WO2012101306A1 - Formulation comprising silicon microparticles, as a pigment that can absorb visible uv radiation and reflect ir radiation - Google Patents

Formulation comprising silicon microparticles, as a pigment that can absorb visible uv radiation and reflect ir radiation Download PDF

Info

Publication number
WO2012101306A1
WO2012101306A1 PCT/ES2012/070034 ES2012070034W WO2012101306A1 WO 2012101306 A1 WO2012101306 A1 WO 2012101306A1 ES 2012070034 W ES2012070034 W ES 2012070034W WO 2012101306 A1 WO2012101306 A1 WO 2012101306A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
formulation
silicon
silicon microparticles
formulation according
Prior art date
Application number
PCT/ES2012/070034
Other languages
Spanish (es)
French (fr)
Other versions
WO2012101306A4 (en
Inventor
Marie Isabelle RODRÍGUEZ
Roberto Fenollosa Esteve
Francisco Javier Meseguer Rico
Alberto Gonzalo PÉREZ-ROLDÁN TACUMI
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Universidad Politécnica De Valencia
Ona Investigación, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Universidad Politécnica De Valencia, Ona Investigación, S.L. filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2012101306A1 publication Critical patent/WO2012101306A1/en
Publication of WO2012101306A4 publication Critical patent/WO2012101306A4/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K2003/023Silicon

Definitions

  • Formulation comprising silicon microparticles as a pigment absorbing UV-visible radiation
  • the present invention refers to sunscreen radiation protective preparations, effective against UV-visible radiation, as well as IR thermal radiation.
  • the solar radiation that reaches the surface of the earth after an important part has been absorbed by the atmosphere covers a range of wavelengths between 295 nm and 2500 nm. According to the energy of the photons that are involved, three main areas in the spectrum are distinguished: the ultraviolet zone (295-400 nm), the visible zone (400-700nm) and the infrared zone (700-2500nm).
  • the visible zone represents approximately 50% of the energy emitted by sunlight, 45% corresponds to the IR range. Although only the remaining 5% of the energy is in the form of ultraviolet photons, these are energetic enough to break numerous chemical bonds of organic materials, mainly composed of carbon-hydrogen bonds, such as wood, plastics, and even asphalt, and produce its deterioration
  • infrared radiation results in heating of exposed surfaces. Specifically, the absorption of the rays of wavelengths between 700nm and llOOnm (near infrared) results in an increase in temperature. This heating tends to favor the chemical reactions that lead to deterioration, loss of volume or softening of the materials. In addition, continuous changes in temperature of greater or lesser amplitude can even cause the material to rupture due to the stresses to which they are subjected. Apart from the degradation of the elements exposed to thermal radiation (such as plastics, wood, cement ...), the increase in temperature induces an increase in energy costs and consumption in buildings and homes
  • Patent GB2453343 proposes incorporating white alumina (in particular, white corundum) in the paint composition, in order to obtain at the same time infrared reflectivity characteristics close to those of metal or alloy particles, at the same time as a light color.
  • Some metals or semiconductors that have high infrared reflectivity are transparent to visible light, but only in the form of a very thin sheet, which can only be used in window coverings.
  • thin semiconductor films such as cadmium stannate (Cd 2 Sn0 4 ) doped or not doped with copper are used
  • thermal radiation reflective compounds for incorporation in paints and coatings formulations
  • a thin uniform metallic layer (silver in general) on the surface of the microspheres (filled or hollow) of glass (such as those marketed by the company Sherperd Color Co.) or coated glass flakes such as those patented by Merck GmbH (Anselman Ralf et al. US7226503), although the Main application is rather for aesthetic purposes, since they produce a glowing effect in sunlight.
  • the combination of hollow microspheres (glass, ceramics, polymers) with pigments reflecting IR radiation decreases thermal conductivity and increases IR reflectivity in preparations (Shelhorn, Anthony D., US20050126441).
  • the present invention proposes the use of metallic silicon powder with microparticles of the appropriate size for application as an IR radiation reflecting pigment in the preparation of paints, varnishes and thermal protective coatings.
  • Such preparations also absorb UV-visible radiation (intrinsic property of silicon), providing, at low cost, protection of any surface over a wide range of electromagnetic radiation.
  • the present invention relates, first of all, to a formulation characterized in that it comprises silicon microparticles with a size between 0.010 and m and 50 and m, preferably between 0.1 and m and 50 and m in diameter, more preferably, between 0.1 and 20 and 20 and even more preferably between 1 and 20 and 20.
  • microparticles particles of varied shapes and micrometer size, preferably between 0.010 and m and 50 and m, and more preferably between 0.1 and 50 and m in diameter are understood.
  • the percentage of said silicon microparticles in the formulation is preferably comprised between 0.1% and 30% by weight, more preferably 0.1% and 10% by weight and more preferably, between a 0.8% and 5% by weight.
  • said microparticles can be obtained from silicon powder, preferably, by a grinding and sieving process, preferably, wet, to obtain particle sizes between 0.010 and m and 50 and m, preferably between 0.1 and m and 50 and m in diameter, more preferably, between 0.1 and 20 and 20 and even more preferably between 1 and 20 and 20.
  • they may have undergone a surface modification treatment, such as an increase in hydrophilicity, or the anchoring of some pigment providing color.
  • a surface modification treatment such as an increase in hydrophilicity, or the anchoring of some pigment providing color.
  • anilines to give color, or siloxane bonds to give hydrophilicity to the particles.
  • the described formulation may also comprise at least one additional component active against IR radiation and UV-visible radiation, said component being preferably selected from conventional pigments.
  • said formulation as a pigment absorbing UV-visible radiation and reflecting IR radiation, in a range of wavelengths between 0.7 and 180 mm.
  • said IR radiation may consist of near IR radiation or thermal radiation, between wavelengths of 0.7 ym to 3 ym, preferably 0.7 ym to 1.1 ym.
  • said IR radiation may consist of thermal radiation emitted by fire, in the range of 1 ym to 20 ym, and more particularly in the range of 1 ym to 8 ym.
  • said formulation as a pigment reflecting IR radiation, preferably in the form of paints, varnishes, lacquers, putty, cements, ceramic frits, enamels, polymeric or textile films, etc. ..
  • Protected surfaces can be elements of buildings such as roofs, walls, pavements, windows, doors, as well as elements in plastic, wood and metal surfaces such as the interiors of civil or military vehicles, etc.
  • the paints may preferably be plastic with resins vinyl or acrylic emulsified in water, or fatty paints composed of resins in oil.
  • the silicon microparticles can act as pigments reflecting the thermal radiation emitted by the fire in the range between 1 and 20 and 20, and more preferably between 1 and 8 ym.
  • the formulation in paint preparations, coatings, etc. intumescent, protective of thermal radiation emitted by fire
  • the usual formulations of these products can be used, but incorporating silicon microparticles of the appropriate size as active pigment, or in combination with chemical fire retardants, such as those described in R.I. Ensminger (Pigment Handbook, vol. II, Temple C. Patton, John Wiley & Sons, 1988).
  • Figure 1 shows the diameter distribution (centered at 1 millimeter) of the silicon powder particles used in example 1 and example 2.
  • Figure 2 shows an effective Mié scattering section, calculated according to the particle diameter distribution of Figure 1, and considering a spherical shape of the particles.
  • Figure 3 shows the diameter distribution (centered on 2.5 microns) of the silicon powder particles used in example 3 and example 4.
  • Figure 4 shows an effective Mié scattering section, calculated according to the particle diameter distribution of Figure 3, and considering a spherical shape of the particles.
  • Figure 5 shows a comparison between optical transmission spectra obtained in the near IR range of samples prepared in the form of an oil / water emulsion (O / W), with silicon microparticles (0.8% by weight with the size distribution of figure 1).
  • a sample prepared according to the same procedure with 0.8% by weight of titania particles (T1O 2 , P-25 Degussa) on glass substrates (11 mg / cm 2 ) is presented.
  • Figure 6 shows a comparison between optical transmission spectra obtained in the near IR range of samples prepared in the form of PVA film (Polyvinyl alcohol, 98% hydrolyzed), and a PVA film with embedded silicon microparticles (2% in weight with the size distribution of figure 1).
  • PVA film Polyvinyl alcohol, 98% hydrolyzed
  • Figure 7 shows a comparison between optical transmission spectra obtained in the near IR range of a commercial white paint sample, and a sample with the same commercial white paint with embedded silicon microparticles (2% by weight with the size distribution of figure 3).
  • Figure 8 shows a comparison between optical transmission spectra obtained in the near IR range of a sample of a commercial varnish, and a sample with the same commercial varnish incorporating silicon microparticles in different percentages (2% and 5% by weight, with the size distribution of figure 3).
  • the present invention is illustrated below by means of different tests, which show the specificity and effectiveness of silicon microparticles as a pigment reflecting the thermal radiation of the near IR. Through these examples, the optical properties of various preparations are presented incorporating silicon microparticles of different average sizes. Infrared optical transmittance measurements have been performed using Fourier transform spectroscopy (FTIR).
  • FTIR Fourier transform spectroscopy
  • optical measurements presented have been made on thin layers of the different preparations containing the particles of silicon pigments, of identical thickness, on glass substrates, or loose.
  • the amounts of preparation applied on the substrates vary between 2 and 11 mg / cm 2 .
  • the silicon microparticles used were obtained by treatment of dust (or "fines") of purified silicon of particle size smaller than 100 ym (Ferroatlantica, SA).
  • the powder was subjected to grinding to obtain particles as loose as possible and smaller sizes, in order to optimize the performance in the next wet sieving process.
  • silicon particles of average size of 1 and m (figure 1) and 2.5 ym (figure 3) were collected. If the particles are assimilated into spheres, the average Wed scattering section to which they give rise in the near infrared and which is responsible for shielding the solar infrared radiation can be calculated.
  • Figure 1 shows the diameter distribution (centered at 1 m) of the silicon powder particles used in example 1 and example 2 and Figure 3 shows the diameter distribution (centered at 2.5 microns) of the Silicon powder particles used in example 3 and example 4.
  • Figures 2 and 4 illustrate this scattering for particles of size 1 mm and 2.5 mm respectively.
  • Figure 2 shows an effective Mié scattering section, calculated according to the particle diameter distribution of Figure 1, and considering a spherical shape of the particles.
  • Figure 4 shows an effective Mié scattering section, calculated according to the particle diameter distribution of Figure 3, and considering a spherical shape of the particles.
  • the average chemical analysis of the silicon particles used is as follows:
  • Table 1 shows the amounts of impurities in ppm of the starting silicon powder particles used.
  • This example shows the optical properties of an oil-in-water (O / W) emulsion with silicon particles as a pigment reflecting infrared thermal radiation in the range between 850 nm and 3 microns.
  • O / W oil-in-water
  • Silicon particles with the size distribution according to the curve of Figure 1 obtained after a process of grinding and sieving silicon powder, were added to the preparation under strong stirring. mechanical (3000 rpm). 0.8% by weight with respect to the total weight of the emulsion was used.
  • Figure 5 compares the results of optical transmission measured in the near IR range between 0.85 and 3 and 3 m, of samples prepared in the form of an oil / water emulsion (11 mg / cm 2 on glass), containing particles of silicon (0.8% by weight with the size distribution of Figure 1), with an identical emulsion prepared with titania particles (T1O 2 , P-25 Degussa) in the same percentage by weight (0.8%) than that of silicon particles and with the same thickness on glass substrates (llmg / cm 2 ). It is observed how the emulsion with silicon particles produces a greater attenuation of the infrared radiation than the emulsion with titania particles.
  • This example describes the preparation of a polymeric film containing silicon microparticles as an infrared reflective pigment, and its properties in the near infrared range between 0.85 and m and 4 and m. The results of the optical transmissions of a film with and without incorporated silicon particles are shown.
  • the solution is poured into a plastic box of dimensions 32x32x7 mm, and allowed to dry at 70 ° C before peeling off the uniform film that forms brown.
  • This example describes the preparation of a sample composed of an aqueous white paint to which 2% of medium-sized silicon particles centered at 2.5 and m and with a size distribution illustrated in Figure 3 are incorporated. show the optical properties in the range of infrared measured between 0.85 and 2 and 2.
  • This example describes the use of silicon particles of the present invention as a pigment reflecting IR radiation in varnishes.
  • the results of the optical transmissions of the preparations are shown and compared according to the percentage of silicon particles introduced into the varnish.
  • Another sample is prepared according to the same procedure but increasing the percentage by weight of silicon microparticles incorporated in the preparation to 5%.
  • Samples of varnishes with and without silicon particles object of the invention were optically analyzed, by infrared spectroscopy in the range between 0.85 and m and 2.5 and m, considering the glass substrates as reference.
  • Figure 8 offers a comparison of the infrared radiation attenuation in the near IR range of a sample of a commercial varnish, and a sample with the same commercial varnish incorporating silicon microparticles in different percentages (2% and 5% by weight , with the size distribution of Figure 3, and with an average size of 2.5 microns). From wavelengths greater than 1 m, this attenuation is about 50% for a load of 2% by weight of silicon particles, and of approximately 90% for a varnish with 5% by weight of silicon particles, indicating the effectiveness as a pigment reflecting the infrared radiation of the silicon particles of the present invention.
  • a copper plate (thermal conductor) is coated with a layer of 8 mg / cm 2 of the aqueous white paint used in example 3.
  • the 2 samples were heated by a Xenon lamp placed at an equidistant distance from the 2 samples. After 1 minute the temperature at the back of the samples was measured, repeating the experiment several times and allowing the samples to cool to room temperature.
  • Table 2 shows the values of the temperature measurements.
  • Table 2 shows the temperatures of surfaces painted with paint with and without silicon particles incorporated. In that example, a difference of approximately 10 ° C is observed between the temperature of the copper plate coated with white paint and the copper plate coated with white paint containing 2% silicon particles. This data represents a 19% decrease in temperature on surfaces protected with a paint including 2% of silicon particles of medium size 2.5 microns.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The invention relates to a formulation characterised in that it comprises silicon microparticles having a size between 0.010 µm and 50 µm in diameter, and to the use thereof as a pigment that can absorb visible UV radiation and reflect IR radiation.

Description

Formulación que comprende microparticulas de silicio como pigmento absorbente de la radiación UV-visible y  Formulation comprising silicon microparticles as a pigment absorbing UV-visible radiation and
reflectante de la radiación IR  IR radiation reflective
Campo de la invención Field of the Invention
La presente invención hace referencia a preparados protectores de la radiación de la luz solar, eficaces contra la radiación UV-visible, asi como de la radiación térmica IR.  The present invention refers to sunscreen radiation protective preparations, effective against UV-visible radiation, as well as IR thermal radiation.
Estado de la técnica previo a la invención State of the art prior to the invention
La radiación solar que llega a la superficie de la tierra después de que una importante parte haya sido absorbida por la atmósfera, abarca un rango de longitudes de onda entre 295 nm y 2500 nm. Según la energía de los fotones que están involucrados se distinguen 3 principales zonas en el espectro: la zona del ultravioleta (295-400 nm) , la zona del visible (400-700nm) y la zona del infrarrojo (700-2500nm) .  The solar radiation that reaches the surface of the earth after an important part has been absorbed by the atmosphere, covers a range of wavelengths between 295 nm and 2500 nm. According to the energy of the photons that are involved, three main areas in the spectrum are distinguished: the ultraviolet zone (295-400 nm), the visible zone (400-700nm) and the infrared zone (700-2500nm).
La zona del visible representa aproximadamente el 50% de la energía emitida por la luz solar, el 45% corresponde al rango de los IR. Aunque sólo el 5% restante de la energía esté en forma de fotones ultravioleta, éstos son suficientemente energéticos para romper numerosos enlaces químicos de materiales orgánicos, compuestos principalmente de enlaces carbono-hidrógeno, como la madera, los plásticos, e incluso el asfalto, y producir su deterioro.  The visible zone represents approximately 50% of the energy emitted by sunlight, 45% corresponds to the IR range. Although only the remaining 5% of the energy is in the form of ultraviolet photons, these are energetic enough to break numerous chemical bonds of organic materials, mainly composed of carbon-hydrogen bonds, such as wood, plastics, and even asphalt, and produce its deterioration
Por otra parte, la radiación infrarroja tiene como consecuencia el calentamiento de las superficies expuestas. Concretamente, la absorción de los rayos de longitudes de onda comprendidas entre 700nm y llOOnm (infrarrojos cercanos) resulta en un aumento de la temperatura. Ese calentamiento tiende a favorecer las reacciones químicas que conducen al deterioro, pérdida de volumen o ablandamiento de los materiales. Además, continuos cambios de temperatura de mayor o menor amplitud pueden producir incluso la ruptura de los materiales debido a las tensiones a las que están sometidos. Aparte de la degradación de los elementos expuestos a la radiación térmica (como plásticos, maderas, cementos...) , el aumento de la temperatura induce un aumento de los costes y consumo energético en edificios y habitáculosOn the other hand, infrared radiation results in heating of exposed surfaces. Specifically, the absorption of the rays of wavelengths between 700nm and llOOnm (near infrared) results in an increase in temperature. This heating tends to favor the chemical reactions that lead to deterioration, loss of volume or softening of the materials. In addition, continuous changes in temperature of greater or lesser amplitude can even cause the material to rupture due to the stresses to which they are subjected. Apart from the degradation of the elements exposed to thermal radiation (such as plastics, wood, cement ...), the increase in temperature induces an increase in energy costs and consumption in buildings and homes
(como los de vehículos) expuestos a la radiación solar. En zonas urbanas, la irradiación del calor absorbido por las paredes y tejados de los edificios provoca un aumento de la temperatura del aire exterior. La utilización de pinturas, barnices y recubrimientos con propiedades reflectantes de la radiación térmica infrarroja puede minimizar esos inconvenientes. Incorporan en su composición partículas inorgánicas que no absorben sino que reflejan (o transmiten en su defecto) la radiación en el rango del infrarrojo cercano. Por lo tanto, el mecanismo es diferente al de las cerámicas aislantes o las estructuras laminares poliméricas que se caracterizan por su débil conductividad térmica. Se trata de materiales con índices de refracción más altos que el medio en el cual están dispersos en esa zona del espectro electromagnético, lo que provoca una reflexión difusa de los IR. En general, suelen ser óxidos metálicos(such as vehicles) exposed to solar radiation. In urban areas, the irradiation of heat absorbed by the walls and roofs of buildings causes an increase in the temperature of the outside air. The use of paints, varnishes and coatings with reflective properties of infrared thermal radiation can minimize these inconveniences. They incorporate in their composition inorganic particles that do not absorb but reflect (or otherwise transmit) the radiation in the near infrared range. Therefore, the mechanism is different from that of insulating ceramics or polymeric laminar structures that are characterized by their weak thermal conductivity. These are materials with higher refractive indices than the medium in which they are dispersed in that area of the electromagnetic spectrum, which causes a diffuse reflection of the IR. In general, they are usually metal oxides
(por ejemplo, en la pintura descrita en la patente US2005/0215685) que en ocasiones pueden incorporar partículas metálicas o aleaciones formando una estructura cristalina de tipo corindón-hematita (US6616744). (for example, in the paint described in US2005 / 0215685) that sometimes metal particles or alloys can be incorporated forming a crystalline structure of the corundum-hematite type (US6616744).
Confieren a las preparaciones estabilidad mecánica, opacidad y generalmente un color oscuro. No obstante, para lograr colores claros en pinturas y/o recubrimientos, se emplea frecuentemente el dióxido de titanio (Ti02) , aunque su efectividad como reflector de la radiación térmica IR sea mínima. Sin embargo, la patente GB2453343 propone incorporar alúmina blanca (en particular, corindón blanco) en la composición de pinturas, para obtener a la vez características de reflectividad infrarroja cercanas a las de partículas de metales o aleaciones, al tiempo que un color claro. They give the preparations mechanical stability, opacity and generally a dark color. However, to achieve light colors in paints and / or coatings, titanium dioxide (Ti0 2 ) is frequently used, although its effectiveness as a reflector of IR thermal radiation is minimal. However, patent GB2453343 proposes incorporating white alumina (in particular, white corundum) in the paint composition, in order to obtain at the same time infrared reflectivity characteristics close to those of metal or alloy particles, at the same time as a light color.
Existe toda una gama de compuestos cristalinos inorgánicos (bastantes de ellos usados ya en la industria cerámica) que además de tener buenas cualidades como pigmento proporcionando color, también presentan propiedades reflectoras del IR cercano. Bendiganavale et al. en "Recents Patents on Chemicals Engineering" han evaluado la reflectividad de varios de esos pigmentos comerciales. El color también puede ser proporcionado mediante el recubrimiento de pigmentos blancos (TÍO2, Zn) con moléculas orgánicas de colorantes, obteniendo dispersiones de elementos reflectantes de la radiación IRThere is a whole range of inorganic crystalline compounds (many of them already used in the ceramic industry) that in addition to having good qualities such as Pigment providing color, also have near IR reflective properties. Bendiganavale et al. in "Recents Patents on Chemicals Engineering" they have evaluated the reflectivity of several of these commercial pigments. Color can also be provided by coating white pigments (TIO 2 , Zn) with organic dye molecules, obtaining dispersions of IR radiation reflective elements.
(por el componente inorgánico) como el descrito por Yanagimoto et al. (US20036521038) o los copos de óxidos conductores o metales recubiertos de una capa transparente o coloreada que les da estabilidad mecánica o química(for the inorganic component) as described by Yanagimoto et al. (US20036521038) or flakes of conductive oxides or metals coated with a transparent or colored layer that gives them mechanical or chemical stability
(O'Keefe Eoin, US7455904B2) . Incluso en el caso de copos de aluminio y mica en los que se ha incorporado el color en la superficie metálica, pueden presentarse aplicaciones en camuflaje militar (Sutter Christopher et al., US6468647). (O'Keefe Eoin, US7455904B2). Even in the case of aluminum and mica flakes in which the color has been incorporated into the metal surface, military camouflage applications may be presented (Sutter Christopher et al., US6468647).
Algunos metales o semiconductores que poseen una alta reflectividad infrarroja son transparentes a la luz visible, pero únicamente en forma de lámina muy delgada, con lo que sólo se pueden utilizar en recubrimientos de ventanas. Como alternativa al oro, de alto coste, o a metales no nobles que carecen de estabilidad frente a la corrosión, se emplean películas delgadas de semiconductores como el estanato de cadmio (Cd2Sn04) dopados o no con cobreSome metals or semiconductors that have high infrared reflectivity are transparent to visible light, but only in the form of a very thin sheet, which can only be used in window coverings. As an alternative to gold, high cost, or non-noble metals that lack stability against corrosion, thin semiconductor films such as cadmium stannate (Cd 2 Sn0 4 ) doped or not doped with copper are used
(Haacke Gottfried, US3998752) o compuestos binarios como sulfuro de cobre, plata, níquel o estaño (Boletín de la Universidad Nacional Autónoma de México UNAM-DGCS-014, "Desarrollan en la UNAN filtros solares para edificaciones") . (Haacke Gottfried, US3998752) or binary compounds such as copper, silver, nickel or tin sulfide (Bulletin of the National Autonomous University of Mexico UNAM-DGCS-014, "They develop solar filters for buildings in UNAN").
Sin embargo, en el caso de los metales, otra aproximación empleada en la obtención de compuestos reflectantes de la radiación térmica para su incorporación en pinturas y formulaciones de recubrimientos es depositar una fina capa metálica (plata en general) uniforme sobre la superficie de las microesferas (rellenas o huecas) de vidrio (como las comercializadas por la empresa Sherperd Color Co . ) o recubrir copos de vidrio como los patentados por Merck GmbH (Anselman Ralf et al. US7226503), aunque la principal aplicación sea más bien para fines estéticos, ya que producen a la luz del sol un efecto resplandeciente. Sin embargo, la combinación de microesferas huecas (vidrio, cerámica, polímeros) con pigmentos reflectantes de la radiación IR disminuye la conductividad térmica y aumenta la reflectividad IR en las preparaciones (Shelhorn, Anthony D. , US20050126441) . However, in the case of metals, another approach used in obtaining thermal radiation reflective compounds for incorporation in paints and coatings formulations is to deposit a thin uniform metallic layer (silver in general) on the surface of the microspheres (filled or hollow) of glass (such as those marketed by the company Sherperd Color Co.) or coated glass flakes such as those patented by Merck GmbH (Anselman Ralf et al. US7226503), although the Main application is rather for aesthetic purposes, since they produce a glowing effect in sunlight. However, the combination of hollow microspheres (glass, ceramics, polymers) with pigments reflecting IR radiation decreases thermal conductivity and increases IR reflectivity in preparations (Shelhorn, Anthony D., US20050126441).
Otra motivación para el desarrollo de pigmentos capaces de reflejar la radiación infrarroja es su aplicación en pinturas y recubrimientos que protejan el material del calor que se desprende del fuego, factor fundamental además para evitar su propagación. En la mayoría de los casos se usan recubrimientos de color blanco o claro empleando para eso dióxido de titanio (Ti02) como pigmento. En la patente US5811180, Berdahl P. propone como pigmentos reflectores de la radiación infrarroja que emite el fuego, copos de aluminio (u otro metal) altamente reflectivo, o copos de mica recubiertos con una capa de espesor adecuado de un material de alto índice de refracción tal como Fe203, T1O2 (anatasa y rutilo), Cr203, ZnS, Sb203, Zr02 o ZnO. Algunos cálculos demuestran que el tamaño de partícula (1-2 mieras) revierte una crucial importancia en la eficiencia en reflejar la radiación infrarroja. Another motivation for the development of pigments capable of reflecting infrared radiation is its application in paints and coatings that protect the material from the heat that is released from the fire, a fundamental factor also to prevent its spread. In most cases, white or light coatings are used using titanium dioxide (Ti0 2 ) as pigment. In US5811180, Berdahl P. proposes as reflective pigments of infrared radiation emitting fire, highly reflective aluminum (or other metal) flakes, or mica flakes coated with a layer of suitable thickness of a high index material. refraction such as Fe 2 03, T1O 2 (anatase and rutile), Cr 2 03, ZnS, Sb 2 03, Zr0 2 or ZnO. Some calculations show that particle size (1-2 microns) reverses a crucial importance in efficiency in reflecting infrared radiation.
La presente invención propone el empleo de polvo de silicio metálico con micropartículas del tamaño adecuado para su aplicación como pigmento reflector de la radiación IR en la preparación de pinturas, barnices y recubrimientos protectores térmicos. Dichas preparaciones también absorben la radiación UV-visible (propiedad intrínseca del silicio) , proporcionando, con bajo coste, protección de cualquier superficie en un amplio rango de la radiación electromagnética .  The present invention proposes the use of metallic silicon powder with microparticles of the appropriate size for application as an IR radiation reflecting pigment in the preparation of paints, varnishes and thermal protective coatings. Such preparations also absorb UV-visible radiation (intrinsic property of silicon), providing, at low cost, protection of any surface over a wide range of electromagnetic radiation.
Descripción de la invención Description of the invention
La presente invención se refiere, en primer lugar a una formulación caracterizada por que comprende micropartículas de silicio con un tamaño comprendido entre 0,010 ym y 50 ym, preferentemente entre 0,1 ym y 50 ym de diámetro, más preferentemente, entre 0,1 ym y 20 ym y aún más preferentemente entre 1 ym y 20 ym. The present invention relates, first of all, to a formulation characterized in that it comprises silicon microparticles with a size between 0.010 and m and 50 and m, preferably between 0.1 and m and 50 and m in diameter, more preferably, between 0.1 and 20 and 20 and even more preferably between 1 and 20 and 20.
A efectos de esta patente, se entiende por microparticulas , partículas de formas variadas y tamaño micrométrico, preferentemente comprendido entre 0,010 ym y 50 ym, y más preferentemente entre 0,1 ym y 50 ym de diámetro. Dichas microparticulas de silicio se caracterizan por que presentan un alto Indice de refracción (n=3,5) .  For the purposes of this patent, microparticles, particles of varied shapes and micrometer size, preferably between 0.010 and m and 50 and m, and more preferably between 0.1 and 50 and m in diameter are understood. Said silicon microparticles are characterized by having a high refractive index (n = 3.5).
De manera preferida, el porcentaje de dichas microparticulas de silicio en la formulación se encuentra comprendido preferentemente, entre un 0,1% y un 30% en peso, más preferente 0,1% y un 10% en peso y más preferentemente, entre un 0,8% y un 5% en peso.  Preferably, the percentage of said silicon microparticles in the formulation is preferably comprised between 0.1% and 30% by weight, more preferably 0.1% and 10% by weight and more preferably, between a 0.8% and 5% by weight.
En una realización particular de la invención, dichas microparticulas pueden ser obtenidas a partir de polvo de silicio, preferentemente, mediante un proceso de molienda y de tamizado, preferentemente, via húmeda, para obtener tamaños de partícula comprendidos entre 0,010 ym y 50 ym, preferentemente entre 0,1 ym y 50 ym de diámetro, más preferentemente, entre 0,1 ym y 20 ym y aún más preferentemente entre 1 ym y 20 ym. Adicionalmente, de manera previa a su incorporación en la formulación, pueden haber sido sometidas a un tratamiento de modificación de su superficie, como por ejemplo, a un aumento del carácter hidrofilico, o al anclaje de algún pigmento proporcionando color. Asi por ejemplo, es posible adicionar anilinas, para dar color, o enlaces siloxanos para dar hidrofilicidad a las partículas.  In a particular embodiment of the invention, said microparticles can be obtained from silicon powder, preferably, by a grinding and sieving process, preferably, wet, to obtain particle sizes between 0.010 and m and 50 and m, preferably between 0.1 and m and 50 and m in diameter, more preferably, between 0.1 and 20 and 20 and even more preferably between 1 and 20 and 20. Additionally, prior to incorporation into the formulation, they may have undergone a surface modification treatment, such as an increase in hydrophilicity, or the anchoring of some pigment providing color. Thus, for example, it is possible to add anilines, to give color, or siloxane bonds to give hydrophilicity to the particles.
De este modo, en una realización particular de la invención, la formulación descrita puede asimismo comprender al menos un componente adicional activo frente a la radiación IR y la radiación UV-visible, siendo dicho componente preferentemente seleccionado entre pigmentos convencionales .  Thus, in a particular embodiment of the invention, the described formulation may also comprise at least one additional component active against IR radiation and UV-visible radiation, said component being preferably selected from conventional pigments.
Es asimismo objeto de esta invención el uso de dicha formulación como pigmento absorbente de la radiación UV- visible y reflectante de la radiación IR, en un rango de longitudes de onda comprendido entre 0,7 ym y 180 ym. En una realización particular de la invención, dicha radiación IR puede consistir en radiación del IR cercano o radiación térmica, entre longitudes de onda de 0,7 ym a 3 ym, preferentemente de 0,7 ym a 1,1 ym. En otra realización particular de la invención, dicha radiación IR puede consistir en radiación térmica emitida por el fuego, en el rango de 1 ym a 20 ym, y más particularmente en el rango de 1 ym a 8 ym. It is also the object of this invention to use said formulation as a pigment absorbing UV-visible radiation and reflecting IR radiation, in a range of wavelengths between 0.7 and 180 mm. In a particular embodiment of the invention, said IR radiation may consist of near IR radiation or thermal radiation, between wavelengths of 0.7 ym to 3 ym, preferably 0.7 ym to 1.1 ym. In another particular embodiment of the invention, said IR radiation may consist of thermal radiation emitted by fire, in the range of 1 ym to 20 ym, and more particularly in the range of 1 ym to 8 ym.
De este modo, es un objeto adicional de la invención, el uso de dicha formulación en preparaciones para la protección de superficies contra la radiación solar, y más concretamente, contra la radiación térmica IR y la radiación UV-visible. Es, por tanto, un objeto adicional de la invención un recubrimiento que comprenda como principio activo la formulación descrita, estando dicha formulación caracterizada por que comprende microparticulas de silicio de alto Índice de refracción y con un tamaño comprendido entre 0,010 ym y 50 ym de diámetro, preferentemente entre 0,1 ym y 50 ym. Así, es objeto de esta invención el uso de la formulación descrita para la preparación de composiciones protectoras del calor emitido por la radiación solar o por el fuego.  Thus, it is a further object of the invention, the use of said formulation in preparations for the protection of surfaces against solar radiation, and more specifically, against thermal IR radiation and UV-visible radiation. It is, therefore, a further object of the invention a coating comprising as active principle the described formulation, said formulation being characterized in that it comprises silicon microparticles of high refractive index and with a size between 0.010 and m and 50 and m in diameter , preferably between 0.1 and 50 ym. Thus, the use of the described formulation for the preparation of heat-protective compositions emitted by solar radiation or fire is object of this invention.
De manera preferida, es objeto de la invención el uso de dicha formulación como pigmento reflectante de la radiación IR, preferentemente, en forma de pinturas, barnices, lacas, masilla, cementos, fritas cerámicas, esmaltes, films poliméricos o textiles, etc....  Preferably, it is an object of the invention to use said formulation as a pigment reflecting IR radiation, preferably in the form of paints, varnishes, lacquers, putty, cements, ceramic frits, enamels, polymeric or textile films, etc. ..
Las superficies protegidas pueden ser elementos de edificaciones como tejados, paredes, pavimentos, ventanas, puertas, así como elementos en plástico, madera y superficies metálicas como los habitáculos de los vehículos civiles o militares, etc.  Protected surfaces can be elements of buildings such as roofs, walls, pavements, windows, doors, as well as elements in plastic, wood and metal surfaces such as the interiors of civil or military vehicles, etc.
Para la preparación de las pinturas, barnices, recubrimientos, etc., protectores de la radiación IR y UV- visible se puede recurrir a las formulaciones habituales de dichos productos, incorporando a las mismas las microparticulas de silicio del tamaño adecuado. Las pinturas pueden ser preferentemente plásticas con resinas vinílicas o acrílicas emulsionadas en agua, o pinturas grasas compuestas de resinas en aceite. For the preparation of paints, varnishes, coatings, etc., IR and UV-visible radiation protectors, the usual formulations of said products can be used, incorporating silicon microparticles of the appropriate size. The paints may preferably be plastic with resins vinyl or acrylic emulsified in water, or fatty paints composed of resins in oil.
En una realización particular en la que la formulación se emplee en preparaciones para la protección del calor del fuego, las micropartículas de silicio pueden actuar como pigmentos reflectantes de la radiación térmica emitida por el fuego en el rango comprendido entre 1 ym y 20 ym, y más preferentemente entre 1 ym y 8 ym.  In a particular embodiment in which the formulation is used in preparations for the protection of heat from fire, the silicon microparticles can act as pigments reflecting the thermal radiation emitted by the fire in the range between 1 and 20 and 20, and more preferably between 1 and 8 ym.
Asimismo, en una realización particular adicional en la que la formulación se emplee en preparaciones de pinturas, recubrimientos, etc. intumescentes, protectoras de la radiación térmica emitida por el fuego, se puede recurrir a las formulaciones habituales de dichos productos, pero incorporando microparticulas de silicio del tamaño adecuado como pigmento activo, o en combinación con agentes químicos retardantes de fuego, como los descritos en R.I. Ensminger (Pigment Handbook, vol. II, Temple C. Patton, John Wiley&Sons, 1988) .  Also, in a further particular embodiment in which the formulation is used in paint preparations, coatings, etc. intumescent, protective of thermal radiation emitted by fire, the usual formulations of these products can be used, but incorporating silicon microparticles of the appropriate size as active pigment, or in combination with chemical fire retardants, such as those described in R.I. Ensminger (Pigment Handbook, vol. II, Temple C. Patton, John Wiley & Sons, 1988).
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para un experto en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción, y en parte en la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y con carácter no limitante de la presente invención.  Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For a person skilled in the art, other objects, advantages and features of the invention will be derived partly from the description, and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and not by way of limitation of the present invention.
Descripción de las figuras Description of the figures
La figura 1 muestra la distribución del diámetro (centrado en 1 miera) de las partículas de polvo de silicio utilizadas en el ejemplo 1 y en el ejemplo 2.  Figure 1 shows the diameter distribution (centered at 1 millimeter) of the silicon powder particles used in example 1 and example 2.
La figura 2 muestra una sección eficaz de dispersión de Mié (scattering Mié) promediada, calculada de acuerdo con la distribución de diámetros de las partículas de la figura 1, y considerando una forma esférica de las partículas. La figura 3 muestra la distribución del diámetro (centrado en 2,5 mieras) de las partículas de polvo de silicio utilizadas en el ejemplo 3 y en el ejemplo 4. Figure 2 shows an effective Mié scattering section, calculated according to the particle diameter distribution of Figure 1, and considering a spherical shape of the particles. Figure 3 shows the diameter distribution (centered on 2.5 microns) of the silicon powder particles used in example 3 and example 4.
La figura 4 muestra una sección eficaz de dispersión de Mié (scattering Mié) promediada, calculada de acuerdo con la distribución de diámetros de las partículas de la figura 3, y considerando una forma esférica de las partículas.  Figure 4 shows an effective Mié scattering section, calculated according to the particle diameter distribution of Figure 3, and considering a spherical shape of the particles.
La figura 5 muestra una comparativa entre espectros ópticos de transmisión obtenidos en el rango del IR cercano de muestras preparadas en forma de emulsión aceite/agua (O/W, del inglés, Oil in Water) , con micropartículas de silicio (0,8% en peso con la distribución de tamaños de la figura 1). Asimismo, se presenta una muestra preparada según el mismo procedimiento con 0,8% en peso de partículas de titania (T1O2, P-25 Degussa) sobre substratos de vidrio (11 mg/cm2) . Figure 5 shows a comparison between optical transmission spectra obtained in the near IR range of samples prepared in the form of an oil / water emulsion (O / W), with silicon microparticles (0.8% by weight with the size distribution of figure 1). Likewise, a sample prepared according to the same procedure with 0.8% by weight of titania particles (T1O 2 , P-25 Degussa) on glass substrates (11 mg / cm 2 ) is presented.
La figura 6 muestra una comparativa entre espectros ópticos de transmisión obtenidos en el rango del IR cercano de muestras preparadas en forma de film de PVA (Polivinil alcohol, 98% hidrolizado) , y un film de PVA con micropartículas de silicio incorporadas (2% en peso con la distribución de tamaños de la figura 1) .  Figure 6 shows a comparison between optical transmission spectra obtained in the near IR range of samples prepared in the form of PVA film (Polyvinyl alcohol, 98% hydrolyzed), and a PVA film with embedded silicon microparticles (2% in weight with the size distribution of figure 1).
La figura 7 muestra una comparativa entre espectros ópticos de transmisión obtenidos en el rango del IR cercano de una muestra de pintura blanca comercial, y una muestra con la misma pintura blanca comercial con micropartículas de silicio incorporadas (2% en peso con la distribución de tamaños de la figura 3) .  Figure 7 shows a comparison between optical transmission spectra obtained in the near IR range of a commercial white paint sample, and a sample with the same commercial white paint with embedded silicon microparticles (2% by weight with the size distribution of figure 3).
La figura 8 muestra una comparativa entre espectros ópticos de transmisión obtenidos en el rango del IR cercano de una muestra de un barniz comercial, y una muestra con el mismo barniz comercial incorporando micropartículas de silicio en distintos porcentajes (2% y 5% en peso, con la distribución de tamaños de la figura 3) .  Figure 8 shows a comparison between optical transmission spectra obtained in the near IR range of a sample of a commercial varnish, and a sample with the same commercial varnish incorporating silicon microparticles in different percentages (2% and 5% by weight, with the size distribution of figure 3).
Se presentan medidas de transmisión óptica, así como experimentos de medida de la reflectividad de las preparaciones . Ejemplos Optical transmission measurements are presented, as well as experiments measuring the reflectivity of the preparations. Examples
A continuación se ilustra la presente invención mediante distintos ensayos, los cuales ponen de manifiesto la especificidad y efectividad de las micropartículas de silicio como pigmento reflectante de la radiación térmica del IR cercano. A través de estos ejemplos, se presentan las propiedades ópticas de varias preparaciones incorporando microparticulas de silicio de distintos tamaños medios. Se han realizado medidas de transmitancia óptica en el infrarrojo mediante espectroscopia con transformada de Fourier (FTIR) .  The present invention is illustrated below by means of different tests, which show the specificity and effectiveness of silicon microparticles as a pigment reflecting the thermal radiation of the near IR. Through these examples, the optical properties of various preparations are presented incorporating silicon microparticles of different average sizes. Infrared optical transmittance measurements have been performed using Fourier transform spectroscopy (FTIR).
Las medidas ópticas presentadas se han realizado sobre capas finas de las distintas preparaciones conteniendo las partículas de pigmentos de silicio, de idéntico espesor, sobre substratos de vidrio, o sueltas.  The optical measurements presented have been made on thin layers of the different preparations containing the particles of silicon pigments, of identical thickness, on glass substrates, or loose.
Las cantidades de preparación aplicadas sobre los substratos varían entre 2 y 11 mg/cm2. The amounts of preparation applied on the substrates vary between 2 and 11 mg / cm 2 .
Las microparticulas de silicio empleadas se obtuvieron por tratamiento de polvo (o "finos") de silicio depurado de tamaño de partícula inferior a 100 ym (Ferroatlantica, S.A) . El polvo fue sometido a una molienda para obtener partículas lo más sueltas posible y tamaños más pequeños, con el fin de optimizar el rendimiento en el proceso siguiente de tamizado por vía húmeda. En los siguientes ejemplos se recogieron partículas de silicio de tamaño medio de 1 ym (figura 1) y 2,5 ym (figura 3) . Si se asimilan las partículas a esferas, se puede calcular la sección de scattering Mié promedio a la que dan lugar en el infrarrojo cercano y que es responsable de apantallar la radiación infrarroja solar. La figura 1 muestra la distribución del diámetro (centrado en 1 miera) de las partículas de polvo de silicio utilizadas en el ejemplo 1 y en el ejemplo 2 y la figura 3 muestra la distribución del diámetro (centrado en 2,5 mieras) de las partículas de polvo de silicio utilizadas en el ejemplo 3 y en el ejemplo 4. En las figuras 2 y 4 se ilustra ese scattering para partículas de tamaño 1 mm y 2,5 ym respectivamente. En concreto, la figura 2 muestra una sección eficaz de dispersión de Mié (scattering Mié) promediada, calculada de acuerdo con la distribución de diámetros de las partículas de la figura 1, y considerando una forma esférica de las partículas. Del mismo modo, la figura 4 muestra una sección eficaz de dispersión de Mié (scattering Mié) promediada, calculada de acuerdo con la distribución de diámetros de las partículas de la figura 3, y considerando una forma esférica de las partículas. The silicon microparticles used were obtained by treatment of dust (or "fines") of purified silicon of particle size smaller than 100 ym (Ferroatlantica, SA). The powder was subjected to grinding to obtain particles as loose as possible and smaller sizes, in order to optimize the performance in the next wet sieving process. In the following examples, silicon particles of average size of 1 and m (figure 1) and 2.5 ym (figure 3) were collected. If the particles are assimilated into spheres, the average Wed scattering section to which they give rise in the near infrared and which is responsible for shielding the solar infrared radiation can be calculated. Figure 1 shows the diameter distribution (centered at 1 m) of the silicon powder particles used in example 1 and example 2 and Figure 3 shows the diameter distribution (centered at 2.5 microns) of the Silicon powder particles used in example 3 and example 4. Figures 2 and 4 illustrate this scattering for particles of size 1 mm and 2.5 mm respectively. Specifically, Figure 2 shows an effective Mié scattering section, calculated according to the particle diameter distribution of Figure 1, and considering a spherical shape of the particles. Similarly, Figure 4 shows an effective Mié scattering section, calculated according to the particle diameter distribution of Figure 3, and considering a spherical shape of the particles.
El análisis químico promedio de las partículas de silicio empleadas es el siguiente:  The average chemical analysis of the silicon particles used is as follows:
Figure imgf000011_0001
Figure imgf000011_0001
La tabla 1 muestra las cantidades de impurezas en ppm de las partículas de polvo de silicio de partida empleado. Table 1 shows the amounts of impurities in ppm of the starting silicon powder particles used.
Ejemplo 1 Example 1
En este ejemplo se muestran las propiedades ópticas de una emulsión de aceite en agua (O/W) con partículas de silicio como pigmento reflectante de la radiación térmica infrarroja en el rango entre 850 nm y 3 mieras. Se muestran los resultados de las transmisiones ópticas de la preparación en placas de vidrio que se comparan con los de una preparación idéntica pero incorporando partículas de titania .  This example shows the optical properties of an oil-in-water (O / W) emulsion with silicon particles as a pigment reflecting infrared thermal radiation in the range between 850 nm and 3 microns. The results of the optical transmissions of the preparation on glass plates are shown, which are compared with those of an identical preparation but incorporating particles of titania.
Preparación de la emulsión de aceite en agua (O/W) Se disuelve un 0,3% en peso de metilcelulosa en agua a 70°C, bajo agitación. Una vez obtenida una disolución homogénea, se añade un 4% en peso de monoestearato de glicérilo autoemulsionable, manteniendo la agitación. Preparation of the oil-in-water emulsion (O / W) 0.3% by weight of methylcellulose is dissolved in water at 70 ° C, with stirring. Once a homogeneous solution is obtained, 4% by weight of self-emulsifiable glyceryl monostearate is added, maintaining stirring.
Las partículas de silicio con la distribución de tamaños según la curva de la figura 1, obtenidas después de un proceso de molienda y de tamizado de polvo de silicio, se añadieron a la preparación bajo fuerte agitación mecánica (3000 rpm) . Se empleó un 0,8% en peso respecto al peso total de la emulsión. Silicon particles with the size distribution according to the curve of Figure 1, obtained after a process of grinding and sieving silicon powder, were added to the preparation under strong stirring. mechanical (3000 rpm). 0.8% by weight with respect to the total weight of the emulsion was used.
Al cabo de 20 minutos se añadió poco a poco aceite mineral (entre 20-30% en peso respecto al peso total) manteniendo una agitación enérgica durante 15 minutos más.  After 20 minutes, mineral oil was added gradually (between 20-30% by weight with respect to the total weight) while maintaining vigorous stirring for an additional 15 minutes.
Medidas ópticas en el rango del infrarrojo Optical measurements in the infrared range
Para las medidas ópticas se extiende uniformemente 11 mg/cm2 de preparación sobre un porta-objeto de vidrio. For optical measurements, 11 mg / cm 2 of preparation is spread evenly on a glass object holder.
Se analizaron ópticamente las muestras preparadas en forma de emulsión (O/W) , conteniendo un 0,8% en peso de microparticulas de silicio de la presente invención, por espectroscopia de infrarrojos, en el rango comprendido entre 0,85 ym y 3 ym, considerando el substrato de vidrio como referencia. Se observa una muy buena atenuación de la radiación infrarroja térmica (infrarrojo cercano), obteniéndose valores de transmisión óptica variando entre 4% y 10% a lo largo de rango medido (ver figura 5) .  Samples prepared in the form of an emulsion (O / W), containing 0.8% by weight of silicon microparticles of the present invention, were analyzed optically by infrared spectroscopy, in the range between 0.85 and m and 3 and m , considering the glass substrate as a reference. Very good attenuation of thermal infrared radiation (near infrared) is observed, obtaining optical transmission values varying between 4% and 10% over the measured range (see figure 5).
A titulo comparativo, se preparó una muestra según el mismo procedimiento de preparación y de caracterización que el detallado en el ejemplo 1, pero substituyendo las microparticulas de silicio por microparticulas de titania (TÍO2, P-25 Degussa) , es decir, con el mismo porcentaje en peso que el de las microparticulas de silicio. Se muestran en los resultados experimentales de transmisión óptica obtenidos . By comparison, a sample was prepared according to the same preparation and characterization procedure as detailed in example 1, but replacing the silicon microparticles with titania microparticles (TIO 2 , P-25 Degussa), that is, with the same weight percentage as silicon microparticles. They are shown in the experimental results of optical transmission obtained.
En la Figura 5 se comparan los resultados de transmisión óptica medida en el rango del IR cercano entre 0,85 ym y 3 ym, de muestras preparadas en forma de una emulsión aceite/agua (11 mg/cm2 sobre vidrio), conteniendo partículas de silicio (0,8% en peso con la distribución de tamaños de la figura 1), con una emulsión idéntica preparada con partículas de titania (T1O2, P-25 Degussa) en el mismo porcentaje en peso (0,8%) que el de las partículas de silicio y con el mismo espesor sobre substratos de vidrio (llmg/cm2) . Se observa como la emulsión con partículas de silicio produce una mayor atenuación de la radiación infrarroja que la emulsión con partículas de titania . Figure 5 compares the results of optical transmission measured in the near IR range between 0.85 and 3 and 3 m, of samples prepared in the form of an oil / water emulsion (11 mg / cm 2 on glass), containing particles of silicon (0.8% by weight with the size distribution of Figure 1), with an identical emulsion prepared with titania particles (T1O 2 , P-25 Degussa) in the same percentage by weight (0.8%) than that of silicon particles and with the same thickness on glass substrates (llmg / cm 2 ). It is observed how the emulsion with silicon particles produces a greater attenuation of the infrared radiation than the emulsion with titania particles.
Ejemplo 2 Example 2
En este ejemplo se describe la preparación de un film polimérico conteniendo micropartículas de silicio como pigmento reflectante del infrarrojo, y sus propiedades en el rango del infrarrojo cercano entre 0,85 ym y 4 ym. Se muestran los resultados de las transmisiones ópticas de un film con y sin partículas de silicio incorporadas.  This example describes the preparation of a polymeric film containing silicon microparticles as an infrared reflective pigment, and its properties in the near infrared range between 0.85 and m and 4 and m. The results of the optical transmissions of a film with and without incorporated silicon particles are shown.
Preparación del film de polivinil alcohol (PVA) Preparation of polyvinyl alcohol (PVA) film
Se disuelven 30 mg de polivinil alcohol (98% hidrolizado) en 3 mi de agua destilada. Se vierte la disolución en una caja de plástico de dimensiones 32x32x7 mm, y se deja secar a 70°C, antes de despegar el film de PVA uniforme que se forma.  30 mg of polyvinyl alcohol (98% hydrolyzed) are dissolved in 3 ml of distilled water. The solution is poured into a plastic box of dimensions 32x32x7 mm, and allowed to dry at 70 ° C, before peeling off the uniform PVA film that forms.
Preparación del film de PVA con partículas de silicio Se disuelven 30 mg de polivinil alcohol (98% hidrolizado) en 3 mi de agua destilada. Se añade entonces bajo agitación un 2% en peso de partículas de silicio de tamaño medio centrado en 1 ym según la distribución mostrada en la curva de la figura 1 y obtenidas después de un proceso de molienda y tamizado de polvo de silicio cuya composición química se muestra en la tabla 1. Preparation of the PVA film with silicon particles 30 mg of polyvinyl alcohol (98% hydrolyzed) are dissolved in 3 ml of distilled water. 2% by weight of medium-sized silicon particles centered at 1 and m are then added under stirring according to the distribution shown in the curve of Figure 1 and obtained after a silicon powder milling and sieving process whose chemical composition is shown in table 1.
Se vierte la disolución en una caja de plástico de dimensiones 32x32x7 mm, y se deja secar a 70°C antes de despegar el film uniforme que se forma de color marrón.  The solution is poured into a plastic box of dimensions 32x32x7 mm, and allowed to dry at 70 ° C before peeling off the uniform film that forms brown.
Medidas ópticas en el rango del infrarrojo Optical measurements in the infrared range
Se analizaron ópticamente tanto la muestra en forma de film de PVA, como el film de PVA con un 2% en peso de partículas de silicio como pigmentos reflectante IR. Las medidas se realizaron por espectroscopia de infrarrojos en el rango comprendido entre 0,85 ym y 4 ym, considerando el aire como referencia. En la figura 6 se comparan los resultados de transmisión óptica en el rango infrarrojo cercano de la muestra en forma de film de PVA (Polivinil alcohol, 98% hidrolizado) , con la muestra de film de PVA con un 2% en peso de partículas de silicio con la distribución de tamaños de la figura 1 como pigmento reflectante de IR. Se observa como la introducción de partículas de silicio en la composición del film polimérico baja drásticamente la transmisión óptica en el rango del infrarrojo cercano y medio . Both the sample in the form of PVA film and the PVA film with 2% by weight of silicon particles and IR reflective pigments were optically analyzed. The measurements were made by infrared spectroscopy in the range between 0.85 and m and 4 and m, considering air as a reference. Figure 6 compares the results of optical transmission in the near infrared range of the sample in the form of PVA film (Polyvinyl alcohol, 98% hydrolyzed), with the sample of PVA film with 2% by weight of particles of silicon with the size distribution of Figure 1 as IR reflective pigment. It is observed how the introduction of silicon particles in the polymeric film composition drastically lowers the optical transmission in the near and middle infrared range.
Ejemplo 3 Example 3
En este ejemplo se describe la preparación de una muestra compuesta de una pintura blanca acuosa a la cual se incorpora un 2% de partículas de silicio de tamaño medio centrado en 2,5 ym y con una distribución de tamaños ilustrada en la figura 3. Se muestran las propiedades ópticas en el rango de los infrarrojos medidas entre 0,85 ym y 2 ym.  This example describes the preparation of a sample composed of an aqueous white paint to which 2% of medium-sized silicon particles centered at 2.5 and m and with a size distribution illustrated in Figure 3 are incorporated. show the optical properties in the range of infrared measured between 0.85 and 2 and 2.
Preparación de una pintura acuosa con partículas de silicio Preparation of an aqueous paint with silicon particles
Se parte de una pintura acuosa blanca comercial a la cual se añade bajo agitación un 2% en peso de partículas de silicio de distribución de tamaños según la curva de la figura 3 y centrado en 2,5 mieras. Las partículas de silicio con dicha distribución se obtuvieron mediante un proceso de molienda y tamizado de polvo de silicio cuya composición está definida en la tabla 1.  It is based on a commercial white aqueous paint to which 2% by weight of silicon particles of size distribution are added under stirring according to the curve of Figure 3 and centered on 2.5 microns. The silicon particles with said distribution were obtained by a process of grinding and sieving silicon powder whose composition is defined in Table 1.
En la figura 7 se muestran los resultados de transmisión óptica en el rango IR cercano de la muestra de pintura blanca acuosa comercial y de la misma pintura incorporando partículas de silicio en un 2% en peso con la distribución de tamaños de la figura 3. Se observa una atenuación de entre 8% y 36% de la radiación infrarroja superior para la muestra de pintura conteniendo las partículas de silicio que actúan como pigmentos reflectores de la radiación infrarroja. Ejemplo 4 The optical transmission results in the near IR range of the commercial aqueous white paint sample and the same paint incorporating silicon particles by 2% by weight with the size distribution of Figure 3 are shown in Figure 7. observes an attenuation of between 8% and 36% of the upper infrared radiation for the paint sample containing silicon particles that act as pigments reflecting infrared radiation. Example 4
En este ejemplo se describe el empleo de partículas de silicio de la presente invención como pigmento reflectante de la radiación IR en barnices. Se muestran los resultados de las transmisiones ópticas de las preparaciones y se comparan en función del porcentaje de partículas de silicio introducidas en el barniz.  This example describes the use of silicon particles of the present invention as a pigment reflecting IR radiation in varnishes. The results of the optical transmissions of the preparations are shown and compared according to the percentage of silicon particles introduced into the varnish.
Preparación de un barniz con distintas porcentajes de micropartículas de silicio Preparation of a varnish with different percentages of silicon microparticles
Se parte de un barniz acrílico comercial al cual se añade bajo agitación 2% en peso de partículas de silicio de 2,5 ym con distribución de tamaño según la curva de la figura 3. Dichas partículas se obtuvieron mediante un proceso de molienda y tamizado antes de su incorporación en el barniz.  It is based on a commercial acrylic varnish to which 2% by weight of 2.5 and m silicon particles with size distribution according to the curve of Figure 3 is added under stirring. Said particles were obtained by a milling and sieving process before of its incorporation in the varnish.
Se prepara otro muestra según el mismo procedimiento pero aumentando al 5% el porcentaje en peso de micropartículas de silicio incorporadas en la preparación.  Another sample is prepared according to the same procedure but increasing the percentage by weight of silicon microparticles incorporated in the preparation to 5%.
Medidas ópticas en el rango del infrarrojo Optical measurements in the infrared range
Para las medidas ópticas, se extiende 8 mg/cm2 de las preparaciones sobre un porta- objeto de vidrio. For optical measurements, 8 mg / cm 2 of the preparations are spread on a glass holder.
Se analizaron ópticamente las muestras de barnices con y sin partículas de silicio objeto de la invención, por espectroscopia de infrarrojos en el rango comprendido entre 0,85 ym y 2,5 ym, considerando los substratos de vidrio como referencia.  Samples of varnishes with and without silicon particles object of the invention were optically analyzed, by infrared spectroscopy in the range between 0.85 and m and 2.5 and m, considering the glass substrates as reference.
La figura 8 ofrece una comparativa de la atenuación de la radiación infrarroja en el rango del IR cercano de una muestra de un barniz comercial, y una muestra con el mismo barniz comercial incorporando micropartículas de silicio en distintos porcentajes (2% y 5% en peso, con la distribución de tamaños de la figura 3, y con un tamaño medio 2,5 mieras) . A partir de longitudes de ondas superiores a 1 miera, dicha atenuación es de cerca de 50% para una carga del 2% en peso de partículas de silicio, y de aproximadamente 90% para un barniz con 5% en peso de partículas de silicio, indicando la efectividad como pigmento reflectante de la radiación infrarroja de las partículas de silicio de la presente invención. Figure 8 offers a comparison of the infrared radiation attenuation in the near IR range of a sample of a commercial varnish, and a sample with the same commercial varnish incorporating silicon microparticles in different percentages (2% and 5% by weight , with the size distribution of Figure 3, and with an average size of 2.5 microns). From wavelengths greater than 1 m, this attenuation is about 50% for a load of 2% by weight of silicon particles, and of approximately 90% for a varnish with 5% by weight of silicon particles, indicating the effectiveness as a pigment reflecting the infrared radiation of the silicon particles of the present invention.
Ejemplo 5 Example 5
En este último ejemplo de la presente invención se describe un experimento para evaluar la protección térmica aportada por una muestra que incorpora en su composición partículas de silicio como pigmento reflectante de la radiación infrarroja térmica. Para ese propósito se utilizaron las muestras cuya preparación y caracterización se han descrito en el ejemplo 3 de este documento.  In this last example of the present invention, an experiment is described to evaluate the thermal protection provided by a sample that incorporates silicon particles in its composition as a reflective pigment of thermal infrared radiation. For that purpose, samples whose preparation and characterization have been described in example 3 of this document were used.
Se recubre una placa de cobre (conductor térmico) con una capa de 8 mg/cm2 de la pintura blanca acuosa empleada en el ejemplo 3. En otra placa idéntica se depositaron 6 mg/cm2 de la misma pintura blanca conteniendo 2% en peso de partículas de silicio, descrita en el ejemplo 3. A copper plate (thermal conductor) is coated with a layer of 8 mg / cm 2 of the aqueous white paint used in example 3. In another identical plate 6 mg / cm 2 of the same white paint containing 2% was deposited. weight of silicon particles, described in example 3.
Se calentaron las 2 muestras mediante una lámpara de Xenón colocada a una distancia equidistante de las 2 muestras. Al cabo de 1 minuto se midió la temperatura en la parte trasera de las muestras, repitiendo varias veces el experimento y dejando enfriar las muestras hasta temperatura ambiente.  The 2 samples were heated by a Xenon lamp placed at an equidistant distance from the 2 samples. After 1 minute the temperature at the back of the samples was measured, repeating the experiment several times and allowing the samples to cool to room temperature.
En la tabla 2 se recogen los valores de las medidas de temperatura .  Table 2 shows the values of the temperature measurements.
Figure imgf000016_0001
Figure imgf000016_0001
La tabla 2 muestra las temperaturas de superficies pintadas con pintura con y sin partículas de silicio incorporadas . En ese ejemplo se constata una diferencia de aproximadamente 10°C entre la temperatura de la placa de cobre recubierta con la pintura blanca y la placa de cobre recubierta con la pintura blanca conteniendo 2% de partículas de silicio. Ese dato representa una bajada del 19% de la temperatura en las superficies protegidas con una pintura incluyendo un 2% de partículas de silicio de tamaño medio 2,5 mieras. Table 2 shows the temperatures of surfaces painted with paint with and without silicon particles incorporated. In that example, a difference of approximately 10 ° C is observed between the temperature of the copper plate coated with white paint and the copper plate coated with white paint containing 2% silicon particles. This data represents a 19% decrease in temperature on surfaces protected with a paint including 2% of silicon particles of medium size 2.5 microns.

Claims

Reivindicaciones Claims
1. Formulación caracterizada por que comprende microparticulas de silicio con un tamaño comprendido entre 0,01 ym y 50 ym de diámetro. 1. Formulation characterized in that it comprises silicon microparticles with a size between 0.01 and m and 50 and m in diameter.
2. Formulación, de acuerdo a la reivindicación 1, donde el tamaño de las microparticulas de silicio se encuentra comprendido entre 0,1 ym y 50 ym de diámetro. 2. Formulation according to claim 1, wherein the size of the silicon microparticles is between 0.1 and m and 50 and m in diameter.
3. Formulación, de acuerdo a la reivindicación 1, donde el tamaño de las microparticulas de silicio se encuentra comprendido entre 0,1 ym y 20 ym de diámetro. 3. Formulation according to claim 1, wherein the size of the silicon microparticles is between 0.1 and 20 and 20 in diameter.
4. Formulación, de acuerdo a una cualquiera de las reivindicaciones anteriores, donde el porcentaje de las microparticulas de silicio se encuentra comprendido entre un 0,1% y un 30% en peso. 4. Formulation according to any one of the preceding claims, wherein the percentage of silicon microparticles is comprised between 0.1% and 30% by weight.
5. Formulación, de acuerdo a la reivindicación 4, donde el porcentaje de las microparticulas de silicio se encuentra comprendido entre un 0,1% y un 10 % en peso. 5. Formulation according to claim 4, wherein the percentage of silicon microparticles is between 0.1% and 10% by weight.
6. Formulación, de acuerdo a la reivindicación 4, donde el porcentaje de las microparticulas de silicio se encuentra comprendido entre un 0,8% y un 5% en peso. 6. Formulation according to claim 4, wherein the percentage of silicon microparticles is between 0.8% and 5% by weight.
7. Formulación, de acuerdo a una cualquiera de las reivindicaciones anteriores, donde las microparticulas de silicio comprenden al menos un componente adicional activo frente a la radiación IR y frente a la radiación UV- visible . 7. Formulation according to any one of the preceding claims, wherein the silicon microparticles comprise at least one additional component active against IR radiation and against UV-visible radiation.
8. Formulación, de acuerdo a la reivindicación 7, donde dicho componente activo se trata de un pigmento. 8. Formulation according to claim 7, wherein said active component is a pigment.
9. Uso de una formulación, de acuerdo a una cualquiera de las reivindicaciones 1 a 8, como pigmento absorbente de la radiación UV-visible y reflectante de la radiación IR. 9. Use of a formulation according to any one of claims 1 to 8, as a pigment absorbing UV-visible radiation and reflecting IR radiation.
10. Uso, de acuerdo a la reivindicación 9, donde la radiación IR se trata de radiación del IR cercano en un rango de longitudes de onda comprendido entre 0,7 ym y 3 ym. 10. Use according to claim 9, wherein the IR radiation is about near-IR radiation in a range of wavelengths between 0.7 and 3 and 3.
11. Uso, de acuerdo a la reivindicación 9, donde la radiación IR se trata de radiación del IR cercano en un rango de longitudes de onda comprendido entre 0,7 ym y 1,1 ym. 11. Use according to claim 9, wherein the IR radiation is about near IR radiation in a range of wavelengths between 0.7 and 1.1 mm.
12. Uso, de acuerdo a la reivindicación 9, donde la radiación IR se trata de radiación térmica emitida por el fuego en un rango de longitudes de onda comprendido entre 1 ym y 20 ym. 12. Use according to claim 9, wherein the IR radiation is heat radiation emitted by the fire in a wavelength range between 1 and 20 and 20 m.
13. Uso, de acuerdo a la reivindicación 11 y 12, donde la radiación térmica emitida por el fuego comprende un rango de longitudes de onda de entre 1 ym y 8 ym. 13. Use according to claim 11 and 12, wherein the thermal radiation emitted by the fire comprises a range of wavelengths between 1 and m and 8 and m.
14. Uso de una formulación de acuerdo a una cualquiera de las reivindicaciones 1 a 8, para la preparación de composiciones protectoras del calor emitido por la radiación solar y/o por el fuego. 14. Use of a formulation according to any one of claims 1 to 8, for the preparation of heat-protective compositions emitted by solar radiation and / or fire.
15. Uso de una formulación de acuerdo a una cualquiera de las reivindicaciones 1 a 8, para la elaboración de un producto seleccionado de un grupo que consiste en pinturas, barnices, lacas, masilla, cementos, fritas cerámicas, esmaltes y films poliméricos o textiles, asi como cualquiera de sus combinaciones. 15. Use of a formulation according to any one of claims 1 to 8, for the preparation of a product selected from a group consisting of paints, varnishes, lacquers, putty, cements, ceramic frits, enamels and polymeric or textile films , as well as any of its combinations.
16. Uso, de acuerdo a la reivindicación 15, donde el producto es empleado para su aplicación en tejados, paredes, pavimentos, ventanas, puertas y elementos en plástico, madera y superficies metálicas, asi como cualquiera de sus combinaciones. 16. Use according to claim 15, wherein the product is used for application on roofs, walls, floors, windows, doors and elements in plastic, wood and metal surfaces, as well as any combination thereof.
17. Uso, de acuerdo a la reivindicación 14, donde cuando la preparación es de una composición protectora del calor emitido por el fuego, la formulación es empleada sola o en combinación con al menos un compuesto químico retardante del fuego. 17. Use according to claim 14, wherein when The preparation is of a protective composition of heat emitted by fire, the formulation is used alone or in combination with at least one chemical fire retardant compound.
PCT/ES2012/070034 2011-01-25 2012-01-24 Formulation comprising silicon microparticles, as a pigment that can absorb visible uv radiation and reflect ir radiation WO2012101306A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201130077 2011-01-25
ES201130077A ES2386126B1 (en) 2011-01-25 2011-01-25 FORMULATION THAT INCLUDES SILICON MICROPARTURES AS ABSORBING PIGMENT OF UV-VISIBLE RADIATION AND REFLECTANT OF IR RADIATION.

Publications (2)

Publication Number Publication Date
WO2012101306A1 true WO2012101306A1 (en) 2012-08-02
WO2012101306A4 WO2012101306A4 (en) 2012-09-20

Family

ID=46547481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070034 WO2012101306A1 (en) 2011-01-25 2012-01-24 Formulation comprising silicon microparticles, as a pigment that can absorb visible uv radiation and reflect ir radiation

Country Status (2)

Country Link
ES (1) ES2386126B1 (en)
WO (1) WO2012101306A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2946793A1 (en) 2014-05-23 2015-11-25 Universitat Rovira I Virgili Silicon particles targeting tumor cells

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011251A1 (en) * 2001-08-01 2003-02-13 Psimedica Limited Pulmonary formulation
CN1743554A (en) * 2005-10-15 2006-03-08 邢台路桥建设总公司 Colour functional road curb stone
CN1834173A (en) * 2005-03-16 2006-09-20 嘉善维克托塑化有限公司 Insulating electrostatic powdered paint and its prodn. technique
WO2008155438A1 (en) * 2007-06-18 2008-12-24 Consejo Superior De Investigaciones Cientificas Microspheres of silicon and photonic sponges, method for production and uses thereof in the manufacture of photonic devices
WO2010038065A2 (en) * 2008-09-30 2010-04-08 Intrinsiq Materials Global Limited Colouring techniques
WO2011092368A1 (en) * 2010-02-01 2011-08-04 Consejo Superior De Investigaciones Científicas (Csic) Photoprotective composition against uv/vis/ir radiation with silicon microspheres as an active compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003011251A1 (en) * 2001-08-01 2003-02-13 Psimedica Limited Pulmonary formulation
CN1834173A (en) * 2005-03-16 2006-09-20 嘉善维克托塑化有限公司 Insulating electrostatic powdered paint and its prodn. technique
CN1743554A (en) * 2005-10-15 2006-03-08 邢台路桥建设总公司 Colour functional road curb stone
WO2008155438A1 (en) * 2007-06-18 2008-12-24 Consejo Superior De Investigaciones Cientificas Microspheres of silicon and photonic sponges, method for production and uses thereof in the manufacture of photonic devices
WO2010038065A2 (en) * 2008-09-30 2010-04-08 Intrinsiq Materials Global Limited Colouring techniques
WO2011092368A1 (en) * 2010-02-01 2011-08-04 Consejo Superior De Investigaciones Científicas (Csic) Photoprotective composition against uv/vis/ir radiation with silicon microspheres as an active compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2946793A1 (en) 2014-05-23 2015-11-25 Universitat Rovira I Virgili Silicon particles targeting tumor cells
WO2015177340A1 (en) * 2014-05-23 2015-11-26 Universitat Rovira I Virgili Silicon particles targeting tumor cells

Also Published As

Publication number Publication date
WO2012101306A4 (en) 2012-09-20
ES2386126A1 (en) 2012-08-09
ES2386126B1 (en) 2013-06-21

Similar Documents

Publication Publication Date Title
US7455904B2 (en) Thermal infrared reflective pigments for coatings
ES2600002T3 (en) Titanium dioxide
US5811180A (en) Pigments which reflect infrared radiation from fire
Chen et al. Core-shell structured CsxWO3@ ZnO with excellent stability and high performance on near-infrared shielding
EP2844706B1 (en) High solar-reflectivity roofing granules utilizing low absorption components
CN1422309A (en) Transparent medium having angle-selective transmission or reflection properties and/or absorption properties
Maharjan et al. Highly effective hydrophobic solar reflective coating for building materials: Increasing total solar reflectance via functionalized anatase immobilization in an organosiloxane matrix
JP2010000460A (en) Radiation heat transfer control film
JP2016186074A (en) Spectrum selective coating minimizing impact by lightning and related method
Su et al. Highly transparent plasticized PVC composite film with ideal ultraviolet/high-energy short-wavelength blue light shielding
Lv et al. Development of Ca3 (PO4) 2 inorganic thermal-control coating used in harsh space environments
WO2012101306A1 (en) Formulation comprising silicon microparticles, as a pigment that can absorb visible uv radiation and reflect ir radiation
JP6302518B2 (en) Thermal barrier paints, thermal barrier coatings and coated articles
Jaoua‐Bahloul et al. Solar spectral properties of PVC plastisol‐based films filled with various fillers
JP5809795B2 (en) Titanium dioxide-containing composite particles
US20150291799A1 (en) Pigment with Photocatalytic Activity, Method for the Production Thereof and Coating Agent
EP2778204B1 (en) Infrared reflective film, infrared reflective paint, and infrared reflector
KR20150127090A (en) Uv reflecting pigments, and method of making and using the same
WO2014195529A1 (en) Heat-reflective composition
Liu et al. Synthesis of nano‐sized TiO2/SiO2 cenospheres for the application in high‐performance solar thermal reflective coatings
JP2011178911A (en) Coating liquid for forming ground glass-like substrate and ground glass-like substrate
JP4104353B2 (en) Paint composition
JP2013142145A (en) Weather-resistant composition and weather-resistant film using the same, and weather-resistant substrate
WO2021014981A1 (en) Near-infrared shielding material
JP6407210B2 (en) Coating material, heat shielding material, and method for producing the heat shielding material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739595

Country of ref document: EP

Kind code of ref document: A1