WO2012100584A1 - 多颗led聚光系统及方法、及其成像系统 - Google Patents

多颗led聚光系统及方法、及其成像系统 Download PDF

Info

Publication number
WO2012100584A1
WO2012100584A1 PCT/CN2011/082394 CN2011082394W WO2012100584A1 WO 2012100584 A1 WO2012100584 A1 WO 2012100584A1 CN 2011082394 W CN2011082394 W CN 2011082394W WO 2012100584 A1 WO2012100584 A1 WO 2012100584A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
concentrating
convex
condensing
radius
Prior art date
Application number
PCT/CN2011/082394
Other languages
English (en)
French (fr)
Inventor
李春荣
Original Assignee
广州市雅江光电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2011200205624U external-priority patent/CN201935116U/zh
Priority claimed from CN2011200205658U external-priority patent/CN201935002U/zh
Priority claimed from CN2011200205639U external-priority patent/CN201983022U/zh
Priority claimed from CN2011100243866A external-priority patent/CN102121662B/zh
Application filed by 广州市雅江光电设备有限公司 filed Critical 广州市雅江光电设备有限公司
Priority to EP11856682.7A priority Critical patent/EP2669729A4/en
Priority to US13/981,075 priority patent/US9447942B2/en
Publication of WO2012100584A1 publication Critical patent/WO2012100584A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/007Array of lenses or refractors for a cluster of light sources, e.g. for arrangement of multiple light sources in one plane
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • G02B19/0066Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses

Definitions

  • the invention relates to the concentrating and imaging of LEDs, in particular to the concentrating and imaging of planar multiple LED lamp beads. Background technique
  • the focus of light mainly requires two parts, the first is the light source, and the second is the focusing device.
  • the existing concentrating method of multiple LEDs generally achieves the purpose by changing the illuminating angle of each LED lamp bead of the LED light source, such as an LED focusing device of Chinese Patent Publication No. 201575340U, including a base and two The above LED lamp; the LED lamp comprises an LED light source, a fitting lens, a lens holder and a heat dissipation column, and the LED light source is installed at one end of the heat dissipation column, and the lens is installed in front of the LED light source and wraps the LED light source, and the lens is fitted through the lens holder.
  • the LED light is mounted on the base through the heat dissipation column, the base is a curved curved piece, and the LED light is mounted on the curved curved piece.
  • the LED light source is mounted on the curved curved piece, and the light emitted from the LED lamp is polymerized by the angle of the curved curved piece to achieve the function of collecting light.
  • the imaging device has the following disadvantages: The curved curved piece as a part of the light source has high processing difficulty and high progress requirement; the installation precision is high; once the curved surface of the curved piece is processed, the position of the LED light source cannot be changed, and the focus cannot be adjusted by the light source.
  • the lens can only be adjusted by the lens group, and the multiple lenses in the imaging lens group have a large workload and a long time; and the lens group used in the light collecting method is large, the light combining distance is long, the light is uneven, and the cost is excessive. high. Summary of the invention
  • One of the technical problems to be solved by the present invention is to provide a plurality of LED lamp bead concentrating and concentrating systems for an illuminable illuminator, which is convenient for processing and installation of a planar light source, and has low cost; easy focusing, short-distance integration Light, uniform light, suitable for imaging.
  • the second technical problem to be solved by the present invention is to provide a method for combining and concentrating a plurality of LED lamp beads for an image-capable lamp.
  • the processing and installation of the light source are convenient and low in cost; the focusing is easy, and the short-distance light combining is realized. , and the light is even.
  • the third technical problem to be solved by the present invention is to provide a plurality of LED lamp bead light combining imaging systems with focusing function, which is convenient for processing and installation of a planar light source, has low cost, and is easy to focus.
  • the fourth technical problem to be solved by the present invention is to provide a multi-LED light bead combined imaging system with a zoom function, which is convenient for processing and installation of a planar light source, has low cost, and is easy to focus.
  • the technical solution of the present invention is: a plurality of LED lamp bead concentrating concentrating system, comprising a light source, the light source comprises a planar substrate, and the planar substrate is provided with two or more LED lights Beads, each LED lamp bead is correspondingly provided with a first concentrating mirror, all the first concentrating mirrors constitute a first concentrating mirror group; each of the first concentrating mirrors is correspondingly provided with a second concentrating mirror, and all the second concentrating mirrors constitute a second concentrating mirror A third concentrating mirror is disposed in front of each of the second concentrating mirrors, and all of the third condensing mirrors constitute a third concentrating mirror group; and a fourth concentrating mirror is disposed in front of the third condensing mirror group.
  • the lamp beads are on the same plane, easy to install, simple in process, easy to dissipate heat, and low in cost; optical efficiency is improved by 80%; light combination is achieved in a short distance, and the light is uniform.
  • the first concentrating mirror is an aspherical mirror having a conical coefficient of -0.85 - 0.6, a radius of curvature of 4.5 to 10 mm, and a diameter of 10 to 20 mm.
  • the second concentrating mirror is an ordinary spherical mirror having a convex radius of 20 to 60 mm on the left side and a radius of curvature of 8 to 20 mm and a diameter of 10 to 20 mm on the right side.
  • the third concentrating mirror is a simple plano-convex mirror having a convex curvature radius of 40 to 80 mm and a diameter of 20 to 30 mm.
  • the fourth concentrating mirror has a focal length of 80 to 120 mm and a diameter of 65 to 75 mm.
  • the distance between the first concentrating mirror and the second concentrating mirror is 0 ⁇ 3 mm.
  • the distance between the second concentrating mirror and the third condensing mirror is 8 to 15 mm.
  • the distance between the third condensing mirror and the fourth concentrating mirror is 2 to 50 mm.
  • the side thicknesses of the first, second, third, and fourth concentrating mirrors are all l ⁇ 5 mm.
  • the technical solution of the present invention is: a method for concentrating and concentrating a plurality of LED lamp beads, wherein in the concentrating method, a plurality of LED lamp beads are all in the same plane, and each LED lamp bead There is a first concentrating mirror corresponding to the front, all the first concentrating mirrors constitute a first concentrating mirror group; each of the first concentrating mirrors is correspondingly provided with a second concentrating mirror, and all the second concentrating mirrors constitute a second concentrating mirror group; each second concentrating mirror There is a third concentrating mirror corresponding to the front, all the third concentrating mirrors constitute a third concentrating mirror group; a third concentrating mirror is arranged in front of the third concentrating mirror group; each of the LED bulbs emits light through its corresponding first concentrating mirror After the second concentrating mirror and the third concentrating mirror are condensed, the divergence angle of the light becomes smaller, forming a bundle of near-parallel light, and multiple bundles of near-parallel
  • the plurality of LED lamp beads are disposed on the same planar substrate, the planar substrate is processed conveniently, and the cost is saved; the mounting precision of the LED lamp bead on the plane is relatively low.
  • the first concentrating mirror is an aspherical mirror having a cone coefficient of -0.85 - 0.6, a radius of curvature of 4.5 to 10 mm, a diameter of 10 to 20 mm, and a side thickness of 1 to 5 mm; all of the first concentrating mirrors are on the same plane, A concentrating lens group concentrates the light emitted by the LED for the first time.
  • the second concentrating mirror is a spherical mirror having a convex curvature radius of 20 to 60 mm on the left side, a curvature radius of 8 to 20 mm on the right side convex surface, a diameter of 10 to 20 mm, and a side thickness of 1 to 5 mm; all the second concentrating mirrors are at On the same plane, the second concentrating mirror group condenses the light emitted from the LED for a second time.
  • the third condensing mirror is a spherical mirror having a convex radius of curvature of 40 to 80 mm and a diameter of
  • the edge thickness is l ⁇ 5mm; all the third concentrating mirrors are on the same plane, and the third concentrating mirror group condenses the light emitted by the LED for the third time.
  • the fourth concentrating mirror is a positive lens, and may be a non-Neil lens or a common spherical concentrating mirror.
  • the fourth concentrating mirror has a focal length of 80-120 mm, a diameter of 65-75 mm, and a side thickness of l ⁇ 5 mm;
  • the concentrating mirror focuses the multi-beam near-parallel light that has been condensed three times to the focus of the fourth concentrating mirror.
  • the distance between the first concentrating mirror and the second concentrating mirror is 0 ⁇ 3mm
  • the distance between the second concentrating mirror and the third concentrating mirror is 8 ⁇ 15mm
  • the distance between the third concentrating mirror and the fourth concentrating mirror is 2 ⁇ 50mm.
  • the technical solution of the present invention is: a plurality of LED lamp bead combined imaging systems having a focusing function, comprising a light source, an imaging mirror set disposed in front of the light source, the light source comprising a planar substrate,
  • the plane substrate is provided with two or more LED lamp beads, and each of the LED lamp beads is correspondingly provided with a first concentrating mirror, and all the first condensing mirrors constitute a first concentrating mirror group; each of the first concentrating mirrors is correspondingly provided with a front a second concentrating mirror, wherein all the second concentrating mirrors form a second concentrating mirror group; each of the second concentrating mirrors is correspondingly provided with a third concentrating mirror, all of the third condensing mirrors constitute a third concentrating mirror group; and the third concentrating mirror group is provided with a first concentrating mirror group a four concentrating mirror;
  • the imaging mirror group sequentially includes a first plano-convex mirror, a second plano-convex mirror
  • the light source of the imaging system it is possible to use a lens combination with a smaller diameter to concentrate the luminous flux of 80% of the divergent light of a single lamp bead into a divergence.
  • the smaller near-parallel light is then focused by the fourth concentrating mirror to focus near the focus of the fourth concentrating mirror, thereby realizing the beam synthesis of the plurality of lamp beads; the lamp beads are on the same plane, the installation is convenient, and the process is simple.
  • the heat dissipation is easy to handle, the cost is low; the optical efficiency is improved by 80%; the light is combined at a short distance, and the light is uniform.
  • the entire imaging system has a simple lens structure, low cost, clear imaging, and a large imaging object range of up to 60 mm, which can place more imaging objects.
  • the imaging system combined with the light source and the imaging mirror group has high efficiency, clear imaging, focusing, and high-power LED as a light source, and the cost is low.
  • the first concentrating mirror is an aspherical mirror having a cone coefficient of -0.85 - 0.6, a radius of curvature of 4.5 to 10 mm, and a diameter of 10 to 20 mm; and the second concentrating mirror is a general spherical mirror having a convex radius of 20 on the left side. ⁇ 60mm, the right convex surface has a radius of curvature of 8 ⁇ 20mm and a diameter of 10 ⁇ 20mm; the third concentrating mirror is a simple plano-convex mirror with a convex radius of curvature of 40 ⁇ 80mm and a diameter of 20 ⁇ 30mm; the fourth concentrating mirror The focal length is 80 ⁇ 120mm and the diameter is 65 ⁇ 75mm.
  • the distance between the first concentrating mirror and the second concentrating mirror is 0 ⁇ 3 mm; the distance between the second condensing mirror and the third condensing mirror is 8-15 mm; between the third concentrating mirror and the fourth concentrating mirror The distance is 2 ⁇ 50mm.
  • the convex curvature of the right convex surface of the first plano-convex mirror is 70-85 mm, and the diameter is 63-74 mm;
  • the curvature of the right convex surface of the second plano-convex mirror is 120-140 mm, and the diameter is 65-75 mm;
  • the convex convex surface of the third plano-convex mirror has a radius of curvature of 140 to 160 mm and a diameter of 75 to 85 mm.
  • the distance between the first plano-convex mirror and the second plano-convex mirror is 0 ⁇ 3 mm; the first plano-convex mirror and the second plano-convex mirror form a focusing mirror group, and the focusing mirror group is in the system
  • the image in the middle is 25 ⁇ 60mm; the third plano-convex mirror is 150 ⁇ 170mm behind the image in the system.
  • the first concentrating mirror, the second condensing mirror, the third concentrating mirror, the fourth concentrating mirror, the first plano-convex mirror, the second plano-convex mirror, and the third plano-convex mirror have a thickness of l ⁇ 5 mm.
  • the technical solution of the present invention is: a plurality of LED lamp bead light combining imaging systems having a zoom function, comprising a light source, an imaging mirror set disposed in front of the light source, the light source comprising a planar substrate,
  • the plane substrate is provided with two or more LED lamp beads, and each of the LED lamp beads is correspondingly provided with a first concentrating mirror, and all the first condensing mirrors constitute a first concentrating mirror group; each of the first concentrating mirrors is correspondingly provided with a front a second concentrating mirror, wherein all the second concentrating mirrors form a second concentrating mirror group; each of the second concentrating mirrors is correspondingly provided with a third condensing mirror, all of the third condensing mirrors constitute a third concentrating mirror group; and the third concentrating mirror group is provided with a first concentrating mirror group a four concentrating mirror;
  • the imaging mirror group sequentially includes a first plano-convex mirror, a second plano-con
  • the light source of the imaging system it is possible to use a lens combination with a smaller diameter to concentrate the luminous flux of 80% of the divergent light of a single lamp bead into a divergence.
  • the smaller near-parallel light is then focused by the fourth concentrating mirror to focus near the focus of the fourth concentrating mirror, thereby realizing the beam synthesis of the plurality of lamp beads; the lamp beads are on the same plane, the installation is convenient, and the process is simple.
  • the heat dissipation is easy to handle, the cost is low; the optical efficiency is improved by 80%; the light is combined at a short distance, and the light is uniform.
  • the imaging mirror of the imaging system the system has a large imaging range of up to 70 mm, which can place more imaging objects.
  • the imaging system combined with the light source and the imaging mirror has a wide range of zoom functions and can be behind the lens.
  • the imaging object is clearly imaged at any distance from 1 meter and is inexpensive. High efficiency, clear imaging, zoom, focus, high power led as a light source, low cost.
  • the first concentrating mirror is an aspherical mirror having a conic coefficient of -0.85-0.6, a radius of curvature of 4.5-10 mm, and a diameter of 10-20 mm;
  • the second concentrating mirror is an ordinary spherical mirror, and the convex radius of the left convex surface is 20 ⁇ 60mm, the right convex surface has a radius of curvature of 8 ⁇ 20mm and a diameter of 10 ⁇ 20mm;
  • the third concentrating mirror is a simple plano-convex mirror with a convex radius of curvature of 40 ⁇ 80mm and a diameter of 20 ⁇ 30mm;
  • the fourth concentrating mirror The focal length is 80 ⁇ 120mm and the diameter is 65 ⁇ 75mm.
  • the distance between the first concentrating mirror and the second concentrating mirror is 0 ⁇ 3 mm; the distance between the second condensing mirror and the third concentrating mirror is 8-15 mm; between the third concentrating mirror and the fourth concentrating mirror The distance is 2 ⁇ 50mm.
  • the right convex surface of the first plano-convex mirror has a radius of curvature of 60-70 mm and a diameter of 65-75 mm;
  • the convex radius of the left convex surface of the cemented mirror is 400-420 mm, and the radius of curvature of the central convex surface is 57-60 mm, right
  • the radius of curvature of the convex surface is 200 ⁇ 240mm, and the diameter is 65 ⁇ 75mm;
  • the radius of curvature of the left convex surface of the double convex mirror is 85 ⁇ 95mm, the radius of curvature of the right convex surface is 550 ⁇ 580mm, and the diameter is 65 ⁇ 75mm;
  • the concave radius of the left side of the mirror is 110 ⁇ 130mm, the radius of curvature of the right convex surface is 300 ⁇ 330mm, the diameter is 65 ⁇ 75mm, the center thickness is 2 ⁇ 5mm;
  • the radius of curvature of the right convex surface of the second plano mirror is
  • the distance between the first plano-convex mirror and the glue mirror is 0 ⁇ 3 mm, and the distance between the glue mirror and the double-convex mirror is 0 ⁇ 3 mm; the first plano-convex mirror, the glue mirror, and the double convex The mirror constitutes a focusing lens group, the focusing lens group is 30 ⁇ 100 mm behind the imaged object, the double concave mirror is 120 to 190 mm behind the imaged object, and the second plano-convex mirror is 210 to 230 mm behind the imaged object.
  • the first concentrating mirror, the second concentrating mirror, the third concentrating mirror, the fourth concentrating mirror, the first plano-convex mirror, the double convex mirror, and the second plano-convex mirror have a side thickness of l ⁇ 5 mm.
  • the LED lamp beads are uniformly distributed to form a multi-point illuminating planar light source.
  • flat LED light source is easy to handle heat dissipation, low cost
  • the light is combined in a short distance, and the light is uniform.
  • the first plano-convex mirror and the second plano-convex mirror form a focusing lens group, which is used for focusing the system in the imaging system, so that the imaging is clear 2 meters behind the lens;
  • the entire imaging system has a simple lens structure, low cost, clear imaging, large image area, up to 60mm, and more imaging objects.
  • the system imaging object range is large, up to 70mm, can place more imaging objects
  • the system has a wide range of zoom functions, and can image the image at any distance 1 meter away from the lens, and the cost is low.
  • Figure 1 is a plan view of a concentrating system according to Embodiments 1 to 6 of the present invention.
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1.
  • Figure 3 is a schematic view showing the structure of the imaging systems of Embodiments 7 to 9.
  • Figure 4 is a distribution view of the light source bead of the imaging systems of Examples 7 to 9.
  • Fig. 5 is a schematic view showing the structure of the imaging systems of the embodiments 10 to 12.
  • Figure 6 is a distribution view of the light source bead of the imaging systems of Examples 10 to 12. detailed description
  • a plurality of LED lamp bead concentrating systems for an illuminable illuminator the concentrating concentrating system includes a planar light source, the planar light source comprising a planar substrate, the plane A plurality of LED lamp beads 5 are evenly distributed on the substrate. In this embodiment, a total of four LED lamp beads 5 are disposed, and four LED lamp beads 5 in the same plane form a planar light source.
  • a first concentrating mirror 11 is disposed in front of each LED lamp bead 5.
  • the first concentrating mirror 11 is an aspherical mirror with a cone coefficient of -0.85, a radius of curvature of 4.5 mm, a diameter of 10 mm, and a side thickness of 1 mm.
  • the first condensing mirror 11 is on the same plane and constitutes the first concentrating mirror group 1, and the first condensing light is emitted from the LED.
  • Each of the first concentrating mirrors 11 is correspondingly provided with a second condensing mirror 21, and the second concentrating mirror 21 is a general spherical mirror having a left curvature radius of 20 mm, a right curvature radius of 8 mm, a diameter of 10 mm, and a side thickness of 1 mm.
  • the four second condensing mirrors 21 are on the same plane and constitute a second concentrating mirror group 2, which is emitted from the LED. The light is concentrated for the second time.
  • a second condensing mirror 31 is disposed in front of each of the second concentrating mirrors 21, and the third condensing mirror 31 is a simple plano-convex mirror having a convex curvature radius of 40 mm, a diameter of 20 mm, a side thickness of 1 mm, and four third condensing mirrors. 31 is on the same plane and constitutes a third concentrating mirror group 3, and condenses the light emitted from the LED for a third time.
  • a fourth condensing mirror 4 is disposed in front of the third concentrating mirror group 3.
  • the fourth concentrating mirror 4 is a non-Neil lens.
  • the fourth concentrating mirror has a focal length of 80 mm, a diameter of 65 mm, and a side thickness of 1 mm.
  • a concentrating system in which the first condensing mirror 11 and the second condensing mirror 31 are combined, the distance between the first condensing mirror and the second condensing mirror is 0 mm, and between the second condensing mirror and the third condensing mirror The distance is 8mm, and the distance between the third concentrating mirror and the fourth concentrating mirror is 2mm. It is possible to use a lens combination with a smaller diameter to concentrate the luminous flux of 80% of the divergent light of a single lamp bead into a near divergence. Parallel light rays are then focused by the fourth condensing mirror 4 to focus near the focus of the fourth condensing mirror 4, thereby realizing beam combining of the plurality of lamp beads.
  • a plurality of LED lamp bead concentrating systems for an illuminable illuminator the concentrating concentrating system includes a planar light source, the planar light source comprising a planar substrate, the plane A plurality of LED lamp beads 5 are evenly distributed on the substrate. In this embodiment, a total of four LED lamp beads 5 are disposed, and four LED lamp beads 5 in the same plane form a planar light source.
  • a first concentrating mirror 11 is disposed in front of each LED lamp bead 5.
  • the first concentrating mirror 11 is an aspherical mirror with a cone coefficient of -0.7, a radius of curvature of 7.0 mm, a diameter of 15 mm, and a side thickness of 3 mm.
  • the first condensing mirror 11 is on the same plane and constitutes the first concentrating mirror group 1, and the first condensing light is emitted from the LED.
  • Each of the first concentrating mirrors 11 is correspondingly provided with a second concentrating mirror 21, and the second concentrating mirror 21 is a common spherical mirror having a left curvature radius of 40 mm, a right curvature radius of 14 mm, a diameter of 15 mm, and a side thickness of 3 mm.
  • the second condensing mirrors 21 are on the same plane and constitute a second concentrating mirror group 2, and condense the light emitted from the LEDs for a second time.
  • a second concentrating mirror 31 is disposed in front of each of the second concentrating mirrors 21, and the third condensing mirror 31 is a simple plano-convex mirror having a convex curvature radius of 60 mm, a diameter of 25 mm, a side thickness of 3 mm, and four third condensing mirrors. 31 is on the same plane and constitutes a third concentrating mirror group 3, and condenses the light emitted from the LED for a third time.
  • a fourth condensing mirror 4 is disposed in front of the third concentrating mirror group 3.
  • the fourth concentrating mirror 4 is a non-Neil lens.
  • the fourth concentrating mirror has a focal length of 100 mm, a diameter of 70 mm, and a side thickness of 3 mm.
  • the distance between the first condensing mirror and the second condensing mirror is 1.5 mm, and between the second condensing mirror and the third condensing mirror
  • the distance between the third concentrating mirror and the fourth concentrating mirror is 25 mm, and the single lamp bead can be combined with the lens assembly with a smaller diameter.
  • the light flux of 80% of the divergent rays is concentrated into near-parallel rays having a small divergence, and then the plurality of near-parallel lights are focused by the fourth condensing mirror 4 to the vicinity of the focus of the fourth condensing mirror 4, thereby realizing beam combining of the plurality of lamps.
  • a plurality of LED lamp bead concentrating systems for an illuminable illuminator the concentrating concentrating system includes a planar light source, the planar light source comprising a planar substrate, the plane A plurality of LED lamp beads 5 are evenly distributed on the substrate. In this embodiment, a total of four LED lamp beads 5 are disposed, and four LED lamp beads 5 in the same plane form a planar light source.
  • a first concentrating mirror 11 is disposed in front of each LED lamp bead 5.
  • the first condensing mirror 11 is an aspherical mirror with a cone coefficient of -0.6, a radius of curvature of 10 mm, a diameter of 20 mm, and a side thickness of 5 mm.
  • a concentrating mirror 11 is on the same plane and constitutes the first concentrating mirror group 1, and the light emitted from the LED is first condensed.
  • Each of the first concentrating mirrors 11 is provided with a second concentrating mirror 21, and the second concentrating mirror 21 is a common spherical mirror having a left curvature radius of 60 mm, a right curvature radius of 20 mm, a diameter of 20 mm, and a side thickness of 5 mm.
  • the second condensing mirrors 21 are on the same plane and constitute a second concentrating mirror group 2, and condense the light emitted from the LEDs for a second time.
  • a second concentrating mirror 31 is disposed in front of each of the second concentrating mirrors 21, and the third condensing mirror 31 is a simple plano-convex mirror having a convex curvature radius of 80 mm, a diameter of 30 mm, a side thickness of 5 mm, and four third condensing mirrors. 31 is on the same plane and constitutes a third concentrating mirror group 3, and condenses the light emitted from the LED for a third time.
  • a fourth condensing mirror 4 is disposed in front of the third concentrating mirror group 3.
  • the fourth concentrating mirror 4 is a non-Niel lens, and the fourth concentrating mirror has a focal length of 120 mm, a diameter of 75 mm, and a side thickness of 5 mm.
  • a concentrating system in which the first condensing mirror 11 and the second condensing mirror 31 are combined, the distance between the first condensing mirror and the second condensing mirror is 3 mm, and between the second condensing mirror and the third condensing mirror The distance is 15mm, the distance between the third concentrating mirror and the fourth concentrating mirror is 50mm, and the light flux of 80% of the divergent light of a single lamp bead can be gathered into a near divergence with a lens combination with a smaller diameter. Parallel light rays are then focused by the fourth condensing mirror 4 to focus near the focus of the fourth condensing mirror 4, thereby realizing beam combining of the plurality of lamp beads.
  • the planar LED light source is more convenient to process, and the precision required for processing and mounting is not high; the focusing can be performed by the fourth condensing mirror 4, and the focusing is more convenient and quick; the planar LED light source is easy to handle. , low cost; increase optical efficiency by 80%; achieve light combining at short distances, and uniform light.
  • the light is concentrated uniformly three times, and the beam angle of 120 degrees from the LED lamp bead is firstly concentrated to 70-80 degrees through the first concentrating mirror group 1, and the second concentrating lens group 2 is gathered to 30-40 degrees for the second time.
  • the third concentrating mirror group 3 is concentrated to within 20 degrees for the third time, and finally, near the focus of the fourth concentrating mirror 4, more than 60% of the light is concentrated within a diameter range of 20 mm to 60 mm, and more than 60% of the light divergence angle is within 40 degrees. Suitable for placing imaging objects.
  • Example 4 As shown in FIG. 1 and FIG. 2, a plurality of LED lamp bead concentrating methods for an illuminable illuminator, wherein a planar light source comprises a combined light source, and the planar light source comprises a planar substrate on the planar substrate.
  • a plurality of LED lamp beads 5 are evenly distributed. In this embodiment, a total of four LED lamp beads 5 are provided, and four LED lamp beads 5 in the same plane form a planar light source.
  • a first concentrating mirror 11 is disposed in front of each LED lamp bead 5.
  • the first concentrating mirror 11 is an aspherical mirror with a cone coefficient of -0.85, a radius of curvature of 4.5 mm, a diameter of 10 mm, and a side thickness of 1 mm.
  • the first condensing mirror 11 is on the same plane and constitutes the first concentrating mirror group 1, and the first condensing light is emitted from the LED.
  • Each of the first concentrating mirrors 11 is provided with a second concentrating mirror 21, and the second concentrating mirror 21 is a common spherical mirror having a left curvature radius of 20 mm, a right curvature radius of 8 mm, a diameter of 10 mm, and a side thickness of 1 mm.
  • the second condensing mirrors 21 are on the same plane and constitute a second concentrating mirror group 2, and condense the light emitted from the LEDs for a second time.
  • a second condensing mirror 31 is disposed in front of each of the second concentrating mirrors 21, and the third condensing mirror 31 is a simple plano-convex mirror having a convex curvature radius of 40 mm, a diameter of 20 mm, a side thickness of 1 mm, and four third condensing mirrors. 31 is on the same plane and constitutes a third concentrating mirror group 3, and condenses the light emitted from the LED for a third time.
  • a fourth condensing mirror 4 is disposed in front of the third concentrating mirror group 3.
  • the fourth concentrating mirror 4 is a non-Neil lens.
  • the fourth concentrating mirror has a focal length of 80 mm, a diameter of 65 mm, and a side thickness of 1 mm.
  • a concentrating system in which the first condensing mirror 11 and the second condensing mirror 31 are combined, the distance between the first condensing mirror and the second condensing mirror is 0 mm, and between the second condensing mirror and the third condensing mirror The distance is 8mm, and the distance between the third concentrating mirror and the fourth concentrating mirror is 2mm. It is possible to use a lens combination with a smaller diameter to concentrate the luminous flux of 80% of the divergent light of a single lamp bead into a near divergence. Parallel light rays are then focused by the fourth condensing mirror 4 to focus near the focus of the fourth condensing mirror 4, thereby realizing beam combining of the plurality of lamp beads.
  • a plurality of LED lamp bead concentrating methods for an illuminable illuminator wherein a planar light source comprises a combined light source, and the planar light source comprises a planar substrate on the planar substrate.
  • a plurality of LED lamp beads 5 are evenly distributed. In this embodiment, a total of four LED lamp beads 5 are provided, and four LED lamp beads 5 in the same plane form a planar light source.
  • a first concentrating mirror 11 is disposed in front of each LED lamp bead 5.
  • the first concentrating mirror 11 is an aspherical mirror with a cone coefficient of -0.7, a radius of curvature of 7.0 mm, a diameter of 15 mm, and a side thickness of 3 mm.
  • the first condensing mirror 11 is on the same plane and constitutes the first concentrating mirror group 1, and the first condensing light is emitted from the LED.
  • Each of the first concentrating mirrors 11 is provided with a second concentrating mirror 21, and the second concentrating mirror 21 is a common spherical mirror having a left curvature radius of 40 mm, a right curvature radius of 14 mm, a diameter of 15 mm, and a side thickness of 3 mm.
  • the second condensing mirrors 21 are on the same plane and constitute a second concentrating mirror group 2, and condense the light emitted from the LEDs for a second time.
  • Each of the second concentrating mirrors 21 is correspondingly provided with a third condensing mirror 31, and the third The condensing mirror 31 is a simple plano-convex mirror having a convex curvature radius of 60 mm, a diameter of 25 mm, and a side thickness of 3 mm.
  • the four third condensing mirrors 31 are on the same plane and constitute a third condensing lens group 3, and the light emitted from the LED is first. Concentrated three times.
  • a fourth condensing mirror 4 is disposed in front of the third concentrating mirror group 3.
  • the fourth concentrating mirror 4 is a non-Neil lens.
  • the fourth concentrating mirror has a focal length of 100 mm, a diameter of 70 mm, and a side thickness of 3 mm.
  • a concentrating system in which the first condensing mirror 11 and the second condensing mirror 31 are combined, the distance between the first condensing mirror and the second condensing mirror is 1.5 mm, and between the second condensing mirror and the third condensing mirror The distance between the third concentrating mirror and the fourth concentrating mirror is 25 mm, and the light flux of 80% of the divergent light of the single lamp bead can be gathered into a small divergence by using a lens combination with a smaller diameter.
  • the near parallel rays are then focused by the fourth condensing mirror 4 to focus near the focus of the fourth concentrating mirror 4, thereby realizing beam combining of the plurality of lamp beads.
  • a plurality of LED lamp bead concentrating methods for an illuminable illuminator wherein a planar light source comprises a combined light source, and the planar light source comprises a planar substrate on the planar substrate.
  • a plurality of LED lamp beads 5 are evenly distributed. In this embodiment, a total of four LED lamp beads 5 are provided, and four LED lamp beads 5 in the same plane form a planar light source.
  • a first concentrating mirror 11 is disposed in front of each LED lamp bead 5.
  • the first condensing mirror 11 is an aspherical mirror with a cone coefficient of -0.6, a radius of curvature of 10 mm, a diameter of 20 mm, and a side thickness of 5 mm.
  • a concentrating mirror 11 is on the same plane and constitutes the first concentrating mirror group 1, and the light emitted from the LED is first condensed.
  • a second concentrating mirror 21 is disposed in front of each of the first concentrating mirrors 11, and the second concentrating mirror 21 is a common spherical mirror having a left curvature radius of 60 mm, a right curvature radius of 20 mm, a diameter of 20 mm, and a side thickness of 5 mm.
  • the second condensing mirrors 21 are on the same plane and constitute a second concentrating mirror group 2, and condense the light emitted from the LEDs for a second time.
  • a second concentrating mirror 31 is disposed in front of each of the second concentrating mirrors 21, and the third condensing mirror 31 is a simple plano-convex mirror having a convex curvature radius of 80 mm, a diameter of 30 mm, a side thickness of 5 mm, and four third condensing mirrors. 31 is on the same plane and constitutes a third concentrating mirror group 3, and condenses the light emitted from the LED for a third time.
  • a fourth condensing mirror 4 is disposed in front of the third concentrating mirror group 3.
  • the fourth condensing mirror 4 is a non-Nor lens, and the fourth concentrating mirror has a focal length of 120 mm, a diameter of 75 mm, and a side thickness of 5 mm.
  • a concentrating system in which the first condensing mirror 11 and the second condensing mirror 31 are combined, the distance between the first condensing mirror and the second condensing mirror is 3 mm, and between the second condensing mirror and the third condensing mirror The distance is 15mm, the distance between the third concentrating mirror and the fourth concentrating mirror is 50mm, and the light flux of 80% of the divergent light of a single lamp bead can be gathered into a near divergence with a lens combination with a smaller diameter. Parallel light rays are then focused by the fourth condensing mirror 4 to focus near the focus of the fourth condensing mirror 4, thereby realizing beam combining of the plurality of lamp beads.
  • the light is uniformly concentrated three times, and a beam angle of 120 degrees is emitted from the LED lamp bead.
  • the first concentrating lens group 1 is first concentrated to 70-80 degrees
  • the second concentrating lens group 2 is second to 30-40 degrees
  • the third condensing lens group 3 is concentrated to within 20 degrees for the third time
  • Near the focus of the four concentrating mirrors 4 more than 60% of the light is concentrated within the range of 20mm-60mm diameter, and more than 60% of the light divergence angle is within 40 degrees, suitable for placing the imaged object.
  • the planar LED light source is more convenient to process, and the precision required for processing and installation is not high; the focusing can be performed by the fourth concentrating mirror 4, and the focusing is more convenient and convenient; the planar LED light source is easy to dissipate heat, and the cost is low; the optical efficiency is improved by 80%; The light is combined in a short distance and the light is uniform. Taking four 60W led lamp beads as an example, after focusing synthesis, it can be used in zoom imaging system. The exit beam angle is zoomed from 12 degrees to 40 degrees, and the average illumination of 1 meter spot is up to 4500Lx. The similar lamps of traditional HID light source, 575W The average illumination of the 1 meter spot is about 6500Lx.
  • a plurality of LED lamp bead light combining imaging system with focusing function comprising a light source and an imaging lens set disposed in front of the light source.
  • the light source is a planar light source including a planar substrate, and a plurality of LED lamp beads 5 are uniformly distributed on the planar substrate.
  • a total of three LED lamp beads 5 are disposed on the same plane.
  • Four or three LED lamp beads 5 form a planar light source.
  • a first concentrating mirror 11 is disposed in front of each LED lamp bead 5.
  • the first concentrating mirror 11 is an aspherical mirror with a cone coefficient of -0.85, a radius of curvature of 4.5 mm, a diameter of 10 mm, and a side thickness of 1 mm.
  • the first condensing mirror 11 is on the same plane and constitutes the first concentrating mirror group 1, and the first condensing light is emitted from the LED.
  • a second concentrating mirror 21 is disposed in front of each of the first concentrating mirrors 11, and the second concentrating mirror 21 is an ordinary spherical mirror having a left curvature radius of 20 mm, a right curvature radius of 8 mm, a diameter of 10 mm, and a side thickness of 1 mm.
  • the second condensing mirrors 21 are on the same plane and constitute a second concentrating mirror group 2, and condense the light emitted from the LEDs for a second time.
  • a third concentrating mirror 31 is disposed in front of each of the second concentrating mirrors 21, and the third condensing mirror 31 is a simple plano-convex mirror having a convex curvature radius of 40 mm, a diameter of 20 mm, a side thickness of 1 mm, and three third condensing mirrors. 31 is on the same plane and constitutes a third concentrating mirror group 3, and condenses the light emitted from the LED for a third time.
  • a fourth condensing mirror 4 is disposed in front of the third concentrating mirror group 3.
  • the fourth concentrating mirror 4 is a non-Neil lens.
  • the fourth concentrating mirror has a focal length of 80 mm, a diameter of 65 mm, and a side thickness of 1 mm.
  • a concentrating system in which the first condensing mirror 11 and the second condensing mirror 31 are combined, the distance between the first condensing mirror and the second condensing mirror is 0 mm, and between the second condensing mirror and the third condensing mirror The distance is 8mm, and the distance between the third concentrating mirror and the fourth concentrating mirror is 2mm. It is possible to use a lens combination with a smaller diameter to concentrate the luminous flux of 80% of the divergent light of a single lamp bead into a near divergence. Parallel rays, then multiple beams near the fourth condenser 4 The parallel light is focused to the vicinity of the focus of the fourth condensing mirror 4, thereby realizing beam combining of the plurality of lamp beads.
  • a first plano-convex mirror 7, a second plano-convex mirror 8, and a third plano-convex mirror 9 are sequentially disposed in the optical path direction.
  • the convex convex surface of the first plano-convex mirror 7 has a radius of curvature of 70 mm, a side thickness of 1 mm, and a diameter of 63 mm;
  • the right convex surface of the second plano-convex mirror 8 has a curvature radius of 120 mm, a side thickness of 1 mm, and a diameter of 65 mm;
  • the convex convex surface of the third plano-convex mirror 9 has a radius of curvature of 140 mm, a side thickness of 1 mm, and a diameter of 75 mm.
  • the distance between the first plano-convex mirror 7 and the second plano-convex mirror 8 is 0 mm; the first plano-convex mirror 7 and the second plano-convex mirror 8 form a focusing lens group, and the focusing mirror group is in the system.
  • the image 4 is 25 mm behind; the third plano-convex mirror is 150 mm behind the image 4 in the system.
  • the first plano-convex mirror 7 and the second plano-convex mirror 8 form a focusing lens group, which is used for focusing the system in the imaging system, so that the imaging is clear 2 meters behind the lens; the entire imaging system has a simple lens structure, low cost, clear imaging, and imaging
  • the range of object 4 is large, up to 60mm, and more imaging objects can be placed.
  • a plurality of LED lamp bead light combining imaging system with focusing function comprising a light source and an imaging lens set disposed in front of the light source.
  • the light source is a planar light source including a planar substrate, and a plurality of LED lamp beads 5 are uniformly distributed on the planar substrate.
  • a total of three LED lamp beads 5 are disposed on the same plane.
  • the three LED lamp beads 5 form a planar light source.
  • a first concentrating mirror 11 is disposed in front of each LED lamp bead 5.
  • the first condensing mirror 11 is an aspherical mirror with a cone coefficient of -0.7, a radius of curvature of 7.0 mm, a diameter of 15 mm, and a side thickness of 3 mm.
  • the first condensing mirror 11 is on the same plane and constitutes the first concentrating mirror group 1, and the first condensing light is emitted from the LED.
  • Each of the first concentrating mirrors 11 is correspondingly provided with a second concentrating mirror 21, and the second concentrating mirror 21 is a common spherical mirror having a left curvature radius of 40 mm, a right curvature radius of 14 mm, a diameter of 15 mm, and a side thickness of 3 mm, three.
  • the second condensing mirrors 21 are on the same plane and constitute a second concentrating mirror group 2, and condense the light emitted from the LEDs for a second time.
  • a third concentrating mirror 31 is disposed in front of each of the second concentrating mirrors 21, and the third condensing mirror 31 is a simple plano-convex mirror having a convex curvature radius of 60 mm, a diameter of 25 mm, a side thickness of 3 mm, and three third condensing mirrors. 31 is on the same plane and constitutes a third concentrating mirror group 3, and condenses the light emitted from the LED for a third time.
  • a fourth condensing mirror 4 is disposed in front of the third concentrating mirror group 3.
  • the fourth concentrating mirror 4 is a non-Neil lens.
  • the fourth concentrating mirror has a focal length of 100 mm, a diameter of 70 mm, and a side thickness of 3 mm.
  • a concentrating system in which the first condensing mirror 11 and the second condensing mirror 31 are combined, the distance between the first condensing mirror and the second condensing mirror is 1.5 mm, and between the second condensing mirror and the third condensing mirror The distance is 12mm, the third The distance between the concentrating mirror and the fourth concentrating mirror is 25mm. It is possible to use a combination of smaller diameter lenses to concentrate the luminous flux of 80% of the divergent light of a single lamp bead into a near-parallel ray with less divergence, and then by the fourth.
  • the condensing mirror 4 focuses the plurality of near-parallel lights near the focus of the fourth condensing mirror 4, thereby realizing beam combining of the plurality of lamp beads.
  • a first plano-convex mirror 7, a second plano-convex mirror 8, and a third plano-convex mirror 9 are sequentially disposed in the optical path direction.
  • the convex convex surface of the first plano-convex mirror 7 has a radius of curvature of 80 mm, a side thickness of 3 mm, and a diameter of 68 mm;
  • the second plano-convex mirror 8 has a convex curvature radius of 130 mm, a side thickness of 3 mm, and a diameter of 70 mm;
  • the convex convex surface of the third plano-convex mirror 9 has a radius of curvature of 150 mm, a side thickness of 3 mm, and a diameter of 80 mm.
  • the distance between the first plano-convex mirror 7 and the second plano-convex mirror 8 is 1.5 mm; the first plano-convex mirror 7 and the second plano-convex mirror 8 form a focusing lens group, and the focusing mirror group is in the system
  • the image forming object 4 is 45 mm behind; the third plano-convex mirror 9 is 160 mm behind the image forming object 4 in the system.
  • the first plano-convex mirror 7 and the second plano-convex mirror 8 form a focusing lens group, which is used for focusing the system in the imaging system, so that the imaging is clear 2 meters behind the lens; the entire imaging system has a simple lens structure, low cost, clear imaging, and imaging
  • the range of object 4 is large, up to 60mm, and more imaging objects can be placed.
  • a plurality of LED lamp bead light combining imaging system with focusing function comprising a light source and an imaging lens set disposed in front of the light source.
  • the light source is a planar light source including a planar substrate, and a plurality of LED lamp beads 5 are uniformly distributed on the planar substrate.
  • a total of three LED lamp beads 5 are disposed on the same plane.
  • the three LED lamp beads 5 form a planar light source.
  • a first concentrating mirror 11 is disposed in front of each LED lamp bead 5.
  • the first condensing mirror 11 is an aspherical mirror with a cone coefficient of -0.6, a radius of curvature of 10 mm, a diameter of 20 mm, and a side thickness of 5 mm.
  • a concentrating mirror 11 is on the same plane and constitutes the first concentrating mirror group 1, and the light emitted from the LED is first condensed.
  • Each of the first concentrating mirrors 11 is correspondingly provided with a second concentrating mirror 21, and the second concentrating mirror 21 is a common spherical mirror having a left curvature radius of 60 mm, a right curvature radius of 20 mm, a diameter of 20 mm, and a side thickness of 5 mm, three.
  • the second condensing mirrors 21 are on the same plane and constitute a second concentrating mirror group 2, and condense the light emitted from the LEDs for a second time.
  • Each of the second concentrating mirrors 21 is correspondingly provided with a third condensing mirror 31.
  • the third condensing mirror 31 is a simple plano-convex mirror having a convex curvature radius of 80 mm, a diameter of 30 mm, a side thickness of 5 mm, and three third condensing mirrors. 31 is on the same plane and constitutes a third concentrating mirror group 3, and condenses the light emitted from the LED for a third time.
  • a fourth condensing mirror 4 is disposed in front of the third concentrating mirror group 3.
  • the fourth condensing mirror 4 is a non-Neil lens.
  • the fourth concentrating mirror has a focal length of 120 mm, a diameter of 75 mm, and a side thickness of 5 mm.
  • the concentrating system in which the second condensing mirror 21 and the third condensing mirror 31 are combined, the distance between the first concentrating mirror and the second concentrating mirror is 3 mm, and the distance between the second condensing mirror and the third condensing mirror is 15 mm.
  • the distance between the third concentrating mirror and the fourth concentrating mirror is 50 mm, and it is possible to use a lens assembly with a small diameter to gather 80% of the luminous flux of the divergent light of a single lamp bead into a near-parallel ray with a small divergence, and then Then, the fourth condensing mirror 4 focuses the plurality of near-parallel lights to the vicinity of the focus of the fourth condensing mirror 4, thereby realizing beam combining of the plurality of lamp beads.
  • a first plano-convex mirror 7, a second plano-convex mirror 8, and a third plano-convex mirror 9 are sequentially disposed in the optical path direction.
  • the convex convex surface of the first plano-convex mirror 7 has a curvature radius of 85 mm, a side thickness of 5 mm, and a diameter of 74 mm;
  • the right convex convex mirror 8 has a convex curvature radius of 140 mm, a side thickness of 5 mm, and a diameter of 75 mm;
  • the convex convex surface of the third plano-convex mirror 9 has a radius of curvature of 160 mm, a side thickness of 5 mm, and a diameter of 85 mm.
  • the distance between the first plano-convex mirror 7 and the second plano-convex mirror 8 is 3 mm; the first plano-convex mirror 7 and the second plano-convex mirror 8 form a focusing mirror group, and the focusing mirror group is in the system.
  • the image forming object 4 is 60 mm behind; the third plano-convex mirror 9 is 170 mm behind the image forming object 4 in the system.
  • the first plano-convex mirror 7 and the second plano-convex mirror 8 form a focusing lens group, which is used for focusing the system in the imaging system, so that the imaging is clear 2 meters behind the lens; the entire imaging system has a simple lens structure, low cost, clear imaging, and imaging
  • the range of object 4 is large, up to 60mm, and more imaging objects can be placed.
  • the light is concentrated uniformly three times, and the beam angle of 120 degrees from the LED lamp bead is firstly concentrated to 70-80 degrees through the first condenser group 1, and passed through the second condenser group 2
  • the second time is 30-40 degrees
  • the third concentrating lens group 3 is concentrated to within 20 degrees
  • near the focus of the fourth concentrating mirror 4 more than 60% of the light is concentrated within the range of 20mm-60mm diameter, and 60%
  • the above light divergence angle is within 40 degrees, which is suitable for placing the imaged object.
  • the imaging system combined with the light source and the imaging mirror group has high efficiency, clear imaging, focusing, and high power led as a light source, and the cost is low.
  • a multi-LED bead-combining imaging system with zoom function comprising a light source and an imaging mirror set in front of the light source.
  • the light source is a planar light source including a planar substrate, and a plurality of LED lamp beads 5 are uniformly distributed on the planar substrate.
  • a total of four LED lamp beads 5 are disposed on the same plane.
  • the four LED lamp beads 5 form a planar light source.
  • a first concentrating mirror 11 is disposed in front of each LED lamp bead 5.
  • the first concentrating mirror 11 is an aspherical mirror with a cone coefficient of -0.85, a radius of curvature of 4.5 mm, a diameter of 10 mm, and a side thickness of 1 mm.
  • the first condensing mirror 11 is on the same plane and constitutes the first concentrating mirror group 1, and the light emitted from the LED is performed.
  • a second concentrating mirror 21 is disposed in front of each of the first concentrating mirrors 11, and the second concentrating mirror 21 is a common spherical mirror having a left curvature radius of 20 mm, a right curvature radius of 8 mm, a diameter of 10 mm, and a side thickness of 1 mm.
  • the second condensing mirrors 21 are on the same plane and constitute a second concentrating mirror group 2, and condense the light emitted from the LEDs for a second time.
  • a second condensing mirror 31 is disposed in front of each of the second concentrating mirrors 21, and the third condensing mirror 31 is a simple plano-convex mirror having a convex curvature radius of 40 mm, a diameter of 20 mm, a side thickness of 1 mm, and four third condensing mirrors. 31 is on the same plane and constitutes a third concentrating mirror group 3, and condenses the light emitted from the LED for a third time.
  • a fourth condensing mirror 4 is disposed in front of the third concentrating mirror group 3.
  • the fourth concentrating mirror 4 is a non-Neil lens.
  • the fourth concentrating mirror has a focal length of 80 mm, a diameter of 65 mm, and a side thickness of 1 mm.
  • a concentrating system in which the first condensing mirror 11 and the second condensing mirror 31 are combined, the distance between the first condensing mirror and the second condensing mirror is 0 mm, and between the second condensing mirror and the third condensing mirror The distance is 8mm, and the distance between the third concentrating mirror and the fourth concentrating mirror is 2mm. It is possible to use a lens combination with a smaller diameter to concentrate the luminous flux of 80% of the divergent light of a single lamp bead into a near divergence. Parallel light rays are then focused by the fourth condensing mirror 4 to focus near the focus of the fourth condensing mirror 4, thereby realizing beam combining of the plurality of lamp beads.
  • the first plano-convex mirror 12, the glue mirror 13, the double convex mirror 14, and the double concave mirror are sequentially arranged according to the optical path.
  • Second plano-convex mirror 16 The convex convex surface of the first plano-convex mirror 12 has a radius of curvature of 60 mm, a diameter of 65 mm, and a side thickness of l mm.
  • the convex mirror has a convex radius of 400 mm on the left side, a curvature radius of 57 mm in the middle convex surface, and a curvature radius of 200 mm on the right side convex surface and a diameter of 65 mm.
  • the convex convex surface of the double convex mirror 14 has a curvature radius of 85 mm, the right convex surface has a curvature radius of 550 mm, a diameter of 65 mm, and a side thickness of l mm.
  • the convex concave surface of the double concave mirror 15 has a radius of curvature of llOmm, the right convex surface has a radius of curvature of 300 mm, a diameter of 65 mm, and a center thickness of 2 mm.
  • the right convex surface of the second plano-convex mirror 16 has a radius of curvature of 100 mm, a diameter of 115 mm, and a side thickness of l mm.
  • the distance between the first plano-convex mirror 12 and the glue mirror 13 is Omm, and the distance between the glue mirror 13 and the double convex mirror 14 is 0 mm; the first plano-convex mirror 12, the glue mirror 13, the double convex mirror 14 constitutes a focusing lens group, the focusing lens group is 30 mm behind the image forming object 6, the double concave mirror 15 is 120 mm behind the image forming object 6, and the second plano-convex mirror 16 is 210 mm behind the image forming object 6.
  • Glue mirror 13 is used to reduce system aberrations, the focus group is used for system focusing in the imaging system, and double concave mirror 15 is used to eliminate system aberrations and achieve zoom.
  • the system image 6 has a large range of up to 70mm, and can place more imaged objects 6; the system has a wide range of zoom functions, and can image the imaged object 6 at any distance 1 meter behind the lens, and the cost is low.
  • a plurality of LED lamp bead merging imaging system with zoom function comprising a light source and being arranged in front of the light source Imaging lens set.
  • the light source is a planar light source including a planar substrate, and a plurality of LED lamp beads 5 are uniformly distributed on the planar substrate.
  • a total of four LED lamp beads 5 are disposed on the same plane.
  • the four LED lamp beads 5 form a planar light source.
  • a first concentrating mirror 11 is disposed in front of each LED lamp bead 5.
  • the first concentrating mirror 11 is an aspherical mirror with a cone coefficient of -0.7, a radius of curvature of 7.0 mm, a diameter of 15 mm, and a side thickness of 3 mm.
  • the first condensing mirror 11 is on the same plane and constitutes the first concentrating mirror group 1, and the first condensing light is emitted from the LED.
  • Each of the first concentrating mirrors 11 is correspondingly provided with a second concentrating mirror 21, and the second concentrating mirror 21 is a common spherical mirror having a left curvature radius of 40 mm, a right curvature radius of 14 mm, a diameter of 15 mm, and a side thickness of 3 mm.
  • the second condensing mirrors 21 are on the same plane and constitute a second concentrating mirror group 2, and condense the light emitted from the LEDs for a second time.
  • a second concentrating mirror 31 is disposed in front of each of the second concentrating mirrors 21, and the third condensing mirror 31 is a simple plano-convex mirror having a convex curvature radius of 60 mm, a diameter of 25 mm, a side thickness of 3 mm, and four third condensing mirrors. 31 is on the same plane and constitutes a third concentrating mirror group 3, and condenses the light emitted from the LED for a third time.
  • a fourth condensing mirror 4 is disposed in front of the third concentrating mirror group 3.
  • the fourth condensing mirror 4 is a non-Niel lens, and the fourth condensing mirror has a focal length of 100 mm, a diameter of 70 mm, and a side thickness of 3 mm.
  • the distance between the third concentrating mirror and the fourth concentrating mirror is 25 mm, and the light flux of 80% of the divergent light of the single lamp bead can be gathered into a small divergence by using a lens combination with a smaller diameter.
  • the near parallel rays are then focused by the fourth condensing mirror 4 to focus near the focus of the fourth concentrating mirror 4, thereby realizing beam combining of the plurality of lamp beads.
  • the first plano-convex mirror 12, the cemented mirror 13, the double convex mirror 14, the double concave mirror 15, and the second plano-convex mirror 16 are sequentially disposed in an optical path.
  • the right convex surface of the first plano-convex mirror 12 has a radius of curvature of 65 mm, a diameter of 70 mm, and a side thickness of 3 mm.
  • the radius of curvature of the convex surface on the left side of the cemented mirror 13 is 410 mm
  • the radius of curvature of the central convex surface is 58.5 mm
  • the radius of curvature of the right convex surface is 220 mm
  • the diameter is 70 mm.
  • the lenticular lens 14 has a convex radius of curvature of 90 mm on the left side, a curvature radius of 565 mm on the right side convex surface, a diameter of 70 mm, and a side thickness of 3 mm.
  • the radius of curvature of the concave surface on the left side of the double concave mirror 15 is 120 mm
  • the radius of curvature of the right convex surface is 315 mm
  • the diameter is 70 mm
  • the center thickness is 3.5 mm.
  • the right convex surface of the second plano-convex mirror 16 has a radius of curvature of 115 mm, a diameter of 120 mm, and a side thickness of 3 mm.
  • the distance between the first plano-convex mirror 12 and the glue mirror 13 is 1.5 mm, and the distance between the glue mirror 13 and the double convex mirror 14 is 1.5 mm; the first plano-convex mirror 12, the glue mirror 13, and the double The convex mirror 14 constitutes a focusing lens group, and the focusing lens group is in formation 65 mm after the object 6, the double concave mirror 15 is 155 mm behind the image forming object 6, and the second plano-convex mirror 16 is 220 mm behind the image forming object 6.
  • the glue mirror 13 is used to reduce the aberration of the system, the focus group is used for system focusing in the imaging system, and the double concave mirror 15 is used to eliminate system aberrations and achieve zooming.
  • the system image 6 has a large range of up to 70 mm, and can store more imaged objects 6; the system has a wide range of zoom functions, and can image the imaged object 6 at any distance 1 meter behind the lens, and the cost is low.
  • a multi-LED bead-combining imaging system with zoom function comprising a light source and an imaging mirror set in front of the light source.
  • the light source is a planar light source including a planar substrate, and a plurality of LED lamp beads 5 are uniformly distributed on the planar substrate.
  • a total of four LED lamp beads 5 are disposed on the same plane.
  • the four LED lamp beads 5 form a planar light source.
  • a first concentrating mirror 11 is disposed in front of each LED lamp bead 5.
  • the first condensing mirror 11 is an aspherical mirror with a cone coefficient of -0.6, a radius of curvature of 10 mm, a diameter of 20 mm, and a side thickness of 5 mm.
  • a concentrating mirror 11 is on the same plane and constitutes the first concentrating mirror group 1, and the light emitted from the LED is first condensed.
  • Each of the first concentrating mirrors 11 is provided with a second concentrating mirror 21, and the second concentrating mirror 21 is a common spherical mirror having a left curvature radius of 60 mm, a right curvature radius of 20 mm, a diameter of 20 mm, and a side thickness of 5 mm.
  • the second condensing mirrors 21 are on the same plane and constitute a second concentrating mirror group 2, and condense the light emitted from the LEDs for a second time.
  • a second concentrating mirror 31 is disposed in front of each of the second concentrating mirrors 21, and the third condensing mirror 31 is a simple plano-convex mirror having a convex curvature radius of 80 mm, a diameter of 30 mm, a side thickness of 5 mm, and four third condensing mirrors. 31 is on the same plane and constitutes a third concentrating mirror group 3, and condenses the light emitted from the LED for a third time.
  • a fourth condensing mirror 4 is disposed in front of the third concentrating mirror group 3.
  • the fourth concentrating mirror 4 is a non-Niel lens, and the fourth concentrating mirror has a focal length of 120 mm, a diameter of 75 mm, and a side thickness of 5 mm.
  • a concentrating system in which the first condensing mirror 11 and the second condensing mirror 31 are combined, the distance between the first condensing mirror and the second condensing mirror is 3 mm, and between the second condensing mirror and the third condensing mirror The distance is 15mm, the distance between the third concentrating mirror and the fourth concentrating mirror is 50mm, and the light flux of 80% of the divergent light of a single lamp bead can be gathered into a near divergence with a lens combination with a smaller diameter. Parallel light rays are then focused by the fourth condensing mirror 4 to focus near the focus of the fourth condensing mirror 4, thereby realizing beam combining of the plurality of lamp beads.
  • the first plano-convex mirror 12, the glue mirror 13, the double convex mirror 14, the double concave mirror 15, and the second plano-convex mirror 16 are sequentially disposed in an optical path.
  • the right convex surface of the first plano-convex mirror 12 has a radius of curvature of 70 mm and a diameter of 75 mm.
  • the side is 5mm thick.
  • the convex surface of the cemented mirror 13 has a radius of curvature of 420 mm, a radius of curvature of the central convex surface of 60 mm, a radius of curvature of the right convex surface of 240 mm, and a diameter of 75 mm.
  • the lenticular lens 14 has a convex radius of curvature of 95 mm on the left side, a curvature radius of 580 mm on the right side convex surface, a diameter of 75 mm, and a side thickness of 5 mm.
  • the convex concave surface of the double concave mirror 15 has a radius of curvature of 130 mm
  • the right convex surface has a radius of curvature of 330 mm, a diameter of 75 mm, and a center thickness of 5 mm.
  • the convex convex surface of the second plano-convex mirror 16 has a radius of curvature of 130 mm, a diameter of 125 mm, and a side thickness of 5 mm.
  • the distance between the first plano-convex mirror 12 and the glue mirror 13 is 3 mm, and the distance between the glue mirror 13 and the double-lens mirror 14 is 3 mm.
  • the first plano-convex mirror 12, the glue mirror 13 and the double convex mirror 14 form a focus lens group, the focus lens group is 100 mm behind the image forming object 6, and the double concave mirror 15 is 190 mm behind the image forming object 6, the second plano-convex mirror 16 is 230 mm behind the image forming material 6.
  • the glue mirror 13 is used to reduce the aberration of the system, the focus group is used for system focusing in the imaging system, and the double concave mirror 15 is used to eliminate system aberrations and achieve zooming.
  • the system image 6 has a large range of up to 70 mm, and can store more imaged objects 6; the system has a wide range of zoom functions, and can image the imaged object 6 at any distance 1 meter behind the lens, and the cost is low.
  • the light is concentrated uniformly three times, and the beam angle of 120 degrees from the LED lamp bead is firstly concentrated to 70-80 degrees through the first concentrating mirror group 1, and passed through the second concentrating mirror group 2
  • the second time is 30-40 degrees
  • the third concentrating lens group 3 is concentrated to within 20 degrees
  • near the focus of the fourth concentrating mirror 4 more than 60% of the light is concentrated within the range of 20 hidden-60 hidden diameters, and More than 60% of the light divergence angle is within 40 degrees, suitable for placing the image.
  • the imaging system combined with the light source and the imaging mirror has a wide range of zoom functions, and can image the image at any distance 1 meter away from the lens, and the cost is low, the efficiency is high, the image is clear, the zoom, focus, Using high-power led as a light source, the cost is low.

Description

说 明 书 多颗 LED聚光系统及方法、 及其成像系统
技术领域
本发明涉及 LED的聚光及成像, 尤其是平面多颗 LED灯珠的合光聚光和成像。 背景技术
光的聚焦主要需要两部分, 第一是光源, 第二是聚焦装置。 现有多颗 LED的合光 聚光方法一般是通过改变 LED光源的每个 LED灯珠的发光角度来达到目的的,如中国 专利公开号为 201575340U的一种 LED聚焦装置,包括底座、两个以上的 LED灯; LED 灯包括 LED光源、 配装透镜、 透镜架及散热柱, LED光源安装在散热柱的一端, 配装 透镜安装在 LED光源的前方并包裹 LED光源, 配装透镜通过透镜架安装在散热柱上; LED灯通过散热柱安装在底座上, 底座为弧形曲片, LED灯安装在弧形曲片上。 上述 成像装置中, LED光源是安装在弧形曲片上的, 依靠弧形曲片的角度将 LED灯发出来 的光进行聚合, 从而达到聚光的作用。该种成像装置存在以下缺点: 作为光源一部分的 弧形曲片加工难度大, 进度要求高; 安装精度要求高; 曲片弧面一旦加工成型, LED 光源位置无法改变, 无法通过光源进行调焦, 只能通过像镜组进行调焦, 校对成像镜组 中的多个透镜工作量大, 耗时长; 并且该聚光方法所用镜头组较大, 合光距离长, 合光 不均匀, 造成成本过高。 发明内容
本发明所要解决的技术问题之一是提供一种用于能够成像的灯具的多颗 LED灯珠 合光聚光系统, 平面光源的加工、 安装方便, 成本低; 调焦容易, 实现短距离合光, 且 合光均匀, 适合成像。
本发明所要解决的技术问题之二是提供一种用于能够成像的灯具的多颗 LED灯珠 合光聚光方法, 光源的加工、 安装方便, 成本低; 调焦容易, 实现短距离合光, 且合光 均匀。
本发明所要解决的技术问题之三是提供一种具有对焦功能的多颗 LED灯珠合光成 像系统, 平面光源的加工、 安装方便, 成本低, 调焦容易。 本发明所要解决的技术问题之四是提供一种具有变焦功能的多颗 LED灯珠合光成 像系统, 平面光源的加工、 安装方便, 成本低, 调焦容易。
为解决上述技术问题之一, 本发明的技术方案是: 一种多颗 LED灯珠合光聚光系 统, 包括光源, 所述光源包括平面基板, 所述平面基板上设有两颗以上 LED灯珠, 每 颗 LED灯珠前方均对应设有一个第一聚光镜, 所有第一聚光镜组成第一聚光镜组; 每 个第一聚光镜前方均对应设有一个第二聚光镜,所有第二聚光镜组成第二聚光镜组; 每 个第二聚光镜前方均对应设有一个第三聚光镜,所有第三聚光镜组成第三聚光镜组; 所 述第三聚光镜组前方设有一个第四聚光镜。能做到用直径较小的镜头组合将单颗灯珠的 发散光线 80%的光通量聚集为发散度较小的近平行光线,然后再由第四聚光镜将多束近 平行光聚焦到第四聚光镜的焦点附近,进而实现多颗灯珠的光束合成。灯珠在同一平面, 安装方便, 工艺简单, 散热容易处理,成本低廉; 光学效率提高 80%; 短距离实现合光, 且合光均匀。
作为改进, 所述第一聚光镜为非球面镜, 圆锥系数为 -0.85— 0.6, 曲率半径为 4.5~10mm, 直径为 10~20mm。
作为改进, 所述第二聚光镜为普通球面镜, 其左侧凸面曲率半径为 20~60mm, 右 侧凸面曲率半径为 8~20mm, 直径为 10~20mm。
作为改进, 所述第三聚光镜为简单平凸镜, 其凸面曲率半径为 40~80mm, 直径为 20~30mm。
作为改进, 所述第四聚光镜的焦距为 80~120mm, 直径为 65~75mm。
作为改进, 所述第一聚光镜与第二聚光镜之间的距离为 0~3mm。
作为改进, 所述第二聚光镜与第三聚光镜之间的距离为 8~15mm。
作为改进, 所述第三聚光镜与第四聚光镜之间的距离为 2~50mm。
作为改进, 所述第一、 二、 三、 四聚光镜的边厚均为 l~5mm。
为解决上述技术问题之二, 本发明的技术方案是: 一种多颗 LED灯珠合光聚光方 法, 所述聚光方法中, 多颗 LED灯珠均处于同一平面, 每颗 LED灯珠前方均对应设有 一个第一聚光镜,所有第一聚光镜组成第一聚光镜组; 每个第一聚光镜前方均对应设有 一个第二聚光镜,所有第二聚光镜组成第二聚光镜组; 每个第二聚光镜前方均对应设有 一个第三聚光镜,所有第三聚光镜组成第三聚光镜组; 所述第三聚光镜组前方设有一个 第四聚光镜; 每颗 LED灯珠发出来的光线经过其对应的第一聚光镜、 第二聚光镜、 第 三聚光镜进行聚光后, 光线的发散角变得较小, 形成一束近平行光, 多束近平行光同时 经过第四聚光镜进行光的聚焦和混合, 聚焦混合后, 在第四聚光镜焦点附近, 60%以上 的光线集中在 20mm-60mm直径范围以内, 且 60%以上的光线发散角在 40度以内。 能 做到用直径较小的镜头组合将单颗灯珠的发散光线 80%的光通量聚集为发散度较小的 近平行光线,然后再由第四聚光镜将多束近平行光聚焦到第四聚光镜的焦点附近, 进而 实现多颗灯珠的光束合成。 灯珠在同一平面, 安装方便, 工艺简单, 散热容易处理, 成 本低廉; 光学效率提高 80%; 短距离实现合光, 且合光均匀。
作为改进, 所述多颗 LED灯珠设于同一平面基板上, 平面基板加工方便, 节约成 本; LED灯珠在平面上的安装精度要求相对较低。
作为改进, 所述第一聚光镜为非球面镜, 圆锥系数为 -0.85— 0.6, 曲率半径为 4.5~10mm, 直径为 10~20mm, 边厚为 l~5mm; 所有第一聚光镜处于同一平面上, 第一 聚光镜组对 LED发出来的光线进行第一次聚光。
作为改进, 所述第二聚光镜为球面镜, 其左侧凸面曲率半径为 20~60mm, 右侧凸 面曲率半径为 8~20mm, 直径为 10~20mm, 边厚为 l~5mm; 所有第二聚光镜处于同一平 面上, 第二聚光镜组对 LED发出来的光线进行第二次聚光。
作为改进, 所述第三聚光镜为球面镜, 其凸面曲率半径为 40~80mm, 直径为
20~30mm, 边厚为 l~5mm; 所有第三聚光镜处于同一平面上, 第三聚光镜组对 LED发 出来的光线进行第三次聚光。
作为改进, 所述第四聚光镜为正透镜, 可以使非涅尔透镜或普通球面聚光镜, 所 述第四聚光镜的焦距为 80~120mm, 直径为 65~75mm, 边厚为 l~5mm; 第四聚光镜将经 过三次聚光的多束近平行光聚焦到第四聚光镜的焦点。第一聚光镜与第二聚光镜之间的 距离为 0~3mm, 第二聚光镜与第三聚光镜之间的距离为 8~15mm, 第三聚光镜与第四聚 光镜之间的距离为 2~50mm。
为解决上述技术问题之三, 本发明的技术方案是: 一种具有对焦功能的多颗 LED 灯珠合光成像系统, 包括光源、 设于光源前方的成像镜组, 所述光源包括平面基板, 所 述平面基板上设有两颗以上 LED灯珠, 每颗 LED灯珠前方均对应设有一个第一聚光镜, 所有第一聚光镜组成第一聚光镜组; 每个第一聚光镜前方均对应设有一个第二聚光镜, 所有第二聚光镜组成第二聚光镜组; 每个第二聚光镜前方均对应设有一个第三聚光镜, 所有第三聚光镜组成第三聚光镜组; 所述第三聚光镜组前方设有一个第四聚光镜; 所述 成像镜组按光路方向依次包括第一平凸镜、第二平凸镜、第三平凸镜。对于成像系统的 光源, 能做到用直径较小的镜头组合将单颗灯珠的发散光线 80%的光通量聚集为发散度 较小的近平行光线, 然后再由第四聚光镜将多束近平行光聚焦到第四聚光镜的焦点附 近, 进而实现多颗灯珠的光束合成; 灯珠在同一平面, 安装方便, 工艺简单, 散热容易 处理, 成本低廉; 光学效率提高 80%; 短距离实现合光, 且合光均匀。 对于成像系统的 成像镜组,整个成像系统镜头结构简单,低成本,成像清晰,成像物范围大,可达 60mm, 可放置较多成像物。 光源与成像镜组组合而成的成像系统效率高, 成像清晰, 对焦, 用 大功率 led作为光源, 成本低。
作为改进, 所述第一聚光镜为非球面镜, 圆锥系数为 -0.85— 0.6, 曲率半径为 4.5~10mm, 直径为 10~20mm; 所述第二聚光镜为普通球面镜, 其左侧凸面曲率半径为 20~60mm, 右侧凸面曲率半径为 8~20mm, 直径为 10~20mm; 所述第三聚光镜为简单 平凸镜, 其凸面曲率半径为 40~80mm, 直径为 20~30mm; 所述第四聚光镜的焦距为 80~120mm, 直径为 65~75mm。
作为改进, 所述第一聚光镜与第二聚光镜之间的距离为 0~3mm; 所述第二聚光镜 与第三聚光镜之间的距离为 8~15mm; 所述第三聚光镜与第四聚光镜之间的距离为 2~50mm。
作为改进, 所述第一平凸镜右侧凸面曲率半径为 70~85mm, 直径为 63~74mm; 所 述第二平凸镜右侧凸面曲率半径为 120~140mm, 直径为 65~75mm; 所述第三平凸镜右 侧凸面曲率半径为 140~160mm, 直径为 75~85mm。
作为改进, 所述第一平凸镜与第二平凸镜之间的距离为 0~3mm; 所述第一平凸镜 与第二平凸镜组成对焦镜组, 所述对焦镜组在系统中的成像物后 25~60mm; 所述第三 平凸镜在系统中成像物后 150~170mm。
作为改进, 所述第一聚光镜、 第二聚光镜、 第三聚光镜、 第四聚光镜、 第一平凸 镜、 第二平凸镜、 第三平凸镜边厚为 l~5mm。
为解决上述技术问题之四, 本发明的技术方案是: 一种具有变焦功能的多颗 LED 灯珠合光成像系统, 包括光源、 设于光源前方的成像镜组, 所述光源包括平面基板, 所 述平面基板上设有两颗以上 LED灯珠, 每颗 LED灯珠前方均对应设有一个第一聚光镜, 所有第一聚光镜组成第一聚光镜组; 每个第一聚光镜前方均对应设有一个第二聚光镜, 所有第二聚光镜组成第二聚光镜组; 每个第二聚光镜前方均对应设有一个第三聚光镜, 所有第三聚光镜组成第三聚光镜组; 所述第三聚光镜组前方设有一个第四聚光镜; 所述 成像镜组按光路方向依次包括第一平凸镜、第二平凸镜、第三平凸镜。对于成像系统的 光源, 能做到用直径较小的镜头组合将单颗灯珠的发散光线 80%的光通量聚集为发散度 较小的近平行光线, 然后再由第四聚光镜将多束近平行光聚焦到第四聚光镜的焦点附 近, 进而实现多颗灯珠的光束合成; 灯珠在同一平面, 安装方便, 工艺简单, 散热容易 处理, 成本低廉; 光学效率提高 80%; 短距离实现合光, 且合光均匀。 对于成像系统的 成像镜组, 系统成像物范围较大, 可达 70mm, 可放置较多成像物; 光源与成像镜组组合 而成的成像系统具有较大范围的变焦功能, 并能在镜头后 1米以外任何距离对成像物成 像清晰, 且成本低廉。 效率高, 成像清晰, 可变焦, 对焦, 用大功率 led作为光源, 成 本低。
作为改进, 所述第一聚光镜为非球面镜, 圆锥系数为 -0.85—0.6, 曲率半径为 4.5~10mm, 直径为 10~20mm; 所述第二聚光镜为普通球面镜, 其左侧凸面曲率半径为 20~60mm, 右侧凸面曲率半径为 8~20mm, 直径为 10~20mm; 所述第三聚光镜为简单平 凸镜, 其凸面曲率半径为 40~80mm, 直径为 20~30mm; 所述第四聚光镜的焦距为 80~120mm, 直径为 65~75mm。
作为改进,所述第一聚光镜与第二聚光镜之间的距离为 0~3mm;所述第二聚光镜与 第三聚光镜之间的距离为 8~15mm; 所述第三聚光镜与第四聚光镜之间的距离为 2~50mm。
作为改进, 所述第一平凸镜右侧凸面曲率半径为 60~70mm, 直径为 65~75mm; 所 述胶合镜左侧凸面曲率半径为 400~420mm, 中间凸面曲率半径为 57~60mm, 右侧凸面 曲率半径为 200~240mm, 直径为 65~75mm; 所述双凸镜左侧凸面曲率半径为 85~95mm, 右侧凸面曲率半径为 550~580mm, 直径为 65~75mm; 所述双凹镜左侧凹面曲率半径为 110~130mm, 右侧凸面曲率半径为 300~330mm, 直径为 65~75mm, 中心厚度为 2~5mm; 所述第二平凸镜右侧凸面曲率半径为 100~130mm, 直径为 115~125mm。
作为改进, 所述第一平凸镜与胶合镜之间的距离为 0~3mm, 胶合镜与双凸镜之间 的距离为 0~3mm; 所述第一平凸镜、 胶合镜、 双凸镜组成对焦镜组, 所述对焦镜组在 成像物后 30~100mm, 双凹镜在成像物后 120~190mm, 第二平凸镜在成像物后 210~230mm。
作为改进, 所述第一聚光镜、 第二聚光镜、 第三聚光镜、 第四聚光镜、 第一平凸 镜、 双凸镜、 第二平凸镜的边厚均为 l~5mm。
作为改进, 所述 LED灯珠呈均匀分布, 形成多点的发光的平面光源。
本发明与现有技术相比所带来的有益效果是:
1、 平面 LED灯组加工更方便, 加工以及安装所要求的精度不高; 2、 可通过第四聚光镜进行调焦, 调焦更方便快捷;
3、 平面 LED光源散热容易处理, 成本低廉;
4、 光源经过四次聚光, 光学效率提高 80% ;
5、 短距离实现合光, 且合光均匀。
6、 第一平凸镜与第二平凸镜组成对焦镜组, 在成像系统中用于系统对焦, 使镜 头后 2米以外成像清晰;
7、 整个成像系统镜头结构简单,低成本,成像清晰,成像物范围大,可达 60mm, 可放置较多成像物。
8、 系统成像物范围较大, 可达 70mm, 可放置较多成像物;
9、 系统具有较大范围的变焦功能, 并能在镜头后 1米以外任何距离对成像物成 像清晰, 且成本低廉。 附图说明
图 1为本发明实施例 1至 6的聚光系统的俯视图。
图 2为图 1的 A-A剖视图。
图 3为实施例 7至 9成像系统结构示意图。
图 4为实施例 7至 9成像系统光源灯珠的分布视图。
图 5为实施例 10至 12成像系统结构示意图。
图 6为实施例 10至 12成像系统光源灯珠的分布视图。 具体实施方式
下面结合说明书附图对本发明作进一步说明。
实施例 1
如图 1、 2所示, 一种用于能够成像的灯具的多颗 LED灯珠合光聚光系统, 所述 合光聚光系统包括平面光源,所述平面光源包括平面基板, 所述平面基板上均匀分布有 多颗 LED灯珠 5, 本实施例中一共设有四颗 LED灯珠 5, 处于同一平面的四颗 LED灯 珠 5形成平面光源。 每颗 LED灯珠 5前方均对应设有一个第一聚光镜 11, 所述第一聚 光镜 11为非球面镜,圆锥系数为 -0.85,曲率半径为 4.5mm,直径为 10mm,边厚为 lmm, 四个第一聚光镜 11处于同一平面上并组成第一聚光镜组 1, 对 LED发出来的光线进行 第一次聚光。 每个第一聚光镜 11前方均对应设有一个第二聚光镜 21, 所述第二聚光镜 21为普通球面镜, 其左曲率半径为 20mm, 右曲率半径为 8mm, 直径为 10mm, 边厚 为 lmm, 四个第二聚光镜 21处于同一平面上并组成第二聚光镜组 2,对 LED发出来的 光线进行第二次聚光。 每个第二聚光镜 21前方均对应设有一个第三聚光镜 31, 所述第 三聚光镜 31为简单平凸镜, 其凸面曲率半径为 40mm, 直径为 20mm, 边厚为 lmm, 四个第三聚光镜 31处于同一平面上并组成第三聚光镜组 3, 对 LED发出来的光线进行 第三次聚光。 第三聚光镜组 3前方设有一个第四聚光镜 4, 所述第四聚光镜 4为非涅尔 透镜, 所述第四聚光镜的焦距为 80mm, 直径为 65mm, 边厚为 lmm。 由第一聚光镜 11、 第二聚光镜 21、 第三聚光镜 31组合起来的聚光系统, 所述第一聚光镜与第二聚光 镜之间的距离为 0mm, 所述第二聚光镜与第三聚光镜之间的距离为 8mm, 所述第三聚 光镜与第四聚光镜之间的距离为 2mm, 能做到用直径较小的镜头组合将单颗灯珠的发 散光线 80%的光通量聚集为发散度较小的近平行光线,然后再由第四聚光镜 4将多束近 平行光聚焦到第四聚光镜 4的焦点附近, 进而实现多颗灯珠的光束合成。
实施例 2
如图 1、 2所示, 一种用于能够成像的灯具的多颗 LED灯珠合光聚光系统, 所述合 光聚光系统包括平面光源,所述平面光源包括平面基板, 所述平面基板上均匀分布有多 颗 LED灯珠 5, 本实施例中一共设有四颗 LED灯珠 5, 处于同一平面的四颗 LED灯珠 5形成平面光源。 每颗 LED灯珠 5前方均对应设有一个第一聚光镜 11, 所述第一聚光 镜 11为非球面镜, 圆锥系数为 -0.7, 曲率半径为 7.0mm, 直径为 15mm, 边厚为 3mm, 四个第一聚光镜 11处于同一平面上并组成第一聚光镜组 1, 对 LED发出来的光线进行 第一次聚光。 每个第一聚光镜 11前方均对应设有一个第二聚光镜 21, 所述第二聚光镜 21为普通球面镜, 其左曲率半径为 40mm, 右曲率半径为 14mm, 直径为 15mm, 边厚 为 3mm, 四个第二聚光镜 21处于同一平面上并组成第二聚光镜组 2,对 LED发出来的 光线进行第二次聚光。 每个第二聚光镜 21前方均对应设有一个第三聚光镜 31, 所述第 三聚光镜 31为简单平凸镜, 其凸面曲率半径为 60mm, 直径为 25mm, 边厚为 3mm, 四个第三聚光镜 31处于同一平面上并组成第三聚光镜组 3, 对 LED发出来的光线进行 第三次聚光。 第三聚光镜组 3前方设有一个第四聚光镜 4, 所述第四聚光镜 4为非涅尔 透镜, 所述第四聚光镜的焦距为 100mm, 直径为 70mm, 边厚为 3mm。 由第一聚光镜 11、 第二聚光镜 21、 第三聚光镜 31组合起来的聚光系统, 所述第一聚光镜与第二聚光 镜之间的距离为 1.5mm, 所述第二聚光镜与第三聚光镜之间的距离为 12mm, 所述第三 聚光镜与第四聚光镜之间的距离为 25mm, 能做到用直径较小的镜头组合将单颗灯珠的 发散光线 80%的光通量聚集为发散度较小的近平行光线,然后再由第四聚光镜 4将多束 近平行光聚焦到第四聚光镜 4的焦点附近, 进而实现多颗灯珠的光束合成。
实施例 3
如图 1、 2所示, 一种用于能够成像的灯具的多颗 LED灯珠合光聚光系统, 所述合 光聚光系统包括平面光源,所述平面光源包括平面基板, 所述平面基板上均匀分布有多 颗 LED灯珠 5, 本实施例中一共设有四颗 LED灯珠 5, 处于同一平面的四颗 LED灯珠 5形成平面光源。 每颗 LED灯珠 5前方均对应设有一个第一聚光镜 11, 所述第一聚光 镜 11为非球面镜, 圆锥系数为 -0.6, 曲率半径为 10mm, 直径为 20mm, 边厚为 5mm, 四个第一聚光镜 11处于同一平面上并组成第一聚光镜组 1, 对 LED发出来的光线进行 第一次聚光。 每个第一聚光镜 11前方均对应设有一个第二聚光镜 21, 所述第二聚光镜 21为普通球面镜, 其左曲率半径为 60mm, 右曲率半径为 20mm, 直径为 20mm, 边厚 为 5mm, 四个第二聚光镜 21处于同一平面上并组成第二聚光镜组 2,对 LED发出来的 光线进行第二次聚光。 每个第二聚光镜 21前方均对应设有一个第三聚光镜 31, 所述第 三聚光镜 31为简单平凸镜, 其凸面曲率半径为 80mm, 直径为 30mm, 边厚为 5mm, 四个第三聚光镜 31处于同一平面上并组成第三聚光镜组 3, 对 LED发出来的光线进行 第三次聚光。 第三聚光镜组 3前方设有一个第四聚光镜 4, 所述第四聚光镜 4为非涅尔 透镜, 所述第四聚光镜的焦距为 120mm, 直径为 75mm, 边厚为 5mm。 由第一聚光镜 11、 第二聚光镜 21、 第三聚光镜 31组合起来的聚光系统, 所述第一聚光镜与第二聚光 镜之间的距离为 3mm, 所述第二聚光镜与第三聚光镜之间的距离为 15mm, 所述第三 聚光镜与第四聚光镜之间的距离为 50mm, 能做到用直径较小的镜头组合将单颗灯珠的 发散光线 80%的光通量聚集为发散度较小的近平行光线,然后再由第四聚光镜 4将多束 近平行光聚焦到第四聚光镜 4的焦点附近, 进而实现多颗灯珠的光束合成。
综上实施例 1~3所述, 平面 LED灯光源加工更方便, 加工以及安装所要求的精度 不高; 可通过第四聚光镜 4进行调焦, 调焦更方便快捷; 平面 LED光源散热容易处理, 成本低廉; 光学效率提高 80%; 短距离实现合光, 且合光均匀。 三次均匀递减地聚光, 从 LED灯珠发出 120度的光束角通过第一聚光镜组 1第一次聚到 70-80度, 通过第二 聚光镜组 2第二次聚到 30-40度, 通过第三聚光镜组 3第三次聚到 20度以内, 最后在 第四聚光镜 4焦点附近, 60%以上的光线集中在 20mm-60mm直径范围以内, 且 60%以 上的光线发散角在 40度以内, 适合放置成像物。
实施例 4 如图 1、 2所示, 一种用于能够成像的灯具的多颗 LED灯珠合光聚光方法, 由平面 的光源进行合光聚光,平面的光源包括平面基板,所述平面基板上均匀分布有多颗 LED 灯珠 5, 本实施例中一共设有四颗 LED灯珠 5, 处于同一平面的四颗 LED灯珠 5形成 平面光源。 每颗 LED灯珠 5前方均对应设有一个第一聚光镜 11, 所述第一聚光镜 11 为非球面镜, 圆锥系数为 -0.85, 曲率半径为 4.5mm, 直径为 10mm, 边厚为 lmm, 四 个第一聚光镜 11处于同一平面上并组成第一聚光镜组 1, 对 LED发出来的光线进行第 一次聚光。每个第一聚光镜 11前方均对应设有一个第二聚光镜 21, 所述第二聚光镜 21 为普通球面镜, 其左曲率半径为 20mm, 右曲率半径为 8mm, 直径为 10mm, 边厚为 lmm, 四个第二聚光镜 21处于同一平面上并组成第二聚光镜组 2, 对 LED发出来的光 线进行第二次聚光。 每个第二聚光镜 21前方均对应设有一个第三聚光镜 31, 所述第三 聚光镜 31为简单平凸镜, 其凸面曲率半径为 40mm, 直径为 20mm, 边厚为 lmm, 四 个第三聚光镜 31处于同一平面上并组成第三聚光镜组 3, 对 LED发出来的光线进行第 三次聚光。 第三聚光镜组 3前方设有一个第四聚光镜 4, 所述第四聚光镜 4为非涅尔透 镜, 所述第四聚光镜的焦距为 80mm, 直径为 65mm, 边厚为 lmm。 由第一聚光镜 11、 第二聚光镜 21、 第三聚光镜 31组合起来的聚光系统, 所述第一聚光镜与第二聚光镜之 间的距离为 0mm, 所述第二聚光镜与第三聚光镜之间的距离为 8mm, 所述第三聚光镜 与第四聚光镜之间的距离为 2mm, 能做到用直径较小的镜头组合将单颗灯珠的发散光 线 80%的光通量聚集为发散度较小的近平行光线,然后再由第四聚光镜 4将多束近平行 光聚焦到第四聚光镜 4的焦点附近, 进而实现多颗灯珠的光束合成。
实施例 5
如图 1、 2所示, 一种用于能够成像的灯具的多颗 LED灯珠合光聚光方法, 由平面 的光源进行合光聚光,平面的光源包括平面基板,所述平面基板上均匀分布有多颗 LED 灯珠 5, 本实施例中一共设有四颗 LED灯珠 5, 处于同一平面的四颗 LED灯珠 5形成 平面光源。 每颗 LED灯珠 5前方均对应设有一个第一聚光镜 11, 所述第一聚光镜 11 为非球面镜, 圆锥系数为 -0.7, 曲率半径为 7.0mm, 直径为 15mm, 边厚为 3mm, 四个 第一聚光镜 11处于同一平面上并组成第一聚光镜组 1, 对 LED发出来的光线进行第一 次聚光。 每个第一聚光镜 11前方均对应设有一个第二聚光镜 21, 所述第二聚光镜 21 为普通球面镜, 其左曲率半径为 40mm, 右曲率半径为 14mm, 直径为 15mm, 边厚为 3mm, 四个第二聚光镜 21处于同一平面上并组成第二聚光镜组 2, 对 LED发出来的光 线进行第二次聚光。 每个第二聚光镜 21前方均对应设有一个第三聚光镜 31, 所述第三 聚光镜 31为简单平凸镜, 其凸面曲率半径为 60mm, 直径为 25mm, 边厚为 3mm, 四 个第三聚光镜 31处于同一平面上并组成第三聚光镜组 3, 对 LED发出来的光线进行第 三次聚光。 第三聚光镜组 3前方设有一个第四聚光镜 4, 所述第四聚光镜 4为非涅尔透 镜, 所述第四聚光镜的焦距为 100mm, 直径为 70mm, 边厚为 3mm。 由第一聚光镜 11、 第二聚光镜 21、 第三聚光镜 31组合起来的聚光系统, 所述第一聚光镜与第二聚光镜之 间的距离为 1.5mm, 所述第二聚光镜与第三聚光镜之间的距离为 12mm, 所述第三聚光 镜与第四聚光镜之间的距离为 25mm, 能做到用直径较小的镜头组合将单颗灯珠的发散 光线 80%的光通量聚集为发散度较小的近平行光线,然后再由第四聚光镜 4将多束近平 行光聚焦到第四聚光镜 4的焦点附近, 进而实现多颗灯珠的光束合成。
实施例 6
如图 1、 2所示, 一种用于能够成像的灯具的多颗 LED灯珠合光聚光方法, 由平面 的光源进行合光聚光,平面的光源包括平面基板,所述平面基板上均匀分布有多颗 LED 灯珠 5, 本实施例中一共设有四颗 LED灯珠 5, 处于同一平面的四颗 LED灯珠 5形成 平面光源。 每颗 LED灯珠 5前方均对应设有一个第一聚光镜 11, 所述第一聚光镜 11 为非球面镜, 圆锥系数为 -0.6, 曲率半径为 10mm, 直径为 20mm, 边厚为 5mm, 四个 第一聚光镜 11处于同一平面上并组成第一聚光镜组 1, 对 LED发出来的光线进行第一 次聚光。 每个第一聚光镜 11前方均对应设有一个第二聚光镜 21, 所述第二聚光镜 21 为普通球面镜, 其左曲率半径为 60mm, 右曲率半径为 20mm, 直径为 20mm, 边厚为 5mm, 四个第二聚光镜 21处于同一平面上并组成第二聚光镜组 2, 对 LED发出来的光 线进行第二次聚光。 每个第二聚光镜 21前方均对应设有一个第三聚光镜 31, 所述第三 聚光镜 31为简单平凸镜, 其凸面曲率半径为 80mm, 直径为 30mm, 边厚为 5mm, 四 个第三聚光镜 31处于同一平面上并组成第三聚光镜组 3, 对 LED发出来的光线进行第 三次聚光。 第三聚光镜组 3前方设有一个第四聚光镜 4, 所述第四聚光镜 4为非涅尔透 镜, 所述第四聚光镜的焦距为 120mm, 直径为 75mm, 边厚为 5mm。 由第一聚光镜 11、 第二聚光镜 21、 第三聚光镜 31组合起来的聚光系统, 所述第一聚光镜与第二聚光镜之 间的距离为 3mm, 所述第二聚光镜与第三聚光镜之间的距离为 15mm, 所述第三聚光 镜与第四聚光镜之间的距离为 50mm, 能做到用直径较小的镜头组合将单颗灯珠的发散 光线 80%的光通量聚集为发散度较小的近平行光线,然后再由第四聚光镜 4将多束近平 行光聚焦到第四聚光镜 4的焦点附近, 进而实现多颗灯珠的光束合成。
综上实施例 4~6所述, 三次均匀递减地聚光, 从 LED灯珠发出 120度的光束角通 过第一聚光镜组 1第一次聚到 70-80度, 通过第二聚光镜组 2第二次聚到 30-40度, 通 过第三聚光镜组 3第三次聚到 20度以内, 最后在第四聚光镜 4焦点附近, 60%以上的 光线集中在 20mm-60mm直径范围以内, 且 60%以上的光线发散角在 40度以内, 适合 放置成像物。
平面 LED灯光源加工更方便, 加工以及安装所要求的精度不高; 可通过第四聚光 镜 4进行调焦, 调焦更方便快捷; 平面 LED光源散热容易处理, 成本低廉; 光学效率 提高 80% ; 短距离实现合光, 且合光均匀。 以四颗 60W的 led灯珠为例, 聚焦合成后 可用于变焦成像系统, 出射光束角由 12 度变焦到 40 度, 1 米光斑的平均照度可达 4500Lx, 而传统 HID光源的同类灯具, 575W的 1米光斑平均照度 6500Lx左右。 实施例 7
一种具有对焦功能的多颗 LED灯珠合光成像系统, 包括光源、 设于光源前方的成 像镜组。
光源
如图 1、 2所示, 所述光源为平面光源包括平面基板, 所述平面基板上均匀分布有 多颗 LED灯珠 5, 本实施例中一共设有三颗 LED灯珠 5, 处于同一平面的四三颗 LED 灯珠 5形成平面光源。 每颗 LED灯珠 5前方均对应设有一个第一聚光镜 11, 所述第一 聚光镜 11为非球面镜, 圆锥系数为 -0.85, 曲率半径为 4.5mm, 直径为 10mm, 边厚为 lmm, 三个第一聚光镜 11处于同一平面上并组成第一聚光镜组 1, 对 LED发出来的光 线进行第一次聚光。 每个第一聚光镜 11前方均对应设有一个第二聚光镜 21, 所述第二 聚光镜 21为普通球面镜, 其左曲率半径为 20mm, 右曲率半径为 8mm, 直径为 10mm, 边厚为 lmm,三个第二聚光镜 21处于同一平面上并组成第二聚光镜组 2,对 LED发出 来的光线进行第二次聚光。 每个第二聚光镜 21前方均对应设有一个第三聚光镜 31, 所 述第三聚光镜 31为简单平凸镜,其凸面曲率半径为 40mm,直径为 20mm,边厚为 lmm, 三个第三聚光镜 31处于同一平面上并组成第三聚光镜组 3, 对 LED发出来的光线进行 第三次聚光。 第三聚光镜组 3前方设有一个第四聚光镜 4, 所述第四聚光镜 4为非涅尔 透镜, 所述第四聚光镜的焦距为 80mm, 直径为 65mm, 边厚为 lmm。 由第一聚光镜 11、 第二聚光镜 21、 第三聚光镜 31组合起来的聚光系统, 所述第一聚光镜与第二聚光 镜之间的距离为 0mm, 所述第二聚光镜与第三聚光镜之间的距离为 8mm, 所述第三聚 光镜与第四聚光镜之间的距离为 2mm, 能做到用直径较小的镜头组合将单颗灯珠的发 散光线 80%的光通量聚集为发散度较小的近平行光线,然后再由第四聚光镜 4将多束近 平行光聚焦到第四聚光镜 4的焦点附近, 进而实现多颗灯珠的光束合成。
成像镜组
如图 1所示, 按光路方向依次设有第一平凸镜 7、 第二平凸镜 8、 第三平凸镜 9。 所述第一平凸镜 7右侧凸面曲率半径为 70mm, 边厚为 lmm, 直径为 63mm; 所述第二 平凸镜 8右侧凸面曲率半径为 120mm, 边厚为 lmm, 直径为 65mm; 所述第三平凸镜 9右侧凸面曲率半径为 140mm, 边厚为 lmm, 直径为 75mm。 所述第一平凸镜 7与第 二平凸镜 8之间的距离为 0mm; 所述第一平凸镜 7与第二平凸镜 8组成对焦镜组, 所 述对焦镜组在系统中的成像物 4后 25mm; 所述第三平凸镜 9 在系统中成像物 4后 150mm。第一平凸镜 7与第二平凸镜 8组成对焦镜组, 在成像系统中用于系统对焦, 使 镜头后 2米以外成像清晰; 整个成像系统镜头结构简单, 低成本, 成像清晰, 成像物 4 范围大, 可达 60mm, 可放置较多成像物。
实施例 8
一种具有对焦功能的多颗 LED灯珠合光成像系统, 包括光源、 设于光源前方的成 像镜组。
光源
如图 1、 2所示, 所述光源为平面光源包括平面基板, 所述平面基板上均匀分布有 多颗 LED灯珠 5, 本实施例中一共设有三颗 LED灯珠 5, 处于同一平面的三颗 LED灯 珠 5形成平面光源。 每颗 LED灯珠 5前方均对应设有一个第一聚光镜 11, 所述第一聚 光镜 11为非球面镜, 圆锥系数为 -0.7, 曲率半径为 7.0mm,直径为 15mm,边厚为 3mm, 三个第一聚光镜 11处于同一平面上并组成第一聚光镜组 1, 对 LED发出来的光线进行 第一次聚光。 每个第一聚光镜 11前方均对应设有一个第二聚光镜 21, 所述第二聚光镜 21为普通球面镜, 其左曲率半径为 40mm, 右曲率半径为 14mm, 直径为 15mm, 边厚 为 3mm,三个第二聚光镜 21处于同一平面上并组成第二聚光镜组 2,对 LED发出来的 光线进行第二次聚光。 每个第二聚光镜 21前方均对应设有一个第三聚光镜 31, 所述第 三聚光镜 31为简单平凸镜, 其凸面曲率半径为 60mm, 直径为 25mm, 边厚为 3mm, 三个第三聚光镜 31处于同一平面上并组成第三聚光镜组 3, 对 LED发出来的光线进行 第三次聚光。 第三聚光镜组 3前方设有一个第四聚光镜 4, 所述第四聚光镜 4为非涅尔 透镜, 所述第四聚光镜的焦距为 100mm, 直径为 70mm, 边厚为 3mm。 由第一聚光镜 11、 第二聚光镜 21、 第三聚光镜 31组合起来的聚光系统, 所述第一聚光镜与第二聚光 镜之间的距离为 1.5mm, 所述第二聚光镜与第三聚光镜之间的距离为 12mm, 所述第三 聚光镜与第四聚光镜之间的距离为 25mm, 能做到用直径较小的镜头组合将单颗灯珠的 发散光线 80%的光通量聚集为发散度较小的近平行光线,然后再由第四聚光镜 4将多束 近平行光聚焦到第四聚光镜 4的焦点附近, 进而实现多颗灯珠的光束合成。
成像镜组
如图 1所示, 按光路方向依次设有第一平凸镜 7、 第二平凸镜 8、 第三平凸镜 9。 所述第一平凸镜 7右侧凸面曲率半径为 80mm, 边厚为 3mm, 直径为 68mm; 所述第二 平凸镜 8右侧凸面曲率半径为 130mm, 边厚为 3mm, 直径为 70mm; 所述第三平凸镜 9右侧凸面曲率半径为 150mm, 边厚为 3mm, 直径为 80mm。 所述第一平凸镜 7与第 二平凸镜 8之间的距离为 1.5mm;所述第一平凸镜 7与第二平凸镜 8组成对焦镜组,所 述对焦镜组在系统中的成像物 4后 45mm; 所述第三平凸镜 9 在系统中成像物 4后 160mm。第一平凸镜 7与第二平凸镜 8组成对焦镜组, 在成像系统中用于系统对焦, 使 镜头后 2米以外成像清晰; 整个成像系统镜头结构简单, 低成本, 成像清晰, 成像物 4 范围大, 可达 60mm, 可放置较多成像物。
实施例 9
一种具有对焦功能的多颗 LED灯珠合光成像系统, 包括光源、 设于光源前方的成 像镜组。
光源
如图 1、 2所示, 所述光源为平面光源包括平面基板, 所述平面基板上均匀分布有 多颗 LED灯珠 5, 本实施例中一共设有三颗 LED灯珠 5, 处于同一平面的三颗 LED灯 珠 5形成平面光源。 每颗 LED灯珠 5前方均对应设有一个第一聚光镜 11, 所述第一聚 光镜 11为非球面镜, 圆锥系数为 -0.6, 曲率半径为 10mm, 直径为 20mm,边厚为 5mm, 三个第一聚光镜 11处于同一平面上并组成第一聚光镜组 1, 对 LED发出来的光线进行 第一次聚光。 每个第一聚光镜 11前方均对应设有一个第二聚光镜 21, 所述第二聚光镜 21为普通球面镜, 其左曲率半径为 60mm, 右曲率半径为 20mm, 直径为 20mm, 边厚 为 5mm,三个第二聚光镜 21处于同一平面上并组成第二聚光镜组 2,对 LED发出来的 光线进行第二次聚光。 每个第二聚光镜 21前方均对应设有一个第三聚光镜 31, 所述第 三聚光镜 31为简单平凸镜, 其凸面曲率半径为 80mm, 直径为 30mm, 边厚为 5mm, 三个第三聚光镜 31处于同一平面上并组成第三聚光镜组 3, 对 LED发出来的光线进行 第三次聚光。 第三聚光镜组 3前方设有一个第四聚光镜 4, 所述第四聚光镜 4为非涅尔 透镜, 所述第四聚光镜的焦距为 120mm, 直径为 75mm, 边厚为 5mm。 由第一聚光镜 11、 第二聚光镜 21、 第三聚光镜 31组合起来的聚光系统, 所述第一聚光镜与第二聚光 镜之间的距离为 3mm, 所述第二聚光镜与第三聚光镜之间的距离为 15mm, 所述第三 聚光镜与第四聚光镜之间的距离为 50mm, 能做到用直径较小的镜头组合将单颗灯珠的 发散光线 80%的光通量聚集为发散度较小的近平行光线,然后再由第四聚光镜 4将多束 近平行光聚焦到第四聚光镜 4的焦点附近, 进而实现多颗灯珠的光束合成。
成像镜组
如图 1所示, 按光路方向依次设有第一平凸镜 7、 第二平凸镜 8、 第三平凸镜 9。 所述第一平凸镜 7右侧凸面曲率半径为 85mm, 边厚为 5mm, 直径为 74mm; 所述第二 平凸镜 8右侧凸面曲率半径为 140mm, 边厚为 5mm, 直径为 75mm; 所述第三平凸镜 9右侧凸面曲率半径为 160mm, 边厚为 5mm, 直径为 85mm。 所述第一平凸镜 7与第 二平凸镜 8之间的距离为 3mm; 所述第一平凸镜 7与第二平凸镜 8组成对焦镜组, 所 述对焦镜组在系统中的成像物 4后 60mm; 所述第三平凸镜 9 在系统中成像物 4后 170mm。第一平凸镜 7与第二平凸镜 8组成对焦镜组, 在成像系统中用于系统对焦, 使 镜头后 2米以外成像清晰; 整个成像系统镜头结构简单, 低成本, 成像清晰, 成像物 4 范围大, 可达 60mm, 可放置较多成像物。
综上实施例 7~9所述, 三次均匀递减地聚光, 从 LED灯珠发出 120度的光束角通 过第一聚光镜组 1第一次聚到 70-80度, 通过第二聚光镜组 2第二次聚到 30-40度, 通 过第三聚光镜组 3第三次聚到 20度以内, 最后在第四聚光镜 4焦点附近, 60%以上的 光线集中在 20mm-60mm直径范围以内, 且 60%以上的光线发散角在 40度以内, 适合 放置成像物。 光源与成像镜组组合而成的成像系统效率高, 成像清晰, 对焦, 用大功率 led作为光源, 成本低。
实施例 10
一种具有变焦功能的多颗 LED灯珠合光成像系统, 包括光源、 设于光源前方的成 像镜组。
光源
如图 1、 2所示, 所述光源为平面光源包括平面基板, 所述平面基板上均匀分布有 多颗 LED灯珠 5, 本实施例中一共设有四颗 LED灯珠 5, 处于同一平面的四颗 LED灯 珠 5形成平面光源。 每颗 LED灯珠 5前方均对应设有一个第一聚光镜 11, 所述第一聚 光镜 11为非球面镜,圆锥系数为 -0.85,曲率半径为 4.5mm,直径为 10mm,边厚为 lmm, 四个第一聚光镜 11处于同一平面上并组成第一聚光镜组 1, 对 LED发出来的光线进行 第一次聚光。 每个第一聚光镜 11前方均对应设有一个第二聚光镜 21, 所述第二聚光镜 21为普通球面镜, 其左曲率半径为 20mm, 右曲率半径为 8mm, 直径为 10mm, 边厚 为 lmm, 四个第二聚光镜 21处于同一平面上并组成第二聚光镜组 2,对 LED发出来的 光线进行第二次聚光。 每个第二聚光镜 21前方均对应设有一个第三聚光镜 31, 所述第 三聚光镜 31为简单平凸镜, 其凸面曲率半径为 40mm, 直径为 20mm, 边厚为 lmm, 四个第三聚光镜 31处于同一平面上并组成第三聚光镜组 3, 对 LED发出来的光线进行 第三次聚光。 第三聚光镜组 3前方设有一个第四聚光镜 4, 所述第四聚光镜 4为非涅尔 透镜, 所述第四聚光镜的焦距为 80mm, 直径为 65mm, 边厚为 lmm。 由第一聚光镜 11、 第二聚光镜 21、 第三聚光镜 31组合起来的聚光系统, 所述第一聚光镜与第二聚光 镜之间的距离为 0mm, 所述第二聚光镜与第三聚光镜之间的距离为 8mm, 所述第三聚 光镜与第四聚光镜之间的距离为 2mm, 能做到用直径较小的镜头组合将单颗灯珠的发 散光线 80%的光通量聚集为发散度较小的近平行光线,然后再由第四聚光镜 4将多束近 平行光聚焦到第四聚光镜 4的焦点附近, 进而实现多颗灯珠的光束合成。
成像镜组
如图 1所示, 按光学路径依次设有第一平凸镜 12、 胶合镜 13、 双凸镜 14、 双凹镜
15、 第二平凸镜 16。 所述第一平凸镜 12右侧凸面曲率半径为 60mm, 直径为 65mm, 边厚 lmm。 所述胶合镜 13左侧凸面曲率半径为 400mm, 中间凸面曲率半径为 57mm, 右侧凸面曲率半径为 200mm,直径为 65mm。所述双凸镜 14左侧凸面曲率半径为 85mm, 右侧凸面曲率半径为 550mm, 直径为 65mm, 边厚 lmm。所述双凹镜 15左侧凹面曲率 半径为 llOmm, 右侧凸面曲率半径为 300mm, 直径为 65mm, 中心厚度为 2mm。 所述 第二平凸镜 16右侧凸面曲率半径为 100mm, 直径为 115mm, 边厚为 lmm。 所述第一 平凸镜 12与胶合镜 13之间的距离为 Omm,胶合镜 13与双凸镜 14之间的距离为 Omm; 所述第一平凸镜 12、 胶合镜 13、 双凸镜 14组成对焦镜组, 所述对焦镜组在成像物 6 后 30mm, 双凹镜 15在成像物 6后 120mm, 第二平凸镜 16在成像物 6后 210mm。 胶 合镜 13用于减少系统的象差,对焦镜组在成像系统中用于系统对焦, 双凹镜 15用于消 除系统象差并实现变焦。 系统成像物 6范围较大, 可达 70mm, 可放置较多成像物 6; 系 统具有较大范围的变焦功能, 并能在镜头后 1米以外任何距离对成像物 6成像清晰, 且 成本低廉。
实施例 11
一种具有变焦功能呢的多颗 LED灯珠合光成像系统, 包括光源、 设于光源前方的 成像镜组。
光源
如图 1、 2所示, 所述光源为平面光源包括平面基板, 所述平面基板上均匀分布有 多颗 LED灯珠 5, 本实施例中一共设有四颗 LED灯珠 5, 处于同一平面的四颗 LED灯 珠 5形成平面光源。 每颗 LED灯珠 5前方均对应设有一个第一聚光镜 11, 所述第一聚 光镜 11为非球面镜, 圆锥系数为 -0.7, 曲率半径为 7.0mm,直径为 15mm,边厚为 3mm, 四个第一聚光镜 11处于同一平面上并组成第一聚光镜组 1, 对 LED发出来的光线进行 第一次聚光。 每个第一聚光镜 11前方均对应设有一个第二聚光镜 21, 所述第二聚光镜 21为普通球面镜, 其左曲率半径为 40mm, 右曲率半径为 14mm, 直径为 15mm, 边厚 为 3mm, 四个第二聚光镜 21处于同一平面上并组成第二聚光镜组 2,对 LED发出来的 光线进行第二次聚光。 每个第二聚光镜 21前方均对应设有一个第三聚光镜 31, 所述第 三聚光镜 31为简单平凸镜, 其凸面曲率半径为 60mm, 直径为 25mm, 边厚为 3mm, 四个第三聚光镜 31处于同一平面上并组成第三聚光镜组 3, 对 LED发出来的光线进行 第三次聚光。 第三聚光镜组 3前方设有一个第四聚光镜 4, 所述第四聚光镜 4为非涅尔 透镜, 所述第四聚光镜的焦距为 100mm, 直径为 70mm, 边厚为 3mm。 由第一聚光镜 11、 第二聚光镜 21、 第三聚光镜 31组合起来的聚光系统, 所述第一聚光镜与第二聚光 镜之间的距离为 1.5mm, 所述第二聚光镜与第三聚光镜之间的距离为 12mm, 所述第三 聚光镜与第四聚光镜之间的距离为 25mm, 能做到用直径较小的镜头组合将单颗灯珠的 发散光线 80%的光通量聚集为发散度较小的近平行光线,然后再由第四聚光镜 4将多束 近平行光聚焦到第四聚光镜 4的焦点附近, 进而实现多颗灯珠的光束合成。
成像镜组
如图 1所示, 按光学路径依次设有第一平凸镜 12、 胶合镜 13、 双凸镜 14、 双凹 镜 15、第二平凸镜 16。所述第一平凸镜 12右侧凸面曲率半径为 65mm, 直径为 70mm, 边厚 3mm。所述胶合镜 13左侧凸面曲率半径为 410mm,中间凸面曲率半径为 58.5mm, 右侧凸面曲率半径为 220mm,直径为 70mm。所述双凸镜 14左侧凸面曲率半径为 90mm, 右侧凸面曲率半径为 565mm, 直径为 70mm, 边厚 3mm。所述双凹镜 15左侧凹面曲率 半径为 120mm, 右侧凸面曲率半径为 315mm, 直径为 70mm, 中心厚度为 3.5mm。 所 述第二平凸镜 16右侧凸面曲率半径为 115mm, 直径为 120mm, 边厚为 3mm。 所述第 一平凸镜 12与胶合镜 13之间的距离为 1.5mm, 胶合镜 13与双凸镜 14之间的距离为 1.5mm; 所述第一平凸镜 12、 胶合镜 13、 双凸镜 14组成对焦镜组, 所述对焦镜组在成 像物 6后 65mm,双凹镜 15在成像物 6后 155mm,第二平凸镜 16在成像物 6后 220mm。 胶合镜 13用于减少系统的象差,对焦镜组在成像系统中用于系统对焦, 双凹镜 15用于 消除系统象差并实现变焦。 系统成像物 6范围较大, 可达 70mm, 可放置较多成像物 6; 系统具有较大范围的变焦功能, 并能在镜头后 1米以外任何距离对成像物 6成像清晰, 且成本低廉。
实施例 12
一种具有变焦功能的多颗 LED灯珠合光成像系统, 包括光源、 设于光源前方的成 像镜组。
光源
如图 1、 2所示, 所述光源为平面光源包括平面基板, 所述平面基板上均匀分布有 多颗 LED灯珠 5, 本实施例中一共设有四颗 LED灯珠 5, 处于同一平面的四颗 LED灯 珠 5形成平面光源。 每颗 LED灯珠 5前方均对应设有一个第一聚光镜 11, 所述第一聚 光镜 11为非球面镜, 圆锥系数为 -0.6, 曲率半径为 10mm, 直径为 20mm,边厚为 5mm, 四个第一聚光镜 11处于同一平面上并组成第一聚光镜组 1, 对 LED发出来的光线进行 第一次聚光。 每个第一聚光镜 11前方均对应设有一个第二聚光镜 21, 所述第二聚光镜 21为普通球面镜, 其左曲率半径为 60mm, 右曲率半径为 20mm, 直径为 20mm, 边厚 为 5mm, 四个第二聚光镜 21处于同一平面上并组成第二聚光镜组 2,对 LED发出来的 光线进行第二次聚光。 每个第二聚光镜 21前方均对应设有一个第三聚光镜 31, 所述第 三聚光镜 31为简单平凸镜, 其凸面曲率半径为 80mm, 直径为 30mm, 边厚为 5mm, 四个第三聚光镜 31处于同一平面上并组成第三聚光镜组 3, 对 LED发出来的光线进行 第三次聚光。 第三聚光镜组 3前方设有一个第四聚光镜 4, 所述第四聚光镜 4为非涅尔 透镜, 所述第四聚光镜的焦距为 120mm, 直径为 75mm, 边厚为 5mm。 由第一聚光镜 11、 第二聚光镜 21、 第三聚光镜 31组合起来的聚光系统, 所述第一聚光镜与第二聚光 镜之间的距离为 3mm, 所述第二聚光镜与第三聚光镜之间的距离为 15mm, 所述第三 聚光镜与第四聚光镜之间的距离为 50mm, 能做到用直径较小的镜头组合将单颗灯珠的 发散光线 80%的光通量聚集为发散度较小的近平行光线,然后再由第四聚光镜 4将多束 近平行光聚焦到第四聚光镜 4的焦点附近, 进而实现多颗灯珠的光束合成。
成像镜组
如图 1所示, 按光学路径依次设有第一平凸镜 12、 胶合镜 13、 双凸镜 14、 双凹镜 15、 第二平凸镜 16。 所述第一平凸镜 12右侧凸面曲率半径为 70mm, 直径为 75mm, 边厚 5mm。 所述胶合镜 13左侧凸面曲率半径为 420mm, 中间凸面曲率半径为 60mm, 右侧凸面曲率半径为 240mm,直径为 75mm。所述双凸镜 14左侧凸面曲率半径为 95mm, 右侧凸面曲率半径为 580mm, 直径为 75mm, 边厚 5mm。所述双凹镜 15左侧凹面曲率 半径为 130mm, 右侧凸面曲率半径为 330mm, 直径为 75mm, 中心厚度为 5mm。 所述 第二平凸镜 16右侧凸面曲率半径为 130mm, 直径为 125mm, 边厚为 5mm。 所述第一 平凸镜 12与胶合镜 13之间的距离为 3mm,胶合镜 13与双凸镜 14之间的距离为 3mm。 所述第一平凸镜 12、 胶合镜 13、 双凸镜 14组成对焦镜组, 所述对焦镜组在成像物 6 后 100mm, 双凹镜 15在成像物 6后 190mm, 第二平凸镜 16在成像物 6后 230mm。 胶 合镜 13用于减少系统的象差,对焦镜组在成像系统中用于系统对焦, 双凹镜 15用于消 除系统象差并实现变焦。 系统成像物 6范围较大, 可达 70mm, 可放置较多成像物 6; 系 统具有较大范围的变焦功能, 并能在镜头后 1米以外任何距离对成像物 6成像清晰, 且 成本低廉。
综上实施例 10~12所述,三次均匀递减地聚光, 从 LED灯珠发出 120度的光束角通过第 一聚光镜组 1第一次聚到 70-80度,通过第二聚光镜组 2第二次聚到 30-40度, 通过第 三聚光镜组 3第三次聚到 20度以内,最后在第四聚光镜 4焦点附近, 60%以上的光线集 中在 20隱 -60隱直径范围以内, 且 60%以上的光线发散角在 40度以内, 适合放置成像 物。 光源与成像镜组组合而成的成像系统具有较大范围的变焦功能, 并能在镜头后 1 米以外任何距离对成像物成像清晰, 且成本低廉, 效率高, 成像清晰, 可变焦, 对焦, 用大功率 led作为光源, 成本低。

Claims

权利 要求书
1. 一种多颗 LED灯珠合光聚光系统, 其特征在于: 包括光源, 所述光源包括平面基 板, 所述平面基板上设有两颗以上 LED灯珠, 每颗 LED灯珠前方均对应设有一个 第一聚光镜, 所有第一聚光镜组成第一聚光镜组; 每个第一聚光镜前方均对应设有 一个第二聚光镜, 所有第二聚光镜组成第二聚光镜组; 每个第二聚光镜前方均对应 设有一个第三聚光镜, 所有第三聚光镜组成第三聚光镜组; 所述第三聚光镜组前方 设有一个第四聚光镜。
2. 根据权利要求 1所述的一种多颗 LED灯珠合光聚光系统, 其特征在于: 所述第一 聚光镜为非球面镜, 圆锥系数为 -0.85— 0.6, 曲率半径为 4.5~10mm, 直径为 10~20mm。
3. 根据权利要求 1所述的一种多颗 LED灯珠合光聚光系统, 其特征在于: 所述第二 聚光镜为普通球面镜, 其左侧凸面曲率半径为 20~60mm, 右侧凸面曲率半径为 8~20mm, 直径为 10~20mm。
4. 根据权利要求 1所述的一种多颗 LED灯珠合光聚光系统, 其特征在于: 所述第三 聚光镜为简单平凸镜, 其凸面曲率半径为 40~80mm, 直径为 20~30mm。
5. 根据权利要求 1所述的一种多颗 LED灯珠合光聚光系统, 其特征在于 : 所述第四 聚光镜的焦距为 80~120mm, 直径为 65~75mm。
6. 根据权利要求 1所述的一种多颗 LED灯珠合光聚光系统, 其特征在于: 所述第一 聚光镜与第二聚光镜之间的距离为 0~3mm。
7. 根据权利要求 1所述的一种多颗 LED灯珠合光聚光系统, 其特征在于: 所述第二 聚光镜与第三聚光镜之间的距离为 8~15mm。
8. 根据权利要求 1所述的一种多颗 LED灯珠合光聚光系统, 其特征在于: 所述第三 聚光镜与第四聚光镜之间的距离为 2~50mm。
9. 根据权利要求 1所述的一种多颗 LED灯珠合光聚光系统, 其特征在于: 所述第一、 二、 三、 四聚光镜的边厚均为 l~5mm。
10. 一种多颗 LED灯珠合光聚光方法, 其特征在于: 所述聚光方法中, 多颗 LED灯珠 均处于同一平面, 每颗 LED灯珠前方均对应设有一个第一聚光镜, 所有第一聚光 镜组成第一聚光镜组; 每个第一聚光镜前方均对应设有一个第二聚光镜, 所有第二 聚光镜组成第二聚光镜组; 每个第二聚光镜前方均对应设有一个第三聚光镜, 所有 第三聚光镜组成第三聚光镜组; 所述第三聚光镜组前方设有一个第四聚光镜; 每颗 LED灯珠发出来的光线经过其对应的第一聚光镜、第二聚光镜、第三聚光镜进行聚 光后, 光线的发散角变得较小, 形成一束近平行光, 多束近平行光同时经过第四聚 光镜进行光的聚焦和混合, 聚焦混合后, 在第四聚光镜焦点附近, 60%以上的光线 集中在 20mm-60mm直径范围以内, 且 60%以上的光线发散角在 40度以内。
11. 根据权利要求 10所述的一种多颗 LED灯珠合光聚光方法, 其特征在于: 所述多颗 LED灯珠设于同一平面基板上。
12. 根据权利要求 10所述的一种多颗 LED灯珠合光聚光方法, 其特征在于: 所述第一 聚光镜为非球面镜, 所有第一聚光镜处于同一平面上, 第一聚光镜组对 LED发出 来的光线进行第一次聚光。
13. 根据权利要求 10所述的一种多颗 LED灯珠合光聚光方法, 其特征在于: 所述第二 聚光镜为球面镜, 所有第二聚光镜处于同一平面上, 第二聚光镜组对 LED发出来 的光线进行第二次聚光。
14. 根据权利要求 10所述的一种多颗 LED灯珠合光聚光方法, 其特征在于: 所述第三 聚光镜为球面镜, 所有第三聚光镜处于同一平面上, 第三聚光镜组对 LED发出来 的光线进行第三次聚光。
15. 根据权利要求 10所述的一种多颗 LED灯珠合光聚光方法, 其特征在于: 所述第四 聚光镜为正透镜, 第四聚光镜将经过三次聚光的多束近平行光聚焦到第四聚光镜的 焦点。
16. 根据权利要求 10所述的一种多颗 LED灯珠合光聚光方法, 其特征在于: 所述 LED 灯珠呈均匀分布, 形成多点的发光的平面光源。
17. 一种具有对焦功能的多颗 LED灯珠合光成像系统, 包括光源、 设于光源前方的成 像镜组, 其特征在于: 所述光源包括平面基板, 所述平面基板上设有两颗以上 LED 灯珠, 每颗 LED灯珠前方均对应设有一个第一聚光镜, 所有第一聚光镜组成第一 聚光镜组; 每个第一聚光镜前方均对应设有一个第二聚光镜, 所有第二聚光镜组成 第二聚光镜组; 每个第二聚光镜前方均对应设有一个第三聚光镜, 所有第三聚光镜 组成第三聚光镜组; 所述第三聚光镜组前方设有一个第四聚光镜; 所述成像镜组按 光路方向依次包括第一平凸镜、 第二平凸镜、 第三平凸镜。
18. 根据权利要求 17所述的一种具有对焦功能的多颗 LED灯珠合光成像系统, 其特征 在于: 所述第一聚光镜为非球面镜, 圆锥系数为 -0.85~-0.6, 曲率半径为 4.5~10mm, 直径为 10~20mm; 所述第二聚光镜为普通球面镜, 其左侧凸面曲率半径为 20~60mm, 右侧凸面曲率半径为 8~20mm, 直径为 10~20mm; 所述第三聚光镜为简 单平凸镜, 其凸面曲率半径为 40~80mm, 直径为 20~30mm; 所述第四聚光镜的焦 距为 80~120mm, 直径为 65~75mm。
19. 根据权利要求 17所述的一种具有对焦功能的多颗 LED灯珠合光成像系统, 其特征 在于:所述第一聚光镜与第二聚光镜之间的距离为 0~3mm;所述第二聚光镜与第三 聚光镜之间的距离为 8~15mm; 所述第三聚光镜与第四聚光镜之间的距离为 2〜50mm。
20. 根据权利要求 17所述的一种具有对焦功能的多颗 LED灯珠合光成像系统, 其特征 在于: 所述第一平凸镜右侧凸面曲率半径为 70~85mm, 直径为 63~74mm; 所述第 二平凸镜右侧凸面曲率半径为 120~140mm, 直径为 65~75mm; 所述第三平凸镜右 侧凸面曲率半径为 140~160mm, 直径为 75~85mm。
21. 根据权利要求 17所述的一种具有对焦功能的多颗 LED灯珠合光成像系统, 其特征 在于:所述第一平凸镜与第二平凸镜之间的距离为 0~3mm;所述第一平凸镜与第二 平凸镜组成对焦镜组,所述对焦镜组在系统中的成像物后 25~60mm;所述第三平凸 镜在系统中成像物后 150~170mm。
22. 根据权利要求 17所述的一种具有对焦功能的多颗 LED灯珠合光成像系统, 其特征 在于: 所述第一聚光镜、 第二聚光镜、 第三聚光镜、 第四聚光镜、 第一平凸镜、 第 二平凸镜、 第三平凸镜边厚为 l~5mm。
23. 一种具有变焦功能的多颗 LED灯珠合光成像系统, 包括光源、 设于光源前方的成 像镜组, 其特征在于: 所述光源包括平面基板, 所述平面基板上设有两颗以上 LED 灯珠, 每颗 LED灯珠前方均对应设有一个第一聚光镜, 所有第一聚光镜组成第一 聚光镜组; 每个第一聚光镜前方均对应设有一个第二聚光镜, 所有第二聚光镜组成 第二聚光镜组; 每个第二聚光镜前方均对应设有一个第三聚光镜, 所有第三聚光镜 组成第三聚光镜组; 所述第三聚光镜组前方设有一个第四聚光镜; 所述成像镜组按 光路方向依次包括第一平凸镜、 胶合镜、 双凸镜、 双凹镜、 第二平凸镜。
24. 根据权利要求 23所述的一种具有变焦功能的多颗 LED灯珠合光成像系统, 其特征 在于: 所述第一聚光镜为非球面镜, 圆锥系数为 -0.85~-0.6, 曲率半径为 4.5~10mm, 直径为 10~20mm; 所述第二聚光镜为普通球面镜, 其左侧凸面曲率半径为
20~60mm, 右侧凸面曲率半径为 8~20mm, 直径为 10~20mm; 所述第三聚光镜为简 单平凸镜, 其凸面曲率半径为 40~80mm, 直径为 20~30mm; 所述第四聚光镜的焦 距为 80~120mm, 直径为 65~75mm。
25. 根据权利要求 23所述的一种具有变焦功能的多颗 LED灯珠合光成像系统, 其特征 在于:所述第一聚光镜与第二聚光镜之间的距离为 0~3mm;所述第二聚光镜与第三 聚光镜之间的距离为 8~15mm; 所述第三聚光镜与第四聚光镜之间的距离为 2〜50mm。
26. 根据权利要求 23所述的一种具有变焦功能的多颗 LED灯珠合光成像系统, 其特征 在于: 所述第一平凸镜右侧凸面曲率半径为 60~70mm, 直径为 65~75mm; 所述胶 合镜左侧凸面曲率半径为 400~420mm, 中间凸面曲率半径为 57~60mm, 右侧凸面 曲率半径为 200~240mm, 直径为 65~75mm; 所述双凸镜左侧凸面曲率半径为 85~95mm, 右侧凸面曲率半径为 550~580mm, 直径为 65~75mm; 所述双凹镜左侧 凹面曲率半径为 110~130mm,右侧凸面曲率半径为 300~330mm,直径为 65~75mm, 中心厚度为 2~5mm; 所述第二平凸镜右侧凸面曲率半径为 100~130mm, 直径为 115~125mm。
27. 根据权利要求 23所述的一种具有变焦功能的多颗 LED灯珠合光成像系统, 其特征 在于:所述第一平凸镜与胶合镜之间的距离为 0~3mm,胶合镜与双凸镜之间的距离 为 0~3mm; 所述第一平凸镜、胶合镜、双凸镜组成对焦镜组, 所述对焦镜组在成像 物后 30~100mm, 双凹镜在成像物后 120~190mm, 第二平凸镜在成像物后
210~230mm。
28. 根据权利要求 23所述的一种具有变焦功能的多颗 LED灯珠合光成像系统, 其特征 在于: 所述第一聚光镜、 第二聚光镜、 第三聚光镜、 第四聚光镜、 第一平凸镜、 双 凸镜、 第二平凸镜的边厚均为 l~5mm。
PCT/CN2011/082394 2011-01-24 2011-11-18 多颗led聚光系统及方法、及其成像系统 WO2012100584A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11856682.7A EP2669729A4 (en) 2011-01-24 2011-11-18 CONDENSATION SYSTEM AND METHOD WITH MULTIPLE LEDS AND THEIR APPLICATION IN AN IMAGING SYSTEM
US13/981,075 US9447942B2 (en) 2011-01-24 2011-11-18 LED condensing system and method with a plurality of LEDs, and its application in imaging system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN2011200205624U CN201935116U (zh) 2011-01-24 2011-01-24 一种用于能够成像的灯具的多颗led灯珠合光聚光系统
CN201120020565.8 2011-01-24
CN2011200205658U CN201935002U (zh) 2011-01-24 2011-01-24 一种多颗led灯珠合光成像系统
CN201120020562.4 2011-01-24
CN201110024386.6 2011-01-24
CN2011200205639U CN201983022U (zh) 2011-01-24 2011-01-24 多颗led灯珠合光成像系统
CN201120020563.9 2011-01-24
CN2011100243866A CN102121662B (zh) 2011-01-24 2011-01-24 一种用于能够成像的灯具的多颗led灯珠合光聚光方法

Publications (1)

Publication Number Publication Date
WO2012100584A1 true WO2012100584A1 (zh) 2012-08-02

Family

ID=46580218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082394 WO2012100584A1 (zh) 2011-01-24 2011-11-18 多颗led聚光系统及方法、及其成像系统

Country Status (3)

Country Link
US (1) US9447942B2 (zh)
EP (1) EP2669729A4 (zh)
WO (1) WO2012100584A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108398844A (zh) * 2018-04-26 2018-08-14 浙江大学 可拍摄浑浊水体中浮游生物剪影的水下背影成像系统
CN109556083A (zh) * 2018-12-26 2019-04-02 赛尔富电子有限公司 一种超小角度透镜配光系统
JP2023118007A (ja) * 2022-02-14 2023-08-24 株式会社小糸製作所 光源装置、およびヘッドアップディスプレイ

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1066540C (zh) * 1994-08-19 2001-05-30 三星航空产业株式会社 变焦镜头
CN2585257Y (zh) * 2002-12-18 2003-11-05 上海市激光技术研究所 光阑置于前端的三分离物镜
CN2586179Y (zh) * 2002-09-19 2003-11-12 潘舒伟 显微望远镜
CN1159611C (zh) * 1997-07-11 2004-07-28 三星航空产业株式会社 小型变焦透镜系统
JP2006058488A (ja) * 2004-08-18 2006-03-02 Nippon Sheet Glass Co Ltd 照明光学装置およびこれを用いた投影型表示装置
TWI286612B (en) * 2005-09-26 2007-09-11 Compal Communications Inc Multi-axial type light converging system for multiple light sources
CN201575340U (zh) 2009-12-01 2010-09-08 王志军 Led聚焦装置及led聚焦成像灯
CN201636759U (zh) * 2009-06-04 2010-11-17 深圳市威火科技开发有限公司 大功率led用透镜组镜头
CN101950083A (zh) * 2010-07-30 2011-01-19 广东威创视讯科技股份有限公司 用于投影仪的led照明光路
CN102121662A (zh) * 2011-01-24 2011-07-13 广州市雅江光电设备有限公司 一种用于能够成像的灯具的多颗led灯珠合光聚光方法
CN201935116U (zh) * 2011-01-24 2011-08-17 广州市雅江光电设备有限公司 一种用于能够成像的灯具的多颗led灯珠合光聚光系统
CN201935002U (zh) * 2011-01-24 2011-08-17 广州市雅江光电设备有限公司 一种多颗led灯珠合光成像系统
CN201983022U (zh) * 2011-01-24 2011-09-21 广州市雅江光电设备有限公司 多颗led灯珠合光成像系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020046932A (ko) * 2000-12-14 2002-06-21 시마무라 테루오 콘덴서 광학계, 및 그 광학계를 구비한 조명 광학 장치그리고 노광 장치
JP4121477B2 (ja) * 2004-03-31 2008-07-23 三洋電機株式会社 照明装置及び投写型映像表示装置
TWI242759B (en) * 2004-10-19 2005-11-01 Ind Tech Res Inst Apparatus of LED flat light source and signal display
KR100703095B1 (ko) * 2005-10-14 2007-04-06 삼성전기주식회사 하이 새그 렌즈 제조 방법 및 이 방법에 의해 제조한 하이새그 렌즈

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1066540C (zh) * 1994-08-19 2001-05-30 三星航空产业株式会社 变焦镜头
CN1159611C (zh) * 1997-07-11 2004-07-28 三星航空产业株式会社 小型变焦透镜系统
CN2586179Y (zh) * 2002-09-19 2003-11-12 潘舒伟 显微望远镜
CN2585257Y (zh) * 2002-12-18 2003-11-05 上海市激光技术研究所 光阑置于前端的三分离物镜
JP2006058488A (ja) * 2004-08-18 2006-03-02 Nippon Sheet Glass Co Ltd 照明光学装置およびこれを用いた投影型表示装置
TWI286612B (en) * 2005-09-26 2007-09-11 Compal Communications Inc Multi-axial type light converging system for multiple light sources
CN201636759U (zh) * 2009-06-04 2010-11-17 深圳市威火科技开发有限公司 大功率led用透镜组镜头
CN201575340U (zh) 2009-12-01 2010-09-08 王志军 Led聚焦装置及led聚焦成像灯
CN101950083A (zh) * 2010-07-30 2011-01-19 广东威创视讯科技股份有限公司 用于投影仪的led照明光路
CN102121662A (zh) * 2011-01-24 2011-07-13 广州市雅江光电设备有限公司 一种用于能够成像的灯具的多颗led灯珠合光聚光方法
CN201935116U (zh) * 2011-01-24 2011-08-17 广州市雅江光电设备有限公司 一种用于能够成像的灯具的多颗led灯珠合光聚光系统
CN201935002U (zh) * 2011-01-24 2011-08-17 广州市雅江光电设备有限公司 一种多颗led灯珠合光成像系统
CN201983022U (zh) * 2011-01-24 2011-09-21 广州市雅江光电设备有限公司 多颗led灯珠合光成像系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2669729A4

Also Published As

Publication number Publication date
EP2669729A1 (en) 2013-12-04
US9447942B2 (en) 2016-09-20
US20130301265A1 (en) 2013-11-14
EP2669729A4 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
JP2012195064A5 (zh)
JP2011523217A5 (zh)
US20120328278A1 (en) Condenser lens, lamp and camera
JP2014160240A5 (zh)
CN101546041A (zh) 投影系统
WO2012100584A1 (zh) 多颗led聚光系统及方法、及其成像系统
CN103631017A (zh) 一种led可变焦成像灯的光学系统
CN201935002U (zh) 一种多颗led灯珠合光成像系统
CN201983022U (zh) 多颗led灯珠合光成像系统
CN204313121U (zh) 一种led舞台灯光路系统
CN202675155U (zh) 匀光装置及光源系统
CN202382065U (zh) 一种多颗led灯珠合光成像系统
US10488019B2 (en) Adjustable round light spot torch
CN102121662B (zh) 一种用于能够成像的灯具的多颗led灯珠合光聚光方法
TWI456331B (zh) 投影機
WO2020140764A1 (zh) 矩阵光学系统、聚光系统和复眼透镜
CN202349763U (zh) 一种led光束灯光学系统
TW201213878A (en) Lens and light source module
CN202432431U (zh) 多颗led灯珠合光成像系统
CN106402797A (zh) 一种用于多颗led光源聚光合光系统及方法
CN201661987U (zh) 一种非成像均匀配光透镜
CN107763450B (zh) 一种用于led舞台灯具的光学系统
CN102901045A (zh) 用于大功率led光源的菲涅尔透镜
CN201935116U (zh) 一种用于能够成像的灯具的多颗led灯珠合光聚光系统
WO2013097726A1 (zh) 一种多颗led合光成像光学系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856682

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011856682

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13981075

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE