を行うと共に1→2アップシフト乃至2→3アップシフトを連続して実行する態様に比べて変速回数を減らすことができるため、ギヤ比(変速比)が大きくショック感度の高い状態すなわち前記自動変速機18が第1速であり且つ前記EHV走行モードである状態からのエンジン停止においてショックの低減を図ることができる。更に、本実施例のハイブリッド車両10のように、前記トルクコンバータ16にロックアップクラッチLUが備えられている場合、前記自動変速機18の変速中にそのロックアップクラッチLUを係合することでショックが発生するおそれがあるが、上述のように変速回数を減らすことで斯かる制約が低減され、実質的に前記ロックアップクラッチLUの係合領域を拡大することができるという利点がある。 Further, when the driver performs the operation (2) shown in FIG. 5, that is, the EV travel mode and the automatic transmission 18 is in the first speed, the accelerator pedal is depressed, and the EHV travel mode. And after the shift to the state where the automatic transmission 18 is in the first speed is determined, the accelerator pedal is stepped back to be in the EV traveling mode and the automatic transmission 18 is in the third speed. Considering the case where the shift to the vehicle is judged, in the EV travel mode, after shifting from the relatively small accelerator opening degree A CC to the EHV travel mode, the transition to the EV travel mode and the 1 → 3 upshift are executed again. Therefore, drivability can be improved by reducing the number of shifts. That is, since the number of shifts can be reduced compared to the mode in which the transition from the EHV travel mode to the EV travel mode is performed and the 1 → 2 upshift or the 2 → 3 upshift is continuously performed, the gear ratio (speed ratio) ) Is large and the sensitivity of the shock is high, that is, the shock can be reduced when the engine is stopped from the state where the automatic transmission 18 is in the first speed and is in the EHV traveling mode. Further, when the torque converter 16 is provided with a lock-up clutch LU as in the hybrid vehicle 10 of the present embodiment, a shock is generated by engaging the lock-up clutch LU during the shift of the automatic transmission 18. However, by reducing the number of shifts as described above, there is an advantage that such a restriction is reduced and the engagement area of the lockup clutch LU can be substantially enlarged.
 図7は、前記変速制御手段74による前記自動変速機18の変速判定に用いられる他の変速マップ78と、前記ハイブリッド制御手段76による走行モード切替判定に用いられる切替マップ76とを併せて示す図である。この図7に示す変速マップ78は、変速判定に用いられる変速線のうちダウンシフト線すなわち高速段から低速段への変速を判定するための変速線のみを示しており、アップシフト線すなわち低速段から高速段への変速を判定するための変速線を省略している。また、第2速から第1速への変速を判定する変速線(2→1ダウンシフト線)を実線で、第3速から第2速乃至第1速への変速を判定する変速線(3→1ダウンシフト線乃至3→2ダウンシフト線)を一点鎖線で、第4速から第3速への変速を判定する変速線(4→3ダウンシフト線)を二点鎖線で、EV走行モード(EV領域)とEHV走行モード(EHV領域)との切替を判定する切替線を破線でそれぞれ示している。 FIG. 7 is a diagram showing another shift map 78 used for the shift determination of the automatic transmission 18 by the shift control means 74 and a switch map 76 used for the travel mode switching determination by the hybrid control means 76. It is. The shift map 78 shown in FIG. 7 shows only the downshift line, that is, the shift line for determining the shift from the high speed stage to the low speed stage among the shift lines used for the shift determination, and the upshift line, that is, the low speed stage. The shift line for determining the shift from the high speed to the high speed is omitted. Further, a shift line (2 → 1 downshift line) for determining a shift from the second speed to the first speed is a solid line, and a shift line (3 for determining a shift from the third speed to the second speed to the first speed). EV drive mode (→ 1 downshift line to 3 → 2 downshift line) is indicated by a one-dot chain line, and a shift line (4 → 3 downshift line) for determining a shift from the fourth speed to the third speed is indicated by a two-dot chain line. Switching lines for determining switching between the (EV region) and the EHV travel mode (EHV region) are indicated by broken lines.
 図7に示すように、上記変速マップ78及び切替マップ76においては、前記自動変速機18の第3速から第2速への変速を判定するための変速線(3→2ダウンシフト線)の一部と、前記EV走行モードからEHV走行モードへの切替を判定する切替線の一部とが重なっている。また、前記自動変速機18の第4速から第3速への変速を判定するための変速線(4→3ダウンシフト線)の一部と、前記EV走行モードからEHV走行モードへの切替を判定する切替線の一部とが重なっている。すなわち、前記変速判定及び走行モードの切替判定において、上記3→2ダウンシフト線及び4→3ダウンシフト線それぞれの一部と、前記EV走行モードからEHV走行モードへの切替を判定する切替線の一部とが共用されるように定められている。 As shown in FIG. 7, in the shift map 78 and the switching map 76, the shift line (3 → 2 downshift line) for determining the shift from the third speed to the second speed of the automatic transmission 18 is determined. A part of the switching line overlaps with a part of the switching line for determining switching from the EV traveling mode to the EHV traveling mode. Further, a part of a shift line (4 → 3 downshift line) for determining the shift from the fourth speed to the third speed of the automatic transmission 18 and switching from the EV travel mode to the EHV travel mode are performed. A part of the determination switching line overlaps. That is, in the shift determination and the traveling mode switching determination, a part of each of the 3 → 2 downshift line and the 4 → 3 downshift line, and a switching line for determining switching from the EV traveling mode to the EHV traveling mode. It is stipulated to be shared with some.
 換言すれば、前記変速マップ78及び切替マップ76においては、3→2ダウンシフト線及びEV→EHV切替線として共用される関係から、前記前記車速センサ68により検出される車速V及び前記アクセル開度センサ60により検出されるアクセル開度ACCに基づいて、前記EV走行モードであり且つ前記自動変速機18が第3速である状態から前記EHV走行モードであり且つ前記自動変速機18が第2速である状態への移行が判定されるように定められている。また、4→3ダウンシフト線及びEV→EHV切替線として共用される関係から、前記前記車速センサ68により検出される車速V及び前記アクセル開度センサ60により検出されるアクセル開度ACCに基づいて、前記EV走行モードであり且つ前記自動変速機18が第4速である状態から前記EHV走行モードであり且つ前記自動変速機18が第3速である状態への移行が判定されるように定められている。 In other words, in the shift map 78 and the switching map 76, the vehicle speed V and the accelerator opening detected by the vehicle speed sensor 68 are used because they are shared as the 3 → 2 downshift line and the EV → EHV switching line. Based on the accelerator opening degree A CC detected by the sensor 60, the EV driving mode and the automatic transmission 18 are in the EHV driving mode and the automatic transmission 18 is in the second state from the state where the automatic transmission 18 is in the third speed. It is determined that the transition to the state of speed is determined. Further, based on the relationship shared as the 4 → 3 downshift line and the EV → EHV switching line, the vehicle speed V detected by the vehicle speed sensor 68 and the accelerator opening degree A CC detected by the accelerator opening degree sensor 60 are used. The transition from the state in which the vehicle is in the EV traveling mode and the automatic transmission 18 is in the fourth speed to the state in which the automatic transmission 18 is in the EHV traveling mode and the automatic transmission 18 is in the third speed is determined. It has been established.
 前記変速マップ78及び切替マップ76を用いた変速制御及び走行モード切替制御では、前記変速マップ74及び切替マップ76を用いた制御と同様に、前記自動変速機18が略ニュートラル状態とされている間に前記EV走行モードからEHV走行モードへの移行が実行される。すなわち、例えば前記自動変速機18の第3速から第2速への変速制御に同期してEV走行モードからEHV走行モードへの移行が行われる場合、前記自動変速機18における係合要素の掴み替えによりニュートラル状態が成立している間に前記エンジン12を始動させることで、その始動に起因するショックが出力側すなわち前記自動変速機18の出力軸乃至差動歯車装置20側に伝達するのを好適に抑制でき、ショックに対するロバスト性を向上させることができる。特に、高速段から低速段へのダウンシフトにおいては、前記自動変速機18が略ニュートラル状態とされている間のエンジン始動に起因して前記タービン回転速度NTが上昇させられた後に低速段が成立させられるため、エンジン始動ショックと変速ショックとを相殺して更にロバスト性を向上させることができる。 In the shift control and the travel mode switching control using the shift map 78 and the switching map 76, as in the control using the shift map 74 and the switching map 76, the automatic transmission 18 is in a substantially neutral state. Then, the transition from the EV traveling mode to the EHV traveling mode is executed. That is, for example, when the shift from the EV travel mode to the EHV travel mode is performed in synchronization with the shift control from the third speed to the second speed of the automatic transmission 18, the engagement element in the automatic transmission 18 is grasped. By starting the engine 12 while the neutral state is established by replacement, the shock caused by the start is transmitted to the output side, that is, the output shaft of the automatic transmission 18 to the differential gear device 20 side. It can suppress suitably and can improve the robustness with respect to a shock. In particular, in the downshift from the high speed stage to the low speed stage, the low speed stage is changed after the turbine rotational speed NT is increased due to the engine starting while the automatic transmission 18 is in the substantially neutral state. Therefore, the robustness can be further improved by canceling the engine start shock and the shift shock.
 図8は、前記電子制御装置58による変速制御及び走行モード切替制御の同期実行制御の要部を説明するフローチャートであり、所定の周期で繰り返し実行されるものである。 FIG. 8 is a flowchart for explaining a main part of the synchronous execution control of the shift control and the traveling mode switching control by the electronic control unit 58, and is repeatedly executed at a predetermined cycle.
 先ず、ステップ(以下、ステップを省略する)S1において、車両の走行モードが前記エンジン12及び電動機MGを駆動源とするEHV走行モードであるか否かが判断される。このS1の判断が否定される場合には、それをもって本ルーチンが終了させられるが、S1の判断が肯定される場合には、S2において、変速判定及び走行モード切替判定が同時に行われたか否か、すなわち変速線及び切替線として共用される関係に基づいて前記自動変速機18の変速及びEV走行モードへの切替が判定されたか否かが判断される。このS2の判断が否定される場合には、それをもって本ルーチンが終了させられるが、S2の判断が肯定される場合には、S3において、前記EHV走行モードからEV走行モードへの移行すなわち前記エンジン12の停止制御が行われると共に前記自動変速機18の変速制御が実行される。次に、S4において、走行モードの切替及び変速制御が完了させられ、それをもって本ルーチンが終了させられる。以上の制御において、S2~S4が前記変速制御手段80及びハイブリッド駆動制御手段82の動作に対応する。 First, in step (hereinafter step is omitted) S1, it is determined whether or not the vehicle travel mode is an EHV travel mode using the engine 12 and the electric motor MG as drive sources. If the determination at S1 is negative, the routine is terminated accordingly. If the determination at S1 is affirmative, whether or not the shift determination and the traveling mode switching determination are performed simultaneously at S2. That is, it is determined whether or not the shift of the automatic transmission 18 and the switching to the EV travel mode are determined based on the relationship shared as the shift line and the switching line. If the determination in S2 is negative, the routine is terminated accordingly. If the determination in S2 is affirmative, in S3, the transition from the EHV traveling mode to the EV traveling mode, that is, the engine. 12 stop control and shift control of the automatic transmission 18 are executed. Next, in S4, the switching of the driving mode and the shift control are completed, and this routine is ended accordingly. In the above control, S2 to S4 correspond to the operations of the shift control means 80 and the hybrid drive control means 82.
 このように、本実施例によれば、エンジン12と、駆動源として機能する電動機MGと、予め定められた変速線から車両の走行状態に基づいて複数の変速段を選択的に成立させる有段式の自動変速機18とを、備えたハイブリッド車両10の制御装置において、前記エンジン12及び電動機MGを駆動源とするEHV走行モードと専ら前記電動機MGを駆動源とするEV走行モードとの切替を判定するための切替線の少なくとも一部と、前記変速線の少なくとも一部とが共用されることから、前記エンジン12の停止制御と変速制御とが同期的に実行されることで、ショックの発生を抑制できると共に制御が複雑になるのを好適に防ぐことができる。すなわち、有段式の自動変速機18を備えたハイブリッド車両10において、走行モードの切替時におけるショックを低減させる電子制御装置58を提供することができる。 As described above, according to this embodiment, the engine 12, the electric motor MG functioning as a drive source, and the stepped gear that selectively establishes a plurality of shift speeds based on the traveling state of the vehicle from a predetermined shift line. In the control device of the hybrid vehicle 10 equipped with the automatic transmission 18 of the type, switching between the EHV traveling mode using the engine 12 and the electric motor MG as a driving source and the EV traveling mode exclusively using the electric motor MG as a driving source is performed. Since at least a part of the switching line for determination and at least a part of the shift line are shared, the stop control and the shift control of the engine 12 are executed synchronously, thereby generating a shock. It is possible to suitably prevent the control from becoming complicated. That is, in the hybrid vehicle 10 including the stepped automatic transmission 18, it is possible to provide the electronic control device 58 that reduces the shock when the traveling mode is switched.
 また、前記EHV走行モードから前記EV走行モードへの切替を判定するための切替線の少なくとも一部と、前記変速線のうちアップシフト線の少なくとも一部とが共用されるものであるため、前記エンジン12の停止制御とアップ変速制御とが同期的に実行されることで、ショックの発生を更に好適に抑制できる。 Further, since at least part of the switching line for determining switching from the EHV traveling mode to the EV traveling mode and at least part of the upshift line among the shift lines are shared, Since the stop control of the engine 12 and the upshift control are executed synchronously, the occurrence of a shock can be more suitably suppressed.
 また、前記変速線は、車速V及び駆動力要求量としてのアクセル開度ACCに基づいて前記変速段の判定を行うように定められたものであり、前記自動変速機18が第1速に維持されたまま前記EV走行モードから前記HEV走行モードへの切替を判定するための切替線は、前記EV走行モードに維持されたまま前記自動変速機18が第1速からそれよりも高速段への変速を判定するための変速線よりも高駆動力要求量側に定められたものであるため、例えば前記EV走行モードであり且つ前記自動変速機18が第1速である場合において車速Vが上昇すると共にアクセルがオフとされた際、前記エンジン12の停止制御と変速制御とが同期的に実行されることで、ショックの発生を好適に抑制できる。 Further, the shift line is determined so as to determine the shift stage based on the vehicle speed V and the accelerator opening degree A CC as the required driving force, and the automatic transmission 18 is set to the first speed. A switching line for determining switching from the EV traveling mode to the HEV traveling mode while maintaining the automatic transmission 18 from the first speed to a higher speed is maintained while maintaining the EV traveling mode. For example, when the vehicle is in the EV travel mode and the automatic transmission 18 is at the first speed, the vehicle speed V is set to be higher than the shift line for determining the shift of the vehicle. When the accelerator is turned off and the accelerator is turned off, the stop control and the shift control of the engine 12 are executed synchronously, so that the occurrence of a shock can be suitably suppressed.
 また、前記変速線において前記切替線と共用される部分は、車速Vが高くなるほど対応するアクセル開度ACCが漸減させられるように定められたものであるため、前記変速線及び切替線に共用される実用的な関係に基づいて、前記エンジン12の停止制御と変速制御とが同期的に実行される。 In addition, since the portion shared with the switching line in the shift line is determined so that the corresponding accelerator opening degree A CC is gradually decreased as the vehicle speed V becomes higher, it is shared with the shift line and the switching line. Based on the practical relationship, the stop control and the shift control of the engine 12 are executed synchronously.
 続いて、本発明の他の好適な実施例を図面に基づいて詳細に説明する。なお、以下の説明において、実施例相互に共通する部分については同一の符号を付してその説明を省略する。 Subsequently, another preferred embodiment of the present invention will be described in detail with reference to the drawings. In the following description, parts common to the embodiments are denoted by the same reference numerals and description thereof is omitted.
 図9は、本発明が好適に適用される他のハイブリッド車両90に係る駆動系統の構成を概念的に示す図である。この図9に示すハイブリッド車両90は、前記エンジン12のクランク軸26と、前記自動変速機18の入力軸92との間の動力伝達経路に、係合状態に応じてその動力伝達経路における動力伝達を制御する第1クラッチCL1を備えている。また、前記自動変速機18内であって、上記入力軸92と前記差動歯車装置20の入力軸(自動変速機18の出力軸)である駆動軸94との間の動力伝達経路に、係合状態に応じてその動力伝達経路における動力伝達を制御する第2クラッチCL2を備えている。また、前記電動機MGのロータ30が前記自動変速機18の入力軸92に連結されている。 FIG. 9 is a diagram conceptually showing the structure of a drive system according to another hybrid vehicle 90 to which the present invention is preferably applied. The hybrid vehicle 90 shown in FIG. 9 has a power transmission path between the crankshaft 26 of the engine 12 and the input shaft 92 of the automatic transmission 18 according to the engagement state. Is provided with a first clutch CL1. Further, in the automatic transmission 18, a power transmission path between the input shaft 92 and a drive shaft 94 which is an input shaft of the differential gear device 20 (an output shaft of the automatic transmission 18) is connected to the power transmission path. A second clutch CL2 is provided for controlling power transmission in the power transmission path according to the combined state. The rotor 30 of the electric motor MG is connected to the input shaft 92 of the automatic transmission 18.
 上述のように構成されたハイブリッド車両90は、前記エンジン12と、駆動源として機能する電動機MGと、予め定められた変速線から車両の走行状態に基づいて複数の変速段を選択的に成立させる有段式の自動変速機18とを、備えており、前記エンジン12及び電動機MGを駆動源とするEHV走行モードと専ら前記電動機MGを駆動源とするEV走行モードとが選択的に成立させられる。すなわち、前述したハイブリッド車両10と同様に、走行モードの切替時における制御の複雑化、前記エンジン12の停止制御等に起因するショックの発生等の課題を有するものである。ゆえに、前記エンジン12及び電動機MGを駆動源とするEHV走行モードと専ら前記電動機MGを駆動源とするEV走行モードとの切替を判定するための切替線の少なくとも一部と、前記変速線の少なくとも一部とが共用されるように構成することで、前記エンジン12の停止制御等と変速制御とが同期的に実行され、ショックの発生を抑制できると共に制御が複雑になるのを好適に防ぐことができる。 The hybrid vehicle 90 configured as described above selectively establishes a plurality of shift stages based on the running state of the vehicle from the engine 12, the electric motor MG functioning as a drive source, and a predetermined shift line. A stepped automatic transmission 18 is provided, and an EHV traveling mode using the engine 12 and the electric motor MG as a driving source and an EV traveling mode exclusively using the electric motor MG as a driving source are selectively established. . That is, similarly to the hybrid vehicle 10 described above, there are problems such as complication of control at the time of switching the traveling mode, generation of shock due to stop control of the engine 12, and the like. Therefore, at least a part of the switching line for determining switching between the EHV traveling mode using the engine 12 and the electric motor MG as a driving source and the EV traveling mode exclusively using the electric motor MG, and at least the shift line. By configuring so that a part is shared, the stop control and the like of the engine 12 and the shift control are executed synchronously, it is possible to suppress the occurrence of shock and suitably prevent the control from becoming complicated. Can do.
 図10は、本発明が好適に適用される更に別のハイブリッド車両100に係る駆動系統の構成を概念的に示す図である。この図10に示すハイブリッド車両100は、図1を用いて前述したハイブリッド車両10において前記エンジン12のクランク軸26と電動機MGとの間に設けられていたクラッチK0が備えられておらず、そのクランク軸26が前記トルクコンバータ16の入力軸に連結されている。また、前記電動機MGのロータ30が前記エンジン12のクランク軸26に連結されている。 FIG. 10 is a diagram conceptually showing the configuration of a drive system according to still another hybrid vehicle 100 to which the present invention is preferably applied. The hybrid vehicle 100 shown in FIG. 10 does not include the clutch K0 provided between the crankshaft 26 of the engine 12 and the electric motor MG in the hybrid vehicle 10 described above with reference to FIG. A shaft 26 is connected to the input shaft of the torque converter 16. Further, the rotor 30 of the electric motor MG is coupled to the crankshaft 26 of the engine 12.
 上述のように構成されたハイブリッド車両100は、前記エンジン12と、駆動源として機能する電動機MGと、予め定められた変速線から車両の走行状態に基づいて複数の変速段を選択的に成立させる有段式の自動変速機18とを、備えており、前記エンジン12及び電動機MGを駆動源とするEHV走行モードと専ら前記電動機MGを駆動源とするEV走行モードとが選択的に成立させられる。すなわち、前述したハイブリッド車両10等と同様に、走行モードの切替時における制御の複雑化、前記エンジン12の停止制御等に起因するショックの発生等の課題を有するものである。ゆえに、前記エンジン12及び電動機MGを駆動源とするEHV走行モードと専ら前記電動機MGを駆動源とするEV走行モードとの切替を判定するための切替線の少なくとも一部と、前記変速線の少なくとも一部とが共用されるように構成することで、前記エンジン12の停止制御等と変速制御とが同期的に実行され、ショックの発生を抑制できると共に制御が複雑になるのを好適に防ぐことができる。特に、図10に示すように前記電動機MGのロータ30が前記エンジン12のクランク軸26に連結された構成においては、前記EHV走行モードからEV走行モードへの移行時等におけるそのエンジン12の停止時に振動が発生するおそれがあるが、そのエンジン12の停止制御と変速制御とを同期的に実行することで、振動の発生を抑制して好適なエンジン停止を実現することができる。 The hybrid vehicle 100 configured as described above selectively establishes a plurality of shift stages based on the running state of the vehicle from the engine 12, the electric motor MG functioning as a drive source, and a predetermined shift line. A stepped automatic transmission 18 is provided, and an EHV traveling mode using the engine 12 and the electric motor MG as a driving source and an EV traveling mode exclusively using the electric motor MG as a driving source are selectively established. . That is, similarly to the hybrid vehicle 10 and the like described above, there are problems such as complicated control at the time of switching the traveling mode, occurrence of shock due to stop control of the engine 12, and the like. Therefore, at least a part of the switching line for determining switching between the EHV traveling mode using the engine 12 and the electric motor MG as a driving source and the EV traveling mode exclusively using the electric motor MG, and at least the shift line. By configuring so that a part is shared, the stop control and the like of the engine 12 and the shift control are executed synchronously, it is possible to suppress the occurrence of shock and suitably prevent the control from becoming complicated. Can do. In particular, as shown in FIG. 10, in the configuration in which the rotor 30 of the electric motor MG is connected to the crankshaft 26 of the engine 12, when the engine 12 is stopped at the time of transition from the EHV traveling mode to the EV traveling mode or the like. Although vibration may occur, by executing the stop control and the shift control of the engine 12 synchronously, it is possible to suppress the generation of vibration and realize a suitable engine stop.
 図11は、本発明が好適に適用される更に別のハイブリッド車両110に係る駆動系統の構成を概念的に示す図である。この図11に示すハイブリッド車両110は、前記エンジン12のクランク軸26と前記自動変速機18の入力軸92との間に差動部として機能する遊星歯車装置112を備えており、その遊星歯車装置112に第1電動機MG1及び第2電動機MG2が連結されている。すなわち、上記遊星歯車装置112の第1回転要素であるサンギヤSに上記第1電動機MG1のロータ30が連結され、第2回転要素であるキャリアCAに前記エンジン12のクランク軸26が連結され、第3回転要素であるリングギヤRに上記第2電動機MG2のロータ30が連結されている。斯かる構成において、前記インバータ56により前記第1電動機MG1の運転状態が制御されることにより、上記キャリアCAの回転速度とリングギヤRの回転速度との差動状態が制御され、上記遊星歯車装置112が電気式差動部として機能する。また、このハイブリッド車両110においては、例えば上記第2電動機MG2がEV走行モードにおいて走行用の駆動力を発生させる駆動源として機能する。 FIG. 11 is a diagram conceptually showing the configuration of a drive system according to still another hybrid vehicle 110 to which the present invention is preferably applied. A hybrid vehicle 110 shown in FIG. 11 includes a planetary gear device 112 that functions as a differential unit between the crankshaft 26 of the engine 12 and the input shaft 92 of the automatic transmission 18, and the planetary gear device. The first electric motor MG1 and the second electric motor MG2 are connected to 112. That is, the rotor 30 of the first electric motor MG1 is connected to the sun gear S that is the first rotating element of the planetary gear unit 112, the crankshaft 26 of the engine 12 is connected to the carrier CA that is the second rotating element, The rotor 30 of the second electric motor MG2 is connected to a ring gear R that is a three-rotation element. In such a configuration, the operation state of the first electric motor MG1 is controlled by the inverter 56, whereby the differential state between the rotation speed of the carrier CA and the rotation speed of the ring gear R is controlled, and the planetary gear unit 112 is controlled. Functions as an electric differential section. In the hybrid vehicle 110, for example, the second electric motor MG2 functions as a driving source that generates driving force for traveling in the EV traveling mode.
 上述のように構成されたハイブリッド車両110は、前記エンジン12と、駆動源として機能する第2電動機MG2と、予め定められた変速線から車両の走行状態に基づいて複数の変速段を選択的に成立させる有段式の自動変速機18とを、備えており、前記エンジン12及び第2電動機MG2を駆動源とするEHV走行モードと専ら前記第2電動機MG2を駆動源とするEV走行モードとが選択的に成立させられる。すなわち、前述したハイブリッド車両10等と同様に、走行モードの切替時における制御の複雑化、前記エンジン12の停止制御等に起因するショックの発生等の課題を有するものである。ゆえに、前記エンジン12及び第2電動機MG2を駆動源とするEHV走行モードと専ら前記第2電動機MG2を駆動源とするEV走行モードとの切替を判定するための切替線の少なくとも一部と、前記変速線の少なくとも一部とが共用されるように構成することで、前記エンジン12の停止制御等と変速制御とが同期的に実行され、ショックの発生を抑制できると共に制御が複雑になるのを好適に防ぐことができる。 The hybrid vehicle 110 configured as described above selectively selects a plurality of shift speeds based on the running state of the vehicle from the engine 12, the second electric motor MG2 functioning as a drive source, and a predetermined shift line. A stepped automatic transmission 18 to be established, and an EHV traveling mode using the engine 12 and the second electric motor MG2 as a driving source and an EV traveling mode exclusively using the second electric motor MG2 as a driving source. Selectively established. That is, similarly to the hybrid vehicle 10 and the like described above, there are problems such as complicated control at the time of switching the traveling mode, occurrence of shock due to stop control of the engine 12, and the like. Therefore, at least a part of a switching line for determining switching between the EHV traveling mode using the engine 12 and the second electric motor MG2 as a driving source and the EV traveling mode exclusively using the second electric motor MG2; By configuring so that at least a part of the shift line is shared, the stop control and the like of the engine 12 and the shift control are executed synchronously, so that the occurrence of shock can be suppressed and the control becomes complicated. It can prevent suitably.
 以上、本発明の好適な実施例を図面に基づいて詳細に説明したが、本発明はこれに限定されるものではなく、更に別の態様においても実施される。 The preferred embodiments of the present invention have been described above in detail with reference to the drawings. However, the present invention is not limited to these embodiments, and may be implemented in other modes.
 例えば、前述の実施例では、前記エンジン12と自動変速機18との間の動力伝達経路に駆動源として機能する電動機MG等が設けられたハイブリッド車両10等について説明したが、本発明はこれに限定されるものではなく、例えば、前記エンジン12と前輪との間の動力伝達経路に前記自動変速機18が備えられると共に、前記電動機MGが後輪に連結されたハイブリッド車両等にも本発明は好適に適用される。すなわち、本発明は、エンジンと、駆動源として機能する電動機と、有段式の自動変速機とを、備えたハイブリッド車両に広く適用されるものである。 For example, in the above-described embodiment, the hybrid vehicle 10 provided with the electric motor MG functioning as a drive source in the power transmission path between the engine 12 and the automatic transmission 18 has been described. For example, the present invention is applicable to a hybrid vehicle in which the automatic transmission 18 is provided in a power transmission path between the engine 12 and the front wheels, and the electric motor MG is connected to the rear wheels. It is preferably applied. That is, the present invention is widely applied to hybrid vehicles including an engine, an electric motor that functions as a drive source, and a stepped automatic transmission.
 また、前述の実施例では、複数の油圧式摩擦係合装置を備え、それら油圧式摩擦係合装置の係合乃至開放に応じて複数の変速段を選択的に成立させる自動変速機18を備えたハイブリッド車両10等について説明したが、例えば、シンクロメッシュ機構を備えた同期噛合式変速機(マニュアルトランスミッション)を備え、その同期噛合式変速機の変速を自動で行う形式のデュアルクラッチトランスミッション(Dual Clutch Transmission:DCT)を備えたハイブリッド車両にも本発明は好適に適用される。すなわち、予め定められた変速線から車両の走行状態に基づいて複数の変速段を選択的に成立させる有段式の自動変速機を備えたハイブリッド車両であれば、本発明の一応の効果を奏する。 Further, the above-described embodiment includes the automatic transmission 18 that includes a plurality of hydraulic friction engagement devices and selectively establishes a plurality of shift stages according to engagement or release of the hydraulic friction engagement devices. The hybrid vehicle 10 and the like have been described. For example, a dual clutch transmission (Dual Clutch) having a synchronous mesh transmission (manual transmission) having a synchromesh mechanism and automatically shifting the synchronous mesh transmission. The present invention is also suitably applied to a hybrid vehicle having Transmission (DCT). In other words, the hybrid vehicle including the stepped automatic transmission that selectively establishes a plurality of shift speeds based on the running state of the vehicle from a predetermined shift line has the advantage of the present invention. .
 また、前述の実施例において説明した図4等に示す変速マップ74及び切替マップ76は、あくまで本発明の特徴をわかりやすく説明するために作成されたものであり、実用上は車両の特性等に応じてより詳細に定められた関係が用いられることは言うまでもない。すなわち、本発明のハイブリッド車両の制御装置に用いられる変速マップ及び切替マップは、変速線及び切替線それぞれの一部に共用される部分を有する限りにおいて、各種設計等に応じて適宜定められるものである。 Further, the shift map 74 and the switching map 76 shown in FIG. 4 and the like described in the above-described embodiment are prepared for the purpose of easily explaining the features of the present invention, and in practical terms, the vehicle characteristics, etc. It goes without saying that more detailed relationships are used accordingly. That is, the shift map and switching map used in the hybrid vehicle control device of the present invention are appropriately determined according to various designs and the like as long as they have a portion shared by a part of each of the shift line and the switching line. is there.
 その他、一々例示はしないが、本発明はその趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。 In addition, although not illustrated one by one, the present invention is implemented with various modifications within a range not departing from the gist thereof.
 10、90、100、110:ハイブリッド車両、12:エンジン、14:出力制御装置、1616:トルクコンバータ、16p:ポンプ翼車、16t:タービン翼車、18:自動変速機、20:差動歯車装置、22:車軸、24:駆動輪、26:クランク軸、28:油圧ポンプ、30:ロータ、30a:ボス部、30b:ロータ部、30c:連結部、32:フロントカバー、34:油圧制御回路、36:トランスミッションケース、38:クラッチドラム、40:クラッチハブ、42:摩擦係合部材、44:クラッチピストン、46:ドライブプレート、48:回転軸、50:ステータ、50a:コア部、50b:コイル部、52:軸受、54:伝達部材、56:インバータ、58:電子制御装置、60:アクセル開度センサ、62:電動機回転速度センサ、64:エンジン回転速度センサ、66:タービン回転速度センサ、68:車速センサ、70:水温センサ、72:記憶装置、74、78:変速マップ、76:切替マップ、80:変速制御手段、82:ハイブリッド駆動制御手段、92:入力軸、94:駆動軸、112:遊星歯車装置、CA:キャリア、CL1:第1クラッチ、CL2:第2クラッチ、K0:クラッチ、LU:ロックアップクラッチ、MG:電動機、MG1:第1電動機、MG2:第2電動機、R:リングギヤ、S:サンギヤ 10, 90, 100, 110: Hybrid vehicle, 12: Engine, 14: Output control device, 1616: Torque converter, 16p: Pump impeller, 16t: Turbine impeller, 18: Automatic transmission, 20: Differential gear device , 22: axle, 24: drive wheel, 26: crankshaft, 28: hydraulic pump, 30: rotor, 30a: boss part, 30b: rotor part, 30c: coupling part, 32: front cover, 34: hydraulic control circuit, 36: Transmission case, 38: Clutch drum, 40: Clutch hub, 42: Friction engagement member, 44: Clutch piston, 46: Drive plate, 48: Rotating shaft, 50: Stator, 50a: Core part, 50b: Coil part , 52: bearing, 54: transmission member, 56: inverter, 58: electronic control unit, 60: accelerator opening sensor, 62: electric Rotational speed sensor, 64: Engine rotational speed sensor, 66: Turbine rotational speed sensor, 68: Vehicle speed sensor, 70: Water temperature sensor, 72: Storage device, 74, 78: Shift map, 76: Switching map, 80: Shift control means 82: Hybrid drive control means, 92: Input shaft, 94: Drive shaft, 112: Planetary gear device, CA: Carrier, CL1: First clutch, CL2: Second clutch, K0: Clutch, LU: Lock-up clutch, MG: electric motor, MG1: first electric motor, MG2: second electric motor, R: ring gear, S: sun gear

Claims (4)

  1.  エンジンと、駆動源として機能する電動機と、予め定められた変速線から車両の走行状態に基づいて複数の変速段を選択的に成立させる有段式の自動変速機とを、備えたハイブリッド車両の制御装置であって、
     前記エンジン及び電動機を駆動源とするEHV走行モードと専ら前記電動機を駆動源とするEV走行モードとの切替を判定するための切替線の少なくとも一部と、前記変速線の少なくとも一部とが共用されることを特徴とするハイブリッド車両の制御装置。
    An hybrid vehicle comprising: an engine; an electric motor that functions as a drive source; and a stepped automatic transmission that selectively establishes a plurality of shift speeds based on a running state of the vehicle from a predetermined shift line. A control device,
    At least a part of a switching line for determining switching between an EHV traveling mode using the engine and the electric motor as a driving source and an EV traveling mode exclusively using the electric motor as a driving source and at least a part of the shift line are shared. A hybrid vehicle control device.
  2.  前記EHV走行モードから前記EV走行モードへの切替を判定するための切替線の少なくとも一部と、前記変速線のうちアップシフト線の少なくとも一部とが共用されるものである請求項1に記載のハイブリッド車両の制御装置。 The at least part of the switching line for determining switching from the EHV traveling mode to the EV traveling mode and at least a part of the upshift line among the shift lines are shared. Hybrid vehicle control device.
  3.  前記変速線は、車速及び駆動力要求量に基づいて前記変速段の判定を行うように定められたものであり、
     前記自動変速機が第1速に維持されたまま前記EV走行モードから前記HEV走行モードへの切替を判定するための切替線は、前記EV走行モードに維持されたまま前記自動変速機が第1速からそれよりも高速段への変速を判定するための変速線よりも高駆動力要求量側に定められたものである請求項1又は2に記載のハイブリッド車両の制御装置。
    The shift line is determined so as to determine the shift stage based on a vehicle speed and a driving force request amount.
    A switching line for determining the switching from the EV traveling mode to the HEV traveling mode while the automatic transmission is maintained at the first speed is the first transmission line that is maintained in the EV traveling mode. The control apparatus for a hybrid vehicle according to claim 1 or 2, wherein the control apparatus is defined on a higher driving force request amount side than a shift line for determining a shift from a speed to a higher speed.
  4.  前記変速線は、車速及び駆動力要求量に基づいて前記変速段の判定を行うように定められたものであり、
     該変速線において前記切替線と共用される部分は、車速が高くなるほど対応する駆動力要求量が漸減させられるように定められたものである請求項1から3の何れか1項に記載のハイブリッド車両の制御装置。
    The shift line is determined so as to determine the shift stage based on a vehicle speed and a driving force request amount.
    4. The hybrid according to claim 1, wherein a portion of the shift line that is shared with the switching line is determined such that the corresponding driving force request amount is gradually decreased as the vehicle speed increases. 5. Vehicle control device.
PCT/JP2011/051528 2011-01-26 2011-01-26 Hybrid vehicle control device WO2012101792A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/051528 WO2012101792A1 (en) 2011-01-26 2011-01-26 Hybrid vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/051528 WO2012101792A1 (en) 2011-01-26 2011-01-26 Hybrid vehicle control device

Publications (1)

Publication Number Publication Date
WO2012101792A1 true WO2012101792A1 (en) 2012-08-02

Family

ID=46580395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051528 WO2012101792A1 (en) 2011-01-26 2011-01-26 Hybrid vehicle control device

Country Status (1)

Country Link
WO (1) WO2012101792A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001058518A (en) * 1999-08-23 2001-03-06 Toyota Motor Corp Control system of oil pump for vehicle use
JP2010006152A (en) * 2008-06-25 2010-01-14 Toyota Motor Corp Drive device for hybrid vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001058518A (en) * 1999-08-23 2001-03-06 Toyota Motor Corp Control system of oil pump for vehicle use
JP2010006152A (en) * 2008-06-25 2010-01-14 Toyota Motor Corp Drive device for hybrid vehicle

Similar Documents

Publication Publication Date Title
JP5573963B2 (en) Control device for hybrid vehicle
JP5641052B2 (en) Hybrid drive device for vehicle
JP4447039B2 (en) Power output device and vehicle
EP2868543B1 (en) Hybrid vehicle drive apparatus
WO2012105601A1 (en) Kick-down control device for electric vehicle
JP6003913B2 (en) Control device for hybrid vehicle
WO2013021504A1 (en) Hybrid vehicle control device
US20180236998A1 (en) Control device for vehicle
JP2009248766A (en) Power output apparatus and vehicle
JP5772979B2 (en) Control device for hybrid vehicle
JP2014104776A (en) Control unit of hybrid vehicle
JP6844479B2 (en) Control device for vehicle power transmission device
JP5821475B2 (en) Control device for hybrid vehicle
JP2018052320A (en) Control device and control method for hybrid vehicle system
WO2014170749A1 (en) Control device for vehicle
JP6863312B2 (en) Hybrid vehicle control device
JP2013023155A (en) Controller for hybrid vehicle
JP2012245877A (en) Control device for vehicle
JP2013103537A (en) Drive control device for vehicle
JP5994794B2 (en) Control device for hybrid vehicle
JP5682428B2 (en) Control device for drive device for hybrid vehicle
JP5012190B2 (en) Hybrid car
JP2013018452A (en) Control device of vehicle drive device
JP2013001201A (en) Control device of vehicle drive device
JP6900861B2 (en) vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP