WO2012100457A1 - 一种用于电介质微弱发光测量的单光子计数系统 - Google Patents

一种用于电介质微弱发光测量的单光子计数系统 Download PDF

Info

Publication number
WO2012100457A1
WO2012100457A1 PCT/CN2011/072140 CN2011072140W WO2012100457A1 WO 2012100457 A1 WO2012100457 A1 WO 2012100457A1 CN 2011072140 W CN2011072140 W CN 2011072140W WO 2012100457 A1 WO2012100457 A1 WO 2012100457A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
circuit
input
gate array
programmable logic
Prior art date
Application number
PCT/CN2011/072140
Other languages
English (en)
French (fr)
Inventor
张冠军
穆海宝
郭一欣
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2012100457A1 publication Critical patent/WO2012100457A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K21/00Details of pulse counters or frequency dividers
    • H03K21/02Input circuits
    • H03K21/023Input circuits comprising pulse shaping or differentiating circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4413Type
    • G01J2001/442Single-photon detection or photon counting

Definitions

  • the invention belongs to the field of dielectric aging characteristics research in electrical insulation technology, and particularly relates to a counting system for dielectric weak luminescence measurement.
  • Dielectric materials are an indispensable part of almost all electrical and electronic systems and are used to achieve electrical insulation and mechanical attachment of live bodies.
  • the dielectric will gradually age under the action of the electric field to produce partial discharge. Recent studies have shown that the dielectric will first emit weak luminescence before partial discharge occurs. Therefore, the weak luminescence phenomenon is closely related to the initial stage of dielectric aging.
  • the commonly used single photon measurement system consists of two parts, including a photon detector and a photon counter.
  • Photon detectors mainly use photomultiplier tubes and avalanche photodiodes.
  • photon counting products on the market include instruments such as Stanford SR400 series and Japan Hamamatsu C8855, which cannot meet the needs of dielectric weak luminescence experiments. First of all, these instruments have a very high input bandwidth, but the instrument itself has limited storage capacity and cannot automatically perform counting operations for a long time.
  • the SR400 communicates with the PC using RS232 and GPIB interfaces, which cannot meet a large amount of data.
  • the photon counting device is expensive in the research of the existing weak luminescence of the polymer, and the data storage capacity The quantity and anti-interference performance cannot meet the requirements of real-time accurate collection and storage of large amounts of data.
  • the purpose of the present invention is to propose a counting system for dielectric weak luminescence measurement, which uses a programmable logic gate array module, which will be complicated.
  • the control circuit is implemented in one chip, which not only reduces the size of the device, but also satisfies the requirements of the weak luminescence photon measurement of the polymer.
  • the single photon counting system for dielectric weak luminescence measurement comprises a single photon photoelectric conversion module, an input signal photoelectric isolation module, a pulse signal output module, an external trigger signal collection module, a trigger threshold adjustment module, a programmable logic gate array module And PCI interface module.
  • the pulse signal output by the single photon photoelectric conversion module is connected to the I/O input end of the programmable logic gate array module through the output end of the input signal photoelectric isolation module, and the input end of the pulse signal output module is connected to the programmable logic gate
  • the AD digital result output terminal of the external trigger signal collection module is connected to the I/O bus input terminal of the programmable logic gate array module
  • the AD chip control input terminal of the external trigger signal collection module Connected to the I/O output end of the programmable logic gate array module, the analog signal output end of the external trigger signal collection module is connected to the analog signal input end of the trigger threshold adjustment module, and the threshold result output is connected to the programmable logic gate array
  • the I/O output of the programmable logic gate array module is connected to the DA control input of the trigger threshold adjustment module, and the programmable logic gate array module passes through the I/O bus output terminal and the PCI interface.
  • the module implements bidirectional connection
  • the above-mentioned pulse input signal photoelectric isolation module has four independent input channels, each channel is composed of a BNC standard interface, an antistatic protection circuit and an optical isolation circuit, and the external pulse source signal is connected to the BNC standard interface through the coaxial cable, and
  • the anti-static protection circuit is sent to the input end of the photoelectric isolation circuit, and then sent to the input end of the programmable logic gate array module after passing through the photoelectric isolation circuit.
  • the implementation circuit of the above pulse signal output module is composed of a level conversion circuit, a protection circuit and a BNC standard interface, wherein the input end of the level conversion circuit is connected to the output end of the programmable logic gate array module, and the output of the level conversion circuit The terminal is connected to the input of the protection circuit, and the output of the protection circuit is connected to the BNC standard interface.
  • the analog signal input range of the external trigger signal collection module is ⁇ 5V. After passing through the BNC interface and the protection circuit, it is sent to the following operational amplifier for impedance conversion. One analog signal is sent to the analog signal input terminal of the trigger threshold adjustment module, and is sent all the way.
  • the analog-to-digital conversion chip performs analog-to-digital conversion, and the AD conversion result is sent to the I/O bus input terminal of the programmable logic gate array module.
  • the trigger threshold adjustment module comprises a DA conversion circuit, a voltage reference circuit, an impedance conversion circuit, a comparison circuit and an opto-isolation circuit, wherein the input end of the DA conversion circuit is connected to the output end of the programmable logic gate array module, and the voltage reference electric wife To the reference input of the DA conversion circuit, the output of the DA conversion circuit is connected to the input of the impedance conversion circuit, the output of the impedance conversion circuit is connected to one input of the comparison circuit, and the second input of the comparison circuit is connected to the external On the analog signal output end of the trigger signal collection module, the comparison result of the comparison circuit is connected to the input end of the photoelectric isolation circuit, and the output end of the photoelectric isolation circuit is connected to the input end of the programmable logic gate array module.
  • the internal implementation of the programmable logic gate array module is composed of a counting measuring unit, an ADC chip control unit, a DAC chip control unit, a counting control unit, a first data buffer, a second data buffer, and a PCI data interface unit, wherein the counting measuring unit
  • the ADC chip control unit, the DAC chip control unit, the PCI data interface unit, the first data buffer and the second data buffer both form a bidirectional connection with the counting control unit for signals and data.
  • the above counting control unit system is driven by a 50 MHz crystal oscillator, and the driving count measuring unit and the ADC chip control unit collect data according to a predetermined timing.
  • the invention has the following beneficial effects:
  • the invention adopts a programmable logic gate array (FPGA) module, and completes the complicated control circuit in one chip, which reduces the volume of the device, simplifies the circuit design, and is convenient for production debugging.
  • FPGA programmable logic gate array
  • the present invention uses a PCI interface and a PC for data transmission, and meets the demand for weak luminescence photon measurement of the polymer by virtue of the PCI interface communication rate and good anti-interference.
  • Figure 1 is a block diagram of the structure of a single photon counting system
  • FIG. 2 is a circuit block diagram of a pulse input photoelectric isolation module
  • FIG. 3 is a block diagram of the pulse output module circuit
  • FIG. 4 is a schematic diagram of an analog signal collection module, wherein (a) is a circuit diagram, (b) is a structural block diagram; and FIG. 5 is a circuit block diagram of a trigger threshold adjustment module;
  • FIG. 6 is a logic block diagram of a programmable logic gate array (FPGA) module
  • Figure 7 is a state machine diagram of the counting control unit in the programmable logic gate array (FPGA) module.
  • FPGA programmable logic gate array
  • FIG. 1 is a block diagram of the structure of a single photon counting system. It comprises a single photon photoelectric conversion module 100, a pulse input signal photoelectric isolation module 101, a pulse signal output module 102, an external trigger signal collection module 103, a trigger threshold adjustment module 104, a programmable logic gate array module 105 and a PCI interface module 106. Except for the single-photon photoelectric conversion module 100, other modules are integrated into one PCI board. The connection relationship between the modules is as follows:
  • the pulse signal output by the single photon photoelectric conversion module 100 is connected to the I/O input terminal 110 of the programmable logic gate array module 105 through the output end of the input signal photoelectric isolation module 101, and the pulse signal output module
  • the input of 102 is connected to the I/O output 113 of the programmable logic gate array module 105, and the AD digital result output 120 of the external trigger signal collection module 103 is connected to the I/O bus of the programmable logic gate array module 105.
  • the input terminal 111, the AD chip control input terminal 122 of the external trigger signal collection module 103 is connected to the I/O output terminal 114 of the programmable logic gate array module 105, and the analog signal output terminal 121 of the external trigger signal collection module 103 is connected to
  • the analog signal input terminal 123 of the trigger threshold adjustment module 104 is connected to the I/O input terminal 112 of the programmable logic gate array module 105, and the I/O output terminal 115 of the programmable logic gate array module 105 is connected.
  • the programmable logic gate array module 105 implements bidirectional connection with the PCI interface module 106 through the I/O bus output 116, and the duplex between the PCI interface module 106 and the PC 107 connection.
  • the pulse input signal photoelectric isolation module 101 has four independent input channels, and the circuit structure of each channel is divided into three parts. As shown in FIG. 2, the BNC standard interface 201, the antistatic protection circuit 202 and the photoelectric isolation circuit 203 are respectively .
  • the output end of the single-photon photoelectric conversion module 100 is connected to the BNC standard interface 201 through a coaxial cable, and is sent to the input end of the photoelectric isolation circuit 203 through the anti-static protection circuit 202, and then sent to the programmable logic gate array module through the photoelectric isolation circuit 203.
  • Input 110 of 105 is provided to the BNC standard interface 201 through a coaxial cable, and is sent to the input end of the photoelectric isolation circuit 203 through the anti-static protection circuit 202, and then sent to the programmable logic gate array module through the photoelectric isolation circuit 203.
  • the circuit of the pulse signal output module 102 is shown in FIG. It is composed of a level conversion circuit 301, an antistatic protection circuit 302, and an output BNC interface 303.
  • the input end of the level conversion circuit 301 is connected to the output end of the programmable logic gate array (FPGA) module 105, the output end of the level conversion circuit 301 is connected to the input end of the protection circuit 302, and the output end of the protection circuit 302 is connected. Go to the BNC standard interface 303.
  • the pulse signal is output from the output terminal 113 on the programmable logic gate array module 105 to the input terminal of the level shift circuit 301, and the level shift circuit 301 converts the 3.3V level to a 5V level.
  • the signal is then output through the anti-static protection circuit 302 to the BNC standard interface 303 for outputting the measured pulse signal to provide an interface for other measurement systems.
  • External trigger signal acquisition module 103 External trigger signal acquisition module 103
  • the circuit of the external trigger signal collection module 103 is shown in Fig. 4. It consists of four parts, a BNC standard interface 401, an antistatic protection circuit 402, followed by an operational amplifier 403 and an analog to digital conversion circuit 404.
  • the DC or AC analog signal is obtained by dividing the power supply of the object under test with an input range of ⁇ 5V.
  • the DC or AC analog signal is sent to the following operational amplifier 403 for impedance conversion through the BNC standard interface and the antistatic protection circuit 402, and an analog signal is sent to the analog signal input terminal 123 in the trigger threshold adjustment module 104, and the analog input signal is input.
  • the chip 404 performs analog-to-digital conversion.
  • the AD7865 chip of the analog-to-digital conversion circuit 404 can provide a sampling rate of 250 kSPS and a range input of ⁇ 5 V, and the AD conversion result is sent to the I/O bus input terminal 111 of the programmable logic gate array module 105.
  • the composition of the trigger threshold adjustment module 104 is shown in FIG. 5. It includes a DA conversion circuit 501, a voltage reference circuit 502, an impedance conversion circuit 503, a comparison circuit 504, and an opto-isolation circuit 505.
  • the input terminal of the DA conversion circuit 501 is connected to the output terminal 115 of the programmable logic gate array (FPGA) module 105, the voltage reference circuit 502 is connected to the reference input terminal of the DA conversion circuit 501, and the output terminal of the DA conversion circuit 501 is connected to the impedance conversion.
  • FPGA programmable logic gate array
  • the input end of the circuit 503, the output end of the impedance conversion circuit 503 is connected to one input end of the comparison circuit 504, and the second input end of the comparison circuit 504 is connected to the analog signal output end 121 of the external trigger signal collection module 103,
  • the comparison result of the circuit 504 is connected to the input end of the opto-isolation circuit 505, and the output end of the opto-isolation circuit 505 is connected to the programmable logic gate array (FPGA).
  • FPGA programmable logic gate array
  • the DA conversion circuit 501 is implemented by the chip TLV5618A, and the input control signal of the DA conversion circuit 501 is issued by the third output terminal 115 of the programmable logic gate array module 105.
  • the required reference voltage for the DA conversion circuit 501 is provided by the voltage reference circuit 502.
  • the voltage reference circuit 502 is composed of a TL431 CLP chip and a standard peripheral circuit.
  • the analog voltage signal output from the DA conversion circuit 501 is supplied to the impedance conversion circuit 503, and then supplied to the pin 3 of the comparison circuit 504.
  • the second input terminal of the comparison circuit 504 is connected to the analog signal output terminal 121 of the external trigger signal collecting module 103, and the level signal obtained by comparing the two signals is converted into 0V or 5V by the photoelectric isolation circuit 505.
  • the standard level signal is sent to the third input 112 of the programmable logic gate array module.
  • the PCI interface module 106 is constructed using a general-purpose PCI chip and its peripheral circuits. It can convert PCI bus data into 32-bit local data, which is convenient for communication between computer system and board circuit.
  • the programmable logic gate array (FPGA) module 105 is internally implemented by the count measurement unit 601, the ADC chip control unit 602, the DAC chip control unit 603, the count control unit 605, the first data buffer 606, the second data buffer 607, and the PCI.
  • the data interface unit 604 is configured, wherein the count measurement unit 601, the ADC chip control unit 602, the DAC chip control unit 603, the PCI data interface unit 604, the first data buffer 606, and the second data buffer 607 are all combined with the count control unit 605.
  • a two-way connection that constitutes a signal and data.
  • the programmable logic gate array module 105 is a core module of the board, and is responsible for storing and forwarding data, performing timing control and data collection on the modules 101 to 104, and completing communication with the PCI interface module 106, and executing the result through the PCI bus.
  • the chip connection is sent to the PC.
  • the programmable logic gate array module 105 uses the EP2C20F484C8 of Altera Corporation.
  • the chip is internally implemented by a hardware description language, as shown in Figure 6.
  • the numbers 110 to 116 correspond to the input and output I/O of the programmable logic gate array (FPGA) module 105 in FIG. 1, respectively, corresponding to the chip.
  • Pin of EP2C20F484C8. 110 represents the chip single pin A4, 111 represents the 13-bit analog-to-digital conversion data bus ADC - DBUS, 112 represents the chip single pin W4, 113 represents the chip single pin A6, 114 represents the analog-to-digital conversion 4-bit control bus ADC - CBUS, 115 represents a 4-bit control bus DAC connected to the DAC chip - CBUS. 116 denotes the bus PCB-BUS connected to the PCI controller.
  • the count control unit 605 system is driven by a 50 MHz crystal oscillator, and the drive count measuring unit 601 and the ADC chip control unit 602 collect data in accordance with a predetermined timing.
  • the specific working principle of the programmable logic gate array module 105 is as follows:
  • the counting measuring unit 601 records the number of pulses externally input with ls as one cycle, and can record up to 16 external pulse signals at ls, and the recording result is sent to the counting control unit 605.
  • a two-stage D flip-flop is used in the counting and measuring unit 601 for eliminating the loss of the number of measuring pulses that may be caused by the periodic control signal.
  • the ADC chip control unit 602 is configured to control the external ADC chip to perform data collection, and the collection period is 4 ⁇ ⁇ , and the collection result is sent to the count control unit 605.
  • the counting control unit 605 packs the data of the set by 4 ⁇ ⁇ for each period, and combines the data of each of the four sets of pulse data and the set of ADC sets into a 32-bit data, and stores it in the data buffer.
  • the data buffer unit includes a first data buffer 606 and a second data buffer 607, respectively 8 kbytes of RAM, which are included in a programmable logic gate array (FPGA) module.
  • the data buffer is stored in a ping-pong operation. After the first data buffer 606 is full, the data is stored in the second data buffer 607 and the message is sent to the PC, under the coordination of the counting control unit.
  • the DAC chip control unit 603 is used to control the external DAC chip. When the PC sets the threshold voltage, the DAC chip is written by the unit to realize the setting of the trigger threshold.
  • the PCI data interface unit 604 is responsible for the two-way communication function of the chip PCI9052 and the counter control module 605 in the PCI module 106.
  • the state machine structure used by the counting control unit 605 in the programmable logic gate array module 105 is as shown in FIG.
  • the system is driven by a 50MHz crystal.
  • the timer in the programmable logic gate array module 105 is driven to count.
  • the timing value is increased by 50, that is, the time is increased by ls, the state machine transitions to the next state, thereby
  • the flag is set to zero, and it is judged whether the current buffer is the first buffer 606 or the second buffer 607, and the TData is placed in the data buffer of the current work. If the current buffer is full, an interrupt signal is sent to the PCI data interface unit 604, informing the PC to read the buffer data.
  • the power source of the photon emitting device 108 applies an alternating current or a direct current voltage to the insulating material, and the photon is emitted from the material, and is received by the single photon photoelectric conversion module 100, and converted into a pulse signal. No., pulse output frequency up to 10MHz.
  • the pulse signal is connected to the pulse input signal photoelectric isolation module 101 through a coaxial cable, and the pulse input signal photoelectric isolation module 101 performs photoelectric isolation and level conversion, and the output pulse signal is sent to the programmable logic gate array module 105 for counting, and at the same time
  • the programmable logic gate array module 105 can output the pulse signal to the external output through the pulse signal output module 102 to facilitate measurement by other pulse metering devices.
  • the output of the resistor divider in photon emitter 108 is coupled to external trigger signal collection module 103, which converts the external analog signal into a digital signal that is fed into trigger threshold adjustment module 104 and programmable logic gate array module 105.
  • the trigger threshold adjustment module converts the set value in the programmable logic gate array module into an analog signal and compares the output value of the external trigger signal collection module 103, and the comparison result is sent to the programmable logic gate array module 105 for processing.
  • the programmable logic gate array module 105 encodes the processing result and transmits it to the PC 107 through the PCI interface module 106.

Landscapes

  • Measurement Of Radiation (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

种用于电介质微弱发光测量的单光子计数系统 技术领域
本发明属于电气绝缘技术中电介质老化特性研究领域, 具体涉及一种用于 电介质微弱发光测量的计数系统。
背景技术
电介质材料是几乎所有电气电子系统必不可少的重要组成部分, 用于实现 带电体在电气上的绝缘和机械上的固定。 电介质在电场作用下会逐渐出现老化 而产生局部放电, 近年来的研究表明, 电介质在产生局部放电之前会先发生微 弱发光现象, 因此, 微弱发光现象与电介质老化的初始阶段有密切的关系。
由于电介质的微弱发光不同于微弱发光器件的发光,其发光强度非常微弱, 通常以光子个数表示, 因此, 实际试验中需要釆用单光子探测技术以测量其强 度。一般常用的单光子测量系统由两部分组成, 包含光子探测器和光子计数器。 光子探测器主要釆用光电倍增管和雪崩光电二级管。 而目前市场上光子计数产 品有美国斯坦福公司 SR400系列和日本滨松公司的 C8855等仪器,而这些仪器 无法满足电介质微弱发光实验的需求。 首先, 这些仪器本身都具有很高的输入 带宽, 但是仪器本身所具有的存储能力有限, 无法长时间自动进行计数工作; 其次, SR400釆用 RS232和 GPIB接口与 PC机进行通信, 无法满足大量数据 实时釆集存储任务的要求, 而 C8855釆用 USB接口通信, USB接口抗干扰性 能无法满足聚合物微弱发光实验的要求; 再次, 上述设备价格十分昂贵。
发明内容
针对现有聚合物微弱发光研究中光子计数设备价格昂贵, 并且数据存储容 量和抗干扰性能无法满足大量数据实时准确釆集、 存储的需求, 本发明的目的 在于提出一种用于电介质微弱发光测量的计数系统, 该系统釆用可编程逻辑门 阵列模块, 将复杂的控制电路在一个芯片中完成, 不仅能够减小设备体积, 而 且能够满足聚合物微弱发光光子测量的需求。
为了达到上述目的, 本发明釆用以下技术方案予以实现。
该种用于电介质微弱发光测量的单光子计数系统, 包括单光子光电转换模 块、 输入信号光电隔离模块、 脉冲信号输出模块、 外部触发信号釆集模块、 触 发阈值调节模块、 可编程逻辑门阵列模块和 PCI接口模块。
所述单光子光电转换模块输出的脉冲信号经过输入信号光电隔离模块输出 端接到可编程逻辑门阵列模块的 I/O输入端, 所述的脉冲信号输出模块的输入 端连接到可编程逻辑门阵列模块的 I/O输出端上,外部触发信号釆集模块的 AD 数字结果输出端接到可编程逻辑门阵列模块的 I/O总线输入端, 外部触发信号 釆集模块的 AD芯片控制输入端接到可编程逻辑门阵列模块的 I/O输出端, 夕卜 部触发信号釆集模块的模拟信号输出端连接到触发阈值调节模块的模拟信号输 入端, 阈值结果输出端连接到可编程逻辑门阵列模块的 I/O输入端上, 可编程 逻辑门阵列模块的 I/O输出端接到触发阈值调节模块的 DA控制输入端上, 可 编程逻辑门阵列模块通过 I/O总线输出端与 PCI接口模块实现双向连接, PCI 接口模块与 PC机之间双相连接。
上述的脉冲输入信号光电隔离模块具有 4路独立的输入通道, 每一路通道 由 BNC标准接口,防静电保护电路和光电隔离电路连接组成,外部脉冲源信号 通过同轴电缆与 BNC标准接口相连,通过防静电保护电路送入光电隔离电路的 输入端, 经过光电隔离电路之后再送入可编程逻辑门阵列模块的输入端。 上述的脉冲信号输出模块的实现电路由电平转换电路、 保护电路及 BNC 标准接口构成, 其中, 电平转换电路的输入端接到可编程逻辑门阵列模块的输 出端, 电平转换电路的输出端接到保护电路的输入端, 保护电路的输出端接到 BNC标准接口上。
外部触发信号釆集模块的模拟信号输入范围为 ± 5V, 通过 BNC接口和保 护电路后, 送入跟随运算放大器进行阻抗转换, 一路模拟信号送入触发阈值调 节模块中模拟信号输入端, 一路送入模数转换芯片进行模数转换, AD转换结 果送入可编程逻辑门阵列模块的 I/O总线输入端。
触发阈值调节模块, 包含 DA转换电路, 电压基准电路, 阻抗转换电路, 比较电路和光电隔离电路构成, 其中, DA转换电路的输入端接到可编程逻辑 门阵列模块的输出端, 电压基准电 妻到 DA转换电路的基准输入端, DA转 换电路的输出端接到阻抗转换电路的输入端, 阻抗转换电路的输出端接到比较 电路的一路输入端, 比较电路的第二路输入端接到外部触发信号釆集模块的模 拟信号输出端上, 比较电路的比较结果接到光电隔离电路的输入端, 光电隔离 电路的输出端接到可编程逻辑门阵列模块的输入端。
可编程逻辑门阵列模块内部实现由计数测量单元、 ADC芯片控制单元、 DAC芯片控制单元、 计数控制单元、 第一数据緩存器、 第二数据緩存器和 PCI 数据接口单元构成, 其中, 计数测量单元、 ADC芯片控制单元、 DAC芯片控 制单元、 PCI数据接口单元、 第一数据緩存器和第二数据緩存器均与计数控制 单元构成信号及数据的双向连接。
上述的计数控制单元系统釆用 50MHz的晶振驱动,所述驱动计数测量单元 和 ADC芯片控制单元按照既定的时序釆集数据。 本发明具有以下有益效果:
本发明釆用了可编程逻辑门阵列( FPGA )模块, 将复杂的控制电路在一个 芯片中完成, 减小了设备的体积, 简化了电路设计, 便于生产调试。 同时本发 明釆用了 PCI接口和 PC进行数据传输, 凭借 PCI接口通信速率和良好的抗干 扰性, 满足了聚合物微弱发光光子测量的需求。
附图说明
图 1为单光子计数系统的结构框图;
图 2为脉冲输入光电隔离模块电路框图;
图 3为脉冲输出模块电路框图;
图 4为模拟信号釆集模块示意图, 其中 (a )为电路图, (b )为结构框图; 图 5为触发阈值调节模块电路框图;
图 6为可编程逻辑门阵列 ( FPGA )模块逻辑框图;
图 7为可编程逻辑门阵列 (FPGA )模块中计数控制单元状态机图。
具体实施方式
以下结合附图对本发明的内容作进一步的详细说明。
图 1为单光子计数系统的结构框图。 它包括单光子光电转换模块 100、 脉 冲输入信号光电隔离模块 101、脉冲信号输出模块 102、外部触发信号釆集模块 103、触发阈值调节模块 104、可编程逻辑门阵列模块 105和 PCI接口模块 106。 除单光子光电转换模块 100之外, 其他模块均集成到一块 PCI板卡上。 各模块 之间的连接关系如下:
单光子光电转换模块 100输出的脉冲信号经过输入信号光电隔离模块 101 输出端接到可编程逻辑门阵列模块 105的 I/O输入端 110, 脉冲信号输出模块 102的输入端连接到可编程逻辑门阵列模块 105的 I/O输出端 113上, 外部触 发信号釆集模块 103的 AD数字结果输出端 120接到可编程逻辑门阵列模块 105 的 I/O总线输入端 111 , 外部触发信号釆集模块 103的 AD芯片控制输入端 122 接到可编程逻辑门阵列模块 105的 I/O输出端 114,外部触发信号釆集模块 103 的模拟信号输出端 121连接到触发阈值调节模块 104的模拟信号输入端 123 , 阈值结果输出端 124连接到可编程逻辑门阵列模块 105的 I/O输入端 112上, 可编程逻辑门阵列模块 105的 I/O输出端 115接到触发阈值调节模块 104的 DA 控制输入端 125上,可编程逻辑门阵列模块 105通过 I/O总线输出端 116与 PCI 接口模块 106实现双向连接, PCI接口模块 106与 PC机 107之间双相连接。
以下对各个模块之间进行详细说明:
脉冲输入信号光电隔离模块 101
脉冲输入信号光电隔离模块 101具有 4路独立的输入通道, 每一路通道由 的电路构成分为三部分, 如图 2所示, 分别是 BNC标准接口 201 , 防静电保护 电路 202和光电隔离电路 203。 单光子光电转换模块 100的输出端通过同轴电 缆和 BNC标准接口 201相连,通过防静电保护电路 202送入光电隔离电路 203 的输入端, 经过光电隔离电路 203之后再送入可编程逻辑门阵列模块 105的输 入端 110。
脉冲信号输出模块 102
脉冲信号输出模块 102实现电路见图 3。 它由电平转换电路 301、 防静电保 护电路 302和输出 BNC接口 303构成。其中, 电平转换电路 301的输入端接到 可编程逻辑门阵列(FPGA )模块 105的输出端, 电平转换电路 301的输出端接 到保护电路 302的输入端, 保护电路 302的输出端接到 BNC标准接口 303上。 脉冲信号由可编程逻辑门阵列模块 105上的输出端 113输出, 接到电平转 换电路 301的输入端, 电平转换电路 301将 3.3V电平转换为 5V电平。 之后信 号通过防静电保护电路 302输出釆用 BNC标准接口 303 ,用于输出测量所得的 脉冲信号, 为其他测量系统提供接口。
外部触发信号采集模块 103
外部触发信号釆集模块 103实现电路见图 4。 它由四部分构成, BNC标准 接口 401, 防静电保护电路 402, 跟随运算放大器 403和模数转换电路 404。 直 流或交流模拟信号由被测对象的电源分压获得, 输入范围为 ± 5V。 直流或交流 模拟信号通过 BNC标准接口和防静电保护电路 402之后送入跟随运算放大器 403进行阻抗转换, 一路模拟信号送入触发阈值调节模块 104中模拟信号输入 端 123 ,—路送入模数转换芯片 404进行模数转换,模数转换电路 404的 AD7865 芯片能提供 250kSPS的釆样速率和 ± 5V的范围输入, AD转换结果送入可编程 逻辑门阵列模块 105的 I/O总线输入端 111。
触发阈值调节模块 104
所述的触发阈值调节模块 104组成参见图 5。 它包含 DA转换电路 501 , 电 压基准电路 502, 阻抗转换电路 503 , 比较电路 504和光电隔离电路 505。 DA 转换电路 501的输入端接到可编程逻辑门阵列(FPGA )模块 105的输出端 115 , 电压基准电路 502接到 DA转换电路 501的基准输入端, DA转换电路 501的 输出端接到阻抗转换电路 503的输入端, 阻抗转换电路 503的输出端接到比较 电路 504的一路输入端, 比较电路 504的第二路输入端接到外部触发信号釆集 模块 103的模拟信号输出端 121上, 比较电路 504的比较结果接到光电隔离电 路 505的输入端, 光电隔离电路 505的输出端接到可编程逻辑门阵列 (FPGA ) 模块 105的输入端 112。
DA转换电路 501由芯片 TLV5618A实现, DA转换电路 501的输入控制信 由可编程逻辑门阵列模块 105的第三输出端 115发出。 DA转换电路 501所需 要的基准电压由电压基准电路 502提供。 电压基准电路 502由 TL431CLP芯片 及标准外围电路组成。 DA转换电路 501输出的模拟电压信号送入阻抗转换电 路 503, 之后送入比较电路 504的 3脚。 比较电路 504的第二路输入端接到外 部触发信号釆集模块 103的模拟信号输出端 121上, 两个信号进行比较得到的 电平信号通过光电隔离电路 505将比较结果转换为 0V或 5V的标准电平信号送 入可编程逻辑门阵列模块第三输入端 112。
PCI接口模块 106
PCI接口模块 106釆用通用的 PCI芯片和其外围电路构成。 能够将 PCI总 线数据转换为 32位的本地数据, 方便电脑系统和板卡电路的通信。
可编程逻辑门阵列模块 105
可编程逻辑门阵列(FPGA )模块 105内部实现由计数测量单元 601、 ADC 芯片控制单元 602、 DAC芯片控制单元 603、 计数控制单元 605、 第一数据緩 存器 606、 第二数据緩存器 607和 PCI数据接口单元 604构成, 其中, 计数测 量单元 601、 ADC芯片控制单元 602、 DAC芯片控制单元 603、 PCI数据接口 单元 604、 第一数据緩存器 606和第二数据緩存器 607均与计数控制单元 605 构成信号及数据的双向连接。
可编程逻辑门阵列模块 105是板卡的核心模块, 负责数据的存储转发, 对 模块 101〜104的进行时序控制和数据釆集,并完成和 PCI接口模块 106的通信, 将执行结果通过 PCI总线芯片连接送入 PC机。 所述的可编程逻辑门阵列模块 105釆用 Altera公司的 EP2C20F484C8。 其 芯片内部由硬件描述语言实现, 见图 6所示。 图中编号 110〜116与图 1中可编 程逻辑门阵列 (FPGA )模块 105的输入输出 I/O相对应, 分别对应芯片
EP2C20F484C8的引脚。 110代表芯片单一引脚 A4, 111表示 13位模数转换数 据总线 ADC— DBUS , 112代表芯片单一引脚 W4, 113代表芯片单一引脚 A6, 114 代表模数转换 4位控制总线 ADC— CBUS, 115代表与 DAC芯片连接的 4位控 制总线 DAC— CBUS。 116表示与 PCI控制器连接的总线 PCB— BUS。 计数控制 单元 605系统釆用 50MHz的晶振驱动, 所述驱动计数测量单元 601和 ADC芯 片控制单元 602按照既定的时序釆集数据。
可编程逻辑门阵列模块 105的具体工作原理如下:
计数测量单元 601以 l s为一个周期记录外部输入的脉冲个数, 在 l s最 多能够记录 16个外部脉冲信号, 记录结果送至计数控制单元 605。 计数测量单 元 601中釆用了两级 D触发器, 用于消除周期控制信号所可能带来的测量脉冲 个数丟失现象。 ADC芯片控制单元 602用于控制外部 ADC芯片进行数据釆集, 釆集周期为 4μδ, 釆集结果送入计数控制单元 605。 计数控制单元 605将 4μδ为 周期对釆集数据进行打包, 每 4组脉冲数据和一组 ADC釆集的数据组合成一 条 32位的数据,存入数据緩冲区。数据緩冲单元包含第一数据緩存器 606和第 二数据緩存器 607,分别是 8k字节的 RAM, 包含在可编程逻辑门阵列( FPGA ) 模块中。 数据緩冲区的存储方式釆用乒乓操作, 在第一数据緩存器 606存放满 之后, 在计数控制单元的协调下, 立刻向第二数据緩存器 607中存放数据, 同 时向 PC机发送消息, 请求读取第一数据緩存器 606的数据; 而当第二数据緩 存器 607中存满之后, 立刻向第一数据緩存器 606存放, 同时向 PC发送消息 请求读取第二数据緩存器 607中的数据。 这样保证 PC机在读取数据时仍然能 够进行脉冲计数, 不存在脉冲计数的死区, 保证了计数的完整性。 DAC芯片控 制单元 603用于控制外部 DAC芯片, 当 PC机设定阈值电压时, 通过该单元写 入 DAC芯片, 实现触发阈值的设定。 PCI数据接口单元 604负责 PCI模块 106 中的芯片 PCI9052和计数器控制模块 605的双向通信功能。
可编程逻辑门阵列模块 105中的计数控制单元 605釆用的状态机结构如图 7所示。 系统釆用 50MHz的晶振进行驱动。 在系统时钟的每个上升沿到来时, 都会驱动可编程逻辑门阵列模块 105中的定时器进行计时, 当计时值每增加 50 时,即时间增加 l s,则状态机转换到下一步状态,从而驱动计数测量单元 601、 ADC芯片控制单元 602按照既定的时序釆集数据。 如图 7状态所示, 在计时器 T=0时, 给计数测量单元 601发送驱动信号, 读取计数值, 将该值放入 32位整 型数据(设定为 TData ) 中的低 4位。 在计时器 T=50时, 即时间增加 1μδ, 则 将 TData中数据左移 4位, 同时再次给计数测量单元 601发送驱动信号, 读取 计数值,将该值放入 TData中的低 4位。 重复上述工作, 并当计时器 T=150时, 将 TData数据左移 4位, 读取计数测量单元 601的测量值, 同时读取 ADC芯 片控制单元 602的测量值, 将其放入 TData数据的高 16位。 在计时器 T=199 时,将 Τ置零,判断当前緩冲区是第一緩冲区 606还是第二緩冲器 607 ,将 TData 放入当前工作的数据緩冲区。 如果当前緩冲器已满, 则发送中断信号给 PCI数 据接口单元 604 , 通知 PC机读取緩冲区数据。
综上所述, 本发明各模块功能及信号流简述如下:
实验测量时,光子发射装置 108中电源在绝缘材料上施加交流或直流电压, 光子就会从材料中发射出来, 被单光子光电转换模块 100接收, 转换为脉冲信 号, 脉冲输出频率最高达 10MHz。 该脉冲信号通过同轴电缆连接到脉冲输入信 号光电隔离模块 101 , 脉冲输入信号光电隔离模块 101完成光电隔离和电平转 换, 输出的脉冲信号送入可编程逻辑门阵列模块 105进行计数, 同时可编程逻 辑门阵列模块 105可将脉冲信号通过脉冲信号输出模块 102对外输出, 方便其 它脉冲计量设备测量。 光子发射装置 108中的电阻分压器的输出接到外部触发 信号釆集模块 103 , 它将外部模拟信号转换为数字信号送入触发阈值调节模块 104和可编程逻辑门阵列模块 105中。 触发阈值调节模块将可编程逻辑门阵列 模块中的设定值转换为模拟信号和外部触发信号釆集模块 103的输出值进行比 较, 其比较结果送入可编程逻辑门阵列模块 105中进行处理。 可编程逻辑门阵 列模块 105将处理结果进行编码组合通过 PCI接口模块 106发送给 PC机 107。

Claims

权利 要 求
1. 一种用于电介质微弱发光测量的单光子计数系统, 包括单光子光电转换 模块( 100) 、 输入信号光电隔离模块( 101 ) 、 脉冲信号输出模块( 102) 、 外 部触发信号釆集模块(103) 、 触发阈值调节模块(104) 、 可编程逻辑门阵列 模块(105)和 PCI接口模块(106) , 其特征在于:
所述单光子光电转换模块( 100 )输出的脉冲信号经过输入信号光电隔离模 块( 101 )输出端接到可编程逻辑门阵列模块( 105) 的 I/O输入端(110) , 所 述的脉冲信号输出模块(102) 的输入端连接到可编程逻辑门阵列模块(105) 的 I/O输出端 ( 113 )上, 外部触发信号釆集模块( 103 ) 的 AD数字结果输出 端(120)接到可编程逻辑门阵列模块(105)的 I/O总线输入端(111 ) , 外部 触发信号釆集模块( 103 ) 的 AD芯片控制输入端 ( 122)接到可编程逻辑门阵 列模块( 105 ) 的 I/O输出端( 114 ) , 外部触发信号釆集模块( 103 ) 的模拟信 号输出端(121 )连接到触发阈值调节模块(104) 的模拟信号输入端 (123) , 阈值结果输出端( 124)连接到可编程逻辑门阵列模块( 105)的 I/O输入端( 112) 上, 可编程逻辑门阵列模块(105) 的 I/O输出端 (115)接到触发阈值调节模 块( 104)的 DA控制输入端( 125)上, 可编程逻辑门阵列模块( 105)通过 I/O 总线输出端( 116)与 PCI接口模块( 106)实现双向连接, PCI接口模块( 106) 与 PC机( 107)之间双相连接。
2. 根据权利要求 1所述的用于电介质微弱发光测量的单光子计数系统, 其 特征在于:所述的脉冲输入信号光电隔离模块( 101 )具有 4路独立的输入通道, 每一路通道由 BNC标准接口 ( 201 ) , 防静电保护电路( 202 )和光电隔离电路
(203 )连接组成,外部脉冲源信号通过同轴电缆与 BNC标准接口(201)相连, 通过防静电保护电路 (202)送入光电隔离电路 (203 ) 的输入端, 经过光电隔 离电路(203 )之后再送入可编程逻辑门阵列模块(105) 的输入端 (110) 。
3. 根据权利要求 1所述的用于电介质微弱发光测量的单光子计数系统, 其 特征在于:所述的脉冲信号输出模块( 102)的实现电路由电平转换电路(301 )、 保护电路(302)及 BNC标准接口 ( 303 )构成, 其中, 电平转换电路(301 ) 的输入端接到可编程逻辑门阵列模块(105) 的输出端, 电平转换电路(301 ) 的输出端接到保护电路(302)的输入端, 保护电路(302)的输出端接到 BNC 标准接口 ( 303 )上。
4. 根据权利要求 1所述的用于电介质电致发光测量的单光子计数系统, 其 特征在于: 所述外部触发信号釆集模块( 103 ) 包括 NC标准接口 (401 ) , 防 静电保护电路(402) , 跟随运算放大器(403 )和模数转换电路(404); 所述 外部触发信号釆集模块( 103 )的模拟信号输入范围为 ±5V,通过 BNC接口(401 ) 和保护电路(402)后, 送入跟随运算放大器(403 )进行阻抗转换, 一路模拟 信号送入触发阈值调节模块(104) 中模拟信号输入端 (123) , 一路送入模数 转换芯片(404)进行模数转换, AD转换结果送入可编程逻辑门阵列模块( 105) 的 I/O总线输入端(111 ) 。
5. 根据权利要求 1所述的用于电介质微弱发光测量的单光子计数系统, 其 特征在于: 所述触发阈值调节模块( 104) 包含 DA转换电路(501 ) , 电压基 准电路( 502 ) , 阻抗转换电路 ( 503 ) , 比较电路 ( 504 )和光电隔离电路( 505 ) , 其中, DA转换电路(501 )的输入端接到可编程逻辑门阵列(FPGA)模块( 105) 的输出端( 115) , 电压基准电路 (502)接到 DA转换电路 (501 )的基准输入 端, DA转换电路(501 ) 的输出端接到阻抗转换电路( 503 ) 的输入端, 阻抗 转换电路( 503 )的输出端接到比较电路( 504 )的一路输入端, 比较电路(504 ) 的第二路输入端接到外部触发信号釆集模块(103 ) 的模拟信号输出端 (121 ) 上, 比较电路( 504 ) 的比较结果接到光电隔离电路( 505 ) 的输入端, 光电隔 离电路( 505 )的输出端接到可编程逻辑门阵列 (FPGA )模块( 105 )的输入端 ( 112 ) 。
6. 根据权利要求 1所述的用于电介质微弱发光测量的单光子计数系统, 其 特征在于: 所述可编程逻辑门阵列模块( 105 ) , 其内部实现由计数测量单元 (601)、 ADC芯片控制单元 (602)、 DAC芯片控制单元 (603)、计数控制单元 (605)、 第一数据緩存器 (606)、第二数据緩存器 (607)和 PCI数据接口单元 (604)构成,其 中, 计数测量单元 (601)、 ADC芯片控制单元 (602)、 DAC芯片控制单元 (603)、 PCI数据接口单元 (604)、第一数据緩存器 (606)和第二数据緩存器 (607)均与计数 控制单元 (605)构成信号及数据的双向连接。
7.根据权利要求 6所述的用于电介质微弱发光测量的单光子计数系统, 其 特征在于: 所述的计数控制单元 (605)系统釆用 50MHz的晶振驱动, 所述驱动 计数测量单元 (601)和 ADC芯片控制单元 (602)按照既定的时序釆集数据。
PCT/CN2011/072140 2011-01-25 2011-03-25 一种用于电介质微弱发光测量的单光子计数系统 WO2012100457A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110027211.0 2011-01-25
CN 201110027211 CN102072774B (zh) 2011-01-25 2011-01-25 一种用于电介质微弱发光测量的单光子计数系统

Publications (1)

Publication Number Publication Date
WO2012100457A1 true WO2012100457A1 (zh) 2012-08-02

Family

ID=44031409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072140 WO2012100457A1 (zh) 2011-01-25 2011-03-25 一种用于电介质微弱发光测量的单光子计数系统

Country Status (2)

Country Link
CN (1) CN102072774B (zh)
WO (1) WO2012100457A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011052334B4 (de) * 2011-08-01 2013-04-11 Leica Microsystems Cms Gmbh Einrichtung und Verfahren zum Zählen von Photonen
CN102435936B (zh) * 2011-11-23 2013-09-04 华南师范大学 一种集成电路故障的单光子检测方法及检测系统
CN103063954A (zh) * 2012-12-26 2013-04-24 山东电力集团公司菏泽供电公司 一种多传感器阵列的电力设备状态监测系统
CN106353657A (zh) * 2016-11-28 2017-01-25 国网福建省电力有限公司 高压直流电缆局部放电智能监测装置及监测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101149597A (zh) * 2007-11-08 2008-03-26 华东师范大学 一种apd单光子探测的控制模块
CN101561282A (zh) * 2009-05-22 2009-10-21 西安电子科技大学 基于fpga的脉冲星微弱信号检测系统及方法
WO2010045400A2 (en) * 2008-10-14 2010-04-22 Tissuevision, Inc. Devices and methods for direct sampling analog time-resolved detection
CN101860358A (zh) * 2010-06-12 2010-10-13 中国科学技术大学 一种单光子计数系统及计数方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2306825B (en) * 1995-10-18 2000-03-15 Univ Heriot Watt A laser ranger based on time correlated single photon counting
CN100410636C (zh) * 2004-03-19 2008-08-13 华东师范大学 一种apd单光子探测的电路模块
WO2006066460A1 (fr) * 2004-12-23 2006-06-29 Beijing Yuande Bio-Medical Engineering Co., Ltd. Circuit de detection photoelectrique pour compteur monophotonique
CN101545810B (zh) * 2008-03-26 2012-05-09 中国科学技术大学 一种高速单光子探测方法与探测器
CN101650227A (zh) * 2009-09-21 2010-02-17 中国科学技术大学 吉赫兹正弦波门控低通滤波红外单光子探测器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101149597A (zh) * 2007-11-08 2008-03-26 华东师范大学 一种apd单光子探测的控制模块
WO2010045400A2 (en) * 2008-10-14 2010-04-22 Tissuevision, Inc. Devices and methods for direct sampling analog time-resolved detection
CN101561282A (zh) * 2009-05-22 2009-10-21 西安电子科技大学 基于fpga的脉冲星微弱信号检测系统及方法
CN101860358A (zh) * 2010-06-12 2010-10-13 中国科学技术大学 一种单光子计数系统及计数方法

Also Published As

Publication number Publication date
CN102072774B (zh) 2012-07-04
CN102072774A (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
WO2012100457A1 (zh) 一种用于电介质微弱发光测量的单光子计数系统
CN103822710B (zh) 基于ccd的光谱信号采集电路
CN202794284U (zh) 多功能智能电力仪表
CN203037816U (zh) 批量测试发光二极管寿命的电路系统
CN101706523A (zh) 一种通道隔离的手持式数字示波器
CN203732158U (zh) 基于ccd的光谱信号采集电路
CN201654096U (zh) 基于外部延时技术的等效采样示波器
CN104615030A (zh) 一种便携式函数信号发生器
CN209433215U (zh) 一种用于pet闪烁晶体性能测试的64通道数据采集电子学系统
CN103868617A (zh) 铂电阻测温电路
CN201016000Y (zh) 铁路信号zpw-2000设备衰耗器自动检测装置
CN201717866U (zh) 一种光信号测试装置
CN203572633U (zh) 一种用于光模块消光比的测试装置
CN202049186U (zh) 一种数字示波器的检测模块
CN207752145U (zh) 一种基于PXIe的便携式天气雷达脉冲信号产生装置
CN102355264B (zh) 一种用于便携式电能监测装置的模数转换电路
CN207991999U (zh) 高精度二线制工业粉尘检测装置
CN201259443Y (zh) 一种新型电炉变压器冷却油温度测试仪
CN216081767U (zh) 一种带电压反馈高速功率计
CN203025246U (zh) 一种基于单片机的电压测量装置
CN206209087U (zh) 弧光探测器的精度检测装置
CN103048627B (zh) 一种蓄电池配组仪的配组方法
CN217849444U (zh) 一种量子光探测装置及量子密钥接收机
CN211786092U (zh) 一种基于远程遥控的微型超声波探测仪
CN212749010U (zh) 一种基于lora通讯方式的多功能电表

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856819

Country of ref document: EP

Kind code of ref document: A1