WO2012099291A1 - Propulsion device for moving body using principle of progressive waves and method thereof - Google Patents

Propulsion device for moving body using principle of progressive waves and method thereof Download PDF

Info

Publication number
WO2012099291A1
WO2012099291A1 PCT/KR2011/001010 KR2011001010W WO2012099291A1 WO 2012099291 A1 WO2012099291 A1 WO 2012099291A1 KR 2011001010 W KR2011001010 W KR 2011001010W WO 2012099291 A1 WO2012099291 A1 WO 2012099291A1
Authority
WO
WIPO (PCT)
Prior art keywords
traveling wave
propulsion device
propulsion
driving
force
Prior art date
Application number
PCT/KR2011/001010
Other languages
French (fr)
Korean (ko)
Inventor
김달현
Original Assignee
Kim Dal Hyun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110005604A external-priority patent/KR101182979B1/en
Application filed by Kim Dal Hyun filed Critical Kim Dal Hyun
Publication of WO2012099291A1 publication Critical patent/WO2012099291A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/30Propulsive elements directly acting on water of non-rotary type
    • B63H1/37Moving-wave propellers, i.e. wherein the propelling means comprise a flexible undulating structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/08Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using travelling waves, i.e. Rayleigh surface waves

Definitions

  • the present invention relates to a propulsion device for a moving body using a traveling wave principle, and more particularly, to a propulsion device in which a plurality of variable members are provided so as to be continuously arranged, And the driving force provided to the adjacent deformable member is controlled to have a phase difference with respect to each other so that the driving force of the propelling device
  • a traveling wave whose shape changes periodically according to time is implemented and a traveling wave direction force is applied to a fluid or a fixed object by the traveling wave and a reaction force is generated by the traveling wave direction, .
  • a moving body propels in a fluid such as a gas or a liquid acts on a fluid in a direction opposite to a propelling direction (hereinafter referred to as " reverse " direction) of the moving body by reciprocating motion or rotational motion of the propelling device, It is the principle of action and reaction that generate momentum by reaction.
  • the motion of the propulsion device includes a propulsion motion which acts on the fluid.
  • a propulsion motion which acts on the fluid.
  • a propulsion movement a movement in which the nose is immersed in water and acts in the opposite direction to the water
  • a movement in which the nose moves in all directions on the water is a return movement.
  • the propulsive force of the boat is generated only by the propulsion movement in which the nog is immersed in the water and forces the water in the reverse direction.
  • the return motion in which the nose moves in all directions on the water is for the next propulsion motion and does not generate propulsion force.
  • the reverse propulsive force generated by the return movement can be neglected compared with the propulsive force, but propulsion and return motion in the same fluid
  • the reverse thrust generated by the return motion is of a size that can not be ignored, which is an important consideration in the design of the propulsion device.
  • the energy-efficient propulsion device should be designed so that the energy required for returning motion is minimized or the propulsion motion is continuously performed without returning motion.
  • the propeller method is a structure in which several wings are fixed to the rotating body at all angles and at a constant inclination angle, and a reverse force is applied to the fluid by the rotation of the wing, and the moving body is propelled by the reaction.
  • the speed and propulsion of the moving body are controlled by the number of revolutions of the propeller.
  • Such a propeller system is one of the most popular propulsion systems for continuous propulsion without return motion.
  • the inevitable rotational motion causes energy wastage.
  • the fluid is rotated in the same direction as the wing rotation direction, and the spiral motion is performed in the opposite direction. At this time, only the energy pushing the fluid in the opposite direction generates the thrust, and the energy that rotates the fluid does not generate the thrust.
  • the energy that rotates the fluid also causes the moving body to rotate in the opposite direction or vortex in the fluid to affect the propulsion of the moving body.
  • the force acting on the fluid varies from the axis of rotation to the radius of rotation of the wing.
  • This force is to the axis of rotation, the smaller and larger the force becomes.
  • This causes an imbalance in the propulsive forces generated on the propeller rotating surface.
  • the inclination angle of the wing is designed to vary according to the turning radius, but it is not compensated for all the speed of the moving object.
  • the propeller method has a fixed wing area and an inclination angle, and thus rotates the wing at a high speed in order to increase the propulsive force.
  • the fluid pressure around the propeller is lower than the vaporization pressure of the fluid, the fluid is vaporized and bubbles are generated. This is called cavitation, which reduces propulsion of the moving body, damages the propeller, and causes vibration and noise.
  • the present invention has been proposed in order to solve the problems of the prior art, and unlike the conventional propulsion device in which propulsion is generated by reciprocating motion or rotational motion of the propulsion device, the shape of the propulsion device changes with time, And a propulsion system in which propulsion is generated by the propulsion system.
  • wave theory is a theory that describes the phenomenon of transferring energy by vibrational motion of a medium.
  • a simple example is that a violin string's vibration corresponds to a standing wave, and a sea wave corresponds to a traveling wave. All of these examples are phenomena in which energy is transferred by the oscillation motion of the medium.
  • an object may vibrate in a medium such as a fluid.
  • a furnace which is the propulsion unit of a boat
  • the movement of a string when it is held up at one end of the string and shook it up and down both cause the object to vibrate in the fluid.
  • the motion of the furnace is a movement corresponding to a Standing Wave in which the position of the boat (the end of the furnace) and the position of the node (middle portion of the boat fixed to the boat) are unchanged. It is a movement corresponding to a progressive wave.
  • the movement of the rope moves the position of the rope opposite to the traveling wave direction. If you run it in a fluid that has the same mass and width as the cord, or a fluid with a specific gravity, such as water, the position of the cord is shifted more. This is because the fluid is pushed by the traveling wave of the cord and the cord is moved by the reaction.
  • the propulsion method of the present invention is a method in which the propulsive force is generated by the shape change of the propulsion device, similar to the traveling wave of the cord.
  • the present invention provides a propulsion device in which a plurality of variable members are continuously arranged to change the shape of the propulsion device, and each of the deformable members is driven by a plurality of driving forces provided by the driving portions,
  • the control unit controls the plurality of driving forces provided by the driving unit to vary periodically with time so that the driving force provided to the adjacent deformable members is controlled to be phase difference with respect to each other, Whereby the propulsion device is continuously deformed with time.
  • an object of the present invention is to provide an effective propulsion device and method for a moving object using traveling wave principle that provides continuous propulsion motion without rotational motion and return motion in motion of the propulsion device.
  • a driving apparatus for a vehicle comprising: a driving unit for providing a plurality of driving forces and controlling the driving forces to periodically change with time, Wherein the plurality of variable members are continuously arranged and each variable member is driven by the driving force provided by the driving unit so that the propulsion unit is deformed to a desired shape by a plurality of driving forces provided by the driving unit, And a propulsion device in which a progressive wave is periodically deformed to realize a progressive wave.
  • a propulsion method for a moving body using a traveling wave principle comprising: (a) generating and controlling a plurality of different driving forces in a driving unit so that the propulsion unit is deformed to a desired shape, Respectively; (b) deforming the plurality of deformable members, respectively, when a plurality of driving forces having different phase differences are provided from the driving unit to the plurality of deformable members of the propulsion unit, respectively; (c) controlling a plurality of driving forces provided to each deformable member to change periodically with time, thereby causing the propelling device to be periodically deformed with time; (d) implementing a progressive wave continuously running according to characteristics of the driving force provided to the propulsion device; And (e) a wavefront of a traveling wave implemented in the propulsion device applies a reverse force to a fluid or a fixed object in contact with the propulsion device, and a reaction force is generated by the reaction.
  • a plurality of driving forces are generated in the driving part according to a desired form of the propulsion device, and the phase difference of the driving force is controlled to be different from each other, ,
  • a progressive wave is implemented in a propulsion device, a force acting in a reverse direction is applied to a fluid or a fixed object by the traveling wave, and a reaction force is generated by the reaction.
  • the present invention provides an energy-efficient propulsion device for a mobile body by eliminating energy loss due to rotational or reciprocating motion of an existing propulsion device.
  • FIG. 1 is a view for explaining that one deformable member 10, which is an electroactive substance, is deformed in response to a power source.
  • FIG. 2 is a view for explaining a propulsion apparatus 20 in which a plurality of deformable members 10 are arranged on a one-dimensional line.
  • Fig. 3 is an overall configuration diagram of a propulsion device for a moving body using the traveling wave principle according to the present invention
  • Figure 4 is a view for explaining a plurality of power source E i provided by the driving device 20 in the driver 30.
  • FIG. 5 is a view for explaining the relationship between the propulsion device 20 and a plurality of power sources E i ;
  • FIG. 6 is a view for explaining a process in which a plurality of power sources E i and a traveling wave y change with time;
  • FIG. 7 is a diagram illustrating a process in which wavefront 71 of traveling wave y implemented in propulsion device 20 exerts a force on fluid 72;
  • FIG. 8 is a view for explaining the kind of the one-dimensional traveling wave propulsion device 20 in which the deformable members 10 are arranged on a one-dimensional line.
  • FIG 9 is a view for explaining a two-dimensional traveling wave propulsion device 90 in which the deformable members 10 are arranged on a two-dimensional plane.
  • FIG. 10 is a view for explaining a three-dimensional traveling wave propulsion device 100 in which a deformable member 10 is arranged in a three-dimensional space.
  • FIG. 11 is a flowchart illustrating a method of driving a moving object using a traveling wave principle according to an embodiment of the present invention.
  • variable member 11 longitudinal section of the deformable member
  • driving unit 31 power source
  • controller 33 multiple output device
  • the traveling wave propulsion device of the present invention is a propulsion device in which the shape is periodically changed to generate propulsive force.
  • the propulsion device is configured such that a plurality of deformable members are continuously arranged, and the propulsion device is periodically deformed by a plurality of driving forces provided by the driving portion.
  • One of such propulsion systems is to provide a mechanical structure that converts rotational motion into wave motion.
  • the propulsion device having such a mechanical structure is provided with a plurality of variable members such as a conventional reciprocating propulsion device, that is, a boat furnace, arranged continuously, and the reciprocating motions of the respective deformable members are controlled so as to be phase- It is a method to implement traveling wave.
  • Another method is a method of using an electroactive substance as a material of the deformable member in the same manner as described in the embodiment of the present invention. It is preferable that the electroactive substance is used as a variable member of the propulsion device in the present invention which provides a propulsion device which is easily deformed by a power source and changes its shape.
  • Typical electroactive substances developed so far include carbon nanotubes, electroactive polymers, shape memory alloys, and electroactive ceramics. , And various other materials are being studied.
  • a propelling device is provided with a deformable member using an electroactive substance, and a method in which a power source is provided as a driving force for driving the deformable member is described.
  • 1 is a diagram for explaining that one deformable member 10, which is an electroactive substance, is deformed (bent) in response to a power source.
  • the propulsion device composed of one deformable member 10 is similar to the conventional propulsion device that reciprocates according to the input power source.
  • FIG. 2 is a view for explaining a propulsion device 20 in which a plurality of deformable members 10 are arranged on a one-dimensional line.
  • the propulsion device 20 is configured such that a plurality of the deformable members 10 are successively arranged on a one-dimensional line and adjacent deformable members 10 are fixed to each other using methods known in the art,
  • the members 10 are provided with different power sources as shown in Fig. 3 and are deformed independently of each other.
  • the method of continuously arranging the deformable members can be easily carried out in accordance with the present invention by a person having ordinary skill in the art, and it is natural that the difference of the arranging method is within the scope of the present invention.
  • the propulsion unit 20 is deformed into various shapes according to the input power source. Since each power source changes with time, the shape of the propulsion device 20 also changes with time. Further, when each of the power supplies is controlled to have a phase difference with each other and the frequency and amplitude are controlled and provided to the propulsion device 20, progressive wave motion that progresses with time is implemented in the propulsion device 20.
  • FIG. 3 is an overall configuration diagram of a propulsion device for a moving object using the traveling wave principle according to the present invention.
  • the propulsion device of the moving object using the traveling wave principle includes a plurality of deformable members 10 that are continuously arranged using an electroactive substance, and adjacent deformable members 10 A propulsion device 20 fixed to each other using methods known in the art and being deformed into a desired shape when a different controlled power source is provided to each deformable member 10; And a driving unit 30 for providing the variable member 10 of the propulsion device 20 with a plurality of power sources controlled so that the propulsion device 20 is changed to a desired shape.
  • FIG. 4 is a view for explaining a plurality of power sources E i provided to the propulsion device 20 in the driving unit 30 of FIG.
  • the driving unit 30 includes a multiple output unit 33 connected to the power source 31 at one side and a plurality of power sources E i connected to the controller 32 at the other side.
  • the power is the signal for controlling each of the waveform and the phase of the power source E i to provide a common power supply to the multi-output unit 33 is supplied, the controller 32 in the driving device 20, a multi-output unit 33, .
  • the multiple output device 33 generates and supplies to the propulsion device 20 a plurality of power sources E i whose waveforms and phases are controlled in accordance with the power source and control signal input from the power source 31 and the controller 32, respectively .
  • FIG. 5 is a diagram for explaining the relationship between the propulsion device 20 and a plurality of power sources E i .
  • the power source E 1 is connected to the first variable member 10 of the propulsion device 20
  • the power source E 2 is connected to the second variable member 10
  • the power source E i is connected to the i-th variable are respectively connected to a member (10)
  • ⁇ i is the phase difference between E i to E 1.
  • each variable-member 10 of Figure propulsion device 20 when the plurality of power source E i that make up forms, such as in 5 (b) are each provided in the deformable member 10 of the driving device 20 is independently The propulsion device 20 is deformed as shown in FIG. 5 (a).
  • each deformable member is adjacent the deformable member yet permit the deformation independently are bound to each other deformation, so as a whole, and this strain as one strain, and variants of the plurality of power source E i of Figure 5 constituting (b ). ≪ / RTI >
  • Equation (1) the function f i is a power supply provided to the i-th variable member 10 arranged in the propulsion unit 20, and represents a power source in a periodical form according to time.
  • each deformable member 10 When the power source E i provided to the propulsion device 20 is controlled according to Equation 1 and provided to each of the i-th deformable member 10 of the propulsion device 20, each deformable member 10 generates an input power E i And the deformation of the deformable member 10 changes periodically with time because the power source E i varies periodically with time. In this modification, the shape of the propulsion device 20 is periodically changed, and a progressive wave is implemented in the propulsion device 20. [
  • the angular frequency ⁇ of the power source E i and the angular frequency ⁇ of the progressive wave implemented in the propulsion device 20 are equal to each other.
  • is the largest value, and has an arbitrary real number value greater than zero.
  • n is sufficiently large and ⁇ n is ⁇
  • a half wave traveling wave is implemented in the propulsion device 20, one wavelength is realized when 2 ⁇ , and two wavelengths are realized when 4 ⁇ .
  • Equation (2) M is a real number greater than 0, and the closer to 0, the larger the wavelength lambda, and vice versa.
  • the wave number k is defined as 2? /? According to the wave theory, the wave number k of the progressive wave implemented in the propulsion device 20 according to Equation (2) 3.
  • the power source E i is provided to each deformable member 10, and the traveling wave wave function y implemented in the propulsion device 20 is expressed by Equation (4) below.
  • Equation (4) the function g is a periodic traveling wave function representing the degree of deformation of the propulsion device 20 according to time and displacement.
  • the functions f i and g are periodic functions in which sin, cos, or several functions are superimposed.
  • Equation (5) the traveling speed v of the traveling wave y implemented in the propulsion device 20 is expressed by Equation (5) below as in Equation (4).
  • the traveling wave length fixed by the driving unit 20 is determined by the angular frequency ⁇ of the phase difference ⁇ n and the power source E i.
  • the amplitude of the traveling wave y is determined by the physical characteristics and electrical characteristics of the variable member 10.
  • FIG. 6 is a view for explaining a process in which the power source E i and the traveling wave y change with time and displacement.
  • propulsion device 20 is illustrated in accordance with a plurality of power source E i, the time interval ⁇ t, and take the right side input of E i is modified according to time and displacement are shown provided in, the drive section 30, the left side of Figure 6, Where E i is the power provided to the i th variable member and E n is the power provided to the n th last variable member.
  • the shape of the power source E i and the traveling wave y when the time is t is shown in FIG. 6 (a).
  • the power E 1 supplied to the first deformable member 10 is continuously shifted as E 1 -> E 2 -> E i -> E n - 1 -> E n as the time t is changed by ⁇ t .
  • E 1 is E n -> E 1 or a new power supply is provided.
  • variable member As the power supplied to each variable member continuously changes as described above, the entire variable member increases in time by? T, so that the shape of the propulsion device 20 is changed in the form of traveling wave .
  • FIG. 7 is a view for explaining a process in which a wavefront 71 of a traveling wave y implemented in the propulsion device 20 (a surface of a waveform formed by deforming the entire propulsion device) acts on the fluid 72 in a reverse direction.
  • the wavefront 71 of the traveling wave acts on the fluid 72 in the traveling direction 73 of the traveling wave 73, A reaction occurs in the direction 74 opposite to the direction of the traveling wave.
  • each of the wavefronts 71 exerts a reverse force on the fluid 72, so that reaction occurs on both sides of the propulsion device 20, and all the reactions are added, It becomes propulsion.
  • the angular frequency ⁇ of the traveling wave y implemented in the propulsion device 20 is equal to the angular frequency ⁇ of the input power source E i and the wavelength ⁇ of the traveling wave y is determined by the length L and the phase difference ⁇ n of the propulsion device 20, do.
  • the traveling speed v of the traveling wave is proportional to the speed at which the fluid is pushed
  • the size of the wave front is proportional to the amplitude and the area of the propulsion device 20
  • the amount of fluid pushed is proportional to the traveling speed and amplitude of the traveling wave and the area of the propulsion device 20.
  • traveling velocity v of the traveling wave is greater than the flow velocity 75 in accordance with the above description when the velocity of the traveling wave 75 is the reference of the propulsion device 20 and the direction of the flow velocity 75 is in the opposite direction If the traveling velocity v of the traveling wave is smaller than the flow velocity 75, the reverse thrust is generated. If the traveling velocity 75 and the travel velocity v of the traveling wave are the same, no thrust is generated.
  • the area of the traveling wave propulsion device 20 and the amplitude of the traveling wave correspond to the area of the propeller blade
  • the traveling wave wavelength corresponds to the inclination angle of the blade
  • the propeller method controls the propulsive force only by the number of revolutions, but since the propagation propulsion method can be performed by amplitude, wavelength, and frequency, it provides an efficient control method depending on the flow velocity and the characteristics of the fluid.
  • the traveling wave energy is transmitted through one place where the rope is caught and shaken, but the present invention is transmitted through all the variable members 10 arranged in the propulsion device 20.
  • the traveling wave of the cord runs, the wave form becomes smaller and eventually disappears, but the traveling wave of the propulsion device 20 is controlled and maintained in a desired shape.
  • FIG. 8 is a view for explaining the kind of the one-dimensional traveling wave propulsion device 20 in which the deformable members 10 are arranged on a one-dimensional line.
  • Fig. 8 (a) shows the propulsion device 20 in which the deformable members 10 are continuously arranged on a one-dimensional line, as shown in Fig.
  • the driving device 20 is arranged such that the longitudinal sides 11 of the adjacent deformable members 10 are connected to each other.
  • the wave function of the traveling wave is a one-dimensional wave as shown in Equation 4, Deformed (bent) and the traveling wave proceeds along the x-axis.
  • the propulsion apparatus provided with the plate-like deformable member 10 is preferably used in the fluid, and the propulsion apparatus provided with the rod-shaped deformable member is arranged on the fixed object Is preferably used.
  • a propulsion device provided with a plate-like deformable member provides a propulsion device similar to a fish body, and a propulsion device provided with a rod- Device.
  • each of the deformable members 10 is deformed (bent) on the yz plane, but the traveling wave generated by each deformable member 10 advances along the x axis perpendicular to the yz plane.
  • the two propelling devices 80 may be fixed to the left and right sides of the moving body, or the four propelling devices 80 may be fixed to the left, right, upper, and lower sides of the moving body, respectively.
  • the propulsion device 80 provides a propulsion device similar to the fins of a fish.
  • the traveling wave propulsion device of the present invention is provided by determining n and M values defined in Equations (1) and (2) according to the physical characteristics of the fluid in which the propulsion device is used. For example, in the case of a compact and compact gas, such as air, a liquid with a high density and little compressibility, such as water, and a fixed object such as a ground, It is preferable to reduce the amplitude and the frequency of the traveling wave. In the case of the base, it is preferable to make n and M small and increase the amplitude and frequency of the traveling wave.
  • n and M in Fig. 8 (b) are reduced (for example, n is 4 or less and M is 1/2 or less), and two propulsion devices having larger amplitudes and frequencies of traveling waves are disposed on both left and right sides It is preferable to drive it by being fixed.
  • the propulsion device 80 which reduces n and M and increases the amplitude and frequency of the traveling wave, provides a propulsion device similar to an insect's wings.
  • the one-dimensional traveling wave propulsion device generates propulsive force in both forward and backward directions according to the traveling direction of the wave.
  • the 9 is a two-dimensional traveling wave propulsion device 90 in which the deformable members 10 are arranged on a two-dimensional plane, and the shape of a traveling wave is a two-dimensional wave.
  • the two-dimensional traveling wave propulsion device 90 is easy to move by controlling the direction of the waves in the front, back, left, and right directions in a plan view, and the propulsion device is large because the area of the propulsion device is large.
  • Equation (6) The two-dimensional wave function z is expressed by Equation (6) below.
  • traveling waves implemented in the two-dimensional traveling wave propulsion device simultaneously travel in the same direction, they are analyzed in the same manner as the one-dimensional traveling wave.
  • the deformable member 10 is arranged in a three-dimensional space, and the shape of a traveling wave is a three-dimensional wave.
  • the propulsion device 100 is a propulsion device using a characteristic in which a variable member is changed in response to a power source and its volume is changed. Since the propagation wave propagates in forward and backward directions along the x axis, the propagation wave is analyzed in the same manner as the one- .
  • the wavefront of the traveling wave implemented in the propulsion device 100 is similar to the round ellipsoid, and the propulsive forces generated from the respective wavefronts are rotationally symmetric with respect to the x-axis.
  • the three-dimensional propulsion device 100 is more preferable than the one-dimensional propulsion device 20 or the two-dimensional propulsion device 90 for a larger and more stable propulsion force in the fluid.
  • FIG. 11 is a flowchart illustrating a method of driving a moving object using a traveling wave principle according to an embodiment of the present invention.
  • the driving method of the moving body using the traveling wave principle is a method for generating and controlling a plurality of different power sources E i in the driving unit 30 so that the propulsion unit 20 is transformed into a desired shape, (S100);
  • a plurality of power sources E i having different phases are provided to the plurality of deformable members 10 of the propulsion unit 20 from the driving unit 30, the plurality of deformable members 10 are deformed S200;
  • Each variable-member driving device 20, thereby controlling the plurality of power source E i to vary periodically with time provided in (10) is periodically modified according to the time (S300);
  • the pushing traveling wave (Wave Progressive) are continuously conducted in accordance with the plurality of characteristics of the power source E i provided in the deformable member 10 of the device 20 is implemented (S400);
  • the wavefront of the traveling wave implemented in the propulsion device 20 acts on the fluid or fixed object in contact with the propulsion device in a reverse direction and generates a propulsive force in response to the wave in step S600.
  • the propulsion device 20 using the traveling wave principle according to the present invention can effectively propel a moving body not only on a fluid such as a gas and a liquid but also on the ground, Thereby providing an energy-efficient propulsion device.
  • the driving force for driving the deformable member is described using a power source.
  • the present invention is not limited to this, and may include pneumatic, hydraulic, and mechanical power.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

The present invention pertains to a propulsion device for a moving body using the principle of progressive waves and a method thereof. A driving section provides a plurality of driving forces and controls the driving forces to be periodically changed according to time such that phase differences may be generated. A plurality of variable members are disposed in series and driven by the driving forces which are supplied by the driving section and independent from each other. Therefore, a propulsion device may be deformed into a desired shape by the plurality of driving forces that are supplied from the driving section, and progressive waves are implemented in the propulsion device via the continuous deformation of shape under the control of the driving section. As the implemented progressive waves progress, a wave front of the progressive waves exerts a force to a fluid or a fixed object in a reverse direction and a method is provided for propulsive force generated by the reaction thereof. In addition, energy loss due to the reciprocating movement or the rotational movement of the conventional propulsion device may be removed, so that a propulsion device with a high efficiency is provided.

Description

진행파 원리를 이용한 이동체의 추진장치 및 그 방법Propulsion device and method of moving object using traveling wave principle
본 발명은 진행파 원리를 이용한 이동체의 추진장치 및 그 방법에 관한 것으로, 보다 상세하게는 추진장치는 다수개의 가변부재가 연속적으로 배열되어 제공되고, 각각의 가변부재는 구동부에서 제공한 다수개의 구동력에 의하여 각각 구동되도록 구성되어, 추진장치의 형태를 원하는 형태로 변형시킬 수 있도록 하여, 상기 각각의 구동력이 시간에 따라 주기적으로 변화되고, 인접한 가변부재에 제공되는 구동력이 서로 위상차가 나도록 제어됨으로써 추진장치의 모양이 시간에 따라 주기적으로 변하는 진행파가 구현되어, 그 진행파에 의하여 유체 또는 고정된 물체에 진행파 방향의 힘이 작용하고 그 반작용으로 추진력이 발생되는, 진행파 원리를 이용한 이동체의 추진장치 및 그 방법에 관한 것이다.More particularly, the present invention relates to a propulsion device for a moving body using a traveling wave principle, and more particularly, to a propulsion device in which a plurality of variable members are provided so as to be continuously arranged, And the driving force provided to the adjacent deformable member is controlled to have a phase difference with respect to each other so that the driving force of the propelling device In which a traveling wave whose shape changes periodically according to time is implemented and a traveling wave direction force is applied to a fluid or a fixed object by the traveling wave and a reaction force is generated by the traveling wave direction, .
일반적으로 기체 또는 액체와 같은 유체 내에서 이동체가 추진하는 원리는 추진장치의 왕복운동 또는 회전운동에 의하여 이동체의 추진방향(이하 전방향)과 반대방향(이하 역방향)으로 유체에 힘을 작용하고 그 반작용에 의해 추진력이 발생하는 작용과 반작용의 원리이다.Generally, the principle that a moving body propels in a fluid such as a gas or a liquid acts on a fluid in a direction opposite to a propelling direction (hereinafter referred to as " reverse " direction) of the moving body by reciprocating motion or rotational motion of the propelling device, It is the principle of action and reaction that generate momentum by reaction.
이 원리에 따라 추진장치의 운동에는 유체에 힘을 작용하는 추진운동이 포함되어 있다. 한 예로 보트의 추진장치인 노의 운동에서, 노가 물속에 잠겨서 역방향으로 물에 힘을 작용하는 운동이 추진운동이고, 노가 물 위에서 전방향으로 이동하는 운동이 복귀운동이다. 이때 보트의 추진력은 노가 물속에 잠겨서 역방향으로 물에 힘을 작용하는 추진운동에 의해서만 발생한다. 노가 물 위에서 전방향으로 이동하는 복귀운동은 다음 추진운동을 하기 위한 것으로 추진력을 발생하지 않는다. In accordance with this principle, the motion of the propulsion device includes a propulsion motion which acts on the fluid. For example, in the movement of a boat, which is a propulsion unit of a boat, a movement in which the nose is immersed in water and acts in the opposite direction to the water is a propulsion movement, and a movement in which the nose moves in all directions on the water is a return movement. At this time, the propulsive force of the boat is generated only by the propulsion movement in which the nog is immersed in the water and forces the water in the reverse direction. The return motion in which the nose moves in all directions on the water is for the next propulsion motion and does not generate propulsion force.
상기 예에서와 같이 비중의 차이가 큰 서로 다른 유체에서 추진운동과 복귀운동을 하는 경우 복귀운동에 의하여 발생되는 역 추진력은 추진력에 비하여 무시할 수 있지만, 같은 유체 내에서 추진운동과 복귀운동을 하는 추진장치인 경우 복귀운동에 의하여 발생되는 역 추진력은 무시할 수 없는 크기가 되어 추진장치 설계 시 중요한 고려 대상이 된다.As shown in the above example, when propulsion and return movements are performed in different fluids having different specific gravity differences, the reverse propulsive force generated by the return movement can be neglected compared with the propulsive force, but propulsion and return motion in the same fluid In the case of the device, the reverse thrust generated by the return motion is of a size that can not be ignored, which is an important consideration in the design of the propulsion device.
또한, 이러한 복귀운동에는 복귀운동을 하기 위한 에너지가 필요하므로 에너지 효율이 높은 추진장치의 설계는 복귀운동에 필요한 에너지를 최소화시키거나, 복귀운동 없이 추진운동이 연속적으로 이루어지도록 해야 한다.In addition, since energy for returning motion is required for such a returning motion, the energy-efficient propulsion device should be designed so that the energy required for returning motion is minimized or the propulsion motion is continuously performed without returning motion.
그 예로 프로펠러 방식이 있다. 프로펠러 방식은 전방향과 일정한 경사각으로 여러 개의 날개를 회전체에 고정한 구조로 날개의 회전에 의하여 유체에 역방향의 힘을 작용하고 그 반작용에 의해 이동체가 추진되는 방식으로, 일반적으로 날개의 면적과 경사각이 고정된 상태에서 프로펠러의 회전수에 의하여 이동체의 속도와 추진력을 제어한다. 이와 같은 프로펠러 방식은 복귀운동 없이 연속적으로 추진운동을 하는 것으로, 현재 가장 많이 사용되는 추진장치 중 하나이다.An example is the propeller method. The propeller method is a structure in which several wings are fixed to the rotating body at all angles and at a constant inclination angle, and a reverse force is applied to the fluid by the rotation of the wing, and the moving body is propelled by the reaction. The speed and propulsion of the moving body are controlled by the number of revolutions of the propeller. Such a propeller system is one of the most popular propulsion systems for continuous propulsion without return motion.
그러나 프로펠러 방식에서는 필연적인 회전운동을 함으로써 에너지 낭비가 따른다. 프로펠러의 날개를 회전시키면, 유체는 날개의 회전 방향과 같은 방향으로 회전하면서 역방향으로 밀리는 나선 운동을 하게 된다. 이때 유체를 역방향으로 밀어내는 에너지만 추진력을 발생시키고 유체를 회전시키는 에너지는 추진력을 발생시키지 않는다.However, in the propeller system, the inevitable rotational motion causes energy wastage. When the wing of the propeller is rotated, the fluid is rotated in the same direction as the wing rotation direction, and the spiral motion is performed in the opposite direction. At this time, only the energy pushing the fluid in the opposite direction generates the thrust, and the energy that rotates the fluid does not generate the thrust.
또한, 유체를 회전시키는 에너지는 이동체를 반대 방향으로 회전시키거나 유체에 와류를 일으켜 이동체의 추진에 영향을 주기도 한다.In addition, the energy that rotates the fluid also causes the moving body to rotate in the opposite direction or vortex in the fluid to affect the propulsion of the moving body.
그리고 이러한 프로펠러 방식에서 유체에 작용하는 힘은 회전축에서부터 날개의 회전반경에 따라 변한다. 이 힘은 회전축에 가까울수록 작아지고 멀어질수록 커진다. 이것은 프로펠러 회전면에서 발생하는 추진력에 불균형을 초래한다. 이 불균형을 보완하기 위해 날개의 경사각이 회전반경에 따라 변하도록 설계되지만 이동체의 모든 속도에 대하여 보완되지 못한다.And in these propeller systems, the force acting on the fluid varies from the axis of rotation to the radius of rotation of the wing. The closer this force is to the axis of rotation, the smaller and larger the force becomes. This causes an imbalance in the propulsive forces generated on the propeller rotating surface. In order to compensate for this imbalance, the inclination angle of the wing is designed to vary according to the turning radius, but it is not compensated for all the speed of the moving object.
또한, 일반적으로 프로펠러 방식은 날개의 면적과 경사각이 고정된 상태이므로, 추진력을 증가시키기 위해 날개를 고속으로 회전시킨다. 이때 프로펠러 주위의 유체 압력이 유체의 기화 압력보다 낮아지면 유체가 기화되어 기포가 발생된다. 이것을 공동현상(Cavitation)이라 하며, 이것은 이동체의 추진력을 감소시키며 프로펠러를 손상시키고, 진동과 소음의 원인이 된다.In general, the propeller method has a fixed wing area and an inclination angle, and thus rotates the wing at a high speed in order to increase the propulsive force. At this time, if the fluid pressure around the propeller is lower than the vaporization pressure of the fluid, the fluid is vaporized and bubbles are generated. This is called cavitation, which reduces propulsion of the moving body, damages the propeller, and causes vibration and noise.
본 발명은 종래 기술의 문제점을 해결하기 위해 제안된 것으로, 추진장치의 왕복운동 또는 회전운동에 의하여 추진력이 발생되는 기존의 추진장치와 달리, 추진장치의 모양이 시간에 따라 변화되고 그 모양의 변화에 의하여 추진력이 발생되는 추진장치와 그 방법을 제안한다.The present invention has been proposed in order to solve the problems of the prior art, and unlike the conventional propulsion device in which propulsion is generated by reciprocating motion or rotational motion of the propulsion device, the shape of the propulsion device changes with time, And a propulsion system in which propulsion is generated by the propulsion system.
일반적으로 파동이론은 매질의 진동운동에 의하여 에너지를 전달하는 현상을 설명하는 이론이다. 파동이론에 따르면, 파동에는 배와 마디 위치가 고정되어 진동하는 정상파(Standing Wave)가 있고, 마루와 골 위치가 이동하는 진행파(Progressive Wave)가 있다. 간단한 예로 바이올린 현의 진동은 정상파에 해당되고, 바다의 파도는 진행파에 해당된다. 이러한 예는 모두 매질의 진동운동에 의하여 에너지가 전달되는 현상이다. In general, wave theory is a theory that describes the phenomenon of transferring energy by vibrational motion of a medium. According to the wave theory, there are standing waves in the waves with fixed ship and node positions, and progressive waves in which the floor and the bone position move. A simple example is that a violin string's vibration corresponds to a standing wave, and a sea wave corresponds to a traveling wave. All of these examples are phenomena in which energy is transferred by the oscillation motion of the medium.
이와 반대로, 물체가 유체와 같은 매질 내에서 진동운동을 하는 경우가 있다. 예를 들어 보트의 추진장치인 노의 왕복운동과, 노끈의 한쪽 끝을 잡고 위아래로 흔들었을 때 노끈의 운동은 모두 물체가 유체 내에서 진동운동을 하는 것이다. 이때 노의 운동은 배(노의 끝)와 마디(보트에 고정된 노의 중간 부분) 위치가 변하지 않는 정상파(Standing Wave)에 해당되는 운동이고, 노끈의 운동은 마루와 골이 반대편으로 진행하는 진행파(Progressive Wave)에 해당되는 운동이다.Conversely, an object may vibrate in a medium such as a fluid. For example, the reciprocating motion of a furnace, which is the propulsion unit of a boat, and the movement of a string when it is held up at one end of the string and shook it up and down, both cause the object to vibrate in the fluid. At this time, the motion of the furnace is a movement corresponding to a Standing Wave in which the position of the boat (the end of the furnace) and the position of the node (middle portion of the boat fixed to the boat) are unchanged. It is a movement corresponding to a progressive wave.
이때 노끈의 운동은 진행파가 진행되면서, 노끈의 위치가 진행파 방향과 반대로 이동된다. 만약 노끈과 질량이 같고 폭이 넓은 띠로 하거나, 물과 같이 비중이 큰 유체 내에서 실행하면 노끈의 위치가 더 많이 이동된다. 이것은 노끈의 진행파에 의하여 유체가 밀리고 그 반작용으로 노끈이 이동되기 때문이다.At this time, as the traveling wave progresses, the movement of the rope moves the position of the rope opposite to the traveling wave direction. If you run it in a fluid that has the same mass and width as the cord, or a fluid with a specific gravity, such as water, the position of the cord is shifted more. This is because the fluid is pushed by the traveling wave of the cord and the cord is moved by the reaction.
상기 설명한 바와 같이, 기존 추진방법은 추진장치의 왕복운동이나 회전운동에 의하여 추진력이 발생되지만, 본 발명의 추진방법은 노끈의 진행파와 유사하게 추진장치의 모양 변화에 의하여 추진력이 발생되는 방법이다.As described above, in the conventional propulsion method, propulsive force is generated by the reciprocating motion or the rotational motion of the propulsion device, but the propulsion method of the present invention is a method in which the propulsive force is generated by the shape change of the propulsion device, similar to the traveling wave of the cord.
이를 위해 본 발명은 추진장치의 모양을 변화시키기 위해 다수개의 가변부재를 연속적으로 배열하여 추진장치에 제공하고, 각각의 가변부재는 구동부에서 제공한 다수개의 구동력에 의하여 각각 구동되도록 하여, 상기 구동부에서 제공하는 다수개의 구동력에 의하여 추진장치를 원하는 형태로 변형되도록 하며, 또한 상기 구동부에서 제공하는 다수개의 구동력을 시간에 따라 주기적으로 변하도록 제어하되, 인접한 가변부재에 제공되는 구동력이 서로 위상차가 나도록 제어됨으로써, 추진장치가 시간에 따라 연속적으로 변형되게 된다.To this end, the present invention provides a propulsion device in which a plurality of variable members are continuously arranged to change the shape of the propulsion device, and each of the deformable members is driven by a plurality of driving forces provided by the driving portions, Wherein the control unit controls the plurality of driving forces provided by the driving unit to vary periodically with time so that the driving force provided to the adjacent deformable members is controlled to be phase difference with respect to each other, Whereby the propulsion device is continuously deformed with time.
이러한 연속변형으로 인하여 추진장치에 진행파(Progressive Wave) 운동이 구현됨으로써, 그 진행파가 진행되면서 파면(Wave Front)에 의하여 유체 또는 고정된 물체에 역방향의 힘을 작용하고, 그 반작용으로 추진력이 발생되는, 추진장치의 운동에 회전운동과 복귀 운동이 없으며 연속적인 추진 운동을 제공하는 진행파 원리를 이용한 이동체의 효과적인 추진장치와 그 방법을 제공하는데 그 목적이 있다.Progressive wave motion is implemented in the propulsion unit due to the continuous deformation, so that the forward wave acts on the fluid or the fixed object in the reverse direction by the wave front, And an object of the present invention is to provide an effective propulsion device and method for a moving object using traveling wave principle that provides continuous propulsion motion without rotational motion and return motion in motion of the propulsion device.
본 발명의 목적을 달성하기 위해 본 발명은, 다수개의 구동력을 제공하며 각각의 구동력을 시간에 따라 주기적으로 변하도록 제어하되, 인접한 가변부재에 제공되는 구동력이 서로 위상차가 나도록 제어하는 구동부와, 다수개의 가변부재가 연속적으로 배열되고 각각의 가변부재를 구동부에서 제공한 상기 구동력에 의하여 구동되도록 구성하여, 구동부에서 제공하는 다수개의 구동력에 의하여 추진장치가 원하는 형태로 변형되며 구동부의 제어에 의하여 모양이 주기적으로 변형되어 진행파(Progressive Wave)가 구현되는 추진장치를 포함하여 구성하는 것을 특징으로 한다.In order to accomplish the object of the present invention, there is provided a driving apparatus for a vehicle, comprising: a driving unit for providing a plurality of driving forces and controlling the driving forces to periodically change with time, Wherein the plurality of variable members are continuously arranged and each variable member is driven by the driving force provided by the driving unit so that the propulsion unit is deformed to a desired shape by a plurality of driving forces provided by the driving unit, And a propulsion device in which a progressive wave is periodically deformed to realize a progressive wave.
또한, 본 발명의 다른 목적을 달성하기 위해, 진행파 원리를 이용한 이동체의 추진 방법은, (a) 추진장치가 원하는 모양으로 변형되도록 구동부에서 다수개의 서로 다른 구동력을 생성하고 제어하여 추진장치의 가변부재에 각각 제공하는 단계; (b) 상기 구동부로부터 상기 추진장치의 다수개의 가변부재에 위상차가 서로 다른 다수개의 구동력이 각각 제공되면, 다수개의 가변부재가 각각 변형되는 단계; (c) 각 가변부재에 제공된 다수개의 구동력이 시간에 따라 주기적으로 변하도록 제어됨으로써 추진장치가 시간에 따라 주기적으로 변형되는 단계; (d) 상기 추진장치에 제공된 상기 구동력의 특성에 따라 연속적으로 진행되는 진행파(Progressive Wave)가 구현되는 단계; 및 (e) 상기 추진장치에 구현된 진행파의 파면이 추진장치에 접해있는 유체 또는 고정된 물체에 역방향의 힘을 작용하고 그 반작용으로 추진력이 발생되는 단계를 포함하여 구성하는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a propulsion method for a moving body using a traveling wave principle, comprising: (a) generating and controlling a plurality of different driving forces in a driving unit so that the propulsion unit is deformed to a desired shape, Respectively; (b) deforming the plurality of deformable members, respectively, when a plurality of driving forces having different phase differences are provided from the driving unit to the plurality of deformable members of the propulsion unit, respectively; (c) controlling a plurality of driving forces provided to each deformable member to change periodically with time, thereby causing the propelling device to be periodically deformed with time; (d) implementing a progressive wave continuously running according to characteristics of the driving force provided to the propulsion device; And (e) a wavefront of a traveling wave implemented in the propulsion device applies a reverse force to a fluid or a fixed object in contact with the propulsion device, and a reaction force is generated by the reaction.
이상과 같이, 본 발명에 따른 진행파 원리를 이용한 이동체의 추진장치 및 그 방법은 추진장치의 원하는 형태에 따라 다수개의 구동력이 구동부에서 생성되고, 상기 구동력의 위상차가 서로 다르게 제어되어 추진장치에 제공됨으로써, 추진장치에 진행파(Progressive Wave)가 구현되고, 그 진행파에 의하여 유체 또는 고정된 물체에 역방향의 힘을 작용하고 그 반작용으로 추진력이 발생되는 효과적인 추진 방법을 제공하는 효과가 있다.As described above, according to the present invention, a plurality of driving forces are generated in the driving part according to a desired form of the propulsion device, and the phase difference of the driving force is controlled to be different from each other, , There is an effect of providing an effective propulsion method in which a progressive wave is implemented in a propulsion device, a force acting in a reverse direction is applied to a fluid or a fixed object by the traveling wave, and a reaction force is generated by the reaction.
또한, 본 발명은 기존 추진장치의 회전운동이나 왕복운동에 따른 에너지 손실이 제거됨으로써 에너지 효율이 높은 이동체의 추진장치를 제공하는 효과가 있다.In addition, the present invention provides an energy-efficient propulsion device for a mobile body by eliminating energy loss due to rotational or reciprocating motion of an existing propulsion device.
도 1은 전기활성물질(Electroactive Substance)인 1개의 가변부재(10)가 전원에 반응하여 변형되는 것을 설명하기 위한 도면.1 is a view for explaining that one deformable member 10, which is an electroactive substance, is deformed in response to a power source.
도 2는 다수개의 가변부재(10)가 1차원 선상에 배열된 추진장치(20)를 설명하기 위한 도면.2 is a view for explaining a propulsion apparatus 20 in which a plurality of deformable members 10 are arranged on a one-dimensional line.
도 3은 본 발명에 따른 진행파 원리를 이용한 이동체의 추진장치에 대한 전체구성도Fig. 3 is an overall configuration diagram of a propulsion device for a moving body using the traveling wave principle according to the present invention
도 4는 구동부(30)에서 추진장치(20)에 제공하는 다수개의 전원 Ei를 설명하기 위한 도면.Figure 4 is a view for explaining a plurality of power source E i provided by the driving device 20 in the driver 30.
도 5는 추진장치(20)와 다수개의 전원 Ei의 관계를 설명하는 도면.5 is a view for explaining the relationship between the propulsion device 20 and a plurality of power sources E i ;
도 6은 다수개의 전원 Ei와 진행파 y가 시간에 따라 변화되는 과정을 설명하는 도면.6 is a view for explaining a process in which a plurality of power sources E i and a traveling wave y change with time;
도 7은 추진장치(20)에 구현된 진행파 y의 파면(71)이 유체(72)에 힘을 작용하는 과정을 설명하는 도면.7 is a diagram illustrating a process in which wavefront 71 of traveling wave y implemented in propulsion device 20 exerts a force on fluid 72;
도 8은 가변부재(10)를 일차원 선상에 나열한 일차원 진행파 추진장치(20)의 종류를 설명하는 도면.8 is a view for explaining the kind of the one-dimensional traveling wave propulsion device 20 in which the deformable members 10 are arranged on a one-dimensional line.
도 9는 가변부재(10)를 이차원 평면상에 나열한 이차원 진행파 추진장치(90)를 설명하는 도면.9 is a view for explaining a two-dimensional traveling wave propulsion device 90 in which the deformable members 10 are arranged on a two-dimensional plane.
도 10은 가변부재(10)를 삼차원 공간상에 나열한 삼차원 진행파 추진장치(100)를 설명하는 도면.10 is a view for explaining a three-dimensional traveling wave propulsion device 100 in which a deformable member 10 is arranged in a three-dimensional space.
도 11는 본 발명의 일 실시예에 따른 진행파 원리를 이용한 이동체의 추진 방법을 설명한 순서도.11 is a flowchart illustrating a method of driving a moving object using a traveling wave principle according to an embodiment of the present invention.
<도면의 주요부분에 대한 부호의 설명>Description of the Related Art
10: 가변부재 11: 가변부재의 종단면10: variable member 11: longitudinal section of the deformable member
12: 가변부재의 횡단면 20: 추진장치12: Cross section of the deformable member 20: Propulsion device
30: 구동부 31: 전원소스 30: driving unit 31: power source
32: 제어기 33: 다중 출력기32: controller 33: multiple output device
70: 유체 71: 파면(Wave Front)70: Fluid 71: Wave Front
90: 이차원 진행파 추진장치 100: 삼차원 진행파 추진장치90: Two-dimensional traveling wave propulsion device 100: Three-dimensional traveling wave propulsion device
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 진행파 추진장치는 모양이 주기적으로 변화되어 추진력이 발생되는 추진장치이다. 이를 위하여 추진장치는 다수개의 가변부재가 연속적으로 배열되고, 구동부에 의하여 제공되는 다수개의 구동력에 의해 추진장치가 주기적으로 변형되어야 한다.The traveling wave propulsion device of the present invention is a propulsion device in which the shape is periodically changed to generate propulsive force. To this end, the propulsion device is configured such that a plurality of deformable members are continuously arranged, and the propulsion device is periodically deformed by a plurality of driving forces provided by the driving portion.
이와 같은 추진장치 중 하나는 회전운동을 파동운동으로 변환시키는 기계적인 구조로 제공하는 방법이 있다. 이러한 기계적인 구조의 추진장치는 기존의 왕복운동을 하는 추진장치 즉 보트의 노와 같은 다수개의 가변부재가 연속적으로 배열되어 제공되고, 각각의 가변부재의 왕복운동이 서로 위상차가 나도록 제어하여 추진장치에 진행파를 구현시키는 방법이다.One of such propulsion systems is to provide a mechanical structure that converts rotational motion into wave motion. The propulsion device having such a mechanical structure is provided with a plurality of variable members such as a conventional reciprocating propulsion device, that is, a boat furnace, arranged continuously, and the reciprocating motions of the respective deformable members are controlled so as to be phase- It is a method to implement traveling wave.
또 다른 방법으로는 본 발명의 실시예에서 설명하는 것과 같은 방법으로, 가변부재의 재료로 전기활성물질(Electroactive Substance)을 이용하는 방법이다. 상기 전기활성물질(Electroactive Substance)은 전원에 의하여 쉽게 변형되어 형태가 변하는 추진장치를 제공하는 본 발명에 있어서 추진장치의 가변부재로 이용하는 것이 바람직하다. 지금까지 개발된 대표적인 전기활성물질(Electroactive Substance)에는 탄소나노튜브(Carbon Nano Tube), 전기활성고분자(Electroactive Polymer), 형상기억합금(Shape Memory Alloy), 및 전기활성세라믹(Electroactive Ceramics)등이 있으며, 그 외에 여러 가지 물질들이 연구되고 있다.Another method is a method of using an electroactive substance as a material of the deformable member in the same manner as described in the embodiment of the present invention. It is preferable that the electroactive substance is used as a variable member of the propulsion device in the present invention which provides a propulsion device which is easily deformed by a power source and changes its shape. Typical electroactive substances developed so far include carbon nanotubes, electroactive polymers, shape memory alloys, and electroactive ceramics. , And various other materials are being studied.
이하 실시예에서 추진장치는 전기활성물질(Electroactive Substance)을 이용한 가변부재가 제공되고, 상기 가변부재가 구동되기 위한 구동력으로 전원이 제공된 방법을 설명한다.In the following embodiments, a propelling device is provided with a deformable member using an electroactive substance, and a method in which a power source is provided as a driving force for driving the deformable member is described.
실시예Example
도 1은 전기활성물질(Electroactive Substance)인 1개의 가변부재(10)가 전원에 반응하여 변형(굽혀짐)되는 것을 설명하기 위한 도면이다.1 is a diagram for explaining that one deformable member 10, which is an electroactive substance, is deformed (bent) in response to a power source.
전기활성물질(Electroactive Substance)을 이용한 1개의 가변부재(10)에 전원을 제공하면 전원의 극성에 따라 변형(굽혀짐) 된다. 또한 전원의 극성을 바꾸면 반대 방향으로 변형(굽혀짐)되며, 시간에 따라 극성이 변하는 전원을 제공하면 극성이 계속 바뀌기 때문에 전원의 진동수와 진폭에 비례하여 굽힘 정도와 방향이 바뀌면서 이러한 변형이 반복하여 발생하게 된다. 이때 전원이 1주기 변하면 가변부재도 1주기 왕복운동 하므로 전원의 주기와 가변부재가 변형되어 발생되는 왕복운동의 주기는 같다.When power is supplied to one deformable member 10 using an electroactive substance, it is deformed (bent) according to the polarity of the power source. In addition, if the polarity of the power source is changed, it is deformed (bent) in the opposite direction. Since the polarity is continuously changed by providing a power source having a polarity changing with time, the bending degree and direction are changed in proportion to the frequency and amplitude of the power source, . In this case, when the power source changes by one cycle, the variable member also reciprocates for one cycle, so that the cycle of the power source and the cycle of the reciprocating motion generated by deforming the variable member are the same.
이와 같이 1개의 가변부재(10)로 구성된 추진장치는 입력된 전원에 따라 왕복운동을 하는 기존의 추진장치와 유사하게 된다. The propulsion device composed of one deformable member 10 is similar to the conventional propulsion device that reciprocates according to the input power source.
도 2는 다수개의 가변부재(10)가 1차원 선상에 배열된 추진장치(20)를 설명하기 위한 도면이다.2 is a view for explaining a propulsion device 20 in which a plurality of deformable members 10 are arranged on a one-dimensional line.
도 2에 도시된 바와 같이 추진장치(20)는 다수개의 가변부재(10)가 1차원 선상에 연속적으로 배열되고 인접한 가변부재(10)는 업계에서 알려진 방법을 사용하여 서로 고정되고, 각각의 가변부재(10)는 도 3에 도시된 바와 같이 서로 다른 전원이 제공되어 서로 독립적으로 변형된다.As shown in Fig. 2, the propulsion device 20 is configured such that a plurality of the deformable members 10 are successively arranged on a one-dimensional line and adjacent deformable members 10 are fixed to each other using methods known in the art, The members 10 are provided with different power sources as shown in Fig. 3 and are deformed independently of each other.
여기서 가변부재를 연속적으로 배열하는 방법은 이 기술 분야의 통상의 지식을 가진 자가 본 발명에 맞추어 용이하게 실시할 수 있으며, 이러한 배열방법의 차이만으로는 본 발명의 권리범위 내에 있는 것이 당연하다.Here, the method of continuously arranging the deformable members can be easily carried out in accordance with the present invention by a person having ordinary skill in the art, and it is natural that the difference of the arranging method is within the scope of the present invention.
구동부(30)에서 제어된 서로 다른 전원이 각각의 가변부재(10)에 제공되면, 입력된 전원에 따라 추진장치(20)는 여러 가지 모양으로 변형된다. 각각의 전원은 시간에 따라 변하므로 추진장치(20)의 모양도 시간에 따라 변하게 된다. 또한, 각각의 전원이 서로 위상차를 갖도록 제어되고 진동수와 진폭이 제어되어 추진장치(20)에 제공되면 추진장치(20)에 시간에 따라 진행하는 진행파 운동이 구현 된다.When the different power sources controlled by the driving unit 30 are provided in the respective deformable members 10, the propulsion unit 20 is deformed into various shapes according to the input power source. Since each power source changes with time, the shape of the propulsion device 20 also changes with time. Further, when each of the power supplies is controlled to have a phase difference with each other and the frequency and amplitude are controlled and provided to the propulsion device 20, progressive wave motion that progresses with time is implemented in the propulsion device 20. [
도 3은 본 발명에 따른 진행파 원리를 이용한 이동체의 추진장치의 전체구성도이다.3 is an overall configuration diagram of a propulsion device for a moving object using the traveling wave principle according to the present invention.
도 3에 도시된 바와 같이, 본 발명에 따른 진행파 원리를 이용한 이동체의 추진장치는 전기활성물질(Electroactive Substance)을 이용한 다수개의 가변부재(10)가 연속적으로 배열되고, 인접한 가변부재(10)는 업계에서 알려진 방법을 사용하여 서로 고정되고, 각각의 가변부재(10)에 제어된 서로 다른 전원이 제공되면 원하는 형태로 변형되는 추진장치(20)와; 추진장치(20)가 원하는 형태로 변하도록 제어된 다수개의 전원을 추진장치(20)의 가변부재(10)에 제공하는 구동부(30)로 구성된다.As shown in FIG. 3, the propulsion device of the moving object using the traveling wave principle according to the present invention includes a plurality of deformable members 10 that are continuously arranged using an electroactive substance, and adjacent deformable members 10 A propulsion device 20 fixed to each other using methods known in the art and being deformed into a desired shape when a different controlled power source is provided to each deformable member 10; And a driving unit 30 for providing the variable member 10 of the propulsion device 20 with a plurality of power sources controlled so that the propulsion device 20 is changed to a desired shape.
도 4는 도 3의 구동부(30)에서 추진장치(20)에 제공하는 다수개의 전원 Ei를 설명하는 도면이다.4 is a view for explaining a plurality of power sources E i provided to the propulsion device 20 in the driving unit 30 of FIG.
구동부(30)는 일 측은 전원소스(31)와 연결되고 타 측은 제어기(32)와 연결된 다수개의 전원 Ei를 출력하는 다중 출력기(33)를 포함하여 구성한다.The driving unit 30 includes a multiple output unit 33 connected to the power source 31 at one side and a plurality of power sources E i connected to the controller 32 at the other side.
전원소스(31)는 일반적인 전원을 다중 출력기(33)에 공급하고, 제어기(32)는 추진장치(20)에 제공하는 각각의 전원 Ei의 파형과 위상을 제어하는 신호를 다중 출력기(33)에 제공한다. Source 31, the power is the signal for controlling each of the waveform and the phase of the power source E i to provide a common power supply to the multi-output unit 33 is supplied, the controller 32 in the driving device 20, a multi-output unit 33, .
다중 출력기(33)는 전원소스(31)와 제어기(32)에서 각각 입력된 전원과 제어신호에 따라 각각의 파형과 위상이 제어된 다수개의 전원 Ei을 생성하여 추진장치(20)에 제공한다. The multiple output device 33 generates and supplies to the propulsion device 20 a plurality of power sources E i whose waveforms and phases are controlled in accordance with the power source and control signal input from the power source 31 and the controller 32, respectively .
도 5는 추진장치(20)와 다수개의 전원 Ei의 관계를 설명하는 도면이다.5 is a diagram for explaining the relationship between the propulsion device 20 and a plurality of power sources E i .
도 5에 도시된 바와 같이 전원 E1은 추진장치(20)의 첫 번째 가변부재(10)에 연결되고, 전원 E2는 두 번째 가변부재(10)에 연결되고, 전원 Ei는 i번째 가변부재(10)에 각각 연결되며, θi는 E1에 대한 Ei의 위상차이다.5, the power source E 1 is connected to the first variable member 10 of the propulsion device 20, the power source E 2 is connected to the second variable member 10, and the power source E i is connected to the i-th variable are respectively connected to a member (10), θ i is the phase difference between E i to E 1.
그리고 도 5의 (b)와 같은 형태를 이루는 다수개의 전원 Ei가 추진장치(20)의 가변부재(10)에 각각 제공되면 추진장치(20)의 각각의 가변부재(10)는 서로 독립적으로 변형되므로 추진장치(20)는 도 5의 (a)와 같이 변형된다.And each variable-member 10 of Figure propulsion device 20 when the plurality of power source E i that make up forms, such as in 5 (b) are each provided in the deformable member 10 of the driving device 20 is independently The propulsion device 20 is deformed as shown in FIG. 5 (a).
이때 각각의 가변부재(10)는 서로 독립적으로 변형되나, 연결부위는 구속되어 있어 전체적으로는 연결되어 변형된다. 인접한 가변부재(10)를 서로 연결하는 방법은 가변부재(10)의 종류에 따라 업계에 알려진 방법을 이용하여 연결한다. 이렇게 연결하면 각각의 가변부재는 독립적으로 변형하는 것을 허용하면서도 인접한 가변부재는 서로 구속되어 변형되므로 전체적으로는 하나가 변형하듯이 변형하며, 그 변형 형태는 다수개의 전원 Ei이 이루는 도 5의 (b)와 같은 파형의 형태와 유사하게 변형한다.At this time, the respective deformable members 10 are deformed independently of each other, but the connecting portions are constrained and are connected and deformed as a whole. The method of connecting the adjacent deformable members 10 to each other is performed by a method known in the art depending on the type of the deformable member 10. [ This connection each deformable member is adjacent the deformable member yet permit the deformation independently are bound to each other deformation, so as a whole, and this strain as one strain, and variants of the plurality of power source E i of Figure 5 constituting (b ). &Lt; / RTI &gt;
이하 여러 개의 가변부재의 변형을 추진장치로 활용하는 실시예에 대해 설명한다.Hereinafter, an embodiment in which deformation of a plurality of deformable members is used as a propelling device will be described.
Ei = fi(ωt-θi), i = 1,2,...,n [수학식1] E i = f i (? T -? I ), i = 1, 2, ..., n [
(t : 시간, ω : Ei의 각진동수, θi : E1과 Ei의 위상차)(t: time, ω: angular frequency of E i , θ i : phase difference between E 1 and E i )
상기 수학식 1에서 함수 fi는, 추진장치(20)에 나열되어 있는 i번째 가변부재(10)에 제공하는 전원이며, 시간에 따라 주기적인 형태의 전원을 나타낸다. In Equation (1), the function f i is a power supply provided to the i-th variable member 10 arranged in the propulsion unit 20, and represents a power source in a periodical form according to time.
추진장치(20)에 제공되는 전원 Ei를 상기 수학식 1에 따라 제어하고, 추진장치(20)의 i번째 가변부재(10)에 각각 제공하면 각각의 가변부재(10)는 입력 전원 Ei에 의하여 각각 변형되고, 전원 Ei가 시간에 따라 주기적으로 변하므로 가변부재(10)의 변형도 시간에 따라 주기적으로 변하게 된다. 이러한 변형은 추진장치(20)의 형태가 주기적으로 변화되어 추진장치(20)에 진행파(Progressive Wave)가 구현된다.When the power source E i provided to the propulsion device 20 is controlled according to Equation 1 and provided to each of the i-th deformable member 10 of the propulsion device 20, each deformable member 10 generates an input power E i And the deformation of the deformable member 10 changes periodically with time because the power source E i varies periodically with time. In this modification, the shape of the propulsion device 20 is periodically changed, and a progressive wave is implemented in the propulsion device 20. [
이때 상기 도 1의 설명에 따라 전원 Ei의 각진동수ω와 추진장치(20)에 구현된 진행파(Progressive Wave)의 각진동수ω는 같다.1, the angular frequency ω of the power source E i and the angular frequency ω of the progressive wave implemented in the propulsion device 20 are equal to each other.
또한, 전원 E1과 전원 Ei의 위상차 θi는 θ1(=0)부터 θn까지 일정한 크기로 증가하거나 감소한다. In addition, the power E of the phase difference θ i 1 and the power source E i is θ 1 (= 0) is increased or decreased at a constant size from up to θ n.
따라서 절대값 |θi | 중 |θn|이 가장 큰 값이고, 0보다 큰 임의의 실수(real number) 값을 갖는다.Therefore, the absolute value | θ i | Of | θ n | is the largest value, and has an arbitrary real number value greater than zero.
일 예로 n이 충분히 크고, θn이 π이면 추진장치(20)에 반파장의 진행파가 구현되고, 2π이면 한 개의 파장이 구현되고, 4π이면 두 개의 파장이 구현된다.For example, if n is sufficiently large and θ n is π, a half wave traveling wave is implemented in the propulsion device 20, one wavelength is realized when 2π, and two wavelengths are realized when 4π.
따라서 추진장치(20)에 구현된 진행파(Progressive Wave)의 파장 λ 는 아래의 수학식 2와 같다.Therefore, the wavelength? Of the progressive wave implemented in the propulsion device 20 is expressed by Equation 2 below.
λ = L/M {L : 추진장치의 길이, M : θn/(2π)} [수학식2] L = length of propulsion device, M:? n / (2?)}
상기 수학식 2에서 , M은 0보다 큰 실수값(real number)으로 0에 가까울수록 파장 λ가 커지고, 반대로 멀어질수록 파장 λ는 작아진다.In Equation (2), M is a real number greater than 0, and the closer to 0, the larger the wavelength lambda, and vice versa.
만약 M이 0이면 추진장치(20)에 제공되는 모든 전원 Ei의 위상이 같아 도 1의 예에서와 같이 가변부재가 1개인 경우와 유사하게 된다.If M is 0, the phases of all the power sources E i provided to the propulsion device 20 are the same, which is similar to the case of one variable member as in the example of FIG.
또한, 파동이론에 따라 파수(wave number) k는 2π/λ로 정의되므로, 상기 수학식 2에 따라 추진장치(20)에 구현된 진행파(Progressive Wave)의 파수 (wave number) k는 아래 수학식 3과 같다.Since the wave number k is defined as 2? /? According to the wave theory, the wave number k of the progressive wave implemented in the propulsion device 20 according to Equation (2) 3.
k = θn/L [수학식3] k =? n / L (3)
따라서 파동이론에 따라, 상기 전원 Ei가 각각의 가변부재(10)에 제공되어 추진장치(20)에 구현된 진행파 파동함수 y는 아래의 수학식 4와 같다.Therefore, according to the wave theory, the power source E i is provided to each deformable member 10, and the traveling wave wave function y implemented in the propulsion device 20 is expressed by Equation (4) below.
y = g{(θn/L)x-ωt} [수학식4] y = g {(? n / L) x-? t}
(x : 추진장치의 길이 방향에 따른 변위, ω : 진행파의 각진동수)    (x: displacement along the longitudinal direction of the propulsion unit, ω: angular frequency of traveling wave)
상기 수학식 4에서 함수 g는 시간과 변위에 따라 추진장치(20)의 변형 정도를 나타내는 주기적인 진행파함수이다.In Equation (4), the function g is a periodic traveling wave function representing the degree of deformation of the propulsion device 20 according to time and displacement.
또한, 상기 수학식 1과 상기 수학식 4에서 함수 fi와 함수 g는 sin, cos, 또는 여러 개의 함수가 중첩된 주기함수(Periodic function)이다.In the equations (1) and (4), the functions f i and g are periodic functions in which sin, cos, or several functions are superimposed.
따라서 수학식 4에서와 같이 추진장치(20)에 구현된 진행파 y의 진행속도ν는 아래의 수학식 5와 같다.Therefore, the traveling speed v of the traveling wave y implemented in the propulsion device 20 is expressed by Equation (5) below as in Equation (4).
ν= (ωL)/θn [수학식5] ? = (? L) /? n (5)
(ω : 진행파의 각진동수, L : 추진장치의 길이, θn : E1과 En의 위상차)(ω: angular frequency of traveling wave, L: length of propulsion device, θ n : phase difference between E 1 and E n )
일예로 E1과 En의 위상차 θn이 2π이면, M=1이 되고 추진장치(20)에는 한 파장의 진행파가 구현되며, 이때 진행파의 속도 ν= (ωL)/(2π)이 된다.For example, if the phase difference θ n between E 1 and E n is 2π, then M = 1 and a traveling wave of one wavelength is realized in the propulsion system 20, and the velocity ν = (ωL) / (2π) of the traveling wave is obtained at this time.
L은 추진장치(20)의 길이로 고정된 값이므로, 진행파의 진행속도 ν는 위상차 θn과 전원 Ei의 각진동수 ω에 의하여 결정된다.L is the process speed ν of the value, so, the traveling wave length fixed by the driving unit 20 is determined by the angular frequency ω of the phase difference θ n and the power source E i.
진행파 y의 진폭은 가변부재(10)의 물리적 특성과 전기적 특성에 의하여 결정된다.The amplitude of the traveling wave y is determined by the physical characteristics and electrical characteristics of the variable member 10.
도 6은 전원 Ei와 진행파 y가 시간과 변위에 따라 변화되는 과정을 설명하는 도면이다.6 is a view for explaining a process in which the power source E i and the traveling wave y change with time and displacement.
도 6의 좌측에는 구동부(30)에서 제공되는 다수개의 전원 Ei가 시간 간격 Δt에 따라 도시되어 있으며 우측에는 Ei를 입력받아 시간과 변위에 따라 변형되는 추진장치(20)가 도시되어 있다, 이때 Ei는 i번째 가변부재에 제공되는 전원이며, En은 마지막에 위치한 n번째 가변부재에 제공되는 전원이다.There propulsion device 20 is illustrated in accordance with a plurality of power source E i, the time interval Δt, and take the right side input of E i is modified according to time and displacement are shown provided in, the drive section 30, the left side of Figure 6, Where E i is the power provided to the i th variable member and E n is the power provided to the n th last variable member.
이하 전원 Ei와 진행파 y와의 관계를 설명한다.Hereinafter, the relationship between the power source E i and the traveling wave y will be described.
시간이 t일 때 전원 Ei와 진행파 y의 모양이 도 6의 (a)에 도시되어 있다.The shape of the power source E i and the traveling wave y when the time is t is shown in FIG. 6 (a).
Δθ를 θii-1로 하고 Δt를 Δθ/ω로 할 때, 시간이 t에서 Δt만큼 변하면When Δθ is θ ii -1 and Δt is Δθ / ω, when the time is changed by Δt at t
t+Δt시점의 Ei는 t시점의 Ei-1에 해당하는 전원으로 변화되고 그에 따라 추진장치(20)도 변화되어 도 6의 (b)에 도시된 모양이 된다.t + Δt in time E i is changed to the power for the E i-1 at time t thus pushing device 20 is also changed according to the shape is shown in (b) of FIG.
마찬가지로 시간이 t+2Δt와 t+3Δt일 때의 변화된 모양이 도 6의 (c)와 (d)에 각각 도시되어 있다.Similarly, the changed shapes when the time is t + 2? T and t + 3? T are shown in (c) and (d) of FIG. 6, respectively.
그러므로 첫번째 가변부재(10)에 제공된 전원 E1은 시간 t가 Δt씩 변화됨에 따라 E1->E2-> .. Ei .. ->En-1->En과 같이 연속적으로 쉬프트되는 것처럼 변화된다. 이때 E1은 En->E1로 하거나 새로운 전원이 제공된다.Therefore, the power E 1 supplied to the first deformable member 10 is continuously shifted as E 1 -> E 2 -> E i -> E n - 1 -> E n as the time t is changed by Δt . Where E 1 is E n -> E 1 or a new power supply is provided.
위와 같이 각각의 가변부재에 제공되는 전원이 연속적으로 변하게 됨으로 인해 각각의 가변부재 전체는 시간이 Δt만큼씩 증가함에 따라 도 6의 왼쪽에 도시된 바와 같이 추진장치(20)의 모양은 진행파 형태로 변하게 된다.   As the power supplied to each variable member continuously changes as described above, the entire variable member increases in time by? T, so that the shape of the propulsion device 20 is changed in the form of traveling wave .
도 7은 추진장치(20)에 구현된 진행파 y의 파면(71, 추진장치 전체가 변형되어 형성된 파형의 면)이 유체(72)에 역방향의 힘을 작용하는 과정을 설명하는 도면이다.7 is a view for explaining a process in which a wavefront 71 of a traveling wave y implemented in the propulsion device 20 (a surface of a waveform formed by deforming the entire propulsion device) acts on the fluid 72 in a reverse direction.
유체(70) 내에서 추진장치(20)에 진행파가 구현하면, 도 7에 도시된 바와 같이 진행파의 파면(71)이 유체(72)에 진행파의 진행방향(73)으로 힘을 작용하고, 진행파의 파면에는 진행파의 방향과 반대방향(74)으로 반작용이 발생된다.7, the wavefront 71 of the traveling wave acts on the fluid 72 in the traveling direction 73 of the traveling wave 73, A reaction occurs in the direction 74 opposite to the direction of the traveling wave.
진행파가 진행함에 따라 각각의 모든 파면(71)이 유체(72)에 역방향의 힘을 작용함으로, 추진장치(20)의 양쪽 면에서 반작용이 발생되며, 상기 반작용이 모두 더해져 추진장치(20)의 추진력이 된다.As the traveling wave progresses, each of the wavefronts 71 exerts a reverse force on the fluid 72, so that reaction occurs on both sides of the propulsion device 20, and all the reactions are added, It becomes propulsion.
추진장치(20)에 구현된 진행파 y의 각진동수ω는 입력 전원 Ei의 각진동수ω와 같고, 진행파 y의 파장 λ는 수학식 2와 같이 추진장치(20)의 길이 L과 위상차 θn에 의하여 결정된다.The angular frequency ω of the traveling wave y implemented in the propulsion device 20 is equal to the angular frequency ω of the input power source E i and the wavelength λ of the traveling wave y is determined by the length L and the phase difference θ n of the propulsion device 20, do.
또한, 진행파 y의 진폭은 입력 전원 Ei의 진폭에 비례하고, 진행파의 진행속도 ν는 유체가 밀리는 속도에 비례하며, 파면의 크기는 진폭과 추진장치(20)의 면적에 비례하므로, 단위 시간당 유체가 밀리는 양은 진행파의 진행속도와 진폭 및 추진장치(20)의 면적에 비례한다.Since the amplitude of the traveling wave y is proportional to the amplitude of the input power source E i , the traveling speed v of the traveling wave is proportional to the speed at which the fluid is pushed, and the size of the wave front is proportional to the amplitude and the area of the propulsion device 20, The amount of fluid pushed is proportional to the traveling speed and amplitude of the traveling wave and the area of the propulsion device 20.
또한, 유속(75)의 기준을 추진장치(20)로 하고 유속(75)의 방향을 역방향(진행파 방향)으로 하면, 상기 설명에 따라 진행파의 진행속도 ν가 유속(75)보다 크면, 추진력이 발생하며, 진행파의 진행속도 ν가 유속(75)보다 작으면, 역 추진력이 발생하며, 유속(75)과 진행파의 진행속도 ν가 같으면 추진력은 발생하지 않는다.   If the traveling velocity v of the traveling wave is greater than the flow velocity 75 in accordance with the above description when the velocity of the traveling wave 75 is the reference of the propulsion device 20 and the direction of the flow velocity 75 is in the opposite direction If the traveling velocity v of the traveling wave is smaller than the flow velocity 75, the reverse thrust is generated. If the traveling velocity 75 and the travel velocity v of the traveling wave are the same, no thrust is generated.
이것은 유속을 측정하여 진행파의 진행속도를 제어하여 추진력을 제어하게 된다.This controls the propulsive force by measuring the flow velocity and controlling the traveling speed of the traveling wave.
본 발명을 기존의 프로펠러 방법과 비교하여 보면, 진행파 추진장치(20)의 면적과 진행파의 진폭은 프로펠러 날개의 면적에 대응하고, 진행파 파장은 날개의 경사각에 대응하며, 진행파 진동수는 날개의 회전수에 대응한다. 여기서, 프로펠러 방법은 회전수에 의해서만 추진력을 제어하지만, 진행파 추진방법은 진폭, 파장, 진동수에 의해 모두 가능하므로 유속이나 유체의 특성에 따라 효율적인 제어방법을 제공한다.Comparing the present invention with the conventional propeller method, the area of the traveling wave propulsion device 20 and the amplitude of the traveling wave correspond to the area of the propeller blade, the traveling wave wavelength corresponds to the inclination angle of the blade, . Here, the propeller method controls the propulsive force only by the number of revolutions, but since the propagation propulsion method can be performed by amplitude, wavelength, and frequency, it provides an efficient control method depending on the flow velocity and the characteristics of the fluid.
물 속에 있는 노끈을 흔들어 진행파를 발생시키는 경우 진행파 에너지는 노끈을 잡고 흔드는 한 곳을 통하여 전달되지만, 본 발명은 추진장치(20)에 배열된 모든 가변부재(10)를 통하여 전달된다.   When traveling waves are generated by shaking the strings in the water, the traveling wave energy is transmitted through one place where the rope is caught and shaken, but the present invention is transmitted through all the variable members 10 arranged in the propulsion device 20.
따라서 노끈의 진행파는 파가 진행함에 따라 파형이 작아지고 결국 소멸하게 되지만 추진장치(20)의 진행파는 파형이 원하는 형태로 제어되며 유지된다.   Therefore, as the traveling wave of the cord runs, the wave form becomes smaller and eventually disappears, but the traveling wave of the propulsion device 20 is controlled and maintained in a desired shape.
도 8은 가변부재(10)를 일차원 선상에 나열한 일차원 진행파 추진장치(20)의 종류를 설명하는 도면이다.8 is a view for explaining the kind of the one-dimensional traveling wave propulsion device 20 in which the deformable members 10 are arranged on a one-dimensional line.
도 8의 (a)는 가변부재(10)를 일차원 선상에 연속적으로 나열한 추진장치(20)로 도 3에 도시하여 설명한 것과 같다. 상기 추진장치(20)는 인접한 가변부재(10)의 종단면(11)이 서로 연결되도록 배열한 것으로 진행파의 파동함수는 일차원 파동으로 상기 수학식 4와 같으며, 가변부재(10)는 xz평면상에서 변형(굽혀짐)되며 진행파는 x축에 따라 진행한다.   Fig. 8 (a) shows the propulsion device 20 in which the deformable members 10 are continuously arranged on a one-dimensional line, as shown in Fig. The driving device 20 is arranged such that the longitudinal sides 11 of the adjacent deformable members 10 are connected to each other. The wave function of the traveling wave is a one-dimensional wave as shown in Equation 4, Deformed (bent) and the traveling wave proceeds along the x-axis.
도 8의 (a)와 같이 가변부재를 배열할 경우, 판 모양의 가변부재(10)가 제공된 추진장치는 유체 내에서 이용하는 것이 바람직하고, 막대 모양의 가변부재가 제공된 추진장치는 고정된 물체 위에서 이용하는 것이 바람직하다.   8 (a), the propulsion apparatus provided with the plate-like deformable member 10 is preferably used in the fluid, and the propulsion apparatus provided with the rod-shaped deformable member is arranged on the fixed object Is preferably used.
지면과 같이 고정된 물체 위에서 진행하는 추진장치는, 물체가 추진장치의 진행파에 의하여 밀리지 않으므로 추진장치와 지면과의 마찰력 차이(전방향 마찰력과 역방향 마찰력 크기의 차이)가 충분히 제공되면, 유체 내에서 진행하는 추진장치보다 에너지 효율이 더 높다.A propulsion system that travels on a fixed object, such as a ground, will not cause the object to be pushed by the traveling wave of the propulsion system, so if the difference in frictional force between the propulsion system and the ground (difference in omni-directional frictional force and reverse frictional force) Energy efficiency is higher than ongoing propulsion systems.
상기 도 8의 (a)와 같은 추진장치에 있어서 판 모양의 가변부재가 제공된 추진장치는 물고기의 몸통과 유사한 추진장치를 제공하고, 막대 모양의 가변부재가 제공된 추진장치는 뱀의 몸통과 유사한 추진장치를 제공한다.   In the propulsion device shown in FIG. 8 (a), a propulsion device provided with a plate-like deformable member provides a propulsion device similar to a fish body, and a propulsion device provided with a rod- Device.
도 8의 (b)는 가변부재(10)를 일차원 선상에 연속적으로 나열하되, 가변부재(10)의 횡단면(12)이 서로 연결되도록 배치하고 추진장치(80)의 일 측면(y=0인 면)이 이동체에 고정되는 추진장치이다. 따라서 각각의 가변부재(10)는 yz평면상에서 변형(굽혀짐)되지만, 각각의 가변부재(10)에 의하여 생성된 진행파는 yz평면에 수직인 x축에 따라 진행한다.8 (b) shows a state in which the variable members 10 are continuously arranged on a one-dimensional line, in which the cross-sections 12 of the deformable members 10 are arranged to be connected to each other, Surface) is fixed to the moving body. Therefore, each of the deformable members 10 is deformed (bent) on the yz plane, but the traveling wave generated by each deformable member 10 advances along the x axis perpendicular to the yz plane.
상기 추진장치(80)는 일 측면(y=0인 면)이 이동체에 고정되어 구동되는 추진장치로, 1개의 추진장치(80) 또는 다수개의 추진장치(80)가 이동체에 고정되어 구동될 수 있다.   The propulsion device 80 is a propulsion device in which one side (surface with y = 0) is fixed and driven by a moving body, and one propulsion device 80 or a plurality of propulsion devices 80 are fixed to a moving body have.
따라서 2개의 추진장치(80)를 이동체의 좌, 우 측면에 각각 고정하거나, 4개의 추진장치(80)를 이동체의 좌, 우, 상, 하 면에 각각 고정하여 구동될 수 있다.   Therefore, the two propelling devices 80 may be fixed to the left and right sides of the moving body, or the four propelling devices 80 may be fixed to the left, right, upper, and lower sides of the moving body, respectively.
이와 같이 추진장치(80)는 물고기의 지느러미와 유사한 추진장치를 제공한다.Thus, the propulsion device 80 provides a propulsion device similar to the fins of a fish.
본 발명의 진행파 추진장치는 추진장치가 사용되는 유체의 물리적 특성에 따라, 상기 수학식 1과 수학식 2에서 정의한 n과 M값을 결정하여 제공되는 것이 바람직하다. 예를 들어 공기와 같이 밀도가 작고 압축성이 있는 기체, 물과 같이 밀도가 크고 압축성이 거의 없는 액체, 그리고 지면과 같은 고정된 물체의 경우를 비교하여 보면, 액체와 지면에서는 n과 M을 크게 하고 진행파의 진폭, 진동수를 작게 하는 것이 바람직하고, 기체에서는 n과 M을 작게 하고 진행파의 진폭, 진동수를 크게 하는 것이 바람직하다.It is preferable that the traveling wave propulsion device of the present invention is provided by determining n and M values defined in Equations (1) and (2) according to the physical characteristics of the fluid in which the propulsion device is used. For example, in the case of a compact and compact gas, such as air, a liquid with a high density and little compressibility, such as water, and a fixed object such as a ground, It is preferable to reduce the amplitude and the frequency of the traveling wave. In the case of the base, it is preferable to make n and M small and increase the amplitude and frequency of the traveling wave.
따라서 공기 중에서는 도 8의 (b)에서 n과 M을 작게 하고(일 예로 n은 4이하, M은 1/2이하), 진행파의 진폭과 진동수를 크게 한 추진장치 2개를 이동체의 좌우 양쪽에 고정하여 구동시키는 것이 바람직하다.   Therefore, in the air, n and M in Fig. 8 (b) are reduced (for example, n is 4 or less and M is 1/2 or less), and two propulsion devices having larger amplitudes and frequencies of traveling waves are disposed on both left and right sides It is preferable to drive it by being fixed.
이와 같이 추진장치(80)에서 n, M을 작게 하고 진행파의 진폭과 진동수를 크게 한 추진장치는 곤충의 날개와 유사한 추진장치를 제공한다.In this way, the propulsion device 80, which reduces n and M and increases the amplitude and frequency of the traveling wave, provides a propulsion device similar to an insect's wings.
상기 도 8의 (a), (b)와 같이 일차원 진행파 추진장치는 파동의 진행방향에 따라 전, 후 두 방향으로 추진력을 발생한다.As shown in FIGS. 8A and 8B, the one-dimensional traveling wave propulsion device generates propulsive force in both forward and backward directions according to the traveling direction of the wave.
도 9는 가변부재(10)를 이차원 평면상에 나열한 이차원 진행파 추진장치(90)로 진행파의 형태가 이차원파동이다. 상기 이차원 진행파 추진장치(90)는 파동의 방향이 평면상 전, 후, 좌, 우의 방향으로 제어됨으로써 이동이 용이하고, 추진장치의 면적이 넓어 추진력이 크다.   9 is a two-dimensional traveling wave propulsion device 90 in which the deformable members 10 are arranged on a two-dimensional plane, and the shape of a traveling wave is a two-dimensional wave. The two-dimensional traveling wave propulsion device 90 is easy to move by controlling the direction of the waves in the front, back, left, and right directions in a plan view, and the propulsion device is large because the area of the propulsion device is large.
상기 이차원 파동함수 z는 아래 수학식 6와 같다.The two-dimensional wave function z is expressed by Equation (6) below.
z=h(kxx+kyy-ωt) (여기서 kx, ky는 각각 파수벡터 k의 x성분, y성분) [수학식6] where k x and k y are the x component and the y component of the wave number vector k , respectively, as shown in Equation (6): z = h (k x x + k y y-
상기 이차원 진행파 추진장치에 구현된 진행파는 동시에 같은 방향으로 진행하므로 상기 일차원 진행파와 같은 방법으로 분석된다.   Since the traveling waves implemented in the two-dimensional traveling wave propulsion device simultaneously travel in the same direction, they are analyzed in the same manner as the one-dimensional traveling wave.
도 10은 가변부재(10)를 삼차원 공간상에 나열한 삼차원 진행파 추진장치(100)로 진행파의 형태가 삼차원 파동이다.10 is a three-dimensional traveling wave propulsion device 100 in which the deformable member 10 is arranged in a three-dimensional space, and the shape of a traveling wave is a three-dimensional wave.
상기 추진장치(100)는 가변부재가 전원에 반응하여 부피가 변화되는 특성을 이용한 추진장치이고, 구현된 진행파는 방향이 x축을 따라 전, 후 방향으로 진행하므로 상기 일차원 진행파와 같은 방법으로 분석된다.   The propulsion device 100 is a propulsion device using a characteristic in which a variable member is changed in response to a power source and its volume is changed. Since the propagation wave propagates in forward and backward directions along the x axis, the propagation wave is analyzed in the same manner as the one- .
상기 추진장치(100)에서 구현된 진행파의 파면은 둥근 타원체와 유사한 형태이며, 각 파면에서 발생된 추진력은 모두 x축에 대하여 회전대칭을 이루고 있다.   The wavefront of the traveling wave implemented in the propulsion device 100 is similar to the round ellipsoid, and the propulsive forces generated from the respective wavefronts are rotationally symmetric with respect to the x-axis.
따라서 유체 내에서 더 크고 안정된 추진력을 위해서는 상기 일차원 추진장치(20) 또는 상기 이차원 추진장치(90)보다 상기 삼차원 추진장치(100)가 더 바람직하다.Therefore, the three-dimensional propulsion device 100 is more preferable than the one-dimensional propulsion device 20 or the two-dimensional propulsion device 90 for a larger and more stable propulsion force in the fluid.
도 11는 본 발명의 일 실시예에 따른 진행파 원리를 이용한 이동체의 추진 방법을 설명한 순서도이다.11 is a flowchart illustrating a method of driving a moving object using a traveling wave principle according to an embodiment of the present invention.
본 발명에 따른 진행파 원리를 이용한 이동체의 추진 방법은, 추진장치(20)가 원하는 모양으로 변형되도록 구동부(30)에서 다수개의 서로 다른 전원 Ei를 생성하고 제어하여 추진장치(20)의 가변부재(10)에 각각 제공하고(S100); 상기 구동부(30)로부터 상기 추진장치(20)의 다수개의 가변부재(10)에 위상차가 서로 다른 다수개의 전원 Ei가 각각 제공되면, 다수개의 가변부재(10)가 각각 변형되고(S200); 각 가변부재(10)에 제공된 다수개의 전원 Ei가 시간에 따라 주기적으로 변하도록 제어됨으로써 추진장치(20)가 시간에 따라 주기적으로 변형되고(S300); 상기 추진장치(20)의 가변부재(10)에 제공된 다수개의 전원 Ei의 특성에 따라 연속적으로 진행되는 진행파(Progressive Wave)가 구현되고(S400); 추진장치(20)에 구현된 진행파의 파면이 추진장치에 접해있는 유체 또는 고정된 물체에 역방향의 힘을 작용하고 그 반작용으로 추진력이 발생한다(S600).The driving method of the moving body using the traveling wave principle according to the present invention is a method for generating and controlling a plurality of different power sources E i in the driving unit 30 so that the propulsion unit 20 is transformed into a desired shape, (S100); When a plurality of power sources E i having different phases are provided to the plurality of deformable members 10 of the propulsion unit 20 from the driving unit 30, the plurality of deformable members 10 are deformed S200; Each variable-member driving device 20, thereby controlling the plurality of power source E i to vary periodically with time provided in (10) is periodically modified according to the time (S300); The pushing traveling wave (Wave Progressive) are continuously conducted in accordance with the plurality of characteristics of the power source E i provided in the deformable member 10 of the device 20 is implemented (S400); The wavefront of the traveling wave implemented in the propulsion device 20 acts on the fluid or fixed object in contact with the propulsion device in a reverse direction and generates a propulsive force in response to the wave in step S600.
이상 실시예에서 설명한 바와 같이, 본 발명의 따른 진행파의 원리를 이용한 추진장치(20)는 기체, 액체와 같은 유체뿐만 아니라 지상에서도 이동체를 효과적으로 추진할 수 있으며, 기존 프로펠러 추진장치의 단점을 해결하고, 에너지 효율이 높은 추진장치를 제공한다.   As described in the above embodiments, the propulsion device 20 using the traveling wave principle according to the present invention can effectively propel a moving body not only on a fluid such as a gas and a liquid but also on the ground, Thereby providing an energy-efficient propulsion device.
본 발명에서 가변부재를 구동하기 위한 구동력은 전원을 사용하여 설명하지만, 이에 한정되지 않고, 공압 또는 유압 및 기계적 동력으로 제공할 수 있는 것은 여기에 포함된다.   In the present invention, the driving force for driving the deformable member is described using a power source. However, the present invention is not limited to this, and may include pneumatic, hydraulic, and mechanical power.
이상에서 설명한 바와 같이, 바람직한 실시예를 통하여 본 발명에 관하여 상세히 설명하였으나, 본 발명은 이에 한정되는 것은 아니며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양하게 변경, 응용이 당업자에게 자명하다. 따라서 본 발명의 진정한 보호 범위는 다음의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상은 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention. Therefore, the true scope of the present invention should be construed according to the following claims, and all technical ideas within the scope of equivalents should be interpreted as being included in the scope of the present invention.

Claims (9)

  1. 진행파 원리를 이용한 이동체의 추진장치에 있어서, In a propulsion device for a moving body using a traveling wave principle,
    추진력이 발생되는 추진장치(20);와, 상기 추진장치에 다수개의 구동력을 제공하는 구동부(30);로 구성되며, And a driving unit (30) for providing a plurality of driving forces to the propulsion unit,
    상기 추진장치(20)는 다수개의 가변부재(10)가 연속적으로 배열되어 제공되고, 각각의 가변부재(10)는 상기 구동부(30)에서 각각의 가변부재(10)에 독립적으로 제공하는 구동력에 의하여 각각 구동되며, 각각의 가변부재(10)에 독립적으로 제공되는 구동력에 의하여 상기 각각의 가변부재(10)가 변형되어 구동됨으로 인해 상기 추진장치(10)가 변형되며, 상기 구동부(30)에서 제공하는 다수개의 구동력이 시간에 따라 주기적으로 변하도록 제어되고 각각의 구동력이 서로 위상차를 갖도록 제어됨으로 인해, 상기 추진장치(20)에 모양이 주기적으로 변형되는 진행파(Progressive Wave)가 구현되고, 상기 진행파의 파면(71)에 의하여 유체 또는 고정된 물체에 진행파 방향의 힘이 작용하고 그 반작용으로 추진력이 발생되는 것을 특징으로 하는 진행파 원리를 이용한 이동체의 추진장치.The propulsion device 20 is provided with a plurality of variable members 10 arranged continuously and each of the deformable members 10 is provided with a driving force which is independently provided to each of the deformable members 10 in the driving portion 30 And each of the deformable members 10 is deformed and driven by a driving force independently provided to each of the deformable members 10 so that the propulsion device 10 is deformed, A progressive wave in which the shape is periodically deformed is implemented in the propulsion device 20 because the plurality of driving forces that are provided are controlled so as to periodically change according to time and each driving force is controlled to have a phase difference with each other, Wherein a traveling wave direction force is applied to a fluid or a fixed object by a wavefront (71) of a traveling wave, and a propelling force is generated by the reaction. The propulsion system.
  2. 제1항에 있어서,The method according to claim 1,
    상기 추진장치(20)는, 다수개의 가변부재(10)가 연속적으로 배열되어 제공되고, 각각의 가변부재(10)는 서로 독립된 구동력에 의하여 구동되고, 상기 가변부재(10)가 시간에 따라 주기적이고 서로 위상차가 있는 상기 구동력으로 각각 구동됨으로 인해 상기 추진장치(20)의 모양이 시간과 변위에 따라 주기적으로 변형되고, 상기 추진장치(20)의 주기적인 변형에 의하여 추진력이 발생하는 것을 특징으로 하는 진행파 원리를 이용한 이동체의 추진장치.The propulsion device (20) is characterized in that a plurality of the variable members (10) are provided successively arranged, each of the variable members (10) is driven by a driving force independent from each other, The shape of the propulsion device 20 is periodically deformed according to the time and the displacement and the propulsion force is generated due to the periodic deformation of the propulsion device 20 A propulsion device for a moving object using traveling wave principle.
  3. 제1항에 있어서,The method according to claim 1,
    상기 구동부(30)는, 제어신호에 의하여 각각의 구동력이 시간에 따라 주기적으로 변하며 서로 위상차가 나는 다수개의 구동력을 추진장치(20)에 제공하여 추진장치(20)의 모양이 주기적으로 변화 되도록 함으로써 추진력이 발생되는 것을 특징으로 하는 진행파 원리를 이용한 이동체의 추진장치.The driving unit 30 is provided with a plurality of driving forces, which are periodically varied with time according to a control signal and whose phases are different from each other, to the propulsion unit 20 so that the shape of the propulsion unit 20 is periodically changed And a propulsion force is generated.
  4. 제1항에 있어서, The method according to claim 1,
    상기 추진장치(20)는 n개의 가변부재가 연속적으로 배열되어 제공되고, 상기 구동부(30)에서 제공된 n개의 구동력 Ei는 하기 수학식 1과 같고, 상기 구동력 Ei 가 추진장치(20)에 제공되어 추진장치(20)에 진행파가 구현되면, 상기 진행파의 파장 λ는 하기 수학식 2와 같고, 상기 진행파의 파수(wave number) k는 하기 수학식 3과 같고, 상기 진행파의 진행속도 v는 하기 수학식 4와 같고, 따라서 상기 진행파 파동함수 y는 하기 수학식 5와 같은 진행파가 발생되어 추진력이 발생되는 것을 특징으로 하는 진행파 원리를 이용한 이동체의 추진장치.The n driving force E i provided by the driving unit 30 is given by the following equation (1), and the driving force E i is transmitted to the propulsion unit 20 When the traveling wave is implemented in the propulsion device 20, the wavelength λ of the traveling wave is given by Equation 2, the wave number k of the traveling wave is expressed by Equation 3, and the traveling velocity v of the traveling wave is (4), and the traveling wave wave function y is generated by the traveling wave as shown in the following equation (5) to generate propulsive force.
    [수학식1] Ei = fi(ωt-θi) E i = f i (ωt-θ i )
    여기서 Δθ=θii-1 : 일정 i = 1, 2, ... ,nWhere Δθ = θ i -θ i-1 : constant i = 1, 2, ..., n
    (t : 시간, ω : Ei의 각진동수, θi : E1과 Ei의 위상차)(t: time, ω: angular frequency of E i , θ i : phase difference between E 1 and E i )
    [수학식2] λ = (2πL)/θn [Equation 2]? = (2? L) /? N
    여기서 (L: 추진장치의 길이, θn : E1과 En의 위상차의 절대값) Where L is the length of the propulsion unit, θ n is the absolute value of the phase difference between E 1 and E n ,
    [수학식3] k = θn/L [Equation 3] k =? N / L
    여기서 (L : 추진장치의 길이, θn : E1과 En의 위상차)Wherein (L: the phase difference between E 1 and E n: the driving unit length, θ n)
    [수학식4] ν= (ωL)/θn [Equation 4]? = (? L) /? N
    여기서 (ω : 진행파의 각진동수, L: 추진장치의 길이, θn: E1과 En의 위상차)Where (ω: angular frequency of the traveling wave, L: the phase difference between E 1 and E n: the driving unit length, θ n)
    [수학식5] y = g{(θn/L)x-ωt}Y = g {(? N / L) x-? T}
    여기서 (x : 추진장치의 길이 방향에 따른 변위, ω : 진행파의 각진동수)     Where (x: displacement along the longitudinal direction of the propulsion unit, ω: angular frequency of traveling wave)
  5. 제1항에 있어서,The method according to claim 1,
    상기 추진장치(20)는 인접한 가변부재(10)의 종단면(11)이 서로 연결되도록 일차원 선상에 연속적으로 나열되고, 진행파의 진행방향에 따라 전, 후 두 방향으로 추진력이 발생되는 것을 특징으로 하는 진행파 원리를 이용한 이동체의 일차원 추진장치(20).The propulsion device 20 is continuously arranged on a one-dimensional line so that the longitudinal sides 11 of the adjacent deformable members 10 are connected to each other and propulsive force is generated in both forward and backward directions according to the traveling direction of the traveling wave A one-dimensional propulsion device for a moving object using traveling wave principle (20).
  6. 제1항에 있어서,The method according to claim 1,
    상기 일차원 진행파 추진장치(80)는 가변부재(10)를 일차원 선상에 연속적으로 나열하되, 가변부재(10)의 횡단면(12)이 서로 연결되도록 배치하고 추진장치(80)의 일 측면이 이동체에 고정되어, 각각의 가변부재(10)가 변형되는 면에 수직인 방향으로 진행파가 생성됨으로써. 진행파의 진행방향에 따라 전, 후 두 방향으로 추진력이 발생되는 것을 특징으로 하는 진행파 원리를 이용한 이동체의 일차원 진행파 추진장치(80).The one-dimensional traveling wave propulsion device 80 includes the variable members 10 arranged continuously on a one-dimensional line so that the transverse sections 12 of the deformable members 10 are connected to each other, So that a traveling wave is generated in a direction perpendicular to the plane in which each deformable member 10 is deformed. And a driving force is generated in both forward and backward directions in accordance with the traveling direction of the traveling wave.
  7. 제1항에 있어서,The method according to claim 1,
    상기 이차원 진행파 추진장치(90)는 상기 가변부재(10)가 이차원 평면상에 연속적으로 나열되고, 이차원 진행파의 진행방향에 따라 평면상 전, 후, 좌, 우의 방향으로 추진력이 발생되는 것을 특징으로 하는 진행파 원리를 이용한 이동체의 이차원 진행파 추진장치(90).The two-dimensional traveling wave propulsion device 90 is characterized in that the variable members 10 are continuously arranged on a two-dimensional plane, and propulsive force is generated in the front, rear, left, and right directions in plan view according to the traveling direction of the two- A two-dimensional traveling wave propulsion device (90) for a moving object using a traveling wave principle.
  8. 제1항에 있어서,The method according to claim 1,
    상기 삼차원 진행파 추진장치(100)는 상기 가변부재(10)가 삼차원 공간상에 연속적으로 나열되고, 삼차원 진행파의 진행방향에 따라 전, 후 두 방향으로 추진력이 발생되고, 각 파면에서 발생된 모든 추진력이 진행파 방향의 축에 대하여 회전대칭을 이루는 것을 특징으로 하는 진행파 원리를 이용한 이동체의 삼차원 진행파 추진장치(100).In the three-dimensional traveling wave propulsion device 100, the variable member 10 is continuously arranged on the three-dimensional space, propulsive forces are generated in both forward and backward directions along the traveling direction of the three-dimensional traveling wave, Axis direction of the traveling wave is rotationally symmetrical with respect to the axis of the traveling wave direction.
  9. 진행파 원리를 이용한 이동체의 추진 방법에 있어서,A method of driving a moving object using a traveling wave principle,
    (a) 추진장치가 원하는 모양으로 변형되도록 구동부에서 다수개의 서로 다른 구동력을 생성하고 제어하여 추진장치의 가변부재에 각각 제공하는 단계(a) generating and controlling a plurality of different driving forces in a driving unit so that the propulsion unit is deformed to a desired shape, and providing the driving force to the variable members of the propulsion unit, respectively
    (b) 상기 구동부로부터 상기 추진장치의 다수개의 가변부재에 위상차가 서로 다른 다수개의 구동력이 각각 제공되면, 다수개의 가변부재가 각각 변형되는 단계(b) when a plurality of driving forces having different phase differences are provided from the driving unit to the plurality of deformable members of the propulsion unit, respectively, the plurality of deformable members are deformed
    (c) 각 가변부재에 제공된 다수개의 구동력이 시간에 따라 주기적으로 변하도록 제어됨으로써 추진장치가 주기적으로 변형되는 단계(c) a step of periodically deforming the propulsion device by controlling the plurality of driving forces provided to each deformable member to change periodically with time
    (d) 상기 추진장치에 제공된 상기 구동력의 특성에 따라 연속적으로 진행하는 진행파(Progressive Wave)가 구현되는 단계(d) implementing a progressive wave continuously running according to characteristics of the driving force provided to the propulsion device
    (e) 상기 추진장치에 구현된 진행파의 파면이 추진장치에 접해있는 유체 또는 고정된 물체에 역방향의 힘을 작용하고 그 반작용으로 추진력이 발생되는 단계(e) a wavefront of a traveling wave implemented in the propulsion device applies a reverse force to a fluid or fixed object in contact with the propulsion device, and a reaction force is generated by the reaction
    를 포함하는 진행파 원리를 이용한 이동체의 추진 방법.Wherein the traveling wave principle is a traveling wave.
PCT/KR2011/001010 2011-01-19 2011-02-16 Propulsion device for moving body using principle of progressive waves and method thereof WO2012099291A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0005604 2011-01-19
KR1020110005604A KR101182979B1 (en) 2010-02-20 2011-01-19 Propulsion device and method for moving body using principle of progressive wave

Publications (1)

Publication Number Publication Date
WO2012099291A1 true WO2012099291A1 (en) 2012-07-26

Family

ID=46516952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001010 WO2012099291A1 (en) 2011-01-19 2011-02-16 Propulsion device for moving body using principle of progressive waves and method thereof

Country Status (1)

Country Link
WO (1) WO2012099291A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9375690B2 (en) 2009-08-24 2016-06-28 The University Court Of The University Of Glasgow Fluidics apparatus and fluidics substrate
US9410873B2 (en) 2011-02-24 2016-08-09 The University Court Of The University Of Glasgow Fluidics apparatus for surface acoustic wave manipulation of fluid samples, use of fluidics apparatus and process for the manufacture of fluidics apparatus
US11311686B2 (en) 2014-11-11 2022-04-26 The University Court Of The University Of Glasgow Surface acoustic wave device for the nebulisation of therapeutic liquids
CN114802672A (en) * 2022-05-19 2022-07-29 南京航空航天大学 Single-mode patch type piezoelectric driven swinging fin device and driving method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03293977A (en) * 1990-04-10 1991-12-25 Nec Corp Linear type ultrasonic motor
KR20020067151A (en) * 2001-02-15 2002-08-22 노용래 Ultrasonic linear motor and method for implementing its bi-directional advancing characteristics
KR100768888B1 (en) * 2006-06-12 2007-10-19 (주)피에조테크놀리지 Driving control apparatus for tiny ultrasonic linear actuator
KR20090054728A (en) * 2007-11-27 2009-06-01 한국과학기술연구원 A ring type piezoelectric ultrasonic resonator and a piezoelectric ultrasonic rotary motor using thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03293977A (en) * 1990-04-10 1991-12-25 Nec Corp Linear type ultrasonic motor
KR20020067151A (en) * 2001-02-15 2002-08-22 노용래 Ultrasonic linear motor and method for implementing its bi-directional advancing characteristics
KR100768888B1 (en) * 2006-06-12 2007-10-19 (주)피에조테크놀리지 Driving control apparatus for tiny ultrasonic linear actuator
KR20090054728A (en) * 2007-11-27 2009-06-01 한국과학기술연구원 A ring type piezoelectric ultrasonic resonator and a piezoelectric ultrasonic rotary motor using thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9375690B2 (en) 2009-08-24 2016-06-28 The University Court Of The University Of Glasgow Fluidics apparatus and fluidics substrate
US9751057B2 (en) 2009-08-24 2017-09-05 The University Court Of The University Of Glasgow Fluidics apparatus and fluidics substrate
US9410873B2 (en) 2011-02-24 2016-08-09 The University Court Of The University Of Glasgow Fluidics apparatus for surface acoustic wave manipulation of fluid samples, use of fluidics apparatus and process for the manufacture of fluidics apparatus
US11311686B2 (en) 2014-11-11 2022-04-26 The University Court Of The University Of Glasgow Surface acoustic wave device for the nebulisation of therapeutic liquids
US11771846B2 (en) 2014-11-11 2023-10-03 The University Court Of The University Of Glasgow Nebulisation of liquids
CN114802672A (en) * 2022-05-19 2022-07-29 南京航空航天大学 Single-mode patch type piezoelectric driven swinging fin device and driving method
CN114802672B (en) * 2022-05-19 2023-03-31 南京航空航天大学 Single-mode patch type piezoelectric driven swinging fin device and driving method

Similar Documents

Publication Publication Date Title
Ren et al. Research status of bionic amphibious robots: A review
WO2012099291A1 (en) Propulsion device for moving body using principle of progressive waves and method thereof
Guo et al. Development of a novel type of microrobot for biomedical application
Zhao et al. Fast-moving piezoelectric micro-robotic fish with double caudal fins
Fearing et al. Wing transmission for a micromechanical flying insect
Deng et al. Biomimetic micro underwater vehicle with oscillating fin propulsion: System design and force measurement
Guo et al. A novel type of microrobot for biomedical application
Low Current and future trends of biologically inspired underwater vehicles
Armanini et al. Flagellate underwater robotics at macroscale: design, modeling, and characterization
Hu et al. Micro thrust measurement experiment and pressure field evolution of bionic robotic fish with harmonic actuation of macro fiber composites
Dogangil et al. Modeling, simulation, and development of a robotic dolphin prototype
Li et al. Design and experimental evaluation of the novel undulatory propulsors for biomimetic underwater robots
Guo et al. Mechanism and control of a novel type microrobot for biomedical application
Georgiades Simulation and control of an underwater hexapod robot
Guo et al. A new type of underwater fish-like microrobot
Kong et al. A novel miniature swimmer propelled by 36° Y-cut lithium niobate acoustic propulsion system
Liu et al. Development and trials of a novel deep-sea multi-joint autonomous underwater vehicle
Guo et al. A new kind of microrobot in pipe using driving fin
Jaya et al. Thrust and efficiency enhancement scheme of the fin propulsion of the biomimetic autonomous underwater vehicle model in low-speed flow regime
Sun et al. Linear acceleration of an undulatory robotic fish with dynamic morphing median fin under the instantaneous self-propelled condition
Hu et al. A squid‐inspired swimming robot using folding of origami
Liu et al. Design and development of a novel piezoelectric caudal fin-like underwater thruster with a single vibration mode
Jiang et al. Design and modeling of a biomimetic wire-driven soft robotic fish
KR101182979B1 (en) Propulsion device and method for moving body using principle of progressive wave
Bilgen et al. Peristaltic pumping and propulsion with distributed piezocomposite actuators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856142

Country of ref document: EP

Kind code of ref document: A1