WO2012100995A1 - Electro-optical probe - Google Patents

Electro-optical probe Download PDF

Info

Publication number
WO2012100995A1
WO2012100995A1 PCT/EP2012/050538 EP2012050538W WO2012100995A1 WO 2012100995 A1 WO2012100995 A1 WO 2012100995A1 EP 2012050538 W EP2012050538 W EP 2012050538W WO 2012100995 A1 WO2012100995 A1 WO 2012100995A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
electrically conductive
optical
electrode tip
endoscope
Prior art date
Application number
PCT/EP2012/050538
Other languages
German (de)
French (fr)
Inventor
Joachim Kaiser
Helmut Neumann
Rainer Kuth
Markus Neurath
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2012100995A1 publication Critical patent/WO2012100995A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • A61B1/0017Details of single optical fibres, e.g. material or cladding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter

Definitions

  • the invention relates to an electro-optic probe, which in particular ⁇ sondere may be used in an endoscopic examination.
  • tissue macroscopically as well as microscopically in order to be able to determine disease-specific tissue changes.
  • a reliable tissue classification is important for a proper and timely treatmen ⁇ development of an existing or developing disease.
  • Endoscopic tissue examinations are mainly performed with the help of imaging systems.
  • an optical or fiber optic image transmission from the endoscope tip is used for a camera to represent the local Conversely ⁇ exercise of the endoscope tip on a monitor.
  • light sources with different optical filters can be used for illumination to represent the reflection and scattering properties of the tissue in different spectral bands.
  • the sensor according to the invention is designed for use in a device for carrying out minimally invasive measures inside the body of a patient. He points we ⁇ antecess a first optical waveguide.
  • the first light Waveguide in turn has at least one first electrically conductive coating.
  • the sensor according to the invention makes it possible to use a combination of several different measuring methods.
  • the reliability and reproducibility of tissue examinations can be increased by means of these different measurement methods.
  • electrical and optical measuring methods can be combined in order to obtain e.g. To compensate for contact force-dependent influencing of the electrical impedance measured values or / and to improve the distinction between different malignant tissue stages.
  • the optical waveguide used is preferably a flexible optical fiber. This is used in particular for illumination and simultaneous optical detection.
  • a suitable coupling unit ⁇ lektrischen beam splitter, beam splitter cube polarizer or fused coupler Schliffkoppler, light coupled into the lightwave conductor and led to the sensor tip.
  • Light reflected by the tissue, scattered, by non-linear processes it ⁇ zeugtes or fluorescence excitation light emitted is captured by the fiber probe.
  • a spatial or polarization-optical distribution of the irradiated and the reflected-back light takes place.
  • the reflected-back light is evaluated via its intensity, spectral properties, polarization or the time profile taking into account known factors such as the fluorescence response or spectral characteristic of the light source.
  • the likewise existing electrically conductive coating which can be made of gold, serves as Zumoni ⁇ tion of electrical signals.
  • the resistivity of tissue or its Frequenzab ⁇ dependence may for example be determined.
  • These in turn can be considered as too ⁇ sharmliches measured signal in the evaluation of the optical measurement ⁇ signals.
  • the elec- electrically conductive coating electrically coupled to an evaluation and control unit, which can couple the electrical signals in the coating and decoupling.
  • the sensor tip on an electrode tip This serves to penetrate slightly into the tissue to be examined.
  • the electrode tip is in a before ⁇ ferred to the execution to be examined tissue in their nature, size, depth or other characteristics fits reasonable.
  • the electrode tip can be designed as a needle, blunt needle, chamfered cylinder or hemisphere.
  • the electrode tip is expediently electrically coupled to the first electrically conductive coating. This coupling can be done, for example, by conductive half-shells, at one end of the electrode tip and at the other end shells are mounted for receiving the optical waveguide.
  • This approach has the advantage of the conductive Fa ⁇ serbe coating and the electrode tip from differing ⁇ chemical material to make.
  • the electrode tip can be made of platinum, for example. This allows the electrode tip to be adapted to the electrochemical properties of the tissue.
  • the electrical contact itself can be made by joining, crimping, soldering or otherwise.
  • the electrode tips are spring-mounted. This advantageously prevents too deep penetration into the tissue and brings the electrode into contact with the tissue region to be examined with a reproducible contact force.
  • the senor has means ⁇ for applying an electrolyte solution to a to be examined Ge ⁇ webestelle is.
  • This electrolyte solution provides one defined contact resistance between the tissue and the electrode tips ago.
  • the counter electrode may, for example, an endoscope, in which the sensor is used, or a further electrode which ⁇ NEN, which is inserted in such a endoscope.
  • the optical waveguide has a plurality of conductive layers electrically separated by insulating layers. These um ⁇ give each other preferably cupped. They in turn serve to supply the signal and to detect the electrical response.
  • Advantageous even affect the capacitive and inductive ven properties of the fiber coating may in this case be taken by an additional structural ⁇ structuring of the coatings. This can be used to optimize the influence of the supply line on the measurement result. It is expedient if, in this case, a plurality of electrode tips are provided which are each electrically coupled to one of the conductive layers. In this way, measurements are made possible with a plurality of electrodes, thus disturbing effects can be lead SUPPRESS ⁇ CKEN.
  • the sensor may also comprise a plurality of optical waveguides in a further embodiment.
  • at least two of the optical waveguides are preferably provided with an electrically conductive coating. It is again expedient if each of the optical waveguides is electrically isolated from the other optical waveguides.
  • optical elements for beam shaping are used at the fiber optic probe tip.
  • gradient index lenses GRIN lenses
  • microlenses or suitably shaped fiber tips focusing of the coupled-in radiation can be achieved in order to locally increase the irradiated intensity. This in turn may be beneficial in intensity-dependent methods such as fluorescence excitation or second-harmonic generation.
  • the fiber core diameter can in turn also be adapted to the specific requirements.
  • a low-loss monomode fiber, including polarization-maintaining for the supply, it being possible to use one or more fibers with a larger core diameter (multimode fibers) for the detection.
  • both the fluorescent light components or second harmonic radiation can be detected by the multimode fibers and also reflectance measurements with ultraviolet or visible radiation can be carried out.
  • Each of the electrically conductive coatings is preferably equipped with one electrode tip each.
  • the interference influence of the elec tric supply lines ⁇ is reduced by a suitable guidance of the fibers.
  • the senor can be configured with one or more permanent magnets. This advantageously achieves that the sensor head can be controlled via external magnetic fields.
  • the sensor can also be used as an implant.
  • it is equipped with a high-capacity battery or a rechargeable battery as well as an inductive charging system.
  • a wireless transmitting and receiving unit will be installed.
  • such an implant can continuously monitor metabolic processes.
  • FIG. 1 shows a first endoscope with an optical fiber
  • FIG. 2 shows a second endoscope with an optical fiber with two electrically conductive coatings
  • Figure 4 shows a system structure for an endoscope with two optical fibers ⁇ rule.
  • FIG. 1 shows highly schematic sections through an endoscope structure of a first endoscope 10.
  • the first endoscope 10 has an endoscope jacket 1 which encloses a counterelectrode.
  • the endoscope sheath 1 of the first endoscope 10 encloses a working channel 2.
  • the working channel 2 is designed so that a sensor can be inserted.
  • the sensor comprises an optical fiber 5, in this case with a core diameter of 4 ⁇ to 600 ⁇ . Furthermore, the sensor comprises an electrically conductive fiber coating 6 made of gold. The fiber coating 6 surrounds the optical fiber 5. In the region of one end of the optical fiber 5, an electrode tip 4 is provided. The electrode tip befin ⁇ det in electrical contact with the fiber coating projecting 6. Suitably, the electrode tip 4 about the end of the optical fiber 5 also, so that a slight A ⁇ penetrate into tissue to be measured is possible.
  • the optical fiber 5, the fiber coating 6 and parts of the electrode tip 4 are surrounded by an insulation 3.
  • the insulation layer 3, in turn, is passed by a probe casing 7 by ⁇ , which is specifically designed for insertion into the working channel of the first endoscope 10th
  • the entire probe measures, for example, 2 to 2.5 mm in diameter.
  • FIG. 2 also shows a second endoscope 20 in two
  • the second endoscope 20 has a more complex construction of the sensor.
  • the sensor here has the elements of the probe jacket 7, the electrically conductive fiber coating 6, an optical fiber 5, an electrode tip 4 and an insulation 3.
  • the electrically conductive fiber coating 6 is surrounded by an insulating layer 21 here.
  • This insulating layer 21 in turn is surrounded by a second conductive fiber coating 22.
  • the second conductive fiber coating 22 is electrically coupled to a second electrode tip 23.
  • the second endoscope 20 thus has a sensor with two elec ⁇ trically insulated from each other electrodes.
  • Figure 3 shows a third embodiment in the form of a third endoscope 30. This is in parts analogous to the ers ⁇ th two endoscopes 10, 20 constructed.
  • the sensor again comprises an insulation 3, an optical fiber 5, an electrically conductive fiber coating 6 on the optical fiber 5, an electrode tip 4 and the probe jacket 7.
  • a second optical fiber 31 is provided within the insulation 3 in the third embodiment.
  • the second optical fiber 31 is constructed analogously to the optical fiber 5. It comprises a second elekt ⁇ driven conductive fiber coating 33 and an associated second electrode tip 32. As shown in Figure 3 can be seen, there are the optical fibers 5, 31 with their respective electrode tips 4, 32 arranged to point-symmetrically within the insulation 3 that a possible optimum space ⁇ utilization is achieved with a small diameter of the probe jacket 7.
  • the insulation 3 insulates each of the conductive fiber coatings 6 and 33 against each other.
  • FIG. 4 shows an overall system for the third endoscope 30.
  • the two optical fibers 5, 31 are led out of the Ulka ⁇ nal 2 of the endoscope and connected to other elements.
  • the optical fiber 5 is connected to a first light source 43 via an optical component 44 for beam shaping and spectral filtering or a filter wheel.
  • the second optical fiber 31 is connected outside of the third Endo ⁇ skops 30 with an optical coupler 48. This divides the light path and leads over two more optical Components 44 on the one hand to a second light source 42 and on the other hand to a detector 45.
  • the electrically conductive fiber coatings 6, 33 are in turn connected to a device for signal generation and detection for an impedance measurement 41st
  • the light sources 42, 43, the detector 45 and the device 41 are connected to a control and evaluation unit 46, which in turn outputs measured values and a result representation 47.

Abstract

An electro-optical probe for endoscopic examinations is proposed. The electro-optical probe has at least one optical fibre for conveying optical signals. Moreover, the optical fibre has at least one electrically conductive coating. At the end of the optical fibre, at least one electrode tip is provided, which is coupled electrically to the electrically conductive coating.

Description

Beschreibung description
Elektrooptische Sonde Electro-optical probe
Die Erfindung betrifft eine elektrooptische Sonde, die insbe¬ sondere bei einer endoskopischen Untersuchung verwendet werden kann. The invention relates to an electro-optic probe, which in particular ¬ sondere may be used in an endoscopic examination.
Bei endoskopischen Untersuchungen eines Patienten ist es erforderlich, das Gewebe makroskopisch wie mikroskopisch zu untersuchen, um krankheitsspezifische Gewebeveränderungen feststellen zu können. Eine zuverlässige Gewebeklassifizierung ist dabei wichtig für eine richtige und rechtzeitige Behand¬ lung einer bestehenden oder sich entwickelnden Krankheit. In endoscopic examinations of a patient, it is necessary to examine the tissue macroscopically as well as microscopically in order to be able to determine disease-specific tissue changes. A reliable tissue classification is important for a proper and timely treatmen ¬ development of an existing or developing disease.
Endoskopische Gewebeuntersuchungen werden hauptsächlich unter Zuhilfenahme von bildgebenden Systemen durchgeführt. Hierbei wird eine optische oder faseroptische Bildübertragung von der Endoskopspitze zu einer Kamera genutzt, um die lokale Umge¬ bung der Endoskopspitze auf einem Monitor darzustellen. In einigen Systemen können zur Beleuchtung Lichtquellen mit unterschiedlichen optischen Filtern eingesetzt werden, um die Reflektions- und Streueigenschaften des Gewebes in unterschiedlichen spektralen Bändern darzustellen. Endoscopic tissue examinations are mainly performed with the help of imaging systems. Here, an optical or fiber optic image transmission from the endoscope tip is used for a camera to represent the local Conversely ¬ exercise of the endoscope tip on a monitor. In some systems, light sources with different optical filters can be used for illumination to represent the reflection and scattering properties of the tissue in different spectral bands.
Es ist Aufgabe der vorliegenden Erfindung, eine Sonde anzugeben, bei der die Zuverlässigkeit und Reproduzierbarkeit von Messergebnissen erhöht ist. It is an object of the present invention to provide a probe in which the reliability and reproducibility of measurement results is increased.
Diese Aufgabe wird durch einen Sensor mit den Merkmalen von Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen sind in den Unteransprüchen angegeben. This object is achieved by a sensor having the features of claim 1. Advantageous embodiments and further developments are specified in the subclaims.
Der erfindungsgemäße Sensor ist zur Verwendung in einer Vorrichtung zur Durchführung minimalinvasiver Maßnahmen im Inneren des Körpers eines Patienten ausgestaltet. Er weist we¬ nigstens einen ersten Lichtwellenleiter auf. Der erste Licht- Wellenleiter wiederum weist wenigstens eine erste elektrisch leitfähige Beschichtung auf. The sensor according to the invention is designed for use in a device for carrying out minimally invasive measures inside the body of a patient. He points we ¬ nigstens a first optical waveguide. The first light Waveguide in turn has at least one first electrically conductive coating.
Der erfindungsgemäße Sensor ermöglicht es, eine Kombination mehrerer unterschiedlicher Messmethoden zu verwenden. Die Zuverlässigkeit und Reproduzierbarkeit von Gewebeuntersuchungen kann mittels dieser unterschiedlichen Messmethoden erhöht werden. Mit dem erfindungsgemäßen Sensor können dabei elektrische und optische Messmethoden kombiniert werden, um z.B. kontaktkraftabhängige Beeinflussungen der elektrischen Impedanzmesswerte zu kompensieren oder/und die Unterscheidung zwischen verschiedenen malignen Gewebestadien zu verbessern. The sensor according to the invention makes it possible to use a combination of several different measuring methods. The reliability and reproducibility of tissue examinations can be increased by means of these different measurement methods. With the sensor according to the invention, electrical and optical measuring methods can be combined in order to obtain e.g. To compensate for contact force-dependent influencing of the electrical impedance measured values or / and to improve the distinction between different malignant tissue stages.
Als Lichtwellenleiter kommt bevorzugt eine flexible optische Faser zum Einsatz. Diese wird insbesondere zur Beleuchtung und gleichzeitigen optischen Detektion benutzt. Hierfür wird über eine geeignete Koppeleinheit, beispielsweise einem die¬ lektrischen Strahlteiler, Strahlteilerwürfel, Polarisator, Schmelzkoppler oder Schliffkoppler, Licht in den Lichtwellen- leiter eingekoppelt und zur Sensorspitze geführt. Vom Gewebe reflektiertes, gestreutes, durch nichtlineare Prozesse er¬ zeugtes oder Fluoreszenzanregung emittiertes Licht wird von der Fasersonde erfasst. An der Koppeleinheit erfolgt eine räumliche oder polarisationsoptische Aufteilung des einge- strahlten und des zurückgestrahlten Lichtes. Dann wird in einer geeigneten Erfassungseinheit das zurückgestrahlte Licht über seine Intensität, spektrale Eigenschaften, Polarisation oder dem zeitlichen Verlauf unter Berücksichtigung bekannter Faktoren wie die Fluoreszenzantwort oder spektrale Charakte- ristik der Lichtquelle ausgewertet. The optical waveguide used is preferably a flexible optical fiber. This is used in particular for illumination and simultaneous optical detection. For this purpose, for example, one is via a suitable coupling unit ¬ lektrischen beam splitter, beam splitter cube polarizer or fused coupler Schliffkoppler, light coupled into the lightwave conductor and led to the sensor tip. Light reflected by the tissue, scattered, by non-linear processes it ¬ zeugtes or fluorescence excitation light emitted is captured by the fiber probe. At the coupling unit, a spatial or polarization-optical distribution of the irradiated and the reflected-back light takes place. Then, in a suitable detection unit, the reflected-back light is evaluated via its intensity, spectral properties, polarization or the time profile taking into account known factors such as the fluorescence response or spectral characteristic of the light source.
Die ebenfalls vorhandene elektrisch leitfähige Beschichtung, die beispielsweise aus Gold bestehen kann, dient als Zufüh¬ rung von elektrischen Signalen. Hiermit kann beispielsweise der spezifische Widerstand von Gewebe oder dessen Frequenzab¬ hängigkeit ermittelt werden. Diese wiederum können als zu¬ sätzliches Messsignal bei der Auswertung der optischen Mess¬ signale berücksichtigt werden. Dazu ist zweckmäßig die elek- trisch leitfähige Beschichtung elektrisch mit einer Auswerte- und Steuereinheit zu koppeln, welche die elektrischen Signale in die Beschichtung ein- und auskoppeln kann. In einer vorteilhaften Ausgestaltung und Weiterbildung der Erfindung weist die Sensorspitze eine Elektrodenspitze auf. Diese dient dazu, geringfügig in zu untersuchendes Gewebe einzudringen. Die Elektrodenspitze ist dabei in einer bevor¬ zugten Ausführung an das zu untersuchende Gewebe in ihrer Art, Größe, Eindringtiefe oder anderen Eigenschaften ange- passt. So kann die Elektrodenspitze beispielsweise als Nadel, stumpfe Nadel, gefaster Zylinder oder Halbkugel ausgestaltet sein . Die Elektrodenspitze ist zweckmäßig mit der ersten elektrisch leitfähigen Beschichtung elektrisch gekoppelt. Diese Kopplung kann beispielsweise durch leitfähige Halbschalen erfolgen, an deren einem Ende die Elektrodenspitze und an deren anderem Ende Schalen zur Aufnahme des Lichtwellenleiters angebracht sind. Dieses Vorgehen bietet den Vorteil, die leitfähige Fa¬ serbeschichtung und die Elektrodenspitze aus unterschiedli¬ chem Material anfertigen zu können. So kann in einer vorteilhaften Ausgestaltung die Elektrodenspitze beispielsweise aus Platin gefertigt sein. Hiermit kann die Elektrodenspitze an die elektrochemischen Eigenschaften des Gewebes angepasst werden. Die elektrische Kontaktierung selbst kann dabei durch Fügen, Crimpen, Löten oder auf andere Weise hergestellt werden . In einer weiteren vorteilhaften Ausgestaltung der Erfindung sind die Elektrodenspitzen federnd gelagert. Hierdurch wird vorteilhaft ein zu tiefes Eindringen in das Gewebe verhindert und die Elektrode mit einer reproduzierbaren Kontaktkraft in Kontakt mit dem zu untersuchenden Gewebebereich gebracht. The likewise existing electrically conductive coating, which can be made of gold, serves as Zufüh ¬ tion of electrical signals. Hereby, the resistivity of tissue or its Frequenzab ¬ dependence may for example be determined. These in turn can be considered as too ¬ sätzliches measured signal in the evaluation of the optical measurement ¬ signals. For this purpose, the elec- electrically conductive coating electrically coupled to an evaluation and control unit, which can couple the electrical signals in the coating and decoupling. In an advantageous embodiment and development of the invention, the sensor tip on an electrode tip. This serves to penetrate slightly into the tissue to be examined. The electrode tip is in a before ¬ ferred to the execution to be examined tissue in their nature, size, depth or other characteristics fits reasonable. For example, the electrode tip can be designed as a needle, blunt needle, chamfered cylinder or hemisphere. The electrode tip is expediently electrically coupled to the first electrically conductive coating. This coupling can be done, for example, by conductive half-shells, at one end of the electrode tip and at the other end shells are mounted for receiving the optical waveguide. This approach has the advantage of the conductive Fa ¬ serbe coating and the electrode tip from differing ¬ chemical material to make. Thus, in an advantageous embodiment, the electrode tip can be made of platinum, for example. This allows the electrode tip to be adapted to the electrochemical properties of the tissue. The electrical contact itself can be made by joining, crimping, soldering or otherwise. In a further advantageous embodiment of the invention, the electrode tips are spring-mounted. This advantageously prevents too deep penetration into the tissue and brings the electrode into contact with the tissue region to be examined with a reproducible contact force.
Besonders vorteilhaft ist es, wenn der Sensor Mittel auf¬ weist, um eine Elektrolytlösung auf eine zu untersuchende Ge¬ webestelle aufzubringen. Diese Elektrolytlösung stellt einen definierten Übergangswiderstand zwischen dem Gewebe und den Elektrodenspitzen her. It is particularly advantageous if the sensor has means ¬ for applying an electrolyte solution to a to be examined Ge ¬ webestelle is. This electrolyte solution provides one defined contact resistance between the tissue and the electrode tips ago.
Als Gegenelektrode kann beispielsweise ein Endoskop, in dem der Sensor verwendet wird, oder eine weitere Elektrode die¬ nen, die in ein solches Endoskop eingeführt wird. As the counter electrode may, for example, an endoscope, in which the sensor is used, or a further electrode which ¬ NEN, which is inserted in such a endoscope.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung weist der Lichtwellenleiter mehrere, durch Isolationsschich- ten elektrisch getrennte, leitfähige Schichten auf. Diese um¬ geben einander bevorzugt schalenförmig. Sie dienen wiederum zur Signalzuführung und zur Detektion der elektrischen Antwort. Vorteilhaft kann hierbei durch eine zusätzliche Struk¬ turierung der Beschichtungen sogar Einfluss auf die kapaziti- ven und induktiven Eigenschaften der Faserbeschichtung genommen werden. Damit kann der Einfluss der Zuleitung auf das Messergebnis optimiert werden. Es ist zweckmäßig, wenn in diesem Fall mehrere Elektrodenspitzen vorgesehen sind, die jeweils mit einer der leitfähigen Schichten elektrisch gekop- pelt sind. Hierdurch werden Messungen mit mehreren Elektroden ermöglicht, wodurch sich störende Zuleitungseffekte unterdrü¬ cken lassen. In a further advantageous embodiment of the invention, the optical waveguide has a plurality of conductive layers electrically separated by insulating layers. These um ¬ give each other preferably cupped. They in turn serve to supply the signal and to detect the electrical response. Advantageous even affect the capacitive and inductive ven properties of the fiber coating may in this case be taken by an additional structural ¬ structuring of the coatings. This can be used to optimize the influence of the supply line on the measurement result. It is expedient if, in this case, a plurality of electrode tips are provided which are each electrically coupled to one of the conductive layers. In this way, measurements are made possible with a plurality of electrodes, thus disturbing effects can be lead SUPPRESS ¬ CKEN.
Der Sensor kann in einer weiteren Ausgestaltung auch mehrere Lichtwellenleiter umfassen. Dabei sind bevorzugt wenigstens zwei der Lichtwellenleiter mit einer elektrisch leitfähigen Beschichtung versehen. Dabei ist es wiederum zweckmäßig, wenn jeder der Lichtwellenleiter elektrisch von den anderen Lichtwellenleitern isoliert ist. The sensor may also comprise a plurality of optical waveguides in a further embodiment. In this case, at least two of the optical waveguides are preferably provided with an electrically conductive coating. It is again expedient if each of the optical waveguides is electrically isolated from the other optical waveguides.
Es ist vorteilhaft, wenn an der faseroptischen Sondenspitze optische Elemente zur Strahlformung eingesetzt werden. Durch beispielsweise Gradientindexlinsen (GRIN-Linsen) , Mikrolinsen oder geeignet geformte Faserspitzen kann eine Fokussierung der eingekoppelten Strahlung erreicht werden, um lokal die eingestrahlte Intensität zu erhöhen. Das kann wiederum bei intensitätsabhängigen Methoden wie Fluoreszenzanregung oder Second Harmonie Generation von Vorteil sein. Der Faserkern- durchmesser kann wiederum ebenfalls den speziellen Erfordernissen angepasst werden. Bei der Zuführung von Laserstrahlung beispielsweise kann zur Zuführung eine verlustarme Monomode- faser, auch polarisationserhaltend, eingesetzt werden, wobei zur Detektion eine oder mehrere Fasern mit größerem Kerndurchmesser (Multimodefasern) , eingesetzt werden können. In einer vorteilhaften Ausführung können durch die Multimodefa- ser sowohl Fluoreszenzlichtanteile oder Second-Harmonic- Strahlung detektiert werden als auch Reflexionsmessungen mit ultravioletter oder sichtbarer Strahlung durchgeführt werden. Bevorzugt ist jede der elektrisch leitfähigen Beschichtungen mit je einer Elektrodenspitze ausgestattet. It is advantageous if optical elements for beam shaping are used at the fiber optic probe tip. By means of, for example, gradient index lenses (GRIN lenses), microlenses or suitably shaped fiber tips, focusing of the coupled-in radiation can be achieved in order to locally increase the irradiated intensity. This in turn may be beneficial in intensity-dependent methods such as fluorescence excitation or second-harmonic generation. The fiber core diameter can in turn also be adapted to the specific requirements. When supplying laser radiation, for example, it is possible to use a low-loss monomode fiber, including polarization-maintaining, for the supply, it being possible to use one or more fibers with a larger core diameter (multimode fibers) for the detection. In an advantageous embodiment, both the fluorescent light components or second harmonic radiation can be detected by the multimode fibers and also reflectance measurements with ultraviolet or visible radiation can be carried out. Each of the electrically conductive coatings is preferably equipped with one electrode tip each.
In einer vorteilhaften Ausgestaltung wird durch eine geeignete Führung der Fasern, beispielsweise ein Verdrillen von jeweils zwei Fasern (twisted pair) , der Störeinfluss der elek¬ trischen Zuleitungen verringert. In an advantageous embodiment, for example, a twisting two fibers (twisted pair), the interference influence of the elec tric supply lines ¬ is reduced by a suitable guidance of the fibers.
In einer weiteren vorteilhaften Ausgestaltung kann der Sensor mit einem oder mehreren Permanentmagneten ausgestaltet werden. Hierdurch wird vorteilhaft erreicht, dass der Sensorkopf über externe magnetische Felder steuerbar ist. In a further advantageous embodiment, the sensor can be configured with one or more permanent magnets. This advantageously achieves that the sensor head can be controlled via external magnetic fields.
Der Sensor ist auch als Implantat verwendbar. Dafür wird er mit einer Batterie hoher Kapazität oder einem Akkumulator sowie einer induktiven Lademöglichkeit ausgestattet. Weiterhin wird zweckmäßig eine drahtlose Sende- und Empfangseinheit eingebaut sein. Ein solches Implantat kann beispielsweise Stoffwechselvorgänge kontinuierlich überwachen. The sensor can also be used as an implant. For this purpose, it is equipped with a high-capacity battery or a rechargeable battery as well as an inductive charging system. Furthermore, expediently a wireless transmitting and receiving unit will be installed. For example, such an implant can continuously monitor metabolic processes.
Bevorzugte, jedoch keinesfalls einschränkende Ausführungsbei¬ spiele für die Erfindung werden nunmehr anhand der Figuren der Zeichnung näher erläutert. Dabei sind die Merkmale sche¬ matisiert dargestellt. Es zeigen Preferred, but in no way limiting Ausführungsbei ¬ games for the invention will now be explained in more detail with reference to the figures of the drawing. The characteristics are shown specific ¬ matically. Show it
Figur 1 ein erstes Endoskop mit einer optischen Faser mit 1 shows a first endoscope with an optical fiber with
elektrisch leitfähiger Beschichtung, Figur 2 ein zweites Endoskop mit einer optischen Faser mit zwei elektrisch leitfähigen Beschichtungen, electrically conductive coating, FIG. 2 shows a second endoscope with an optical fiber with two electrically conductive coatings,
Figur 3 ein drittes Endoskop mit zwei optischen Fasern mit jeweiliger elektrisch leitfähiger Beschichtung, Figur 4 einen Systemaufbau für ein Endoskop mit zwei opti¬ schen Fasern. 3 shows a third endoscope with two optical fibers having respective electrically conductive coating, Figure 4 shows a system structure for an endoscope with two optical fibers ¬ rule.
Figur 1 zeigt stark schematisiert Schnitte durch einen Endo- skopaufbau eines ersten Endoskops 10. Das erste Endoskop 10 weist einen Endoskopmantel 1 auf, der eine Gegenelektrode um- fasst. Der Endoskopmantel 1 des ersten Endoskops 10 umhüllt einen Arbeitskanal 2. Der Arbeitskanal 2 ist so gestaltet, dass ein Sensor einführbar ist. FIG. 1 shows highly schematic sections through an endoscope structure of a first endoscope 10. The first endoscope 10 has an endoscope jacket 1 which encloses a counterelectrode. The endoscope sheath 1 of the first endoscope 10 encloses a working channel 2. The working channel 2 is designed so that a sensor can be inserted.
Der Sensor umfasst dabei eine optische Faser 5, in diesem Fall mit einem Kerndurchmesser von 4 μπι bis 600 μπι. Weiterhin umfasst der Sensor eine elektrisch leitfähige Faserbeschichtung 6 aus Gold. Die Faserbeschichtung 6 umgibt die optische Faser 5. Im Bereich eines Endes der optischen Faser 5 ist eine Elektrodenspitze 4 vorgesehen. Die Elektrodenspitze befin¬ det sich in elektrischem Kontakt mit der Faserbeschichtung 6. Zweckmäßig ragt die Elektrodenspitze 4 etwas über das Ende der optischen Faser 5 hinaus, damit ein geringfügiges Ein¬ dringen in zu vermessendes Gewebe möglich ist. The sensor comprises an optical fiber 5, in this case with a core diameter of 4 μπι to 600 μπι. Furthermore, the sensor comprises an electrically conductive fiber coating 6 made of gold. The fiber coating 6 surrounds the optical fiber 5. In the region of one end of the optical fiber 5, an electrode tip 4 is provided. The electrode tip befin ¬ det in electrical contact with the fiber coating projecting 6. Suitably, the electrode tip 4 about the end of the optical fiber 5 also, so that a slight A ¬ penetrate into tissue to be measured is possible.
Die optische Faser 5, die Faserbeschichtung 6 sowie Teile der Elektrodenspitze 4 sind von einer Isolation 3 umgeben. Die Isolationsschicht 3 wiederum ist von einem Sondenmantel 7 um¬ geben, der speziell zur Einführung in den Arbeitskanal des ersten Endoskops 10 ausgestaltet ist. Die ganze Sonde misst dabei beispielsweise 2 bis 2,5 mm im Durchmesser. The optical fiber 5, the fiber coating 6 and parts of the electrode tip 4 are surrounded by an insulation 3. The insulation layer 3, in turn, is passed by a probe casing 7 by ¬, which is specifically designed for insertion into the working channel of the first endoscope 10th The entire probe measures, for example, 2 to 2.5 mm in diameter.
Figur 2 zeigt ein zweites Endoskop 20 ebenfalls in zwei FIG. 2 also shows a second endoscope 20 in two
Schnittdarstellungen. Das zweite Endoskop 20 weist einen kom- plexeren Aufbau des Sensors auf. Wie beim ersten Endoskop 10 weist hier der Sensor die Elemente des Sondenmantels 7, der elektrisch leitfähigen Faserbeschichtung 6, einer optischen Faser 5, einer Elektrodenspitze 4 und einer Isolation 3 auf. Im Gegensatz zum Sensor des ersten Endoskops 10 ist hier jedoch die elektrisch leitfähige Faserbeschichtung 6 von einer Isolierschicht 21 umgeben. Diese Isolierschicht 21 wiederum ist von einer zweiten leitfähigen Faserbeschichtung 22 umge- ben. Die zweite leitfähige Faserbeschichtung 22 ist elektrisch mit einer zweiten Elektrodenspitze 23 gekoppelt. Das zweite Endoskop 20 weist also einen Sensor mit zwei elek¬ trisch voneinander isolierten Elektroden auf. Figur 3 zeigt ein drittes Ausführungsbeispiel in Form eines dritten Endoskops 30. Dieses ist in Teilen analog zu den ers¬ ten beiden Endoskopen 10, 20 aufgebaut. Der Sensor umfasst wieder eine Isolation 3, eine optische Faser 5, eine elektrisch leitfähige Faserbeschichtung 6 auf der optischen Faser 5, eine elektrodenspitze 4 und den Sondenmantel 7 auf. Sectional views. The second endoscope 20 has a more complex construction of the sensor. As in the case of the first endoscope 10, the sensor here has the elements of the probe jacket 7, the electrically conductive fiber coating 6, an optical fiber 5, an electrode tip 4 and an insulation 3. In contrast to the sensor of the first endoscope 10, however, the electrically conductive fiber coating 6 is surrounded by an insulating layer 21 here. This insulating layer 21 in turn is surrounded by a second conductive fiber coating 22. The second conductive fiber coating 22 is electrically coupled to a second electrode tip 23. The second endoscope 20 thus has a sensor with two elec ¬ trically insulated from each other electrodes. Figure 3 shows a third embodiment in the form of a third endoscope 30. This is in parts analogous to the ers ¬ th two endoscopes 10, 20 constructed. The sensor again comprises an insulation 3, an optical fiber 5, an electrically conductive fiber coating 6 on the optical fiber 5, an electrode tip 4 and the probe jacket 7.
Zusätzlich zur optischen Faser 5 ist im dritten Ausführungsbeispiel innerhalb der Isolation 3 eine zweite optische Faser 31 vorgesehen. Die zweite optische Faser 31 ist analog zur optischen Faser 5 aufgebaut. Sie umfasst eine zweite elekt¬ risch leitfähige Faserbeschichtung 33 und eine damit verbundene zweite Elektrodenspitze 32. Wie in Figur 3 ersichtlich, sind dabei die optischen Fasern 5, 31 mit ihren jeweiligen Elektrodenspitzen 4, 32 so punktsymmetrisch innerhalb der Isolation 3 angeordnet, dass eine möglichst optimale Platz¬ ausnutzung bei geringem Durchmesser des Sondenmantels 7 erreicht wird. Die Isolation 3 isoliert jeweils die leitfähigen Faserbeschichtungen 6 und 33 gegeneinander. Figur 4 zeigt ein Gesamtsystem für das dritte Endoskop 30.In addition to the optical fiber 5, a second optical fiber 31 is provided within the insulation 3 in the third embodiment. The second optical fiber 31 is constructed analogously to the optical fiber 5. It comprises a second elekt ¬ driven conductive fiber coating 33 and an associated second electrode tip 32. As shown in Figure 3 can be seen, there are the optical fibers 5, 31 with their respective electrode tips 4, 32 arranged to point-symmetrically within the insulation 3 that a possible optimum space ¬ utilization is achieved with a small diameter of the probe jacket 7. The insulation 3 insulates each of the conductive fiber coatings 6 and 33 against each other. FIG. 4 shows an overall system for the third endoscope 30.
Die zwei optischen Fasern 5, 31 sind dabei aus dem Arbeitska¬ nal 2 des Endoskops herausgeführt und mit weiteren Elementen verbunden. Dabei ist die optische Faser 5 über eine optische Komponente 44 zur Strahlformung und Spektralfilterung oder einem Filterrad mit einer ersten Lichtquelle 43 verbunden.The two optical fibers 5, 31 are led out of the Arbeitska ¬ nal 2 of the endoscope and connected to other elements. In this case, the optical fiber 5 is connected to a first light source 43 via an optical component 44 for beam shaping and spectral filtering or a filter wheel.
Die zweite optische Faser 31 ist außerhalb des dritten Endo¬ skops 30 mit einem optischen Koppler 48 verbunden. Dieser teilt den Lichtweg auf und führt über zwei weitere optische Komponenten 44 einerseits zu einer zweiten Lichtquelle 42 und andererseits zu einem Detektor 45. Die elektrisch leitfähigen Faserbeschichtungen 6, 33 sind ihrerseits verbunden mit einer Einrichtung zur Signalerzeugung und Detektion für eine Impe- danzmessung 41. The second optical fiber 31 is connected outside of the third Endo ¬ skops 30 with an optical coupler 48. This divides the light path and leads over two more optical Components 44 on the one hand to a second light source 42 and on the other hand to a detector 45. The electrically conductive fiber coatings 6, 33 are in turn connected to a device for signal generation and detection for an impedance measurement 41st
Die Lichtquellen 42, 43, der Detektor 45 und die Einrichtung 41 sind mit einer Steuer- und Auswerteeinheit 46 verbunden, die ihrerseits Messwerte und eine Ergebnisdarstellung 47 aus- gibt. The light sources 42, 43, the detector 45 and the device 41 are connected to a control and evaluation unit 46, which in turn outputs measured values and a result representation 47.

Claims

Patentansprüche claims
1. Sensor (10, 20, 30, 40) zur Verwendung in einer Vorrichtung zur Durchführung minimalinvasiver Maßnahmen im Inneren des Körpers eines Patienten, aufweisend wenigstens einen ers¬ ten Lichtwellenleiter (5), wobei der erste LichtwellenleiterA sensor (10, 20, 30, 40) for use in a device for carrying out minimally invasive measures inside the body of a patient, comprising at least one ers ¬ th optical waveguide (5), wherein the first optical waveguide
(5) wenigstens eine erste elektrisch leitfähige Beschichtung(5) at least a first electrically conductive coating
(6) aufweist. (6).
2. Sensor (10, 20, 30, 40) gemäß Anspruch 1 mit wenigstens einer zweiten elektrisch leitfähigen Beschichtung (22), die von der ersten elektrisch leitfähigen Beschichtung (6) elektrisch isoliert ist. 2. Sensor (10, 20, 30, 40) according to claim 1 having at least one second electrically conductive coating (22) which is electrically isolated from the first electrically conductive coating (6).
3. Sensor (10, 20, 30, 40) gemäß Anspruch 1 oder 2 mit wenigstens einem zweiten Lichtwellenleiter (31) . 3. sensor (10, 20, 30, 40) according to claim 1 or 2 with at least one second optical waveguide (31).
4. Sensor (10, 20, 30, 40) gemäß Anspruch 3, bei dem der zweite Lichtwellenleiter (31) wenigstens eine weitere elekt- risch leitfähige Beschichtung (33) aufweist. 4. Sensor (10, 20, 30, 40) according to claim 3, wherein the second optical waveguide (31) has at least one further electrically conductive coating (33).
5. Sensor (10, 20, 30, 40) gemäß einem der vorangehenden Ansprüche, wobei wenigstens eine der elektrisch leitfähigen Be- schichtungen (6, 22, 33) eine Goldbeschichtung ist. 5. Sensor (10, 20, 30, 40) according to one of the preceding claims, wherein at least one of the electrically conductive coatings (6, 22, 33) is a gold coating.
6. Sensor (10, 20, 30, 40) gemäß einem der vorangehenden Ansprüche mit wenigstens einer Elektrodenspitze (4, 23, 32), die mit einer der elektrisch leitfähigen Beschichtungen (6, 22, 33) elektrisch gekoppelt ist. 6. sensor (10, 20, 30, 40) according to one of the preceding claims having at least one electrode tip (4, 23, 32) which is electrically coupled to one of the electrically conductive coatings (6, 22, 33).
7. Sensor (10, 20, 30, 40) gemäß Anspruch 6, bei dem der elektrisch leitfähige Teil der Elektrodenspitze (4, 23, 32) aus Platin besteht. 7. sensor (10, 20, 30, 40) according to claim 6, wherein the electrically conductive part of the electrode tip (4, 23, 32) consists of platinum.
8. Sensor (10, 20, 30, 40) gemäß Anspruch 6 oder 7, bei dem die Elektrodenspitze (4, 23, 32) federnd gelagert ist. 8. sensor (10, 20, 30, 40) according to claim 6 or 7, wherein the electrode tip (4, 23, 32) is resiliently mounted.
9. Sensor (10, 20, 30, 40) gemäß einem der vorangehenden Ansprüche mit Mitteln zur Ausbringung einer Elektrolytlösung im Bereich des Sensorkopfes. 9. sensor (10, 20, 30, 40) according to one of the preceding claims with means for applying an electrolyte solution in the region of the sensor head.
10. Verfahren zum Betrieb eines Sensors gemäß einem der vo¬ rangehenden Ansprüche, bei dem eine Kombination von wenigstens einer optischen Messmethode mit wenigstens einer elek¬ trischen Messmethoden verwendet wird. 10. A method for operating a sensor according to any one of vo ¬ claims appending, in which a combination of at least one optical measuring method is used with at least one elec ¬ cal measurement methods.
PCT/EP2012/050538 2011-01-26 2012-01-16 Electro-optical probe WO2012100995A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110003199 DE102011003199A1 (en) 2011-01-26 2011-01-26 Electro-optical probe
DE102011003199.5 2011-01-26

Publications (1)

Publication Number Publication Date
WO2012100995A1 true WO2012100995A1 (en) 2012-08-02

Family

ID=45531396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/050538 WO2012100995A1 (en) 2011-01-26 2012-01-16 Electro-optical probe

Country Status (2)

Country Link
DE (1) DE102011003199A1 (en)
WO (1) WO2012100995A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019120324A1 (en) * 2019-07-26 2021-01-28 Schott Ag Optical-electrical conductor system with adapter sleeve

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483414A (en) * 1992-04-01 1996-01-09 Vaisala Oy Electrical impedance detector for measurement of physical quantities, in particular of temperature
US5618587A (en) * 1993-06-30 1997-04-08 Biomedical Sensors, Ltd. Vacuum rig apparatus
DE19732215A1 (en) * 1996-07-29 1998-02-05 Bruker Analytische Messtechnik Device for infrared spectroscopic examination of e.g. blood vessel inner surface
WO2003020119A2 (en) * 2001-09-04 2003-03-13 Bioluminate, Inc. Multisensor probe for tissue identification
US20050040374A1 (en) * 2002-01-25 2005-02-24 Konarka Technologies, Inc. Photovoltaic fibers
WO2006014360A2 (en) * 2004-07-02 2006-02-09 Massachusetts Institute Of Technology Optoelectronic fiber photodetector
WO2009108873A2 (en) * 2008-02-29 2009-09-03 Northrop Grumman Space & Mission Systems Corp. Optical fiber systems and methods

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986298B2 (en) * 2006-11-17 2015-03-24 Biosense Webster, Inc. Catheter with omni-directional optical tip having isolated optical paths
JP5543360B2 (en) * 2007-12-06 2014-07-09 コーニンクレッカ フィリップス エヌ ヴェ Apparatus, method and computer program for applying energy to object
US20100234684A1 (en) * 2009-03-13 2010-09-16 Blume Jurgen Multifunctional endoscopic device and methods employing said device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5483414A (en) * 1992-04-01 1996-01-09 Vaisala Oy Electrical impedance detector for measurement of physical quantities, in particular of temperature
US5618587A (en) * 1993-06-30 1997-04-08 Biomedical Sensors, Ltd. Vacuum rig apparatus
DE19732215A1 (en) * 1996-07-29 1998-02-05 Bruker Analytische Messtechnik Device for infrared spectroscopic examination of e.g. blood vessel inner surface
WO2003020119A2 (en) * 2001-09-04 2003-03-13 Bioluminate, Inc. Multisensor probe for tissue identification
US20050040374A1 (en) * 2002-01-25 2005-02-24 Konarka Technologies, Inc. Photovoltaic fibers
WO2006014360A2 (en) * 2004-07-02 2006-02-09 Massachusetts Institute Of Technology Optoelectronic fiber photodetector
WO2009108873A2 (en) * 2008-02-29 2009-09-03 Northrop Grumman Space & Mission Systems Corp. Optical fiber systems and methods

Also Published As

Publication number Publication date
DE102011003199A1 (en) 2012-07-26

Similar Documents

Publication Publication Date Title
DE102006055588B4 (en) Apparatus and system for detecting the shape of an endoscope
DE10163972B4 (en) Method and device for determining a light transport parameter and an analyte in a biological matrix
CN107941782B (en) It can endoscopic fiber Raman microprobe and detection device
DE102010043795A1 (en) Dental device with hand-held instrument and light source
WO2014154528A1 (en) Fibre-optic sensor and use thereof
EP1372465B1 (en) Probe for dielectric and optical diagnosis
US10588513B2 (en) Optical apparatus for use with a medical imager
EP3079563B1 (en) Device with a raman probe, and method using said device
WO2012100995A1 (en) Electro-optical probe
DE102013020703A1 (en) Raman probe device and method using this device
DE102015101608B4 (en) Method for signal transmission, device with an optical fiber and detection system
DE602004004290T2 (en) METHOD AND DEVICE FOR RETRO-STREAK TROSCOPY
DE102007047093B4 (en) Device for measuring fluorescence radiation on biological substances with a semiconductor sensor arrangement
EP2948058A1 (en) Hand-held measuring device
DE202006016617U1 (en) Device for measuring the energy metabolism of living tissue by laser spectroscopy comprises a laser and an optoelectronic unit connected to a probe and an analysis and display unit through disconnectable interfaces
DE19854292C2 (en) Method and arrangement for multiparametric diagnosis of biological tissue
DE10118464A1 (en) Electrical probe, preferably for eye surgery, has insulator as light conductor optically connected to light generating unit, electrodes with contacts for connecting electrical supply unit
DE19854291C2 (en) Endoscopic arrangement for examining biological tissue
EP3847963A1 (en) Probe and measurement system
CN106880338A (en) Neoplasm in situ on-line detecting system based on SERS technology
EP2203108B1 (en) Device for detecting signs of bacterial infection of the root channel of teeth
WO2021032418A1 (en) Methods and arrangements for identifying the charge state of lithium-ion batteries using optical means
DE102007047067A1 (en) Device for detecting bacterial infestation of teeth
US20230101792A1 (en) Composite optical fibre based plasma generation device
DE3719275C2 (en) Arrangement for interference-free and low-impact measurement of an electrical variable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12701097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12701097

Country of ref document: EP

Kind code of ref document: A1