WO2012099341A2 - Medical diagnosis apparatus - Google Patents

Medical diagnosis apparatus Download PDF

Info

Publication number
WO2012099341A2
WO2012099341A2 PCT/KR2011/009879 KR2011009879W WO2012099341A2 WO 2012099341 A2 WO2012099341 A2 WO 2012099341A2 KR 2011009879 W KR2011009879 W KR 2011009879W WO 2012099341 A2 WO2012099341 A2 WO 2012099341A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
band
mixing
phase difference
filter
Prior art date
Application number
PCT/KR2011/009879
Other languages
French (fr)
Korean (ko)
Other versions
WO2012099341A3 (en
Inventor
노세범
Original Assignee
알피니언메디칼시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 알피니언메디칼시스템 주식회사 filed Critical 알피니언메디칼시스템 주식회사
Priority claimed from KR1020110138527A external-priority patent/KR101310930B1/en
Publication of WO2012099341A2 publication Critical patent/WO2012099341A2/en
Publication of WO2012099341A3 publication Critical patent/WO2012099341A3/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52025Details of receivers for pulse systems
    • G01S7/52026Extracting wanted echo signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/34Sound-focusing or directing, e.g. scanning using electrical steering of transducer arrays, e.g. beam steering
    • G10K11/341Circuits therefor

Definitions

  • Embodiments of the present invention relate to a medical diagnostic apparatus and a method of driving the apparatus. More specifically, for example, when the ultrasonic medical diagnostic apparatus applies the same amount of time delay to each received signal during beamforming using the received signal, the error caused by the phase rotation amount according to the distance for each frequency component of the received signal is reduced.
  • the present invention relates to a medical diagnostic apparatus capable of improving image quality and a method of driving the apparatus.
  • an ultrasound system includes a probe including a plurality of conversion elements to transmit and receive an ultrasound signal.
  • a probe including a plurality of conversion elements to transmit and receive an ultrasound signal.
  • an ultrasonic signal is generated and transmitted to the human body.
  • the ultrasonic signal transmitted to the human body is reflected at the boundary of the internal tissue of the human body, and the ultrasonic echo signal transmitted to the conversion element from the boundary of the human tissue is converted into an electrical signal.
  • An ultrasound image signal for an ultrasound image of the tissue is formed by amplifying and signal processing the converted electrical signal.
  • the ultrasonic system includes a beamformer.
  • the beamformer plays an important role in securing the resolution of the ultrasound image by changing the shape of the ultrasonic sound field transmitted and received as desired.
  • Conventional beamforming is mainly done using time delay.
  • 1 is a diagram illustrating a transmission / reception beamforming process using a conventional time delay.
  • the beamformer when beamforming and focusing on a point during ultrasonic transmission, the beamformer properly gives a time delay of a transmission pulse applied to each array element inside the array probe. Ultrasound transmitted from the element allows for simultaneous reaching the desired focus.
  • the beamformer of FIG. 1B the beamformer has the same concept as in FIG. In other words, if you want to focus on a point through receive beamforming, the time from which the signal from the desired focus reaches each element is slightly different. Each signal is delayed so that this time is the same, and then added together.
  • a method of using a phase rotation circuit is conventionally known.
  • the time delay is equal to the phase rotation. That is, it may be expressed as Equation 1 below.
  • FIG. 2 is a diagram illustrating a general phase rotation circuit.
  • a typical phase rotation circuit may include mixer 1 and mixer 2, and low pass filter (LPF) 1 and LPF 2.
  • LPF low pass filter
  • Equations 2 to 4 the signal S 1 output through the mixer 1
  • the signal S 2 output through the LPF 1 and the signal S 3 output through the mixer 2 are represented by Equations 2 to 4
  • the received signal must be a continuous wave (CW) in order for the relationship as shown in Equation 1 to be established.
  • CW continuous wave
  • most of the signals transmitted and received by the ultrasound diagnosis are not continuous waves because they are fairly wideband. Therefore, the phase rotation method is not ideal for the ultrasound diagnosis, and as a result, many errors occur in image processing.
  • the bandwidth when the bandwidth is wide, the error becomes larger, and a representative case is a case where the fundamental and second harmonics are to be received together in the harmonic imaging. At this time, the error will degrade the quality of the image.
  • the wide bandwidth means that several frequency components are mixed together, and when the same amount of time delay is applied to such signals, there is a problem in that the amount of phase rotation is different for each frequency component.
  • the ultrasonic medical diagnostic apparatus when the ultrasonic medical diagnostic apparatus applies the same amount of time delay to each received signal when beamforming the received signal, the error caused by the phase rotation amount according to the distance is different for each frequency component of the received signal. Its purpose is to improve the quality of images by reducing them.
  • a first filter for extracting the first band signal from the received signal reflected from the object;
  • a second filter extracting a second band signal from the received signal reflected from the object;
  • a first mixer for outputting a first mixing signal by mixing an oscillation signal having a predetermined modulation frequency and a first phase difference ⁇ 1 with respect to the received signal with the first band signal;
  • a second mixer for outputting a second mixing signal by mixing the oscillation signal having the modulation frequency and a second phase difference ( ⁇ 2 ) with respect to the received signal with the second band signal;
  • a first low band filter extracting a low frequency band component from the first mixed signal to generate a first low band output;
  • a second low band filter extracting a low frequency band component from the second mixed signal to generate a second low band output;
  • a third mixer for mixing the oscillation signal having the same phase as the modulation frequency and the received signal with the first low band output to output a third mixing signal;
  • a fourth mixer outputting a fourth mixing signal by mixing the oscillation signal having the
  • Each of the first filter and the second filter may use a band pass filter (BPF).
  • BPF band pass filter
  • the first phase difference ⁇ 1 is a phase difference considering the path difference and the frequency of the receiver and the beamforming point of the first band signal
  • the second phase difference ⁇ 2 is the path difference between the receiver and the beamforming point of the second band signal. And phase difference in consideration of frequency.
  • an embodiment of the present invention provides a first mixing signal by mixing an oscillation signal having a predetermined modulation frequency and a first phase difference ⁇ 1 with respect to a received signal reflected from an object with the received signal.
  • a third mixer for mixing the oscillation signal having the same phase as the modulation frequency and the received signal with the second low band signal to output a third mixing signal;
  • a beamforming signal generation unit configured to add the second mixed signal and the third mixed signal and extract a low band signal.
  • the first filter may use a band pass filter (BPF), and the second filter may use a low pass filter (LPF).
  • BPF band pass filter
  • LPF low pass filter
  • the first phase difference ⁇ 1 is a phase difference considering the path difference and the frequency of the receiver and the beamforming point of the first band signal
  • the third phase ⁇ 3 is the path of the receiver and beamforming point of the second band signal. It may be a difference value between the phase difference considering the difference and the frequency and the first phase difference ⁇ 1 .
  • an embodiment of the present invention by receiving a first phase oscillation signal having a first phase difference ( ⁇ 1 ) compared to a predetermined modulation frequency and the received signal reflected from the object from the first phase generator A first mixer for mixing the received signal and outputting a first mixed signal; A first filter extracting a first band signal from the first mixed signal; A second filter extracting a second band signal from the first mixed signal; A subtractor for generating a subtracted signal by subtracting the second band signal from the first band signal; A second mixer for outputting a second mixing signal by mixing the oscillation signal having the modulation frequency and the third phase difference ( ⁇ 3 ) with respect to the received signal with the addition signal; A third mixer for mixing the oscillation signal having the same phase as the modulation frequency and the received signal with the second band signal to output a third mixing signal; And a beamforming signal generation unit configured to add the second mixed signal and the third mixed signal and extract a low band signal.
  • Each of the first filter and the second filter may use a low pass filter (LPF).
  • LPF low pass filter
  • the first phase difference ⁇ 1 is a phase difference considering the path difference and the frequency of the receiver and the beamforming point of the first band signal
  • the third phase ⁇ 3 is the path of the receiver and beamforming point of the second band signal. It may be a difference value between the phase difference considering the difference and the frequency and the first phase difference ⁇ 1 .
  • the ultrasound medical diagnostic apparatus has an effect of improving image quality and realizing low power by performing phase rotation of the same magnitude for each frequency component of the received signal when beamforming using the received signal.
  • 1 is a diagram illustrating a transmission / reception beamforming process using a conventional time delay.
  • FIG. 2 is a diagram illustrating a general phase rotation circuit.
  • Figure 3 is a block diagram showing the structure of a medical diagnostic device according to an embodiment of the present invention.
  • FIG. 4 is a first exemplary diagram illustrating the beam transceiver 310 of FIG. 3 and illustrates a block diagram of a broadband phase rotation circuit divided into two frequency bands.
  • FIG. 5 is a diagram illustrating a frequency band of a signal generated by the beam transceiver according to the first embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a second exemplary view of the beam transceiver 310 of FIG. 3.
  • FIG. 7 is a diagram illustrating a frequency band of a signal generated by the beam receiver according to the second embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a third exemplary view of the beam transceiver 310 of FIG. 3.
  • FIG. 9 is a diagram illustrating a frequency band of a signal generated in the beam receiver according to the third embodiment of the present invention.
  • Figure 3 is a block diagram showing the structure of a medical diagnostic device according to an embodiment of the present invention.
  • the medical diagnostic apparatus 300 includes, for example, a beam transceiver 310 and an image signal processor 320 as an ultrasound diagnosis device, and includes a memory unit 330 and a key. Some or all of the input unit 340 and the display unit 350 may be further included.
  • the beam transceiver 310 may be classified into a beam transmitter and a beam receiver as a beam former.
  • the beam transmitter may include a pulse generator, a transmission delay circuit, and a pulser.
  • the pulse generator generates a pulse
  • the transmission delay circuit delays the pulse
  • the pulser uses a delay signal to generate a high voltage, for example, a probe. 360 may be provided.
  • the beam receiver may include an amplifier, a phase rotation circuit, and the phase delay circuit may selectively include one or more mixers, adders, low band filters, band pass filters, and the like.
  • the amplifier amplifies and outputs, for example, an analog ultrasonic signal received from the probe 360.
  • the phase rotation circuit divides the received signal provided through the amplifier for each frequency band and applies phase rotation suitable for each band. For example, when the ultrasound diagnosis device adds a time delay to the received signals because the received signal includes several frequency components, an error may occur because the amount of phase rotation varies for each frequency component. By dividing the band, the phase rotation for each band is improved to improve the error.
  • the image signal processor 310 may include a controller.
  • the image signal processor 310 may process a digital signal provided by the beam receiver under the control of the controller, and temporarily store the digital signal in the memory 320 and then display the digital signal on the display 340.
  • 8-bit data may be received and converted into 6-bit data, and functions such as ultrasound tomography processing, information processing using the Doppler effect, and 3D image processing may be performed.
  • the key input unit 330 forms a key or a button for commanding all operations performed in the medical diagnosis apparatus, and the control unit processes related information according to a command input through the key. For example, when a medical staff selects a specific button of the key input unit 330 to view cardiovascular diagnosis information, the medical staff performs a related operation.
  • FIG. 4 is a block diagram of a broadband phase rotation circuit divided into two frequency bands as a first exemplary diagram illustrating the beam transceiver 310 of FIG. 3.
  • the beam receiver includes a first filter 410, a second filter 420, a first mixer 430, And a second mixer 440, a first low band filter 450, a first low band filter 460, a third mixer 470, a fourth mixer 480, and a beamforming signal generator 490. .
  • FIG. 5 is a diagram illustrating a frequency band of a signal generated by the beam transceiver according to the first embodiment of the present invention.
  • the frequency fo of the received signal reflected from the object of the received signal is 2.5 MHz
  • the modulation frequency fm of the oscillation signal used for signal mixing is 5 MHz.
  • a beam receiver according to a first embodiment of the present invention will be described with reference to FIGS. 5 and 4 together.
  • the first filter 410 receives the ultrasonic wave received signal (received signal a) reflected from the object and incident on the probe 360 to extract the first band signal (b-1), and the second filter 420 A second band signal is extracted from the ultrasonic wave received signal (received signal A, Acos ( ⁇ o t)) reflected from the object (b-2).
  • the first band signal may be Acos ( ⁇ 1 t)
  • the second band signal may be Acos ( ⁇ 2 t).
  • a band pass filter (BPF) may be used as the first filter 410 and the second filter 420.
  • Each of the band pass filters is for dividing an ultrasonic wave received signal into two frequency bands.
  • the bandpass filter has a wide bandwidth and is not a continuous wave due to the characteristics of the ultrasonic reception signal, the bandpass filter serves to distinguish the bands in order to process the received signal in different ways.
  • processing in different ways means different phase rotations according to different frequency bands.
  • a band pass filter may be used as the first filter 410 and the second filter 420, but the present invention is not limited thereto.
  • the first mixer 430 mixes an oscillation signal cos ( ⁇ m t) + ⁇ 1 having a first modulation difference ⁇ 1 with a predetermined modulation frequency fm and an ultrasonic reception signal by mixing the first band signal with a first band signal.
  • One mixing signal is output (c-1)
  • the second mixer 440 has an oscillation signal (cos ( ⁇ m t) + ⁇ 2 having a modulation frequency fm and a second phase difference ⁇ 2 relative to the ultrasonic wave reception signal. ) Is mixed with the second band signal to output a second mixed signal (c-2).
  • the first mixed signal is Acos (( ⁇ 1 - ⁇ m ) t- ⁇ 1 ) / 2 + Acos (( ⁇ 1 + ⁇ m ) t + ⁇ 1 ) / 2
  • the second mixed signal is Acos (( ⁇ 2 - ⁇ m ) t- ⁇ 2 ) / 2 + Acos (( ⁇ 2 + ⁇ m ) t + ⁇ 2 ) / 2.
  • the first phase difference ⁇ 1 and the second phase difference ⁇ 2 are set to be phase differences in consideration of the path between the receiver and the beamforming point of the ultrasonic signal with respect to the frequency component. Therefore, since the first band signal and the second band signal have different frequencies, the phase difference considering the path is also different, so that the mixed signal is modulated and mixed into an oscillation signal having different phase differences.
  • the first low band filter 450 extracts low frequency components from the first mixed signal to generate a first low band output Acos (( ⁇ 1 - ⁇ m ) t- ⁇ 1 ) / 2 (d-1
  • the second low band filter 460 extracts the low frequency band component from the second mixed signal to generate a second low band output Acos (( ⁇ 2 - ⁇ m ) t - ⁇ 2 ) / 2 (d -2).
  • the third mixer 470 mixes the oscillation signal cos ( ⁇ m t) having the same phase as that of the modulation frequency fm and the ultrasonic reception signal with the first low band output, thereby mixing the third mixing signal Acos (( ⁇ 1). outputs t- ⁇ 1 ) / 4 + Acos (( ⁇ 1 -2 ⁇ m ) t- ⁇ 1 ) / 4) (e-1) and the fourth mixer 480 compares the modulation frequency (fm) and the ultrasonic signal received.
  • the fourth mixed signal Acos (( ⁇ 2 t- ⁇ 2 ) / 4 + Acos (( ⁇ 2 -2 ⁇ m ) by mixing the oscillation signal cos ( ⁇ m t) having the same phase with the second low band output t- ⁇ 2 ) / 4) is output (e-2).
  • the third and fourth mixers 470 and 480 perform the function of returning back to the frequency before the conversion. You can do it.
  • the beamforming signal generator 490 may perform the low-band filtering of the third mixed signal Acos (( ⁇ 1 t- ⁇ 1 ) / 4) and the low-pass filtering of the fourth mixed signal Acos (( ⁇ 2 t- ⁇ 2 ) / 4) is extracted (f) and summed to generate a beamforming signal (g), where phase differences ⁇ 1 and ⁇ 2 corresponding to respective frequency components ⁇ 1 , ⁇ 2 of the ultrasonic reception signal are obtained. The added beamforming signal is generated.
  • first and second low band filters 450 and 460 perform a function of removing unwanted high band signals generated in the process of mixing the two signals in the first and second mixers 430 and 440.
  • the beamforming signal generator 490 may perform a function of removing a high band signal generated in the process of mixing the two signals in the third and fourth mixers 470 and 480.
  • the phase difference may refer to the phase difference necessary for generating the oscillation signal by using a phase lookup table that lists the phase differences along the path.
  • FIG. 6 is a diagram illustrating a second exemplary view of the beam transceiver 310 of FIG. 3.
  • the beam receiver may include a first mixer 610, a first filter 620, a second filter 630, a second mixer 640, The third mixer 650 and the beamforming signal generator 660 are included.
  • FIG. 7 is a diagram illustrating a frequency band of a signal generated by the beam receiver according to the second embodiment of the present invention.
  • the frequency fo of the received signal reflected from the object of the received signal is 2.5 MHz
  • the modulation frequency fm of the oscillation signal used for signal mixing is 5 MHz.
  • a beam receiver according to a second embodiment of the present invention will be described with reference to FIGS. 7 and 6 together.
  • the first mixer 610 has an oscillation signal cos ( ⁇ m t) + having a predetermined modulation frequency fm and a first phase difference ⁇ 1 relative to the ultrasonic reception signal Acos ( ⁇ o t) reflected from the object.
  • ⁇ 1 ) is mixed with the ultrasonic reception signal a to mix the first mixing signal Acos (( ⁇ o - ⁇ m ) t- ⁇ 1 ) / 2 + Acos (( ⁇ o + ⁇ m ) t + ⁇ 1 ) / Output 2) (b).
  • the first filter 620 extracts the first band signal Acos (( ⁇ o + ⁇ m ) t + ⁇ 1 ) / 2 from the first mixed signal (c-1), and the second filter 630 The second band signal Acos (( ⁇ o - ⁇ m ) t- ⁇ 1 ) / 2 is extracted from the first mixed signal (c-2).
  • the first filter 620 may be a BPF and the second filter 630 may be a low pass filter (LPF), but the present invention is not limited thereto.
  • LPF low pass filter
  • the second mixer 640 mixes the oscillation signal cos ( ⁇ m t) - ⁇ 3 having a third phase difference ⁇ 3 with respect to the modulation frequency fm and the ultrasonic wave received signal and combines the first band signal with the second band signal.
  • a mixing signal ((Acos (( ⁇ o t) + ⁇ 1 + ⁇ 3 ) / 4 + Acos (( ⁇ 1 + 2 ⁇ m ) t + ⁇ 1 - ⁇ 3 ) / 4)) is output (d-1)
  • the third mixer 650 mixes the oscillation signal cos ( ⁇ m t) having the same phase as the modulation frequency fm and the ultrasonic reception signal with the second low band signal to mix the third mixing signal Acos (( ⁇ o t) - ⁇ 1 )) / 4 + Acos (( ⁇ 1 -2 ⁇ m ) t- ⁇ 1 ) / 4) is output (d-2).
  • the beamforming signal generator 660 sums the second mixed signal and the third mixed signal (e) and extracts the low band signal (f).
  • the signal extracted by the beamforming signal generator 660 is (Acos (( ⁇ o t) + ⁇ 1 + ⁇ 3 ) / 4 + Acos (( ⁇ o t) ⁇ 1 ) / 4).
  • the first phase difference ⁇ 1 is a phase difference considering the path difference and the frequency of the receiver and the beamforming point of the first band signal
  • the third phase difference ⁇ 3 is the path of the receiver and beamforming point of the second band signal.
  • the difference between the phase difference ⁇ 2 considering the difference and the frequency and the first phase difference ⁇ 1 can be set.
  • phase difference according to the first path is obtained as ⁇ 1
  • ⁇ 2 which is the phase difference according to the second path
  • FIG. 8 is a diagram illustrating a third exemplary view of the beam transceiver 310 of FIG. 3.
  • FIG. 8 shows a broadband phase rotation circuit that is more easily implemented by replacing the BPF of FIG. 5 with an LPF and a subtractor.
  • the beam receiver according to the third embodiment of the present invention may include a first mixer 810, a first filter 820, a second filter 830, a second mixer 840,
  • the third mixer 850 includes a beamforming signal generator 860 and a subtractor 870.
  • FIG. 9 is a diagram illustrating a frequency band of a signal generated in the beam receiver according to the third embodiment of the present invention.
  • the frequency fo of the received signal reflected from the object of the received signal is 2.5 MHz
  • the modulation frequency fm of the oscillation signal used for signal mixing is 5 MHz.
  • the first mixer 810 has an oscillation signal cos ( ⁇ m t) + having a predetermined modulation frequency fm and a first phase difference ⁇ 1 relative to the ultrasonic wave received signal Acos ( ⁇ o t) reflected from the object.
  • ⁇ 1 ) is mixed with the ultrasonic reception signal a to mix the first mixing signal Acos (( ⁇ o - ⁇ m ) t- ⁇ 1 ) / 2 + Acos (( ⁇ o + ⁇ m ) t + ⁇ 1 ) / Output 2) (b).
  • the first filter 820 extracts the first band signal Acos (( ⁇ o + ⁇ m ) t + ⁇ 1 ) / 2 from the first mixed signal
  • the second filter 830 extracts the first mixed signal from the first mixed signal.
  • the second band signal Acos (( ⁇ o - ⁇ m ) t- ⁇ 1 ) / 2 is extracted (c-1).
  • the subtractor 870 subtracts the second band signal from the first band signal to generate a subtracted signal (c-2).
  • 8 is a diagram in which the BPF of FIG. 5 is replaced with an LPF and a subtractor, so the subtracted signal in FIG. 9 is similar to the waveform of the first band signal in FIG. 7.
  • a low pass filter may be used as the first filter 820 and the second filter 830, but the present invention is not limited thereto.
  • the second mixer 840 mixes the oscillation signal cos ( ⁇ m t) - ⁇ 3 having a third phase difference ⁇ 3 with respect to the modulation frequency fm and the ultrasonic wave reception signal and mixes the first band signal with the second band signal.
  • a mixing signal ((Acos (( ⁇ o t) + ⁇ 1 + ⁇ 3 ) / 4 + Acos (( ⁇ 1 + 2 ⁇ m ) t + ⁇ 1 - ⁇ 3 ) / 4)) is output (d-2)
  • the third mixer 850 mixes the oscillation signal cos ( ⁇ m t) having the same phase as that of the modulation frequency fm and the ultrasonic reception signal with the second low band signal, thereby mixing the third mixing signal Acos (( ⁇ o t) - ⁇ 1 )) / 4 + Acos (( ⁇ 1 -2 ⁇ m ) t- ⁇ 1 ) / 4) is output (d-1).
  • the beamforming signal generator 860 sums the second mixed signal and the third mixed signal (e) and extracts the low band signal (f).
  • the signal extracted by the beamforming signal generator 860 is (Acos (( ⁇ o t) + ⁇ 1 + ⁇ 3 ) / 4 + Acos (( ⁇ o t) ⁇ 1 ) / 4).
  • the first phase difference ⁇ 1 is a phase difference considering the path difference and the frequency of the receiver and the beamforming point of the first band signal
  • the third phase difference ⁇ 3 is the path of the receiver and beamforming point of the second band signal.
  • the difference between the phase difference ⁇ 2 considering the difference and the frequency and the first phase difference ⁇ 1 can be set.
  • phase difference according to the first path is obtained as ⁇ 1
  • ⁇ 2 which is the phase difference according to the second path
  • the present invention has an effect of improving image quality and realizing low power by performing phase rotation of the same magnitude for each frequency component of a received signal when beamforming using the received signal in an ultrasonic medical diagnostic apparatus. to be.

Abstract

The present invention relates to a medical diagnosis apparatus and to a method for operating same. The medical diagnosis apparatus includes a beamformer which divides a frequency band of a reception signal reflected from an object for phase rotation adequate for each band with respect to the reception signal having the divided frequency bands.

Description

의료진단장치Medical diagnostic device
본 발명의 실시예는 의료진단장치 및 그 장치의 구동 방법에 관한 것이다. 더 상세하게는 예컨대, 초음파 의료진단장치에서 수신신호를 이용한 빔포밍시 수신신호마다 동일한 크기의 시간지연을 가하는 경우 수신신호의 각 주파수 성분마다 거리에 따른 위상 회전량이 다름으로 해서 발생하는 오차를 줄여 영상의 품질을 개선할 수 있는 의료진단장치 및 그 장치의 구동 방법에 관한 것이다.Embodiments of the present invention relate to a medical diagnostic apparatus and a method of driving the apparatus. More specifically, for example, when the ultrasonic medical diagnostic apparatus applies the same amount of time delay to each received signal during beamforming using the received signal, the error caused by the phase rotation amount according to the distance for each frequency component of the received signal is reduced. The present invention relates to a medical diagnostic apparatus capable of improving image quality and a method of driving the apparatus.
이하의 부분에서 기술되는 내용은 본 발명의 실시예와 관련되는 배경 정보를 제공할 뿐 종래기술을 구성하는 것이 아님을 밝혀둔다.The contents described in the following sections provide background information related to the embodiments of the present invention, but it does not constitute a prior art.
일반적으로, 초음파 시스템은 초음파 신호를 송신 및 수신하기 위해 다수의 변환소자를 포함하는 프로브를 구비한다. 각 변환소자가 전기적으로 자극되면 초음파 신호가 생성되어 인체로 전달된다. 인체에 전달된 초음파 신호는 인체 내부 조직의 경계에서 반사되고, 인체 조직의 경계로부터 변환소자에 전달되는 초음파 에코신호는 전기적 신호로 변환된다. 변환된 전기적 신호를 증폭 및 신호처리하여 조직의 초음파 영상을 위한 초음파 영상신호가 형성된다.In general, an ultrasound system includes a probe including a plurality of conversion elements to transmit and receive an ultrasound signal. When each converter is electrically stimulated, an ultrasonic signal is generated and transmitted to the human body. The ultrasonic signal transmitted to the human body is reflected at the boundary of the internal tissue of the human body, and the ultrasonic echo signal transmitted to the conversion element from the boundary of the human tissue is converted into an electrical signal. An ultrasound image signal for an ultrasound image of the tissue is formed by amplifying and signal processing the converted electrical signal.
이와 같은 기능을 수행하기 위한 일환으로서 초음파 시스템은 빔포머(beamformer)를 포함한다. 빔포머는 송수신하는 초음파 음장의 모양을 원하는 대로 변화시켜 초음파 영상의 해상도를 확보하는 데에 중요한 역할을 한다. 종래의 빔포밍은 주로 시간 지연을 이용해 이루어진다.As part of performing such a function, the ultrasonic system includes a beamformer. The beamformer plays an important role in securing the resolution of the ultrasound image by changing the shape of the ultrasonic sound field transmitted and received as desired. Conventional beamforming is mainly done using time delay.
도 1은 종래의 시간 지연을 이용한 송수신 빔포밍 과정을 나타낸 도면이다.1 is a diagram illustrating a transmission / reception beamforming process using a conventional time delay.
종래의 빔포머는 도 1의 (a)에서 볼 수 있는 바와 같이, 초음파 송신시 빔포밍하여 한 점에 포커싱하는 경우 어레이 프로브 내부의 각각의 어레이 엘리먼트에 인가하는 송신 펄스의 시간 지연을 적절히 주어 각 엘리먼트로부터 송신된 초음파가 원하는 초점에 동시에 도달할 수 있도록 한다. 또한, 빔포머는 도 1의 (b)에서와 같이, 수신시에도 도 1의 (a)에서와 마찬가지 개념이나 다만 신호의 흐름이 반대로 된다. 즉, 수신 빔포밍을 통해 한 점에 포커싱하고자 하는 경우 원하는 초점으로부터의 신호가 각 엘리먼트에 도달하는 시간이 조금씩 다른데. 이 시간을 동일하게 되도록 각각 신호의 시간을 지연시킨 다음 모두 더하게 되는 것이다.In the conventional beamformer, as shown in FIG. 1A, when beamforming and focusing on a point during ultrasonic transmission, the beamformer properly gives a time delay of a transmission pulse applied to each array element inside the array probe. Ultrasound transmitted from the element allows for simultaneous reaching the desired focus. In addition, as in the beamformer of FIG. 1B, the beamformer has the same concept as in FIG. In other words, if you want to focus on a point through receive beamforming, the time from which the signal from the desired focus reaches each element is slightly different. Each signal is delayed so that this time is the same, and then added together.
한편, 시간지연회로보다는 빔포밍을 더욱 저전력으로 구현하기 위하여 종래에는 위상회전 회로를 사용하는 방법이 알려져 있다. 연속파(CW)인 경우 시간지연은 위상 회전과 동일하다. 즉 아래의 <수학식 1>과 같이 표현될 수 있다.Meanwhile, in order to implement beamforming at a lower power than a time delay circuit, a method of using a phase rotation circuit is conventionally known. In the case of continuous wave (CW), the time delay is equal to the phase rotation. That is, it may be expressed as Equation 1 below.
수학식 1
Figure PCTKR2011009879-appb-M000001
Equation 1
Figure PCTKR2011009879-appb-M000001
도 2는 일반적인 위상회전 회로를 예시한 도면이다.2 is a diagram illustrating a general phase rotation circuit.
도 2에서 볼 때, 일반적인 위상회전 회로는 믹서 1 및 믹서 2, 그리고 저역통과필터(LPF) 1 및 LPF 2를 포함할 수 있다.Referring to FIG. 2, a typical phase rotation circuit may include mixer 1 and mixer 2, and low pass filter (LPF) 1 and LPF 2.
여기서, 믹서 1을 통해 출력되는 신호(S1), LPF 1을 통해 출력되는 신호(S2) 및 믹서 2를 통해 출력되는 신호(S3)는 <수학식 2> 내지 <수학식 4>와 같이 나타내어질 수 있을 것이다.Here, the signal S 1 output through the mixer 1, the signal S 2 output through the LPF 1 and the signal S 3 output through the mixer 2 are represented by Equations 2 to 4, Can be represented as:
수학식 2
Figure PCTKR2011009879-appb-M000002
Equation 2
Figure PCTKR2011009879-appb-M000002
수학식 3
Figure PCTKR2011009879-appb-M000003
Equation 3
Figure PCTKR2011009879-appb-M000003
수학식 4
Figure PCTKR2011009879-appb-M000004
Equation 4
Figure PCTKR2011009879-appb-M000004
그런데, <도 2>에서와 같은 일반적인 위상회전 회로를 이용하는 빔포머의 경우 <수학식 1>에서와 같은 관계가 성립하기 위하여는 수신신호가 반드시 연속파(CW)이어야 한다. 그러나, 대부분 초음파 진단기에서 송수신하는 신호는 상당히 광대역이므로 연속파가 아니고, 따라서 위상회전 방식은 초음파진단기에서 이상적이지 않으며 그 결과 영상처리에 있어 많은 오차를 발생시키게 된다.However, in the case of a beamformer using a general phase rotation circuit as shown in FIG. 2, the received signal must be a continuous wave (CW) in order for the relationship as shown in Equation 1 to be established. However, most of the signals transmitted and received by the ultrasound diagnosis are not continuous waves because they are fairly wideband. Therefore, the phase rotation method is not ideal for the ultrasound diagnosis, and as a result, many errors occur in image processing.
특히, 대역폭이 넓은 경우에 오차가 더 커지는데, 대표적인 경우가 하모닉 이미징에서 기본파(fundamental)와 제2 고조파(2'nd harmonic)를 함께 수신하고자하는 경우이다. 이때 오차는 영상의 품질을 떨어뜨리게 된다. 여기서, 대역폭이 넓다는 것은 여러 주파수 성분이 함께 섞여 있다는 것이며, 그런 신호들에 동일한 크기의 시간지연을 가하게 되면, 각 주파수 성분마다 위상 회전량이 각각 다르게 되는 문제가 있다.In particular, when the bandwidth is wide, the error becomes larger, and a representative case is a case where the fundamental and second harmonics are to be received together in the harmonic imaging. At this time, the error will degrade the quality of the image. Here, the wide bandwidth means that several frequency components are mixed together, and when the same amount of time delay is applied to such signals, there is a problem in that the amount of phase rotation is different for each frequency component.
본 발명의 실시예에는 예컨대 초음파 의료진단장치에서 수신신호를 이용한 빔포밍시 수신신호마다 동일한 크기의 시간지연을 가하는 경우 수신신호의 각 주파수 성분마다 거리에 따른 위상 회전량이 다름으로 해서 발생하는 오차를 줄여 영상의 품질을 개선하는 데에 그 목적이 있다.According to an exemplary embodiment of the present invention, when the ultrasonic medical diagnostic apparatus applies the same amount of time delay to each received signal when beamforming the received signal, the error caused by the phase rotation amount according to the distance is different for each frequency component of the received signal. Its purpose is to improve the quality of images by reducing them.
전술한 목적을 달성하기 위해 본 발명의 일 실시예는, 대상체로부터 반사된 수신신호로부터 제1대역신호를 추출하는 제1필터; 대상체로부터 반사된 수신신호로부터 제2대역신호를 추출하는 제2필터; 소정의 변조주파수 및 상기 수신신호 대비 제1위상차(φ1)를 갖는 발진신호를 상기 제1대역신호와 혼합하여 제1믹싱신호를 출력하는 제1믹서; 상기 변조주파수 및 상기 수신신호 대비 제2위상차(φ2)를 갖는 발진신호를 상기 제2대역신호와 혼합하여 제2믹싱신호를 출력하는 제2믹서; 상기 제1믹싱신호로부터 저주파대역성분을 추출하여 제1저대역출력을 발생하는 제1저대역필터; 상기 제2믹싱신호로부터 저주파대역성분을 추출하여 제2저대역출력을 발생하는 제2저대역필터; 상기 변조주파수 및 상기 수신신호 대비 동일한 위상을 갖는 발진신호를 상기 제1저대역출력과 혼합하여 제3믹싱신호를 출력하는 제3믹서; 상기 변조주파수 및 상기 수신신호 대비 동일한 위상을 갖는 발진신호를 상기 제2저대역출력과 혼합하여 제4믹싱신호를 출력하는 제4믹서; 및 상기 제3믹싱신호와 상기 제4믹싱신호를 저대역 필터링한 후 합산하여 빔포밍신호를 생성하는 빔포밍신호 생성부를 포함하는 것을 특징으로 하는 의료진단장치를 제공한다.In order to achieve the above object, an embodiment of the present invention, a first filter for extracting the first band signal from the received signal reflected from the object; A second filter extracting a second band signal from the received signal reflected from the object; A first mixer for outputting a first mixing signal by mixing an oscillation signal having a predetermined modulation frequency and a first phase difference φ 1 with respect to the received signal with the first band signal; A second mixer for outputting a second mixing signal by mixing the oscillation signal having the modulation frequency and a second phase difference (φ 2 ) with respect to the received signal with the second band signal; A first low band filter extracting a low frequency band component from the first mixed signal to generate a first low band output; A second low band filter extracting a low frequency band component from the second mixed signal to generate a second low band output; A third mixer for mixing the oscillation signal having the same phase as the modulation frequency and the received signal with the first low band output to output a third mixing signal; A fourth mixer outputting a fourth mixing signal by mixing the oscillation signal having the same phase as the modulation frequency and the received signal with the second low band output; And a beamforming signal generation unit configured to generate a beamforming signal by adding the third mixed signal and the fourth mixed signal after low-band filtering, and adding the third mixed signal.
상기 제1필터 및 상기 제2필터는 각각 대역통과필터(BPF)를 사용할 수 있다.Each of the first filter and the second filter may use a band pass filter (BPF).
상기 제1위상차(φ1)는 제1대역신호의 수신부 및 빔포밍지점의 경로차 및 주파수를 고려한 위상차이고 상기 제2위상차(φ2)는 제2대역신호의 수신부 및 빔포밍지점의 경로차 및 주파수를 고려한 위상차일 수 있다.The first phase difference φ 1 is a phase difference considering the path difference and the frequency of the receiver and the beamforming point of the first band signal, and the second phase difference φ 2 is the path difference between the receiver and the beamforming point of the second band signal. And phase difference in consideration of frequency.
전술한 목적을 달성하기 위해 본 발명의 일 실시예는, 소정의 변조주파수 및 대상체로부터 반사된 수신신호 대비 제1위상차(φ1)를 갖는 발진신호를 상기 수신신호와 혼합하여 제1믹싱신호를 출력하는 제1믹서; 상기 제1믹싱신호로부터 제1대역신호를 추출하는 제1필터; 상기 제1믹싱신호로부터 제2대역신호를 추출하는 제2필터; 상기 변조주파수 및 상기 수신신호 대비 제3위상차(φ3)를 갖는 발진신호를 상기 제1대역신호와 혼합하여 제2믹싱신호를 출력하는 제2믹서; 상기 변조주파수 및 상기 수신신호 대비 동일한 위상을 갖는 발진신호를 상기 제2저대역신호와 혼합하여 제3믹싱신호를 출력하는 제3믹서; 및 상기 제2믹싱신호 및 상기 제3믹싱신호를 합산하고 저대역신호를 추출하는 빔포밍신호 생성부를 포함하는 것을 특징으로 하는 의료진단장치를 제공한다.In order to achieve the above object, an embodiment of the present invention provides a first mixing signal by mixing an oscillation signal having a predetermined modulation frequency and a first phase difference φ 1 with respect to a received signal reflected from an object with the received signal. An output first mixer; A first filter extracting a first band signal from the first mixed signal; A second filter extracting a second band signal from the first mixed signal; A second mixer for outputting a second mixing signal by mixing an oscillation signal having a modulation frequency and a third phase difference (φ 3 ) with respect to the received signal with the first band signal; A third mixer for mixing the oscillation signal having the same phase as the modulation frequency and the received signal with the second low band signal to output a third mixing signal; And a beamforming signal generation unit configured to add the second mixed signal and the third mixed signal and extract a low band signal.
상기 제1필터는 대역통과필터(BPF), 상기 제2필터는 저역통과필터(LPF)를 사용할 수 있다.The first filter may use a band pass filter (BPF), and the second filter may use a low pass filter (LPF).
상기 제1위상차(φ1)는 제1대역신호의 수신부 및 빔포밍지점의 경로차 및 주파수를 고려한 위상차이고, 상기 제3위상(φ3)는 제2대역신호의 수신부 및 빔포밍지점의 경로차 및 주파수를 고려한 위상차와 상기 제1위상차(φ1)와의 차분값일 수 있다.The first phase difference φ 1 is a phase difference considering the path difference and the frequency of the receiver and the beamforming point of the first band signal, and the third phase φ 3 is the path of the receiver and beamforming point of the second band signal. It may be a difference value between the phase difference considering the difference and the frequency and the first phase difference φ 1 .
전술한 목적을 달성하기 위해 본 발명의 일 실시예는, 소정의 변조주파수 및 대상체로부터 반사된 수신신호 대비 제1위상차(φ1)를 갖는 제1위상발진신호를 제1위상발생기로부터 수신하여 상기 수신신호와 혼합하여 제1믹싱신호를 출력하는 제1믹서; 상기 제1믹싱신호로부터 제1대역신호를 추출하는 제1필터; 상기 제1믹싱신호로부터 제2대역신호를 추출하는 제2필터; 상기 제1대역신호로부터 상기 제2대역신호를 감산하여 감산신호를 생성하는 감산기; 상기 변조주파수 및 상기 수신신호 대비 제3위상차(φ3)를 갖는 발진신호를 상기 가산신호와 혼합하여 제2믹싱신호를 출력하는 제2믹서; 상기 변조주파수 및 상기 수신신호 대비 동일한 위상을 갖는 발진신호를 상기 제2대역신호와 혼합하여 제3믹싱신호를 출력하는 제3믹서; 및 상기 제2믹싱신호 및 상기 제3믹싱신호를 합산하고 저대역신호를 추출하는 빔포밍신호 생성부를 포함하는 것을 특징으로 하는 의료진단장치를 제공한다.In order to achieve the above object, an embodiment of the present invention, by receiving a first phase oscillation signal having a first phase difference (φ 1 ) compared to a predetermined modulation frequency and the received signal reflected from the object from the first phase generator A first mixer for mixing the received signal and outputting a first mixed signal; A first filter extracting a first band signal from the first mixed signal; A second filter extracting a second band signal from the first mixed signal; A subtractor for generating a subtracted signal by subtracting the second band signal from the first band signal; A second mixer for outputting a second mixing signal by mixing the oscillation signal having the modulation frequency and the third phase difference (φ 3 ) with respect to the received signal with the addition signal; A third mixer for mixing the oscillation signal having the same phase as the modulation frequency and the received signal with the second band signal to output a third mixing signal; And a beamforming signal generation unit configured to add the second mixed signal and the third mixed signal and extract a low band signal.
상기 제1필터 및 상기 제2필터는 각각 저역통과필터(LPF)를 사용할 수 있다.Each of the first filter and the second filter may use a low pass filter (LPF).
상기 제1위상차(φ1)는 제1대역신호의 수신부 및 빔포밍지점의 경로차 및 주파수를 고려한 위상차이고, 상기 제3위상(φ3)는 제2대역신호의 수신부 및 빔포밍지점의 경로차 및 주파수를 고려한 위상차와 상기 제1위상차(φ1)와의 차분값일 수 있다.The first phase difference φ 1 is a phase difference considering the path difference and the frequency of the receiver and the beamforming point of the first band signal, and the third phase φ 3 is the path of the receiver and beamforming point of the second band signal. It may be a difference value between the phase difference considering the difference and the frequency and the first phase difference φ 1 .
본 발명의 실시예에 따르면, 초음파 의료진단장치에서 수신신호를 이용한 빔포밍시 수신신호의 각 주파수 성분마다 동일한 크기의 위상회전을 시킴으로써 영상의 품질을 개선하고 저전력으로 구현하는 효과가 있다.According to an embodiment of the present invention, the ultrasound medical diagnostic apparatus has an effect of improving image quality and realizing low power by performing phase rotation of the same magnitude for each frequency component of the received signal when beamforming using the received signal.
도 1은 종래의 시간 지연을 이용한 송수신 빔포밍 과정을 나타낸 도면이다.1 is a diagram illustrating a transmission / reception beamforming process using a conventional time delay.
도 2는 일반적인 위상회전 회로를 예시한 도면이다.2 is a diagram illustrating a general phase rotation circuit.
도 3은 본 발명의 실시예에 따른 의료진단장치의 구조를 나타내는 블록다이어그램이다.Figure 3 is a block diagram showing the structure of a medical diagnostic device according to an embodiment of the present invention.
도 4는 도 3의 빔 송수신부(310)를 나타내는 제1 예시도로서, 두 개의 주파수 대역으로 분리한 광대역 위상회전 회로의 블록도를 나타낸 도면이다.4 is a first exemplary diagram illustrating the beam transceiver 310 of FIG. 3 and illustrates a block diagram of a broadband phase rotation circuit divided into two frequency bands.
도 5는 본 발명의 제1 실시예에 따른 빔 송수신부에서 발생하는 신호의 주파수대역을 예시한 도면이다. 5 is a diagram illustrating a frequency band of a signal generated by the beam transceiver according to the first embodiment of the present invention.
도 6은 도 3의 빔 송수신부(310)를 나타내는 제2 예시도를 나타낸 도면이다.FIG. 6 is a diagram illustrating a second exemplary view of the beam transceiver 310 of FIG. 3.
도 7은 본 발명의 제2 실시예에 따른 빔 수신부에서 발생하는 신호의 주파수대역을 예시한 도면이다. 7 is a diagram illustrating a frequency band of a signal generated by the beam receiver according to the second embodiment of the present invention.
도 8은 도 3의 빔 송수신부(310)를 나타내는 제3 예시도를 나타낸 도면이다.8 is a diagram illustrating a third exemplary view of the beam transceiver 310 of FIG. 3.
도 9는 본 발명의 제3 실시예에 따른 빔 수신부에서 발생하는 신호의 주파수대역을 예시한 도면이다.9 is a diagram illustrating a frequency band of a signal generated in the beam receiver according to the third embodiment of the present invention.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the component of this invention, terms, such as 1st, 2nd, A, B, (a), (b), can be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected to or connected to that other component, but there may be another configuration between each component. It is to be understood that the elements may be "connected", "coupled" or "connected".
도 3은 본 발명의 실시예에 따른 의료진단장치의 구조를 나타내는 블록다이어그램이다.Figure 3 is a block diagram showing the structure of a medical diagnostic device according to an embodiment of the present invention.
도 3에 도시된 바와 같이, 본 발명의 실시예에 따른 의료진단장치(300)는 예컨대 초음파 진단기로서 빔 송수신부(310) 및 화상신호처리부(320)을 포함하며, 메모리부(330), 키 입력부(340) 및 표시부(350)의 일부 또는 전부를 더 포함할 수 있다.As shown in FIG. 3, the medical diagnostic apparatus 300 according to an exemplary embodiment of the present invention includes, for example, a beam transceiver 310 and an image signal processor 320 as an ultrasound diagnosis device, and includes a memory unit 330 and a key. Some or all of the input unit 340 and the display unit 350 may be further included.
여기서, 빔 송수신부(310)는 빔 포머로서 빔 송신부와 빔 수신부로 구분될 수 있다. 빔 송신부는 펄스 발생기, 송신 지연회로 및 펄서(pulser)를 포함할 수 있는데, 펄스 발생기는 펄스를 발생시키고, 송신 지연회로는 펄스를 지연 출력하며, 펄서는 지연신호를 이용해 가령 고전압을 생성해 프로브(360)로 제공할 수 있다.Here, the beam transceiver 310 may be classified into a beam transmitter and a beam receiver as a beam former. The beam transmitter may include a pulse generator, a transmission delay circuit, and a pulser. The pulse generator generates a pulse, the transmission delay circuit delays the pulse, and the pulser uses a delay signal to generate a high voltage, for example, a probe. 360 may be provided.
반면, 빔 수신부는 증폭기, 위상회전 회로를 포함할 수 있으며, 위상지연회로는 믹서, 가산기, 저대역필터, 밴드패스필터 등을 각각 하나 이상 선택적으로 포함할 수 있을 것이다. 증폭기는 프로브(360)로부터 수신되는 가령 아날로그 초음파 신호를 증폭시켜 출력한다. 또한, 위상회전 회로는 증폭기를 통해 제공되는 수신신호를 주파수 대역별로 나누어 각각의 대역에 맞는 위상 회전을 가한다. 예를 들어, 초음파 진단기는 수신신호가 여러 주파수 성분을 포함하고 있으므로 수신신호들에 시간지연을 가하는 경우, 각 주파수 성분마다 위상 회전량이 각각 다르기 때문에 그 결과 오차가 발생할 수 있는데, 위상회전 회로는 주파수 대역을 나누어 각각의 대역에 맞는 위상 회전을 시켜 그 오차를 개선하게 된다.On the other hand, the beam receiver may include an amplifier, a phase rotation circuit, and the phase delay circuit may selectively include one or more mixers, adders, low band filters, band pass filters, and the like. The amplifier amplifies and outputs, for example, an analog ultrasonic signal received from the probe 360. In addition, the phase rotation circuit divides the received signal provided through the amplifier for each frequency band and applies phase rotation suitable for each band. For example, when the ultrasound diagnosis device adds a time delay to the received signals because the received signal includes several frequency components, an error may occur because the amount of phase rotation varies for each frequency component. By dividing the band, the phase rotation for each band is improved to improve the error.
화상신호처리부(310)는 제어부를 포함할 수 있으며, 제어부의 제어 하에 빔 수신부에서 제공되는 가령 디지털 신호를 처리하여 메모리부(320)에 임시 저장하였다가 표시부(340)에 디스플레이한다. 이를 위해 예컨대 8비트 데이터를 제공받아 6비트 데이터로 변환할 수 있고, 초음파 단층 화상 처리, 도플러 효과를 이용한 정보 처리 및 3차원 영상 처리 등의 기능을 수행할 수 있을 것이다.The image signal processor 310 may include a controller. The image signal processor 310 may process a digital signal provided by the beam receiver under the control of the controller, and temporarily store the digital signal in the memory 320 and then display the digital signal on the display 340. To this end, for example, 8-bit data may be received and converted into 6-bit data, and functions such as ultrasound tomography processing, information processing using the Doppler effect, and 3D image processing may be performed.
키 입력부(330)는 의료진단장치에서 이루어지는 모든 동작을 명령할 수 있는 키(key) 혹은 버튼을 형성하고 있으며, 키를 통해 입력되는 명령에 따라 제어부는 관련 정보를 처리하게 된다. 예를 들어, 의료진이 키 입력부(330)의 특정 버튼을 선택하여 심혈관계 진단 정보를 보고자 한다면 관련 동작을 수행하게 되는 것이다.The key input unit 330 forms a key or a button for commanding all operations performed in the medical diagnosis apparatus, and the control unit processes related information according to a command input through the key. For example, when a medical staff selects a specific button of the key input unit 330 to view cardiovascular diagnosis information, the medical staff performs a related operation.
도 4는 도 3의 빔 송수신부(310)를 나타내는 제1 예시도로서, 두 개의 주파수 대역으로 분리한 광대역 위상회전 회로의 블록도를 나타낸 도면이다.4 is a block diagram of a broadband phase rotation circuit divided into two frequency bands as a first exemplary diagram illustrating the beam transceiver 310 of FIG. 3.
도 4를 도 3과 함께 참조하면, 본 발명의 제1 실시예에 따른 빔 송수신부, 더 정확하게는 빔 수신부는 제1필터(410), 제2필터(420), 제1믹서(430), 제2믹서(440), 제1저대역필터(450), 제1저대역필터(460), 제3믹서(470), 제4믹서(480) 및 빔포밍신호 생성부(490)를 포함한다.Referring to FIG. 4 together with FIG. 3, the beam transceiver according to the first embodiment of the present invention, more precisely, the beam receiver includes a first filter 410, a second filter 420, a first mixer 430, And a second mixer 440, a first low band filter 450, a first low band filter 460, a third mixer 470, a fourth mixer 480, and a beamforming signal generator 490. .
도 5는 본 발명의 제1 실시예에 따른 빔 송수신부에서 발생하는 신호의 주파수대역을 예시한 도면이다. 여기서, 수신신호의 대상체로부터 반사된 수신신호의 주파수(fo)는 2.5 MHz, 신호 혼합에 사용되는 발진신호의 변조주파수(fm)는 5 MHz라고 가정한다.5 is a diagram illustrating a frequency band of a signal generated by the beam transceiver according to the first embodiment of the present invention. Here, it is assumed that the frequency fo of the received signal reflected from the object of the received signal is 2.5 MHz, and the modulation frequency fm of the oscillation signal used for signal mixing is 5 MHz.
도 5 및 도 4를 함께 참조하면서 본 발명의 제1 실시예에 따른 빔 수신부를 설명한다.A beam receiver according to a first embodiment of the present invention will be described with reference to FIGS. 5 and 4 together.
제1필터(410)는 대상체로부터 반사되어 프로브(360)로 입사된 초음파 수신신호(수신신호(a))를 수신하여 제1대역신호를 추출하고(b-1) 제2필터(420)는 대상체로부터 반사된 초음파 수신신호(수신신호(가), Acos(ωot))로부터 제2대역신호를 추출한다(b-2). 예를 들어, 제1대역신호는 Acos(ω1t), 제2대역신호는 Acos(ω2t)라 할 수 있다. 여기서, 제1필터(410) 및 제2필터(420)로는 대역통과필터(BPF: Band Pass Filter)를 사용할 수 있는데, 각각의 대역통과필터는 초음파 수신신호를 2개의 주파수 대역으로 구분하기 위한 것이며, 대역통과필터는 초음파 수신신호의 특성상 대역폭이 넓고 연속파가 아니기 때문에 수신신호를 서로 다른 방식으로 처리하기 위하여 대역을 구분하는 역할을 수행한다. 여기서, 서로 다른 방식으로 처리한다는 것은 서로 다른 주파수 대역에 따라 위상 회전을 달리하는 것을 의미한다.The first filter 410 receives the ultrasonic wave received signal (received signal a) reflected from the object and incident on the probe 360 to extract the first band signal (b-1), and the second filter 420 A second band signal is extracted from the ultrasonic wave received signal (received signal A, Acos (ω o t)) reflected from the object (b-2). For example, the first band signal may be Acos (ω 1 t), and the second band signal may be Acos (ω 2 t). Here, a band pass filter (BPF) may be used as the first filter 410 and the second filter 420. Each of the band pass filters is for dividing an ultrasonic wave received signal into two frequency bands. However, because the bandpass filter has a wide bandwidth and is not a continuous wave due to the characteristics of the ultrasonic reception signal, the bandpass filter serves to distinguish the bands in order to process the received signal in different ways. Here, processing in different ways means different phase rotations according to different frequency bands.
여기서 제1필터(410) 및 제2필터(420)로는 밴드패스 필터를 사용할 수 있으나 본 발명이 반드시 이에 한정되지는 않는다.Here, a band pass filter may be used as the first filter 410 and the second filter 420, but the present invention is not limited thereto.
제1믹서(430)는 소정의 변조주파수(fm) 및 초음파 수신신호 대비 제1위상차(φ1)를 갖는 발진신호(cos(ωmt)+φ1)를 제1대역신호와 혼합하여 제1믹싱신호를 출력하고(c-1), 제2믹서(440)는 변조주파수(fm) 및 초음파 수신신호 대비 제2위상차(φ2)를 갖는 발진신호(cos(ωmt)+φ2)를 제2대역신호와 혼합하여 제2믹싱신호를 출력한다(c-2). 즉, 제1믹싱신호는 Acos((ω1m)t-φ1)/2 + Acos((ω1m)t+φ1)/2, 제2믹싱신호는 Acos((ω2m)t-φ2)/2 + Acos((ω2m)t+φ2)/2 가 된다. 여기서 제1위상차(φ1) 및 제2위상차(φ2)는 해당 주파수 성분에 대하여 초음파 신호의 수신부와 빔포밍 지점과의 경로를 고려한 위상차가 되도록 설정된다. 따라서 제1대역신호와 제2대역신호는 서로 다른 주파수를 가지므로 경로를 고려한 위상차도 달라지므로 서로 다른 위상차를 갖는 발진신호로 변조하여 혼합한 믹싱신호를 발생한다.The first mixer 430 mixes an oscillation signal cos (ω m t) + φ 1 having a first modulation difference φ 1 with a predetermined modulation frequency fm and an ultrasonic reception signal by mixing the first band signal with a first band signal. One mixing signal is output (c-1), and the second mixer 440 has an oscillation signal (cos (ω m t) + φ 2 having a modulation frequency fm and a second phase difference φ 2 relative to the ultrasonic wave reception signal. ) Is mixed with the second band signal to output a second mixed signal (c-2). That is, the first mixed signal is Acos ((ω 1m ) t-φ 1 ) / 2 + Acos ((ω 1 + ω m ) t + φ 1 ) / 2, and the second mixed signal is Acos ((ω 2m ) t-φ 2 ) / 2 + Acos ((ω 2 + ω m ) t + φ 2 ) / 2. Here, the first phase difference φ 1 and the second phase difference φ 2 are set to be phase differences in consideration of the path between the receiver and the beamforming point of the ultrasonic signal with respect to the frequency component. Therefore, since the first band signal and the second band signal have different frequencies, the phase difference considering the path is also different, so that the mixed signal is modulated and mixed into an oscillation signal having different phase differences.
제1저대역필터(450)는 제1믹싱신호로부터 저주파대역성분을 추출하여 제1저대역출력(Acos((ω1m)t-φ1)/2)을 발생하고(d-1), 제2저대역필터(460)는 제2믹싱신호로부터 저주파대역성분을 추출하여 제2저대역출력(Acos((ω2m)t-φ2)/2)을 발생한다(d-2).The first low band filter 450 extracts low frequency components from the first mixed signal to generate a first low band output Acos ((ω 1m ) t-φ 1 ) / 2 (d-1 The second low band filter 460 extracts the low frequency band component from the second mixed signal to generate a second low band output Acos ((ω 2m ) t -φ 2 ) / 2 (d -2).
제3믹서(470)는 변조주파수(fm) 및 초음파 수신신호 대비 동일한 위상을 갖는 발진신호(cos(ωmt))를 제1저대역출력과 혼합하여 제3믹싱신호(Acos((ω1t-φ1)/4 + Acos((ω1-2ωm)t-φ1)/4)를 출력하고(e-1) 제4믹서(480)는 변조주파수(fm) 및 초음파 수신신호 대비 동일한 위상을 갖는 발진신호(cos(ωmt))를 제2저대역출력과 혼합하여 제4믹싱신호(Acos((ω2t-φ2)/4 + Acos((ω2-2ωm)t-φ2)/4)를 출력한다(e-2).The third mixer 470 mixes the oscillation signal cos (ω m t) having the same phase as that of the modulation frequency fm and the ultrasonic reception signal with the first low band output, thereby mixing the third mixing signal Acos ((ω 1). outputs t-φ 1 ) / 4 + Acos ((ω 1 -2ω m ) t-φ 1 ) / 4) (e-1) and the fourth mixer 480 compares the modulation frequency (fm) and the ultrasonic signal received. The fourth mixed signal Acos ((ω 2 t-φ 2 ) / 4 + Acos ((ω 2 -2ω m ) by mixing the oscillation signal cos (ω m t) having the same phase with the second low band output t-φ 2 ) / 4) is output (e-2).
또한, 제1 및 제2 믹서(430, 440)가 두 신호를 믹싱하는 과정에서 임의의 주파수로 변환하였다면, 제3 및 제4 믹서(470, 480)는 변환 전의 주파수로 다시 되돌리는 기능을 수행할 수 있을 것이다.In addition, if the first and second mixers 430 and 440 convert the signal to an arbitrary frequency while mixing the two signals, the third and fourth mixers 470 and 480 perform the function of returning back to the frequency before the conversion. You can do it.
빔포밍신호 생성부(490)는 제3믹싱신호를 저대역 필터링한 신호(Acos((ω1t-φ1)/4)와 제4믹싱신호를 저대역 필터링한 신호(Acos((ω2t-φ2)/4)를 추출하고(f) 이들을 합산하여 빔포밍신호를 생성한다(g). 여기서 초음파 수신신호의 각 주파수 성분 ω1, ω2에 대하여 대응되는 위상차 φ1 및 φ2가 부가된 빔포밍신호가 발생한다.The beamforming signal generator 490 may perform the low-band filtering of the third mixed signal Acos ((ω 1 t-φ 1 ) / 4) and the low-pass filtering of the fourth mixed signal Acos ((ω 2 t-φ 2 ) / 4) is extracted (f) and summed to generate a beamforming signal (g), where phase differences φ 1 and φ 2 corresponding to respective frequency components ω 1 , ω 2 of the ultrasonic reception signal are obtained. The added beamforming signal is generated.
그리고, 제1 및 제2 저대역필터(450, 460)는 제1 및 제2 믹서(430, 440)에서 두 신호를 믹싱하는 과정에서 발생하는 원치 않는 고대역 신호를 제거하는 기능을 수행하고, 빔포밍신호 생성부(490)는 제3 및 제4 믹서(470, 480)에서 두 신호를 믹싱하는 과정에서 발생하는 고대역 신호를 제거하는 기능을 수행할 수 있다.In addition, the first and second low band filters 450 and 460 perform a function of removing unwanted high band signals generated in the process of mixing the two signals in the first and second mixers 430 and 440. The beamforming signal generator 490 may perform a function of removing a high band signal generated in the process of mixing the two signals in the third and fourth mixers 470 and 480.
참고로, 발진신호를 발생함에 있어서 위상차는 경로에 따른 위상차를 나열한 위상룩업테이블을 사용함으로써 발진신호의 발생에 필요한 위상차를 참조할 수 있다.For reference, in generating the oscillation signal, the phase difference may refer to the phase difference necessary for generating the oscillation signal by using a phase lookup table that lists the phase differences along the path.
도 6은 도 3의 빔 송수신부(310)를 나타내는 제2 예시도를 나타낸 도면이다.FIG. 6 is a diagram illustrating a second exemplary view of the beam transceiver 310 of FIG. 3.
도 6을 도 3과 함께 참조하면, 본 발명의 제2 실시예에 따른 빔 수신부는 제1믹서(610), 제1필터(620), 제2필터(630), 제2믹서(640), 제3믹서(650) 및 빔포밍신호 생성부(660)를 포함한다.Referring to FIG. 6 together with FIG. 3, the beam receiver according to the second embodiment of the present invention may include a first mixer 610, a first filter 620, a second filter 630, a second mixer 640, The third mixer 650 and the beamforming signal generator 660 are included.
도 7은 본 발명의 제2 실시예에 따른 빔 수신부에서 발생하는 신호의 주파수대역을 예시한 도면이다. 여기서도, 수신신호의 대상체로부터 반사된 수신신호의 주파수(fo)는 2.5 MHz, 신호 혼합에 사용되는 발진신호의 변조주파수(fm)는 5 MHz라고 가정한다.7 is a diagram illustrating a frequency band of a signal generated by the beam receiver according to the second embodiment of the present invention. Here, it is also assumed that the frequency fo of the received signal reflected from the object of the received signal is 2.5 MHz, and the modulation frequency fm of the oscillation signal used for signal mixing is 5 MHz.
도 7 및 도 6을 함께 참조하면서 본 발명의 제2 실시예에 따른 빔 수신부를 설명한다.A beam receiver according to a second embodiment of the present invention will be described with reference to FIGS. 7 and 6 together.
제1믹서(610)는 소정의 변조주파수(fm) 및 대상체로부터 반사된 초음파 수신신호(Acos(ωot)) 대비 제1위상차(φ1)를 갖는 발진신호(cos(ωmt)+φ1)를 초음파 수신신호(a)와 혼합하여 제1믹싱신호(Acos((ωom)t-φ1)/2 + Acos((ωom)t+φ1)/2)를 출력한다(b).The first mixer 610 has an oscillation signal cos (ω m t) + having a predetermined modulation frequency fm and a first phase difference φ 1 relative to the ultrasonic reception signal Acos (ω o t) reflected from the object. φ 1 ) is mixed with the ultrasonic reception signal a to mix the first mixing signal Acos ((ω om ) t-φ 1 ) / 2 + Acos ((ω o + ω m ) t + φ 1 ) / Output 2) (b).
제1필터(620)는 제1믹싱신호로부터 제1대역신호(Acos((ωom)t+φ1)/2)를 추출하고(c-1), 제2필터(630)는 제1믹싱신호로부터 제2대역신호(Acos((ωom)t-φ1)/2)를 추출한다(c-2).The first filter 620 extracts the first band signal Acos ((ω o + ω m ) t + φ 1 ) / 2 from the first mixed signal (c-1), and the second filter 630 The second band signal Acos ((ω om ) t-φ 1 ) / 2 is extracted from the first mixed signal (c-2).
여기서 제1필터(620)로는 BPF, 제2필터(630)로는 저역통과필터(LPF: Low Pass Filter)를 사용할 수 있으나 본 발명이 반드시 이에 한정되지는 않는다.The first filter 620 may be a BPF and the second filter 630 may be a low pass filter (LPF), but the present invention is not limited thereto.
제2믹서(640)는 변조주파수(fm) 및 초음파 수신신호 대비 제3위상차(φ3)차를 갖는 발진신호(cos(ωmt)-φ3)를 제1대역신호와 혼합하여 제2믹싱신호((Acos((ωot)+φ13)/4 + Acos((ω1+2ωm)t+φ13)/4))를 출력하고(d-1) 제3믹서(650)는 변조주파수(fm) 및 초음파 수신신호 대비 동일한 위상을 갖는 발진신호(cos(ωmt))를 제2저대역신호와 혼합하여 제3믹싱신호(Acos((ωot)-φ1))/4 + Acos((ω1-2ωm)t-φ1)/4)를 출력한다(d-2).The second mixer 640 mixes the oscillation signal cos (ω m t) -φ 3 having a third phase difference φ 3 with respect to the modulation frequency fm and the ultrasonic wave received signal and combines the first band signal with the second band signal. A mixing signal ((Acos ((ω o t) + φ 1 + φ 3 ) / 4 + Acos ((ω 1 + 2ω m ) t + φ 13 ) / 4)) is output (d-1) The third mixer 650 mixes the oscillation signal cos (ω m t) having the same phase as the modulation frequency fm and the ultrasonic reception signal with the second low band signal to mix the third mixing signal Acos ((ω o t) -φ 1 )) / 4 + Acos ((ω 1 -2ω m ) t-φ 1 ) / 4) is output (d-2).
빔포밍신호 생성부(660)는 제2믹싱신호 및 제3믹싱신호를 합산하고(e) 저대역신호를 추출한다(f). 빔포밍신호 생성부(660)에서 추출된 신호는 (Acos((ωot)+φ13)/4 + Acos((ωot)-φ1)/4)이다. 여기서 (φ213)가 되도록 φ3를 설정한다.The beamforming signal generator 660 sums the second mixed signal and the third mixed signal (e) and extracts the low band signal (f). The signal extracted by the beamforming signal generator 660 is (Acos ((ω o t) + φ 1 + φ 3 ) / 4 + Acos ((ω o t) −φ 1 ) / 4). Here, φ 3 is set so that (φ 2 = φ 1 + φ 3 ).
여기서, 제1위상차(φ1)는 제1대역신호의 수신부 및 빔포밍지점의 경로차 및 주파수를 고려한 위상차이고, 제3위상차(φ3)는 제2대역신호의 수신부 및 빔포밍지점의 경로차 및 주파수를 고려한 위상차(φ2)와 제1위상차(φ1)와의 차분값으로 설정할 수 있다.Here, the first phase difference φ 1 is a phase difference considering the path difference and the frequency of the receiver and the beamforming point of the first band signal, and the third phase difference φ 3 is the path of the receiver and beamforming point of the second band signal. The difference between the phase difference φ 2 considering the difference and the frequency and the first phase difference φ 1 can be set.
즉, 제1경로에 따른 위상차는 φ1으로 구하고 제2경로에 따른 위상차인 φ2의 경우에는 위상룩업테이블을 사용하여 위상차를 참조함에 있어서 (φ321)의 식에 의한 값으로 위상룩업테이블을 저장함으로써 소요되는 저장공간의 양이 줄어들 수 있다.That is, the phase difference according to the first path is obtained as φ 1 , and in the case of φ 2 which is the phase difference according to the second path, the phase difference is referred to by using the phase lookup table according to the formula of (φ 3 = φ 21 ). By storing the phase lookup table as a value, the amount of storage space required can be reduced.
도 8은 도 3의 빔 송수신부(310)를 나타내는 제3 예시도를 나타낸 도면이다.8 is a diagram illustrating a third exemplary view of the beam transceiver 310 of FIG. 3.
도 8은 도 5의 BPF를 LPF 및 감산기로 대치함으로써 설계를 더욱 용이하게 구현한 광대역 위상회전 회로를 나타낸다.FIG. 8 shows a broadband phase rotation circuit that is more easily implemented by replacing the BPF of FIG. 5 with an LPF and a subtractor.
도 8을 도 3과 함께 참조하면, 본 발명의 제3 실시예에 따른 빔 수신부는 제1믹서(810), 제1필터(820), 제2필터(830), 제2믹서(840), 제3믹서(850), 빔포밍신호 생성부(860) 및 감산기(870)를 포함한다.Referring to FIG. 8 together with FIG. 3, the beam receiver according to the third embodiment of the present invention may include a first mixer 810, a first filter 820, a second filter 830, a second mixer 840, The third mixer 850 includes a beamforming signal generator 860 and a subtractor 870.
도 9는 본 발명의 제3 실시예에 따른 빔 수신부에서 발생하는 신호의 주파수대역을 예시한 도면이다. 여기서도, 수신신호의 대상체로부터 반사된 수신신호의 주파수(fo)는 2.5 MHz, 신호 혼합에 사용되는 발진신호의 변조주파수(fm)는 5 MHz라고 가정한다.9 is a diagram illustrating a frequency band of a signal generated in the beam receiver according to the third embodiment of the present invention. Here, it is also assumed that the frequency fo of the received signal reflected from the object of the received signal is 2.5 MHz, and the modulation frequency fm of the oscillation signal used for signal mixing is 5 MHz.
도 9 및 도 8을 함께 참조하면서 본 발명의 제3 실시예에 따른 빔 수신부를 설명한다.9 and 8, a beam receiver according to a third embodiment of the present invention will be described.
제1믹서(810)는 소정의 변조주파수(fm) 및 대상체로부터 반사된 초음파 수신신호(Acos(ωot)) 대비 제1위상차(φ1)를 갖는 발진신호(cos(ωmt)+φ1)를 초음파 수신신호(a)와 혼합하여 제1믹싱신호(Acos((ωom)t-φ1)/2 + Acos((ωom)t+φ1)/2)를 출력한다(b).The first mixer 810 has an oscillation signal cos (ω m t) + having a predetermined modulation frequency fm and a first phase difference φ 1 relative to the ultrasonic wave received signal Acos (ω o t) reflected from the object. φ 1 ) is mixed with the ultrasonic reception signal a to mix the first mixing signal Acos ((ω om ) t-φ 1 ) / 2 + Acos ((ω o + ω m ) t + φ 1 ) / Output 2) (b).
제1필터(820)는 제1믹싱신호로부터 제1대역신호(Acos((ωom)t+φ1)/2)를 추출하고, 제2필터(830)는 제1믹싱신호로부터 제2대역신호(Acos((ωom)t-φ1)/2)를 추출한다(c-1).The first filter 820 extracts the first band signal Acos ((ω o + ω m ) t + φ 1 ) / 2 from the first mixed signal, and the second filter 830 extracts the first mixed signal from the first mixed signal. The second band signal Acos ((ω om ) t-φ 1 ) / 2 is extracted (c-1).
감산기(870)는 제1대역신호로부터 제2대역신호를 감산하여 감산신호를 생성한다(c-2). 도 8은 도 5의 BPF를 LPF 및 감산기로 대치한 도면이므로 도 9에서의 감산신호는 도 7에서의 제1대역신호의 파형과 유사하다.The subtractor 870 subtracts the second band signal from the first band signal to generate a subtracted signal (c-2). 8 is a diagram in which the BPF of FIG. 5 is replaced with an LPF and a subtractor, so the subtracted signal in FIG. 9 is similar to the waveform of the first band signal in FIG. 7.
여기서 제1필터(820) 및 제2필터(830)로는 저역통과필터(LPF: Low Pass Filter)를 사용할 수 있으나 본 발명이 반드시 이에 한정되지는 않는다.Here, a low pass filter (LPF) may be used as the first filter 820 and the second filter 830, but the present invention is not limited thereto.
제2믹서(840)는 변조주파수(fm) 및 초음파 수신신호 대비 제3위상차(φ3)차를 갖는 발진신호(cos(ωmt)-φ3)를 제1대역신호와 혼합하여 제2믹싱신호((Acos((ωot)+φ13)/4 + Acos((ω1+2ωm)t+φ13)/4))를 출력하고(d-2) 제3믹서(850)는 변조주파수(fm) 및 초음파 수신신호 대비 동일한 위상을 갖는 발진신호(cos(ωmt))를 제2저대역신호와 혼합하여 제3믹싱신호(Acos((ωot)-φ1))/4 + Acos((ω1-2ωm)t-φ1)/4)를 출력한다(d-1).The second mixer 840 mixes the oscillation signal cos (ω m t) -φ 3 having a third phase difference φ 3 with respect to the modulation frequency fm and the ultrasonic wave reception signal and mixes the first band signal with the second band signal. A mixing signal ((Acos ((ω o t) + φ 1 + φ 3 ) / 4 + Acos ((ω 1 + 2ω m ) t + φ 13 ) / 4)) is output (d-2) The third mixer 850 mixes the oscillation signal cos (ω m t) having the same phase as that of the modulation frequency fm and the ultrasonic reception signal with the second low band signal, thereby mixing the third mixing signal Acos ((ω o t) -φ 1 )) / 4 + Acos ((ω 1 -2ω m ) t-φ 1 ) / 4) is output (d-1).
빔포밍신호 생성부(860)는 제2믹싱신호 및 제3믹싱신호를 합산하고(e) 저대역신호를 추출한다(f). 빔포밍신호 생성부(860)에서 추출된 신호는 (Acos((ωot)+φ13)/4 + Acos((ωot)-φ1)/4)이다. 여기서 (φ213)가 되도록 φ3를 설정한다.The beamforming signal generator 860 sums the second mixed signal and the third mixed signal (e) and extracts the low band signal (f). The signal extracted by the beamforming signal generator 860 is (Acos ((ω o t) + φ 1 + φ 3 ) / 4 + Acos ((ω o t) −φ 1 ) / 4). Here, φ 3 is set so that (φ 2 = φ 1 + φ 3 ).
여기서, 제1위상차(φ1)는 제1대역신호의 수신부 및 빔포밍지점의 경로차 및 주파수를 고려한 위상차이고, 제3위상차(φ3)는 제2대역신호의 수신부 및 빔포밍지점의 경로차 및 주파수를 고려한 위상차(φ2)와 제1위상차(φ1)와의 차분값으로 설정할 수 있다.Here, the first phase difference φ 1 is a phase difference considering the path difference and the frequency of the receiver and the beamforming point of the first band signal, and the third phase difference φ 3 is the path of the receiver and beamforming point of the second band signal. The difference between the phase difference φ 2 considering the difference and the frequency and the first phase difference φ 1 can be set.
즉, 제1경로에 따른 위상차는 φ1으로 구하고 제2경로에 따른 위상차인 φ2의 경우에는 위상룩업테이블을 사용하여 위상차를 참조함에 있어서 (φ321)의 식에 의한 값으로 위상룩업테이블을 저장함으로써 소요되는 저장공간의 양이 줄어들 수 있다.That is, the phase difference according to the first path is obtained as φ 1 , and in the case of φ 2 which is the phase difference according to the second path, the phase difference is referred to by using the phase lookup table according to the formula of (φ 3 = φ 21 ). By storing the phase lookup table as a value, the amount of storage space required can be reduced.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.
이상에서 설명한 바와 같이 본 발명은, 초음파 의료진단장치에서 수신신호를 이용한 빔포밍시 수신신호의 각 주파수 성분마다 동일한 크기의 위상회전을 시킴으로써 영상의 품질을 개선하고 저전력으로 구현하는 효과가 있어 유용한 발명이다.As described above, the present invention has an effect of improving image quality and realizing low power by performing phase rotation of the same magnitude for each frequency component of a received signal when beamforming using the received signal in an ultrasonic medical diagnostic apparatus. to be.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2011년 01월 21일 한국에 출원한 특허출원번호 제 10-2011-0006461호 및 2011년 12월 20일 한국에 출원한 특허출원번호 제 10-2011-0138527 호에 대해 미국 특허법 119(a)조(35 U.S.C § 119(a))에 따라 우선권을 주장하면, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application is filed with the Korean Patent Application No. 10-2011-0006461 filed in Korea on January 21, 2011 and the patent application No. 10-2011-0138527 filed in Korea on December 20, 2011. If priority is claimed under section (a) (35 USC § 119 (a)), all of that is incorporated by reference into this patent application. In addition, if this patent application claims priority to a country other than the United States for the same reason, all its contents are incorporated into this patent application by reference.

Claims (9)

  1. 대상체로부터 반사된 수신신호로부터 제1대역신호를 추출하는 제1필터;A first filter extracting a first band signal from the received signal reflected from the object;
    대상체로부터 반사된 수신신호로부터 제2대역신호를 추출하는 제2필터;A second filter extracting a second band signal from the received signal reflected from the object;
    소정의 변조주파수 및 상기 수신신호 대비 제1위상차(φ1)를 갖는 발진신호를 상기 제1대역신호와 혼합하여 제1믹싱신호를 출력하는 제1믹서;A first mixer for outputting a first mixing signal by mixing an oscillation signal having a predetermined modulation frequency and a first phase difference φ 1 with respect to the received signal with the first band signal;
    상기 변조주파수 및 상기 수신신호 대비 제2위상차(φ2)를 갖는 발진신호를 상기 제2대역신호와 혼합하여 제2믹싱신호를 출력하는 제2믹서;A second mixer for outputting a second mixing signal by mixing the oscillation signal having the modulation frequency and a second phase difference (φ 2 ) with respect to the received signal with the second band signal;
    상기 제1믹싱신호로부터 저주파대역성분을 추출하여 제1저대역출력을 발생하는 제1저대역필터;A first low band filter extracting a low frequency band component from the first mixed signal to generate a first low band output;
    상기 제2믹싱신호로부터 저주파대역성분을 추출하여 제2저대역출력을 발생하는 제2저대역필터;A second low band filter extracting a low frequency band component from the second mixed signal to generate a second low band output;
    상기 변조주파수 및 상기 수신신호 대비 동일한 위상을 갖는 발진신호를 상기 제1저대역출력과 혼합하여 제3믹싱신호를 출력하는 제3믹서;A third mixer for mixing the oscillation signal having the same phase as the modulation frequency and the received signal with the first low band output to output a third mixing signal;
    상기 변조주파수 및 상기 수신신호 대비 동일한 위상을 갖는 발진신호를 상기 제2저대역출력과 혼합하여 제4믹싱신호를 출력하는 제4믹서; 및A fourth mixer outputting a fourth mixing signal by mixing the oscillation signal having the same phase as the modulation frequency and the received signal with the second low band output; And
    상기 제3믹싱신호와 상기 제4믹싱신호를 저대역 필터링한 후 합산하여 빔포밍신호를 생성하는 빔포밍신호 생성부A beamforming signal generator configured to generate a beamforming signal by adding the third mixed signal and the fourth mixed signal after low-band filtering and summing
    를 포함하는 것을 특징으로 하는 의료진단장치.Medical diagnostic apparatus comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1필터 및 상기 제2필터는 각각 대역통과필터(BPF)를 사용하는 것을 특징으로 하는 의료진단장치.And the first filter and the second filter each use a band pass filter (BPF).
  3. 제1항에 있어서,The method of claim 1,
    상기 제1위상차(φ1)는 제1대역신호의 수신부 및 빔포밍지점의 경로차 및 주파수를 고려한 위상차이고 상기 제2위상차(φ2)는 제2대역신호의 수신부 및 빔포밍지점의 경로차 및 주파수를 고려한 위상차인 것을 특징으로 하는 의료진단장치.The first phase difference φ 1 is a phase difference considering the path difference and the frequency of the receiver and the beamforming point of the first band signal, and the second phase difference φ 2 is the path difference between the receiver and the beamforming point of the second band signal. And a phase difference in consideration of frequency.
  4. 소정의 변조주파수 및 대상체로부터 반사된 수신신호 대비 제1위상차(φ1)를 갖는 발진신호를 상기 수신신호와 혼합하여 제1믹싱신호를 출력하는 제1믹서;A first mixer for outputting a first mixed signal by mixing an oscillation signal having a predetermined modulation frequency and a first phase difference φ 1 with respect to the received signal reflected from the object with the received signal;
    상기 제1믹싱신호로부터 제1대역신호를 추출하는 제1필터;A first filter extracting a first band signal from the first mixed signal;
    상기 제1믹싱신호로부터 제2대역신호를 추출하는 제2필터;A second filter extracting a second band signal from the first mixed signal;
    상기 변조주파수 및 상기 수신신호 대비 제3위상차(φ3)를 갖는 발진신호를 상기 제1대역신호와 혼합하여 제2믹싱신호를 출력하는 제2믹서;A second mixer for outputting a second mixing signal by mixing an oscillation signal having a modulation frequency and a third phase difference (φ 3 ) with respect to the received signal with the first band signal;
    상기 변조주파수 및 상기 수신신호 대비 동일한 위상을 갖는 발진신호를 상기 제2저대역신호와 혼합하여 제3믹싱신호를 출력하는 제3믹서; 및A third mixer for mixing the oscillation signal having the same phase as the modulation frequency and the received signal with the second low band signal to output a third mixing signal; And
    상기 제2믹싱신호 및 상기 제3믹싱신호를 합산하고 저대역신호를 추출하는 빔포밍신호 생성부A beamforming signal generator configured to sum the second mixed signal and the third mixed signal and extract a low band signal;
    를 포함하는 것을 특징으로 하는 의료진단장치.Medical diagnostic apparatus comprising a.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 제1필터는 대역통과필터(BPF), 상기 제2필터는 저역통과필터(LPF)를 사용하는 것을 특징으로 하는 의료진단장치.The first filter is a band pass filter (BPF), and the second filter is a low pass filter (LPF).
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 제1위상차(φ1)는 제1대역신호의 수신부 및 빔포밍지점의 경로차 및 주파수를 고려한 위상차이고, 상기 제3위상(φ3)는 제2대역신호의 수신부 및 빔포밍지점의 경로차 및 주파수를 고려한 위상차와 상기 제1위상차(φ1)와의 차분값인 것을 특징으로 하는 의료진단장치.The first phase difference φ 1 is a phase difference considering the path difference and the frequency of the receiver and the beamforming point of the first band signal, and the third phase φ 3 is the path of the receiver and beamforming point of the second band signal. And a difference value between the phase difference considering the difference and the frequency and the first phase difference φ 1 .
  7. 소정의 변조주파수 및 대상체로부터 반사된 수신신호 대비 제1위상차(φ1)를 갖는 제1위상발진신호를 제1위상발생기로부터 수신하여 상기 수신신호와 혼합하여 제1믹싱신호를 출력하는 제1믹서;A first mixer which receives a first phase oscillation signal having a first phase difference φ 1 with respect to a received signal reflected from an object from a first phase generator, mixes the received signal and outputs a first mixed signal. ;
    상기 제1믹싱신호로부터 제1대역신호를 추출하는 제1필터;A first filter extracting a first band signal from the first mixed signal;
    상기 제1믹싱신호로부터 제2대역신호를 추출하는 제2필터;A second filter extracting a second band signal from the first mixed signal;
    상기 제1대역신호로부터 상기 제2대역신호를 감산하여 감산신호를 생성하는 감산기;A subtractor for generating a subtracted signal by subtracting the second band signal from the first band signal;
    상기 변조주파수 및 상기 수신신호 대비 제3위상차(φ3)를 갖는 발진신호를 상기 가산신호와 혼합하여 제2믹싱신호를 출력하는 제2믹서;A second mixer for outputting a second mixing signal by mixing the oscillation signal having the modulation frequency and the third phase difference (φ 3 ) with respect to the received signal with the addition signal;
    상기 변조주파수 및 상기 수신신호 대비 동일한 위상을 갖는 발진신호를 상기 제2대역신호와 혼합하여 제3믹싱신호를 출력하는 제3믹서; 및A third mixer for mixing the oscillation signal having the same phase as the modulation frequency and the received signal with the second band signal to output a third mixing signal; And
    상기 제2믹싱신호 및 상기 제3믹싱신호를 합산하고 저대역신호를 추출하는 빔포밍신호 생성부A beamforming signal generator configured to sum the second mixed signal and the third mixed signal and extract a low band signal;
    를 포함하는 것을 특징으로 하는 의료진단장치.Medical diagnostic apparatus comprising a.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 제1필터 및 상기 제2필터는 각각 저역통과필터(LPF)를 사용하는 것을 특징으로 하는 의료진단장치.And the first filter and the second filter each use a low pass filter (LPF).
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 제1위상차(φ1)는 제1대역신호의 수신부 및 빔포밍지점의 경로차 및 주파수를 고려한 위상차이고, 상기 제3위상(φ3)는 제2대역신호의 수신부 및 빔포밍지점의 경로차 및 주파수를 고려한 위상차와 상기 제1위상차(φ1)와의 차분값인 것을 특징으로 하는 의료진단장치.The first phase difference φ 1 is a phase difference considering the path difference and the frequency of the receiver and the beamforming point of the first band signal, and the third phase φ 3 is the path of the receiver and beamforming point of the second band signal. And a difference value between the phase difference considering the difference and the frequency and the first phase difference φ 1 .
PCT/KR2011/009879 2011-01-21 2011-12-20 Medical diagnosis apparatus WO2012099341A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20110006461 2011-01-21
KR10-2011-0006461 2011-01-21
KR1020110138527A KR101310930B1 (en) 2011-01-21 2011-12-20 Medical Diagnostic Apparatus
KR10-2011-0138527 2011-12-20

Publications (2)

Publication Number Publication Date
WO2012099341A2 true WO2012099341A2 (en) 2012-07-26
WO2012099341A3 WO2012099341A3 (en) 2012-10-11

Family

ID=46516194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009879 WO2012099341A2 (en) 2011-01-21 2011-12-20 Medical diagnosis apparatus

Country Status (1)

Country Link
WO (1) WO2012099341A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077230A (en) * 2019-12-16 2020-04-28 华南理工大学 Ultrasonic detection method and device for transmitting reference frequency discrimination

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030007060A (en) * 2001-07-09 2003-01-23 마츠시타 덴끼 산교 가부시키가이샤 Ultrasonic tomography apparatus and ultrasonic tomography method
JP2004113364A (en) * 2002-09-25 2004-04-15 Hitachi Medical Corp Ultrasonic imaging device and ultrasonic imaging method
KR20090121739A (en) * 2008-05-23 2009-11-26 주식회사 메디슨 Ultrasound system and signal filtering method
JP2010110503A (en) * 2008-11-07 2010-05-20 Aloka Co Ltd Ultrasonic diagnosing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030007060A (en) * 2001-07-09 2003-01-23 마츠시타 덴끼 산교 가부시키가이샤 Ultrasonic tomography apparatus and ultrasonic tomography method
JP2004113364A (en) * 2002-09-25 2004-04-15 Hitachi Medical Corp Ultrasonic imaging device and ultrasonic imaging method
KR20090121739A (en) * 2008-05-23 2009-11-26 주식회사 메디슨 Ultrasound system and signal filtering method
JP2010110503A (en) * 2008-11-07 2010-05-20 Aloka Co Ltd Ultrasonic diagnosing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077230A (en) * 2019-12-16 2020-04-28 华南理工大学 Ultrasonic detection method and device for transmitting reference frequency discrimination
CN111077230B (en) * 2019-12-16 2020-12-22 华南理工大学 Ultrasonic detection method and device for transmitting reference frequency discrimination

Also Published As

Publication number Publication date
WO2012099341A3 (en) 2012-10-11

Similar Documents

Publication Publication Date Title
CA2935422C (en) High frequency array ultrasound system
WO2015080317A1 (en) Method and apparatus for compounding ultrasonic images
JP2002065664A (en) Ultrasonic diagnostic apparatus and process method of ultrasonic signal
JP2002233529A (en) Wired frequency division multiplex communication for ultrasonic probe
JP4039642B2 (en) Ultrasonic beam forming device
JP3828744B2 (en) Ultrasound imaging device
WO2015133677A1 (en) Device for reducing speckle in ultrasound image
CN114072062A (en) Method and apparatus for processing ultrasound signals
JP2728183B2 (en) Bandwidth sampling scheme for digital signal focusing in array-type imaging systems
WO2012099341A2 (en) Medical diagnosis apparatus
WO2013002480A1 (en) Vector interpolation device and method for an ultrasonic wave image
KR101310930B1 (en) Medical Diagnostic Apparatus
WO2016060335A1 (en) Method for reducing side lobe of ultrasound image
WO2015080318A1 (en) Beamforming method and apparatus using unfocused ultrasonic waves
JP3134618B2 (en) Ultrasonic signal processor
KR101517751B1 (en) Ultrasound system and signal filtering method
WO2015080315A1 (en) Ultrasonic diagnostic apparatus and method
WO2015076439A1 (en) Doppler apparatus and method for acquiring doppler mode data
WO2013100245A1 (en) Cover-type tester, channel correcting method and ultrasonic device using same
JP2009178261A (en) Ultrasonic diagnostic equipment
US4984465A (en) Ultrasound imaging system with common-mode noise rejection probe
WO2015041380A1 (en) Harmonic imaging method and ultrasound medical device for same
WO2014185560A1 (en) Transducer having front-end processor, image diagnosis device and method for processing signal thereof
WO2018155772A1 (en) Ultrasonic probe
WO2016159417A1 (en) Image processing device and method removing afterimage of ultrasonic image

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856152

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856152

Country of ref document: EP

Kind code of ref document: A2