WO2012099235A1 - Clockwise and counterclockwise rotatable dc brushless motor - Google Patents

Clockwise and counterclockwise rotatable dc brushless motor Download PDF

Info

Publication number
WO2012099235A1
WO2012099235A1 PCT/JP2012/051180 JP2012051180W WO2012099235A1 WO 2012099235 A1 WO2012099235 A1 WO 2012099235A1 JP 2012051180 W JP2012051180 W JP 2012051180W WO 2012099235 A1 WO2012099235 A1 WO 2012099235A1
Authority
WO
WIPO (PCT)
Prior art keywords
brushless motor
wave rectification
position sensor
phase
reverse rotation
Prior art date
Application number
PCT/JP2012/051180
Other languages
French (fr)
Japanese (ja)
Inventor
中村 聡
信行 橋本
Original Assignee
株式会社日本計器製作所
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本計器製作所, 古河電気工業株式会社 filed Critical 株式会社日本計器製作所
Publication of WO2012099235A1 publication Critical patent/WO2012099235A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/30Arrangements for controlling the direction of rotation

Definitions

  • the present invention relates to a single-phase full-wave rectification type or two-phase half-wave rectification type DC brushless motor that rotates in both forward (CW) and reverse (CCW) directions with a direct current (DC) current without using a brush and a commutator.
  • CW forward
  • CCW reverse
  • DC direct current
  • the DC brushless motor is obtained by replacing the functions of the brush and commutator of a conventional brush motor with a switching element such as a semiconductor and a control circuit for controlling the driving thereof.
  • the DC brushless motor is superior in that it has a longer life, can be miniaturized, and can be assembled in a variety of shapes, and is highly efficient, easy to control, and driven quietly. For example, it is rapidly spreading to CD / DVD-ROM drives, hard disks, refrigerators, air conditioners and the like.
  • the DC braless motor is used for a fan 1 that blows air to cool a heating element 3 such as an electric device that generates heat in accordance with a drive housed in a casing 2 such as a case or a container.
  • a heating element 3 such as an electric device that generates heat in accordance with a drive housed in a casing 2 such as a case or a container.
  • the fan 1 energizes the coil wound around the stator of the motor 1a in the forward and reverse directions, whereby the permanent magnet, which is a rotor, rotates, and the fin 1b rotates accordingly to form an air flow (wind).
  • the fin 1b is integrated with the rotor.
  • the wind is sucked from the intake port 2a and exhausted from the exhaust port 2b.
  • the rotor may be inside or outside the stator.
  • the conventional single-phase full-wave rectification type or two-phase half-wave rectification type DC brushless motor can be rotated only in one direction. Therefore, together with the wind sucked into the housing 2, dust such as dust and dust is accumulated over time in the slit 4 of the mesh, dust-proof net, etc. disposed on the wind inlet 2a or the wind of the fan 1, There were problems such as a decrease in cooling efficiency, a failure of the heating element, and a cause of ignition.
  • the direction of rotation can be controlled by controlling the energization timing to the coil.
  • Patent Document 1 By reversing the direction of rotation, the wind also flows in the opposite direction. Therefore, the dust accumulated in the slit 4 can be regularly scattered to reduce or prevent the accumulation of dust.
  • such a three-phase DC brushless motor capable of forward and reverse rotation exhibits the same effect even in the case of local cooling inside the apparatus, not as a system fan that exhausts or intakes the entire inside of the apparatus. That is, in the case of local cooling, it is possible to reduce and prevent dust accumulated in the heat sink portion.
  • the 3-phase DC brushless motor, single-phase full-wave rectification type on a higher manufacturing cost than the two-phase half-wave rectification type DC brushless motor, the control is complicated.
  • the single-phase full-wave rectification type, two-phase half-wave rectification type DC brushless motor can be used for the following reasons even if the power supply +/- is connected in reverse or the existing circuit is reversed. It cannot be rotated in both directions from the outside.
  • FIG. 2 shows a conventional single-phase full-wave rectification type DC brushless motor 1c (a single coil is alternately energized with positive and negative currents (A)) and a two-phase half-wave rectification type DC brushless motor 1d (B: The cross-sectional schematic diagram of the bifilar winding) is shown.
  • N and S are the N pole and S pole of the magnet 6, and here, the combined product of the permanent magnet 6 and the magnet yoke 6a becomes the rotor. That is, when the motor is used as a fan motor, the fin 1b is connected to the combined product of the magnet 6 and the magnet yoke 6a.
  • the stator 5 has 4 poles and each pole has a T shape, and the tip of the T shape is called poles 5a and 5b.
  • the stator 5 is fixed or integrally formed on the frame of the fan 1 or the like. In the hole of the stator 5, the rotating shaft 5c of the rotor including the magnet 6 is rotatably held.
  • the coil 7 (7a) is wound around the shaft-like portion of the stator 5.
  • the magnet 6 rotates by alternately applying a reverse current to the coil 7 (7a).
  • Switching of the energization direction is controlled by sensing the position of the magnetic pole of the magnet 6 with a position sensor 8 fixed to the stator 5 and inputting the magnetic pole detection signal to a circuit (output path 10) for controlling the switch element.
  • the start position of the position sensor 8 as go smoothly to arrange the position sensor 8 so as not come to the magnetic pole boundary 6b.
  • the torque applied to determine the stop point of the motor is called cogging (cogging torque). If the stop point angle due to cogging is a 4-pole motor, it is designed to be 22.5 ° in the forward direction and the maximum value of cogging torque is 1 ⁇ 2 of the maximum torque generated by the magnet and coil when rotating. Ideal.
  • This 22.5 ° is an angle in a mechanical angle in which one rotation of the magnet 6 is 360 °. If the angle at which the magnet 6 rotates and the positional relationship of the magnetic poles reaches the same position as the original position is 360 ° in electrical angle, the mechanical angle is 180 °.
  • the cogging angle is ideally 45 ° in electrical angle, and the cogging angle varies depending on the number of magnetic poles of the motor. For example, in a 2-pole motor, the electrical angle and the mechanical angle are the same, so the cogging angle is 45 ° even in the mechanical angle.
  • FIG. 3 shows a block diagram of a conventional typical single-phase full-wave rectification type DC brushless motor drive IC.
  • a position sensor 8 H: Hall element
  • IN + and IN- mean that if there is a magnetic pole, the output is output, and if there is no magnetic pole, both are not output. With respect to the middle of the applied voltage to the Hall element H, it is output as + and ⁇ , and the magnitude thereof is the same.
  • FIG. 4 shows an ideal combined torque during normal rotation (forward rotation) in a conventional single-phase full-wave or two-phase half-wave rectification type DC brushless motor. Since the value of the torque obtained by synthesizing the magnetic torque and the cogging torque are located + in all angles, where it can be seen that the CW rotation without dead point be stopped.
  • FIG. 5 shows the combined torque when the conventional single-phase full-wave or two-phase half-wave rectification type DC brushless motor is set in the reverse rotation mode by an electric circuit.
  • torque in this case, CW torque
  • the rotation direction in this case, the CCW direction
  • a dead center is generated.
  • the fluctuation of the synthesized torque becomes very large, and the vibration of the motor is large, which is extremely problematic.
  • the cogging torque and the stop point will be described with reference to FIG. Since the cogging torque is as shown in FIG. 6A, the sum is zero. Therefore, in a rotating motor, the motor torque at the time of forward rotation and reverse rotation has the same value. During reverse rotation, the torque during rotation does not become smaller.
  • Fig. 6 (B) shows a stable stop point
  • Fig. 6 (C) shows an unstable stop point.
  • the stable stopping point returns to the stop point serves a torque in the CCW when the magnet 6 rotates in CW, are stable so returns to its original position as well as to rotate the CCW.
  • the unstable stopping point the magnet 6 torque of the same CW works the magnet 6 is rotated in the CW, will rotate and stops at the next stable stopping point.
  • the present invention is a single-phase rotating in both forward and reverse directions with a direct current without using a brush and a commutator, which is easier and cheaper to control than a DC brushless motor having three or more phases, which is forward and reverse.
  • An object of the present invention is to provide a full-wave rectification type or a two-phase half-wave rectification type DC brushless motor.
  • the present invention includes (1) a position sensor that detects a pole position of a magnet that is a rotor, and controls on / off of a switching element by output of a magnetic pole detection signal of the position sensor,
  • a position sensor that detects a pole position of a magnet that is a rotor, and controls on / off of a switching element by output of a magnetic pole detection signal of the position sensor
  • a single-phase full-wave rectification type or two-phase half-wave rectification type DC brushless motor that changes the energization direction to a coil wound around the stator
  • two magnetic pole detection signals input from the position sensor to a circuit that controls the switching element
  • the DC brushless motor can be rotated in the forward and reverse directions by rotating the rotor in the reverse direction.
  • the DC capable of forward / reverse rotation according to (1) wherein the two magnetic pole detection signals are interchanged in conjunction with turning on or off of the motor driving power source or automatically by timer control.
  • the configuration is a brushless motor.
  • a position sensor for detecting the pole position of the magnet that is the rotor is provided, the on / off of the switching element is controlled by the output of the magnetic pole detection signal of the position sensor, and the energization direction to the coil wound around the stator is changed.
  • an energization path to the coil wound around the stator is automatically linked with turning on or off the motor driving power source or by timer control. It was set as the structure of the DC brushless motor which can perform forward / reverse rotation characterized by replacing.
  • two position sensors for detecting the pole position of the magnet as a rotor are provided, one for forward rotation and the other for reverse rotation. and use, and the signals by the forward and reverse rotatable DC brushless motor and controls the current direction of the coil wound around the stator arrangement from the position sensor.
  • the configuration of the DC brushless motor capable of forward / reverse rotation described in (4) or (5) is used.
  • the arrangement of the rotor, the inner side of the starter may be either outside.
  • the position sensors although the Hall element can be exemplified, similar function, i.e., to detect the magnetic pole position of the magnet for example a permanent magnet, but is not limited to the Hall element if the output.
  • the switching element includes a semiconductor.
  • the circuit only needs to add a mechanism for switching the input (hereinafter also referred to as an output path) to the circuit for controlling the switching element from the position sensor and a control circuit for controlling the same to the conventional circuit.
  • the rotation direction is not automatically changed by the operator, but is automatically linked to the normal operation of the operator.
  • an internal timer is provided in the control circuit of the mechanism that rotates in reverse for several tens of seconds, or switches the output path in conjunction with turning on or off the drive power source or fan of the heating element, and the rotation direction can be changed periodically.
  • reverse rotation may be performed for a predetermined time after turning on / off the driving power source of the heating element.
  • a mechanism that changes only the rotation direction of the motor as intended by the operator may be used. *
  • the present invention provides a single-phase full-wave rectification type or a two-phase half-wave rectification type DC by changing the output path from the position sensor to the switching element, or by changing the direction of energization of the coil wound around the stator.
  • the brushless motor can be rotated in both forward and reverse directions. Therefore, it is possible to provide a single-phase full-wave rectification type or a two-phase half-wave rectification type DC brushless motor rotates easily and inexpensively in the forward and reverse bidirectional than 3-phase DC brushless motor.
  • the timer can be rotated in the reverse direction for each predetermined driving time, thereby sufficiently cleaning the dust adsorbed on the suction portion. .
  • the rotation direction of the motor By controlling the rotation direction of the motor by the timer method, it is possible to ensure an appropriate clean time according to the usage environment and the suction amount of the electrical equipment that generates heat.
  • FIG. 6 is a schematic cross-sectional view of a DC brushless motor capable of forward and reverse rotation according to a third embodiment. It is a figure which shows the synthetic
  • FIG. It is a block diagram of Example 4 (two-phase half-wave rectification type DC brushless motor / two position sensors).
  • FIG. 10 is a schematic cross-sectional view of a DC brushless motor capable of forward and reverse rotation according to a fifth embodiment. It is a figure which shows the synthetic
  • FIG. 7 shows a circuit block diagram of a DC brushless motor capable of forward and reverse rotation in the single-phase full-wave rectification type DC brushless motor according to the present invention.
  • FIG. 7A shows the circuit connection during forward rotation
  • FIG. 7B shows the circuit connection during reverse rotation.
  • the output path 10 of the magnetic pole detection signal which is the position signal of the magnetic pole of the magnet 6 detected by the position sensor 8, is crossed (replaced), so that it can be rotated in both forward and reverse directions.
  • the control circuit or the like is a conventional general single-phase full-wave rectification type or 2 except for a switching mechanism (mechanical connection or electrical connection) of the output path 10 and a control circuit (switching mode control circuit) for controlling the output path 10. This is the same as a phase half-wave rectification type DC brushless motor.
  • the timing of switching is automatically, periodically, or intentionally associated with the normal operation of the person, or with an internal timer, forced switch, etc. And it can reversely rotate at irregular intervals. If fan comprising such a motor, a wind for cooling is generated in the opposite direction, the scattering of accumulated dust, reduce dust, help prevent.
  • FIG. 8 shows a circuit block diagram of a DC brushless motor capable of forward and reverse rotation in the two-phase full-wave rectification type DC brushless motor of the present invention.
  • FIG. 8A shows circuit connections during forward rotation
  • FIG. 8B shows circuit connections during reverse rotation.
  • the forward / reverse rotation control is the same as that of the conventional two-phase full-wave rectification type DC brushless motor except that the output path 10 of the magnetic pole detection signal from the position sensor 8 is replaced and a switching mode control circuit is provided.
  • the switching mechanism of the output path 10 and the switching mode control circuit are the same as those in the first embodiment. same as below.
  • the single-phase full-wave rectification type DC brushless motor can be rotated in the forward and reverse directions and easily controlled by providing the position sensor 8 and the second position sensor 8a for forward rotation and reverse rotation.
  • FIG. 9A shows circuit connections during forward rotation
  • FIG. 9B shows circuit connections during reverse rotation. Forward / reverse rotation can be achieved simply by switching the connection of the output path 10a as shown in FIG.
  • FIG. 10 is a schematic cross-sectional view of a DC brushless motor 11 capable of forward and reverse rotation in Example 3, and FIG. 11 shows the resultant torque.
  • the position sensor 8 when the sensitivity of the second position sensor 8a is not good, switching the direction of current flow (switching) is delayed, the combined torque curve shown in FIG. 11.
  • combined torque curve that crosses the torque ratio 0 right edge (the dashed circle) is a stable stopping point (dead point), and the motor is thereby stopped.
  • the rotor returns to a stable stop point and rotates by re-energization, but a later-described fifth embodiment can be exemplified as a more effective means.
  • the two-phase half-wave rectification type DC brushless motor can be rotated forward and backward and easily controlled by providing two position sensors 8 and two second position sensors 8a for forward rotation and reverse rotation.
  • FIG. 12A shows circuit connections during forward rotation
  • FIG. 12B shows circuit connections during reverse rotation. Forward / reverse rotation can be achieved simply by switching the connection of the output path 10a as shown in FIG.
  • the cross-sectional schematic diagram and the combined torque are the same as those in FIGS. 10 and 11 of the third embodiment.
  • the position sensor 8b (for CW rotation) and the second position sensor 8c (for CCW rotation) are not moved between the poles 5a and 5b, but are moved slightly in the switching direction at an early timing.
  • a DC brushless motor 14 capable of reverse rotation is shown. Since two position sensors are arranged by shifting to a position to advance the switching timing, it is possible to prevent a “stable dead point” as in the case of the third embodiment, and to rotate in either forward or reverse rotation. Will never stop. Since the position sensor 8b for CW rotation and the second position sensor 8c for CCC rotation are separate parts, such control is possible.
  • FIG. 14 shows the combined torque in the case of FIG.
  • the position sensors 8b and 8c By disposing the position sensors 8b and 8c in a direction that accelerates switching, there is no portion where the combined torque curve crosses the torque ratio 0 to the right, and there is no “stable dead point”.
  • the part that crosses the torque ratio 0 in the upward direction becomes “unstable dead point (torque 0 point)”, and the motor does not stop at this position.
  • the rotor starts vibrating and then rotates, so the motor does not stop.
  • FIG. 15 is changed to the stator 12a having a shape in which the notch 12b is provided in the stator 5 of FIG. 2, and a DC brushless capable of forward and reverse rotation with a cogging angle of 45 ° mechanical angle (electrical angle 90 °).
  • a schematic diagram of the motor 12 is shown.
  • the notch 12b is formed by recessing the center of both poles 5a and 5b of each pole of the stator 12a in a V shape in the direction of the rotation axis 5c. (The same applies to the stay fields 11a and 14a.)
  • FIG. 15A shows a stable stop point
  • FIG. 15B shows an unstable stop point.
  • Reference numeral 6a is a magnetic pole boundary when stopped at a stable stop point
  • reference numeral 6b is a magnetic pole boundary when stopped at an unstable stop point.
  • the output path 10 can be replaced to reduce the torque fluctuation range of the combined torque during reverse rotation. Further, there is no angle at which negative torque (torque to rotate in reverse) is generated at all angles. In addition, as shown in FIG. 17, by decreasing the design the maximum value of the cogging torque, as in the combined torque of FIG. 17, it is also possible to reduce the fluctuation band.
  • a circuit that intentionally reverses the coil energization direction when the motor is not rotating is provided by a mechanism that detects the rotation of the magnet built in the drive IC. When energized, a magnetic field torque is generated, and if the magnet is vibrated, it can be separated from an unstable stop point and rotated.
  • the cogging angle is 45 ° in mechanical angle (electrical angle 90 °), and the forward / reverse direction is provided with the stator 13 a of another form in which the combined torque in the forward / reverse rotation has the same waveform.
  • a schematic diagram of the rotatable DC brushless motor 13 is shown.
  • the tips of the poles 5a and 5b on the position sensor 8 between the poles 5a and 5b are cut out. That is, in the stator 5 of FIG. 2, the left and right two poles out of the four poles on the upper, lower, left and right sides are inverted to the line object. Even with this shape, the composite torque waveform is not shown here, but the composite torque waveform during forward and reverse rotation is the same waveform, and the torque fluctuation is the same as in the sixth embodiment, compared to the case where the conventional stator 5 is employed. The width becomes smaller.

Abstract

[Problem] To provide a single-phase full-wave rectification-type or a two-phase half-wave rectification-type DC brushless motor which is controlled more easily and more inexpensively than when a three (or more)-phase brushless motor is clockwise and counterclockwise rotated, and which rotates in both clockwise and counterclockwise directions by a direct current without using a brush and a commutator. [Solution] To solve the problem, a single-phase full-wave rectification-type or a two-phase half-wave rectification-type DC brushless motor is provided with a position sensor for detecting the positions of the poles of a magnet serving as a rotor, controls the on/off of a switching element by the output of a magnetic pole detection signal from the position sensor, and changes the direction in which a current is passed through a coil wound around a stator. The configuration of the clockwise and counterclockwise rotatable DC brushless motor is characterized in that the rotor is counterclockwise rotated by interchanging two magnetic pole detection signals inputted from the position sensor to a circuit for controlling the switching element.

Description

正逆回転可能なDCブラシレスモータDC brushless motor capable of forward and reverse rotation
 本発明は、ブラシ及び整流子を用いることなく直流(DC)電流で正転(CW)、逆転(CCW)の双方向に回転する単相全波整流型又は2相半波整流型DCブラシレスモータに関する。 The present invention relates to a single-phase full-wave rectification type or two-phase half-wave rectification type DC brushless motor that rotates in both forward (CW) and reverse (CCW) directions with a direct current (DC) current without using a brush and a commutator. About.
DCブラシレスモータは、従来のブラシモータのブラシと整流子の機能を半導体などのスイッチング素子とその駆動を制御する制御回路に置換したものである。そして、ブラシモータに比べ、寿命が長く、小型化、そして多用な形状に組み立てることができるとともに、高効率かつ制御が容易で、かつ静かに駆動する点、DCブラシレスモータは優れている。例えば、CD/DVD-ROMドライブ、ハードディスク、冷蔵庫、エアコンなどに急速に普及している。 The DC brushless motor is obtained by replacing the functions of the brush and commutator of a conventional brush motor with a switching element such as a semiconductor and a control circuit for controlling the driving thereof. Compared with a brush motor, the DC brushless motor is superior in that it has a longer life, can be miniaturized, and can be assembled in a variety of shapes, and is highly efficient, easy to control, and driven quietly. For example, it is rapidly spreading to CD / DVD-ROM drives, hard disks, refrigerators, air conditioners and the like.
 図1に示すように、DCブラレスモータは、ケース、容器などの筺体2に収納された駆動などに伴い発熱する電気機器等の発熱体3に風を送風し冷却するファン1などに用いられ、その用途は益々拡大している。ファン1は、モータ1aのステータに巻かれたコイルに正逆方向に通電することで、回転子である永久磁石が回転し、それに伴ってフィン1bが回転して空気の流れ(風)を形成する。フィン1bは回転子と一体となっている。風は吸気口2aから吸気され排気口2bから排気される。なお、回転子がステータの内側にあることも、外側になることもある。 As shown in FIG. 1, the DC braless motor is used for a fan 1 that blows air to cool a heating element 3 such as an electric device that generates heat in accordance with a drive housed in a casing 2 such as a case or a container. Their uses are expanding. The fan 1 energizes the coil wound around the stator of the motor 1a in the forward and reverse directions, whereby the permanent magnet, which is a rotor, rotates, and the fin 1b rotates accordingly to form an air flow (wind). To do. The fin 1b is integrated with the rotor. The wind is sucked from the intake port 2a and exhausted from the exhaust port 2b. The rotor may be inside or outside the stator.
 ところが、従来の単相全波整流型又は2相半波整流型DCブラシレスモータは、一方向にしか回転させることができない。そのため、筺体2へ吸引される風とともに、埃、塵等の粉塵が風の吸込口2a、或いはファン1の風上に配置される、メッシュ、防塵ネットなどのスリット4に時間経過と共に蓄積され、冷却効率の低下、さらに発熱体の故障、発火の原因になるなどの問題があった。 However, the conventional single-phase full-wave rectification type or two-phase half-wave rectification type DC brushless motor can be rotated only in one direction. Therefore, together with the wind sucked into the housing 2, dust such as dust and dust is accumulated over time in the slit 4 of the mesh, dust-proof net, etc. disposed on the wind inlet 2a or the wind of the fan 1, There were problems such as a decrease in cooling efficiency, a failure of the heating element, and a cause of ignition.
他方、3相DCブラシレスモータであれば、コイルへの通電タイミングを制御することで、回転方向を制御することができる。例えば、特許文献1などに公開されている。回転方向を逆回転させることで、風も逆向きに流れる。従って、スリット4に溜まった粉塵を定期的に飛散させ、粉塵の蓄積を低減、防止できる。また、このように正逆転できる3相DCブラシレスモータであれば、装置内部全体の排気、または吸気を行うシステムファンとしてではなく、装置内部の局所冷却の場合でも同様の効果を発揮する。即ち、局所冷却の場合は、ヒートシンク部に溜まる粉塵の低減、防止も可能になる。 On the other hand, in the case of a three-phase DC brushless motor, the direction of rotation can be controlled by controlling the energization timing to the coil. For example, it is disclosed in Patent Document 1. By reversing the direction of rotation, the wind also flows in the opposite direction. Therefore, the dust accumulated in the slit 4 can be regularly scattered to reduce or prevent the accumulation of dust. In addition, such a three-phase DC brushless motor capable of forward and reverse rotation exhibits the same effect even in the case of local cooling inside the apparatus, not as a system fan that exhausts or intakes the entire inside of the apparatus. That is, in the case of local cooling, it is possible to reduce and prevent dust accumulated in the heat sink portion.
特開平6-70578号公報JP-A-6-70578
 しかしながら、3相DCブラシレスモータでは、単相全波整流型、2相半波整流型DCブラシレスモータより製造コストが高い上、制御が複雑である。また、単相全波整流型、2相半波整流型DCブラシレスモータは、電源の+/-を逆に接続しても、さらに、既存の回路を逆向きにしても以下に示す理由により、外部から双方向に回転させることはできない。 However, the 3-phase DC brushless motor, single-phase full-wave rectification type, on a higher manufacturing cost than the two-phase half-wave rectification type DC brushless motor, the control is complicated. In addition, the single-phase full-wave rectification type, two-phase half-wave rectification type DC brushless motor can be used for the following reasons even if the power supply +/- is connected in reverse or the existing circuit is reversed. It cannot be rotated in both directions from the outside.
 図2に、従来の単相全波整流型DCブラシレスモータ1c(1本のコイルに正負逆向きの電流を交互に通電する(A))、2相半波整流型DCブラシレスモータ1d(B:バイファイラ巻き)の断面模式図を示した。 FIG. 2 shows a conventional single-phase full-wave rectification type DC brushless motor 1c (a single coil is alternately energized with positive and negative currents (A)) and a two-phase half-wave rectification type DC brushless motor 1d (B: The cross-sectional schematic diagram of the bifilar winding) is shown.
 N、Sは磁石6のN極、S極であり、ここでは永久磁石6とマグネットヨーク6aの合体品が回転子となる。即ち、当該モータをファンモータに利用する場合には磁石6とマグネットヨーク6aの合体品にフィン1bを接続させる。 N and S are the N pole and S pole of the magnet 6, and here, the combined product of the permanent magnet 6 and the magnet yoke 6a becomes the rotor. That is, when the motor is used as a fan motor, the fin 1b is connected to the combined product of the magnet 6 and the magnet yoke 6a.
 ステータ5は、4極で各極はT字状をしており、T字の先端部が極5a、5bと呼ばれる。そして、ステータ5はファン1の枠などに固定或いは一体成形される。ステータ5の穴には、磁石6を含んだ回転子の回転軸5cが回動可能に保持される。 The stator 5 has 4 poles and each pole has a T shape, and the tip of the T shape is called poles 5a and 5b. The stator 5 is fixed or integrally formed on the frame of the fan 1 or the like. In the hole of the stator 5, the rotating shaft 5c of the rotor including the magnet 6 is rotatably held.
 また、ステータ5の軸状部にコイル7(7a)が巻かれる。このコイル7(7a)に逆向きの電流が交互に通電されることで、磁石6は回転する。通電方向の切換は、磁石6の磁極の位置をステータ5に固定された位置センサ8で感知し、磁極検出信号をスイッチ素子を制御する回路(出力経路10)に入力することで制御される。 Further, the coil 7 (7a) is wound around the shaft-like portion of the stator 5. The magnet 6 rotates by alternately applying a reverse current to the coil 7 (7a). Switching of the energization direction is controlled by sensing the position of the magnetic pole of the magnet 6 with a position sensor 8 fixed to the stator 5 and inputting the magnetic pole detection signal to a circuit (output path 10) for controlling the switch element.
 モータが止まっているときは、スタートがスムーズにいくように位置センサ8の位置が磁極境目6bに来ないように位置センサ8を配置させる。このモータの停止点を決めるためにつけるトルクをコギング(コギングトルク)と言う。コギングによる停止点角度は4極モータであれば、前進方向に22.5°、コギングトルクの最大値は回転しているときに磁石とコイルで発生する最大トルクの1/2に設計するのが理想的である。 When the motor is stopped, the start position of the position sensor 8 as go smoothly to arrange the position sensor 8 so as not come to the magnetic pole boundary 6b. The torque applied to determine the stop point of the motor is called cogging (cogging torque). If the stop point angle due to cogging is a 4-pole motor, it is designed to be 22.5 ° in the forward direction and the maximum value of cogging torque is ½ of the maximum torque generated by the magnet and coil when rotating. Ideal.
この22.5°とは磁石6の1回転を360°とした機械角での角度である。磁石6が回転して磁極の位置関係がもとの位置と同じところまでくる角度を電気角で360°とすると機械角は180°となる。コギング角度は電気角では45°とするのが理想的で、機械角ではモータの磁極の数によって変動する。例えば、2極モータでは電気角と機械角は同じになるのでコギング角度は機械角でも45°となる。 This 22.5 ° is an angle in a mechanical angle in which one rotation of the magnet 6 is 360 °. If the angle at which the magnet 6 rotates and the positional relationship of the magnetic poles reaches the same position as the original position is 360 ° in electrical angle, the mechanical angle is 180 °. The cogging angle is ideally 45 ° in electrical angle, and the cogging angle varies depending on the number of magnetic poles of the motor. For example, in a 2-pole motor, the electrical angle and the mechanical angle are the same, so the cogging angle is 45 ° even in the mechanical angle.
 次に、図3に、従来の代表的な単相全波整流型DCブラシレスモータ用ドライブICのブロック図を示す。位置センサ8(H:ホール素子)が磁石6の磁極を検出し、その磁極検出信号を元に、磁極の切り替えに併せてコイル7に流す電流の向きをスイッチング素子9の駆動で反転させせる。IN+とIN-とは、磁極があれば出力、磁極がなければ両方とも出力しないことを意味する。ホール素子Hへの印可電圧の中位に対して+、-、で出力され、その大きさは同じである。 Next, FIG. 3 shows a block diagram of a conventional typical single-phase full-wave rectification type DC brushless motor drive IC. A position sensor 8 (H: Hall element) detects the magnetic pole of the magnet 6, and based on the magnetic pole detection signal, the direction of the current flowing through the coil 7 is reversed by driving the switching element 9 in accordance with the switching of the magnetic pole. IN + and IN- mean that if there is a magnetic pole, the output is output, and if there is no magnetic pole, both are not output. With respect to the middle of the applied voltage to the Hall element H, it is output as + and −, and the magnitude thereof is the same.
 次に、図4に、従来の単相全波或いは2相半波整流型DCブラシレスモータにおける通常回転(正転)時の理想的な合成トルクを示す。磁場トルクとコギングトルクを合成したトルクの値がすべての角度において+に位置しているので、どこで止めても死点がなくCW回転することが分かる。 Next, FIG. 4 shows an ideal combined torque during normal rotation (forward rotation) in a conventional single-phase full-wave or two-phase half-wave rectification type DC brushless motor. Since the value of the torque obtained by synthesizing the magnetic torque and the cogging torque are located + in all angles, where it can be seen that the CW rotation without dead point be stopped.
 他方、図5に従来の単相全波或いは2相半波整流型DCブラシレスモータにおいて、電気回路によって逆回転モードにしたときの合成トルクを示す。この場合には、図5で明らかなように、回転方向(この場合はCCW方向)と逆のトルク(この場合はCWトルク)を発生しているところがあり、死点が発生してしまう。また、正転時に比べると、合成トルクの変動が非常に大きくなり、モータの振動が大きく、極めて問題である。 On the other hand, FIG. 5 shows the combined torque when the conventional single-phase full-wave or two-phase half-wave rectification type DC brushless motor is set in the reverse rotation mode by an electric circuit. In this case, as is apparent from FIG. 5, there is a place where torque (in this case, CW torque) opposite to the rotation direction (in this case, the CCW direction) is generated, and a dead center is generated. Further, compared with the forward rotation, the fluctuation of the synthesized torque becomes very large, and the vibration of the motor is large, which is extremely problematic.
 次に、図6を参照して、コギングトルク及び停止点につていて説明する。コギングトルクは、図6(A)に示すようなトルクとなるので、その和は0になる。従って、回転しているモータでは、正回転、逆回転のときのモータトルクとしては同じ値になる。逆回転時の方が回転時のトルクが小さくなるということはない。 Next, the cogging torque and the stop point will be described with reference to FIG. Since the cogging torque is as shown in FIG. 6A, the sum is zero. Therefore, in a rotating motor, the motor torque at the time of forward rotation and reverse rotation has the same value. During reverse rotation, the torque during rotation does not become smaller.
 図6(B)には安定した停止点を、図6(C)には不安定な停止点を示した。安定した停止点では、磁石6がCWに回転するとCCWのトルクが働き停止点に戻り、CCWに回転しようとしても同様にもとの位置に戻るので安定している。不安定な停止点では、磁石6がCWに回転すると同じCWのトルクが働き磁石6は、回転してしまい、次の安定した停止点で止まる。 Fig. 6 (B) shows a stable stop point, and Fig. 6 (C) shows an unstable stop point. The stable stopping point, returns to the stop point serves a torque in the CCW when the magnet 6 rotates in CW, are stable so returns to its original position as well as to rotate the CCW. The unstable stopping point, the magnet 6 torque of the same CW works the magnet 6 is rotated in the CW, will rotate and stops at the next stable stopping point.
 図6(B)に示す断面模式図で分かるように、通常は安定した停止点((A)の実線円)に止まるが、不安点な停止点に止まる確率も0ではない。しかし、通常のモータでは不安定な停止点((B)の破線円)に止まったとしても、位置センサ8が磁石6の磁極の境目に位置しないので、問題なく回転スタートする。 As can be seen from the cross-sectional schematic diagram shown in FIG. 6 (B), it normally stops at a stable stop point (solid line circle in (A)), but the probability of stopping at an uneasy stop point is not zero. However, even if the motor stops at an unstable stop point (broken line circle in (B)) with a normal motor, the position sensor 8 is not positioned at the boundary of the magnetic pole of the magnet 6 and thus starts rotating without any problem.
 本発明は、3相以上のDCブラシレスモータを正逆回転させるよりも制御が容易でかつ安価な、ブラシ及び整流子を用いることなく直流電流で正回転、逆回転の双方向に回転する単相全波整流型又は2相半波整流型DCブラシレスモータを提供することを目的とするものである。 The present invention is a single-phase rotating in both forward and reverse directions with a direct current without using a brush and a commutator, which is easier and cheaper to control than a DC brushless motor having three or more phases, which is forward and reverse. An object of the present invention is to provide a full-wave rectification type or a two-phase half-wave rectification type DC brushless motor.
 上記の課題を解決するために、本発明は、(1)回転子である磁石の極位置を検出する位置センサを備え、前記位置センサの磁極検出信号の出力によりスイッチング素子のオンオフを制御し、ステータに巻かれたコイルへの通電方向を変更する単相全波整流型又は2相半波整流型DCブラシレスモータにおいて、前記位置センサから前記スイッチング素子を制御する回路へ入力する2つの磁極検出信号を入れ替えることで、前記回転子を逆回転させることを特徴とする正逆回転可能なDCブラシレスモータの構成とした。また、(2)モータ駆動用電源のオン又はオフに連動させ、或いはタイマー制御により自動的に、前記2つの磁極検出信号を入れ替えることを特徴とする(1)に記載の正逆回転可能なDCブラシレスモータの構成とした。 In order to solve the above problems, the present invention includes (1) a position sensor that detects a pole position of a magnet that is a rotor, and controls on / off of a switching element by output of a magnetic pole detection signal of the position sensor, In a single-phase full-wave rectification type or two-phase half-wave rectification type DC brushless motor that changes the energization direction to a coil wound around the stator, two magnetic pole detection signals input from the position sensor to a circuit that controls the switching element The DC brushless motor can be rotated in the forward and reverse directions by rotating the rotor in the reverse direction. Also, (2) the DC capable of forward / reverse rotation according to (1), wherein the two magnetic pole detection signals are interchanged in conjunction with turning on or off of the motor driving power source or automatically by timer control. The configuration is a brushless motor.
(3)回転子である磁石の極位置を検出する位置センサを備え、前記位置センサの磁極検出信号の出力によりスイッチング素子のオンオフを制御し、ステータに巻かれたコイルへの通電方向を変更する単相全波整流型又は2相半波整流型DCブラシレスモータにおいて、モータ駆動用電源のオン又はオフに連動させ、或いはタイマー制御により自動的に、前記ステータに巻かれたコイルへの通電経路を入れ換えることを特徴とする正逆回転可能なDCブラシレスモータの構成とした。 (3) A position sensor for detecting the pole position of the magnet that is the rotor is provided, the on / off of the switching element is controlled by the output of the magnetic pole detection signal of the position sensor, and the energization direction to the coil wound around the stator is changed. In a single-phase full-wave rectification type or two-phase half-wave rectification type DC brushless motor, an energization path to the coil wound around the stator is automatically linked with turning on or off the motor driving power source or by timer control. It was set as the structure of the DC brushless motor which can perform forward / reverse rotation characterized by replacing.
(4)単相全波整流型又は2相半波整流型DCブラシレスモータにおいて、回転子である磁石の極位置を検出する位置センサを2個備え、1個は正回転用、他方を逆回転用とし、前記位置センサからの信号によりステータに巻かれたコイルへの通電方向を制御することを特徴とする正逆回転可能なDCブラシレスモータの構成とした。また、(5)前記位置センサをステータの極と極の中心からずらして配置したことを特徴とする(4)に記載の正逆回転可能なDCブラシレスモータの構成とした。さらに、(6)モータ駆動用電源のオン又はオフに連動させ、或いはタイマー制御により自動的に、前記正回転用及び逆回転用の位置センサの磁極検出信号のスイッチング素子への出力を切り換えることを特徴とする(4)又は(5)に記載の正逆回転可能なDCブラシレスモータの構成とした。 (4) In a single-phase full-wave rectification type or two-phase half-wave rectification type DC brushless motor, two position sensors for detecting the pole position of the magnet as a rotor are provided, one for forward rotation and the other for reverse rotation. and use, and the signals by the forward and reverse rotatable DC brushless motor and controls the current direction of the coil wound around the stator arrangement from the position sensor. Also, (5) and the forward and reverse rotatable DC brushless motor structure according to the position sensor, characterized in that arranged offset from the center of the stator pole and the pole (4). Further, (6) switching the output of the magnetic pole detection signal of the forward rotation and reverse rotation position sensors to the switching element in conjunction with turning on or off of the motor drive power supply or automatically by timer control. The configuration of the DC brushless motor capable of forward / reverse rotation described in (4) or (5) is used.
(7)コギング角度を電気角で90°としたことを特徴とする(1)~(6)の何れか1に記載の正逆回転可能なDCブラシレスモータの構成とした。 (7) The configuration of the DC brushless motor capable of forward / reverse rotation according to any one of (1) to (6), wherein the cogging angle is set to 90 ° as an electrical angle.
 本発明の正逆回転可能なDCブラシレスモータで(以下、単に「モータ」ということもある。)は、回転子の配置は、スタータの内側、外側どちらでもよい。位置センサとしては、ホール素子が例示できるが、同様の機能、即ち、磁石例えば永久磁石の磁極位置を検知し、出力できればホール素子に限定されない。また、スイッチング素子としては半導体などがある。また、回路は、従来の回路に、位置センサからスイッチング素子を制御する回路へ入力(以下、出力経路ともいう。)を入れ換える機構、及びそれを制御する制御回路を付加するだけでよい。 Normal and reverse rotatable DC brushless motor of the present invention (hereinafter, sometimes simply referred to as "motor".), The arrangement of the rotor, the inner side of the starter may be either outside. The position sensors, although the Hall element can be exemplified, similar function, i.e., to detect the magnetic pole position of the magnet for example a permanent magnet, but is not limited to the Hall element if the output. In addition, the switching element includes a semiconductor. Further, the circuit only needs to add a mechanism for switching the input (hereinafter also referred to as an output path) to the circuit for controlling the switching element from the position sensor and a control circuit for controlling the same to the conventional circuit.
 回転方向の変更は、作業者が意図して変更するのではなく、作業者の通常の動作に連動して自動とすることが好ましい。例えば、発熱体の駆動電源或いはファンのオン又はオフに連動し、例えは数十秒間逆回転、或いは前記出力経路を入れ換える機構の制御回路に内部タイマーを備え、定期的に回転方向を変えても或いは発熱体の駆動電源のオンオフから所定時間逆回転させるなどすればよい。勿論、作業者が意図して、モータの回転方向のみ変更する機構としてもよい。  It is preferable that the rotation direction is not automatically changed by the operator, but is automatically linked to the normal operation of the operator. For example, an internal timer is provided in the control circuit of the mechanism that rotates in reverse for several tens of seconds, or switches the output path in conjunction with turning on or off the drive power source or fan of the heating element, and the rotation direction can be changed periodically. Alternatively, reverse rotation may be performed for a predetermined time after turning on / off the driving power source of the heating element. Of course, a mechanism that changes only the rotation direction of the motor as intended by the operator may be used. *
 本発明は、位置センサからのスイッチング素子への出力経路を入れ替えることで、或いはステータに巻かれたコイルへの通電方向を変更することで、単相全波整流型又は2相半波整流型DCブラシレスモータを正逆双方向に回転させることができる。従って、3相DCブラシレスモータより簡易かつ廉価に正逆双方向に回転する単相全波整流型又は2相半波整流型DCブラシレスモータを提供することができる。 The present invention provides a single-phase full-wave rectification type or a two-phase half-wave rectification type DC by changing the output path from the position sensor to the switching element, or by changing the direction of energization of the coil wound around the stator. The brushless motor can be rotated in both forward and reverse directions. Therefore, it is possible to provide a single-phase full-wave rectification type or a two-phase half-wave rectification type DC brushless motor rotates easily and inexpensively in the forward and reverse bidirectional than 3-phase DC brushless motor.
 従来、一方向にのみ回転するモータを利用したファンを電気機器等の発熱箇所への送風冷却に長期間使用すると、吸引部その他に埃がたまる問題があったが、本発明ではその問題を解決することができる。特に、電気機器の駆動電源のオンオフに連動させることで、例えば、駆動電源をオフしたとき逆向きに機械的に出力経路の接続を入れ替えることでモータが停止するまでの間、反対方向の送風が可能になり、吸引部に吸着した埃を吹き飛ばすことができる。次回駆動電源をオンするときには、また前記出力経路の接続を切り替えることで発熱体に送風する向きの送風が行われる。電気機器の駆動に連動し、特別な操作を必要なく、冷却風の吸引部への埃をクリーニングすることができ、ユーザーにとって便利である。 Conventionally, when a fan that uses a motor that rotates only in one direction is used for cooling air to a heat generating part such as an electric device for a long time, there is a problem that dust accumulates in the suction part and the like, but the present invention solves that problem. can do. In particular, by interlocking with the on / off of the drive power supply of the electrical equipment, for example, when the drive power supply is turned off, the airflow in the opposite direction is kept until the motor stops by mechanically changing the connection of the output path in the reverse direction. It becomes possible, and the dust adsorbed on the suction part can be blown off. When the drive power supply is turned on next time, air blowing in the direction of blowing air to the heating element is performed by switching the connection of the output path. In conjunction with the driving of the electrical equipment, no special operation is required, and dust on the suction portion of the cooling air can be cleaned, which is convenient for the user.
 また、モータの制御回路に内部タイマーを備えることで、タイマーで、所定の駆動時間毎に、逆向きの回転をさせることもでき、それにより吸引部に吸着した埃を十分にクリーニングすることができる。タイマー方式でモータの回転方向を制御することで、発熱を伴う電気機器の使用環境、吸引量に応じた適切なクリーン時間を確保することができる。 In addition, by providing an internal timer in the motor control circuit, the timer can be rotated in the reverse direction for each predetermined driving time, thereby sufficiently cleaning the dust adsorbed on the suction portion. . By controlling the rotation direction of the motor by the timer method, it is possible to ensure an appropriate clean time according to the usage environment and the suction amount of the electrical equipment that generates heat.
 位置センサを正転用、逆転用で2つ備えることで 正逆両方向回転可能なモータを構成することも可能で、さらに、位置センサの配置位置を調整することで、ステータの極と極の間から少しずらすことで、モータの死点を無くすことが可能になる。 By providing two position sensors, one for forward rotation and one for reverse rotation, it is possible to configure a motor that can rotate in both forward and reverse directions, and by adjusting the position of the position sensor, between the poles of the stator It is possible to eliminate the dead center of the motor by shifting it a little.
ファンの使用例の説明図である。It is explanatory drawing of the usage example of a fan. 従来のDCブラシレスモータの断面模式図である。It is a cross-sectional schematic diagram of a conventional DC brushless motor. 従来のDCブラシレスモータ(図1(A))のブロック図である。It is a block diagram of the conventional DC brushless motor (FIG. 1 (A)). 従来のDCブラシレスモータにおける通常回転(正転)時の理想的な合成トルクを示す図である。It is a figure which shows the ideal synthetic | combination torque at the time of normal rotation (forward rotation) in the conventional DC brushless motor. 従来のDCブラシレスモータにおいて、電気回路によって逆回転モードにしたときの合成トルクを示す図である。In a conventional DC brushless motor, it is a figure which shows the synthetic | combination torque when it sets to reverse rotation mode by an electric circuit. コギングトルク及び停止点を示す図である。It is a figure which shows a cogging torque and a stop point. 実施例1(単相全波整流型DCブラシレスモータ)のブロック図である。It is a block diagram of Example 1 (single phase full wave rectification type DC brushless motor). 実施例2(2相半波整流型DCブラシレスモータ)のブロック図である。It is a block diagram of Example 2 (two-phase half-wave rectification type DC brushless motor). 実施例3(単相全波整流型DCブラシレスモータ/2個の位置センサ)のブロック図である。It is a block diagram of Example 3 (single phase full wave rectification type DC brushless motor / two position sensors). 実施例3の正逆回転可能なDCブラシレスモータの断面模式図である。FIG. 6 is a schematic cross-sectional view of a DC brushless motor capable of forward and reverse rotation according to a third embodiment. 実施例3の位置センサを2つ備えた正回転時の合成トルクを示す図である。It is a figure which shows the synthetic | combination torque at the time of forward rotation provided with two position sensors of Example 3. FIG. 実施例4(2相半波整流型DCブラシレスモータ/2個の位置センサ)のブロック図である。It is a block diagram of Example 4 (two-phase half-wave rectification type DC brushless motor / two position sensors). 実施例5の正逆回転可能なDCブラシレスモータの断面模式図である。FIG. 10 is a schematic cross-sectional view of a DC brushless motor capable of forward and reverse rotation according to a fifth embodiment. 実施例5の位置センサをズラして配置した正回転時の合成トルクを示す図である。It is a figure which shows the synthetic | combination torque at the time of the forward rotation which has arrange | positioned the position sensor of Example 5 shifted. 実施例6/ステータ形状を変更し、正逆両方向の回転で合成トルクが同波形になるように改変した正逆回転可能なDCブラシレスモータの断面模式図である。Change EXAMPLE 6 / stator configuration, the combined torque by the rotation of the forward and reverse directions is a cross-sectional schematic view of a forward and reverse rotatable DC brushless motor has been modified so that the same waveform. 図15の場合の正逆回転時の合成トルク及び停止点を示す図である。It is a figure which shows the synthetic | combination torque and stop point at the time of forward / reverse rotation in the case of FIG. 図15において、コギングトルクの最大値を小さく設計した場合の正回転時の合成トルクの変更幅を示す図である。In FIG. 15, it is a figure which shows the change width | variety of the synthetic | combination torque at the time of forward rotation at the time of designing the maximum value of a cogging torque small. 実施例7/正逆両方向の回転で合成トルクが同波形になるようにステータ形状を変更した他の形態の正逆回転可能なDCブラシレスモータの断面模式図である。Example 7 / forward and reverse directions composite torque in the rotation of a cross-sectional schematic view of the forward and reverse rotation can be DC brushless motor of another embodiment changing the stator shape so that the same waveform.
 以下、本発明について、図面を参照しながら詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.
 図7に、本発明である単相全波整流型DCブラシレスモータにおいて、正逆回転可能なDCブラシレスモータの回路ブロック図を示す。図7(A)が正回転時の回路接続、(B)が逆回転時の回路接続である。 FIG. 7 shows a circuit block diagram of a DC brushless motor capable of forward and reverse rotation in the single-phase full-wave rectification type DC brushless motor according to the present invention. FIG. 7A shows the circuit connection during forward rotation, and FIG. 7B shows the circuit connection during reverse rotation.
図3において、位置センサ8が検知した磁石6の磁極の位置信号である磁極検出信号の出力経路10を交差させる(入れ替える)ことで、正逆双方向に回転させることができる。制御回路等は、出力経路10の入れ替え機構(機械的接続、或いは電気的接続)、それを制御する制御回路(切り換えモード制御回路)以外は、従来の一般的な単相全波整流型又は2相半波整流型DCブラシレスモータと同じである。 In FIG. 3, the output path 10 of the magnetic pole detection signal, which is the position signal of the magnetic pole of the magnet 6 detected by the position sensor 8, is crossed (replaced), so that it can be rotated in both forward and reverse directions. The control circuit or the like is a conventional general single-phase full-wave rectification type or 2 except for a switching mechanism (mechanical connection or electrical connection) of the output path 10 and a control circuit (switching mode control circuit) for controlling the output path 10. This is the same as a phase half-wave rectification type DC brushless motor.
切換のタイミングは、発熱体の駆動電源のオンオフ(電気器機の起動、終了)、その他、人の通常の動作に連想して、或いは内部タイマー、強制スイッチなどで、自動かつ定期的、或いは意図的かつ不定期に逆回転させることができる。このようなモータを備えるファンであれば、冷却のための風を逆向きに発生させ、蓄積した粉塵の飛散、粉塵の低減、防止に役立つ。 The timing of switching is automatically, periodically, or intentionally associated with the normal operation of the person, or with an internal timer, forced switch, etc. And it can reversely rotate at irregular intervals. If fan comprising such a motor, a wind for cooling is generated in the opposite direction, the scattering of accumulated dust, reduce dust, help prevent.
 図8に、本発明である2相全波整流型DCブラシレスモータにおいて、正逆回転可能なDCブラシレスモータの回路ブロック図を示す。図8(A)が正回転時の回路接続、(B)が逆回転時の回路接続である。正逆回転の制御は、位置センサ8からの磁極検出信号の出力経路10を入れ換えること、切換モード制御回路を備えること以外、従来の2相全波整流型DCブラシレスモータと同じである。なお、出力経路10の入れ換え機構、切換モード制御回路は、実施例1と同じである。以下、同じ。 FIG. 8 shows a circuit block diagram of a DC brushless motor capable of forward and reverse rotation in the two-phase full-wave rectification type DC brushless motor of the present invention. FIG. 8A shows circuit connections during forward rotation, and FIG. 8B shows circuit connections during reverse rotation. The forward / reverse rotation control is the same as that of the conventional two-phase full-wave rectification type DC brushless motor except that the output path 10 of the magnetic pole detection signal from the position sensor 8 is replaced and a switching mode control circuit is provided. The switching mechanism of the output path 10 and the switching mode control circuit are the same as those in the first embodiment. same as below.
 図9に示すように、位置センサ8、第2位置センサ8aを正転用、逆転用2つ備えることでも、単相全波整流型DCブラシレスモータを正逆回転可能にし、容易に制御できる。図9(A)が正回転時、図9(B)が逆回転時の回路接続である。出力経路10aの接続を図9のように切り替えるだけで、正逆回転が可能になる。 As shown in FIG. 9, the single-phase full-wave rectification type DC brushless motor can be rotated in the forward and reverse directions and easily controlled by providing the position sensor 8 and the second position sensor 8a for forward rotation and reverse rotation. FIG. 9A shows circuit connections during forward rotation, and FIG. 9B shows circuit connections during reverse rotation. Forward / reverse rotation can be achieved simply by switching the connection of the output path 10a as shown in FIG.
 図10に実施例3の正逆回転可能なDCブラシレスモータ11の断面模式図、図11に合成トルクを示した。なお、実施例3の場合において、位置センサ8、第2位置センサ8aの感度が良好でない場合、電流の流れる方向の切り替え(スイッチング)が遅くなり、図11に示す合成トルク曲線となる。その結果、合成トルク曲線が、右下がりでトルク比0を横切る点(破線円内)が、安定な停止点(死点)となり、モータは停止してしまう。この場合、通電が止まれば回転子は安定な停止点に戻り、再通電で回転するが、さらに有効な手段として後述の実施例5が例示できる。 FIG. 10 is a schematic cross-sectional view of a DC brushless motor 11 capable of forward and reverse rotation in Example 3, and FIG. 11 shows the resultant torque. Note that in the case of Example 3, the position sensor 8, when the sensitivity of the second position sensor 8a is not good, switching the direction of current flow (switching) is delayed, the combined torque curve shown in FIG. 11. As a result, combined torque curve, that crosses the torque ratio 0 right edge (the dashed circle) is a stable stopping point (dead point), and the motor is thereby stopped. In this case, when energization is stopped, the rotor returns to a stable stop point and rotates by re-energization, but a later-described fifth embodiment can be exemplified as a more effective means.
 図12に示すように、位置センサ8、第2位置センサ8aを正転用、逆転用2つ備えることでも、2相半波整流型DCブラシレスモータを正逆回転可能にし、容易に制御できる。図12(A)が正回転時、図12(B)が逆回転時の回路接続である。出力経路10aの接続を図12のように切り替えるだけで、正逆回転が可能になる。断面模式図、合成トルクは、実施例3の図10、図11と同じになる。 As shown in FIG. 12, the two-phase half-wave rectification type DC brushless motor can be rotated forward and backward and easily controlled by providing two position sensors 8 and two second position sensors 8a for forward rotation and reverse rotation. FIG. 12A shows circuit connections during forward rotation, and FIG. 12B shows circuit connections during reverse rotation. Forward / reverse rotation can be achieved simply by switching the connection of the output path 10a as shown in FIG. The cross-sectional schematic diagram and the combined torque are the same as those in FIGS. 10 and 11 of the third embodiment.
 図13に、位置センサ8b(CW回転用)、第2位置センサ8c(CCW回転用)を極5a、5bの間に位置させることなく、早いタイミングでスイッチングする方向に若干移動して配置した正逆回転可能なDCブラシレスモータ14を示した。スイッチングのタイミングを早める位置にズラして位置センサを2個配置するので、実施例3の場合のような「安定的な死点」を作らないようにすることができ、正逆回転何れでも回転が止まることがない。CW回転用の位置センサ8bと、CCC回転用第2位置センサ8cが別箇なので、このような制御が可能になる。 In FIG. 13, the position sensor 8b (for CW rotation) and the second position sensor 8c (for CCW rotation) are not moved between the poles 5a and 5b, but are moved slightly in the switching direction at an early timing. A DC brushless motor 14 capable of reverse rotation is shown. Since two position sensors are arranged by shifting to a position to advance the switching timing, it is possible to prevent a “stable dead point” as in the case of the third embodiment, and to rotate in either forward or reverse rotation. Will never stop. Since the position sensor 8b for CW rotation and the second position sensor 8c for CCC rotation are separate parts, such control is possible.
 図14に、図13の場合の合成トルクを示した。位置センサ8b、8cをスイッチングを早める方向にズラして配置することで、合成トルク曲線が右下がりにトルク比0を横切る個所はなくなり、「安定な死点」はなくなる。右上がりにトルク比0を横切る個所は「不安定な死点(トルク0点)」となり、この位置でモータが止まることはない。「スイッチングによる急激なトルク変化点」(垂直に上から下にトルク比0を横切る点)では、回転子が振動してから回転を始めるため、モータが停止してしまうことがない。 FIG. 14 shows the combined torque in the case of FIG. By disposing the position sensors 8b and 8c in a direction that accelerates switching, there is no portion where the combined torque curve crosses the torque ratio 0 to the right, and there is no “stable dead point”. The part that crosses the torque ratio 0 in the upward direction becomes “unstable dead point (torque 0 point)”, and the motor does not stop at this position. At the “abrupt torque change point due to switching” (a point where the torque ratio crosses 0 vertically from top to bottom), the rotor starts vibrating and then rotates, so the motor does not stop.
 単相全波整流型DCブラシレスモータ、或いは2相半波整流型DCブラシレスモータでCW、CCWの双方向の回転モータを設計する場合、双方向の回転において、すべての位置で「安定な死点」を除くことは困難であるが、位置センサを2個採用することで、CW、CCW回転の各々で別のホール素子を使うので、通電時の「安定な死点」をつくらない設計が容易になる。 When designing a CW and CCW bidirectional rotary motor with a single-phase full-wave rectification type DC brushless motor or a two-phase half-wave rectification type DC brushless motor, the "stable dead center" ”Is difficult, but by using two position sensors, a separate Hall element is used for each of CW and CCW rotations, making it easy to design without creating a“ stable dead point ”during energization become.
 次に、図15に、図2のステータ5に切欠部12bを設けた形状のステータ12aに変更し、コギング角度を機械角で45°(電気角90°)とした正逆回転可能なDCブラシレスモータ12の模式図を示す。切欠部12bは、ステータ12aの各極の両極5a、極5bの中央部を回転軸5c方向にV字状に窪ませたものである。(ステー田11a、14aも同じ。)図15(A)が安定した停止点、図15(B)が不安定な停止点を示している。符号6aは安定な停止点に止まった時の磁極境目、符号6bは不安定な停止点に止まった時の磁極境目である。
 
このような形状にすると、図16(A)の正回転、図16(B)の逆回転時の合成トルクが同波形を示すこととなる。
Next, FIG. 15 is changed to the stator 12a having a shape in which the notch 12b is provided in the stator 5 of FIG. 2, and a DC brushless capable of forward and reverse rotation with a cogging angle of 45 ° mechanical angle (electrical angle 90 °). A schematic diagram of the motor 12 is shown. The notch 12b is formed by recessing the center of both poles 5a and 5b of each pole of the stator 12a in a V shape in the direction of the rotation axis 5c. (The same applies to the stay fields 11a and 14a.) FIG. 15A shows a stable stop point, and FIG. 15B shows an unstable stop point. Reference numeral 6a is a magnetic pole boundary when stopped at a stable stop point, and reference numeral 6b is a magnetic pole boundary when stopped at an unstable stop point.

With such a shape, the combined torque during forward rotation in FIG. 16A and reverse rotation in FIG. 16B shows the same waveform.
 また、従来のDCモータ(図2)を採用したときに比べ、出力経路10を入れ換えて逆回転時の合成トルクのトルク変動幅を小さくすることができる。さらに、全角度において負のトルク(逆に回転させようとするトルク)が発生する角度がなくなる。加えて、図17に示すように、コギングトルクの最大値を小さく設計すれば、図17の合成トルクのように、変動幅を小さくすることも可能である。 Also, compared to the case where a conventional DC motor (FIG. 2) is adopted, the output path 10 can be replaced to reduce the torque fluctuation range of the combined torque during reverse rotation. Further, there is no angle at which negative torque (torque to rotate in reverse) is generated at all angles. In addition, as shown in FIG. 17, by decreasing the design the maximum value of the cogging torque, as in the combined torque of FIG. 17, it is also possible to reduce the fluctuation band.
 しかしながら、コギングトルクを小さくしすぎると、機械摩擦の影響も無視できなくなるので、モータ停止時に安定した停止点に止まらなくなる可能性もあり、設計するモータによりその設計値を調整することが必要である。 However, if the cogging torque is made too small, the influence of mechanical friction cannot be ignored, so there is a possibility that it will not stop at a stable stop point when the motor is stopped, and it is necessary to adjust the design value by the motor to be designed. .
一般的に、モータが小型になればなるほど、コギングトルクと、摩擦によって回転させまいとする反対方向のトルクが近くなり、本来止めたい場所である安定した停止点に止めることが難しくなり問題が発生するので、コギングトルクを小さくすることには限界がある。 In general, the smaller the motor, the closer the cogging torque and the torque in the opposite direction, which are not allowed to rotate due to friction, become more difficult to stop at the stable stop point where it was originally desired to stop. Therefore, there is a limit to reducing the cogging torque.
 コギングトルクが摩擦に負けず、図15(A)に示す安定した停止点で止まっていれば、モータに通電すると、その時に発生する電磁トルクが最大となりスムーズに回転を始める。 If the cogging torque is not affected by friction and stops at the stable stop point shown in FIG. 15A, when the motor is energized, the electromagnetic torque generated at that time becomes maximum and the motor starts rotating smoothly.
他方、図15(B)に示す不安定な停止点で停止する確立は、0ではない。図15(B)の状態で通電しても電磁トルクは0であるので磁石6が回転しないことがある。 On the other hand, the probability of stopping at an unstable stop point shown in FIG. Even when energized in the state of FIG. 15B, the electromagnetic torque is 0, so the magnet 6 may not rotate.
 このような危険を回避する方法としては、ドライブICに内蔵された磁石の回転を検知する機構により、回転していない場合には、故意にコイル通電方向を正逆反転する回路を設け、コイルに通電することで磁場トルクを発生させ、磁石に振動を与えれば不安定な停止点から離脱することができ、回転させることができる。 As a method of avoiding such danger, a circuit that intentionally reverses the coil energization direction when the motor is not rotating is provided by a mechanism that detects the rotation of the magnet built in the drive IC. When energized, a magnetic field torque is generated, and if the magnet is vibrated, it can be separated from an unstable stop point and rotated.
 次に、図18に、実施例6同様にコギング角度を機械角で45°(電気角90°)として、正逆回転時における合成トルクが同波形になる他の形態のステータ13aを備える正逆回転可能なDCブラシレスモータ13の模式図を示した。 Next, in FIG. 18, similarly to the sixth embodiment, the cogging angle is 45 ° in mechanical angle (electrical angle 90 °), and the forward / reverse direction is provided with the stator 13 a of another form in which the combined torque in the forward / reverse rotation has the same waveform. A schematic diagram of the rotatable DC brushless motor 13 is shown.
ステータ13a形状は、安定な停止点に停止した時、極5aと極5bの間にある位置センサ8上の極5a、5bの先端が何れも切り欠かれている。即ち、図2のステータ5において、上下左右の四極の内、左右の2極が線対象に反転した形状である。この形状であっても、ここでは合成トルク波形は示さないが、正逆回転時の合成トルク波形は同様の波形になり、従来のステータ5を採用した場合よりも、実施例6同様にトルク変動幅が小さくなる。 When the stator 13a is stopped at a stable stop point, the tips of the poles 5a and 5b on the position sensor 8 between the poles 5a and 5b are cut out. That is, in the stator 5 of FIG. 2, the left and right two poles out of the four poles on the upper, lower, left and right sides are inverted to the line object. Even with this shape, the composite torque waveform is not shown here, but the composite torque waveform during forward and reverse rotation is the same waveform, and the torque fluctuation is the same as in the sixth embodiment, compared to the case where the conventional stator 5 is employed. The width becomes smaller.
1   ファン
1a  モータ
1b  フィン
1c  単相全波整流型DCブラシレスモータ
1d  2相半波整流型DCブラシレスモータ
2   筺体
2a  吸込口
2b  排気口
3   発熱体
4   スリット
5   ステータ
5a  極
5b  極
5c  回転軸
6   磁石
6a  マグネットヨーク
6b  磁極境目  
6c  磁極境目
7   コイル
7a  コイル
8   位置センサ
8a  第2位置センサ
9   スイッチング素子
10  出力経路
10a 出力経路
11  正逆回転可能なDCブラシレスモータ
11a ステータ
12  正逆回転可能なDCブラシレスモータ
12a ステータ
12b 切欠部
13  正逆回転可能なDCブラシレスモータ
13a ステータ
14  正逆回転可能なDCブラシレスモータ
14a ステータ
DESCRIPTION OF SYMBOLS 1 Fan 1a Motor 1b Fin 1c Single phase full wave rectification type DC brushless motor 1d Two phase half wave rectification type DC brushless motor 2 Housing 2a Suction port 2b Exhaust port 3 Heating element 4 Slit 5 Stator 5a Pole 5b Pole 5c Rotating shaft 6 Magnet 6a Magnet yoke 6b Magnetic pole boundary
6c Magnetic pole boundary 7 Coil 7a Coil 8 Position sensor 8a Second position sensor 9 Switching element 10 Output path 10a Output path 11 DC brushless motor 11a capable of forward / reverse rotation Stator 12 DC brushless motor 12a capable of forward / reverse rotation Stator 12b Notch 13 DC brushless motor 13a capable of forward / reverse rotation, stator 14 DC brushless motor 14a capable of forward / reverse rotation, stator

Claims (7)

  1. 回転子である磁石の極位置を検出する位置センサを備え、前記位置センサの磁極検出信号の出力によりスイッチング素子のオンオフを制御し、ステータに巻かれたコイルへの通電方向を変更する単相全波整流型又は2相半波整流型DCブラシレスモータにおいて、
    前記位置センサから前記スイッチング素子を制御する回路へ入力する2つの磁極検出信号を入れ替えることで、前記回転子を逆回転させることを特徴とする正逆回転可能なDCブラシレスモータ。
    A single-phase all-phase sensor that includes a position sensor that detects a pole position of a magnet that is a rotor, controls on / off of a switching element according to an output of a magnetic pole detection signal of the position sensor, and changes an energization direction to a coil wound around the stator In wave rectification type or two-phase half-wave rectification type DC brushless motor,
    A DC brushless motor capable of forward and reverse rotation, wherein the rotor is reversely rotated by switching two magnetic pole detection signals input from the position sensor to a circuit for controlling the switching element.
  2. モータ駆動用電源のオン又はオフに連動させ、或いはタイマー制御により自動的に、前記2つの磁極検出信号を入れ替えることを特徴とする請求項1に記載の正逆回転可能なDCブラシレスモータ。 2. The DC brushless motor capable of rotating in the forward and reverse directions according to claim 1, wherein the two magnetic pole detection signals are interchanged in conjunction with turning on or off of a motor driving power source or automatically by timer control.
  3. 回転子である磁石の極位置を検出する位置センサを備え、前記位置センサの磁極検出信号の出力によりスイッチング素子のオンオフを制御し、ステータに巻かれたコイルへの通電方向を変更する単相全波整流型又は2相半波整流型DCブラシレスモータにおいて、
    モータ駆動用電源のオン又はオフに連動させ、或いはタイマー制御により自動的に、前記ステータに巻かれたコイルへの通電経路を入れ換えることを特徴とする正逆回転可能なDCブラシレスモータ。
    A single-phase all-phase sensor that includes a position sensor that detects a pole position of a magnet that is a rotor, controls on / off of a switching element according to an output of a magnetic pole detection signal of the position sensor, and changes an energization direction to a coil wound around the stator In wave rectification type or two-phase half-wave rectification type DC brushless motor,
    A DC brushless motor capable of forward and reverse rotation, characterized by switching the energization path to the coil wound around the stator in conjunction with turning on or off of a motor driving power source or automatically by timer control.
  4. 単相全波整流型又は2相半波整流型DCブラシレスモータにおいて、回転子である磁石の極位置を検出する位置センサを2個備え、1個は正回転用、他方を逆回転用とし、前記位置センサからの信号によりステータに巻かれたコイルへの通電方向を制御することを特徴とする正逆回転可能なDCブラシレスモータ。 In a single-phase full-wave rectification type or two-phase half-wave rectification type DC brushless motor, two position sensors for detecting a pole position of a magnet as a rotor are provided, one for forward rotation and the other for reverse rotation. A DC brushless motor capable of forward and reverse rotation, wherein a direction of energization of a coil wound around a stator is controlled by a signal from the position sensor.
  5. 前記位置センサをステータの極と極の中心からずらして配置したことを特徴とする請求項4に記載の正逆回転可能なDCブラシレスモータ。 5. The DC brushless motor capable of forward and reverse rotation according to claim 4, wherein the position sensor is arranged so as to be shifted from a pole of the stator and a center of the pole.
  6. モータ駆動用電源のオン又はオフに連動させ、或いはタイマー制御により自動的に、前記正回転用及び逆回転用の位置センサの磁極検出信号のスイッチング素子への出力を切り換えることを特徴とする請求項4又は請求項5に記載の正逆回転可能なDCブラシレスモータ。 The output to the switching element of the magnetic pole detection signal of the position sensor for forward rotation and reverse rotation is automatically switched in conjunction with turning on or off of the motor drive power supply or automatically by timer control. A DC brushless motor capable of rotating in the forward and reverse directions according to claim 4 or 5.
  7. コギング角度を電気角で90°としたことを特徴とする請求項1~請求項6の何れか1項に記載の正逆回転可能なDCブラシレスモータ。
     
    The DC brushless motor capable of forward and reverse rotation according to any one of claims 1 to 6, wherein the cogging angle is 90 ° in terms of electrical angle.
PCT/JP2012/051180 2011-01-21 2012-01-20 Clockwise and counterclockwise rotatable dc brushless motor WO2012099235A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011010558A JP2012152078A (en) 2011-01-21 2011-01-21 Bidirectionally rotatable dc brushless motor
JP2011-010558 2011-05-11

Publications (1)

Publication Number Publication Date
WO2012099235A1 true WO2012099235A1 (en) 2012-07-26

Family

ID=46515852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051180 WO2012099235A1 (en) 2011-01-21 2012-01-20 Clockwise and counterclockwise rotatable dc brushless motor

Country Status (2)

Country Link
JP (1) JP2012152078A (en)
WO (1) WO2012099235A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6050102B2 (en) * 2012-11-28 2016-12-21 ミネベア株式会社 Brushless motor and blower
JP6080745B2 (en) * 2013-11-18 2017-02-15 三菱電機株式会社 Synchronous motor rotation phase detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283004A (en) * 1988-05-02 1989-11-14 Nippon Steel Corp Control method and device for brushless motor
JP2000156996A (en) * 1998-11-17 2000-06-06 Tamagawa Seiki Co Ltd Direction-of-rotation changeover apparatus for dc motor
JP2004023823A (en) * 2002-06-12 2004-01-22 Nidec Shibaura Corp Controller of brushless dc motor
JP2005261140A (en) * 2004-03-15 2005-09-22 Nippon Densan Corp Dc brushless motor and fan
JP2007215281A (en) * 2006-02-08 2007-08-23 Mitsuba Corp Drive control device of brushless motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283004A (en) * 1988-05-02 1989-11-14 Nippon Steel Corp Control method and device for brushless motor
JP2000156996A (en) * 1998-11-17 2000-06-06 Tamagawa Seiki Co Ltd Direction-of-rotation changeover apparatus for dc motor
JP2004023823A (en) * 2002-06-12 2004-01-22 Nidec Shibaura Corp Controller of brushless dc motor
JP2005261140A (en) * 2004-03-15 2005-09-22 Nippon Densan Corp Dc brushless motor and fan
JP2007215281A (en) * 2006-02-08 2007-08-23 Mitsuba Corp Drive control device of brushless motor

Also Published As

Publication number Publication date
JP2012152078A (en) 2012-08-09

Similar Documents

Publication Publication Date Title
JP2009524400A (en) Improvements in systems and methods for rotating wheels of rotary air energy recovery and dry dehumidification systems
WO2000019593A1 (en) Synchronous motor
TW200826421A (en) A single phase AC synchronous motor
JP2000354392A (en) Brushless motor
CN107231062A (en) The wind cooling refrigerator of cooling fan and the application cooling fan
WO2012099235A1 (en) Clockwise and counterclockwise rotatable dc brushless motor
JPH07337067A (en) Conduction phase angle controller for brushless motor
JP2002233118A (en) Oscillating reciprocal motor, motor control device and method of controlling the motor
JP4142803B2 (en) Brushless motor
JP2014023285A (en) Normally and reversely rotatable dc brushless motor
JP4574898B2 (en) Motor drive device and blower
JP4696642B2 (en) Motor, blower, compressor and air conditioner
JPS6259544B2 (en)
JP5383807B2 (en) Method of detecting position of rotor of electronic rectification type electric equipment provided with two phase windings having different inductances by detecting zero crossing of back electromotive force
JP4158448B2 (en) Brushless motor
JP2000069788A (en) Brushless motor
JP2021078162A (en) Three-phase brushless DC motor
JP2008271630A (en) Two-phase simultaneous excitation brushless dc motor
JP4692707B2 (en) Electric motor
JP4803115B2 (en) Single-phase DC brushless motor drive device
JPH0646224Y2 (en) Brushless motor
JP2018050359A (en) motor
JP5660488B2 (en) Brushless DC motor and drive circuit thereof
JPS60113646A (en) Disc type brushless motor with one position detector
KR20060098919A (en) Switched reluctance motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736291

Country of ref document: EP

Kind code of ref document: A1