WO2012101309A1 - Peptide-functionalised nanoliposomes - Google Patents

Peptide-functionalised nanoliposomes Download PDF

Info

Publication number
WO2012101309A1
WO2012101309A1 PCT/ES2012/070037 ES2012070037W WO2012101309A1 WO 2012101309 A1 WO2012101309 A1 WO 2012101309A1 ES 2012070037 W ES2012070037 W ES 2012070037W WO 2012101309 A1 WO2012101309 A1 WO 2012101309A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoliposome
peptide
glycerol
peg
distearoyl
Prior art date
Application number
PCT/ES2012/070037
Other languages
Spanish (es)
French (fr)
Inventor
David POZO PÉREZ
Rebecca KLIPPSTEIN MARTIN
Ricardo GONZÁLEZ CAMPORA
Inmaculada TRIGO SÁNCHEZ
María Teresa VARGAS DE LOS MONTEROS
Original Assignee
Fundación Progreso Y Salud
Universidad De Sevilla
Servicio Andaluz De Salud
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES201130072A external-priority patent/ES2389347B1/en
Priority claimed from ES201130185A external-priority patent/ES2390147B1/en
Application filed by Fundación Progreso Y Salud, Universidad De Sevilla, Servicio Andaluz De Salud filed Critical Fundación Progreso Y Salud
Publication of WO2012101309A1 publication Critical patent/WO2012101309A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6911Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a liposome

Definitions

  • the present invention is within the field of medicine, chemistry, biochemistry and immunology, and refers to the use of nanoliposomes functionalized with peptides on its surface that allow the identification of tissues and / or target cells and the release of drugs selectively, and in particular, to the functionalization of nanoliposomes with the VIP peptide.
  • the present invention also relates to the compositions, the preparation process and the uses of said nanoliposomes.
  • nanoliposomes are of special relevance because they are the best clinically established nanometric systems for the transport and shipment of drugs because they are not cytotoxic, they are biocompatible and biodegradable, and also their synthesis is relatively cheap and Easy scaling in industrial processes. Liposomes in general have been used in therapies to treat cancer for more than a decade since they have been shown to systematically reduce side effects, toxicity and facilitate drug elimination. (Torchlin, 2005. Nat Rev. Drug Discovery 4, 145).
  • Nanoliposomes can be used as carriers of various substances both outside and inside and for a variety of biomedical applications such as gene therapy or for drug delivery, so that acids nucleic or the drug are protected inside avoiding its enzymatic degradation and its direct contact with other healthy cells.
  • they allow the sending of biologically active molecules of lipophilic character and sizes greater than 500 Da, two of the most important problems that an active molecule can present to end up as an active ingredient of a medicine.
  • Nanoliposomes of various sizes can quickly enter areas where tumors exist since the vascular endothelial wall is fenestrated. In contrast, nanoliposomes remain in the bloodstream of healthy tissue through the wall of the non-fenestrated vascular endothelium.
  • the functionalization of the nanoliposomes with peptides that would recognize with greater selectivity the therapeutic targets would allow addressing specifically in those cases in which it is known that said targets overexpress the receptors that recognize said peptides.
  • liposomes functionalized with peptides on their surface There are currently functionalized liposomes with peptides on their surface.
  • liposomes functionalized with tuftsin have allowed increasing the efficacy of sodium stibogluconate (Agrawal & Gupta, 2000. Adv. Drug Deliv. Rev. 41: 135-146; Gupta & Haq, 2005. Met ods Enzymol. 391: 291- 304) and amphotericin B (Gupta & Haq, 2005. Methods Enzymol. 391: 291-304, Agrawal et al., 2002. J. Drug Target. 10: 41-45).
  • peptide ligands bind to the terminal end of a PEG chain.
  • the first method involves incorporating PEG-lipid conjugates with their functionalized end into the liposomes and then conjugate it with the peptide ligands (Zalipsky et al., Bioconjug. Chem., 1995, 6, 705-8).
  • the terminal group of the functionalized PEG is conjugated to the peptide ligands, non-homogeneous conjugation can occur if there is more than one reactive group in the ligand.
  • the second method is to directly incorporate the peptide-PEG-lipid conjugate into the liposomal membranes (Zalipsky et al., Bioconjug. Chem., 1997, 8, 1 1 1-8).
  • the synthesis of these conjugates is difficult, since the chemical properties of the side chains in the peptides are diverse, the molecular mass of the PEG is heterogeneous and the nature of the lipids is amphiphilic. These properties make it difficult to protect the side chains in the process of synthesis, purification, and reaction. In fact, very few peptide-PEG-lipid conjugates have been synthesized.
  • Application US2007 / 0106064 describes the preparation of this type of conjugates through the use of a peptide resin in which the amino groups are initially protected.
  • the biological effects of the VIP neuropeptide have a growing interest in its modulating capacity in pathologies in which there is an inflammatory and / or autoimmune component [Grimm, M. C. et al. (2003) J. Immunol. 171, 4990-4994; Pozo, D. (2003) Trends Mol. Med. 9, 21 1-217; Ganea, D., and Delgado, M. (2002). Crit. Rev. Oral. Biol. Med. 13, 229-237; Delgado, M. et al. (2003). Trends Immunol. 24, 221-224; Pozo et al. (2009). J Immunol 183, 4346-4359].
  • the process of nanoliposome functionalization with this peptide faces the added problem of designing a procedure in which the carboxyl end of VIP is free, since it is at this end that it interacts with its specific membrane receptors. It is necessary, therefore, to develop a method of functionalization of nanoliposomes with peptides, leaving the carboxyl end of said peptide free to interact with its receptor.
  • nanoliposomes functionalized with peptides on their surface, stable, non-toxic, soluble in water, and compatible with biological systems, as well as a procedure for obtaining them, which are useful for vehiculating active ingredients and / or pharmaceutical compositions
  • the procedure that leads to these nanoliposomes allows functionalization with the peptide so that the carboxyl-terminal end is free, thus leaving intact its ability to interact with its specific receptors, which allows formulating in vivo drug detection and selective release strategies. on cells that are interested in eliminating (as is the case with tumor cells), or expanding (through the administration of trophic factors) depending on the pathology that is intended to be addressed.
  • nanoliposomes with the VIP peptide increases the cytotoxic capacity of antitumor drugs encapsulated inside the nanoliposome, such as doxorubicin, improving the effectiveness of this active ingredient, which allows the incorporation of the drug into the liposomal composition at lower concentrations than those used in other state-of-the-art formulations, such as the case of non-functionalized liposomes or in solution.
  • a first aspect of the invention relates to a nanoliposome functionalized with a peptide on its surface, hereinafter, nanoliposome of the invention.
  • the carboxyl-terminal end of the peptide is free, being able to interact with its receptor through its carboxyl-terminal end.
  • the nanoliposome of the invention comprises:
  • the peptide is covalently bound to the nanoliposome through the reaction between the maleimide of the conjugate and the sulfhydryl group of the modified peptide.
  • the nanoliposome further comprises an active ingredient.
  • Said active ingredient can be hydrophilic, being incorporated into the aqueous core of the nanoliposome, or it can be hydrophobic, in which case it is incorporated into the lipid bilayer of the nanoliposome.
  • the present invention relates to a procedure for the preparation of a nanoliposome as previously defined.
  • a third aspect of the invention is a functionalized nanoliposome obtainable according to the procedure described above.
  • the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a nanoliposome as previously defined and an active ingredient capable of diagnosing, curing, mitigating, treating or preventing a disease.
  • a final aspect of the invention relates to the use of the nanoliposome as previously defined for the preparation of a medicament for the treatment of diseases that occur with cell proliferation.
  • FIG. 1 Structure of the vasoactive intestinal peptide neuropeptide (VIP).
  • Figure 2 Determination of VIP peptide on the surface of the nanoliposome loaded with a biologically relevant substance, in this case doxorubicin.
  • FIG. 3 Characterization of the size of the naoliposomes by Dynamic Light Scattering (DLS).
  • DLS Dynamic Light Scattering
  • Figure 4 Functional characterization of the interaction with VPAC receptors (cAMP production, second intracellular messenger of the VIP receptor / effector system) on tumor lines of prostate cancer.
  • Figure 5 Optical microscopy (20X) after 48 hours of treatment of DU-145 cells.
  • A untreated cells;
  • C and
  • E show the cells after being treated with nanoliposomes and nanoliposomes functionalized with VIP respectively.
  • B cells treated with soluble doxorubicin, doxorubicin encapsulated in the nanoliposome, and doxorubicin encapsulated in the nanoliposome functionalized with VIP are shown.
  • Figure 6 Histogram representing the percentage of lactate dehydrogenase (LDH) release in the DU-145 cell line after exposure to the drug doxorubicin (10 g / mL) for 24 hours.
  • LDH lactate dehydrogenase
  • the invention relates to a nanoliposome functionalized with a peptide on its surface, preferably where the carboxyl-terminal of the peptide is free, being able to interact with its receptor through its carboxyl-terminal end.
  • nanoliposomes are understood as essentially spherical aqueous compartments, surrounded by at least one closed lipid double layer with an average diameter of less than 1000 nm. In the present invention, preferably less than 500 nm, more preferably less than 400 nm and even more preferably less than 200 nm.
  • Medium diameter means the average diameter of the population of nanoliposomes dispersed in an aqueous medium.
  • the average diameter of these systems can be measured by standard procedures known to the person skilled in the art, and which are described, for example, in the experimental part below.
  • the nanoliposomes have an average diameter between 75 and 125 nm, preferably between 85 and 1 nm, more preferably between 95-105 nm.
  • the nanoliposomes of the invention preferably comprise a lipid-spacer-maleimide conjugate.
  • conjugate should be understood as the product resulting from the covalent bond between the three constituent components of the conjugate, that is, the lipid, the spacer and the maleimide.
  • lipid is a natural or synthetic amphipathic molecule that has a hydrophilic part and a hydrophobic part in the same molecule and that can spontaneously form bilayer vesicles in an aqueous medium or can be stably incorporated in lipid bilayers.
  • lipid comprises acylglycerides, cerids, phospholipids, lysophospholipids and glycolipids (cerebrosides and gangliosides).
  • these lipids include stearylamine, dodecylamine, hexadecylamine, acetylpalmitate, glycerol ricinolate, hexadecyl myristate, isopropyl myristate, amphoteric acrylic polymer, fatty acid amides, cholesterol, cholesterol ester, diacylglycerolsuccinate, fatty acid glycerol and similar fatty acid.
  • cationic lipids consisting of a positively charged terminal group, such as an amine, polyamine or polylysine, may be employed attached to a portion lipophilic neutral character, such as a sterol, a hydrocarbon chain or two hydrocarbon chains.
  • Examples of these cationic lipids include 1,2-dioleyloxy-3- (trimethylamino) propane (DOTAP); N- [1- (2,3-ditetradecyloxy) propyl] -N, N-dimethyl-N-hydroxyethylammonium bromide (DMRIE), N- [1- (2,3-dioleyloxy) propyl] -N, N - dimethyl-N-hydroxyethylammonium (DORIE), N- [1- (2,3-dioleyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTMA) and dimethylammonium bromide (DDAB).
  • DOTAP 1,2-dioleyloxy-3- (trimethylamino) propane
  • DMRIE N- [1- (2,3-ditetradecyloxy) propyl] -N, N-dimethyl-N-hydroxyethylammonium bromide
  • DORIE N- [1
  • the term lipid refers to a phospholipid.
  • phospholipid comprises phosphoaccylglycerols, that is, compounds that are composed of a glycerol molecule, two of whose hydroxyl groups are esterified by fatty acids (saturated or partially unsaturated straight chain monocarboxylic acids with 8 to 28 atoms of carbon), the third hydroxyl group being esterified by a phosphate group that binds glycerol to another organic molecule through a phosphodiester bond, which usually contains nitrogen, such as choline, serine or ethanolamine, and which may have an electric charge.
  • phosphoacylglycerols examples include phosphatidylethanolamine, phosphatidylinositol, phosphatidic acid, phosphatidylcholine and phosphatidylserine. Also included within the term phospholipids are those complex mixtures extracted from natural products that essentially comprise phosphoacylglycerols such as lecithin.
  • the phospholipid is selected from 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC), 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine (DSPE), 1, 2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC), 1, 2-dipalmitoyl-sn-glycerol-3-phosphoethanolamine (DPPE) and combinations thereof.
  • DSPC 1,2-distearoyl-sn-glycerol-3-phosphocholine
  • DSPE 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine
  • DPPC 1, 2-dipalmitoyl-sn-glycerol-3-phosphocholine
  • DPPE 2-dipalmitoyl-sn-glycerol-3-phosphoethanolamine
  • a linear hydrophilic polymer with functional terminal groups capable of binding to the lipid and the amino group of the maleimide can be used.
  • Suitable spacers in the present invention include, but are not limited to, polyglycine, polyethylene glycol, polypropylene glycol, polymethyl acrylamide, polydimethyl acrylamide, polyhydroxyethyl acrylate, polyhydroxypropyl methacrylate and polyoxyalkene.
  • the spacer is polyethylene glycol (PEG).
  • the conjugation of the lipid with the PEG requires that both the PEG and the lipid have a suitable functional terminal group.
  • the PEG can be functionalized with a halide or a sulphonate so that it is coupled with an amino terminal group of the lipid.
  • the PEG can be functionalized by an activated carbonate (-C (O) -imidazolyl, -OC (0) -para-nitrophenyl, - OC (0) -succinimide, -OC (0) -2,4,4-trichlorophenyl) such that it is coupled with an amino terminal group of the lipid.
  • activated carbonate -C (O) -imidazolyl, -OC (0) -para-nitrophenyl, - OC (0) -succinimide, -OC (0) -2,4,4-trichlorophenyl
  • the PEG can be functionalized by an activated carboxyl group (carboxyl group activated by DCC (dichlorohexylcarbodimide) / HOBt (N-hydroxybenzotriazole), DCC / DMAP (dimethylaminopyridine), DIPCDI (1,3-diisopropylcarbodiimide) / HOBt, EDC (1 - (3-dimethylaminopropyl) -3-ethyl-carbodiimide)) / NHS (N-hydroxysuccinimide)) so that it is coupled with an amino terminal group of the lipid.
  • DCC dichlorohexylcarbodimide
  • HOBt N-hydroxybenzotriazole
  • DCC / DMAP dimethylaminopyridine
  • DIPCDI 1,3-diisopropylcarbodiimide
  • EDC (1 - (3-dimethylaminopropyl) -3-ethyl-carbodiimi
  • the phospholipid binding with the PEG is carried out through an amide bond, resulting from the reaction between the carboxyl group with which the PEG is functionalized and the amino terminal group of the organic phospholipid molecule.
  • the conjugation of the PEG with the maleimide molecule also requires that the PEG at the other end have a suitable functional terminal group capable of reacting with the maleimide amino group.
  • a suitable functional terminal group capable of reacting with the maleimide amino group.
  • any of the aforementioned functional groups can be used.
  • the lipid-spacer-maleimide conjugate has the following structure:
  • Said conjugate is commercially available.
  • the peptide is a synthetic or natural compound peptide by a chain of amino acids.
  • the peptide is selected from the group consisting of hormones, cytokines, toxins, quemotaxins and peptides of the extracellular matrix for cell adhesion.
  • Said peptide can bind to a receptor such as somatostatin receptors, vasoactive intestinal peptide receptors, integrin receptors or growth factor receptors, among others.
  • a receptor such as somatostatin receptors, vasoactive intestinal peptide receptors, integrin receptors or growth factor receptors, among others.
  • the peptide is selected from a list comprising: glucagon, gastric inhibitory polypeptide (GIP), secretin, growth hormone, somatoliberin, somatotropin, PHI peptide (peptide histidine isoleucine), PHM peptide (peptide histidine- methionine), PACAP (pituitary adenylate cylase-activating peptides), adrenomedulin, corticostatin and vasoactive intestinal peptide (VIP).
  • the peptide is a neuropeptide, and more preferably it is the vasoactive intestinal peptide (VIP) whose structure is represented in Figure 1.
  • a neuropeptide refers to small protein-like molecules of a peptide bond of two or more amino acids and which differ from proteins by their length, and because they originate from cerebral synaptic transduction. Its size can vary from two amino acids, such as carnosine, to more than forty such as CRH (corticotropin releasing hormone). They have both stimulating and inhibitory brain function, producing effects such as analgesia, appetite or sleep, among others.
  • vasoactive intestinal peptide is understood as a polypeptide hormone formed by 28 amino acid residues and produced by many structures of the human body such as the digestive system, the pancreas and the suprachiasmatic nucleus of the hypothalamus in the brain. It is characterized by its vasodilator property and its activity in the peripheral nervous system (for example, VIP relaxes the lungs, trachea and gastric musculature). It inhibits the secretion of gastric enzymes and stimulates the secretion of glucagon, insulin and somatostatin, increases adenyl cyclase, as well as bile secretion in the liver.
  • VIP vasoactive intestinal peptide
  • the VIP is also referred to as PHM27 or MGC13587. It is encoded by a gene found on chromosome 6 (6q25). Its amino acid sequence is found in SEQ ID NO: 1.
  • VIP is also defined by a nucleotide or polynucleotide sequence, which constitutes the coding sequence of the protein collected in SEQ ID NO: 1, and which would comprise various variants from: a) acid molecules nucleic encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 1,
  • nucleic acid molecules whose complementary hybrid chain with the polynucleotide sequence of a) are nucleic acid molecules whose complementary hybrid chain with the polynucleotide sequence of a),
  • nucleic acid molecules whose sequence differs from a) and / or b) due to the degeneracy of the genetic code
  • nucleic acid molecules encoding a polypeptide comprising the amino acid sequence with an identity of at least 80%, 90%, 95%, 98% or 99% with SEQ ID NO: 1, and in which the polypeptide encoded by said nucleic acids possesses the activity and structural characteristics of the VIP peptide.
  • VPAC1 Three VIP receivers known as VPAC1, VPAC2 and PAC1 are known.
  • the VPAC1 receptor is expressed in malignant epithelial neoplasms, lung cancer and other cancers such as stomach, colon, breast, prostate, liver and urinary bladder, while VPAC2 has only been found in a few tumors.
  • PAC1 is expressed primarily in tumors originating in the neural and endocrine systems, such as glial tumors (glioblastomas, neuroblastomas, astrocinomas, etc.), or pituitary adenomas.
  • the nanoliposome with the peptide is modified by incorporating a terminal sulfhydryl group by methods known in the state of the art.
  • the peptide is reacted with the Traut reagent (2-iminothiolane hydrochloride) according to the following scheme:
  • AR-S is Traut's reagent
  • the addition of EDTA to the reaction helps prevent oxidation of the sulfhydryl group by preventing the formation of disulfide bonds.
  • the peptide binds to the nanoliposome by reaction of the sulfhydryl group with the maleimide molecule of the conjugate present in the nanoliposome and described above, according to the following scheme:
  • the peptide is modified with a cysteine molecule, so that the free -SH group is also left to react with the conjugate maleimide.
  • the nanoliposomes may further comprise other phospholipids that are not conjugated but free, such as those mentioned above.
  • these phospholipids are selected from 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC), 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine (DSPE), 1,2-dipalmitoyl- sn-glycerol-3-phosphocholine (DPPC), 1, 2-dipalmitoyl-sn-glycerol-3-phosphoethanolamine (DPPE) and combinations thereof.
  • these phospholipids are 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC) represented in the formula (I), 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) represented in the formula (II) or any of its salts, derivatives or analogs, or any of its combinations of the compounds of formula (I) and (II).
  • DSPC 1,2-distearoyl-sn-glycerol-3-phosphocholine
  • DPPC 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine
  • the nanoliposomes comprise 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine-N- [amino (polyethylene glycol)] (DSPE-PEG).
  • the nanoliposomes of the invention comprise, in addition to the lipid-spacer-maleimide conjugate and the modified peptide, 1,2-distearoyl-sn-glycer-3-phosphoethanolamine-N- [amino (polyethylene glycol)] (DSPE-PEG), 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC) and 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC).
  • DSPE-PEG 1,2-distearoyl-sn-glycer-3-phosphoethanolamine-N- [amino (polyethylene glycol)]
  • DSPC 1,2-distearoyl-sn-glycerol-3-phosphocholine
  • DPPC 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine
  • the nanoliposomes of the invention comprise:
  • the peptide is covalently bound to the nanoliposome through the reaction between the maleimide of the conjugate and the sulfhydryl group of the modified peptide.
  • the peptide is the VIP peptide modified with a cysteine molecule.
  • the DPPC and the DSPC are in a mass ratio of approximately 6: 4.
  • the DSPE-PEG and the DSPE-PEG-Maleimide conjugate are at a final concentration of about 5 and 10%, respectively.
  • the lipid bilayer of the nanoliposomes may also contain one or more sterols such as cholesterol, lanosterol, dihydrolanosterol, desmosterol, dihydrocholesterol, phytosterol, stigmasterol, sitosterol, campesterol and brasicasterol, sugars such as glycerol and sucrose, esters of glycerin fatty acids such as triolein and trioctanoin.
  • antioxidant substances such as tocopherol, propyl gallate, ascorbyl palmitate and butylated hydroxytoluene, compounds that provide positive charge such as stearylamine and oxylamine, compounds that provide negative charge such as di-methyl phosphate, membrane proteins.
  • the invention relates to a process for the preparation of the nanoliposomes defined above, comprising:
  • lipid film for example by reverse phase evaporation, of a compound comprising phospholipids, preferably
  • DSPC and DPPC and at least one pegylated phospholipid
  • the lipid film of step (a) comprises a lipid-spacer-maelimide conjugate as previously defined; More preferably, the lipid-spacer-maleimide conjugate is in a proportion of about 10% by weight with respect to the total weight of the lipid film.
  • the lipid film further comprises at least one phospholipid and / or at least one phospholipid conjugated to a PEG molecule.
  • the lipid film further comprises 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC), 1, 2- dipalmitoyl-sn-glycer-3-phosphocholine (DPPC) and 1, 2- distearoyl-sn-glycer-3-phosphoethanolamine-N- [amino (polyethylene glycol)] (DSPE-PEG).
  • DSPC 1,2-distearoyl-sn-glycerol-3-phosphocholine
  • DPPC 2- dipalmitoyl-sn-glycer-3-phosphocholine
  • DSPE-PEG 2- distearoyl-sn-glycer-3-phosphoethanolamine-N- [amino (polyethylene glycol)]
  • the mass ratio of the DPPC: DSPC phospholipids is approximately 6: 4.
  • the proportion of DSPE-PEG is around 5% by weight with respect to the total weight of the lipid film.
  • the buffer solution is a solution of HEPES (4- (2-hydroxyethyl) -1 -piperazinethanesulfonic acid) of pH 7.4.
  • the organic solvent is a mixture of diethylether and chloroform in an approximate ratio of 1: 1 by volume. More preferably, the volume ratio of organic phase: aqueous phase is about 4: 1.
  • step c) is performed in a sonic bath until the liposomes form spontaneously and the sample appears dispersed in a single phase.
  • this sonication stage is carried out for 3 to 5 minutes.
  • the removal of the organic solvent is carried out by evaporation, for example with rotary evaporator, at a temperature between 35 and 55 ° C, more preferably at 40 ° C, and at a rotation speed between 100 and 150 rpm, more preferably at 120 rpm.
  • the sonication of step (f) is performed in a sonic bath at a temperature higher than that of its transition phase, preferably at more than 60 ° C, to control the size of the nanoliposome.
  • the nanoliposome is adjusted to an average size between 75 and 125 nm, preferably between 85 and 1 nm, more preferably about 95-105 nm.
  • the functionalization of the nanoliposome with the peptide is carried out by adding at least 100 ⁇ g of the modified peptide, more preferably at least 125 ⁇ g and even more preferably at least 150 ⁇ g, to the sample of Nanoliposomes kept under stirring and room temperature for more than 10 hours, and more preferably between 12 and 16 hours.
  • the peptide is dissolved in a buffer solution at a pH of around 6-6.5.
  • Said peptide is modified with a sulfhydryl group at one end thereof.
  • the maleimide present in the lipid-spacer-maleimide conjugate reacts with the peptide through the sulfhydryl -SH group.
  • Said reaction is preferably carried out under nitrogen bubbling for at least one hour to prevent sulfhydryl groups from being oxidized.
  • the sample is incubated at room temperature and with stirring.
  • excess mercaptoethanol or free cysteine can be added, subsequently dialyzing to remove the excess of unreacted ⁇ -mercaptoethanol and peptide.
  • the peptide is a neuropeptide and even more preferably it is the VIP peptide.
  • the nanoliposomes obtained after step (f) can be purified by, for example, a Sephadex column, preferably G-50.
  • the functionalized nanoliposomes obtained after step (g) can be purified by, for example, dialysis against deionized water for at least 15 hours, preferably for at least 20 hours, and much more preferably for 24 hours.
  • nanoliposomes of the invention can also incorporate an active ingredient.
  • active ingredient means any component that potentially provides a pharmacological activity or other effect different in the diagnosis, cure, mitigation, treatment, or prevention of a disease, or that affects the structure or function of the body. of man or other animals.
  • the term includes those components that promote a chemical change in processing of the drug and are present therein in a modified form intended to provide the specific activity or effect.
  • the active substance can be both hydrophilic and hydrophobic. In the first case it is incorporated into the aqueous nucleus of the liposome, while in the second case it is incorporated into the lipid bilayer of the nanoliposome.
  • the active ingredient has an antitumor activity. In another preferred embodiment of this aspect of the invention, the active ingredient has anti-inflammatory activity. More preferably, the active substance is doxorubicin.
  • the encapsulation of the active substance in the nanoliposome can be performed using the osmotic gradient technique as described in the experimental part.
  • the invention relates to a pharmaceutical composition, hereinafter pharmaceutical composition of the invention, comprising a nanoliposome as previously defined and an active ingredient capable of diagnosing, curing, mitigating, treating or preventing a disease.
  • the composition further comprises a pharmaceutically acceptable carrier. More preferably, the pharmaceutical composition of the invention further comprises another active ingredient.
  • compositions of the present invention can be formulated for administration to an animal, and more preferably to a mammal, including man, in a variety of ways known in the state of the art.
  • they can be, without limitation, in sterile aqueous solution or in biological fluids, such as serum.
  • Aqueous solutions may be buffered or unbuffered and have additional active or inactive components. Additional components include salts to modulate ionic strength, preservatives including, but not limited to, antimicrobial agents, antioxidants, chelators, and the like, and nutrients including glucose, dextrose, vitamins and minerals.
  • compositions may be combined with various inert vehicles or excipients, including but not limited to; binders such as microcrystalline cellulose, gum tragacanth, or gelatin; excipients such as starch or lactose; dispersing agents such as alginic acid or corn starch, etc.
  • binders such as microcrystalline cellulose, gum tragacanth, or gelatin
  • excipients such as starch or lactose
  • dispersing agents such as alginic acid or corn starch, etc.
  • compositions and / or their formulations can be administered to an animal, including a mammal and, therefore, to man, in a variety of ways, including, but not limited to, intraperitoneal, intravenous, intramuscular, subcutaneous, intracecal, intraventricular, oral, enteral, parenteral, intranasal or dermal.
  • the dosage to obtain a therapeutically effective amount depends on a variety of factors, such as the age, weight, sex, tolerance, ... of the mammal.
  • the term “therapeutically effective amount” refers to the amount of active ingredient, or its salts, prodrugs, derivatives or analogs, or combinations thereof, that produce the desired effect and, in general, It will be determined, among other causes, by the characteristics of said prodrugs, derivatives or analogues and the therapeutic effect to be achieved.
  • the "adjuvants” and “pharmaceutically acceptable carriers” that can be used in said compositions are the vehicles known to those skilled in the art.
  • excipient refers to a substance that aids the absorption, distribution or action of any of the active ingredients of the present invention, stabilizes said active substance or aids in the preparation of the medicament in the sense of giving it consistency or providing flavors. Make it more enjoyable.
  • the excipients could have the function of keeping the ingredients together such as starches, sugars or cellulose, sweetening function, dye function, drug protection function such as to isolate it from air and / or moisture, function filling a tablet, capsule or any other form of presentation such as dibasic calcium phosphate, a disintegrating function to facilitate the dissolution of the components and their absorption in the intestine, without excluding other types of excipients not mentioned in this paragraph.
  • pharmaceutically acceptable excipient refers to the excipient being allowed and evaluated so as not to cause damage to the organisms to which it is administered.
  • the excipient must be pharmaceutically suitable, that is, an excipient that allows the activity of the active ingredient or of the active ingredients, that is, that is compatible with the active ingredient, in this case, the active ingredient is any of the compounds of the present invention.
  • a “pharmaceutically acceptable carrier” refers to those substances, or combination of substances, known in the pharmaceutical sector, used in the preparation of pharmaceutical forms of administration and includes, but are not limited to, solids, liquids, solvents or surfactants.
  • the vehicle like the excipient, is a substance that is used in the medicament to dilute any of the compounds of the present invention to a certain volume or weight.
  • the pharmaceutically acceptable carrier is an inert substance or action analogous to the active ingredients of the present invention.
  • the function of the vehicle is to facilitate the incorporation of other compounds, allow a better dosage and administration or give consistency and form to the pharmaceutical composition.
  • the pharmaceutically acceptable carrier is the diluent.
  • Another aspect of the invention relates to the use of the nanoliposome of the invention, in the preparation of a medicament for the treatment of diseases that occur with cell proliferation.
  • the disease that occurs with cell proliferation is selected from the list comprising: malignant epithelial neoplasms, lung cancer and other cancers such as stomach, colon, breast, prostate, liver and urinary bladder.
  • the disease that occurs with cell proliferation is prostate cancer.
  • a lipid film was obtained by reverse phase evaporation of a mixture containing 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC), 1, 2- dipalmitoyl-sn-glycerol-3-phosphocholine ( DPPC), 1,2-distearoyl-sn-glycerol-3-phosphoethanol amine-N- [amino (polyethylene glycol)] (DSPE-PEG) and 1,2-distearoyl-sn-glycerol-3- phosphoethanolamine-N- [amino (polyethylene glycol) -maleimide] or (DSPE-PEG-maleimide).
  • DSPC 1,2-distearoyl-sn-glycerol-3-phosphocholine
  • DPPC 1, 2- dipalmitoyl-sn-glycerol-3-phosphocholine
  • DSPE-PEG 1,2-distearoyl-sn-glycerol-3-phosphoethanol amine-N
  • the film formed was rehydrated with a HEPES buffer solution at pH 7.4 and a mixture of diethyl ether and chloroform was added in a 1: 1 volume ratio, such that the volume ratio of the organic phase: aqueous phase was 4 :one .
  • a two-phase system was formed.
  • This system was subjected to a sonication stage for about 3-5 minutes until the sample appeared dispersed in a single phase.
  • the organic solvent was removed by rotoevaporation at a temperature of 40 ° C and at a speed of 120 rpm, until a gel phase was reached. Then the gel became an aqueous suspension where the liposomes were dispersed.
  • liposomes were subjected to an additional stage of sonication to reduce their size and thus convert them into nanoliposomes.
  • the sonication was performed in a sonic bath at a temperature above 60 ° C.
  • the nanoliposomes were purified using a Sephadez G-50 column.
  • the functionalization of the nanoliposomes with the VIP was carried out by adding 150 ⁇ g of said modified peptide with a cysteine molecule on the aqueous suspension of the nanoliposomes, while stirring at room temperature for 12 hours.
  • the nanoliposomes were purified by dialysis against deionized water for 24 hours.
  • the surface VIP was quantified using a commercial system called LavaPep - peptide quantification kit TM (Fluorotechnics) based on the fluorescence detection of the peptide / fluorophore complexes. The results related to this quantification are shown in Figure 2.
  • the functionalized nanoliposomes were characterized by their size using the Dynamic Light Scattering (DLS) technique, obtaining values of around 100 nm as they were shown in figure 3.
  • DLS Dynamic Light Scattering
  • Example 2 Specificity and effectiveness of nanoliposomes functionalized with VIP in the specific recognition of cells expressing their receptors.
  • CAMP production was measured by a bioluminescence assay using the Promega cAMP-GLO TM assay according to the manufacturer's instructions. This assay is based on the decrease in luciferase-coupled light production when increased concentrations of cAMP produce a protein activation. kinase A and a concomitant decrease in ATP available for the detection reaction indicated above.
  • Figure 4 shows the results obtained in cells and demonstrates a specifically increased cAMP production after stimulation of the cells with the functionalized nanoliposomes.
  • Doxorubicin encapsulation is performed using the osmotic gradient technique, in which two different pH buffers are used.
  • the first consists of 250 mM ammonium sulfate pH 5.5, which is the aqueous phase in the synthesis of reverse evaporation, so this buffer is inside and outside the nanonanoliposome.
  • the nanonanoliposome sample is passed through a column of Sephadex G-50 previously washed with saline HEPES buffer pH 7.4 to collect the nanoliposomes dispersed in this same buffer. This difference in osmolarity inside and outside the nanoliposome creates an osmotic gradient across the membrane.
  • doxorubicin dissolved in water is added to the nanoliposome sample and allowed to incubate for 90 minutes at a temperature higher than the transition, in our case at 60 ° C, since the transition temperature of our nanoliposome It is 46 ° C. This temperature causes the nanoliposomes to become more fluid, gaps form in their membrane, and doxorubicin penetrates. The movement of water into the nanoliposomes is due to the osmotic gradient and the gaps in the membrane that facilitates the encapsulation of doxorubicin and allows to reach encapsulation efficiency values close to 90%.
  • the sample is subsequently purified by means of a Sephadex G-50 column to eliminate unincorporated doxorubicin and the encapsulation efficiency is measured by the fluorescence spectrophotometer, measuring the sample before and after being purified and also after adding 1% triton (In this way the nanoliposome is broken and the drug inside is released).
  • Encapsulation efficiency (A-B / C) X 100
  • A Intensity of the purified sample after adding 1% triton.
  • B Intensity of the purified sample without 1% triton.
  • DU-145 cells (human prostate cancer cell line) were treated for 48 hours with soluble doxorubicin, with doxorubicin encapsulated in liposomes and with doxorubicin encapsulated in VIP-functionalized nanoliposomes.
  • Figure 5 shows the optical microscopy photographs obtained in all cases and their comparison with a sample of untreated cells. The increased cytotoxic effect of doxorubicin is observed in the presence of nanoliposomes functionalized with the VIP peptide.
  • LDH lactate dehydrogenase

Abstract

The invention relates to nanoliposomes functionalised with bioactive peptides on the surface thereof, which allow the identification of target cells and/or tissues and the release of drugs in a selective manner. More specifically, the invention relates to nanoliposomes functionalised with the VIP peptide. In addition, the invention relates to pharmaceutical compositions comprising said nanoliposomes, to a preparation method thereof and to the medical uses of same.

Description

NANOLIPOSOMAS FUNCIONALIZADOS CON PEPTIDOS  NANOLIPOSOMES FUNCTIONALIZED WITH PEPTIDES
CAMPO DE LA INVENCIÓN  FIELD OF THE INVENTION
La presente invención se encuentra dentro del campo de la medicina, de la química, la bioquímica y la inmunología, y se refiere al uso de nanoliposomas funcionalizados con péptidos en su superficie que permiten la identificación de tejidos y/o células diana y la liberación de fármacos de forma selectiva, y en particular, a la funcionalización de nanoliposomas con el péptido VIP. La presente invención también se refiere a las composiciones, al procedimiento de preparación y a los usos de dichos nanoliposomas.  The present invention is within the field of medicine, chemistry, biochemistry and immunology, and refers to the use of nanoliposomes functionalized with peptides on its surface that allow the identification of tissues and / or target cells and the release of drugs selectively, and in particular, to the functionalization of nanoliposomes with the VIP peptide. The present invention also relates to the compositions, the preparation process and the uses of said nanoliposomes.
ESTADO DE LA TÉCNICA ANTERIOR STATE OF THE PREVIOUS TECHNIQUE
Existe un creciente interés por los efectos biológicos de las nanopartículas, de su toxicidad y su alcance en función del medio (M. Tsoli et al. 2005. Small (2005); 1 :841 ), por ejemplo, su uso potencial como herramienta terapéutica en tratamientos de cáncer (El-Sayed et al., 2005. Nano Letters Vol.5, 5. 829-834).  There is a growing interest in the biological effects of nanoparticles, their toxicity and their scope depending on the environment (M. Tsoli et al. 2005. Small (2005); 1: 841), for example, their potential use as a therapeutic tool in cancer treatments (El-Sayed et al., 2005. Nano Letters Vol. 5, 5, 829-834).
Gracias al enorme interés de esos nano-bioconjugados se han desarrollado un amplio rango de aplicaciones tales como distribución de fármacos, marcadores moleculares, análisis bioquímicos ultrasensibles, desarrollo de dispositivos "lab-on-a-chip", construcción de nanocomponentes electrónicos, motores nano-moleculares...etc [C. M. Niemeyer, C. A. Mirkin Eds. Nanobiotechnology, Wiley-VCH 2004].  Thanks to the enormous interest of these nano-bioconjugates, a wide range of applications such as drug distribution, molecular markers, ultrasensitive biochemical analyzes, development of "lab-on-a-chip" devices, construction of electronic nanocomponents, nano engines have been developed -molecular ... etc [C. M. Niemeyer, C. A. Mirkin Eds. Nanobiotechnology, Wiley-VCH 2004].
Entre los diferentes tipos de nanopartículas, los nanoliposomas son de especial relevancia debido a que son los sistemas nanométricos mejor establecidos clínicamente para el transporte y envío de fármacos gracias a que no son citotóxicos, son biocompatibles y biodegradables, y además su síntesis es relativamente barata y de fácil escalado en procesos industriales. Los liposomas en general se han utilizado en terapias para el tratamiento de cáncer durante más de una década ya que han demostrado reducir de forma sistémica los efectos secundarios, la toxicidad y facilitando la eliminación del fármaco. ( Torchlin, 2005. Nat Rev. Drug Discovery 4, 145).  Among the different types of nanoparticles, nanoliposomes are of special relevance because they are the best clinically established nanometric systems for the transport and shipment of drugs because they are not cytotoxic, they are biocompatible and biodegradable, and also their synthesis is relatively cheap and Easy scaling in industrial processes. Liposomes in general have been used in therapies to treat cancer for more than a decade since they have been shown to systematically reduce side effects, toxicity and facilitate drug elimination. (Torchlin, 2005. Nat Rev. Drug Discovery 4, 145).
Los nanoliposomas se pueden utilizar como transportadores de diversas sustancias tanto en su exterior como en su interior y para una variedad de aplicaciones biomédicas como terapia génica o para el envío de fármacos, de forma que los ácidos nucleicos o el fármaco vayan protegidos en su interior evitando su degradación enzimática y su contacto directo con otras células sanas. Por otra parte permiten el envío de moléculas biológicamente activas de carácter lipófilo y tamaños superiores a los 500 Da, dos de los problemas más importantes que puede presentar una molécula activa para terminar como principio activo de un medicamento. Nanoliposomes can be used as carriers of various substances both outside and inside and for a variety of biomedical applications such as gene therapy or for drug delivery, so that acids nucleic or the drug are protected inside avoiding its enzymatic degradation and its direct contact with other healthy cells. On the other hand they allow the sending of biologically active molecules of lipophilic character and sizes greater than 500 Da, two of the most important problems that an active molecule can present to end up as an active ingredient of a medicine.
Los nanoliposomas de diversos tamaños, normalmente menores de 400 nm pueden entrar de forma rápida en las zonas en las que existen tumores ya que la pared del endotelio vascular se encuentra fenestrada. Por el contrario, los nanoliposomas permanecen en el torrente sanguíneo del tejido sano mediante la pared del endotelio vascular no fenestrado.  Nanoliposomes of various sizes, usually smaller than 400 nm, can quickly enter areas where tumors exist since the vascular endothelial wall is fenestrated. In contrast, nanoliposomes remain in the bloodstream of healthy tissue through the wall of the non-fenestrated vascular endothelium.
Una de las limitaciones para el uso clínico de los péptidos en general, fundamentalmente de los neuropéptido, y del péptido VIP en particular, es su corta vida media en circulación, lo que haría necesaria la administración crónica del mismo, aumentando los costes económicos y dificultando su posología al paciente. La unión de péptidos a los liposomas aumenta la vida media de las moléculas unidas a los mismos, ya que dificulta su ataque proteolítico.  One of the limitations for the clinical use of peptides in general, mainly of neuropeptides, and VIP peptides in particular, is their short half-life in circulation, which would necessitate chronic administration of the same, increasing economic costs and making it difficult Your dosage to the patient. The binding of peptides to liposomes increases the half-life of molecules bound to them, since it hinders their proteolytic attack.
Además, la funcionalización de los nanoliposomas con péptidos que reconocieran con mayor selectividad las dianas terapéuticas, permitiría el direccionamiento de forma específica en aquellos casos en los que se conoce que dichas dianas sobreexpresan los receptores que reconocen dichos péptidos.  In addition, the functionalization of the nanoliposomes with peptides that would recognize with greater selectivity the therapeutic targets, would allow addressing specifically in those cases in which it is known that said targets overexpress the receptors that recognize said peptides.
Actualmente existen liposomas funcionalizados con péptidos en su superficie. Por ejemplo, los liposomas funcionalizados con tuftsina han permitido aumentar la eficacia de estibogluconato sódico (Agrawal & Gupta, 2000. Adv. Drug Deliv. Rev. 41 : 135-146; Gupta & Haq, 2005. Met ods Enzymol. 391 : 291-304) y anfotericina B (Gupta & Haq, 2005. Methods Enzymol. 391 : 291 -304, Agrawal et al., 2002. J. Drug Target. 10: 41 - 45).  There are currently functionalized liposomes with peptides on their surface. For example, liposomes functionalized with tuftsin have allowed increasing the efficacy of sodium stibogluconate (Agrawal & Gupta, 2000. Adv. Drug Deliv. Rev. 41: 135-146; Gupta & Haq, 2005. Met ods Enzymol. 391: 291- 304) and amphotericin B (Gupta & Haq, 2005. Methods Enzymol. 391: 291-304, Agrawal et al., 2002. J. Drug Target. 10: 41-45).
Hasta el momento, se han desarrollado dos formas de preparar liposomas funcionalizados con péptidos, en los que los ligandos del péptido se unen al extremo terminal de una cadena de PEG. El primer método supone incorporar conjugados lípido-PEG con su extremo funcionalizado en los liposomas y a continuación conjugarlo con los ligandos peptídicos (Zalipsky et al., Bioconjug. Chem., 1995, 6, 705- 8). Sin embargo, cuando el grupo terminal del PEG funcionalizado se conjuga con los ligandos del péptido, se puede producir una conjugación no homogénea si hay más de un grupo reactivo en el ligando. El segundo método es incorporar directamente el conjugado péptido-PEG-lípido en las membranas liposomales (Zalipsky et al., Bioconjug. Chem., 1997, 8, 1 1 1 -8). No obstante, la síntesis de estos conjugados es difícil, dado que las propiedades químicas de las cadenas laterales en los péptidos son diversas, la masa molecular del PEG es heterogénea y la naturaleza de los lípidos es anfifílica. Estas propiedades dificultan la protección de las cadenas laterales en el procedimiento de síntesis, la purificación, y la reacción. De hecho, muy pocos conjugados péptido-PEG-lípido han sido sintetizados. La solicitud US2007/0106064 describe la preparación de este tipo de conjugados mediante el empleo de una resina peptídica en la que los grupos amino son inicialmente protegidos. So far, two ways of preparing functionalized liposomes with peptides have been developed, in which peptide ligands bind to the terminal end of a PEG chain. The first method involves incorporating PEG-lipid conjugates with their functionalized end into the liposomes and then conjugate it with the peptide ligands (Zalipsky et al., Bioconjug. Chem., 1995, 6, 705-8). However, when the terminal group of the functionalized PEG is conjugated to the peptide ligands, non-homogeneous conjugation can occur if there is more than one reactive group in the ligand. The second method is to directly incorporate the peptide-PEG-lipid conjugate into the liposomal membranes (Zalipsky et al., Bioconjug. Chem., 1997, 8, 1 1 1-8). However, the synthesis of these conjugates is difficult, since the chemical properties of the side chains in the peptides are diverse, the molecular mass of the PEG is heterogeneous and the nature of the lipids is amphiphilic. These properties make it difficult to protect the side chains in the process of synthesis, purification, and reaction. In fact, very few peptide-PEG-lipid conjugates have been synthesized. Application US2007 / 0106064 describes the preparation of this type of conjugates through the use of a peptide resin in which the amino groups are initially protected.
Por otro lado, los efectos biológicos del neuropéptido VIP tienen un interés creciente por su capacidad moduladora en patologías en las que hay un componente inflamatorio y/o autoinmunitario [Grimm, M. C. et al. (2003) J. Immunol. 171 , 4990- 4994; Pozo, D. (2003) Trends Mol. Med. 9, 21 1-217; Ganea, D., and Delgado, M. (2002). Crit. Rev. Oral. Biol. Med. 13, 229-237; Delgado, M. et al. (2003). Trends Immunol. 24, 221-224; Pozo et al. (2009). J Immunol 183, 4346-4359].  On the other hand, the biological effects of the VIP neuropeptide have a growing interest in its modulating capacity in pathologies in which there is an inflammatory and / or autoimmune component [Grimm, M. C. et al. (2003) J. Immunol. 171, 4990-4994; Pozo, D. (2003) Trends Mol. Med. 9, 21 1-217; Ganea, D., and Delgado, M. (2002). Crit. Rev. Oral. Biol. Med. 13, 229-237; Delgado, M. et al. (2003). Trends Immunol. 24, 221-224; Pozo et al. (2009). J Immunol 183, 4346-4359].
En el caso concreto del péptido VIP, el proceso de funcionalización de nanoliposomas con este péptido se enfrenta al problema añadido de diseñar un procedimiento en el que quede el extremo carboxilo terminal de VIP libre, ya que es por este extremo por el que interacciona con sus receptores específicos de membrana. Es necesario, por tanto, desarrollar un procedimiento de funcionalización de nanoliposomas con péptidos, dejando el extremo carboxilo terminal de dicho péptido libre para interaccionar con su receptor.  In the specific case of the VIP peptide, the process of nanoliposome functionalization with this peptide faces the added problem of designing a procedure in which the carboxyl end of VIP is free, since it is at this end that it interacts with its specific membrane receptors. It is necessary, therefore, to develop a method of functionalization of nanoliposomes with peptides, leaving the carboxyl end of said peptide free to interact with its receptor.
BREVE DESCRIPCIÓN DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
Los autores de la presente invención han desarrollado nanoliposomas funcionalizados con péptidos en su superficie, estables, no tóxicos, solubles en agua, y compatibles con los sistemas biológicos, así como un procedimiento para su obtención, que son útiles para vehiculizar principios activos y/o composiciones farmacéuticas. El procedimiento que conduce a estos nanoliposomas permite la funcionalización con el péptido de manera que queda libre el extremo carboxilo-terminal, dejando así intacta su capacidad de interacción con sus receptores específicos, lo que permite formular estrategias de detección y liberación selectivo in vivo de fármacos sobre células que interese eliminar (como es el caso de las células tumorales), o bien expandir (mediante la administración de factores tróficos) en función de la patología que se pretenda abordar. The authors of the present invention have developed nanoliposomes functionalized with peptides on their surface, stable, non-toxic, soluble in water, and compatible with biological systems, as well as a procedure for obtaining them, which are useful for vehiculating active ingredients and / or pharmaceutical compositions The procedure that leads to these nanoliposomes allows functionalization with the peptide so that the carboxyl-terminal end is free, thus leaving intact its ability to interact with its specific receptors, which allows formulating in vivo drug detection and selective release strategies. on cells that are interested in eliminating (as is the case with tumor cells), or expanding (through the administration of trophic factors) depending on the pathology that is intended to be addressed.
En particular, se ha demostrado que mediante la funcionalización del péptido VIP en la superficie del nanoliposoma, se maximiza su entrada en las zonas con tumores debido al endotelio vascular fenestrado, a la vez que se permite su direccionamiento de forma específica en aquellos casos en los que las células cancerosas sobreexpresan los receptores de la familia de VIP del tipo siete dominios transmembrana acoplados a proteínas G, como es el caso del cáncer de próstata. Además de permitir que VIP actúe como agente terapéutico sobre células diana o como modo de liberación de fármacos sobre células que sobreexpresan receptores VIP, aumenta la vida media de la molécula unida a la misma, ya que dificulta el ataque proteolítico.  In particular, it has been shown that through the functionalization of the VIP peptide on the surface of the nanoliposome, its entry into areas with tumors is maximized due to the fenestrated vascular endothelium, while its specific targeting is allowed in those cases in which that cancer cells overexpress the receptors of the VIP family of type seven transmembrane domains coupled to G proteins, as is the case with prostate cancer. In addition to allowing VIP to act as a therapeutic agent on target cells or as a mode of drug release on cells that overexpress VIP receptors, it increases the half-life of the molecule bound to it, since it hinders proteolytic attack.
Además, se ha demostrado que la funcionalización de los nanoliposomas con el péptido VIP aumenta la capacidad citotóxica de fármacos antitumorales encapsulados en el interior del nanoliposoma, tales como la doxorrubicina, mejorando la efectividad de este principio activo, lo que posibilita la incorporación del fármaco en la composición liposomal a concentraciones más bajas que las empleadas en otras formulaciones del estado de la técnica, como el caso de los liposomas no funcionalizados o en solución.  In addition, it has been shown that the functionalization of nanoliposomes with the VIP peptide increases the cytotoxic capacity of antitumor drugs encapsulated inside the nanoliposome, such as doxorubicin, improving the effectiveness of this active ingredient, which allows the incorporation of the drug into the liposomal composition at lower concentrations than those used in other state-of-the-art formulations, such as the case of non-functionalized liposomes or in solution.
Por tanto, un primer aspecto de la invención se refiere a un nanoliposoma funcionalizado con un péptido en su superficie, de ahora en adelante, nanoliposoma de la invención. En una realización preferida, el extremo carboxilo-terminal del péptido queda libre, pudiendo interaccionar con su receptor mediante su extremo carboxilo- terminal. En otra realización preferida, el nanoliposoma de la invención comprende:  Thus, a first aspect of the invention relates to a nanoliposome functionalized with a peptide on its surface, hereinafter, nanoliposome of the invention. In a preferred embodiment, the carboxyl-terminal end of the peptide is free, being able to interact with its receptor through its carboxyl-terminal end. In another preferred embodiment, the nanoliposome of the invention comprises:
un conjugado lípido-espaciador-maleimida; y  a lipid-spacer-maleimide conjugate; Y
- un péptido modificado con un grupo sulfhidrilo;  - a peptide modified with a sulfhydryl group;
de manera que el péptido se encuentra unido covalentemente al nanoliposoma a través de la reacción entre la maleimida del conjugado y el grupo sulfhidrilo del péptido modificado.  so that the peptide is covalently bound to the nanoliposome through the reaction between the maleimide of the conjugate and the sulfhydryl group of the modified peptide.
En una realización particular, el nanoliposoma comprende además un principio activo. Dicho principio activo puede ser hidrofílico, quedando incorporado en el núcleo acuoso del nanoliposoma, o bien puede ser hidrofóbico, en cuyo caso queda incorporado en la bicapa lipídica del nanoliposoma.  In a particular embodiment, the nanoliposome further comprises an active ingredient. Said active ingredient can be hydrophilic, being incorporated into the aqueous core of the nanoliposome, or it can be hydrophobic, in which case it is incorporated into the lipid bilayer of the nanoliposome.
En un segundo aspecto, la presente invención se relaciona con un procedimiento para la preparación de un nanoliposoma como se ha definido previamente. In a second aspect, the present invention relates to a procedure for the preparation of a nanoliposome as previously defined.
Un tercer aspecto de la invención lo constituye un nanoliposoma funcionalizado obtenible según el procedimiento descrito anteriormente.  A third aspect of the invention is a functionalized nanoliposome obtainable according to the procedure described above.
En un aspecto adicional, la invención se relaciona con una composición farmacéutica que comprende un nanoliposoma tal como se ha definido previamente y un principio activo capaz de diagnosticar, curar, mitigar, tratar o prevenir una enfermedad. In a further aspect, the invention relates to a pharmaceutical composition comprising a nanoliposome as previously defined and an active ingredient capable of diagnosing, curing, mitigating, treating or preventing a disease.
Un último aspecto de la invención se refiere al uso del nanoliposoma tal como se ha definido previamente para la elaboración de un medicamento para el tratamiento de enfermedades que cursan con proliferación celular.  A final aspect of the invention relates to the use of the nanoliposome as previously defined for the preparation of a medicament for the treatment of diseases that occur with cell proliferation.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1 : Estructura del neuropéptido péptido intestinal vasoactivo (VIP).  Figure 1: Structure of the vasoactive intestinal peptide neuropeptide (VIP).
Figura 2: Determinación de péptido VIP en la superficie del nanoliposoma cargado con una sustancia biológicamente relevante, en este caso doxorrubicina.  Figure 2: Determination of VIP peptide on the surface of the nanoliposome loaded with a biologically relevant substance, in this case doxorubicin.
Figura 3: Caracterización del tamaño de los naoliposomas mediante Dynamic Light Scattering (DLS).  Figure 3: Characterization of the size of the naoliposomes by Dynamic Light Scattering (DLS).
Figura 4: Caracterización funcional de la interacción con receptores VPAC (producción de AMPc, segundo mensajero intracelular del sistema receptor/efector de VIP) sobre líneas tumorales de cáncer de próstata.  Figure 4: Functional characterization of the interaction with VPAC receptors (cAMP production, second intracellular messenger of the VIP receptor / effector system) on tumor lines of prostate cancer.
Figura 5: Microscopía óptica (20X) tras 48 horas de tratamiento de células DU-145. (A) células sin tratar; (C) y (E) muestran las células tras ser tratadas con nanoliposomas y nanoliposomas funcionalizados con VIP respectivamente. En (B), (D) y (F) se muestran las células tratadas con doxorrubicina soluble, doxorrubicina encapsulada en el nanoliposoma, y doxorrubicina encapsulada en el nanoliposoma funcionalizado con VIP.  Figure 5: Optical microscopy (20X) after 48 hours of treatment of DU-145 cells. (A) untreated cells; (C) and (E) show the cells after being treated with nanoliposomes and nanoliposomes functionalized with VIP respectively. In (B), (D) and (F) cells treated with soluble doxorubicin, doxorubicin encapsulated in the nanoliposome, and doxorubicin encapsulated in the nanoliposome functionalized with VIP are shown.
Figura 6: Histograma que representa el porcentaje de liberación de lactato deshidrogenasa (LDH) en la línea celular DU-145 tras la exposición al fármaco doxorrubicina (10 g/mL) durante 24 horas.  Figure 6: Histogram representing the percentage of lactate dehydrogenase (LDH) release in the DU-145 cell line after exposure to the drug doxorubicin (10 g / mL) for 24 hours.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN La invención se refiere a un nanoliposoma funcionalizado con un péptido en su superficie, preferiblemente donde el carboxilo-terminal del péptido queda libre, pudiendo interaccionar con su receptor mediante su extremo carboxilo-terminal. DETAILED DESCRIPTION OF THE INVENTION The invention relates to a nanoliposome functionalized with a peptide on its surface, preferably where the carboxyl-terminal of the peptide is free, being able to interact with its receptor through its carboxyl-terminal end.
En el contexto de la presente invención, se entiende por nanoliposomas los compartimentos acuosos esencialmente esféricos, rodeados de al menos una doble capa lipídica cerrada con un diámetro medio menor de 1000 nm. En la presente invención, preferiblemente menor de 500 nm, más preferiblemente menor de 400 nm y aún más preferiblemente menor de 200 nm.  In the context of the present invention, nanoliposomes are understood as essentially spherical aqueous compartments, surrounded by at least one closed lipid double layer with an average diameter of less than 1000 nm. In the present invention, preferably less than 500 nm, more preferably less than 400 nm and even more preferably less than 200 nm.
Por "diámetro medio" se entiende el diámetro promedio de la población de nanoliposomas dispersa en un medio acuoso. El diámetro medio de estos sistemas se puede medir por procedimientos estándar conocidos del experto en la materia, y que se describen, por ejemplo, en la parte experimental más abajo.  "Medium diameter" means the average diameter of the population of nanoliposomes dispersed in an aqueous medium. The average diameter of these systems can be measured by standard procedures known to the person skilled in the art, and which are described, for example, in the experimental part below.
De forma preferente, los nanoliposomas tienen un diámetro medio de entre 75 y 125 nm, preferiblemente entre 85 y 1 15 nm, más preferiblemente entre 95-105 nm.  Preferably, the nanoliposomes have an average diameter between 75 and 125 nm, preferably between 85 and 1 nm, more preferably between 95-105 nm.
Los nanoliposomas de la invención comprenden de forma preferible, un conjugado lípido-espaciador-maleimida. En el contexto de la invención, por conjugado debe entenderse el producto resultante de la unión covalente entre los tres componentes constituyentes del conjugado, es decir, el lípido, el espaciador y la maleimida. The nanoliposomes of the invention preferably comprise a lipid-spacer-maleimide conjugate. In the context of the invention, conjugate should be understood as the product resulting from the covalent bond between the three constituent components of the conjugate, that is, the lipid, the spacer and the maleimide.
Lípido Lipid
El término "lípido", tal como aquí se utiliza, es una molécula anfifática natural o sintética que posee una parte hidrofílica y una parte hidrofóbica en la misma molécula y que puede formar espontáneamente vesículas bicapa en un medio acuoso o puede ser incorporada de forma estable en bicapas lipídicas.  The term "lipid", as used herein, is a natural or synthetic amphipathic molecule that has a hydrophilic part and a hydrophobic part in the same molecule and that can spontaneously form bilayer vesicles in an aqueous medium or can be stably incorporated in lipid bilayers.
El término lípido comprende acilglicéridos, céridos, fosfolípidos, lisofosfolípidos y glucolípidos (cerebrósidos y gangliósidos). Ejemplos de estos lípidos incluyen estearilamina, dodecilamina, hexadecilamina, acetilpalmitato, ricinolato de glicerol, miristato de hexadecilo, miristato de isopropilo, polímero acrílico anfotérico, amidas de ácidos grasos, colesterol, éster de colesterol, diacilglicerolsuccinato, diacil glicerol, ácido graso y similares. The term lipid comprises acylglycerides, cerids, phospholipids, lysophospholipids and glycolipids (cerebrosides and gangliosides). Examples of these lipids include stearylamine, dodecylamine, hexadecylamine, acetylpalmitate, glycerol ricinolate, hexadecyl myristate, isopropyl myristate, amphoteric acrylic polymer, fatty acid amides, cholesterol, cholesterol ester, diacylglycerolsuccinate, fatty acid glycerol and similar fatty acid.
Asimismo, pueden emplearse lípidos catiónicos que consisten en un grupo terminal cargado positivamente, tal como una amina, poliamina o polilisina, unido a una porción lipofílica de carácter neutro, tal como un esterol, una cadena hidrocarbonada o dos cadenas hidrocarbonadas. Ejemplos de estos lípidos catiónicos incluyen 1 ,2-dioleiloxi- 3-(trimetilamino)propano (DOTAP); bromuro de N-[1-(2,3-ditetradeciloxi)propil]-N,N- dimetil-N-hidroxietilamonio (DMRIE), bromuro de N-[1-(2,3-dioleiloxi)propil]-N,N- dimetil-N-hidroxietilamonio (DORIE), cloruro de N-[1-(2,3-dioleiloxi)propil]-N,N,N- trimetilamonio (DOTMA) y bromuro de dimetilamonio (DDAB). Also, cationic lipids consisting of a positively charged terminal group, such as an amine, polyamine or polylysine, may be employed attached to a portion lipophilic neutral character, such as a sterol, a hydrocarbon chain or two hydrocarbon chains. Examples of these cationic lipids include 1,2-dioleyloxy-3- (trimethylamino) propane (DOTAP); N- [1- (2,3-ditetradecyloxy) propyl] -N, N-dimethyl-N-hydroxyethylammonium bromide (DMRIE), N- [1- (2,3-dioleyloxy) propyl] -N, N - dimethyl-N-hydroxyethylammonium (DORIE), N- [1- (2,3-dioleyloxy) propyl] -N, N, N-trimethylammonium chloride (DOTMA) and dimethylammonium bromide (DDAB).
En una realización preferente, el término lípido se refiere a un fosfolípido. El término "fosfolípido" comprende a los fosfoacilgliceroles, es decir, compuestos que se componen de una molécula de glicerol, dos de cuyos grupos hidroxilos se encuentran esterificados por ácidos grasos (ácidos monocarboxílicos de cadena lineal saturada o parcialmente insaturada con 8 a 28 átomos de carbono), estando el tercero grupo hidroxilo esterificado por un grupo fosfato que une mediante un enlace fosfodiester el glicerol a otra molécula orgánica que, por lo general, contiene nitrógeno, como colina, serina o etanolamina y que puede poseer una carga eléctrica. Ejemplos de fosfoacilgliceroles son la fosfatidiletanolamina, el fosfatidilinositol, el ácido fosfatídico, la fosfatidilcolina y la fosfatidilserina. También se encuentran comprendidos dentro del término fosfolípidos aquellas mezclas complejas extraídas de productos naturales que comprenden esencialmente fosfoacilgliceroles tales como la lecitina.  In a preferred embodiment, the term lipid refers to a phospholipid. The term "phospholipid" comprises phosphoaccylglycerols, that is, compounds that are composed of a glycerol molecule, two of whose hydroxyl groups are esterified by fatty acids (saturated or partially unsaturated straight chain monocarboxylic acids with 8 to 28 atoms of carbon), the third hydroxyl group being esterified by a phosphate group that binds glycerol to another organic molecule through a phosphodiester bond, which usually contains nitrogen, such as choline, serine or ethanolamine, and which may have an electric charge. Examples of phosphoacylglycerols are phosphatidylethanolamine, phosphatidylinositol, phosphatidic acid, phosphatidylcholine and phosphatidylserine. Also included within the term phospholipids are those complex mixtures extracted from natural products that essentially comprise phosphoacylglycerols such as lecithin.
En una realización preferente de la presente invención, el fosfolípido se selecciona entre 1 ,2-distearoil-sn-glicero-3-fosfocolina (DSPC), 1 ,2-distearoil-sn-glicero-3- fosfoetanolamina (DSPE), 1 ,2-dipalmitoil-sn-glicero-3-fosfocolina (DPPC), 1 ,2- dipalmitoil-sn-glicero-3-fosfoetanolamina (DPPE) y combinaciones de los mismos.  In a preferred embodiment of the present invention, the phospholipid is selected from 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC), 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine (DSPE), 1, 2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC), 1, 2-dipalmitoyl-sn-glycerol-3-phosphoethanolamine (DPPE) and combinations thereof.
Espaciador Spacer
Como espaciador se puede utilizar un polímero hidrofílico lineal con grupos terminales funcionales capaces de unirse al lípido y al grupo amino de la maleimida. Espaciadores adecuados en la presente invención incluyen, aunque no se limitan a, poliglicina, polietilenglicol, polipropilenglicol, polimetilacrilamida, polidimetacrilamida, polihidroxietilacrilato, polihidroxipropilmetacrilato y polioxialqueno. De forma preferente, el espaciador es polietilenglicol (PEG). As a spacer, a linear hydrophilic polymer with functional terminal groups capable of binding to the lipid and the amino group of the maleimide can be used. Suitable spacers in the present invention include, but are not limited to, polyglycine, polyethylene glycol, polypropylene glycol, polymethyl acrylamide, polydimethyl acrylamide, polyhydroxyethyl acrylate, polyhydroxypropyl methacrylate and polyoxyalkene. Preferably, the spacer is polyethylene glycol (PEG).
La conjugación del lípido con el PEG requiere que tanto el PEG como el lípido tengan un grupo terminal funcional adecuado. Cuando la unión resultante entre ambos componentes es un grupo amino (lípido-NH-PEG) el PEG puede funcionalizarse con un haluro o un sulfonato de manera que se acopla con un grupo amino terminal del lípido. Cuando la unión resultante entre ambos componentes es un grupo uretano (lípido-NHC(O)O-PEG) el PEG puede funcionalizarse mediante un carbonato activado (-C(O)-imidazolil, -OC(0)-para-nitrofenil, -OC(0)-succinimida, -OC(0)-2,4,4- triclorofenil) de manera que se acopla con un grupo amino terminal del lípido. Cuando la unión resultante entre ambos componentes es un grupo amido (lípido-NHC(O)-PEG) el PEG puede funcionalizarse mediante un grupo carboxilo activado (grupo carboxilo activado mediante DCC (diclorohexilcarbodimida)/HOBt (N-hidroxibenzotriazol), DCC/DMAP (dimetlaminopiridina), DIPCDI (1 ,3-diisopropilcarbodiimida)/HOBt, EDC (1 - (3-dimetilaminopropil)-3-etil-carbodiimida))/NHS (N-hidroxisuccinimida)) de manera que se acopla con un grupo amino terminal del lípido. The conjugation of the lipid with the PEG requires that both the PEG and the lipid have a suitable functional terminal group. When the resulting binding between both components is an amino group (lipid-NH-PEG) the PEG can be functionalized with a halide or a sulphonate so that it is coupled with an amino terminal group of the lipid. When the resulting union between both components is a urethane (lipid-NHC (O) O-PEG) group, the PEG can be functionalized by an activated carbonate (-C (O) -imidazolyl, -OC (0) -para-nitrophenyl, - OC (0) -succinimide, -OC (0) -2,4,4-trichlorophenyl) such that it is coupled with an amino terminal group of the lipid. When the resulting binding between both components is an amido group (lipid-NHC (O) -PEG) the PEG can be functionalized by an activated carboxyl group (carboxyl group activated by DCC (dichlorohexylcarbodimide) / HOBt (N-hydroxybenzotriazole), DCC / DMAP (dimethylaminopyridine), DIPCDI (1,3-diisopropylcarbodiimide) / HOBt, EDC (1 - (3-dimethylaminopropyl) -3-ethyl-carbodiimide)) / NHS (N-hydroxysuccinimide)) so that it is coupled with an amino terminal group of the lipid.
En una realización preferente, la unión del fosfolípido con el PEG se lleva a cabo a través de un enlace amida, resultante de la reacción entre el grupo carboxilo con el que se funcionaliza el PEG y el grupo amino terminal de la molécula orgánica del fosfolípido.  In a preferred embodiment, the phospholipid binding with the PEG is carried out through an amide bond, resulting from the reaction between the carboxyl group with which the PEG is functionalized and the amino terminal group of the organic phospholipid molecule.
Por su parte, la conjugación del PEG con la molécula de maleimida requiere también que el PEG tenga en el otro extremo un grupo terminal funcional adecuado capaz de reaccionar con el grupo amino de la maleimida. Para ello, se pueden utilizar cualquiera de los grupos funcionales anteriormente mencionados.  For its part, the conjugation of the PEG with the maleimide molecule also requires that the PEG at the other end have a suitable functional terminal group capable of reacting with the maleimide amino group. For this, any of the aforementioned functional groups can be used.
En una realización preferente, el conjugado lípido-espaciador-maleimida tiene la siguiente estructura: In a preferred embodiment, the lipid-spacer-maleimide conjugate has the following structure:
Figure imgf000009_0001
que corresponde con 1 ,2-distearoil-sn-glicero-3-fosfoetanolamina-N- [amino(polietilenglicol)-maleimida] o (DSPE-PEG-maleimida).
Figure imgf000009_0001
which corresponds to 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine-N- [amino (polyethylene glycol) -maleimide] or (DSPE-PEG-maleimide).
Dicho conjugado se encuentra disponible comercialmente.  Said conjugate is commercially available.
Péptido Peptide
Según la presente invención, el péptido es un péptido sintético o natural compuesto por una cadena de aminoácidos. En una realización particular, el péptido se selecciona entre el grupo que consiste en hormonas, citoquinas, toxinas, quemotaxinas y péptidos de la matriz extracelular para la adhesión celular. According to the present invention, the peptide is a synthetic or natural compound peptide by a chain of amino acids. In a particular embodiment, the peptide is selected from the group consisting of hormones, cytokines, toxins, quemotaxins and peptides of the extracellular matrix for cell adhesion.
Dicho péptido se puede unir a un receptor tal como receptores de somatostatina, receptores de péptido intestinal vasoactivo, receptores de integrina o receptores de factores de crecimiento, entre otros.  Said peptide can bind to a receptor such as somatostatin receptors, vasoactive intestinal peptide receptors, integrin receptors or growth factor receptors, among others.
En una forma de realización preferida, el péptido se selecciona de una lista que comprende: glucagon, polipéptido inhibitorio gástrico (GIP), secretina, hormona de crecimiento, somatoliberina, somatotropina, péptido PHI (peptide histidine isoleucine), péptido PHM (peptide histidine-methionine), PACAP (pituitary adenylate cylase- activating peptides), adrenomedulina, corticostatina y péptido intestinal vasoactivo (VIP). De forma preferente, el péptido es un neuropéptido, y más preferiblemente es el péptido intestinal vasoactivo (VIP) cuya estructura se encuentra representada en la Figura 1 .  In a preferred embodiment, the peptide is selected from a list comprising: glucagon, gastric inhibitory polypeptide (GIP), secretin, growth hormone, somatoliberin, somatotropin, PHI peptide (peptide histidine isoleucine), PHM peptide (peptide histidine- methionine), PACAP (pituitary adenylate cylase-activating peptides), adrenomedulin, corticostatin and vasoactive intestinal peptide (VIP). Preferably, the peptide is a neuropeptide, and more preferably it is the vasoactive intestinal peptide (VIP) whose structure is represented in Figure 1.
Tal como se entiende en esa memoria, un neuropéptido se refiere a pequeñas moléculas parecidas a proteínas de un enlace peptídico de dos o más aminoácidos y que se diferencian de proteínas por su longitud, y porque se originan por transducción sináptica cerebral. Su dimensión puede variar desde dos aminoácidos, como la carnosina, hasta más de cuarenta como la CRH (hormona liberadora de corticotropina). Tienen función cerebral tanto estimulante como inhibidora, produciendo efectos como analgesia, apetito o sueño, entre otros. As understood herein, a neuropeptide refers to small protein-like molecules of a peptide bond of two or more amino acids and which differ from proteins by their length, and because they originate from cerebral synaptic transduction. Its size can vary from two amino acids, such as carnosine, to more than forty such as CRH (corticotropin releasing hormone). They have both stimulating and inhibitory brain function, producing effects such as analgesia, appetite or sleep, among others.
En esta memoria, se entiende como péptido intestinal vasoactivo (VIP por sus siglas en inglés vasoactive intestinal peptide) una hormona polipeptídica formada por 28 residuos de aminoácidos y producida por muchas estructuras del cuerpo humano como el aparato digestivo, el páncreas y el núcleo supraquiasmático del hipotálamo en el cerebro. Se caracteriza por su propiedad vasodilatadora y su actividad en el sistema nervioso periférico (por ejemplo, el VIP relaja los pulmones, la tráquea y la musculatura gástrica). Inhibe la secreción de enzimas gástricas y estimula la secreción de glucagón, insulina y somatostatina, aumenta la adenilciclasa, así como la secreción biliar en el hígado.  In this report, vasoactive intestinal peptide (VIP) is understood as a polypeptide hormone formed by 28 amino acid residues and produced by many structures of the human body such as the digestive system, the pancreas and the suprachiasmatic nucleus of the hypothalamus in the brain. It is characterized by its vasodilator property and its activity in the peripheral nervous system (for example, VIP relaxes the lungs, trachea and gastric musculature). It inhibits the secretion of gastric enzymes and stimulates the secretion of glucagon, insulin and somatostatin, increases adenyl cyclase, as well as bile secretion in the liver.
El VIP también se denomina como PHM27 ó MGC13587. Está codificado por un gen que se encuentra en el cromosoma 6 (6q25). Su secuencia aminoacídica se encuentra en la SEQ ID NO: 1. En el contexto de la presente invención, VIP se define también por una secuencia de nucleótidos o polinucleótido, que constituye la secuencia codificante de la proteína recogida en la SEQ ID NO: 1 , y que comprendería diversas variantes procedentes de: a) moléculas de ácido nucleico que codifican un polipéptido que comprende la secuencia aminoacídica de la SEQ ID NO: 1 , The VIP is also referred to as PHM27 or MGC13587. It is encoded by a gene found on chromosome 6 (6q25). Its amino acid sequence is found in SEQ ID NO: 1. In the context of the present invention, VIP is also defined by a nucleotide or polynucleotide sequence, which constitutes the coding sequence of the protein collected in SEQ ID NO: 1, and which would comprise various variants from: a) acid molecules nucleic encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 1,
b) moléculas de ácido nucleico cuya cadena complementaria híbrida con la secuencia polinucleotídica de a),  b) nucleic acid molecules whose complementary hybrid chain with the polynucleotide sequence of a),
c) moléculas de ácido nucleico cuya secuencia difiere de a) y/o b) debido a la degeneración del código genético,  c) nucleic acid molecules whose sequence differs from a) and / or b) due to the degeneracy of the genetic code,
d) moléculas de ácido nucleico que codifican un polipéptido que comprende la secuencia aminoacídica con una identidad de al menos un 80%, un 90%, un 95%, un 98% o un 99% con la SEQ ID NO: 1 , y en las que el polipéptido codificado por dichos ácidos nucleicos posee la actividad y las características estructurales el péptido VIP.  d) nucleic acid molecules encoding a polypeptide comprising the amino acid sequence with an identity of at least 80%, 90%, 95%, 98% or 99% with SEQ ID NO: 1, and in which the polypeptide encoded by said nucleic acids possesses the activity and structural characteristics of the VIP peptide.
Se conocen tres receptores de VIP denominados VPAC1 , VPAC2 y PAC1 . El receptor VPAC1 se expresa en neoplasmas epiteliales malignos, cáncer de pulmón y otros cánceres como son los de estómago, colon, mama, próstata, hígado y vejiga urinaria, mientras que VPAC2 solo se ha encontrado en unos pocos tumores. PAC1 , por el contrario, se expresa fundamentalmente en tumores originados en los sistemas neuronales y endocrinos, como pueden ser por ejemplo los tumores gliales (glioblastomas, neuroblastomas, astrocinomas, etc.), o adenomas pituitarios.  Three VIP receivers known as VPAC1, VPAC2 and PAC1 are known. The VPAC1 receptor is expressed in malignant epithelial neoplasms, lung cancer and other cancers such as stomach, colon, breast, prostate, liver and urinary bladder, while VPAC2 has only been found in a few tumors. PAC1, on the other hand, is expressed primarily in tumors originating in the neural and endocrine systems, such as glial tumors (glioblastomas, neuroblastomas, astrocinomas, etc.), or pituitary adenomas.
Con el fin de funcionalizar el nanoliposoma con el péptido, éste se modifica incorporando un grupo sulfhidrilo terminal mediante métodos conocidos en el estado de la técnica. Por ejemplo, el péptido se hace reaccionar con el reactivo de Traut (hidrocloruro de 2-iminotiolano) según el siguiente esquema:  In order to functionalize the nanoliposome with the peptide, it is modified by incorporating a terminal sulfhydryl group by methods known in the state of the art. For example, the peptide is reacted with the Traut reagent (2-iminothiolane hydrochloride) according to the following scheme:
Péptido -NH., ··· AR— SPeptide -NH., ··· AR— S
Figure imgf000011_0001
donde AR-S es el reactivo de Traut.
Figure imgf000011_0001
where AR-S is Traut's reagent.
La adición de EDTA a la reacción ayuda a prevenir la oxidación del grupo sulfhidrilo evitando la formación de enlaces disulfuro. El péptido se une al nanoliposoma por reacción del grupo sulfhidrilo con la molécula de maleimida del conjugado presente en el nanoliposoma y descrito con anterioridad, según el siguiente esquema: The addition of EDTA to the reaction helps prevent oxidation of the sulfhydryl group by preventing the formation of disulfide bonds. The peptide binds to the nanoliposome by reaction of the sulfhydryl group with the maleimide molecule of the conjugate present in the nanoliposome and described above, according to the following scheme:
Figure imgf000012_0001
Figure imgf000012_0001
En una realización particular, el péptido se modifica con una molécula de cisteína, de manera que queda también el grupo -SH libre para poder reaccionar con la maleimida del conjugado. In a particular embodiment, the peptide is modified with a cysteine molecule, so that the free -SH group is also left to react with the conjugate maleimide.
Los nanoliposomas pueden comprender además otros fosfolípidos que no se encuentran conjugados sino libres, tales como los que se han mencionado anteriormente. En una realización particular, estos fosfolípidos se seleccionan entre 1 ,2-distearoil-sn-glicero-3-fosfocolina (DSPC), 1 ,2-distearoil-sn-glicero-3- fosfoetanolamina (DSPE), 1 ,2-dipalmitoil-sn-glicero-3-fosfocolina (DPPC), 1 ,2- dipalmitoil-sn-glicero-3-fosfoetanolamina (DPPE) y combinaciones de los mismos. De forma preferente, estos fosfolípidos son 1 ,2-distearoil-sn-glicero-3-fosfocolina (DSPC) representado en la fórmula (I), 1 ,2-dipalmitoil-sn-glicero-3-fosfocolina (DPPC) representado en la fórmula (II) o cualquiera de sus sales, derivados o análogos, o cualquiera de sus combinaciones de los compuestos de fórmula (I) y (II). The nanoliposomes may further comprise other phospholipids that are not conjugated but free, such as those mentioned above. In a particular embodiment, these phospholipids are selected from 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC), 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine (DSPE), 1,2-dipalmitoyl- sn-glycerol-3-phosphocholine (DPPC), 1, 2-dipalmitoyl-sn-glycerol-3-phosphoethanolamine (DPPE) and combinations thereof. Preferably, these phospholipids are 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC) represented in the formula (I), 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC) represented in the formula (II) or any of its salts, derivatives or analogs, or any of its combinations of the compounds of formula (I) and (II).
Figure imgf000012_0002
Figure imgf000012_0002
(I) (I)
Figure imgf000013_0001
Figure imgf000013_0001
(II) (II)
Estos fosfolípidos también pueden encontrarse conjugados con una molécula de PEG, denominándose fosfolípidos pegilados. En una realización preferente, los nanoliposomas comprenden 1 ,2-distearoil-sn-glicero-3-fosfoetanolamina-N- [amino(polietilenglicol)] (DSPE-PEG).  These phospholipids can also be conjugated to a PEG molecule, called pegylated phospholipids. In a preferred embodiment, the nanoliposomes comprise 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine-N- [amino (polyethylene glycol)] (DSPE-PEG).
Preferentemente, los nanoliposomas de la invención comprenden, además del conjugado lípido-espaciador-maleimida y del péptido modificado, 1 ,2-distearoil-sn- glicero-3-fosfoetanolamina-N-[amino(polietilenglicol)] (DSPE-PEG), 1 ,2-distearoil-sn- glicero-3-fosfocolina (DSPC) y 1 ,2-dipalmitoil-sn-glicero-3-fosfocolina (DPPC).  Preferably, the nanoliposomes of the invention comprise, in addition to the lipid-spacer-maleimide conjugate and the modified peptide, 1,2-distearoyl-sn-glycer-3-phosphoethanolamine-N- [amino (polyethylene glycol)] (DSPE-PEG), 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC) and 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC).
De forma aún más preferente, los nanoliposomas de la invención comprenden:  Even more preferably, the nanoliposomes of the invention comprise:
1 ,2-distearoil-sn-glicero-3-fosfoetanolamina-N-[amino(polietilenglicol)- maleimida] o (DSPE-PEG-maleimida);  1,2-distearoyl-sn-glycerol-3-phosphoethanolamine-N- [amino (polyethylene glycol) -maleimide] or (DSPE-PEG-maleimide);
1 ,2-distearoil-sn-glicero-3-fosfoetanolamina-N-[amino(polietilenglicol)] (DSPE-PEG);  1,2-distearoyl-sn-glycerol-3-phosphoethanolamine-N- [amino (polyethylene glycol)] (DSPE-PEG);
1 ,2-distearoil-sn-glicero-3-fosfocolina (DSPC),  1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC),
1 ,2-dipalmitoil-sn-glicero-3-fosfocolina (DPPC), y  1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC), and
un péptido modificado con un grupo sulfhidrilo;  a peptide modified with a sulfhydryl group;
de manera que el péptido se encuentra unido covalentemente al nanoliposoma a través de la reacción entre la maleimida del conjugado y el grupo sulfhidrilo del péptido modificado.  so that the peptide is covalently bound to the nanoliposome through the reaction between the maleimide of the conjugate and the sulfhydryl group of the modified peptide.
De forma preferente, el péptido es el péptido VIP modificado con una molécula de cisteína.  Preferably, the peptide is the VIP peptide modified with a cysteine molecule.
Preferentemente, el DPPC y el DSPC se encuentran en una relación de masa de aproximadamente 6:4. De forma preferente, el DSPE-PEG y el conjugado DSPE-PEG- Maleimida se encuentran a una concentración final de en torno al 5 y 10%, respectivamente. La bicapa lipídica de los nanoliposomas puede contener además uno o más esteróles tales como colesterol, lanosterol, dihidrolanosterol, desmosterol, dihidrocolesterol, fitosterol, estigmasterol, sitosterol, campesterol y brasicasterol, azúcares tales como glicerol y sacarosa, ésteres de ácidos grasos de glicerina tales como trioleina y trioctanoina. Preferably, the DPPC and the DSPC are in a mass ratio of approximately 6: 4. Preferably, the DSPE-PEG and the DSPE-PEG-Maleimide conjugate are at a final concentration of about 5 and 10%, respectively. The lipid bilayer of the nanoliposomes may also contain one or more sterols such as cholesterol, lanosterol, dihydrolanosterol, desmosterol, dihydrocholesterol, phytosterol, stigmasterol, sitosterol, campesterol and brasicasterol, sugars such as glycerol and sucrose, esters of glycerin fatty acids such as triolein and trioctanoin.
Asimismo, puede contener sustancias antioxidantes tales como tocoferol, propil galato, palmitato de ascorbilo e hidroxitolueno butilado, compuestos que proporcionan carga positiva tales como estearilamina y oleilamina, compuestos que proporcionan carga negativa tales como dicetilfosfato, proteínas de membrana.  It may also contain antioxidant substances such as tocopherol, propyl gallate, ascorbyl palmitate and butylated hydroxytoluene, compounds that provide positive charge such as stearylamine and oxylamine, compounds that provide negative charge such as di-methyl phosphate, membrane proteins.
Procedimiento de obtención de los nanoliposomas Procedure for obtaining nanoliposomes
En un segundo aspecto, la invención se relaciona con un procedimiento para la preparación de los nanoliposomas definidos anteriormente, que comprende:  In a second aspect, the invention relates to a process for the preparation of the nanoliposomes defined above, comprising:
a. formar un film de lípidos, por ejemplo mediante evaporación de fase reversa, de un compuesto que comprende fosfolípidos, preferiblemente to. forming a lipid film, for example by reverse phase evaporation, of a compound comprising phospholipids, preferably
DSPC y DPPC y al menos un fosfolípido pegilado, DSPC and DPPC and at least one pegylated phospholipid,
b. rehidratar el film con una solución tampón a un pH esencialmente neutro y añadir un solvente orgánico para formar un sistema de dos fases;  b. rehydrate the film with a buffer solution at an essentially neutral pH and add an organic solvent to form a two phase system;
c. someter el sistema de dos fases a sonicación para formar liposomas dispersos en una sola fase  C. subject the two phase system to sonication to form dispersed liposomes in a single phase
d. eliminar el solvente orgánico hasta obtener una fase de gel, e. convertir el gel en una suspensión acuosa, donde se han formado los liposomas  d. remove the organic solvent until a gel phase is obtained, e. convert the gel into an aqueous suspension, where liposomes have formed
f. convertir los liposomas de (e) en nanoliposomas, por ejemplo mediante sonicación,  F. convert liposomes of (e) into nanoliposomes, for example by sonication,
g. añadir un péptido, anteriormente descrito, a la suspensión de los nanoliposomas del paso (f). Preferiblemente, el film de lípidos del paso (a), comprende un conjugado lípido- espaciador-maelimida como se ha definido previamente; Más preferiblemente, el conjugado lípido-espaciador-maleimida se encuentra en una proporción de en torno a un 10% en peso con respecto al peso total del film de lípidos. En una forma preferente, el film de lípidos comprende además al menos un fosfolípido y/o al menos un fosfolípido conjugado con una molécula de PEG. Dentro de esta realización preferente, el film de lípidos comprende además 1 ,2-distearoil-sn-glicero-3- fosfocolina (DSPC), 1 ,2- dipalmitoil-sn-glicero-3-fosfocolina (DPPC) y 1 ,2-distearoil-sn- glicero-3-fosfoetanolamina-N-[amino(polietilenglicol)] (DSPE-PEG). Preferentemente, la relación en masa de los fosfolípidos DPPC:DSPC es de aproximadamente 6:4. También de forma preferente, la proporción de DSPE-PEG se encuentra en torno a un 5% en peso con respecto al peso total del film de lípidos. g. add a peptide, described above, to the suspension of the nanoliposomes of step (f). Preferably, the lipid film of step (a) comprises a lipid-spacer-maelimide conjugate as previously defined; More preferably, the lipid-spacer-maleimide conjugate is in a proportion of about 10% by weight with respect to the total weight of the lipid film. In a preferred form, the lipid film further comprises at least one phospholipid and / or at least one phospholipid conjugated to a PEG molecule. Within this preferred embodiment, the lipid film further comprises 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC), 1, 2- dipalmitoyl-sn-glycer-3-phosphocholine (DPPC) and 1, 2- distearoyl-sn-glycer-3-phosphoethanolamine-N- [amino (polyethylene glycol)] (DSPE-PEG). Preferably, the mass ratio of the DPPC: DSPC phospholipids is approximately 6: 4. Also preferably, the proportion of DSPE-PEG is around 5% by weight with respect to the total weight of the lipid film.
En otra forma de realización preferente, la solución tampón es una solución de HEPES (ácido 4-(2-hidroxietil)-1 -piperazinetanesulfónico) de pH 7.4. In another preferred embodiment, the buffer solution is a solution of HEPES (4- (2-hydroxyethyl) -1 -piperazinethanesulfonic acid) of pH 7.4.
En otra forma de realización preferente, el solvente orgánico es una mezcla de dietileter y cloroformo en una relación aproximada de 1 :1 en volumen. Más preferiblemente, la relación en volumen de fase orgánica:fase acuosa es de aproximadamente 4:1.  In another preferred embodiment, the organic solvent is a mixture of diethylether and chloroform in an approximate ratio of 1: 1 by volume. More preferably, the volume ratio of organic phase: aqueous phase is about 4: 1.
De forma particular, el sonicado de la etapa c) se realiza en un baño sonicador hasta que los liposomas se forman de manera espontánea y la muestra aparece dispersa en una sola fase. Preferiblemente esta etapa de sonicado se efectúa durante 3 a 5 minutos.  In particular, the sonicating of step c) is performed in a sonic bath until the liposomes form spontaneously and the sample appears dispersed in a single phase. Preferably this sonication stage is carried out for 3 to 5 minutes.
De forma preferente, la eliminación del disolvente orgánico se realiza mediante evaporación, por ejemplo con rotovapor, a una temperatura de entre 35 y 55°C, más preferiblemente a 40°C, y a una velocidad de rotación de entre 100 y 150 rpm, más preferiblemente a 120 rpm. Preferably, the removal of the organic solvent is carried out by evaporation, for example with rotary evaporator, at a temperature between 35 and 55 ° C, more preferably at 40 ° C, and at a rotation speed between 100 and 150 rpm, more preferably at 120 rpm.
De forma preferente, la sonicación de la etapa (f) se realiza en un baño sonicador a una temperatura superior a la de su fase de transición, preferiblemente a más de 60°C, para controlar el tamaño del nanoliposoma. Preferiblemente, el nanoliposoma se ajusta a un tamaño medio de entre 75 y 125 nm, preferiblemente entre 85 y 1 15 nm, más preferiblemente de aproximadamente 95-105 nm.  Preferably, the sonication of step (f) is performed in a sonic bath at a temperature higher than that of its transition phase, preferably at more than 60 ° C, to control the size of the nanoliposome. Preferably, the nanoliposome is adjusted to an average size between 75 and 125 nm, preferably between 85 and 1 nm, more preferably about 95-105 nm.
Preferentemente, la funcionalización del nanoliposoma con el péptido (etapa (g)) se realiza mediante la adición de al menos 100 μg del péptido modificado, más preferentemente de al menos 125 μg y aún más preferentemente de al menos 150 μg, a la muestra de nanoliposomas manteniendo en agitación y temperatura ambiente durante más de 10 horas, y más preferentemente entre 12 y 16 horas. Preferentemente, el péptido se encuentra disuelto en una solución tampón a un pH de en torno a 6-6.5. Preferably, the functionalization of the nanoliposome with the peptide (step (g)) is carried out by adding at least 100 μg of the modified peptide, more preferably at least 125 μg and even more preferably at least 150 μg, to the sample of Nanoliposomes kept under stirring and room temperature for more than 10 hours, and more preferably between 12 and 16 hours. Preferably, the peptide is dissolved in a buffer solution at a pH of around 6-6.5.
Dicho péptido se encuentra modificado con un grupo sulfhidrilo en un extremo del mismo. La maleimida presente en el conjugado lípido-espaciador-maleimida reacciona con el péptido a través del grupo sulfhidrilo -SH. Dicha reacción se realiza de forma preferente bajo burbujeo de nitrógeno durante al menos una hora para evitar que se oxiden los grupos sulfhidrilo. Se incuba la muestra a temperatura ambiente y con agitación.  Said peptide is modified with a sulfhydryl group at one end thereof. The maleimide present in the lipid-spacer-maleimide conjugate reacts with the peptide through the sulfhydryl -SH group. Said reaction is preferably carried out under nitrogen bubbling for at least one hour to prevent sulfhydryl groups from being oxidized. The sample is incubated at room temperature and with stirring.
Con el fin de proteger los grupos libres de la maleimida, se puefie añadir - mercaptoetanol o cisteína libre en exceso, dializando posteriormente para eliminar el exceso de β-mercaptoetanol y de péptido que no haya reaccionado.  In order to protect the free groups from maleimide, excess mercaptoethanol or free cysteine can be added, subsequently dialyzing to remove the excess of unreacted β-mercaptoethanol and peptide.
Preferentemente, el péptido es un neuropéptido y aún más preferiblemente es el péptido VIP.  Preferably, the peptide is a neuropeptide and even more preferably it is the VIP peptide.
En una forma de realización particular, los nanoliposomas obtenidos tras la etapa (f) pueden ser purificados mediante, por ejemplo, una columna de Sephadex, preferiblemente G-50.  In a particular embodiment, the nanoliposomes obtained after step (f) can be purified by, for example, a Sephadex column, preferably G-50.
Asimismo, los nanoliposomas funcionalizados obtenidos tras la etapa (g) pueden ser purificados mediante, por ejemplo, diálisis frente a agua desionizada durante al menos 15 horas, preferentemente durante al menos 20 horas, y mucho más preferentemente durante 24 horas.  Also, the functionalized nanoliposomes obtained after step (g) can be purified by, for example, dialysis against deionized water for at least 15 hours, preferably for at least 20 hours, and much more preferably for 24 hours.
El procedimiento que conduce a estos nanoliposomas permite la funcionalización con el péptido de manera que queda libre el extremo carboxilo-terminal, dejando así intacta su capacidad de interacción con sus receptores específicos, lo que permite formular estrategias de detección y liberación selectivo in vivo de fármacos sobre células que interese eliminar (como es el caso de las células tumorales), o bien expandir (mediante la administración de factores tróficos) en función de la patología que se pretenda abordar. Por lo tanto, los nanoliposomas de la invención pueden incorporar además un principio activo.  The procedure that leads to these nanoliposomes allows functionalization with the peptide so that the carboxyl-terminal end is free, thus leaving intact its ability to interact with its specific receptors, which allows formulating in vivo drug detection and selective release strategies. on cells that are interested in eliminating (as is the case with tumor cells), or expanding (through the administration of trophic factors) depending on the pathology that is intended to be addressed. Therefore, the nanoliposomes of the invention can also incorporate an active ingredient.
Como se emplea aquí, el término "principio activo" significa cualquier componente que potencialmente proporcione una actividad farmacológica u otro efecto diferente en el diagnóstico, cura, mitigación, tratamiento, o prevención de una enfermedad, o que afecta a la estructura o función del cuerpo del hombre u otros animales. El término incluye aquellos componentes que promueven un cambio químico en la elaboración del fármaco y están presentes en el mismo de una forma modificada prevista que proporciona la actividad específica o el efecto. As used herein, the term "active ingredient" means any component that potentially provides a pharmacological activity or other effect different in the diagnosis, cure, mitigation, treatment, or prevention of a disease, or that affects the structure or function of the body. of man or other animals. The term includes those components that promote a chemical change in processing of the drug and are present therein in a modified form intended to provide the specific activity or effect.
El principio activo puede ser tanto de carácter hidrofílico como hidrofóbico. En el primer caso se encuentra incorporado en el núcleo acuoso del liposoma, mientras que en el segundo caso se encuentra incorporado en la bicapa lipídica del nanoliposoma. The active substance can be both hydrophilic and hydrophobic. In the first case it is incorporated into the aqueous nucleus of the liposome, while in the second case it is incorporated into the lipid bilayer of the nanoliposome.
En una realización preferente, el principio activo tiene una actividad antitumoral. En otra realización preferida de este aspecto de la invención, el principio activo tiene actividad antiinflamatoria. Más preferentemente, el principio activo es doxorrubicina.In a preferred embodiment, the active ingredient has an antitumor activity. In another preferred embodiment of this aspect of the invention, the active ingredient has anti-inflammatory activity. More preferably, the active substance is doxorubicin.
El encapsulamiento del principio activo en el nanoliposoma se puede realizar mediante la técnica de gradiente osmótico tal como se describe en la parte experimental. The encapsulation of the active substance in the nanoliposome can be performed using the osmotic gradient technique as described in the experimental part.
En un aspecto adicional, la invención se relaciona con una composición farmacéutica, de ahora en adelante composición farmacéutica de la invención, que comprende un nanoliposoma tal como se ha definido previamente y un principio activo capaz de diagnosticar, curar, mitigar, tratar o prevenir una enfermedad. Preferentemente, la composición además comprende un vehículo farmacéuticamente aceptable. Más preferentemente, la composición farmacéutica de la invención además comprende otro principio activo.  In a further aspect, the invention relates to a pharmaceutical composition, hereinafter pharmaceutical composition of the invention, comprising a nanoliposome as previously defined and an active ingredient capable of diagnosing, curing, mitigating, treating or preventing a disease. Preferably, the composition further comprises a pharmaceutically acceptable carrier. More preferably, the pharmaceutical composition of the invention further comprises another active ingredient.
Las composiciones farmacéuticas de la presente invención pueden formularse para su administración a un animal, y más preferiblemente a un mamífero, incluyendo al hombre, en una variedad de formas conocidas en el estado de la técnica. Así, pueden estar, sin limitarse, en disolución acuosa estéril o en fluidos biológicos, tal como suero. Las disoluciones acuosas pueden estar tamponadas o no tamponadas y tienen componentes activos o inactivos adicionales. Los componentes adicionales incluyen sales para modular la fuerza iónica, conservantes incluyendo, pero sin limitarse a, agentes antimicrobianos, antioxidantes, quelantes, y similares, y nutrientes incluyendo glucosa, dextrosa, vitaminas y minerales. Las composiciones pueden combinarse con varios vehículos o excipientes inertes, incluyendo pero sin limitarse a; aglutinantes tales como celulosa microcristalina, goma tragacanto, o gelatina; excipientes tales como almidón o lactosa; agentes dispersantes tales como ácido algínico o almidón de maíz, etc.  The pharmaceutical compositions of the present invention can be formulated for administration to an animal, and more preferably to a mammal, including man, in a variety of ways known in the state of the art. Thus, they can be, without limitation, in sterile aqueous solution or in biological fluids, such as serum. Aqueous solutions may be buffered or unbuffered and have additional active or inactive components. Additional components include salts to modulate ionic strength, preservatives including, but not limited to, antimicrobial agents, antioxidants, chelators, and the like, and nutrients including glucose, dextrose, vitamins and minerals. The compositions may be combined with various inert vehicles or excipients, including but not limited to; binders such as microcrystalline cellulose, gum tragacanth, or gelatin; excipients such as starch or lactose; dispersing agents such as alginic acid or corn starch, etc.
Tales composiciones y/o sus formulaciones pueden administrarse a un animal, incluyendo un mamífero y, por tanto, al hombre, en una variedad de formas, incluyendo, pero sin limitarse a, intraperitoneal, intravenoso, intramuscular, subcutáneo, intracecal, intraventricular, oral, enteral, parenteral, intranasal o dérmico.Such compositions and / or their formulations can be administered to an animal, including a mammal and, therefore, to man, in a variety of ways, including, but not limited to, intraperitoneal, intravenous, intramuscular, subcutaneous, intracecal, intraventricular, oral, enteral, parenteral, intranasal or dermal.
La dosificación para obtener una cantidad terapéuticamente efectiva depende de una variedad de factores, como por ejemplo, la edad, peso, sexo, tolerancia,... del mamífero. En el sentido utilizado en esta descripción, la expresión "cantidad terapéuticamente efectiva" se refiere a la cantidad de principio activo, o de sus sales, profármacos, derivados o análogos, o de sus combinaciones, que produzcan el efecto deseado y, en general, vendrá determinada, entre otras causas, por las características propias de dichos profármacos, derivados o análogos y el efecto terapéutico a conseguir. Los "adyuvantes" y "vehículos farmacéuticamente aceptables" que pueden ser utilizados en dichas composiciones son los vehículos conocidos por los técnicos en la materia. The dosage to obtain a therapeutically effective amount depends on a variety of factors, such as the age, weight, sex, tolerance, ... of the mammal. In the sense used in this description, the term "therapeutically effective amount" refers to the amount of active ingredient, or its salts, prodrugs, derivatives or analogs, or combinations thereof, that produce the desired effect and, in general, It will be determined, among other causes, by the characteristics of said prodrugs, derivatives or analogues and the therapeutic effect to be achieved. The "adjuvants" and "pharmaceutically acceptable carriers" that can be used in said compositions are the vehicles known to those skilled in the art.
El término "excipiente" hace referencia a una sustancia que ayuda a la absorción, distribución o acción de cualquiera de los principios activos de la presente invención, estabiliza dicha sustancia activa o ayuda a la preparación del medicamento en el sentido de darle consistencia o aportar sabores que lo hagan más agradable. Así pues, los excipientes podrían tener la función de mantener los ingredientes unidos como por ejemplo almidones, azúcares o celulosas, función de endulzar, función de colorante, función de protección del medicamento como por ejemplo para aislarlo del aire y/o la humedad, función de relleno de una pastilla, cápsula o cualquier otra forma de presentación como por ejemplo el fosfato de calcio dibásico, función desintegradora para facilitar la disolución de los componentes y su absorción en el intestino, sin excluir otro tipo de excipientes no mencionados en este párrafo.  The term "excipient" refers to a substance that aids the absorption, distribution or action of any of the active ingredients of the present invention, stabilizes said active substance or aids in the preparation of the medicament in the sense of giving it consistency or providing flavors. Make it more enjoyable. Thus, the excipients could have the function of keeping the ingredients together such as starches, sugars or cellulose, sweetening function, dye function, drug protection function such as to isolate it from air and / or moisture, function filling a tablet, capsule or any other form of presentation such as dibasic calcium phosphate, a disintegrating function to facilitate the dissolution of the components and their absorption in the intestine, without excluding other types of excipients not mentioned in this paragraph.
El término excipiente "farmacéuticamente aceptable" hace referencia a que el excipiente esté permitido y evaluado de modo que no cause daño a los organismos a los que se administra.  The term "pharmaceutically acceptable" excipient refers to the excipient being allowed and evaluated so as not to cause damage to the organisms to which it is administered.
Además, el excipiente debe ser farmacéuticamente adecuado, es decir, un excipiente que permita la actividad del principio activo o de los principios activos, es decir, que sea compatible con el principio activo, en este caso, el principio activo es cualquiera de los compuestos de la presente invención.  In addition, the excipient must be pharmaceutically suitable, that is, an excipient that allows the activity of the active ingredient or of the active ingredients, that is, that is compatible with the active ingredient, in this case, the active ingredient is any of the compounds of the present invention.
Un "vehículo farmacéuticamente aceptable" se refiere a aquellas sustancias, o combinación de sustancias, conocidas en el sector farmacéutico, utilizadas en la elaboración de formas farmacéuticas de administración e incluye, pero sin limitarse, sólidos, líquidos, disolventes o tensioactivos. El vehículo, al igual que el excipiente, es una sustancia que se emplea en el medicamento para diluir cualquiera de los compuestos de la presente invención hasta un volumen o peso determinado. El vehículo farmacéuticamente aceptable es una sustancia inerte o de acción análoga a los principios activos de la presente invención. La función del vehículo es facilitar la incorporación de otros compuestos, permitir una mejor dosificación y administración o dar consistencia y forma a la composición farmacéutica. Cuando la forma de presentación es líquida, el vehículo farmacéuticamente aceptable es el diluyente. A "pharmaceutically acceptable carrier" refers to those substances, or combination of substances, known in the pharmaceutical sector, used in the preparation of pharmaceutical forms of administration and includes, but are not limited to, solids, liquids, solvents or surfactants. The vehicle, like the excipient, is a substance that is used in the medicament to dilute any of the compounds of the present invention to a certain volume or weight. The pharmaceutically acceptable carrier is an inert substance or action analogous to the active ingredients of the present invention. The function of the vehicle is to facilitate the incorporation of other compounds, allow a better dosage and administration or give consistency and form to the pharmaceutical composition. When the form of presentation is liquid, the pharmaceutically acceptable carrier is the diluent.
Otro aspecto de la invención se refiere al uso del nanoliposoma de la invención, en la elaboración de un medicamento para el tratamiento de enfermedades que cursan con proliferación celular. En una realización preferida, la enfermedad que cursa con proliferación celular se selecciona de la lista que comprende: neoplasmas epiteliales malignos, cáncer de pulmón y otros cánceres como son los de estómago, colon, mama, próstata, hígado y vejiga urinaria. En una realización más preferida, la enfermedad que cursa con proliferación celular es el cáncer de próstata.  Another aspect of the invention relates to the use of the nanoliposome of the invention, in the preparation of a medicament for the treatment of diseases that occur with cell proliferation. In a preferred embodiment, the disease that occurs with cell proliferation is selected from the list comprising: malignant epithelial neoplasms, lung cancer and other cancers such as stomach, colon, breast, prostate, liver and urinary bladder. In a more preferred embodiment, the disease that occurs with cell proliferation is prostate cancer.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.  Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention.
EJEMPLOS EXAMPLES
Ejemplo 1. Preparación de nanoliposomas funcionalizados con péptido VIP  Example 1. Preparation of nanoliposomes functionalized with VIP peptide
Como primer paso se obtuvo un film de lípidos mediante evaporación de fase reversa de una mezcla que contenía 1 ,2-distearoil-sn-glicero-3-fosfocolina (DSPC), 1 ,2- dipalmitoil-sn-glicero-3-fosfocolina (DPPC), 1 ,2-distearoil-sn-glicero-3-fosfoetanol amina-N-[amino(polietilenglicol)] (DSPE-PEG) y 1 ,2-distearoil-sn-glicero-3- fosfoetanolamina-N-[amino(polietilenglicol)-maleimida] o (DSPE-PEG-maleimida). El film formado se rehidrató con una solución tampón de HEPES a pH 7.4 y se añadió una mezcla de dietileter y cloroformo en una proporción 1 :1 en volumen, de tal manera que la relación en volumen de la fase orgánica:fase acuosa fue de 4:1 . Se formó así un sistema de dos fases. Dicho sistema fue sometido a una etapa de sonicación durante unos 3-5 minutos hasta que la muestra apareció dispersa en una sola fase. El solvente orgánico se eliminó mediante rotoevaporación a una temperatura de 40°C y a una velocidad de 120 rpm, hasta que se alcanzó una fase gel. A continuación el gel se convirtió en una suspensión acuosa donde se encontraban dispersos los liposomas. Dichos liposomas se sometieron a una etapa adicional de sonicación para reducir su tamaño y convertirlos así en nanoliposomas. La sonicación se realizó en un baño sonicador a una temperatura superior a 60°C. A continuación, se purificaron los nanoliposomas mediante la utilización de una columna de Sephadez G-50. As a first step, a lipid film was obtained by reverse phase evaporation of a mixture containing 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC), 1, 2- dipalmitoyl-sn-glycerol-3-phosphocholine ( DPPC), 1,2-distearoyl-sn-glycerol-3-phosphoethanol amine-N- [amino (polyethylene glycol)] (DSPE-PEG) and 1,2-distearoyl-sn-glycerol-3- phosphoethanolamine-N- [amino (polyethylene glycol) -maleimide] or (DSPE-PEG-maleimide). The film formed was rehydrated with a HEPES buffer solution at pH 7.4 and a mixture of diethyl ether and chloroform was added in a 1: 1 volume ratio, such that the volume ratio of the organic phase: aqueous phase was 4 :one . Thus a two-phase system was formed. This system was subjected to a sonication stage for about 3-5 minutes until the sample appeared dispersed in a single phase. The organic solvent was removed by rotoevaporation at a temperature of 40 ° C and at a speed of 120 rpm, until a gel phase was reached. Then the gel became an aqueous suspension where the liposomes were dispersed. These liposomes were subjected to an additional stage of sonication to reduce their size and thus convert them into nanoliposomes. The sonication was performed in a sonic bath at a temperature above 60 ° C. Next, the nanoliposomes were purified using a Sephadez G-50 column.
La funcionalización de los nanoliposomas con el VIP se realizó mediante la adición de 150 μg de dicho péptido modificado con una molécula de cisteína sobre la suspensión acuosa de los nanoliposomas, manteniendo en agitación a temperatura ambiente durante 12 horas.  The functionalization of the nanoliposomes with the VIP was carried out by adding 150 μg of said modified peptide with a cysteine molecule on the aqueous suspension of the nanoliposomes, while stirring at room temperature for 12 hours.
Posteriormente, los nanoliposomas se purificaron mediante diálisis frente a agua desionizada durante 24 horas. Una vez funcionalizados los nanoliposomas, se procedió a la cuantificación de VIP en superficie mediante la utilización de un sistema comercial denominado LavaPep - peptide quantification kit™ (Fluorotechnics) basado en la detección de fluorescencia de los complejos péptido/fluoróforo. Los resultados relativos a esta cuantificación se muestran en la Figura 2. Asimismo, los nanoliposomas funcionalizados se caracterizaron por su tamaño mediante la técnica de Dispersión de la Luz Láser (Dynamic Light Scattering, DLS) obteniéndose valores de en torno a 100 nm tal como se muestra en la figura 3.  Subsequently, the nanoliposomes were purified by dialysis against deionized water for 24 hours. Once the nanoliposomes were functionalized, the surface VIP was quantified using a commercial system called LavaPep - peptide quantification kit ™ (Fluorotechnics) based on the fluorescence detection of the peptide / fluorophore complexes. The results related to this quantification are shown in Figure 2. Likewise, the functionalized nanoliposomes were characterized by their size using the Dynamic Light Scattering (DLS) technique, obtaining values of around 100 nm as they were shown in figure 3.
Ejemplo 2. Especificidad y efectividad de los nanoliposomas funcionalizados con VIP en el reconocimiento específico de las células que expresan sus receptores. Example 2. Specificity and effectiveness of nanoliposomes functionalized with VIP in the specific recognition of cells expressing their receptors.
Células DU145 (n=4) (línea celular humana de cáncer de próstata) fueron estimuladas durante 30 minutos con los nanoliposomas funcionalizados con VI P obtenidos según el ejemplo 1 a una concentración efectiva funcionalizada de VIP de 10"7M. DU145 cells (n = 4) (human prostate cancer cell line) were stimulated for 30 minutes with the VI-functionalized nanoliposomes obtained according to Example 1 at an effective functionalized VIP concentration of 10 "7 M.
La producción de AMPc se midió mediante un ensayo de bioluminiscencia utilizando el ensayo de Promega cAMP-GLO™ según las instrucciones del fabricante. Este ensayo está basado en la disminución de la producción de luz acoplado a luciferasa cuando las concentraciones aumentadas de AMPc producen una activación de la proteína kinasa A y una disminución concomitante del ATP disponible para la reacción de detección antes indicada. CAMP production was measured by a bioluminescence assay using the Promega cAMP-GLO ™ assay according to the manufacturer's instructions. This assay is based on the decrease in luciferase-coupled light production when increased concentrations of cAMP produce a protein activation. kinase A and a concomitant decrease in ATP available for the detection reaction indicated above.
La figura 4 muestra los resultados obtenidos en células y demuestra una producción de AMPc incrementada específicamente tras estimulación de las células con los nanoliposomas funcionalizados.  Figure 4 shows the results obtained in cells and demonstrates a specifically increased cAMP production after stimulation of the cells with the functionalized nanoliposomes.
Ejemplo 3. Encapsulacion de la doxorrubicina Example 3. Encapsulation of doxorubicin
El encapsulamiento de la doxorrubicina se realiza mediante la técnica de gradiente osmótico, en el cual se utilizan dos tampones a pH diferentes. El primero consiste en el sulfato de amonio 250 mM pH 5.5, que es la fase acuosa en la síntesis de evaporación reversa, por lo que dentro y fuera del nanonanoliposoma se encuentra este tampón. Posteriormente se hace pasar la muestra de nanonanoliposomas por una columna de Sephadex G-50 previamente lavada con buffer HEPES salino pH 7.4 para recoger así los nanoliposomas dispersos en este mismo tampón. Esta diferencia de osmolaridad dentro y fuera del nanoliposoma crea un gradiente osmótico a través de la membrana. Una vez creado este gradiente osmótico se añade doxorrubicina disuelta en agua a la muestra de nanoliposomas y se deja incubar durante 90 minutos a una temperatura superior a la de transición, en nuestro caso a 60 °C, ya que la temperatura de transición de nuestro nanoliposoma es de 46°C. Esta temperatura hace que los nanoliposomas se hagan más fluidos, se formen huecos en su membrana, y penetre la doxorrubicina. El movimiento del agua hacia el interior de los nanoliposomas es debido al gradiente osmótico y a los huecos en la membrana que facilita la encapsulacion de la doxorrubicina y permite llegar a valores de eficiencia de encapsulacion cercanos al 90%.  Doxorubicin encapsulation is performed using the osmotic gradient technique, in which two different pH buffers are used. The first consists of 250 mM ammonium sulfate pH 5.5, which is the aqueous phase in the synthesis of reverse evaporation, so this buffer is inside and outside the nanonanoliposome. Subsequently, the nanonanoliposome sample is passed through a column of Sephadex G-50 previously washed with saline HEPES buffer pH 7.4 to collect the nanoliposomes dispersed in this same buffer. This difference in osmolarity inside and outside the nanoliposome creates an osmotic gradient across the membrane. Once this osmotic gradient is created, doxorubicin dissolved in water is added to the nanoliposome sample and allowed to incubate for 90 minutes at a temperature higher than the transition, in our case at 60 ° C, since the transition temperature of our nanoliposome It is 46 ° C. This temperature causes the nanoliposomes to become more fluid, gaps form in their membrane, and doxorubicin penetrates. The movement of water into the nanoliposomes is due to the osmotic gradient and the gaps in the membrane that facilitates the encapsulation of doxorubicin and allows to reach encapsulation efficiency values close to 90%.
Posteriormente se purifica la muestra mediante una columna de Sephadex G-50 para eliminar la doxorrubicina no incorporada y se mide la eficiencia de encapsulacion mediante el espectrofotómetro de fluorescencia, midiendo la muestra antes y después de ser purificada y también después de añadir tritón al 1 % (de esta forma se rompe el nanoliposoma y el fármaco del interior se libera). The sample is subsequently purified by means of a Sephadex G-50 column to eliminate unincorporated doxorubicin and the encapsulation efficiency is measured by the fluorescence spectrophotometer, measuring the sample before and after being purified and also after adding 1% triton (In this way the nanoliposome is broken and the drug inside is released).
Mediante esta ecuación se calcula el porcentaje (%) de encapsulacion del fármaco:Using this equation the percentage (%) of drug encapsulation is calculated:
Eficiencia de encapsulacion = (A-B / C) X 100 Encapsulation efficiency = (A-B / C) X 100
A= Intensidad de la muestra purificada tras añadir tritón al 1 %. B= Intensidad de la muestra purificada sin tritón al 1 %. A = Intensity of the purified sample after adding 1% triton. B = Intensity of the purified sample without 1% triton.
C= Intensidad de la muestra antes de purificarla y tras añadir tritón al 1 %.  C = Intensity of the sample before purification and after adding 1% triton.
Ejemplo 4. Capacidad citotóxica de la doxorrubicina encapsulada en un nanoliposoma funcionalizado con VIP Example 4. Cytotoxic capacity of doxorubicin encapsulated in a VIP functionalized nanoliposome
Células DU-145 (n=4) (línea celular humana de cáncer de próstata) fueron tratadas durante 48 horas con doxorrubicina soluble, con doxorrubicina encapsulada en liposomas y con doxorrubicina encapsulada en nanoliposomas funcionalizados con VIP. La figura 5 muestra las fotografías de microscopía óptica obtenidas en todos los casos y su comparación con una muestra de células sin tratar. Se observa el efecto citotóxico aumentado de la doxorrubicina en presencia de nanoliposomas funcionalizados con el péptido VIP.  DU-145 cells (n = 4) (human prostate cancer cell line) were treated for 48 hours with soluble doxorubicin, with doxorubicin encapsulated in liposomes and with doxorubicin encapsulated in VIP-functionalized nanoliposomes. Figure 5 shows the optical microscopy photographs obtained in all cases and their comparison with a sample of untreated cells. The increased cytotoxic effect of doxorubicin is observed in the presence of nanoliposomes functionalized with the VIP peptide.
Asimismo, como método de referencia para estudiar la citotoxicidad in vitro, se utilizó la liberación de LDH (lactato deshidrogenasa). Para ello, la mencionada línea celular se expuso al fármaco (10 g/mL) durante 24 horas. La figura 6 muestra el histrograma obtenido para todas las muestras analizadas. A mayor números de células muertas, mayor liberación al medio del enzima LDH. De esta forma, la muerte celular es proporcional a la cuantificación de actividad LDH. Se utiliza como referencia de citotoxicidad absoluta el resultado de tratar las células con un detergente (Tritón X100 al 1 %), que lógicamente disuelve las membranas de las células y mata al total de la población expuesta.  Likewise, as a reference method to study cytotoxicity in vitro, the release of LDH (lactate dehydrogenase) was used. For this, said cell line was exposed to the drug (10 g / mL) for 24 hours. Figure 6 shows the histrogram obtained for all the samples analyzed. The greater the number of dead cells, the greater release into the environment of the LDH enzyme. In this way, cell death is proportional to the quantification of LDH activity. The result of treating the cells with a detergent (1% Triton X100) is used as a reference for absolute cytotoxicity, which logically dissolves the cell membranes and kills the total exposed population.
Se puede observar una mayor liberación de LDH (un mayor número de células muertas) cuando la doxorrubicina se encuentra encapsulada en los nanoliposomas funcionalizados con VIP.  A greater release of LDH (a larger number of dead cells) can be observed when doxorubicin is encapsulated in VIP-functionalized nanoliposomes.
Este ensayo pone de manifiesto que la funcionalización de los nanoliposomas con el péptido VIP aumenta la capacidad citotóxica de la doxorrubicina, mejorando la efectividad de este principio activo, lo que posibilita la incorporación del fármaco en la composición liposomal a concentraciones más bajas que las empleadas en otras formulaciones convencionales del estado de la técnica. This test shows that the functionalization of nanoliposomes with the VIP peptide increases the cytotoxic capacity of doxorubicin, improving the effectiveness of this active substance, which allows the incorporation of the drug into the liposomal composition at lower concentrations than those used in other conventional formulations of the prior art.

Claims

REIVINDICACIONES
1 - Un nanoliposoma funcionalizado con un péptido en su superficie. 1 - A functionalized nanoliposome with a peptide on its surface.
2- El nanoliposoma según la reivindicación anterior, donde el extremo carboxilo- terminal del péptido queda libre.  2- The nanoliposome according to the preceding claim, wherein the carboxyl-terminal end of the peptide is free.
3- Nanoliposoma según cualquiera de las reivindicaciones 1-2, que además comprende:  3- Nanoliposome according to any of claims 1-2, further comprising:
un conjugado lípido-espaciador-maleimida; y  a lipid-spacer-maleimide conjugate; Y
un péptido modificado con un grupo sulfhidrilo;  a peptide modified with a sulfhydryl group;
de manera que el péptido se encuentra unido covalentemente al nanoliposoma a través de la reacción entre la maleimida del conjugado y el grupo sulfhidrilo del péptido modificado.  so that the peptide is covalently bound to the nanoliposome through the reaction between the maleimide of the conjugate and the sulfhydryl group of the modified peptide.
4- Nanoliposoma según la reivindicación 3, donde el lípido presente en el conjugado es un fosfolípido.  4- Nanoliposome according to claim 3, wherein the lipid present in the conjugate is a phospholipid.
5- Nanoliposoma según reivindicación 4, donde el fosfolípido se selecciona entre 1 ,2-distearoil-sn-glicero-3-fosfocolina (DSPC), 1 ,2-distearoil-sn-glicero-3- fosfoetanolamina (DSPE), 1 ,2-dipalmitoil-sn-glicero-3-fosfocolina (DPPC), 1 ,2- dipalmitoil-sn-glicero-3-fosfoetanolamina (DPPE) y combinaciones de los mismos.  5- Nanoliposome according to claim 4, wherein the phospholipid is selected from 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC), 1,2-distearoyl-sn-glycerol-3- phosphoethanolamine (DSPE), 1, 2 -dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC), 1, 2- dipalmitoyl-sn-glycerol-3-phosphoethanolamine (DPPE) and combinations thereof.
6- Nanoliposoma según cualquiera de las reivindicaciones 3 a 5, donde el espaciador presente en el conjugado es polietilenglicol (PEG).  6- Nanoliposome according to any of claims 3 to 5, wherein the spacer present in the conjugate is polyethylene glycol (PEG).
7- Nanoliposoma según cualquiera de las reivindicaciones 3 a 6, donde el conjugado lípido-espaciador-maleimida es 1 ,2-distearoil-sn-glicero-3- fosfoetanolamina-N-[amino(polietilenglicol)-maleimida] (DSPE-PEG-maleimida). 8- Nanoliposoma según cualquiera de las reivindicaciones anteriores, donde el péptido se selecciona de la lista que comprende: glucagon, GIP, secretina, hormona de crecimiento, somatoliberina, somatotropina, péptido PHI, péptido PHM, PACAP, adrenomedulina, corticostatina y péptido intestinal vasoactivo VIP.  7- Nanoliposome according to any one of claims 3 to 6, wherein the lipid-spacer-maleimide conjugate is 1,2-distearoyl-sn-glycerol-3- phosphoethanolamine-N- [amino (polyethylene glycol) -maleimide] (DSPE-PEG- maleimide). 8- Nanoliposome according to any of the preceding claims, wherein the peptide is selected from the list comprising: glucagon, GIP, secretin, growth hormone, somatoliberine, somatotropin, PHI peptide, PHM peptide, PACAP, adrenomedulin, corticostatin and vasoactive intestinal peptide VIP
9- Nanoliposoma según cualquiera de las reivindicaciones 1 -8, donde el péptido es un neuropéptido. 10- Nanoliposoma según la reivindicación 9, donde el neuropéptido es el péptido intestinal vasoactivo VIP. 9- Nanoliposome according to any one of claims 1-8, wherein the peptide is a neuropeptide. 10. Nanoliposome according to claim 9, wherein the neuropeptide is the VIP vasoactive intestinal peptide.
1 1- Nanoliposoma según cualquiera de las reivindicaciones 1 a 10, donde el péptido se encuentra modificado con una molécula de cisteína.  1- 1- Nanoliposome according to any one of claims 1 to 10, wherein the peptide is modified with a cysteine molecule.
12- Nanoliposoma según cualquiera de las reivindicaciones 1-1 1 que además comprende uno o más fosfolípidos libres y/o uno o más fosfolípidos conjugados con polietilenglicol.  12- Nanoliposome according to any of claims 1-1 1 which further comprises one or more free phospholipids and / or one or more polyethylene glycol conjugated phospholipids.
13- Nanoliposoma según la reivindicación 12, donde los fosfolípidos libres se seleccionan entre 1 ,2-distearoil-sn-glicero-3-fosfocolina (DSPC), 1 ,2-distearoil- sn-glicero-3-fosfoetanolamina (DSPE), 1 ,2-dipalmitoil-sn-glicero-3-fosfocolina 13- Nanoliposome according to claim 12, wherein the free phospholipids are selected from 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC), 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine (DSPE), 1 , 2-dipalmitoyl-sn-glycerol-3-phosphocholine
(DPPC), 1 ,2-dipalmitoil-sn-glicero-3-fosfoetanolamina (DPPE) y combinaciones de los mismos. (DPPC), 1,2-dipalmitoyl-sn-glycerol-3-phosphoethanolamine (DPPE) and combinations thereof.
14- Nanoliposoma según cualquiera de las reivindicaciones 12 y 13, donde el fosfolípido conjugado con polietilenglicol es 1 ,2-distearoil-sn-glicero-3- fosfoetanolamina-N-[amino(polietilenglicol)] (DSPE-PEG).  14- Nanoliposome according to any of claims 12 and 13, wherein the phospholipid conjugated with polyethylene glycol is 1,2-distearoyl-sn-glycerol-3- phosphoethanolamine-N- [amino (polyethylene glycol)] (DSPE-PEG).
15- Nanoliposoma según cualquiera de las reivindicaciones 1 a 1 1 , que además comprende 1 ,2-distearoil-sn-glicero-3-fosfoetanolamina-N-[amino(polietilen glicol)] (DSPE-PEG), 1 ,2-distearoil-sn-glicero-3-fosfocolina (DSPC) y 1 ,2- dipalmitoil-sn-glicero-3-fosfocolina (DPPC).  15- Nanoliposome according to any one of claims 1 to 1, which further comprises 1,2-distearoyl-sn-glycerol-3-phosphoethanolamine-N- [amino (polyethylene glycol)] (DSPE-PEG), 1, 2-distearoyl -sn-glycerol-3-phosphocholine (DSPC) and 1, 2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC).
16- Nanoliposoma según cualquiera de las reivindicaciones 1 a 15 que comprende:  16- Nanoliposome according to any of claims 1 to 15 comprising:
1 ,2-distearoil-sn-glicero-3-fosfoetanolamina-N-[amino(polietilenglicol)- maleimida] o (DSPE-PEG-maleimida);  1,2-distearoyl-sn-glycerol-3-phosphoethanolamine-N- [amino (polyethylene glycol) -maleimide] or (DSPE-PEG-maleimide);
1 ,2-distearoil-sn-glicero-3-fosfoetanolamina-N-[amino(polietilenglicol)] (DSPE-PEG);  1,2-distearoyl-sn-glycerol-3-phosphoethanolamine-N- [amino (polyethylene glycol)] (DSPE-PEG);
1 ,2-distearoil-sn-glicero-3-fosfocolina (DSPC),  1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC),
1 ,2-dipalmitoil-sn-glicero-3-fosfocolina (DPPC), y  1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC), and
un péptido modificado con un grupo sulfhidrilo;  a peptide modified with a sulfhydryl group;
de manera que el péptido se encuentra unido covalentemente al nanoliposoma a través de la reacción entre la maleimida del conjugado y el grupo sulfhidrilo del péptido modificado. 17- Nanoliposoma según reivindicación 16, donde el conjugado DSPE-PEG- Maleimide se encuentran en una proporción de en torno a un 10% en peso con respecto al peso total de lípidos. so that the peptide is covalently bound to the nanoliposome through the reaction between the maleimide of the conjugate and the sulfhydryl group of the modified peptide. 17- Nanoliposome according to claim 16, wherein the DSPE-PEG-Maleimide conjugate is found in a proportion of about 10% by weight with respect to the total lipid weight.
18- Nanoliposoma según cualquiera de las reivindicaciones 16 y 17, donde el DSPE-PEG se encuentran en una proporción de en torno a un 5% en peso con respecto al peso total de lípidos.  18- Nanoliposome according to any of claims 16 and 17, wherein the DSPE-PEG are in a proportion of about 5% by weight with respect to the total lipid weight.
19- Nanoliposoma según cualquiera de las reivindicaciones 16 a 18, donde el DPPC y el DSPC se encuentran en una relación de masa de aproximadamente 6:4.  19- Nanoliposome according to any of claims 16 to 18, wherein the DPPC and the DSPC are in a mass ratio of approximately 6: 4.
20- Nanoliposoma según cualquiera de las reivindicaciones 16 a 19, donde el péptido es el péptido intestinal vasoactivo (VIP) modificado con una molécula de cisteína.  20- Nanoliposome according to any of claims 16 to 19, wherein the peptide is the vasoactive intestinal peptide (VIP) modified with a cysteine molecule.
21- Nanoliposoma según cualquiera de las reivindicaciones 1 -20, donde su diámetro medio se encuentra comprendido entre 75 y 125 nm.  21- Nanoliposome according to any of claims 1-20, wherein its average diameter is between 75 and 125 nm.
22- Un procedimiento para la preparación de los nanoliposomas según se define en las reivindicaciones 1 a 21 , que comprende:  22- A process for the preparation of nanoliposomes as defined in claims 1 to 21, comprising:
a) formar un film de lípidos;  a) form a lipid film;
b) rehidratar el film con una solución tampón a un pH esencialmente neutro y añadir un solvente orgánico para formar un sistema de dos fases; c) someter el sistema de dos fases a sonicación para formar liposomas dispersos en una sola fase;  b) rehydrate the film with a buffer solution at an essentially neutral pH and add an organic solvent to form a two phase system; c) subjecting the two phase system to sonication to form dispersed liposomes in a single phase;
d) eliminar el solvente orgánico hasta obtener una fase gel;  d) remove the organic solvent until a gel phase is obtained;
e) convertir el gel en una suspensión acuosa donde quedan los liposomas; f) convertir los liposomas en nanoliposomas;  e) convert the gel into an aqueous suspension where the liposomes remain; f) convert liposomes to nanoliposomes;
g) añadir el péptido modificado a la suspensión de los nanoliposomas para formar nanoliposomas funcionalizados.  g) add the modified peptide to the nanoliposome suspension to form functionalized nanoliposomes.
23- Procedimiento según la reivindicación 22, donde el film de lípidos comprende un conjugado lípido-espaciador-maleimida como se ha definido previamente. 23. Method according to claim 22, wherein the lipid film comprises a lipid-spacer-maleimide conjugate as previously defined.
24- Procedimiento según cualquiera de las reivindicaciones 22 - 23, donde el film de lípidos comprende además al menos un fosfolípido y/o al menos un fosfolípido conjugado con una molécula de PEG. 25- Procedimiento según cualquiera de las reivindicaciones 22 - 24, donde el film de lípidos comprende 1 ,2-distearoil-sn-glicero-3-fosfocolina (DSPC), 1 ,2- dipalmitoil-sn-glicero-3-fosfocolina (DPPC) y al menos un fosfolípidos pegilado.24. Method according to any of claims 22-23, wherein the lipid film further comprises at least one phospholipid and / or at least one phospholipid conjugated to a PEG molecule. 25. Method according to any of claims 22-24, wherein the lipid film comprises 1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC), 1, 2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC ) and at least one pegylated phospholipid.
26- Procedimiento según reivindicación 25 donde el fosfolípidos pegilado es 1 ,2- distearoil-sn-glicero-3-fosfoetanolamina-N-[amino(polietilenglicol)](DSPE-PEG) o DSPE-PEG-Maleimide. 26. The method according to claim 25 wherein the pegylated phospholipids is 1, 2-distearoyl-sn-glycerol-3-phosphoethanolamine-N- [amino (polyethylene glycol)] (DSPE-PEG) or DSPE-PEG-Maleimide.
27- Procedimiento según reivindicación 26 donde el DSPE-PEG y el DSPE-PEG- Maleimide se encuentran a una concentración final de en torno al 5 y 10%, respectivamente, con respecto al peso total de lípidos.  27- Method according to claim 26 wherein the DSPE-PEG and the DSPE-PEG-Maleimide are at a final concentration of about 5 and 10%, respectively, with respect to the total lipid weight.
28- Procedimiento según cualquiera de las reivindicaciones 22 a 27, donde el DPPC y el DSPC se encuentran en una relación de masa de aproximadamente 6:4. 28. The method according to any of claims 22 to 27, wherein the DPPC and the DSPC are in a mass ratio of approximately 6: 4.
29- Procedimiento según cualquiera de las reivindicaciones 22 a 28, donde el solvente orgánico consiste en una mezcla de dietiléter y cloroformo en una relación aproximada de 1 :1 en volumen.  29. Method according to any of claims 22 to 28, wherein the organic solvent consists of a mixture of diethyl ether and chloroform in an approximate ratio of 1: 1 by volume.
30- Procedimiento según cualquiera de las reivindicaciones 22 a 29, donde el ratio de volumen fase orgánica:fase acuosa final tras añadir el solvente orgánico, es de aproximadamente 4:1.  30. Method according to any of claims 22 to 29, wherein the volume ratio organic phase: final aqueous phase after adding the organic solvent, is approximately 4: 1.
31- Procedimiento según cualquiera de las reivindicaciones 22 a 30, donde la conversión de los liposomas en nanoliposomas se realiza sometiendo la suspensión acuosa a sonicación.  31. Method according to any of claims 22 to 30, wherein the conversion of liposomes into nanoliposomes is performed by subjecting the aqueous suspension to sonication.
32- Procedimiento según la reivindicación 31 , donde la sonicación en la etapa (f) se realiza a una temperatura superior a 60°C.  32. The method according to claim 31, wherein the sonication in step (f) is carried out at a temperature greater than 60 ° C.
33- Un nanoliposoma funcionalizado con un péptido en su superficie obtenible según un procedimiento como se define en cualquiera de las reivindicaciones 33- A functionalized nanoliposome with a peptide on its surface obtainable according to a method as defined in any of the claims
22 a 32. 22 to 32.
34- Un nanoliposoma según cualquiera de las reivindicaciones 1 a 21 y 33, que además comprende un principio activo capaz de diagnosticar, curar, mitigar, tratar o prevenir una enfermedad.  34. A nanoliposome according to any of claims 1 to 21 and 33, which further comprises an active ingredient capable of diagnosing, curing, mitigating, treating or preventing a disease.
35- Nanoliposoma según reivindicación 34, donde el principio activo tiene una actividad antitumoral. 36- Nanoliposoma según reivindicación 35, donde el principio activo es doxorrubicina. 35- Nanoliposome according to claim 34, wherein the active ingredient has an antitumor activity. 36- Nanoliposome according to claim 35, wherein the active substance is doxorubicin.
37- Nanoliposoma según reivindicación 34, donde el principio activo tiene una actividad antiinflamatoria.  37- Nanoliposome according to claim 34, wherein the active ingredient has an anti-inflammatory activity.
38- Una composición farmacéutica que comprende un nanoliposoma tal como se ha definido en cualquiera de las reivindicaciones 1 a 21 y 33 a 37.  38. A pharmaceutical composition comprising a nanoliposome as defined in any one of claims 1 to 21 and 33 to 37.
39- Composición farmacéutica según la reivindicación 38, que además comprende un vehículo farmacéuticamente aceptable.  39- Pharmaceutical composition according to claim 38, further comprising a pharmaceutically acceptable carrier.
40- Uso del nanoliposoma según cualquiera de las reivindicaciones 1-21 y 33-37, o de una composición farmacéutica según cualquiera de las rievindicacciones 38- 39, en la elaboración de un medicamento para el tratamiento de enfermedades que cursan con proliferación celular.  40- Use of the nanoliposome according to any of claims 1-21 and 33-37, or of a pharmaceutical composition according to any of the rindications 38-39, in the preparation of a medicament for the treatment of diseases that occur with cell proliferation.
41- Uso del nanoliposoma según la reivindicación 40, donde la enfermedad que cursa con proliferación celular se selecciona de la lista que comprende neoplasmas epiteliales malignos, cáncer de pulmón y otros cánceres como cáncer de estómago, colon, mama, próstata, hígado y vejiga urinaria.  41- Use of the nanoliposome according to claim 40, wherein the disease that occurs with cell proliferation is selected from the list comprising malignant epithelial neoplasms, lung cancer and other cancers such as stomach, colon, breast, prostate, liver and urinary bladder cancer .
42- Uso del nanoliposoma según la reivindicación anterior, donde la enfermedad que cursa con proliferación celular es cáncer de próstata.  42. Use of the nanoliposome according to the preceding claim, wherein the disease that occurs with cell proliferation is prostate cancer.
PCT/ES2012/070037 2011-01-24 2012-01-24 Peptide-functionalised nanoliposomes WO2012101309A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ES201130072A ES2389347B1 (en) 2011-01-24 2011-01-24 NANOLIPOSOMES FUNCTIONED WITH PEPTIDES.
ESP201130072 2011-01-24
ESP201130185 2011-02-11
ES201130185A ES2390147B1 (en) 2011-02-11 2011-02-11 NANOLIPOSOMES FUNCTIONALIZED WITH BIOACTIVE PEPTIDES AS SYSTEMS TO IMPROVE THE CYTOTOXICITY OF ANTITUMORAL DRUGS.

Publications (1)

Publication Number Publication Date
WO2012101309A1 true WO2012101309A1 (en) 2012-08-02

Family

ID=46580246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070037 WO2012101309A1 (en) 2011-01-24 2012-01-24 Peptide-functionalised nanoliposomes

Country Status (1)

Country Link
WO (1) WO2012101309A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167126A3 (en) * 2013-04-13 2015-01-08 Universidade De Coimbra Platform for targeted delivery to stem cells and tumor cells and uses thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142525A2 (en) * 2008-05-22 2009-11-26 Universidade De Coimbra Capsulating system binding to nucleolin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142525A2 (en) * 2008-05-22 2009-11-26 Universidade De Coimbra Capsulating system binding to nucleolin

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAGAR, S. ET AL.: "VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies", JOURNAL OF CONTROLLED RELEASE., vol. 91, no. 1-2, 28 August 2003 (2003-08-28), pages 123 - 133 *
NALLAMOTHU, R. ET AL.: "A tumor vasculature targeted liposome delivery system for Combrestatin A4: design, characterization and in vitro evaluation", AAPS PHARM SCI TECH., vol. 7, no. 2, 2006, pages E1 - E10 *
SCHIFFELERS, R.M. ET AL., ANTI-TUMOR EFFICACY OF TUMOR VASCULATURE-TARGETED LIPOSOMAL DOXORUBICIN, vol. 91, no. 1-2, 28 August 2003 (2003-08-28), pages 115 - 122 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014167126A3 (en) * 2013-04-13 2015-01-08 Universidade De Coimbra Platform for targeted delivery to stem cells and tumor cells and uses thereof

Similar Documents

Publication Publication Date Title
Du et al. Thioether phosphatidylcholine liposomes: a novel ROS-responsive platform for drug delivery
Wang et al. Nanopreparations for mitochondria targeting drug delivery system: current strategies and future prospective
ES2762224T3 (en) Liposomes Comprising Polymer Conjugated Lipids and Related Uses
Kataria et al. Stealth liposomes: a review.
Guo et al. Functional alginate nanoparticles for efficient intracellular release of doxorubicin and hepatoma carcinoma cell targeting therapy
ES2607802T3 (en) Glycosaminoglycan lipidated particles and their use in the supply of drugs and genes for diagnosis and therapy
CN107920964B (en) Fusogenic liposome-coated porous silicon nanoparticles
Sun et al. Preparation and evaluation of N3-O-toluyl-fluorouracil-loaded liposomes
US5851536A (en) Therapeutic delivery using compounds self-assembled into high axial ratio microstructures
Verma et al. Folate conjugated double liposomes bearing prednisolone and methotrexate for targeting rheumatoid arthritis
US8080262B2 (en) Encapsulated peptide amphiphile nanostructures
JP6243331B2 (en) PH-SENSITIVE CARRIER AND METHOD FOR PRODUCING SAME, PH-SENSITIVE MEDICINE CONTAINING THE CARRIER, pH-SENSITIVE PHARMACEUTICAL COMPOSITION AND CULTURE METHOD USING THE SAME
PT1863448E (en) Novel liposome compositions
ES2431316T3 (en) Nanotransport system with dendritic architecture
Long et al. Azo-inserted responsive hybrid liposomes for hypoxia-specific drug delivery
US11179335B1 (en) ROS-responsive liposomes for specific targeting
JP2021502346A (en) Fusion compounds for delivering biologically active molecules
ES2259674T3 (en) LIPOSOMAS OF ENCAPSULATION OF ANTI-CANCER DRUGS AND USE OF THE SAME IN THE TREATMENT OF MALIGNOUS TUMORS.
JP2018530623A (en) Liposome composition co-encapsulating doxorubicin and mitomycin C prodrug
KR20070037445A (en) Liposome preparation containing slightly water-soluble camptothecin
KR20150047336A (en) Nanoparticles, method for the preparation thereof, and use thereof
WO2012073125A1 (en) Tsh-conjugated nanocarrier for the treatment of thyroid cancer
Kannaka et al. Inverse Electron Demand Diels–Alder Reactions in the Liposomal Membrane Accelerates Release of the Encapsulated Drugs
ES2390147B1 (en) NANOLIPOSOMES FUNCTIONALIZED WITH BIOACTIVE PEPTIDES AS SYSTEMS TO IMPROVE THE CYTOTOXICITY OF ANTITUMORAL DRUGS.
WO2012101309A1 (en) Peptide-functionalised nanoliposomes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739339

Country of ref document: EP

Kind code of ref document: A1