WO2012099049A1 - Sensor testing device and sensor testing method - Google Patents

Sensor testing device and sensor testing method Download PDF

Info

Publication number
WO2012099049A1
WO2012099049A1 PCT/JP2012/050701 JP2012050701W WO2012099049A1 WO 2012099049 A1 WO2012099049 A1 WO 2012099049A1 JP 2012050701 W JP2012050701 W JP 2012050701W WO 2012099049 A1 WO2012099049 A1 WO 2012099049A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
heat source
signal
reference point
spot
Prior art date
Application number
PCT/JP2012/050701
Other languages
French (fr)
Japanese (ja)
Inventor
泰介 佐藤
孝弘 藤岡
Original Assignee
ナルックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナルックス株式会社 filed Critical ナルックス株式会社
Priority to GB1314801.0A priority Critical patent/GB2502472A/en
Priority to JP2012553704A priority patent/JP5401660B2/en
Publication of WO2012099049A1 publication Critical patent/WO2012099049A1/en
Priority to IL227492A priority patent/IL227492A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0275Control or determination of height or distance or angle information for sensors or receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0242Control or determination of height or angle information of sensors or receivers; Goniophotometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/08Arrangements of light sources specially adapted for photometry standard sources, also using luminescent or radioactive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/52Radiation pyrometry, e.g. infrared or optical thermometry using comparison with reference sources, e.g. disappearing-filament pyrometer
    • G01J5/53Reference sources, e.g. standard lamps; Black bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration

Definitions

  • the present invention relates to a sensor test apparatus and a sensor test method used when testing the performance of a sensor such as a pyroelectric infrared sensor.
  • Infrared sensors for detecting the position and movement of the human body are widely used in home appliances such as air conditioners and crime prevention equipment.
  • An optical sensor including such an infrared sensor is often used in combination with a lens for collecting light from the outside.
  • infrared sensors that detect objects in a wide angle range using a plurality of lenses have been developed. In order to test the performance of such an infrared sensor, it is desired to test the performance when the measurement object is positioned at each angle in a wide angle range.
  • Non-Patent Document 1 As an example of a test method for an infrared sensor, the Japan Electronic Machinery Manufacturers Association defines a test method for a pyroelectric infrared sensor (Non-Patent Document 1). However, Non-Patent Document 1 does not describe a method of testing the performance of the infrared sensor when the measurement object is located at each angle in a wide angle range.
  • test apparatus and a test method for testing the performance of the infrared sensor when the measurement object is positioned at each angle in a wide angle range have not been developed.
  • An infrared sensor test apparatus is an infrared sensor test apparatus including a spot-like heat source, a sensor holding unit, and a signal output unit, and the sensor holding unit includes the spot-like heat source.
  • a rotation stage that holds the sensor at a reference point away from the reference point and includes a straight line connecting the reference point and the spot-like heat source and tilts the sensor around the reference point in two planes orthogonal to each other
  • the signal output unit is configured to output a sensor signal for each inclination angle of the sensor in the two orthogonal planes.
  • the infrared sensor test apparatus holds a sensor at a reference point away from a spot-like heat source, includes a straight line connecting the reference point and the spot-like heat source, and the reference point is in two planes orthogonal to each other.
  • a rotation stage for tilting the sensor around the sensor, and the signal output unit is configured to output a sensor signal for each tilt angle of the sensor in the two orthogonal planes.
  • the infrared sensor test apparatus is the infrared sensor test apparatus according to the first aspect, in which the signal output unit sets the tilt angle of the sensor in the two orthogonal planes in the horizontal axis and the vertical direction.
  • the surface represented by the axis is configured to represent the signal of the sensor at each inclination angle.
  • the output of the infrared sensor when positioned at each angle can be clearly represented as a map on the surface.
  • An infrared sensor test apparatus is the infrared sensor test apparatus according to the first embodiment, wherein the signal output unit determines the magnitude of the sensor signal at each inclination angle by color. It is configured to represent.
  • the output of the infrared sensor when positioned at each angle can be more clearly represented by a map using colors on the surface.
  • the infrared sensor test apparatus is the infrared sensor test apparatus according to the first embodiment, wherein the signal output unit determines the magnitude of the sensor signal at each inclination angle. Are represented by lines connecting the same points.
  • the output of the infrared sensor when positioned at each angle can be expressed more clearly by a map using lines connecting points having the same signal magnitude on the surface.
  • An infrared sensor test apparatus is the infrared sensor test apparatus according to the first aspect or the first to third embodiments, wherein the spot-like heat source includes an opening. It consists of plates.
  • the spot heat source can be easily configured.
  • An infrared sensor test apparatus is the infrared sensor test apparatus according to the first aspect or the first to fourth embodiments, and is used for a pyroelectric infrared sensor. is there.
  • the present embodiment it is possible to easily confirm the performance of the pyroelectric infrared sensor when the measurement object is located at each angle in a wide angle range.
  • An infrared sensor test method is an infrared sensor test method for testing a sensor using a sensor test apparatus including a spot-like heat source, a sensor holding unit, and a signal output unit.
  • a sensor held at a reference point away from the spot-like heat source by the holding unit includes a straight line connecting the reference point and the spot-like heat source, and around the reference point in two planes orthogonal to each other. Tilting the sensor, and outputting a sensor signal for each tilt angle of the sensor in the two orthogonal planes by the signal output unit.
  • the sensor held by the sensor holding unit at a reference point away from the spot-like heat source includes a straight line connecting the reference point and the spot-like heat source, and is orthogonal to each other. And inclining the sensor around the reference point in the two planes, and outputting a sensor signal for each sensor tilt angle in the two orthogonal planes by the signal output unit. It is possible to collect data of infrared sensor signals when the measurement object is positioned at each angle in a wide angle range. Therefore, it is possible to easily confirm the performance of the infrared sensor when the measurement object is positioned at each angle in a wide angle range.
  • 1 is a plan view of a sensor test apparatus according to an embodiment of the present invention.
  • 1 is a side view of a sensor test apparatus according to an embodiment of the present invention. It is a figure which shows the external appearance of a sensor holding part. It is a figure which shows the structure of the sensor signal processing part which processes the signal produced
  • 1 and 2 are a plan view and a side view of a sensor test apparatus according to an embodiment of the present invention, respectively.
  • the sensor test apparatus includes a spot heat source 101 and a sensor holding unit 107.
  • the spot heat source 101 includes a heater 1011, a mechanical chopper 1013, and a shielding plate 1015 having an opening.
  • the temperature of the heater 1011 is measured by a thermocouple or the like and controlled to a predetermined range by a temperature controller.
  • the mechanical chopper 1013 has two states of open and closed, and does not shield the heat from the heater 1011 in the open state, but shields the heat from the heater 1011 in the closed state.
  • the shielding plate 1015 having an opening constitutes a spot-like heat source by causing only the heat from the heater 1011 that has passed through the opening to be radiated in the direction of the sensor holding unit 107.
  • the spot-like heat source 101 is installed on the carriage 103.
  • the carriage 103 is configured to be movable along a guide 105 installed toward the sensor holding unit 107. By moving the carriage 103 along the guide 105, the carriage 103 is moved between the spot-like heat source 101 and the sensor holding unit 107. The distance can be adjusted.
  • the direction from the sensor holding unit 107 toward the spot-like heat source 101 is taken as the Z-axis.
  • a horizontal direction orthogonal to the Z axis is taken as an X axis
  • a vertical direction perpendicular to the Z axis is taken as a Y axis.
  • the direction of each axis is as shown in FIGS.
  • the sensor holding unit 107 includes a first rotation stage 1071 that rotates the sensor in the XZ plane (horizontal plane) around the reference point with the sensor attachment position as a reference point, and a YZ plane (vertical plane) around the reference point. And a second rotary stage 1073 for rotating the sensor inside.
  • the first rotary stage 1071 can rotate the ⁇ 70 ° sensor in the XZ plane (horizontal plane) with reference to the direction in which the opening of the shielding plate 1015 is viewed from the reference point.
  • the second rotary stage 1073 can rotate the ⁇ 90 ° sensor in the YZ plane (vertical plane) with reference to the direction in which the opening of the shielding plate 1015 is viewed from the reference point.
  • the rotation angle of the sensor can be adjusted by 0.1 °.
  • FIG. 3 is a diagram showing an external appearance of the sensor holding unit 107.
  • the first rotary stage 1071 includes a table that rotates in a horizontal plane, and a second stage 1073 is installed on the table.
  • the second stage 1073 includes a table that rotates in a vertical plane, and the sensor 201 is fixed to the table.
  • the sensor 201 is a pyroelectric infrared sensor.
  • the pyroelectric infrared sensor uses the pyroelectric effect.
  • the pyroelectric effect is a phenomenon in which an element is polarized by a temperature change. When polarization occurs, current flows through the electrodes attached to both ends of the element. By detecting this current, the temperature change of the element can be detected.
  • a pyroelectric infrared sensor causes a temperature change in an element using infrared rays from a measurement object. Since the pyroelectric infrared sensor uses the temperature change of the element, when measuring the radiation temperature of the stationary object, the stationary object is measured using the mechanical chopper 1013 shown in FIGS. Irradiate objects with infrared rays intermittently.
  • FIG. 4 is a diagram illustrating a configuration of a sensor signal processing unit 1075 that processes a signal generated by the sensor 201.
  • the sensor signal processing unit 1075 is installed in the sensor holding unit 107, but a part of the sensor signal processing unit 1075 may be installed separately from the sensor holding unit 107.
  • the signal processing unit 1075 is configured to incorporate the sensor 201 and supply a voltage to the sensor 201.
  • the signal processing unit 1075 includes a load resistor 10553 and an amplifier 10755.
  • the output signal of the sensor 201 is amplified by the amplifier 10755 and sent to the signal output unit 109 as the signal A.
  • FIG. 5 is a flowchart for explaining the operation of the signal output unit 109.
  • step S005 of FIG. 5 the angles of the first rotary stage 1071 and the second rotary stage 1073 are set.
  • the angle setting may be automatically performed by the sensor holding unit 107 according to an instruction from the signal output unit 109. Alternatively, a human may do it.
  • step S010 in FIG. 5 the signal output unit 109 reads the angles of the first rotary stage 1071 and the second rotary stage 1073.
  • the signal output unit 109 receives the signal A from the sensor signal processing unit 1075.
  • step S030 in FIG. 5 the signal output unit 109 stores the data set of the angle and the signal A in the memory of the signal output unit 109.
  • step S040 in FIG. 5 it is determined whether to collect a data set of angle and signal A for other angles. The determination may be made automatically by the signal processing unit. Or a human may go. When the collection of the data set is continued, the process proceeds to step S050. If data collection is not continued, the process ends.
  • step S050 of FIG. 5 the angle of at least one of the first rotary stage 1071 and the second rotary stage 1073 is changed.
  • the change of the angle may be automatically performed by the sensor holding unit 107 according to an instruction from the signal output unit 109. Alternatively, a human may do it. How to change the angle will be described later.
  • FIG. 6 is a diagram illustrating an image 301 of the configuration of the sensor 201 and the measurement result of the output signal of the sensor 201.
  • the sensor 201 includes seven Fresnel lenses 2013 and four electrodes 2011. Infrared rays from various directions are condensed on the four electrodes 2011 by the seven Fresnel lenses 2013.
  • the distance between the shielding plate 1015 and the sensor position (reference point) at the time of measurement is 500 millimeters.
  • the number on the horizontal axis represents an angle (hereinafter referred to as an X angle) in the XZ plane (horizontal plane) based on the direction from the reference point to the opening of the shielding plate 1015.
  • the number on the vertical axis represents an angle (hereinafter referred to as a Y angle) in the YZ plane (vertical plane) based on the direction from the reference point to the opening of the shielding plate 1015.
  • the magnitude of the output signal at each angle is represented by the color intensity. That is, the darker the color, the greater the output signal.
  • the magnitude of the output signal at each angle may be represented by a line connecting points of the same size, instead of representing the magnitude of the color.
  • the seven regions divided by dotted lines correspond to the infrared image collected by each of the seven Fresnel lenses 2013.
  • the seven Fresnel lenses 2013 are configured to share infrared rays in a wide angle range in the XZ plane (horizontal plane) and collect them on the four electrodes 2011.
  • a region having a large output signal is a region corresponding to four electrodes.
  • a data set is collected by first setting the X angle to ⁇ 45 ° and the Y angle to 10 °. Next, a data set is collected while increasing the X angle by a predetermined interval (for example, 0.1 °). When data of X angle 45 ° and Y angle 10 ° are collected, Y angle is set to 9.9 °, and data of X angle 45 ° Y angle 9.9 ° is collected. Next, a data set is collected while the X angle is decreased by a predetermined interval (for example, 0.1 °). In this manner, the image data shown in FIG. 6 can be obtained.
  • a predetermined interval for example, 0.1 °
  • the region corresponding to the four electrodes is distributed in an X angle range of ⁇ 45 ° to 45 °.
  • the output signal when the X angle is in the range of -45 ° to 45 ° is within the horizontal plane with respect to the front direction of the pyroelectric infrared sensor.
  • the sensor test apparatus of the present invention it is possible to test the output of the sensor at all positions where the measurement object can exist within a predetermined angle range with high accuracy.
  • the performance of the sensor is clear by expressing the magnitude of the signal corresponding to each angle with a color or a line connecting points of the same size on the surface where the X angle is represented on the horizontal axis and the Y angle is represented on the vertical axis. become.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radiation Pyrometers (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

Provided is a testing device for verifying the performance of an infrared sensor in an instance in which a measurement object is positioned at each angle across a wide range of angles. The infrared sensor testing device comprises a spot heat source (101), a sensor holder (107), and a signal output unit (109). The sensor holder comprises a rotating stage for holding the sensor in a reference point located at a distance from the spot heat source, the rotating stage tilting the sensor about the reference point in two mutually orthogonal planes that include a straight line linking the reference point and the spot heat source. The signal output unit is configured so that a sensor signal is outputted for every angle by which the sensor is tilted in the two orthogonal planes.

Description

センサ試験装置及びセンサ試験方法Sensor test apparatus and sensor test method
 本発明は、焦電型赤外線センサなどのセンサの性能を試験する際に使用されるセンサ試験装置及びセンサ試験方法に関する。 The present invention relates to a sensor test apparatus and a sensor test method used when testing the performance of a sensor such as a pyroelectric infrared sensor.
 人体の位置や動作を検知するための赤外線センサが、エアコンなどの家庭電化製品や防犯機器などに広く使用されている。このような赤外線センサを含む光センサは、外部からの光を集光するためのレンズと組み合わせて使用されることが多い。 Infrared sensors for detecting the position and movement of the human body are widely used in home appliances such as air conditioners and crime prevention equipment. An optical sensor including such an infrared sensor is often used in combination with a lens for collecting light from the outside.
 最近、家庭電化製品や防犯機器の種々のニーズに対応して、複数のレンズを使用して広い角度範囲の対象物を検出する赤外線センサが開発されている。このような赤外線センサの性能を試験するには、測定対象物が広い角度範囲のそれぞれの角度に位置する場合の性能を試験することが望まれる。 Recently, in response to various needs of home appliances and security devices, infrared sensors that detect objects in a wide angle range using a plurality of lenses have been developed. In order to test the performance of such an infrared sensor, it is desired to test the performance when the measurement object is positioned at each angle in a wide angle range.
 赤外線センサの試験方法の一例として、日本電子機械工業会は、焦電形赤外線センサの試験方法を定めている(非特許文献1)。しかし、非特許文献1は、測定対象物が広い角度範囲のそれぞれの角度に位置する場合の赤外線センサの性能を試験する方法については記載していない。 As an example of a test method for an infrared sensor, the Japan Electronic Machinery Manufacturers Association defines a test method for a pyroelectric infrared sensor (Non-Patent Document 1). However, Non-Patent Document 1 does not describe a method of testing the performance of the infrared sensor when the measurement object is located at each angle in a wide angle range.
 このように、測定対象物が広い角度範囲のそれぞれの角度に位置する場合の赤外線センサの性能を試験するための試験装置及び試験方法は開発されていなかった。 Thus, a test apparatus and a test method for testing the performance of the infrared sensor when the measurement object is positioned at each angle in a wide angle range have not been developed.
 したがって、測定対象物が広い角度範囲のそれぞれの角度に位置する場合の赤外線センサの性能を確認するための試験装置及び試験方法に対するニーズがある。 Therefore, there is a need for a test apparatus and a test method for confirming the performance of the infrared sensor when the measurement object is located at each angle in a wide angle range.
 本発明の第1の態様による赤外線センサ試験装置は、スポット状熱源と、センサ保持部と、信号出力部と、を備えた赤外線センサ試験装置であって、該センサ保持部は、該スポット状熱源から離れた基準点においてセンサを保持し、該基準点と該スポット状の熱源とを結ぶ直線を含み、互いに直交する二平面内において、該基準点の周りに該センサを傾ける回転ステージを備えており、該信号出力部は、該直交する二平面におけるセンサの傾き角度ごとにセンサの信号を出力するように構成されている。 An infrared sensor test apparatus according to a first aspect of the present invention is an infrared sensor test apparatus including a spot-like heat source, a sensor holding unit, and a signal output unit, and the sensor holding unit includes the spot-like heat source. A rotation stage that holds the sensor at a reference point away from the reference point and includes a straight line connecting the reference point and the spot-like heat source and tilts the sensor around the reference point in two planes orthogonal to each other The signal output unit is configured to output a sensor signal for each inclination angle of the sensor in the two orthogonal planes.
 本態様による赤外線センサ試験装置は、スポット状熱源から離れた基準点においてセンサを保持し、該基準点と該スポット状の熱源とを結ぶ直線を含み、互いに直交する二平面内において、該基準点の周りに該センサを傾ける回転ステージを備えており、該信号出力部は、該直交する二平面におけるセンサの傾き角度ごとにセンサの信号を出力するように構成されているので、回転ステージを回転させながら信号を得ることにより、測定対象物が広い角度範囲のそれぞれの角度に位置する場合の赤外線センサの信号のデータを収集することができる。したがって、測定対象物が広い角度範囲のそれぞれの角度に位置する場合の赤外線センサの性能を簡単に試験することができる。 The infrared sensor test apparatus according to the present aspect holds a sensor at a reference point away from a spot-like heat source, includes a straight line connecting the reference point and the spot-like heat source, and the reference point is in two planes orthogonal to each other. A rotation stage for tilting the sensor around the sensor, and the signal output unit is configured to output a sensor signal for each tilt angle of the sensor in the two orthogonal planes. By obtaining the signal while doing so, it is possible to collect data of the signal of the infrared sensor when the measurement object is located at each angle in a wide angle range. Therefore, it is possible to easily test the performance of the infrared sensor when the measurement object is located at each angle in a wide angle range.
 本発明の第1の実施形態による赤外線センサ試験装置は、前記第1の態様による赤外線センサ試験装置であって、前記信号出力部が、前記直交する二平面におけるセンサの傾き角度を横軸及び縦軸で表した面に、それぞれの傾き角度におけるセンサの信号を表すように構成されているものである。 The infrared sensor test apparatus according to the first embodiment of the present invention is the infrared sensor test apparatus according to the first aspect, in which the signal output unit sets the tilt angle of the sensor in the two orthogonal planes in the horizontal axis and the vertical direction. The surface represented by the axis is configured to represent the signal of the sensor at each inclination angle.
 本実施形態によれば、それぞれの角度に位置する場合の赤外線センサの出力を前記面上にマップ状に明瞭に表すことができる。 According to the present embodiment, the output of the infrared sensor when positioned at each angle can be clearly represented as a map on the surface.
 本発明の第2の実施形態による赤外線センサ試験装置は、前記第1の実施形態による赤外線センサ試験装置であって、前記信号出力部は、それぞれの傾き角度におけるセンサの信号の大きさを色によって表すように構成されているものである。 An infrared sensor test apparatus according to a second embodiment of the present invention is the infrared sensor test apparatus according to the first embodiment, wherein the signal output unit determines the magnitude of the sensor signal at each inclination angle by color. It is configured to represent.
 本実施形態によれば、それぞれの角度に位置する場合の赤外線センサの出力を前記面上における色を使用したマップによってさらに明瞭に表すことができる。 According to the present embodiment, the output of the infrared sensor when positioned at each angle can be more clearly represented by a map using colors on the surface.
 本発明の第3の実施形態による赤外線センサ試験装置は、前記第1の実施形態による赤外線センサ試験装置であって、前記信号出力部は、それぞれの傾き角度におけるセンサの信号の大きさを大きさが同じ点を結ぶ線によって表すように構成されているものである。 The infrared sensor test apparatus according to the third embodiment of the present invention is the infrared sensor test apparatus according to the first embodiment, wherein the signal output unit determines the magnitude of the sensor signal at each inclination angle. Are represented by lines connecting the same points.
 本実施形態によれば、それぞれの角度に位置する場合の赤外線センサの出力を前記面上における信号の大きさが同じ点を結ぶ線を使用したマップによってさらに明瞭に表すことができる。 According to the present embodiment, the output of the infrared sensor when positioned at each angle can be expressed more clearly by a map using lines connecting points having the same signal magnitude on the surface.
 本発明の第4の実施形態による赤外線センサ試験装置は、前記第1の態様または前記第1乃至第3の実施形態による赤外線センサ試験装置であって、前記スポット状熱源が、開口部を含む遮蔽版によって構成されるものである。 An infrared sensor test apparatus according to a fourth embodiment of the present invention is the infrared sensor test apparatus according to the first aspect or the first to third embodiments, wherein the spot-like heat source includes an opening. It consists of plates.
 本実施形態によれば、スポット状熱源を簡単に構成することができる。 According to the present embodiment, the spot heat source can be easily configured.
 本発明の第5の実施形態による赤外線センサ試験装置は、前記第1の態様または前記第1乃至第4の実施形態による赤外線センサ試験装置であって、焦電型赤外線センサに使用されるものである。 An infrared sensor test apparatus according to a fifth embodiment of the present invention is the infrared sensor test apparatus according to the first aspect or the first to fourth embodiments, and is used for a pyroelectric infrared sensor. is there.
 本実施形態によれば、測定対象物が広い角度範囲のそれぞれの角度に位置する場合の焦電型赤外線センサの性能を簡単に確認することができる。 According to the present embodiment, it is possible to easily confirm the performance of the pyroelectric infrared sensor when the measurement object is located at each angle in a wide angle range.
 本発明の第2の態様による赤外線センサ試験方法は、スポット状熱源と、センサ保持部と、信号出力部と、を備えたセンサ試験装置によってセンサを試験する赤外線センサ試験方法であって、該センサ保持部によって、該スポット状熱源から離れた基準点において保持されたセンサを、該基準点と該スポット状の熱源とを結ぶ直線を含み、互いに直交する二平面内において、該基準点の周りに該センサを傾けるステップと、該信号出力部によって、該直交する二平面におけるセンサの傾き角度ごとにセンサの信号を出力するステップと、を含む。 An infrared sensor test method according to a second aspect of the present invention is an infrared sensor test method for testing a sensor using a sensor test apparatus including a spot-like heat source, a sensor holding unit, and a signal output unit. A sensor held at a reference point away from the spot-like heat source by the holding unit includes a straight line connecting the reference point and the spot-like heat source, and around the reference point in two planes orthogonal to each other. Tilting the sensor, and outputting a sensor signal for each tilt angle of the sensor in the two orthogonal planes by the signal output unit.
 本態様の赤外線試験方法によれば、該センサ保持部によって、該スポット状熱源から離れた基準点において保持されたセンサを、該基準点と該スポット状の熱源とを結ぶ直線を含み、互いに直交する二平面内において、該基準点の周りに該センサを傾けるステップと、該信号出力部によって、該直交する二平面におけるセンサの傾き角度ごとにセンサの信号を出力するステップと、を含むので、測定対象物が広い角度範囲のそれぞれの角度に位置する場合の赤外線センサの信号のデータを収集することができる。したがって、測定対象物が広い角度範囲のそれぞれの角度に位置する場合の赤外線センサの性能を簡単に確認することができる。 According to the infrared test method of this aspect, the sensor held by the sensor holding unit at a reference point away from the spot-like heat source includes a straight line connecting the reference point and the spot-like heat source, and is orthogonal to each other. And inclining the sensor around the reference point in the two planes, and outputting a sensor signal for each sensor tilt angle in the two orthogonal planes by the signal output unit. It is possible to collect data of infrared sensor signals when the measurement object is positioned at each angle in a wide angle range. Therefore, it is possible to easily confirm the performance of the infrared sensor when the measurement object is positioned at each angle in a wide angle range.
本発明の一実施形態によるセンサ試験装置の平面図である。1 is a plan view of a sensor test apparatus according to an embodiment of the present invention. 本発明の一実施形態によるセンサ試験装置の側面図である。1 is a side view of a sensor test apparatus according to an embodiment of the present invention. センサ保持部の外観を示す図である。It is a figure which shows the external appearance of a sensor holding part. センサで生成された信号を処理するセンサ信号処理部の構成を示す図である。It is a figure which shows the structure of the sensor signal processing part which processes the signal produced | generated by the sensor. 信号出力部の動作を説明するための流れ図である。It is a flowchart for demonstrating operation | movement of a signal output part. センサの構成及びセンサの出力信号の測定結果の画像301を示す図である。It is a figure which shows the image 301 of the structure of a sensor, and the measurement result of the output signal of a sensor.
 図1及び図2は、それぞれ、本発明の一実施形態によるセンサ試験装置の平面図及び側面図である。 1 and 2 are a plan view and a side view of a sensor test apparatus according to an embodiment of the present invention, respectively.
 センサ試験装置は、スポット状熱源101及びセンサ保持部107を含む。スポット状熱源101は、ヒータ1011、メカニカルチョッパ1013及び開口部を備えた遮蔽版1015を含む。ヒータ1011の温度は、熱電対などによって測定され、温度コントローラによって所定の範囲に制御される。メカニカルチョッパ1013は、開と閉の二状態を有し、開状態のときにはヒータ1011からの熱を遮蔽しないが閉状態のときにはヒータ1011からの熱を遮蔽する。開口部を備えた遮蔽版1015は、ヒータ1011からの熱のうち開口部を通過したものだけがセンサ保持部107の方向へ放射されるようにすることによってスポット状熱源を構成する。スポット状熱源101は、台車103上に設置されている。台車103は、センサ保持部107へ向けて設置されたガイド105に沿って移動可能に構成され、ガイド105に沿って台車103を移動させることによって、スポット状熱源101とセンサ保持部107との間の距離を調整することができる。 The sensor test apparatus includes a spot heat source 101 and a sensor holding unit 107. The spot heat source 101 includes a heater 1011, a mechanical chopper 1013, and a shielding plate 1015 having an opening. The temperature of the heater 1011 is measured by a thermocouple or the like and controlled to a predetermined range by a temperature controller. The mechanical chopper 1013 has two states of open and closed, and does not shield the heat from the heater 1011 in the open state, but shields the heat from the heater 1011 in the closed state. The shielding plate 1015 having an opening constitutes a spot-like heat source by causing only the heat from the heater 1011 that has passed through the opening to be radiated in the direction of the sensor holding unit 107. The spot-like heat source 101 is installed on the carriage 103. The carriage 103 is configured to be movable along a guide 105 installed toward the sensor holding unit 107. By moving the carriage 103 along the guide 105, the carriage 103 is moved between the spot-like heat source 101 and the sensor holding unit 107. The distance can be adjusted.
 ここで、センサ保持部107からスポット状熱源101へ向かう方向をZ軸とする。また、Z軸に直交する水平な方向をX軸とし、Z軸に直交する鉛直な方向をY軸とする。各軸の向きは図1及び図2に示すとおりである。 Here, the direction from the sensor holding unit 107 toward the spot-like heat source 101 is taken as the Z-axis. Further, a horizontal direction orthogonal to the Z axis is taken as an X axis, and a vertical direction perpendicular to the Z axis is taken as a Y axis. The direction of each axis is as shown in FIGS.
 センサ保持部107は、センサの取り付け位置を基準点として、基準点を中心としてXZ面(水平面)内においてセンサを回転させる第1の回転ステージ1071と、基準点を中心としてYZ面(鉛直面)内においてセンサを回転させる第2の回転ステージ1073と、を備える。図1に示すように、第1の回転ステージ1071は、XZ面(水平面)内において、基準点から遮蔽版1015の開口部をのぞむ方向を基準として、±70°センサを回転させることができる。図2に示すように、第2の回転ステージ1073は、YZ面(鉛直面)内において、基準点から遮蔽版1015の開口部をのぞむ方向を基準として、±90°センサを回転させることができる。センサの回転角度は、0.1°ずつ調整することができる。 The sensor holding unit 107 includes a first rotation stage 1071 that rotates the sensor in the XZ plane (horizontal plane) around the reference point with the sensor attachment position as a reference point, and a YZ plane (vertical plane) around the reference point. And a second rotary stage 1073 for rotating the sensor inside. As shown in FIG. 1, the first rotary stage 1071 can rotate the ± 70 ° sensor in the XZ plane (horizontal plane) with reference to the direction in which the opening of the shielding plate 1015 is viewed from the reference point. As shown in FIG. 2, the second rotary stage 1073 can rotate the ± 90 ° sensor in the YZ plane (vertical plane) with reference to the direction in which the opening of the shielding plate 1015 is viewed from the reference point. . The rotation angle of the sensor can be adjusted by 0.1 °.
 図3は、センサ保持部107の外観を示す図である。第1の回転ステージ1071は、水平面内において回転するテーブルを備え、そのテーブル上に第2のステージ1073が設置される。第2のステージ1073は、鉛直面内において回転するテーブルを備え、そのテーブルにセンサ201が固定される。 FIG. 3 is a diagram showing an external appearance of the sensor holding unit 107. The first rotary stage 1071 includes a table that rotates in a horizontal plane, and a second stage 1073 is installed on the table. The second stage 1073 includes a table that rotates in a vertical plane, and the sensor 201 is fixed to the table.
 本実施形態において、センサ201は、焦電型赤外線センサである。焦電型赤外線センサは焦電効果を利用している。焦電効果は、温度変化により素子が分極を生じる現象である。分極が生じると素子の両端につけた電極に電流が流れる。この電流を検出することによって素子の温度変化を検出することができる。焦電型赤外線センサは、測定対象物からの赤外線を利用して素子に温度変化を生じさせる。焦電型赤外線センサは、素子の温度変化を利用するので、静止した対象物の放射温度を測定する場合には、図1及び図2に示したメカニカルチョッパ1013を使用して、該静止した対象物に赤外線を断続的に照射する。 In the present embodiment, the sensor 201 is a pyroelectric infrared sensor. The pyroelectric infrared sensor uses the pyroelectric effect. The pyroelectric effect is a phenomenon in which an element is polarized by a temperature change. When polarization occurs, current flows through the electrodes attached to both ends of the element. By detecting this current, the temperature change of the element can be detected. A pyroelectric infrared sensor causes a temperature change in an element using infrared rays from a measurement object. Since the pyroelectric infrared sensor uses the temperature change of the element, when measuring the radiation temperature of the stationary object, the stationary object is measured using the mechanical chopper 1013 shown in FIGS. Irradiate objects with infrared rays intermittently.
 図4は、センサ201で生成された信号を処理するセンサ信号処理部1075の構成を示す図である。本実施形態において、センサ信号処理部1075は、センサ保持部107に設置されるが、センサ信号処理部1075の一部はセンサ保持部107とは別に設置してもよい。信号処理部1075は、センサ201を組み込み、センサ201に電圧を供給するように構成されている。信号処理部1075は、負荷抵抗10753と増幅器10755を含む。センサ201の出力信号は、増幅器10755によって増幅され、信号Aとして信号出力部109へ送られる。 FIG. 4 is a diagram illustrating a configuration of a sensor signal processing unit 1075 that processes a signal generated by the sensor 201. In this embodiment, the sensor signal processing unit 1075 is installed in the sensor holding unit 107, but a part of the sensor signal processing unit 1075 may be installed separately from the sensor holding unit 107. The signal processing unit 1075 is configured to incorporate the sensor 201 and supply a voltage to the sensor 201. The signal processing unit 1075 includes a load resistor 10553 and an amplifier 10755. The output signal of the sensor 201 is amplified by the amplifier 10755 and sent to the signal output unit 109 as the signal A.
 図5は、信号出力部109の動作を説明するための流れ図である。 FIG. 5 is a flowchart for explaining the operation of the signal output unit 109.
 図5のステップS005において、第1の回転ステージ1071及び第2の回転ステージ1073の角度を設定する。角度の設定は、信号出力部109からの指示によってセンサ保持部107が自動的に行ってもよい。あるいは、人間が行ってもよい。 In step S005 of FIG. 5, the angles of the first rotary stage 1071 and the second rotary stage 1073 are set. The angle setting may be automatically performed by the sensor holding unit 107 according to an instruction from the signal output unit 109. Alternatively, a human may do it.
 図5のステップS010において、信号出力部109は第1の回転ステージ1071及び第2の回転ステージ1073の角度を読み取る。 In step S010 in FIG. 5, the signal output unit 109 reads the angles of the first rotary stage 1071 and the second rotary stage 1073.
 図5のステップS020において、信号出力部109はセンサ信号処理部1075から信号Aを受け取る。 5, the signal output unit 109 receives the signal A from the sensor signal processing unit 1075.
 図5のステップS030において、信号出力部109は、角度及び信号Aのデータセットを信号出力部109のメモリへ格納する。 In step S030 in FIG. 5, the signal output unit 109 stores the data set of the angle and the signal A in the memory of the signal output unit 109.
 図5のステップS040において、他の角度について角度及び信号Aのデータセットを採取するかどうか判断する。判断は信号処理部が自動的に行ってもよい。あるいは人間が行ってもよい。データセットの採取を継続する場合にはステップS050に進む。データセットの採取を継続しない場合は処理を終了する。 In step S040 in FIG. 5, it is determined whether to collect a data set of angle and signal A for other angles. The determination may be made automatically by the signal processing unit. Or a human may go. When the collection of the data set is continued, the process proceeds to step S050. If data collection is not continued, the process ends.
 図5のステップS050において、第1の回転ステージ1071及び第2の回転ステージ1073の少なくとも一方の角度を変更する。角度の変更は、信号出力部109からの指示によってセンサ保持部107が自動的に行ってもよい。あるいは、人間が行ってもよい。角度をどのように変更するかについては後で説明する。 In step S050 of FIG. 5, the angle of at least one of the first rotary stage 1071 and the second rotary stage 1073 is changed. The change of the angle may be automatically performed by the sensor holding unit 107 according to an instruction from the signal output unit 109. Alternatively, a human may do it. How to change the angle will be described later.
 図6は、センサ201の構成及びセンサ201の出力信号の測定結果の画像301を示す図である。センサ201は、7個のフレネルレンズ2013及び4個の電極2011を備える。7個のフレネルレンズ2013によって、種々の方向からの赤外線が、4個の電極2011に集光される。測定を行った際の遮蔽版1015とセンサ位置(基準点)との距離は、500ミリメータである。 FIG. 6 is a diagram illustrating an image 301 of the configuration of the sensor 201 and the measurement result of the output signal of the sensor 201. The sensor 201 includes seven Fresnel lenses 2013 and four electrodes 2011. Infrared rays from various directions are condensed on the four electrodes 2011 by the seven Fresnel lenses 2013. The distance between the shielding plate 1015 and the sensor position (reference point) at the time of measurement is 500 millimeters.
 測定結果の画像301において、横軸の数字は、XZ面(水平面)内において、基準点から遮蔽版1015の開口部をのぞむ方向を基準とした角度(以下、X角度と呼称する)を表し、縦軸の数字は、YZ面(鉛直面)内において、基準点から遮蔽版1015の開口部をのぞむ方向を基準とした角度(以下、Y角度と呼称する)を表す。 In the measurement result image 301, the number on the horizontal axis represents an angle (hereinafter referred to as an X angle) in the XZ plane (horizontal plane) based on the direction from the reference point to the opening of the shielding plate 1015. The number on the vertical axis represents an angle (hereinafter referred to as a Y angle) in the YZ plane (vertical plane) based on the direction from the reference point to the opening of the shielding plate 1015.
 測定結果の画像301において、それぞれの角度における出力信号の大きさは、色の濃さで表され。すなわち、色が濃いほど出力信号が大きい。このような測定結果の画像は、図5に示した流れ図によって信号出力部109のメモリに格納された、角度及び信号のデータセットから作成される。 In the measurement result image 301, the magnitude of the output signal at each angle is represented by the color intensity. That is, the darker the color, the greater the output signal. Such an image of the measurement result is created from the angle and signal data set stored in the memory of the signal output unit 109 according to the flowchart shown in FIG.
 測定結果の画像301において、それぞれの角度における出力信号の大きさを色の濃さで表す代わりに、同じ大きさの点を結ぶ線によってあらわすようにしてもよい。 In the measurement result image 301, the magnitude of the output signal at each angle may be represented by a line connecting points of the same size, instead of representing the magnitude of the color.
 測定結果の画像301において、点線で区分した7個の領域は、7個のフレネルレンズ2013のそれぞれによって集光された赤外線による画像に対応する。すなわち、7個のフレネルレンズ2013は、XZ面(水平面)内の広い角度範囲の赤外線を分担して、4個の電極2011に集光させるように構成されている。7個の領域のそれぞれにおいて、出力信号の大きな領域は、4個の電極に対応する領域である。 In the measurement result image 301, the seven regions divided by dotted lines correspond to the infrared image collected by each of the seven Fresnel lenses 2013. In other words, the seven Fresnel lenses 2013 are configured to share infrared rays in a wide angle range in the XZ plane (horizontal plane) and collect them on the four electrodes 2011. In each of the seven regions, a region having a large output signal is a region corresponding to four electrodes.
 図6に示した画像のデータを得る場合に、第1の回転ステージ1071及び第2の回転ステージ1073の角度をどのように変更するかについて説明する。一例として、最初にX角度を-45°、Y角度を10°に設定しデータセットを採取する。つぎにX角度を所定の間隔(たとえば0.1°)ずつ増加させながらデータセットを採取する。X角度45°、Y角度10°のデータを採取したらY角度を9.9°に設定し、X角度45°Y角度を9.9°のデータを採取する。つぎにX角度を所定の間隔(たとえば0.1°)ずつ減少させながらデータセットを採取する。このようにして、図6に示した画像のデータを得ることができる。 A description will be given of how to change the angles of the first rotary stage 1071 and the second rotary stage 1073 when obtaining the image data shown in FIG. As an example, a data set is collected by first setting the X angle to −45 ° and the Y angle to 10 °. Next, a data set is collected while increasing the X angle by a predetermined interval (for example, 0.1 °). When data of X angle 45 ° and Y angle 10 ° are collected, Y angle is set to 9.9 °, and data of X angle 45 ° Y angle 9.9 ° is collected. Next, a data set is collected while the X angle is decreased by a predetermined interval (for example, 0.1 °). In this manner, the image data shown in FIG. 6 can be obtained.
 図6によれば、4個の電極に対応する領域は、X角度が-45°から45°の範囲に分布している。実際に使用される場合は、焦電型赤外線センサは固定されているので、X角度が-45°から45°の範囲における出力信号は、焦電型赤外線センサの正面方向を基準として水平面内において、45°から-45°の範囲に位置する、赤外線を放射する測定対象物の出力信号に相当する。したがって、測定対象物が、焦電型赤外線センサの正面方向から水平面内において、45°から-45°の範囲で移動することは、図6のX角度が-45°から45°の範囲で変化することに対応し、4個の電極の素子の受ける赤外線量が頻繁に変化する。この結果、測定対象物の移動にしたがって4個の電極の出力信号が頻繁に変化することによって測定対象物の移動が検出される。 According to FIG. 6, the region corresponding to the four electrodes is distributed in an X angle range of −45 ° to 45 °. When actually used, since the pyroelectric infrared sensor is fixed, the output signal when the X angle is in the range of -45 ° to 45 ° is within the horizontal plane with respect to the front direction of the pyroelectric infrared sensor. , Which corresponds to an output signal of a measurement object that radiates infrared rays, located in a range of 45 ° to −45 °. Therefore, if the measurement object moves in the range of 45 ° to −45 ° in the horizontal plane from the front direction of the pyroelectric infrared sensor, the X angle in FIG. 6 changes in the range of −45 ° to 45 °. In response to this, the amount of infrared rays received by the elements of the four electrodes frequently changes. As a result, the movement of the measurement object is detected by the output signals of the four electrodes frequently changing according to the movement of the measurement object.
 このように、本発明のセンサ試験装置によれば、図6に示すように、所定の角度範囲内において測定対象物が存在しうるすべての位置におけるセンサの出力を高い精度で試験することができる。また、X角度を横軸、Y角度を縦軸で表した面に、それぞれの角度に対応する信号の大きさを色または同じ大きさの点を結ぶ線で表すことによって、センサの性能が明瞭になる。 Thus, according to the sensor test apparatus of the present invention, as shown in FIG. 6, it is possible to test the output of the sensor at all positions where the measurement object can exist within a predetermined angle range with high accuracy. . In addition, the performance of the sensor is clear by expressing the magnitude of the signal corresponding to each angle with a color or a line connecting points of the same size on the surface where the X angle is represented on the horizontal axis and the Y angle is represented on the vertical axis. become.

Claims (7)

  1.  スポット状熱源と、センサ保持部と、信号出力部と、を備えた赤外線センサ試験装置であって、
     該センサ保持部は、該スポット状熱源から離れた基準点においてセンサを保持し、該基準点と該スポット状の熱源とを結ぶ直線を含み、互いに直交する二平面内において、該基準点の周りに該センサを傾ける回転ステージを備えており、
     該信号出力部は、該直交する二平面におけるセンサの傾き角度ごとにセンサの信号を出力するように構成された、赤外線センサ試験装置。
    An infrared sensor test apparatus including a spot heat source, a sensor holding unit, and a signal output unit,
    The sensor holding unit holds the sensor at a reference point away from the spot-like heat source, includes a straight line connecting the reference point and the spot-like heat source, and around the reference point in two planes orthogonal to each other A rotation stage for tilting the sensor,
    The signal output unit is an infrared sensor test apparatus configured to output a sensor signal for each inclination angle of the sensor in the two orthogonal planes.
  2.  前記信号出力部が、前記直交する二平面におけるセンサの傾き角度を横軸及び縦軸で表した面に、それぞれの傾き角度におけるセンサの信号を表すように構成された、請求項1に記載の赤外線センサ試験装置。 The said signal output part was comprised so that the signal of the sensor in each inclination angle might be represented on the surface which represented the inclination angle of the sensor in the said two orthogonal planes with the horizontal axis and the vertical axis | shaft. Infrared sensor test equipment.
  3.  前記信号出力部は、それぞれの傾き角度におけるセンサの信号の大きさを色によって表すように構成された、請求項2に記載の赤外線センサ試験装置。 The infrared sensor test apparatus according to claim 2, wherein the signal output unit is configured to represent the magnitude of the sensor signal at each inclination angle by color.
  4.  前記信号出力部は、それぞれの傾き角度におけるセンサの信号の大きさを大きさが同じ点を結ぶ線によって表すように構成された、請求項2に記載の赤外線センサ試験装置。 The infrared sensor test apparatus according to claim 2, wherein the signal output unit is configured to represent the magnitude of the sensor signal at each inclination angle by a line connecting the same magnitudes.
  5.  前記スポット状熱源が、開口部を含む遮蔽版によって構成される請求項1から4のいずれかに記載の赤外線センサ試験装置。 The infrared sensor test apparatus according to any one of claims 1 to 4, wherein the spot-like heat source is configured by a shielding plate including an opening.
  6.  焦電型赤外線センサに使用される請求項1から5のいずれかに記載の赤外線センサ試験装置。 The infrared sensor test apparatus according to any one of claims 1 to 5, which is used for a pyroelectric infrared sensor.
  7.  スポット状熱源と、センサ保持部と、信号出力部と、を備えたセンサ試験装置によってセンサを試験する赤外線センサ試験方法であって、
     該センサ保持部によって、該スポット状熱源から離れた基準点において保持されたセンサを、該基準点と該スポット状の熱源とを結ぶ直線を含み、互いに直交する二平面内において、該基準点の周りに該センサを傾けるステップと、
     該信号出力部によって、該直交する二平面におけるセンサの傾き角度ごとにセンサの信号を出力するステップと、を含む、赤外線センサ試験方法。
    An infrared sensor test method for testing a sensor with a sensor test device including a spot heat source, a sensor holding unit, and a signal output unit,
    A sensor held by the sensor holding unit at a reference point away from the spot-like heat source includes a straight line connecting the reference point and the spot-like heat source, and the reference point Tilting the sensor around,
    Outputting a sensor signal for each tilt angle of the sensor in the two orthogonal planes by the signal output unit.
PCT/JP2012/050701 2011-01-21 2012-01-16 Sensor testing device and sensor testing method WO2012099049A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1314801.0A GB2502472A (en) 2011-01-21 2012-01-16 Sensor Testing Device and Sensor testing method
JP2012553704A JP5401660B2 (en) 2011-01-21 2012-01-16 Sensor test apparatus and sensor test method
IL227492A IL227492A (en) 2011-01-21 2013-07-15 Sensor testing device and sensor testing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161434993P 2011-01-21 2011-01-21
US61/434,993 2011-01-21

Publications (1)

Publication Number Publication Date
WO2012099049A1 true WO2012099049A1 (en) 2012-07-26

Family

ID=46515675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050701 WO2012099049A1 (en) 2011-01-21 2012-01-16 Sensor testing device and sensor testing method

Country Status (4)

Country Link
JP (1) JP5401660B2 (en)
GB (1) GB2502472A (en)
IL (1) IL227492A (en)
WO (1) WO2012099049A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106502039A (en) * 2016-12-08 2017-03-15 浙江舜宇光学有限公司 Optical detection apparatus
CN108761566A (en) * 2018-09-03 2018-11-06 南京福碧源环境技术有限公司 Multigroup infrared inductor infrared intensity debugging apparatus
CN109238336A (en) * 2018-09-12 2019-01-18 东莞市奕冠塑胶五金电子有限公司 A kind of Full-automatic infrared inductor test cabinet
CN111609936A (en) * 2020-05-25 2020-09-01 北京北方华创微电子装备有限公司 Temperature measuring device in semiconductor process equipment and semiconductor process equipment
CN114509241A (en) * 2022-01-18 2022-05-17 东莞市万德光电科技有限公司 Human body induction infrared lens testing laboratory and testing method based on anthropomorphic dummy

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114136464A (en) * 2021-10-26 2022-03-04 深圳市思码逻辑技术有限公司 Performance test method, device, equipment and system of infrared sensor
CN116489340A (en) * 2023-04-11 2023-07-25 深圳市龙之源科技股份有限公司 Outdoor camera aging testing device and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260580A (en) * 1994-03-18 1995-10-13 Sumitomo Metal Mining Co Ltd Infrared detector
JPH08320252A (en) * 1995-05-26 1996-12-03 Matsushita Electric Works Ltd Infrared sensor action testing device
JPH09305871A (en) * 1996-05-10 1997-11-28 Tdk Corp Infrared detector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224622A (en) * 2007-03-15 2008-09-25 Ricoh Co Ltd Light quantity distribution measuring method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260580A (en) * 1994-03-18 1995-10-13 Sumitomo Metal Mining Co Ltd Infrared detector
JPH08320252A (en) * 1995-05-26 1996-12-03 Matsushita Electric Works Ltd Infrared sensor action testing device
JPH09305871A (en) * 1996-05-10 1997-11-28 Tdk Corp Infrared detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106502039A (en) * 2016-12-08 2017-03-15 浙江舜宇光学有限公司 Optical detection apparatus
CN106502039B (en) * 2016-12-08 2022-04-19 浙江舜宇光学有限公司 Optical detection device
CN108761566A (en) * 2018-09-03 2018-11-06 南京福碧源环境技术有限公司 Multigroup infrared inductor infrared intensity debugging apparatus
CN109238336A (en) * 2018-09-12 2019-01-18 东莞市奕冠塑胶五金电子有限公司 A kind of Full-automatic infrared inductor test cabinet
CN111609936A (en) * 2020-05-25 2020-09-01 北京北方华创微电子装备有限公司 Temperature measuring device in semiconductor process equipment and semiconductor process equipment
CN114509241A (en) * 2022-01-18 2022-05-17 东莞市万德光电科技有限公司 Human body induction infrared lens testing laboratory and testing method based on anthropomorphic dummy

Also Published As

Publication number Publication date
IL227492A (en) 2017-09-28
GB201314801D0 (en) 2013-10-02
IL227492A0 (en) 2013-09-30
GB2502472A (en) 2013-11-27
JPWO2012099049A1 (en) 2014-06-30
JP5401660B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5401660B2 (en) Sensor test apparatus and sensor test method
US9651658B2 (en) Methods and systems for LIDAR optics alignment
EP2607848B1 (en) Thermal imaging camera with compass calibration
JP6618965B2 (en) Method and system for determining misalignment of imaging device and non-transitory computer readable medium
KR20160142273A (en) Method and device for alignment of an optical imaging system
RU2013120995A (en) DEVICE FOR ELECTROMAGNETIC TEST OF OBJECT
KR20160074229A (en) Method of Measuring the Display and Device of Measuring the Display
JP6288280B2 (en) Surface shape measuring device
EP2591323B1 (en) Non-contact measuring a mean surface temperature of a measuring area
JP5549631B2 (en) Portable setting terminal and monitoring system
JP6270215B2 (en) Optical axis adjustment device for X-ray analyzer
JP2012242134A (en) Shape measurement device and optical filter used for the same
KR100973830B1 (en) Particle Image Fluid Velocity Measuring Device for Multiple Plane
KR101819576B1 (en) Test apparatus and method for optical image stabilizer
US10812788B1 (en) Systems and methods to calibrate spectral characteristics of imaging sensors
RU2006117699A (en) OPTICAL ELECTRONIC DEVICE FOR CIRCLE REVIEW
JP2012173277A (en) Shape measuring apparatus and optical filter to be used for the same
CN203132702U (en) Infrared thermometer verification complete device
JP5223478B2 (en) Scattering characteristic evaluation equipment
JP2000258366A (en) Minute part x-ray diffraction apparatus
JP6600929B1 (en) X-ray diffraction measurement system and X-ray diffraction measurement system
JP5882864B2 (en) Diffusion haze value measuring method and measuring apparatus
CN207730655U (en) A kind of portable wheat spectrum detection device
Garcia et al. Accuracy evaluation of a new 3D photogrammetric position measurement system for 6D printing
Price et al. Testing a prototype rotary mechanism for GMTIFS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553704

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 1314801

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20120116

WWE Wipo information: entry into national phase

Ref document number: 1314801.0

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 12736307

Country of ref document: EP

Kind code of ref document: A1