WO2012097700A1 - 一种基于s1接口的节能恢复方法和系统 - Google Patents

一种基于s1接口的节能恢复方法和系统 Download PDF

Info

Publication number
WO2012097700A1
WO2012097700A1 PCT/CN2012/070275 CN2012070275W WO2012097700A1 WO 2012097700 A1 WO2012097700 A1 WO 2012097700A1 CN 2012070275 W CN2012070275 W CN 2012070275W WO 2012097700 A1 WO2012097700 A1 WO 2012097700A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
interface
saving
enb
saving recovery
Prior art date
Application number
PCT/CN2012/070275
Other languages
English (en)
French (fr)
Inventor
汪长娥
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012097700A1 publication Critical patent/WO2012097700A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to an energy-saving recovery technology in a Long Term Evolution (LTE) system, and in particular, to an energy-saving recovery method and system based on an S1 interface.
  • LTE Long Term Evolution
  • the structure of the existing LTE mobile communication system is as shown in FIG. 1, which mainly includes: a core network, an access network, and a terminal (UE).
  • the core network mainly includes a mobility management entity (MME) or a service gateway (S-GW); and the access network is composed of multiple evolved base stations (eNodeBs, eNBs).
  • MME mobility management entity
  • S-GW service gateway
  • eNodeBs evolved base stations
  • the core network and the access network communicate with each other through the S1 interface, and different eNBs in the access network communicate with each other through the X2 interface.
  • Self-Organized Network (SON) technology is a technology that automatically performs network configuration and optimization.
  • energy saving is an important requirement, that is, to save energy by timely shutting down the cell or reducing the transmit power of the cell without affecting the normal operation of the entire communication network. For example: For a residential area where a high-end business area is located, good network coverage and high capacity are required during the daytime, and there are no users or users in the high-end business area during non-working hours in the evening. In this case, if Maintaining good network coverage and high capacity in the region as in the daytime will inevitably result in greater energy wastage.
  • the energy saving strategy of the SON is mainly to reduce the energy consumption by turning off the cell or reducing the transmit power of the cell.
  • the traditional implementation manner is as follows: The eNB triggers the neighboring eNB to perform energy saving and recovery through the X2 interface, but in the system. During the actual operation, the X2 interface is disconnected or abnormal after a certain cell on the triggered eNB enters the energy-saving state. As a result, the system cannot perform energy-saving recovery operations on the energy-saving eNB through the X2 interface. Summary of the invention
  • the main object of the present invention is to provide an energy-saving recovery method and system based on the S1 interface, which can ensure that the energy-saving recovery process of the system proceeds normally when the X2 interface fails.
  • An energy-saving recovery method based on the S1 interface includes: after the energy-saving eNB receives the energy-saving recovery message through the S1 interface or the bottom layer transmission link of the S1 interface, performing an energy-saving recovery operation, and performing an energy-saving recovery operation through the S1 interface or the S1 interface Feedback results of energy saving recovery operations.
  • the method further includes: the neighboring eNB, the MME, or the S-GW of the energy-saving eNB sends the energy-saving recovery message to the energy-saving eNB.
  • the energy-saving eNB When the energy-saving recovery message is sent by the neighboring eNB, the energy-saving eNB receives the energy-saving recovery message via the S1 interface or the bottom layer transmission link of the S1 interface: the neighboring eNB sends an energy-saving recovery message, and the energy-saving recovery message is sent.
  • the recovery message is sent to the MME or the S-GW via the S1 interface or the underlying transmission link of the S1 interface;
  • the MME or the S-GW forwards the energy-saving recovery message to the energy-saving eNB through the S1 interface or the S1 interface underlying transmission link.
  • the energy-saving eNB When the energy-saving recovery message is sent by the MME or the S-GW, the energy-saving eNB receives the energy-saving recovery message via the S1 interface or the bottom layer transmission link of the S1 interface: the MME or the S-GW sends an energy-saving recovery message. And directly sent to the energy-saving eNB via the S1 interface or the underlying transmission link of the S1 interface.
  • the result of the energy-saving eNB feeding back the energy-saving recovery operation is: after the energy-saving eNB performs the energy-saving recovery operation, the result of the energy-saving recovery operation is performed by the S1 interface or the S1 interface bottom-layer transmission link. Feedback to the MME or S-GW;
  • the MME or the S-GW notifies the neighboring eNB of the result of the energy saving recovery operation through the S1 interface or the S1 interface underlying transmission link.
  • the energy-saving eNB feedback section The result of the recovery operation is: After the energy-saving eNB performs the energy-saving recovery operation, the result of the energy-saving recovery operation is directly fed back to the MME or the S-GW via the S1 interface or the underlying transmission link of the S1 interface.
  • An energy-saving recovery system based on an SI interface including an energy-saving eNB, configured to perform an energy-saving recovery operation after receiving an energy-saving recovery message via an SI interface or an S1 interface bottom-layer transmission link, and performing an energy-saving recovery operation via an S1 interface or an S1 interface Feedback results of energy saving recovery operations.
  • the system further includes an MME or an S-GW, configured to send an energy-saving recovery message, and directly sent to the energy-saving eNB via the S1 interface or the S1 interface bottom-layer transmission link; and the energy-saving eNB is received through the S1 interface or the S1 interface bottom-layer transmission link.
  • an MME or an S-GW configured to send an energy-saving recovery message, and directly sent to the energy-saving eNB via the S1 interface or the S1 interface bottom-layer transmission link; and the energy-saving eNB is received through the S1 interface or the S1 interface bottom-layer transmission link.
  • the system further includes a neighboring eNB, configured to send an energy-saving recovery message, and send the energy-saving recovery message to the MME or the S-GW via the S1 interface or the S1 interface bottom-layer transmission link, and then pass the S1 interface through the MME or the S-GW.
  • the underlying transmission link of the S1 interface is forwarded to the energy-saving eNB; the result of the energy-saving recovery operation after the energy-saving recovery operation performed by the energy-saving eNB forwarded by the MME or the S-GW is received through the S1 interface or the S1 interface underlying transmission link;
  • the MME or the S-GW is further configured to forward the energy-saving recovery message sent by the neighboring eNB to the energy-saving eNB via the S1 interface or the S1 interface bottom-layer transmission link, and pass the S1 interface or the S1 interface bottom transmission chain.
  • the path forwards the result of the energy-saving recovery operation fed back by the energy-saving eNB after performing the energy-saving recovery operation to the neighboring eNB.
  • the S1 interface-based energy-saving recovery method and system provided by the present invention, after the energy-saving eNB receives the energy-saving recovery message through the S1 interface or the S1 interface bottom-layer transmission link, performs energy-saving recovery operation, and transmits the link through the S1 interface or the S1 interface. Feedback results of energy saving recovery operations. It can be seen that the present invention performs an energy-saving recovery operation on the energy-saving eNB through the S1 interface or the S1 interface bottom-layer transmission link. Even if the X2 interface is disconnected or abnormal, the energy-saving eNB energy-saving recovery operation is not affected, and the system energy-saving recovery process can be guaranteed. The normal operation, thereby improving the utilization of system resources and ensuring the interests of operators.
  • DRAWINGS DRAWINGS
  • 1 is a schematic structural diagram of an existing LTE mobile communication system
  • FIG. 2 is a schematic flowchart of an implementation process of an energy-saving recovery method based on an S1 interface according to the present invention
  • FIG. 3 is a schematic structural diagram of a system according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of a system according to Embodiment 2 of the present invention. detailed description
  • the basic idea of the present invention is: After the energy-saving eNB receives the energy-saving recovery message through the S1 interface or the S1 interface bottom-layer transmission link, the energy-saving recovery operation is performed, and the energy-saving recovery operation is fed back through the S1 interface or the bottom layer transmission link of the S1 interface. result.
  • the energy-saving recovery message is sent by the neighboring eNB of the energy-saving eNB, and is forwarded to the energy-saving eNB by the MME or the S-GW; or the energy-saving recovery message is directly sent by the MME or the S-GW.
  • FIG. 2 is a schematic flowchart of an implementation process of an energy-saving recovery method based on an S1 interface according to the present invention. As shown in FIG. 2, the implementation steps of the method are as follows:
  • Step 201 The energy-saving eNB receives the energy-saving recovery message via the S1 interface or the underlying transmission link of the S1 interface.
  • the neighboring eNB when the neighboring eNB that has enabled the energy-saving eNB to enter the energy-saving state finds that the energy-saving eNB needs to perform energy-saving recovery, the neighboring eNB sends an energy-saving recovery message, and the first-layer transmission link of the S1 interface or the S1 interface is first sent to the MME or the S-
  • the GW is forwarded to the energy-saving eNB through the S1 interface or the underlying transmission link of the S1 interface through the MME or the S-GW; or the MME or the S-GW that triggers the energy-saving eNB to enter the energy-saving state to discover that the energy-saving eNB needs to perform energy-saving recovery.
  • the MME or the S-GW sends an energy-saving recovery message to the energy-saving eNB via the S1 interface or the underlying transmission link of the S1 interface.
  • Step 202 The energy-saving eNB performs an energy-saving recovery operation, and is connected to the S1 interface or the S1 interface.
  • the bottom layer transmission link feeds back the result of the energy saving recovery operation;
  • the energy-saving recovery operation is performed after the eNB receives the energy-saving recovery message on the S1 interface or the downlink transmission link of the S1 interface. If the energy-saving recovery message is sent by the neighboring eNB, the eNB performing the energy-saving recovery operation feeds back the result of the energy-saving recovery operation to the MME or the S-GW via the S1 interface or the underlying transmission link of the S1 interface, and the MME or the S-GW passes the MME or the S-GW.
  • the S1 interface, or the S1 interface bottom layer transmission link notifies the neighboring eNB of the result of the energy saving recovery operation; if the energy saving recovery message is sent by the MME or the S-GW, the eNB performing the energy saving recovery operation passes the S1 interface, or S The underlying transmission link of the interface directly feeds back the result of the energy-saving recovery operation to the MME or the S-GW.
  • the energy-saving eNB there are two ways for the energy-saving eNB to perform the energy-saving recovery operation: In one case, when at least one cell exists on the energy-saving eNB that is to perform the energy-saving recovery operation, that is, at least one cell is available, the energy-saving eNB is available.
  • the communication process with the MME or the S-GW is performed through the S1 interface, and the communication process with the existing S1 interface is the same, and only one signaling is needed;
  • the energy-saving eNB when there is no cell on the energy-saving eNB that is to perform the energy-saving recovery operation, all the cells on the eNB are closed when the energy-saving operation is performed, and then the MME or the MME is performed through the S1 interface bottom-layer transmission link. Communication between the S-GW and the energy-saving eNB.
  • the MME informs the energy-saving eNB to perform energy-saving recovery by transmitting the underlying transmission message of the S1 interface, and the energy-saving eNB also responds to the message through the S1 interface bottom-layer transmission link.
  • FIG. 3 is a schematic structural diagram of a main system of the embodiment, including an MME or an S-GW and an eNB.
  • the trigger that the eNB enters the energy-saving state is also the MME or the S-GW, and the specific process is as follows:
  • Step 1 The MME or the S-GW notifies the eNB to enter the energy-saving state via the S1 interface.
  • the UE in the cell covered by the eNB or the neighboring eNB of the eNB passes the MME or the S-GW.
  • the eNB or the S-GW is notified to send a power-saving message to the eNB to notify a cell in the eNB to enter a power-saving state, that is, to disable the transmission of the cell power.
  • the specific process of the eNB or the S-GW notifying the eNB to enter the power-saving state by the MME or the S-GW is not within the protection scope of the present invention; currently, which cell in the eNB is entered is not given in the protocol.
  • Step 2 As the service demand of the system increases, the MME or the S-GW determines that the eNB needs to enter an energy-saving recovery state;
  • Step 3 The MME or the S-GW sends an energy-saving recovery message through the S1 interface, and notifies the eNB to enter the energy-saving recovery state.
  • Step 4 After receiving the energy-saving recovery message, the eNB performs an energy-saving recovery operation.
  • Step 5 After the eNB performs energy-saving recovery, the result of the energy-saving recovery is fed back to the MME or the S-GW through the S1 interface.
  • FIG. 4 is a schematic structural diagram of the main system in the embodiment, where the eNB1 is a base station to be in a power-saving state, and has 3
  • the eNB2 is a triggering base station, and the specific implementation process is as follows: Step 1: The eNB2 notifies the eNB 1 to enter the energy-saving state through the X2 interface, and one cell on the eNB 1 enters a power-saving state, and the power transmission is turned off;
  • Step 2 After the eNB1 enters the energy-saving state, the X2 interface between the eNB1 and the eNB2 is abnormal and disconnected;
  • Step 3 As the service demand of the system increases, the eNB2 enters a load overload state. At this time, the system needs the eNB1 to share the corresponding service, so as to eliminate the load overload state of the eNB2.
  • Step 4 The eNB2 informs the MME or the S-GW that the base station is overloaded through the S1 interface. Requesting the MME or the S-GW to notify the eNB1 to perform energy saving recovery;
  • Step 5 After receiving the request, the MME or the S-GW sends an energy-saving recovery message to the eNB1 to perform energy-saving recovery.
  • Step 6 The eNB1 performs an energy-saving recovery operation, and sends the energy-saving recovery result to the MME or the S-GW through the S1 interface.
  • Step 7 The MME or the S-GW feeds back the energy-saving recovery result of the eNB1 to the eNB2 B through the S1 interface.
  • the neighboring eNB indirectly informs the energy-saving eNB to enter the energy-saving recovery state through the MME or the S-GW through the MME or the S-GW.
  • the eNB1 is the base station to be in the energy-saving state
  • the eNB2 is the trigger.
  • the specific implementation process of the base station is as follows:
  • Step 1 The eNB2 notifies the eNB 1 to enter the energy-saving state through the X2 interface, and the cell on the eNB 1 enters the energy-saving state, and closes all the cells on the eNB1;
  • Step 2 After the eNB1 enters the energy-saving state, the X2 interface between the eNB1 and the eNB2 is abnormal and disconnected;
  • Step 3 As the service demand of the system increases, the eNB2 enters a load overload state. At this time, the system needs the eNB1 to share the corresponding service to eliminate the load overload state of the eNB2.
  • Step 4 The eNB2 informs the MME or the corresponding interface of the underlying transmission link of the S1 interface.
  • Step 5 After receiving the request, the MME or the S-GW sends an energy-saving recovery message to the eNB1 via the corresponding interface of the underlying transmission link of the S1 interface. Carry out energy saving recovery;
  • Step 6 The eNB1 performs an energy-saving recovery operation, and sends the energy-saving recovery result to the MME or the S-GW through the corresponding interface of the underlying transmission link of the S1 interface.
  • Step 7 The MME or the S-GW passes the corresponding interface of the underlying transmission link of the S1 interface to the eNB1.
  • the energy saving recovery result is fed back to eNB2.
  • the present invention further provides an energy-saving recovery system based on the S1 interface, including an energy-saving eNB, configured to perform an energy-saving recovery operation after receiving an energy-saving recovery message via an SI interface or an underlying transmission link of the S1 interface. And feedback the result of the energy-saving recovery operation via the S1 interface or the underlying transmission link of the S1 interface.
  • an energy-saving eNB configured to perform an energy-saving recovery operation after receiving an energy-saving recovery message via an SI interface or an underlying transmission link of the S1 interface. And feedback the result of the energy-saving recovery operation via the S1 interface or the underlying transmission link of the S1 interface.
  • the system further includes an MME or an S-GW, and is configured to send an energy-saving recovery message, and directly send the energy-saving eNB to the energy-saving eNB via the S1 interface or the S1 interface bottom-layer transmission link; and the energy-saving eNB is received through the S1 interface or the S1 interface bottom-layer transmission link.
  • the result of the energy-saving recovery operation fed back by the eNB after performing the energy-saving recovery operation.
  • the system further includes a neighboring eNB, which is configured to send an energy-saving recovery message, and send the message to the MME or the S-GW via the S1 interface or the underlying transmission link of the S1 interface, and then transmit through the S1 interface or the S1 interface through the MME or the S-GW.
  • the link is forwarded to the energy-saving eNB; the result of the energy-saving recovery operation after the energy-saving recovery operation performed by the energy-saving eNB that is forwarded by the MME or the S-GW is received by the SI interface or the S1 interface underlying transmission link;
  • the MME or the S-GW is further configured to forward the energy-saving recovery message sent by the neighboring eNB to the energy-saving eNB via the S1 interface or the underlying transmission link of the S1 interface, and pass the SI interface, or the bottom layer of the S1 interface.
  • the transmission link forwards the result of the energy-saving recovery operation fed back by the energy-saving eNB after performing the energy-saving recovery operation to the neighboring eNB.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种基于 SI接口的节能恢复方法和系统 技术领域
本发明涉及长期演进(Long Term Evolution, LTE ) 系统中的节能恢复 技术, 尤其涉及一种基于 S 1接口的节能恢复方法和系统。 背景技术
现有 LTE移动通信系统的结构如图 1所示, 主要包括: 核心网、 接入 网和终端 (UE )。 其中, 核心网主要包括移动性管理实体(MME )或服务 网关 (S-GW ); 接入网由多个演进型基站(eNodeB, eNB )构成。 核心网 和接入网之间通过 S1接口互相进行通信,接入网内部不同的 eNB之间通过 X2接口互相进行通信。
自组织网络( Self-Organized Network, SON )技术是一种自动进行网络 配置和优化的技术。 在 SON技术中, 节能是一个很重要的需求, 也就是在 不影响整个通信网络正常运行的情况下, 通过适时关闭小区或减少小区的 发射功率以达到节能的目的。 例如: 对于高档商务区域所在的小区, 白天 的时候需要良好的网络覆盖和较高的容量, 而到晚上的非工作时间, 高档 商务区域内没有用户或者用户很少, 这种情况下, 如果还和白天一样维持 该区域良好的网络覆盖和较高容量的话, 势必造成较大的能源浪费。
从上文描述可知, 目前 SON的节能策略主要是通过关闭小区或降低小 区的发射功率来减小能源消耗,传统的实现方式为: eNB通过 X2接口触发 相邻 eNB进行节能和恢复, 但在系统实际运行过程中, 经常会出现被触发 eNB上的某个小区进入节能状态后, 所述 X2接口断开或者出现异常, 导致 系统无法通过 X2接口对已节能 eNB执行节能恢复操作。 发明内容
有鉴于此, 本发明的主要目的在于提供一种基于 S1接口的节能恢复方 法和系统, 可在 X2接口出现故障时, 确保系统的节能恢复过程正常进行。
为达到上述目的, 本发明的技术方案是这样实现的:
一种基于 S1接口的节能恢复方法, 该方法包括: 已节能 eNB经 S1接 口或 S1接口底层传输链路收到节能恢复消息后, 执行节能恢复操作, 并经 S1接口或 S1接口底层传输链路反馈节能恢复操作的结果。
进一步地, 所述方法还包括: 已节能 eNB的相邻 eNB、 MME或 S-GW 向已节能 eNB发出所述节能恢复消息。
其中, 所述节能恢复消息由相邻 eNB发出时, 所述已节能 eNB经 S1 接口或 S1接口底层传输链路收到节能恢复消息为:所述相邻 eNB发出节能 恢复消息, 将所述节能恢复消息经 S1接口或 S1接口底层传输链路发送给 MME或 S-GW;
所述 MME或 S-GW通过 S1接口或 S1接口底层传输链路将所述节能 恢复消息转发给已节能 eNB。
其中, 所述节能恢复消息由 MME或 S-GW发出时, 所述已节能 eNB 经 S1 接口或 S1 接口底层传输链路收到节能恢复消息为: 所述 MME或 S-GW发出节能恢复消息, 并经 S1接口或 S1接口底层传输链路直接发送 给已节能 eNB。
所述节能恢复消息由相邻 eNB发出时,所述已节能 eNB反馈节能恢复 操作的结果为: 已节能 eNB执行节能恢复操作后, 经 S1接口或 S1接口底 层传输链路将节能恢复操作的结果反馈给 MME或 S-GW;
所述 MME或 S-GW通过 S1接口或 S1接口底层传输链路将节能恢复 操作的结果通知所述相邻 eNB。
所述节能恢复消息由 MME或 S-GW发出时, 所述已节能 eNB反馈节 能恢复操作的结果为: 已节能 eNB执行节能恢复操作后, 经 S1接口或 S1 接口底层传输链路直接将节能恢复操作的结果反馈给 MME或 S-GW。
一种基于 SI接口的节能恢复系统, 包括已节能 eNB, 用于经 SI接口 或 S1接口底层传输链路收到节能恢复消息后,执行节能恢复操作,并经 S1 接口或 S1接口底层传输链路反馈节能恢复操作的结果。
该系统还包括 MME或 S-GW, 用于发出节能恢复消息, 并经 S1接口、 或 S1接口底层传输链路直接发送给已节能 eNB;经 S1接口或 S1接口底层 传输链路接收已节能 eNB 执行节能恢复操作后反馈的节能恢复操作的结 果。
该系统还包括相邻 eNB , 用于发出节能恢复消息, 将所述节能恢复消 息经 S1接口或 S1接口底层传输链路发送给 MME或 S-GW,再经 MME或 S-GW通过 S1接口或 S1接口底层传输链路转发给已节能 eNB; 通过 S1接 口或 S1接口底层传输链路接收 MME或 S-GW转发的已节能 eNB执行节能 恢复操作后反馈的节能恢复操作的结果;
相应的, 所述 MME或 S-GW, 还用于将相邻 eNB所发的节能恢复消 息经 S1接口或 S1接口底层传输链路转发给已节能 eNB, 并经 S1接口或 S1接口底层传输链路将已节能 eNB执行节能恢复操作后反馈的节能恢复操 作的结果转发给相邻 eNB。
本发明提供的基于 S1接口的节能恢复方法和系统, 已节能 eNB经 S1 接口或 S1接口底层传输链路收到节能恢复消息后 , 执行节能恢复操作 , 并 经 S1接口或 S1接口底层传输链路反馈节能恢复操作的结果。 可见, 本发 明通过 S1接口或 S1接口底层传输链路对已节能 eNB执行节能恢复操作, 即使 X2接口断开或者出现异常, 也不影响已节能 eNB节能恢复操作的执 行, 可保证系统节能恢复过程的正常运行, 进而提高了系统资源的利用率, 保证运营商的利益。 附图说明
图 1为现有 LTE移动通信系统的结构示意图;
图 2为本发明基于 S1接口的节能恢复方法实现流程示意图;
图 3为本发明实施例一的系统结构示意图;
图 4为本发明实施例二的系统结构示意图。 具体实施方式
本发明的基本思想是: 已节能 eNB经 S1接口、 或 S1接口底层传输链 路收到节能恢复消息后, 执行节能恢复操作, 并经 S1接口、 或 S1接口底 层传输链路反馈节能恢复操作的结果。
其中, 所述节能恢复消息由已节能 eNB的相邻 eNB发出, 并经 MME 或 S-GW转发给已节能 eNB; 或者, 节能恢复消息直接由 MME或 S-GW 发出。
下面结合附图及具体实施例对本发明作进一步详细说明。
图 2为本发明基于 S1接口的节能恢复方法实现流程示意图, 如图 2所 示, 该方法的实现步驟如下:
步驟 201: 已节能 eNB经 S1接口、 或 S1接口底层传输链路收到节能 恢复消息;
具体为: 触发已节能 eNB进入节能状态的相邻 eNB发现已节能 eNB 需进行节能恢复时, 相邻 eNB发出节能恢复消息, 经 S1接口、 或 S1接口 底层传输链路先发送给 MME或 S-GW,再经 MME或 S-GW通过 S1接口、 或 S1接口底层传输链路转发给已节能 eNB; 或者, 触发已节能 eNB进入 节能状态的 MME或 S-GW发现已节能 eNB需进行节能恢复时, MME或 S-GW发出节能恢复消息, 并经 S1接口、 或 S1接口底层传输链路发送给 已节能 eNB。
步驟 202: 已节能 eNB执行节能恢复操作, 并经 S1接口、 或 S1接口 底层传输链路反馈节能恢复操作的结果;
具体为: 已节能 eNB经 S1接口、 或 S1接口底层传输链路收到节能恢 复消息后,执行已有的节能恢复操作。如果节能恢复消息由相邻 eNB所发, 执行节能恢复操作后的 eNB经 S1接口、 或 S1接口底层传输链路将节能恢 复操作的结果反馈给 MME或 S-GW, MME或 S-GW再通过 S1接口、 或 S1接口底层传输链路将节能恢复操作的结果通知所述相邻 eNB; 如果节能 恢复消息由 MME或 S-GW所发,执行节能恢复操作后的 eNB则经 S1接口、 或 S 1接口底层传输链路直接将节能恢复操作的结果反馈给 MME或 S-GW。
本发明中, 已节能 eNB进行节能恢复操作的方式有两种: 一种情况是, 当准备执行节能恢复操作的已节能 eNB上至少存在一个小区时, 即至少有 一个小区可用时, 已节能 eNB经过 S1接口与 MME或 S-GW进行通信, 与 现有的 S1接口之间的通信过程相同, 只需增加一条信令即可;
另一种情况是, 当准备执行节能恢复操作的已节能 eNB上不存在小区 时, 即执行节能操作时已将 eNB上的所有小区都关闭,此时则通过 S1接口 底层传输链路进行 MME或 S-GW与已节能 eNB之间的通信。 MME通过 发送 S1接口底层传输消息告知已节能 eNB进行节能恢复, 已节能 eNB也 通过 S1接口底层传输链路回复消息。
下面结合具体实施例对本发明进行详细描述。
实施例一
本实施例中, MME或 S-GW直接通过 S1接口通知 eNB进行节能恢复, 图 3为本实施例主要系统结构示意图, 包括 MME或 S-GW和 eNB。 此外, 本实施例中, eNB进入节能状态的触发者也为 MME或 S-GW, 具体流程如 下:
步驟一: MME或 S-GW经 S1接口通知 eNB进入节能状态;
具体为: eNB所覆盖小区中的 UE或 eNB的相邻 eNB经 MME或 S-GW 通知所述 eNB进入节能状态, MME或 S-GW则经 SI接口发送节能消息通 知 eNB中的一个小区进入节能状态, 即关闭小区功率的发射。
这里 , 关于 UE或 eNB的相邻 eNB, 经 MME或 S-GW通知所述 eNB 进入节能状态的具体过程不在本发明的保护范围之内; 目前协议上还没有 给出令 eNB中的哪个小区进入节能状态的具体细节, 但是, 由于本实施例 中只是关闭小区的发射功率, 因此可通过小区 ID来识别不同的小区。
步驟二: 随着系统业务需求的增加, MME或 S-GW确定 eNB需进入 节能恢复状态;
步驟三: MME或 S-GW通过 S1接口发送节能恢复消息, 通知 eNB进 入节能恢复状态;
步驟四: eNB收到节能恢复消息后, 执行节能恢复操作;
步驟五: eNB进行节能恢复后, 通过 S1接口将节能恢复的结果反馈给 MME或 S-GW。
实施例二
本实施例中 ,相邻 eNB经过 MME或 S-GW间接通知已节能 eNB进入 节能恢复状态, 图 4为本实施例的主要系统结构示意图,设 eNBl为待进入 节能状态的基站,其上有 3个小区; eNB2为触发基站,具体实现流程如下: 步驟一: eNB2通过 X2接口通知 eNB 1进入节能状态, eNB 1上的一个 小区进入节能状态, 关闭功率发射;
该步驟所述过程为现有技术, 此处不再详述。
步驟二: eNBl进入节能状态后, eNBl和 eNB2间的 X2接口发生异常 而断开;
步驟三: 随着系统业务需求的增加, eNB2进入负荷过载状态; 此时, 系统需 eNBl分担相应业务, 以消除 eNB2的负荷过载状态。 步驟四: eNB2通过 S 1接口告知 MME或 S-GW本基站已经超负荷, 请求 MME或 S-GW通知 eNBl进行节能恢复;
步驟五: MME或 S-GW收到请求后, 经 S1接口发送节能恢复消息通 知 eNBl进行节能恢复;
步驟六: eNBl执行节能恢复操作, 并经 S1接口将节能恢复结果发送 给 MME或 S-GW;
步驟七: MME或 S-GW通过 S1接口将 eNBl的节能恢复结果反馈给 eNB2B
实施例三
本实施例中,相邻 eNB通过 S1接口底层传输链路经过 MME或 S-GW 间接通知已节能 eNB进入节能恢复状态, 仍以图 4例, 设 eNBl为待进入 节能状态的基站, eNB2为触发基站, 具体实现流程如下:
步驟一: eNB2通过 X2接口通知 eNB 1进入节能状态, eNB 1上的小区 进入节能状态, 关闭 eNBl上所有的小区;
该步驟所述过程为现有技术, 此处不再详述。
步驟二: eNBl进入节能状态后, eNBl和 eNB2间的 X2接口发生异常 而断开;
步驟三: 随着系统业务需求的增加, eNB2进入负荷过载状态; 此时, 系统需 eNBl分担相应业务, 以消除 eNB2的负荷过载状态。 步驟四: eNB2通过 S1 接口底层传输链路的对应接口告知 MME或
S-GW本基站已经超负荷, 请求 MME或 S-GW通知 eNBl进行节能恢复; 步驟五: MME或 S-GW收到请求后, 经 S1接口底层传输链路的对应 接口发送节能恢复消息通知 eNBl进行节能恢复;
步驟六: eNBl执行节能恢复操作, 并经 S1接口底层传输链路的对应 接口将节能恢复结果发送给 MME或 S-GW;
步驟七: MME或 S-GW通过 S1接口底层传输链路的对应接口将 eNBl 的节能恢复结果反馈给 eNB2。
为实现上述方法, 本发明还提供了一种基于 S 1接口的节能恢复系统, 包括已节能 eNB, 用于经 SI接口、 或 S1接口底层传输链路收到节能恢复 消息后, 执行节能恢复操作, 并经 S1接口、 或 S1接口底层传输链路反馈 节能恢复操作的结果。
该系统还包括 MME或 S-GW, 用于发出节能恢复消息, 并经 S1接口、 或 S1接口底层传输链路直接发送给已节能 eNB; 经 S1接口、或 S1接口底 层传输链路接收已节能 eNB执行节能恢复操作后反馈的节能恢复操作的结 果。
该系统还包括相邻 eNB , 用于发出节能恢复消息, 经 S1接口、 或 S1 接口底层传输链路发送给 MME或 S-GW, 再经 MME或 S-GW通过 S1接 口、 或 S1接口底层传输链路转发给已节能 eNB; 通过 SI接口、 或 S1接口 底层传输链路接收 MME或 S-GW转发的已节能 eNB执行节能恢复操作后 反馈的节能恢复操作的结果;
相应的, 所述 MME或 S-GW, 还用于将相邻 eNB所发的节能恢复消 息经 S1接口、 或 S1接口底层传输链路转发给已节能 eNB, 并经 SI接口、 或 S1接口底层传输链路将已节能 eNB执行节能恢复操作后反馈的节能恢复 操作的结果转发给相邻 eNB。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围, 凡在本发明的精神和原则之内所作的任何修改、 等同替换和改进 等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种基于 SI接口的节能恢复方法, 其特征在于, 该方法包括: 已节能 eNB经 S1接口或 S1接口底层传输链路收到节能恢复消息后, 执行节能恢复操作, 并经 S1接口或 S1接口底层传输链路反馈节能恢复操 作的结果。
2、 根据权利要求 1所述的基于 S1接口的节能恢复方法, 其特征在于, 所述方法还包括:
已节能 eNB的相邻 eNB、 MME或 S-GW向已节能 eNB发出所述节能 恢复消息。
3、 根据权利要求 2所述的基于 S1接口的节能恢复方法, 其特征在于, 所述节能恢复消息由相邻 eNB发出时, 所述已节能 eNB经 S1接口或 S1 接口底层传输链路收到节能恢复消息为:
所述相邻 eNB发出节能恢复消息,将所述节能恢复消息经 S1接口、或 S1接口底层传输链路发送给 MME或 S-GW;
所述 MME或 S-GW通过 S1接口或 S1接口底层传输链路将所述节能 恢复消息转发给已节能 eNB。
4、 根据权利要求 2所述的基于 SI接口的节能恢复方法, 其特征在于, 所述节能恢复消息由 MME或 S-GW发出时,所述已节能 eNB经 SI接口或 S1接口底层传输链路收到节能恢复消息为:
所述 MME或 S-GW发出节能恢复消息, 并经 S1接口或 S1接口底层 传输链路直接发送给已节能 eNB。
5、 根据权利要求 2或 3所述的基于 S1接口的节能恢复方法, 其特征 在于, 所述节能恢复消息由相邻 eNB发出时, 所述已节能 eNB反馈节能恢 复操作的结果为:
已节能 eNB执行节能恢复操作后, 经 S1接口或 S1接口底层传输链路 将节能恢复操作的结果反馈给 MME或 S-GW;
所述 MME或 S-GW通过 S1接口或 S1接口底层传输链路将节能恢复 操作的结果通知所述相邻 eNB。
6、 根据权利要求 2或 4所述的基于 S1接口的节能恢复方法, 其特征 在于, 所述节能恢复消息由 MME或 S-GW发出时, 所述已节能 eNB反馈 节能恢复操作的结果为:
已节能 eNB执行节能恢复操作后, 经 S1接口或 S1接口底层传输链路 直接将节能恢复操作的结果反馈给 MME或 S-GW。
7、 一种基于 S1接口的节能恢复系统, 其特征在于, 该系统包括已节 能 eNB , 用于经 SI接口或 SI接口底层传输链路收到节能恢复消息后, 执 行节能恢复操作, 并经 S1接口或 S1接口底层传输链路反馈节能恢复操作 的结果。
8、 根据权利要求 7所述的基于 S1接口的节能恢复系统, 其特征在于, 该系统还包括 MME或 S-GW, 用于发出节能恢复消息, 并经 S1接口或 S1 接口底层传输链路直接发送给已节能 eNB; 经 S1接口或 S1接口底层传输 链路接收已节能 eNB执行节能恢复操作后反馈的节能恢复操作的结果。
9、 根据权利要求 8所述的基于 S1接口的节能恢复系统, 其特征在于, 该系统还包括相邻 eNB, 用于发出节能恢复消息, 将所述节能恢复消息经 S1接口或 S1接口底层传输链路发送给 MME或 S-GW,再经 MME或 S-GW 通过 S1接口或 S1接口底层传输链路转发给已节能 eNB; 通过 S1接口或 S1接口底层传输链路接收 MME或 S-GW转发的已节能 eNB执行节能恢复 操作后反馈的节能恢复操作的结果;
相应的, 所述 MME或 S-GW, 还用于将相邻 eNB所发的节能恢复消 息经 S1接口或 S1接口底层传输链路转发给已节能 eNB, 并经 S1接口或 S1接口底层传输链路将已节能 eNB执行节能恢复操作后反馈的节能恢复操 作的结果转发给相邻 eNB。
PCT/CN2012/070275 2011-01-19 2012-01-12 一种基于s1接口的节能恢复方法和系统 WO2012097700A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110021123.XA CN102612061B (zh) 2011-01-19 2011-01-19 一种基于s1接口的节能恢复方法和系统
CN201110021123.X 2011-01-19

Publications (1)

Publication Number Publication Date
WO2012097700A1 true WO2012097700A1 (zh) 2012-07-26

Family

ID=46515150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070275 WO2012097700A1 (zh) 2011-01-19 2012-01-12 一种基于s1接口的节能恢复方法和系统

Country Status (2)

Country Link
CN (1) CN102612061B (zh)
WO (1) WO2012097700A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742707A (zh) * 2008-11-25 2010-06-16 中兴通讯股份有限公司 一种lte系统下网络节能的方法
CN101778459A (zh) * 2010-01-08 2010-07-14 华为技术有限公司 一种基站发送信号方法和节能基站
CN101835247A (zh) * 2009-03-12 2010-09-15 华为技术有限公司 基站节能和激活的方法、网络装置、激活装置和网络系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010123793A1 (en) * 2009-04-23 2010-10-28 Interdigital Patent Holdings, Inc. Method and apparatus for processing advanced long term evolution system information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742707A (zh) * 2008-11-25 2010-06-16 中兴通讯股份有限公司 一种lte系统下网络节能的方法
CN101835247A (zh) * 2009-03-12 2010-09-15 华为技术有限公司 基站节能和激活的方法、网络装置、激活装置和网络系统
CN101778459A (zh) * 2010-01-08 2010-07-14 华为技术有限公司 一种基站发送信号方法和节能基站

Also Published As

Publication number Publication date
CN102612061B (zh) 2014-12-10
CN102612061A (zh) 2012-07-25

Similar Documents

Publication Publication Date Title
TWI596966B (zh) Energy-saving method in mobile communication system
CN101742707B (zh) 一种lte系统下网络节能的方法
US20220217801A1 (en) Dual Connectivity Management Method and Communications Apparatus
US8948770B2 (en) Cluster head assisted method for converting user terminal from D2D communication to cellular communication
WO2012130000A1 (zh) 一种基站节能信息的传递方法及节能实现方法与系统
US20090270107A1 (en) Communication system and method for supporting direct communication between femto cell and macrocell
JP2019507993A (ja) データ伝送方法、装置及びシステム
CN101938798A (zh) 一种无线中继系统中终端的移动性管理方法及系统
US20130053051A1 (en) Method and system for processing cell sleeping
WO2012019547A1 (zh) 一种节能小区的控制处理方法及基站
JP5656271B2 (ja) ネットワーク管理システムにおいてエネルギー節約を管理するための方法、デバイス、およびシステム
WO2015027719A1 (zh) 一种协作多流传输数据的方法及基站
US10057937B2 (en) Communications via multiple access points
WO2010102581A1 (zh) 基站节能和激活的方法、装置和网络系统
WO2012019556A1 (zh) 一种节能补偿方法及基站
WO2013135157A1 (zh) 基站节能方法、系统及装置
JP5908180B2 (ja) Lteモードホーム基地局システムにおけるゲートウェイ安定性を向上させる方法及び装置
JP2013526089A (ja) 中継ノードおよび移動体通信システム
WO2015062060A1 (zh) 一种基站节能的方法及基站
JP2020503812A (ja) Ranベースの通知エリアについての情報の通知のための方法およびデバイス
WO2016150269A1 (zh) 一种寻呼优化的方法、装置及系统、存储介质
US9749841B2 (en) Method and system for updating closed subscriber group identity state, and evolved node B
WO2012155609A1 (zh) 一种切换处理方法及系统
EP2582186B1 (en) Method and system for waking up node b cell
JP2015534382A (ja) Lteモードフェムトセルシステムにおいてゲートウェイ容量を拡大する方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736142

Country of ref document: EP

Kind code of ref document: A1