WO2012100530A1 - 一种中继小区无线资源分配方法及基站、系统 - Google Patents

一种中继小区无线资源分配方法及基站、系统 Download PDF

Info

Publication number
WO2012100530A1
WO2012100530A1 PCT/CN2011/078919 CN2011078919W WO2012100530A1 WO 2012100530 A1 WO2012100530 A1 WO 2012100530A1 CN 2011078919 W CN2011078919 W CN 2011078919W WO 2012100530 A1 WO2012100530 A1 WO 2012100530A1
Authority
WO
WIPO (PCT)
Prior art keywords
access point
base station
resource
user satisfaction
relay
Prior art date
Application number
PCT/CN2011/078919
Other languages
English (en)
French (fr)
Inventor
米哈伊尔⋅皮勒斯基
张洁涛
庄宏成
卡分佐夫⋅法里德
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20110856734 priority Critical patent/EP2661137B1/en
Publication of WO2012100530A1 publication Critical patent/WO2012100530A1/zh
Priority to US13/950,888 priority patent/US9332558B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and a base station and a system for allocating a radio resource of a relay cell.
  • the relay network As a new type of mobile communication network architecture, the relay network has been accepted by the 3rd Generation Partnership Project (3GPP) as an Enhanced Long Term Evolution (Advanced) (LTE-A) system.
  • 3GPP 3rd Generation Partnership Project
  • LTE-A Enhanced Long Term Evolution
  • 3GPP 3rd Generation Partnership Project
  • LTE-A Enhanced Long Term Evolution
  • a base station and one or more relay nodes are arranged in the relay cell, and the relay node is connected to the base station through radio resources.
  • the user equipment (UE) can be directly connected to the base station to implement the access network.
  • the user terminal can also connect to the relay node first, and then access the network through the base station, that is, the user terminal passes the two-hop link. Access to the network.
  • the relay cell can improve the user terminal, in particular, improve the channel capacity of the edge user terminal, reduce the spatial loss of the wireless resource, increase the signal-to-noise ratio, and thereby improve the system of the entire relay network. capacity.
  • a relay cell radio resources between a base station and a user terminal, between a base station and a relay node, and between a relay node and a user terminal are collectively referred to as a relay cell resource.
  • the relay cell has a two-hop link, and the user terminal can access the network through a two-hop link. Therefore, the resource allocation of the relay cell is significantly different from the resource allocation of the conventional single-base cell. How to achieve effective allocation of relay cell resources and meet the key performance indicators (KPIs) of the system, such as user fairness and system capacity requirements, there is currently no solution.
  • KPIs key performance indicators
  • the embodiments of the present invention provide a radio resource allocation method for a relay cell, and a base station and a system, which are used to implement effective allocation of radio resources of a relay cell, and meet the requirements of system user fairness and system capacity.
  • An embodiment of the present invention provides a method for allocating a radio resource of a relay cell, including:
  • the base station acquires a statistical average user satisfaction of each access point in the relay cell, where the access point includes the base station and a relay node in the relay cell, and the statistical average user satisfaction is within a statistical period.
  • the base station calculates radio resources of each access point according to resource division weights of respective access points and allocates them to each access point.
  • the embodiment of the present invention further provides a base station, which is applied to a relay cell, where the base station includes: an acquiring unit, configured to acquire a statistical average user satisfaction of each access point in the relay cell, where the access point includes The statistical average user satisfaction of the base station and the relay node in the relay cell is an average of a ratio of a total user rate obtained by the access point to a total user rate required in the statistical period.
  • a determining unit configured to determine a resource division weight of each access point when a difference between a statistical average user satisfaction of the base station and a statistical average user satisfaction of each relay node approaches a preset value; Calculating radio resources of each access point according to resource division weights of the access points;
  • the allocating unit allocates radio resources for the respective access points to the respective access points.
  • an embodiment of the present invention further provides a relay cell system, including:
  • a base station configured to acquire a statistical average user satisfaction of each access point in the relay cell, where the access point includes the base station and a relay node in the relay cell, and the statistical average user satisfaction is The average of the ratio of the total user rate obtained by the access point to the total user rate required during the statistical period; the statistical average user satisfaction at the base station and the statistical average user satisfaction of each relay node When the difference approaches the preset value, determining the resource division weight of each access point; and calculating the radio resources of each access point according to the resource division weight of each access point and assigning to each access point;
  • the relay node is configured to periodically report its statistical average user satisfaction to the base station, and receive the radio resource allocated by the base station.
  • the base station first acquires statistical average user satisfaction of each access point (including the base station and the relay node in the relay cell) in the relay cell, and the statistical average user satisfaction and each of the base stations.
  • the resource division weight of each access point is determined, and the radio resource allocation of each access point is calculated according to the resource division weight of each access point to each connection. Entry point.
  • the preset value When the preset value is 0, the average user satisfaction of each access point in the relay cell is equal, and the user fairness of each access point in the relay cell is optimal; When the value of the preset value is larger, the system capacity is larger, and the user fairness is sacrificed at this time. It can be seen that the compromise between the user fairness and the system capacity can be achieved by selecting an appropriate preset value, so that the embodiment of the present invention can effectively allocate the resources of the relay cell and meet the fairness and system capacity of the system user. Requirements.
  • FIG. 1 is a schematic diagram of a resource segment of a relay cell according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for allocating a resource of a relay cell according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a base station according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of an access point resource division weight generation system according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a resource division control system in an access point resource division weight generation system shown in FIG. 4;
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of still another base station according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a relay cell system according to an embodiment of the present invention.
  • the relay cell resource allocation method and the base station and the system in the embodiment of the present invention are described in detail.
  • the relay network one base station and K relay nodes are arranged in each of the relay cells (each relay)
  • the base station involved in the embodiment of the present invention may be an Evolved Node (eNB) or a Node B.
  • eNB Evolved Node
  • AP access point
  • the radio resources of the relay cell can be classified into the following three categories: The first type: the radio resource between the base station and the user terminal it serves (also referred to as a direct transmission link), Indicated by N D ; the second type: the radio resource between the first relay node and the user terminal it serves (also referred to as the access link), used for N representation; the third category: the first relay node and A radio resource between base stations (also referred to as a backhaul link) for representation.
  • the relay node with the sequence number k serves ⁇ user terminals, each of which is used
  • Z D ⁇ for the base station, where ⁇ ⁇ represents the average user satisfaction of the base station; R D table
  • G shows the total user rate obtained by the base station
  • G D represents the total user rate required by the base station.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 2 is a schematic flowchart of a method for allocating a resource of a relay cell according to Embodiment 1 of the present invention.
  • the resource allocation method may include the following steps:
  • the base station acquires a statistical average user satisfaction of each access point in the relay cell, where The ingress point includes the base station and the relay node in the relay cell, and the statistical average user satisfaction is an average value of the ratio of the total user rate obtained by the access point in the statistical period to the total user rate required;
  • the base station can count the total user rate R D obtained by the base station, and calculate the ratio of the total user rate R D obtained by the base station to the total user rate G D required by the base station as the average user satisfaction of the base station ⁇ ⁇ And therefore calculate its statistical average user satisfaction ⁇ ⁇ within the statistical period.
  • the base station can receive the statistical average user satisfaction reported by each relay node in the relay cell.
  • the total user rate obtained by the relay node can be counted, and the ratio of the total user rate obtained to the total user rate obtained by the relay node is calculated as the average user of the relay node. Satisfaction 3 ⁇ 4 and therefore calculate its statistical average user satisfaction during the statistical period and report it to the base station.
  • the base station determines a resource division weight of each access point when a difference between a statistical average user satisfaction degree and a statistical average user satisfaction degree of each relay node approaches a preset value;
  • the value range of the preset value may be a preset value "0".
  • the preset value is 0, the statistical average user satisfaction of the base station in the relay cell and each relay node are equal, and the user fairness of each access point in the relay cell reaches the maximum.
  • the value of the preset value is larger, the system capacity is larger, and the user fairness is sacrificed at this time. In order to meet the requirements of system users' fairness and meet the system capacity requirements.
  • the base station calculates radio resources of each access point according to resource division weights of each access point, and allocates the radio resources to each access point.
  • the base station may calculate the radio resources of each access point according to the resource division weight of each access point.
  • the base station may calculate, for each access point, the sum of the resource division weights of the access points of the access points.
  • the specific implementation of determining the resource division weight of each access point in the foregoing step 202 may adopt the method shown in FIG. 3, including the following steps:
  • the base station calculates the resource partitioning weight change rate of each access point according to the resource division weight change rate calculation formula. ;
  • the base station integrates a resource division weight change rate of each access point, and obtains a resource division weight change amount of each access point;
  • the base station calculates a sum of a resource partitioning weight change amount of each access point and a current resource partitioning weight of the access point, and obtains a resource partitioning weight of each access point.
  • each access point in the relay cell may perform user scheduling separately, so that the network utility can be maximized (for example, each access point may adopt a general scheduling based on parameter ⁇ ).
  • the criteria are user scheduling; wherein the above parameters meet the following conditions:
  • the above max.* indicates maximizing network utility
  • M indicates the number of users
  • N indicates the total number of radio resource blocks of the relay cell
  • fc is the duration of each radio resource block, indicating that the user m is in subcarrier pairing ( , j
  • the number of bits on the line, ⁇ represents the number of radio resource blocks allocated to the user m on the subcarrier pair ( , j ).
  • the base station first acquires the statistical average user satisfaction of the base station in the relay cell.
  • the method for allocating a resource of a relay cell may be performed in two stages, and the first level is a radio resource allocation level, that is, the base station divides the radio resource of the relay cell and allocates it to each access in the relay cell.
  • the second level is the user scheduling level, that is, each access point separately schedules its own users to maximize network utility.
  • the second embodiment of the present invention considers two important different parameter KPIs of the system, that is, user fairness, and second, system capacity; and the second embodiment of the present invention uses two Partially describes the radio resource partitioning of the relay cell in the first level, wherein the first part describes the radio resource partitioning method measured by user fairness, and the second part describes the radio resource partitioning method measured by the system capacity, and finally Two wireless resource partitioning methods are combined to describe a compromise that considers user fairness and system capacity.
  • represents the resource division weight of the first relay node
  • w Indicates the resource division weight of the base station, and the number of radio resource blocks used by the base station to be transmitted to the first relay node satisfies the following formula (1):
  • Equation (2) calculates the radio resources of each relay node and the radio resources of the base station.
  • the above refers to the resource division weight of the relay node in the initial state, and ( ⁇ , . . . , ! ⁇ ) can be set by the operator according to actual needs or experience summarization.
  • the first resource node may be first used to calculate the first relay node.
  • represents the statistical period
  • represents the access link unit resource capacity of the first relay node
  • S represents the number of subframes in a frame.
  • the formula (9) and the formula (10) correspond to the step 201 in the first embodiment, and the base station obtains the statistical average user of the relay node and the base station according to the formula (9) and the formula (10). Intention ⁇
  • ⁇ Z[t] A, - ⁇ Z[t - 1] + A 2 ⁇ Sw[t - 1]
  • ⁇ ] represents the statistical average user satisfaction of the base station and the statistical average of the first relay node The difference in user satisfaction.
  • ⁇ ] represents the statistical average user satisfaction of the base station and the statistical average of the first relay node The difference in user satisfaction.
  • the integral AZ of AZ[t] is introduced, [t]:
  • ⁇ ⁇ [t] ⁇ Z l [t- ⁇ ] + Tl- ⁇ Z[t - 1] (16)
  • the embodiment of the present invention can use a linear binary optimal controller to output resource division of each access point.
  • the weight change rate ⁇ ] and the resource division weight change amount ⁇ ] are additional system states.
  • w[ ] can be updated by integrating ⁇ ], that is, w[ ] and ⁇ ] satisfy the following relationship:
  • Sw[t] Sw[tl] + Tl-u[ti] (17)
  • the base station can calculate the amount of resource partitioning weight change for each access point
  • the sum of the current resource partitioning weights of the ingress points, and the resource partitioning weight of each access point is obtained.
  • r represents the length of each frame.
  • the system is finally represented by a state vector, where the input vector of the system is ⁇ ], the system matrix, and 8. Among them, the state vector ⁇ [ ] satisfies the following conditions:
  • the linear binary optimal controller can be obtained by minimizing the following performance index _/:
  • Performance index _/ can be modified to
  • a preset value of 0>0 may be introduced to express eight ( ⁇ 3 ⁇ 4 ⁇ indicates the statistical average user satisfaction of the base station and the statistics of the first relay node. The difference in average user satisfaction) is the increase or decrease in the offset.
  • the selection of the preset value of 0 determines the degree of compromise between the fairness of the user and the system capacity, and the value of the preset value O is higher. High, the larger the system capacity, but at the expense of user fairness.
  • the second embodiment of the present invention can be used for user fairness and system capacity. The quantity is compromised and the corresponding preset value of 0 is obtained.
  • the difference between two embodiments of the invention may employ the statistical average user satisfaction A statistical average user satisfaction and each relay node of a base station approaches a predetermined value of 0 as the above-described setting conditions and the setting conditions determined in accordance with the respective The resource allocation weight of the access point.
  • the access point of the resource partitioning weight weight generation system shown as an example, the statistical average user satisfaction statistical average user satisfaction base ⁇ ⁇ , the relay node may be ⁇ 0 and the preset value as an input parameter into the system
  • the Linear Quadratic Control System obtains the resource partition weight w of the base station.
  • the base station may be Statistics average user satisfaction ⁇ ⁇ each relay node and user satisfaction average vector difference ⁇ 3 ⁇ 4], the difference vector integrator ⁇ ⁇ ], and the current point of each access resource partitioning weight to weight w [ ]
  • the resource division weight change rate ⁇ ] of each access point is obtained, and ⁇ ] is integrated to obtain the resource division weight change amount of each access point, and then each can be determined.
  • the resource division weight of the access point is heavy.
  • the radio resources of each relay node may be respectively calculated according to formula (1) and formula (2) and allocated to each relay node. And calculating the radio resources of the base station and assigning them to the base station.
  • each access point obtains a base station.
  • a second level of user scheduling can be performed to maximize network utility.
  • the above max.* indicates maximizing network utility
  • M indicates the number of users
  • N indicates the total number of radio resource blocks of the relay cell
  • fc is the duration of each radio resource block, indicating that the user m is in subcarrier pairing ( , j
  • the number of bits on the basis, ⁇ indicates the number of radio resource blocks allocated to the user m on the subcarrier pair ( , j ).
  • a method for joint optimization of resource allocation and user scheduling is adopted, that is, after the first-level resource allocation, the scheduling rule corresponding to different parameters ⁇ is used in the second-level user scheduling to perform user scheduling to maximize the network. utility.
  • the system can ensure that the fairness of each user is satisfied under the long-term statistics through the resource allocation method of the first level.
  • the preset value 0 in the first-level resource allocation and the parameter ⁇ in the second-level user scheduling may have the corresponding relationship shown in Table 1 below.
  • the base station may follow the difference between the statistical average user satisfaction ⁇ of the base station and the average user satisfaction of each relay node to a preset value of 0.
  • the resource allocation weights of the access points are determined, and the radio resources of each access point are allocated to the respective access points according to the resource division weights of the access points.
  • the second embodiment of the present invention can select the scheduling criterion corresponding to the different parameters ⁇ for user scheduling, so that the network utility can be maximized while implementing the access point wireless resource allocation.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG. 6 is a schematic structural diagram of a base station according to Embodiment 3 of the present invention.
  • the base station provided in Embodiment 3 of the present invention is applied to a relay network.
  • the base station may include:
  • the obtaining unit 601 is configured to obtain a statistical average user satisfaction of each access point in the relay cell, where the access point includes the base station and the relay node in the relay cell, and the statistical average user satisfaction is The average of the ratio of the total user rate obtained by the access point within the statistical period to the total user rate required;
  • a determining unit 602 configured to determine a resource division weight of each access point when a difference between a statistical average user satisfaction of the base station and a statistical average user satisfaction of each relay node approaches a preset value; and a calculating unit 603 And calculating, by using the resource division weights of the foregoing access points, radio resources of each access point;
  • the allocating unit 604 is configured to allocate radio resources of each access point to each access point.
  • FIG. 7 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • the base station shown in Fig. 7 is obtained by optimizing the base station shown in Fig. 6.
  • the determining unit 602 can include:
  • the first sub-unit 6021 is configured to calculate each access according to a calculation formula of a resource division weight change rate when a difference between a statistical average user satisfaction of the base station and a statistical average user satisfaction of each relay node approaches a preset value.
  • Point resource division weight change rate
  • represents the statistical average user satisfaction of the base station and each relay
  • a second sub-unit 6022 configured to integrate a resource division weight change rate of each access point, and obtain a resource division weight change amount of each access point;
  • the third sub-unit 6023 is configured to calculate a sum of the resource partitioning weight change amount of each access point and the current resource partitioning weight of each access point, and obtain a resource partitioning weight of each access point.
  • FIG. 8 is a schematic structural diagram of another base station according to an embodiment of the present invention. Among them, the base station shown in Fig. 8 is obtained by optimizing the base station shown in Fig. 7.
  • the computing unit 603 can include:
  • a first calculating sub-unit 6031 configured to calculate a proportion of a resource division weight of each of the access points of the resource division weights of the access points
  • the second calculating sub-unit 6032 is configured to calculate a product of a resource division weight of each access point and a number of radio resource blocks, to obtain a radio resource of each access point.
  • FIG. 9 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • the base station shown in Fig. 9 is obtained by optimizing the base station shown in Fig. 8.
  • the base station shown in Figure 9 it may also include:
  • the scheduling unit 605 is configured to perform user scheduling by using a general scheduling criterion based on the parameter ⁇ ; wherein, the parameter ⁇ satisfies the following condition:
  • the above max.* indicates maximizing network usage efficiency;
  • the above M indicates the number of users,
  • the above N indicates the total number of radio resource blocks, and the length of each of the radio resource blocks of the fc indicates that the user m is in subcarrier pairing ( , j)
  • the number of bits above, ⁇ represents the number of radio resource blocks allocated to the user m on the subcarrier pair ( , j).
  • the value range of the preset value is a preset value >0.
  • the relay cell resource is divided according to user fairness, and the user fairness is optimal at this time; when the preset value is the maximum value O max , based on the system capacity To divide the relay cell resources, the system capacity is maximized; when the preset value is based on 0 and the maximum value, the relay cell resources are divided based on the user fairness and the system capacity compromise. Can meet the requirements of user fairness and system capacity.
  • Embodiment of the present invention provides a base station, the acquisition unit 601 can acquire statistical average user satisfaction statistics for the base station repeater cell average user satisfaction ⁇ ⁇ [alpha] and each relay node; determining means
  • each access point 602 can present statistical average user satisfaction with the base station ⁇ statistical average user satisfaction of each relay node ⁇ difference value approaching the predetermined value, each access point is determined resource partitioning weight; calculating unit
  • the 603 may calculate radio resources of each access point according to resource division weights of each access point, and allocate unit 604 allocates radio resources of each access point to each access point.
  • the preset value is 0, the average user satisfaction of each access point in the relay cell is equal, and the user of each access point in the relay cell has the best fairness;
  • the value of the value is larger, the system capacity is larger, and the user fairness is sacrificed at this time. It can be seen that this can be achieved by selecting the appropriate preset value.
  • a compromise between system capacity so that the base station provided by the embodiment of the present invention can effectively allocate resources of the relay cell and meet the requirements of system user fairness and system capacity.
  • the scheduling unit 605 may select scheduling criteria corresponding to different parameters ⁇ for user scheduling, so that network utility can be maximized while implementing access point wireless resource allocation.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 1100 is a diagram showing the structure of a relay sub-small cell system system provided by the fourth embodiment of the present invention. Schematic diagram. . As shown in FIG. 1100, the system system can include:
  • the base station 11000011 using the statistics for the access points of each of the access points in the small cell area, is used by the user to satisfy the degree of satisfaction, wherein
  • the intermediate access point-in-point packet includes a base station 11000011 and a medium relay node node 11000022 in the medium relay small cell area, and the statistics are averaged with the user's satisfaction.
  • the total user user rate rate obtained by the access point in the period of 1100 during the statistical period is the total total user demanded by the user.
  • the average average value of the ratio of the rate of the rate of the user; the average of the statistics at the base station 11000011 is the user's satisfaction degree and the relays of each of the relays
  • Sources of resources are divided into different decentralization rights;
  • the resource sources of each access point are divided into decentralized weights, and the non-wireless resource sources of each access point are calculated and allocated to each individual access.
  • the value range of the pre-preset value is a pre-preset value. Value ⁇ 00. .
  • the base is based on the fairness and flatness of the user, and the source of the secondary resource of the secondary cell is divided.
  • the base is based on The system capacity is used to divide the sub-trunk relays into small-area resources, and at this time, the system capacity capacity reaches the maximum size;;
  • the set value value is based on the time between 00 and the maximum and maximum 2200 value 00.
  • the basis is based on the fairness of the user's household and the system capacity capacity. In the middle to come, the sub-relays are used in the sub-resources, and the resources can be used to satisfy the requirements of the user's fairness and the system's capacity. .
  • the present invention provides a medium relay relay system system system provided in the fourth embodiment of the present invention.
  • the base station 11000011 and the middle relay node node 11000022, respectively, are also useful for the adoption of the general-purpose scheduling criterion based on the parameter number ⁇ . Use the user to adjust the scheduling degree; 1— ⁇
  • the above max.* indicates maximizing network utility
  • M indicates the number of users
  • N indicates the total number of radio resource blocks of the relay cell
  • fc is the duration of each radio resource block, indicating that the user m is in subcarrier pairing ( , j
  • the number of bits on the basis, ⁇ indicates the number of radio resource blocks allocated to the user m on the subcarrier pairing ( , j).
  • the base station 1001 may obtain the average user satisfaction A statistical average user satisfaction relay cell of the base station and each relay node ⁇ ; base station
  • the resource division weight of each access point is determined, and according to each access point The resource division weight calculates the radio resources of each access point, and allocates the radio resources of each access point to each access point.
  • the preset value is 0, the average user satisfaction of each access point in the relay cell is equal, and the user of each access point in the relay cell has the best fairness; When the value is larger, the system capacity is larger, and the user's fairness is sacrificed.
  • the compromise between the user fairness and the system capacity can be achieved by selecting an appropriate preset value, so that the relay cell system provided by the embodiment of the present invention can effectively allocate the resources of the relay cell and satisfy the system user. Fairness and system capacity requirements.
  • the scheduling criterion corresponding to different parameters ⁇ may be selected for user scheduling, so that the network utility can be maximized while implementing the access point wireless resource allocation.
  • the storage medium may include: a flash disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种中继小区无线资源分配方法及基站、系统。其中,该方法包括:基站获取中继小区内各个接入点的统计平均用户满意度,其中,接入点包括该基站和中继小区内的中继节点,上述平均用户满意度为在统计周期内的接入点所获得的总用户速率与其所要求的总用户速率的比值的平均值;基站在其统计平均用户满意度与各个中继节点的统计平均用户满意度的差值趋近预设值时,确定各个接入点的资源划分权重;基站根据各个接入点的资源划分权重计算各个接入点的无线资源并分配给各个接入点。本发明实施例可以实现对中继小区资源的有效分配,并满足系统用户公平性和系统容量的要求。

Description

一种中继小区无线资源分配方法及基站、 系统
本申请要求于 2011 年 1 月 25 日提交中国专利局、 申请号为 201110027441.7、发明名称为 "一种中继小区无线资源分配方法及基站、 系统" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体涉及一种中继小区无线资源分配方法及基 站、 系统。
背景技术
中继网络作为一种新型的移动通信网络架构, 已被第三代合作伙伴计划 ( The 3rd Generation Partnership Project, 3GPP )接受并作为增强型长期演进 ( Long Term Evolution -Advanced , LTE-A ) 系统的关键技术之一。
在中继网络中, 中继小区内同时布置有基站以及一个或多个中继节点 ( Relay Node, RN ) ,中继节点通过无线资源与基站连接。其中,用户终端( User Equipment, UE )可以直接与基站连接, 实现接入网络; 或者, 用户终端也可 以先连接中继节点,再通过基站接入网络, 即用户终端通过两跳链路的方式接 入网络。 采用了布置中继节点的方式, 中继小区可以提高用户终端, 特别是提 高边缘用户终端的信道容量, 减小无线资源的空间损耗, 增大信噪比, 从而可 以提高整个中继网络的系统容量。
在中继小区中,基站与用户终端之间、基站与中继节点之间以及中继节点 与用户终端之间的无线资源统称为中继小区资源。与传统的单基站蜂窝小区相 比, 中继小区内具有两跳链路, 用户终端可以通过两跳链路的方式接入网络。 因此, 中继小区的资源分配与传统的单基站蜂窝小区的资源分配有较大区别。 如何实现中继小区资源的有效分配, 并满足系统多个关键性能指标 (Key Performance Indicator, KPI )如用户公平性、 系统容量的要求, 目前尚没有解 决方案。
发明内容
针对上述缺陷, 本发明实施例提供一种中继小区无线资源分配方法及基 站、 系统, 用于实现对中继小区无线资源的有效分配, 并满足系统用户公平性 和系统容量的要求。 本发明实施例提供一种中继小区无线资源分配方法, 包括:
基站获取中继小区内各个接入点的统计平均用户满意度,所述接入点包括 所述基站和所述中继小区内的中继节点,所述统计平均用户满意度为在统计周 期内的所述接入点所获得的总用户速率与其所要求的总用户速率的比值的平 均值;
所述基站在其统计平均用户满意度与各个中继节点的统计平均用户满意 度的差值趋近预设值时, 确定各个接入点的资源划分权重;
所述基站根据各个接入点的资源划分权重计算各个接入点的无线资源并 分配给各个接入点。
相应地, 本发明实施例还提供一种基站, 应用于中继小区, 该基站包括: 获取单元, 用于获取中继小区内各个接入点的统计平均用户满意度, 所述 接入点包括所述基站和所述中继小区内的中继节点,所述统计平均用户满意度 为在统计周期内的所述接入点所获得的总用户速率与其所要求的总用户速率 的比值的平均值;
确定单元,用于在所述基站的统计平均用户满意度与各个中继节点的统计 平均用户满意度的差值趋近预设值时, 确定各个接入点的资源划分权重; 计算单元,用于根据所述各个接入点的资源划分权重计算各个接入点的无 线资源;
分配单元, 用于所述各个接入点的无线资源分配给各个接入点。
相应地, 本发明实施例还提供一种中继小区系统, 包括:
基站, 用于获取中继小区内各个接入点的统计平均用户满意度, 所述接入 点包括所述基站和所述中继小区内的中继节点,所述统计平均用户满意度为在 统计周期内的所述接入点所获得的总用户速率与其所要求的总用户速率的比 值的平均值;在所述基站的统计平均用户满意度与各个中继节点的统计平均用 户满意度的差值趋近预设值时,确定各个接入点的资源划分权重; 以及根据所 述各个接入点的资源划分权重计算各个接入点的无线资源并分配给各个接入 点;
所述中继节点, 用于周期性上报其统计平均用户满意度至所述基站, 以及 接收所述基站分配的无线资源。 本发明实施例中,基站先获取中继小区内各个接入点(包括该基站和中继 小区内的中继节点)的统计平均用户满意度, 并且在该基站的统计平均用户满 意度与各个中继节点的统计平均用户满意度的差值趋近预设值时,确定各个接 入点的资源划分权重,根据各个接入点的资源划分权重计算各个接入点的无线 资源分配给各个接入点。 当上述的预设值取值为 0时, 中继小区内各个接入点 的统计平均用户满意度相等,此时中继小区内各个接入点的用户公平性达到最 佳; 而当上述的预设值取值越大时, 系统容量越大, 此时牺牲了用户公平性。 可见, 只要选取合适的预设值就可以实现在用户公平性和系统容量之间的折 中,从而本发明实施例可以实现对中继小区资源的有效分配, 并满足系统用户 公平性和系统容量的要求。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要 使用的附图作筒单地介绍,显而易见地, 下面描述中的附图仅仅是本发明的一 些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的一种中继小区资源分部示意图;
图 2为本发明实施例提供的一种中继小区资源分配方法的流程示意图; 图 3为本发明实施例提供的一种基站的结构示意图;
图 4 为本发明实施例提供的一种接入点资源划分权重生成系统的结构示 意图;
图 5为图 4所示的接入点资源划分权重生成系统中的资源划分控制系统的 结构示意图;
图 6为本发明实施例提供的一种基站的结构示意图;
图 7为本发明实施例提供的另一种基站的结构示意图;
图 8为本发明实施例提供的另一种基站的结构示意图;
图 9为本发明实施例提供的又一种基站的结构示意图;
图 10为本发明实施例提供的一种中继小区系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
在详细描述本发明实施例提供的中继小区资源分配方法及基站、 系统之 本发明实施例中,中继网络中的任意一个中继小区内布置一个基站和 K个 中继节点 (各个中继节点的索引为 = 1, ..., ) , 图 1所示。 其中, 本发明实施 例中所涉及的基站可以是演进型基站 (Evolved Node Β, eNB ) , 也可以是常 规基站( Node B ) , 本发明实施例不作限定。 本发明实施例中, 中继小区内的 基站和中继节点可以统称为接入点 (Access Point, AP ) 。 如图 1所示, 本发明实施例中, 中继小区无线资源可以分成以下三类: 第一类:基站与其服务的用户终端之间(又被称为直传链路)的无线资源, 用于 ND表示; 第二类: 第 个中继节点与其服务的用户终端之间 (又被称为接入链路) 的无线资源, 用于 N 表示; 第三类: 第 个中继节点与基站之间 (又被称为回传链路) 的无线资源, 用于 表示。 其中, 上述的 ND、 、 Nf满足 ND + ;(N + Nf ) = N , N表示中继小区的 k=l 总的无线资源块数目; ND + Nf为基站传输使用的无线资源块数目, 而 为 k=l 第 个中继节点传输使用的无线资源块数目。 本发明实施例中, 假设序号为 k的中继节点服务^^个用户终端,每一个用 户终端的索引为 m = l,...,MA; 基站服务 M个用户终端, 每一个用户终端的索引 为 m = 1, ...,M; 则第 m个用户终端的用户满意度 定义为该用户终端所获得的 用户速率 RmA和该用户终端所要求的用户速率 GmA的比值, 即 ZmA= 。 相应 地, 第 个中继节点的平均用户满意度为 =丄 第 个中继节点所获
Gm,k 得的总用户速率为 = ^ 。 第 个中继节点的平均用户满意度^1决定于第 个中继节点所要求的总用户速率 (¾A = j 和第 个中继节点所获得的总用 户速率 R , 即使 =丄 ^^=丄 ~^^ = , k=i,...,K。 同理, 对于 基站而言也存在关系 ZD=^, 其中, Ζβ表示基站的平均用户满意度; RD
G 示基站所获得的总用户速率; GD表示基站所要求的总用户速率。 在中继小区 中,各个接入点会在给定的统计周期内,根据自身的平均用户满意度计算统计 平均用户满意度, 其中统计满意度定义为 Ζ[] = Τ表示统
Figure imgf000007_0001
计周期。 对于基站, 其统计平均用户满意度为: ZD[t] = ^-ZD[t-l] + ZD[t-l]; 对于第 个中继节点, 其统计平均用户满意度为 ¾^] = ^ -1] + ^^^-1]。 基于上述对中继小区的相关说明,下面介绍本发明实施例提供的中继小区 资源分配方法及基站、 系统, 用于实现对中继小区无线资源的有效分配, 并满 足系统用户公平性和系统容量的要求。 以下分别进行详细说明。
实施例一:
请参阅图 2, 图 2为本发明实施例一提供的一种中继小区资源分配方法的 流程示意图。 其中, 该资源分配方法可以包括以下步骤:
201、 基站获取中继小区内各个接入点的统计平均用户满意度, 其中, 接 入点包括本基站和中继小区内的中继节点,统计平均用户满意度为在统计周期 内的接入点所获得的总用户速率与其所要求的总用户速率的比值的平均值; 在中继小区中, 基站可以统计其所获得的总用户速率 RD , 并且计算基站 所获得的总用户速率 RD与基站所要求的总用户速率 GD的比值, 作为基站的平 均用户满意度 ζβ , 并因此计算其在统计周期内的统计平均用户满意度 Ζβ。 在中继小区中,基站可以接收中继小区内各个中继节点上报的统计平均用 户满意度 。 其中, 对于中继小区内的中继节点而言, 可以统计其所获得的 总用户速率 , 并且计算其所获得的总用户速率 与其所要求的总用户速率 的比值, 作为中继节点的平均用户满意度 ¾ 并因此计算其在统计周期内 的统计平均用户满意度 , 并上报给基站。
202、 基站在其统计平均用户满意度与各个中继节点的统计平均用户满意 度的差值趋近预设值时, 确定各个接入点的资源划分权重;
本发明实施例中, 上述预设值的取值范围可以是预设值》 0。
举例来说, 当上述的预设值取值为 0时, 中继小区内基站与各个中继节点 的统计平均用户满意度相等,此时中继小区内各个接入点的用户公平性达到最 佳; 而当上述预设值取值越大时, 系统容量越大, 而此时牺牲了用户公平性。 中, 以满足系统用户公平性的要求又满足系统容量的要求。
203、 基站根据各个接入点的资源划分权重计算各个接入点的无线资源并 分配给各个接入点。 本发明实施例中,基站在确定出各个接入点的资源划分权重之后, 可以根 据各个接入点的资源划分权重计算各个接入点的无线资源。作为一个可选的实 施方式,基站可以计算各个接入点的资源划分权重的和值中每一个接入点的资 源划分权重所占的比例值;进而计算每一个接入点的资源划分权重所占的比例 值与中继小区的总的无线资源块数目的乘积,从而可以获得每一个接入点的无 线资源并分配给各个接入点。
作为一个可选的实施方式, 上述步骤 202中确定各个接入点的资源划分权 重的具体实现可以采用如图 3所示的方法, 包括以下步骤:
301、基站在其统计平均用户满意度与各个中继节点的统计平均用户满意 度的差值趋近预设值时,按照资源划分权重变化率计算公式计算各个接入点的 资源划分权重变化率;
其中, 上述的资源划分权重变化率计算公式满足: u = -Fx ; 其中, u表示 各个接入点的资源划分权重变化率向量; F表示反馈增益矩阵; X表示状态向 量, 并且 X满足以下条件:
\Z[t]
ΔΖΓ[ί] , 其中, Δ ]表示基站的统计平均用户满意度 Ζβ与各个中继
[i] 节点的统计平均用户满意度 Α的差值向量; Δ [t]表示基站的统计平均用户满 意度 与各个中继节点的统计平均用户满意度 A的差值的积分向量; 表 示各个接入点当前的资源划分权向量; 表示计算时刻。
302、 基站对各个接入点的资源划分权重变化率进行积分, 获得各个接入 点的资源划分权重变化量;
303、 基站计算每一个接入点的资源划分权重变化量与该接入点当前的资 源划分权重的和值, 获得每一个接入点的资源划分权重。
作为一个可选的实施方式, 本发明实施例提供的中继小区资源分配方法 中, 中继小区内各个接入点在获得基站分配的无线资源之后, 可以分别进行用 户调度, 以使网络效用可以达到最大化( 举例来说,各个接入点可以采用基于参数 γ的通用调度准则进行用户调度; 其中, 上述参数满足以下条件:
Figure imgf000010_0001
N N T m =l j = l
Figure imgf000010_0002
其中, 上述的 max.*表示最大化网络效用; M表示用户数目, N表示中继 小区的总的无线资源块数目, fc每个无线资源块的时长, 表示用户 m在子 载波配对( , j )上的比特数, ^表示在子载波配对( , j )上分配给用户 m 的无线资源块数目。
本发明实施例一中,基站先获取中继小区内该基站的统计平均用户满意度
^和各个中继节点的统计平均用户满意度 , 并且在该基站的统计平均用户 满意度 Ζβ与各个中继节点的统计平均用户满意度 Α的差值趋近预设值时, 确 定各个接入点的资源划分权重,并根据各个接入点的资源划分权重计算各个接 入点的无线资源分配给各个接入点。 当上述的预设值取值为 0时, 中继小区内 各个接入点的平均用户满意度相等,此时中继小区内各个接入点的用户公平性 达到最佳; 而当上述的预设值取值越大时, 系统容量越大, 此时牺牲了用户公 折中,从而本发明实施例可以实现对中继小区资源的有效分配, 并满足系统用 户公平性和系统容量的要求。 实施例二:
本发明实施例二中, 中继小区资源分配方法可以分为两级进行, 第一级是 无线资源分配级, 即基站将中继小区无线资源进行划分, 并分配给中继小区内 各个接入点; 第二级是用户调度级, 即各个接入点分别调度自己的用户, 以达 到最大化网络效用。 其中, 在第一级的中继小区无线资源划分中, 本发明实施 例二考虑了系统两个重要的不同参数 KPI, —是用户公平性, 二是系统容量; 而且本发明实施例二采用两部分来描述第一级中的中继小区无线资源划分,其 中, 第一部分描述以用户公平性为度量的无线资源划分方法, 而第二部分描述 以系统容量为度量的无线资源划分方法,最后将两种无线资源划分方法进行融 合, 描述考虑了用户公平性和系统容量的折中方法。
1 )基于用户公平性的中继小区无线资源划分:
本发明实施例二中定义两个参数: ^表示第 个中继节点的资源划分权 重, w。表示基站的资源划分权重, 则基站划分给第 个中继节点传输使用的 无线资源块数目 满足以下公式( 1 ):
Figure imgf000011_0001
1=1 相应地, 基站划分给自身传输使用的无线资源块数目 ND + N 为满足以下公 k=l 式(2 ):
Figure imgf000011_0002
其中, N表示中继小区的总的无线资源块数目; 表示 个中继节点
1=1 的资源划分权重的和值; w0 + wl表示各个接入点(包括基站和 个中继节点)
1=1 的资源划分权重的和值。 其中, 上述公式(1)、 公式(2)对应了上述实施例一中的步骤 203, 基 站在获得每一个中继节点的资源划分权重以及该基站的资源划分权重之后,可 以根据上述公式(1)、 公式(2)计算出每一个中继节点的无线资源以及该基 站的无线资源。
对上述公式(1 )进行泰勒级数展开, 则有:
Figure imgf000012_0001
对上述公式(2)进行泰勒级数展开, 则有:
Figure imgf000012_0002
其中,上述的 , 表示 个中继节点在初始状态下的资源划分权重, (^,…,!^)可以由运营商根据实际需要或者经验总结进行设置。
其中, 可选择线性点 以满足 = A, k = i,...,K ; 其中, 表示 基站在初始状态下的平均用户满意度; 表示第 个中继节点在初始状态下 的平均用户满意度。
本发明实施例中,首先可利用固定资源划分机制来计算第 个中继节点在 初始状态下无线资源块数目 A, k = \"."K , 其中固定资源划分是指中继小区 所有接入点拓朴确定时 (可假设用户均匀分配) 的资源划分, 以获得
ND,Nk A, k = i,...,K , 并计算获得 = , k = i,...,K, 从而有: w,. (8) κ ι=ι 其中, 。表示基站在初始状态下的资源划分权重; 表示在初始状态下的 中继小区的总的无线资源块数目, 一般地 =N;利用上述泰勒级数展开的线性 项可以获得线性差值,该线性差值用以表达资源划分权重如何影响中继节点和 基站的统计平均用户满意度:
Figure imgf000013_0001
(~wk +w0+ jwl)(wk[t-Y-wk)-wk jwn[t-\-wn
1=1 n≠k J
其中, 表示第 个中继节点的统计平均用户满意度; Γ表示统计周期; 表示第 个中继节点的接入链路单位资源容量; 表示第 个中继节点在 初始状态下的平均用户满意度; S表示一帧中的子帧数目。 ( 10)
Figure imgf000013_0002
其中, 表示基站的统计平均用户满意度; 表示基站在初始状态下 的平均用户满意度; (^表示基站直传链路单位资源容量。
其中, 上述公式(9)、 公式(10)对应了上述实施例一中的步骤 201, 基 站根据上述公式( 9 )、 公式( 10 )可以获得中继节点和基站的统计平均用户满 意度 ε
本发明实施例二在上述公式(9)和公式(10)的基础上, 引入以下标识 \Z[t] = (ZD [t] - [ί] , ... , Z D [ί ] - ΖΚ Α [t]f ( 11 )
^[ί] = [n · ·, ι] - wK y
(12) A1 =¾
T
(13)
Figure imgf000014_0001
(14)其中, 上述 I表示 单位阵 。 则可以获得:
\Z[t] = A, - \Z[t - 1] + A2 · Sw[t - 1] (15) 其中, Δ ]表示基站的统计平均用户满意度与第 个中继节点的统计平均 用户满意度的差值。 为了使 Δ ]接近于 0 (0为预设值, 此时用户公平性达到 最佳 ), 引入 AZ[t]的积分 AZ, [t]:
ΔΖΓ [t] = \Zl[t-\] + Tl- \Z[t - 1] (16) 此外,本发明实施例可以使用线性二分最优控制器来输出各个接入点的资 源划分权重变化率 φ]以及资源划分权重变化量 ^ ]作为附加的系统状态。 其 中, w[ ]可以通过对 φ]进行积分来更新, 即 w[ ]与 φ]满足以下关系:
Sw[t] = Sw[t-l] + Tl-u[t-i] (17) 其中, 基站可以将计算出每一个接入点的资源划分权重变化量 与接 入点当前的资源划分权重 的和值, 获得每一个接入点的资源划分权重。 其中, r表示每一帧的长度。 这样, 最终由状态向量 来表达系统, 其 中, 该系统的输入向量为 φ]、 系统矩阵 和8。 其中, 状态向量 χ[ ]满足如下 条件:
AZ[t]
ΔΖΓ[ί] ( 18 )
[i]
A ( 19 )
Figure imgf000015_0002
x[i] = Ax[i-l] + Bu[i-l] ( 20 ) 其中, 表示接入点当前的资源划分权重; 0是 的 0矩阵。 对于上 述公式(20 )所表示的系统, 可以通过最小化以下的性能索引 _/来获得线性二 分最优控制器:
J = [t]Qx[t] + uT [t]Ku[t] (21 ) 如果定义参数:
R = pl ( 22 )
Figure imgf000015_0003
其中, p为人工可调参数, p值越大, 资源分配动态变化较緩慢; p值越 小, 资源分配动态变化较快。 性能索引 _/可以修改为
J =∑\ ∑AZk[tf
Figure imgf000015_0001
+P∑uk[t] (23 ) 其中, 最小化上述公式(23 )的线性二分最优控制器就是符合以下方式的 u = -Fx (24) 其中, 反馈增益矩阵 F由以下公式(25)计算所得:
F = (R + BrPB) ΒΓΡΑ (25) 其中, 上述 Ρ是满足以下公式(26) 的解:
Ρ = Q + Ar (P - PB(R + ΒΓΡΒ) 1 BrP ) A (26)
2)基于系统容量的中继小区无线资源划分:
本发明实施例二中, 当系统目标为最大化系统容量时, 可引入一个预设值 0>0 , 用以表达八 ( Δ¾Α表示基站的统计平均用户满意度与第 个中继节点 的统计平均用户满意度的差值)增加或减少的偏移量。这里可以分为三种情况: 当所有的中继节点的容量和基站的直传链路容量相等时, 预设值 O = o; 当所 有的中继节点的容量 d、于基站的直传链路容量时,系统所有资源应该分配给基 站作直链传输, 此时预设值 O>0 , 3-ZD =Z^+0, k = l"..,K ; 此时, ND 二 N, 则此时预设值的最大值为 0 X =ZD 当存在某一个中继节点的容量
G SG 大于基站的直传链路容量时,系统所有资源应该分配给具有最大容量的中继节 点, 即满足 Z = argmax( ,...,CJ的第 /个中继节点 (其中 ¾表示第 k个中继的容 量), 此时预设值 O>0 , 且预设值 0应累加到 Δ Α; 此时, N†+ N†二 Ν , 则 此时预设值的最大值为: 由此, 可以设
Figure imgf000016_0001
Omax =min{O ax,OLx}=本发明实施例二中, 对预设值 0大小的选择决定了对于用 户公平性和系统容量之间的折中程度, 预设值 O取值越高, 则系统容量越大, 但是以用户公平性为代价获得的。本发明实施例二可以对用户公平性和系统容 量进行折中, 获得相应的预设值 0。 本发明实施例二可以采用基站的统计平均 用户满意度 与各个中继节点的统计平均用户满意度 A的差值趋近上述的预 设值 0作为设定条件, 并按照该设定条件确定各个接入点的资源划分权重。
以图 4所示的接入点资源划分权重生成系统为例,可以将基站的统计平均 用户满意度 Ζβ、 中继节点的统计平均用户满意度 Α以及预设值 0作为输入参 数输入该系统的线性二分控制系统( Linear Quadratic Control System ), 获得基 站的资源划分权重 w。以及第 k ( k=l,...,K )个中继节点的资源划分权重 然 后将基站的资源划分权重 w。以及第 k ( k = \,...,K )个中继节点的资源划分权重 ^分别转换成无线资源, 即根据基站的资源划分权重 w。以及第 k ( k = \,...,K ) 个中继节点的资源划分权重^计算基站的无线资源块数目 ND+ ;Nf 以及第 k k=l
( k = i,...,K ) 个中继节点的无线资源块数目 Nk A。 其中, 图 4所示的线性二分控制系统可以细化为图 5所示。 其中, 可以将 基站的统计平均用户满意度 Ζβ与各个中继节点的统计平均用户满意度 的差 值向量 Δ¾ ]、 差值积分向量 Δ ^]以及各个接入点当前的资源划分权重向 w[ ] 作为反馈增益矩阵 F的输入, 获得各个接入点的资源划分权重变化率 φ], 并 对 φ]进行积分获得各个接入点的资源划分权重变化量 ^ψ], 进而可以确定出 各个接入点的资源划分权重向 。
本发明实施例二在确定出各个接入点的资源划分权重向 W[ ]之后, 可以根 据公式(1)、 公式(2)分别计算出各个中继节点的无线资源并分配给各个中 继节点, 以及计算出基站的无线资源并分配给基站。
本发明实施例二提供的中继小区资源分配方法中,各个接入点获得基站分 配的无线资源之后, 可以进行第二级用户调度, 以达到最大化网络效用。 举例 来说, 各个接入点可以采用基于参数 γ的通用调度准则进行用户调度。 举例来 说, 当参数 γ=0时, 用户 m的效用变为 t/m(rm) = rm , 最大化网络效用为:
Figure imgf000018_0001
数 γ=1时, 用户速率是比例公平的, 此时最大化网络效用为
Figure imgf000018_0002
数 γ=2时, 最大化网络效用为:
Figure imgf000018_0003
当参数 γ→∞时, 最大化网络效用趋于 max-min公平调度。 可见, 通过改变参数 γ的取值大小可以获得不同调度准则的调度方法。 因 此, 基于参数 γ的通用调度准则进行用户调度可以归结为:
Figure imgf000018_0004
M
( m ) T
x ≤—, \≤ i≤ N ,
Figure imgf000018_0005
其中, 上述的 max.*表示最大化网络效用; M表示用户数目, N表示中继 小区的总的无线资源块数目, fc每个无线资源块的时长, 表示用户 m在子 载波配对( , j )上的比特数, →表示在子载波配对( , j )上分配给用户 m 的无线资源块数目。 本发明实施例二中, 采用资源分配和用户调度联合优化的方法, 即在第一 级资源分配后,在第二级用户调度中采用不同参数 γ对应的调度准则进行用户 调度, 以最大化网络效用。 例如, 第一级的资源分配方法的目标如果是满足用 户公平性, 则通过第一级的资源分配方法, 系统可以保证长时间统计下每个用 户的公平性得到满足。在第二级进行用户调度时, 可以采用 γ=0的调度准则实 现瞬时系统吞吐量最大化。通过联合优化的方法, 不仅能满足系统长时间统计 的 ΚΡΙ要求, 并能实现网络效用的最大化。
本发明实施例二中,第一级资源分配中的预设值 0和第二级用户调度中的 参数 γ可能存在如下表 1所示的对应关系。
Figure imgf000019_0001
其中, 当 O为 0时, 表示用户公平性得到满足, 此时参数 γ为 0可使用户 调度时网络效用最大化; 当 0为最大值 Omax时,表示系统容量最大化得到满足, 此时 γ取值为 1可以使用户调度时用户公平性得到较好满足。 本发明实施例二在第一级资源分配中,基站可以按照该基站的统计平均用 户满意度 Ζΰ与各个中继节点的平均用户满意度 的差值趋近预设值 0这一设 定条件来确定各个接入点的资源划分权重,并根据各个接入点的资源划分权重 计算各个接入点的无线资源分配给各个接入点。 当上述的预设值取值为 0时, 中继小区内各个接入点的统计平均用户满意度相等,此时中继小区内各个接入 点的用户公平性达到最佳; 而当上述的预设值取值越大时, 系统容量越大, 此 时牺牲了用户公平性。可见,通过选取合适的预设值可以实现在用户公平性和 系统容量之间的折中, 从而本发明实施例可以实现对中继小区资源的有效分 配, 并满足系统用户公平性和系统容量的要求。 另外, 本发明实施例二在第二 级用户调度中, 可以选择不同参数 γ对应的调度准则进行用户调度, 使得在实 现接入点无线资源分配的同时, 可以实现网络效用最大化。
实施例三:
请参阅图 6, 图 6为本发明实施例三提供的一种基站的结构示意图。 本发 明实施例三提供的基站应用于中继网络。 其中, 该基站可以包括:
获取单元 601 , 用于获取中继小区内各个接入点的统计平均用户满意度, 其中, 该接入点包括本基站和中继小区内的中继节点, 上述的统计平均用户满 意度为在统计周期内的接入点所获得的总用户速率与其所要求的总用户速率 的比值的平均值;
确定单元 602 , 用于在本基站的统计平均用户满意度与各个中继节点的统 计平均用户满意度的差值趋近预设值时, 确定各个接入点的资源划分权重; 计算单元 603 , 用于根据上述各个接入点的资源划分权重计算各个接入点 的无线资源;
分配单元 604 , 用于将各个接入点的无线资源分配给各个接入点。
请一并参阅图 7, 图 7为本发明实施例提供的另一种基站的结构示意图。其 中, 图 7所示的基站是通过对图 6所示的基站进行优化得到的。 如图 7所示的基 站中, 确定单元 602可以包括:
第一子单元 6021 ,用于在本基站的统计平均用户满意度与各个中继节点的 统计平均用户满意度的差值趋近预设值时,按照资源划分权重变化率计算公式 计算各个接入点的资源划分权重变化率;
其中, 上述资源划分权重变化率计算公式满足: u = -Fx ; 其中, u表示各 个接入点的资源划分权重变化率的向量; F表示反馈增益矩阵; X表示状态向 量, 并且 X满足以下条件:
\Z[t]
ΔΖΓ[ί] 其中, Δ ]表示本基站的统计平均用户满意度与各个中继
[i] 节点的统计平均用户满意度的差值向量; 表示本基站的统计平均用户满 意度与各个中继节点的统计平均用户满意度的差值积分向量; w[ ]表示各个接 入点当前的资源划分权重的向量; 表示计算时刻;
第二子单元 6022 , 用于对各个接入点的资源划分权重变化率进行积分, 获 得各个接入点的资源划分权重变化量;
第三子单元 6023 ,用于计算每一个接入点的资源划分权重变化量与各个接 入点当前的资源划分权重的和值, 获得每一个接入点的资源划分权重。 请一并参阅图 8 , 图 8为本发明实施例提供的另一种基站的结构示意图。其 中, 图 8所示的基站是通过对图 7所示的基站进行优化得到的。 如图 8所示的基 站中, 计算单元 603可以包括:
第一计算子单元 6031 ,用于计算个接入点的资源划分权重的和值中每一个 接入点的资源划分权重所占的比例值;
第二计算子单元 6032 ,用于计算每一个接入点的资源划分权重与无线资源 块数目的乘积, 获得每一个接入点的无线资源。
请一并参阅图 9 , 图 9为本发明实施例提供的另一种基站的结构示意图。 其 中, 图 9所示的基站是通过对图 8所示的基站进行优化得到的。 如图 9所示的基 站中, 还可以包括:
调度单元 605 , 用于采用基于参数 γ的通用调度准则进行用户调度; 其中, 参数 γ满足一下条件:
1— γ
M N N
(m) (m)
max ij Xij
m=l 丄 Ί i b '· = 1 7 = 1 -t. ∑ ∑ ^;] < -A < i < N,
m=l j = l Z
M N T m x m ≤,M ,
Figure imgf000022_0001
其中, 上述 max.*表示最大化网络使用效率; 上述 M表示用户数目, 上述 N表示总的无线资源块数目, 上述 fc每个无线资源块的时长, 表示用户 m 在子载波配对( , j)上的比特数, ^表示在子载波配对( , j)上分配给用 户 m的无线资源块数目。
本发明实施例提供的基站中, 预设值的取值范围是预设值 >0。 当上述的 预设值取值为 0时,基于用户公平性来划分中继小区资源, 此时用户公平性达 到最佳; 当上述的预设值取值为最大值 Omax时, 基于系统容量来划分中继小区 资源, 此时系统容量达到最大化; 当上述的预设值取值基于 0与最大值 <皿之 间时,基于用户公平性和系统容量折中来划分中继小区资源, 可以满足用户公 平性和系统容量的要求。
本发明实施例提供的基站中,获取单元 601可以获取中继小区内该基站的 统计平均用户满意度 Ζΰ和各个中继节点的统计平均用户满意度 Α; 确定单元
602 可以在本基站的统计平均用户满意度^与各个中继节点的统计平均用户 满意度 Α的差值趋近预设值时, 确定各个接入点的资源划分权重; 计算单元
603可以根据各个接入点的资源划分权重计算各个接入点的无线资源, 分配单 元 604将各个接入点的无线资源分配给各个接入点。 当上述的预设值取值为 0 时, 中继小区内各个接入点的统计平均用户满意度相等, 此时中继小区内各个 接入点的用户公平性最好; 而当上述的预设值取值越大时, 系统容量越大, 此 时牺牲了用户公平性。可见,通过选取合适的预设值可以实现. 系统容量之间的折中,从而本发明实施例提供的基站可以实现对中继小区资源 的有效分配, 并满足系统用户公平性和系统容量的要求。 另外, 本发明实施例 提供的基站中,调度单元 605可以选择不同参数 γ对应的调度准则进行用户调 度, 使得在实现接入点无线资源分配的同时, 可以实现网络效用最大化。
实施例四:
请请参参阅阅图图 1100,, 图图 1100为为本本发发明明实实施施例例四四提提供供的的一一种种中中继继小小区区系系统统的的结结构构示示 意意图图。。 如如图图 1100所所示示,, 该该系系统统可可以以包包括括::
基基站站 11000011 ,, 用用于于获获取取中中继继小小区区内内各各个个接接入入点点的的统统计计平平均均用用户户满满意意度度,, 其其中中 接接入入点点包包括括基基站站 11000011和和中中继继小小区区内内的的中中继继节节点点 11000022 ,,该该统统计计平平均均用用户户满满意意度度为为 1100 在在统统计计周周期期内内的的接接入入点点所所获获得得的的总总用用户户速速率率与与其其所所要要求求的的总总用用户户速速率率的的比比值值 的的平平均均值值;;在在基基站站 11000011的的统统计计平平均均用用户户满满意意度度与与各各个个中中继继节节点点 11000022的的统统计计平平均均 用用户户满满意意度度的的差差值值趋趋近近预预设设值值时时,,确确定定各各个个接接入入点点的的资资源源划划分分权权重重;; 以以及及根根据据 各各个个接接入入点点的的资资源源划划分分权权重重计计算算各各个个接接入入点点的的无无线线资资源源并并分分配配给给各各个个接接入入点点;; 中中继继节节点点 11000022 ,, 用用于于周周期期性性上上报报其其统统计计平平均均用用户户满满意意度度至至基基站站 11000011 ,, 以以及及 1155 接接收收基基站站 11000011分分配配的的无无线线资资源源。。
本本发发明明实实施施例例提提供供的的中中继继小小区区系系统统中中,, 预预设设值值的的取取值值范范围围是是预预设设值值》》 00。。 当当上上述述的的预预设设值值取取值值为为 00时时,,基基于于用用户户公公平平性性来来划划分分中中继继小小区区资资源源,, 此此时时用用户户 公公平平性性达达到到最最佳佳;; 当当上上述述的的预预设设值值取取值值为为最最大大值值 OOmmaaxx时时,, 基基于于系系统统容容量量来来划划分分 中中继继小小区区资资源源,, 此此时时系系统统容容量量达达到到最最大大化化;; 当当上上述述的的预预设设值值取取值值基基于于 00与与最最大大 2200 值值 00皿皿之之间间时时,, 基基于于用用户户公公平平性性和和系系统统容容量量折折中中来来划划分分中中继继小小区区资资源源,, 可可以以满满 足足用用户户公公平平性性和和系系统统容容量量的的要要求求。。
作作为为一一个个可可选选的的实实施施方方式式,, 本本发发明明实实施施例例四四提提供供的的中中继继小小区区系系统统中中,,基基站站 11000011以以及及中中继继节节点点 11000022 ,, 分分别别还还有有用用于于采采用用基基于于参参数数 γγ的的通通用用调调度度准准则则进进行行用用 户户调调度度;; 1— γ
M N N
(m) (m)
max ij Xij
m=l 丄 Ί i b '· = 1 7 = 1 -t. ∑ ∑ ^;] < -A < i < N,
m=l j = l Z
M N T m x m ≤,M ,
Figure imgf000024_0001
其中, 上述的 max.*表示最大化网络效用; M表示用户数目, N表示中继 小区的总的无线资源块数目, fc每个无线资源块的时长, 表示用户 m在子 载波配对( , j)上的比特数, →表示在子载波配对( , j)上分配给用户 m 的无线资源块数目。
本发明实施例提供的中继小区系统中, 基站 1001可以获取中继小区内该 基站的统计平均用户满意度 ^和各个中继节点的平均用户满意度 A; 在基站
1001 的统计平均用户满意度 Ζΰ与各个中继节点 1002 的统计平均用户满意度 的差值趋近预设值时, 时, 确定各个接入点的资源划分权重, 并根据各个 接入点的资源划分权重计算各个接入点的无线资源,将各个接入点的无线资源 分配给各个接入点。 当上述的预设值取值为 0时, 中继小区内各个接入点的平 均用户满意度相等, 此时中继小区内各个接入点的用户公平性最好; 而当上述 的预设值取值越大时, 系统容量越大, 此时牺牲了用户公平性。 可见, 通过选 取合适的预设值可以实现在用户公平性和系统容量之间的折中,从而本发明实 施例提供的中继小区系统可以实现对中继小区资源的有效分配,并满足系统用 户公平性和系统容量的要求。 另外, 本发明实施例提供的中继小区系统中, 可 以选择不同参数 γ对应的调度准则进行用户调度,使得在实现接入点无线资源 分配的同时, 可以实现网络效用最大化。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步 骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读 存储介质中, 存储介质可以包括: 闪存盘、 只读存储器(Read-Only Memory , ROM ), 随机存取器 ( Random Access Memory, RAM ), 磁盘或光盘等。
以上对本发明实施例所提供的中继小区无线资源分配方法、基站和系统进 述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时, 对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围 上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种中继小区无线资源分配方法, 其特征在于, 包括:
基站获取中继小区内各个接入点的统计平均用户满意度,所述接入点包括 所述基站和所述中继小区内的中继节点,所述统计平均用户满意度为在统计周 期内的所述接入点所获得的总用户速率与其所要求的总用户速率的比值的平 均值;
所述基站在其统计平均用户满意度与各个中继节点的统计平均用户满意 度的差值趋近预设值时, 确定各个接入点的资源划分权重;
所述基站根据各个接入点的资源划分权重计算各个接入点的无线资源并 分配给各个接入点。
2、根据权利要求 1所述的方法, 其特征在于, 所述基站在其统计平均用户 满意度与各个中继节点的统计平均用户满意度的差值趋近预设值时,确定各个 接入点的资源划分权重; 包括:
所述基站在其统计平均用户满意度与各个中继节点的统计平均用户满意 度的差值趋近预设值时,按照资源划分权重变化率计算公式,计算各个接入点 的资源划分权重变化率;
其中, 所述资源划分权重变化率计算公式满足: u = -Fx ; 所述 u表示各个 接入点的资源划分权重变化率的向量; 所述 F表示反馈增益矩阵; 所述 X表示 状态向量, 并且所述 X满足以下条件:
\Z[t]
ΔΖΓ[ί] , 所述 Δ¾ ]表示所述基站的统计平均用户满意度与各个中继
[i] 节点的统计平均用户满意度的差值向量; 所述 Δ ^]表示所述基站的统计平均 用户满意度与各个中继节点的统计平均用户满意度的差值的积分向量; w[ ] 表示各个接入点当前的资源划分权重向量; 表示计算时刻; 所述基站对各个接入点的资源划分权重变化率进行积分,获得各个接入点 的资源划分权重变化量; 所述基站计算每一个接入点的资源划分权重变化量与所述接入点当前的 资源划分权重的和值, 获得每一个接入点的资源划分权重。
3、根据权利要求 1所述的方法, 其特征在于, 所述基站根据各个接入点的 资源划分权重计算各个接入点的无线资源包括: 所述基站计算所述各个接入点的资源划分权重的和值中每一个接入点的 资源划分权重所占的比例值; 所述基站计算所述每一个接入点的资源划分权重所占的比例值与所述中 继小区的总的无线资源块数目的乘积, 获得每一个接入点的无线资源。
4、 根据权利要求 1所述的方法, 其特征在于, 所述预设值的取值范围是: 预设值 >0
5、根据权利要求 1~4任意一项所述的方法, 其特征在于, 所述基站根据各 个接入点的资源划分权重计算各个接入点的无线资源并分配给各个接入点之 后, 还包括:
所述各个接入点采用基于参数 γ的通用调度准则进行用户调度;
其中, 所述参数 γ满足一下条件:
Figure imgf000027_0001
Ν Ν τ
s丄 ∑ ∑ χί ≤ ϊ ≤ ί ≤ Ν
' 1
Figure imgf000027_0002
1≤ i≤ N,
m) e J 0,... ,— i,l < i, j < N ,\ < m≤,M , 其中, 所述 max.*表示最大化网络效用; 所述 M表示用户数目, 所述 N 表示所述中继小区的总的无线资源块数目, 所述 fc每个无线资源块的时长, b『表示用户 m在子载波配对( , j )上的比特数, ")表示在子载波配对( , j )上分配给用户 m的无线资源块数目。
6、 一种基站, 应用于中继小区, 其特征在于, 包括:
获取单元, 用于获取中继小区内各个接入点的统计平均用户满意度, 所述 接入点包括所述基站和所述中继小区内的中继节点,所述统计平均用户满意度 为在统计周期内的所述接入点所获得的总用户速率与其所要求的总用户速率 的比值的平均值;
确定单元,用于在所述基站的统计平均用户满意度与各个中继节点的统计 平均用户满意度的差值趋近预设值时, 确定各个接入点的资源划分权重;
计算单元,用于根据所述各个接入点的资源划分权重计算各个接入点的无 线资源;
分配单元, 用于将所述各个接入点的无线资源分配给各个接入点。
7、 根据权利要求 6所述的基站, 其特征在于, 所述确定单元包括: 第一子单元,用于在所述基站的统计平均用户满意度与各个中继节点的统 计平均用户满意度的差值趋近预设值时, 按照资源划分权重变化率计算公式, 计算各个接入点的资源划分权重变化率;
其中, 所述资源划分权重变化率计算公式满足: u = -Fx ; 所述 u表示各个 接入点的资源划分权重变化率的向量; 所述 F表示反馈增益矩阵; 所述 X表示 状态向量, 并且所述 X满足以下条件:
\Z[t]
ΔΖΓ[ί] , 所述 Δ¾ ]表示所述基站的统计平均用户满意度与各个中继
[i] 节点的统计平均用户满意度的差值向量; 所述 Δ ^]表示所述基站的统计平均 用户满意度与各个中继节点的统计平均用户满意度的差值的积分向量; w[ ] 表示各个接入点当前的资源划分权重向量; 表示计算时刻;
第二子单元, 用于对各个接入点的资源划分权重变化率进行积分, 获得各 个接入点的资源划分权重变化量;
第三子单元,用于计算每一个接入点的资源划分权重变化量与所述接入点 当前的资源划分权重的和值, 获得每一个接入点的资源划分权重。
8、 根据权利要求 6所述的基站, 其特征在于, 所述计算单元包括: 第一计算子单元,用于计算所述各个接入点的资源划分权重的和值中每一 个接入点的资源划分权重所占的比例值;
第二计算子单元,用于计算每一个接入点的资源划分权重所占的比例值与 所述中继小区的总的无线资源块数目的乘积, 获得每一个接入点的无线资源。
9、 根据权利要求 6所述的基站, 其特征在于, 所述预设值的取值范围是: 预设值 > 0
10、 根据权利要求 6~9任意一项所述的基站, 其特征在于, 还包括: 调度单元, 用于采用基于参数 γ的通用调度准则进行用户调度;
其中, 所述参数 γ满足一下条件:
Figure imgf000029_0001
其中, 所述 max.*表示最大化网络效用; 所述 M表示用户数目, 所述 N 表示所述中继小区的总的无线资源块数目, 所述 fc每个无线资源块的时长, b『表示用户 m在子载波配对( , j )上的比特数, ")表示在子载波配对( , j )上分配给用户 m的无线资源块数目。
11、 一种中继小区系统, 其特征在于, 包括:
基站, 用于获取中继小区内各个接入点的统计平均用户满意度, 所述接入 点包括所述基站和所述中继小区内的中继节点,所述统计平均用户满意度为在 统计周期内的所述接入点所获得的总用户速率与其所要求的总用户速率的比 值的平均值;在所述基站的统计平均用户满意度与各个中继节点的统计平均用 户满意度的差值趋近预设值时,确定各个接入点的资源划分权重; 以及根据所 述各个接入点的资源划分权重计算各个接入点的无线资源并分配给各个接入 点;
所述中继节点, 用于上报其平均用户满意度至所述基站, 以及接收所述基 站分配的无线资源。
12、根据权利要求 11所述的系统,其特征在于,所述预设值的取值范围是: 预设值 > 0。
13、 根据权利要求 12所述的系统, 其特征在于,
所述基站以及所述中继节点, 分别还有用于采用基于参数 γ的通用调度准 则进行用户调度;
其中, 所述参数 γ满足一下条件:
Figure imgf000030_0001
其中, 所述 max.*表示最大化网络效用; 所述 M表示用户数目, 所述 N 表示所述中继小区的总的无线资源块数目, 所述 fc每个无线资源块的时长, b 表示用户 m在子载波配对( , j )上的比特数, ")表示在子载波配对( , j )上分配给用户 m的无线资源块数目。
PCT/CN2011/078919 2011-01-25 2011-08-25 一种中继小区无线资源分配方法及基站、系统 WO2012100530A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20110856734 EP2661137B1 (en) 2011-01-25 2011-08-25 Relay cell wireless resource allocation method, base station and system
US13/950,888 US9332558B2 (en) 2011-01-25 2013-07-25 Method for allocating radio resources in relay cell, base station, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110027441.7 2011-01-25
CN201110027441.7A CN102612149B (zh) 2011-01-25 2011-01-25 一种中继小区无线资源分配方法及基站、系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/950,888 Continuation US9332558B2 (en) 2011-01-25 2013-07-25 Method for allocating radio resources in relay cell, base station, and system

Publications (1)

Publication Number Publication Date
WO2012100530A1 true WO2012100530A1 (zh) 2012-08-02

Family

ID=46529219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078919 WO2012100530A1 (zh) 2011-01-25 2011-08-25 一种中继小区无线资源分配方法及基站、系统

Country Status (4)

Country Link
US (1) US9332558B2 (zh)
EP (1) EP2661137B1 (zh)
CN (1) CN102612149B (zh)
WO (1) WO2012100530A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013109171A1 (en) * 2012-01-16 2013-07-25 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for relaying
CN102932308B (zh) * 2012-11-02 2016-07-27 重庆邮电大学 一种ofdm中继系统中混合业务场景调度方法及调度系统
EP2887732B1 (en) * 2013-12-19 2017-06-14 Sony Corporation Method for operating a user equipment in a wireless radio network
KR101482909B1 (ko) * 2014-07-30 2015-01-21 연세대학교 산학협력단 이종망 환경에서 기지국 설치 위치 및 셀 종류를 결정하는 방법 및 그 장치
US9590764B2 (en) * 2014-09-15 2017-03-07 Texas Instruments Incorporated LTE transmission mask adjustment to maximize performance and reduce interference
WO2017127126A1 (en) * 2016-01-19 2017-07-27 Intel IP Corporation Devices and methods for providing 5g uplink request
US11246138B2 (en) 2016-10-21 2022-02-08 Nokia Solutions And Networks Oy Resource allocation in cellular networks
US10735984B2 (en) * 2017-12-29 2020-08-04 Dish Network L.L.C. Systems and methods for identifying user density from network data
US11297364B2 (en) * 2019-11-21 2022-04-05 Synamedia Limited Video content streaming bitrate selection using an edge computing system for improving user experience
EP4226673A1 (en) * 2020-10-05 2023-08-16 Cohere Technologies, Inc. Scheduling and retransmission in central units and distributed units

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527934A (zh) * 2008-03-05 2009-09-09 上海华为技术有限公司 一种资源分配方法、系统及相关设备
CN101610563A (zh) * 2008-06-20 2009-12-23 大唐移动通信设备有限公司 基于中继的蜂窝网络的准入控制方法及其蜂窝网络系统
CN101730243A (zh) * 2008-10-29 2010-06-09 中兴通讯股份有限公司 集中式资源调度方法和装置
CN101742667A (zh) * 2008-11-19 2010-06-16 中兴通讯股份有限公司 分布式资源调度方法和系统、基站以及中继站

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4272048B2 (ja) * 2003-12-24 2009-06-03 株式会社エヌ・ティ・ティ・ドコモ パケット送信制御装置及びパケット送信制御方法
MX2007002983A (es) 2004-09-13 2007-09-11 Ixept Inc Metodos y aparatos de alerta de compra.
US8478283B2 (en) 2004-09-29 2013-07-02 Apple Inc. Method and system for capacity and coverage enhancement in wireless networks with relays
US8233554B2 (en) * 2010-03-29 2012-07-31 Eices Research, Inc. Increased capacity communications for OFDM-based wireless communications systems/methods/devices
US8032146B2 (en) * 2006-08-18 2011-10-04 Fujitsu Limited Radio resource management in multihop relay networks
US7594605B2 (en) 2007-01-10 2009-09-29 At&T Intellectual Property I, L.P. Credit card transaction servers, methods and computer program products employing wireless terminal location and registered purchasing locations
CN101335971B (zh) * 2007-06-28 2011-04-27 联想(北京)有限公司 基于中继站的多跳无线网络的资源调度方法
CN101616418A (zh) 2008-06-25 2009-12-30 中兴通讯股份有限公司 一种资源重用的方法
US8355734B2 (en) * 2008-08-07 2013-01-15 Apple Inc. Wireless system
CN101562816A (zh) 2009-06-03 2009-10-21 北京邮电大学 一种频率复用的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527934A (zh) * 2008-03-05 2009-09-09 上海华为技术有限公司 一种资源分配方法、系统及相关设备
CN101610563A (zh) * 2008-06-20 2009-12-23 大唐移动通信设备有限公司 基于中继的蜂窝网络的准入控制方法及其蜂窝网络系统
CN101730243A (zh) * 2008-10-29 2010-06-09 中兴通讯股份有限公司 集中式资源调度方法和装置
CN101742667A (zh) * 2008-11-19 2010-06-16 中兴通讯股份有限公司 分布式资源调度方法和系统、基站以及中继站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2661137A4 *

Also Published As

Publication number Publication date
CN102612149A (zh) 2012-07-25
EP2661137A1 (en) 2013-11-06
EP2661137B1 (en) 2015-03-18
EP2661137A4 (en) 2013-12-11
US20130308521A1 (en) 2013-11-21
US9332558B2 (en) 2016-05-03
CN102612149B (zh) 2014-12-03

Similar Documents

Publication Publication Date Title
WO2012100530A1 (zh) 一种中继小区无线资源分配方法及基站、系统
JP6291985B2 (ja) デュアルアクセス技術セルのための無線リソース制御
US9717010B2 (en) Load estimation and load management in a cellular communications network
WO2014101243A1 (zh) 负载均衡的方法和网络控制节点
CN101686497B (zh) 小区负荷均衡方法、小区负荷评估方法及装置
CN101790196B (zh) 一种无线Mesh网络中的分布式接入点关联方法
TW202123729A (zh) 多存取點(ap)網路中基於簡檔的客戶端引導
Militano et al. Wi-Fi cooperation or D2D-based multicast content distribution in LTE-A: A comparative analysis
US9713056B2 (en) Switching and aggregation of small cell wireless traffic
US20220022093A1 (en) Method and apparatus for buffer status report enhancement
EP2918130B1 (en) Method and base station for a cell selection
CN104918207B (zh) 异构网络中基于频谱资源分配的多d2d通信资源分配方法
TWI595795B (zh) 多個無線網路的分載判斷系統、伺服器以及其方法
CN107852708B (zh) 用于跨越多个资源维度进行无线电资源分配的系统和方法
Gao et al. A load balancing scheme for supporting safety applications in heterogeneous software defined LTE-V networks
Scopelliti et al. Mobility-aware energy-quality trade-off for video delivery in dense heterogeneous networks
Wan et al. Maximizing capacity with power control under physical interference model in simplex mode
WO2011023021A1 (zh) 上行发射功率控制方法及装置
CN103260270B (zh) 一种基站
Hwang et al. Association scheme with traffic control for IEEE 802.11 wireless LANs
Nahle et al. Graph-based approach for enhancing capacity and fairness in wireless mesh networks
Jia et al. QoS splitting mechanism for UE-to-UE multi hops
WO2011123983A1 (zh) 无线异构网络中的基站、移动台和方法
Duan Congestion control for M2M communications in LTE networks
Bosch et al. A network-driven multi-access-point load-balancing algorithm for large-scale public hotspots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011856734

Country of ref document: EP