WO2012096220A1 - Process for production of aluminum structure, and aluminum structure - Google Patents

Process for production of aluminum structure, and aluminum structure Download PDF

Info

Publication number
WO2012096220A1
WO2012096220A1 PCT/JP2012/050130 JP2012050130W WO2012096220A1 WO 2012096220 A1 WO2012096220 A1 WO 2012096220A1 JP 2012050130 W JP2012050130 W JP 2012050130W WO 2012096220 A1 WO2012096220 A1 WO 2012096220A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
plating
resin
molten salt
porous
Prior art date
Application number
PCT/JP2012/050130
Other languages
French (fr)
Japanese (ja)
Inventor
健吾 後藤
細江 晃久
奥野 一樹
肇 太田
弘太郎 木村
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to KR1020137015416A priority Critical patent/KR20140005179A/en
Priority to DE112012000442T priority patent/DE112012000442T5/en
Priority to CN201280004624XA priority patent/CN103282553A/en
Priority to US13/488,618 priority patent/US20120292191A1/en
Publication of WO2012096220A1 publication Critical patent/WO2012096220A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/0033D structures, e.g. superposed patterned layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • C25D3/665Electroplating: Baths therefor from melts from ionic liquids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1137Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers by coating porous removable preforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1143Making porous workpieces or articles involving an oxidation, reduction or reaction step

Definitions

  • the present invention relates to a method of forming an aluminum structure on a resin surface by aluminum plating, and particularly to an aluminum structure that can be suitably used as a porous metal body in applications such as various filters and battery electrodes, and a method for producing the same.
  • Metal porous bodies having a three-dimensional network structure are used in various fields such as various filters, catalyst carriers, and battery electrodes.
  • cermet made of nickel (manufactured by Sumitomo Electric Industries, Ltd .: registered trademark) is used as an electrode material for batteries such as nickel metal hydride batteries and nickel cadmium batteries.
  • Celmet is a metal porous body having continuous air holes, and has a feature of high porosity (90% or more) compared to other porous bodies such as a metal nonwoven fabric. This can be obtained by forming a nickel layer on the surface of the porous resin skeleton having continuous air holes such as urethane foam, then heat-treating it to decompose the foamed resin molding, and further reducing the nickel. Formation of the nickel layer is performed by depositing nickel by electroplating after applying a carbon powder or the like to the surface of the skeleton of the foamed resin molded body and conducting a conductive treatment.
  • Aluminum has excellent characteristics such as conductivity, corrosion resistance, and light weight.
  • a positive electrode of a lithium ion battery in which an active material such as lithium cobaltate is applied to the surface of an aluminum foil is used.
  • an active material such as lithium cobaltate
  • Patent Document 1 discloses that a metal aluminum layer having a thickness of 2 to 20 ⁇ m is formed by subjecting a three-dimensional net-like plastic substrate having an internal communication space to aluminum vapor deposition by an arc ion plating method. A method is described.
  • Patent Document 2 a film made of a metal (such as copper) that forms a eutectic alloy below the melting point of aluminum is formed on the skeleton of a foamed resin molding having a three-dimensional network structure, and then an aluminum paste is applied.
  • a method is described in which a metal porous body is obtained by performing heat treatment at a temperature of 550 ° C. or higher and 750 ° C. or lower in a non-oxidizing atmosphere to eliminate organic components (foamed resin) and sinter aluminum powder.
  • Patent Document 3 uses a low melting point composition in which onium halide and aluminum halide are mixed and melted as a plating bath.
  • An electrolytic aluminum plating method is disclosed, in which aluminum is deposited on the cathode while maintaining the amount at 2 wt% or less.
  • an aluminum porous body having a thickness of 2 to 20 ⁇ m is obtained.
  • it is based on a gas phase method, it is difficult to produce a large area, and the thickness and porosity of the substrate are difficult. In some cases, it is difficult to form a uniform layer up to the inside.
  • there are problems such as a slow formation rate of the aluminum layer and an increase in manufacturing cost due to expensive equipment.
  • a thick film is formed, there is a possibility that the film may crack or aluminum may fall off.
  • a layer that forms a eutectic alloy with aluminum is formed, and a high-purity aluminum layer cannot be formed.
  • the electroplating method of aluminum itself is known, it is only possible to plate on the metal surface, and electroplating on the surface of the resin molded body, especially the surface of the porous resin molded body having a three-dimensional network structure.
  • the method of electroplating was not known. This is considered to be affected by problems such as dissolution of the porous resin in the plating bath.
  • the present invention enables the plating of aluminum on the surface of a porous resin molded body having a three-dimensional network structure, and forms a high-purity aluminum structure by forming a thick film uniformly. It is an object of the present invention to provide a method capable of obtaining a porous aluminum body having a large area.
  • the present inventors have come up with a method of electroplating aluminum on the surface of a resin molded body having a three-dimensional network structure such as polyurethane or melamine resin. That is, the present invention is a method for producing an aluminum structure in which aluminum is plated in a molten salt bath on a resin molded body having a three-dimensional network structure with at least a surface conductive.
  • the present inventors are effective in plating aluminum in a molten salt bath that is a mixed salt of an organic salt and aluminum chloride.
  • a mixed salt of an organic salt such as an imidazolium salt and aluminum chloride becomes liquid at room temperature
  • the temperature of the plating bath is generally set to a temperature near room temperature.
  • the molten salt has a high viscosity at a temperature near room temperature and has a complicated skeleton structure such as a resin molded body having a three-dimensional network structure, good plating may not be possible depending on the plating conditions.
  • the current density range that can be plated becomes narrow.
  • the temperature of the molten salt bath is 45 ° C. or higher and 100 ° C. or lower, the viscosity of the molten salt bath can be lowered, and the molten salt can be sufficiently distributed even inside the resin molded body (porous body) having a three-dimensional network structure. Can do. Therefore, uniform plating with a small difference in plating thickness between the surface portion and the inside of the porous body becomes possible.
  • the plating with a uniform thickness can be formed, the strength of the aluminum layer is increased, and an aluminum structure with little breakage of the skeleton structure can be obtained even after the resin molded body is removed.
  • the smoothness of the plating surface is improved (Claim 2).
  • 1,10-phenanthroline after lowering the viscosity of the molten salt bath within a certain range and adding a synergistic effect, the surface of the skeletal surface becomes grainy (the surface has large irregularities and looks like grains in the surface observation). It is possible to obtain an aluminum structure that is strong even in a thin skeleton and is not easily broken.
  • the organic salt is preferably a molten salt containing nitrogen, and among them, an imidazolium salt is preferably used (Claim 3).
  • a mixed salt of an imidazolium salt and aluminum chloride is preferable as a molten salt bath because it melts at a relatively low temperature and has high conductivity.
  • a salt containing an imidazolium cation having an alkyl group at the 1,3-position is preferably used.
  • a mixed salt of 1-ethyl-3-methylimidazolium chloride and aluminum chloride (AlCl 3 -EMIC) is used. It is most preferably used because it is highly stable and hardly decomposes.
  • the imidazolium salt bath does not like the presence of moisture and oxygen, it is preferable to perform plating in an inert gas atmosphere such as argon or nitrogen in a sealed environment.
  • Urethane foam and foamed melamine can be preferably used as a porous resin body because they have high porosity, have pore connectivity and are excellent in thermal decomposability (Claim 4). Foamed urethane is preferred in terms of pore uniformity and availability, and foamed melamine is preferred in that a product having a small pore diameter can be obtained.
  • the method of conducting the resin porous body surface can be selected including known methods. It is possible to form a metal layer such as aluminum or nickel by electroless plating or vapor phase method, or to form a metal or carbon layer by conductive paint. The formation of an aluminum layer by vapor phase method and the electrical conductivity by carbon can be performed without mixing a metal other than aluminum into the aluminum structure after plating. Therefore, it is possible to produce a structure made of substantially only aluminum as a metal. It becomes possible.
  • an aluminum structure having a resin molded body having a metal layer on the surface is obtained.
  • it may be used as a composite of resin and metal as it is, or when used as a metal structure without resin due to restrictions on the usage environment, the resin may be removed.
  • an aluminum structure it is possible to plate aluminum on the surface of a porous resin molded body having a three-dimensional network structure in particular, and form an aluminum structure having a high purity and a large area with a substantially uniform thick film. And an aluminum structure can be provided.
  • FIG. 1 is a flow diagram showing a manufacturing process of an aluminum structure according to the present invention.
  • FIG. 2 schematically shows a state in which an aluminum structure is formed using a porous resin body as a core material corresponding to the flow diagram. The flow of the entire manufacturing process will be described with reference to both drawings.
  • preparation 101 of the base resin molded body is performed.
  • FIG. 2A is an enlarged schematic view in which the surface of a porous resin body (foamed resin molded body) having a three-dimensional network structure is enlarged as an example of the base resin molded body.
  • the pores are formed with the foamed resin molded body 1 as a skeleton.
  • the surface 102 of the resin molded body is made conductive.
  • a thin conductive layer 2 made of a conductive material is formed on the surface of the foamed resin molded body 1 as shown in FIG.
  • aluminum plating 103 in molten salt is performed to form an aluminum plating layer 3 on the surface of the resin molded body on which the conductive layer is formed (FIG. 2C).
  • an aluminum structure in which the aluminum plating layer 3 is formed on the surface using the resin molded body as a base material is obtained.
  • the removal 104 of the base resin molded body may be performed.
  • An aluminum structure (porous body) in which only the metal layer remains can be obtained by disassembling and disappearing the foamed resin molded body 1 (FIG. 2D).
  • each step will be described in order.
  • a resin porous body having a three-dimensional network structure is prepared.
  • Arbitrary resin can be selected as the material of the resin porous body. Examples of the material include foamed resin moldings such as polyurethane, melamine resin, polypropylene, and polyethylene.
  • a resin porous body having an arbitrary shape can be selected as long as it has continuous pores (continuous vent holes). For example, what has a shape like a nonwoven fabric entangled with a fibrous resin can be used as the porous resin body.
  • the porous resin body preferably has a porosity of 80% to 98% and a pore diameter of 50 ⁇ m to 500 ⁇ m.
  • Foamed urethane and foamed melamine can be preferably used as a porous resin body because they have high porosity, have pore connectivity and are excellent in thermal decomposability.
  • Urethane foam urethane foam
  • foamed melamine is preferable in that a product having a small pore diameter is obtained.
  • FIG. 3 shows an example of the porous resin body, which is obtained by washing urethane foam as a pretreatment.
  • the resin molded body forms a three-dimensional network as a skeleton, thereby forming continuous pores as a whole.
  • the urethane skeleton has a substantially triangular shape in a cross section perpendicular to the extending direction.
  • the porosity is defined by the following equation.
  • Porosity (1 ⁇ (weight of porous material [g] / (volume of porous material [cm 3 ] ⁇ material density))) ⁇ 100 [%]
  • the suspension as the conductive paint preferably contains carbon particles, a binder, a dispersant and a dispersion medium.
  • the suspension In order to uniformly apply the conductive particles, the suspension needs to maintain a uniform suspension state. For this reason, the suspension is preferably maintained at 20 ° C. to 40 ° C. The reason is that when the temperature of the suspension is less than 20 ° C., the uniform suspension state is lost, and only the binder is concentrated on the surface of the skeleton forming the network structure of the porous resin body to form a layer. Because. In this case, the applied carbon particle layer is easy to peel off, and it is difficult to form a metal plating that is firmly adhered.
  • the particle size of the carbon particles is 0.01 to 5 ⁇ m, preferably 0.01 to 0.5 ⁇ m. If the particle size is large, the pores of the porous resin body may be clogged or smooth plating may be hindered. If the particle size is too small, it is difficult to ensure sufficient conductivity.
  • FIG. 4 is a diagram schematically showing a configuration example of a processing apparatus that conducts a band-shaped resin porous body serving as a skeleton as an example of a practical manufacturing process.
  • this apparatus includes a supply bobbin 12 for supplying a belt-shaped resin 11, a tank 15 containing a conductive paint suspension 14, a pair of squeezing rolls 17 disposed above the tank 15, A plurality of hot air nozzles 16 provided opposite to the back of the belt-like resin 11 to be wound, and a winding bobbin 18 for winding up the belt-like resin 11 after processing.
  • a deflector roll 13 for guiding the belt-shaped resin 11 is appropriately disposed.
  • the strip-shaped resin 1 having a three-dimensional network structure is unwound from the supply bobbin 12, guided by the deflector roll 13, and immersed in the suspension in the tank 15.
  • the strip-shaped resin 11 immersed in the suspension 14 in the tank 15 changes its direction upward and travels between the squeeze rolls 17 above the liquid level of the suspension 14. At this time, the distance between the squeezing rolls 17 is smaller than the thickness of the belt-shaped resin 11, and the belt-shaped resin 11 is compressed. Therefore, the excess suspension impregnated in the belt-shaped resin 11 is squeezed out and returned to the tank 15.
  • the strip-shaped resin 11 changes the traveling direction again.
  • the suspension dispersion medium and the like are removed by hot air jetted by the hot air nozzle 16 composed of a plurality of nozzles, and the belt-like resin 11 is wound around the winding bobbin 18 after sufficiently drying.
  • the temperature of the hot air ejected from the hot air nozzle 16 is preferably in the range of 40 ° C to 80 ° C.
  • Formation of aluminum layer molten salt plating
  • electrolytic plating is performed in a molten salt to form an aluminum plating layer on the surface of the porous resin body.
  • a direct current is applied in a molten salt using a porous resin body having a conductive surface as a cathode and an aluminum plate having a purity of 99.99% as an anode.
  • a mixed salt (eutectic salt) of aluminum chloride and an organic salt is used.
  • Use of an organic molten salt bath that melts at a relatively low temperature is preferable because plating can be performed without decomposing the porous resin body as a base material.
  • the organic salt imidazolium salt, pyridinium salt and the like can be used. Of these, 1-ethyl-3-methylimidazolium chloride (EMIC) and butylpyridinium chloride (BPC) are preferable.
  • EMIC 1-ethyl-3-methylimidazolium chloride
  • BPC butyl
  • the temperature of the molten salt bath is set to 45 ° C. or higher and 100 ° C. or lower.
  • the temperature is lower than 45 ° C., the viscosity cannot be lowered sufficiently.
  • an organic salt may decompose
  • a more preferable temperature is 50 ° C. or higher and 80 ° C. or lower. Since the molten salt deteriorates when moisture or oxygen is mixed in the molten salt, the plating is preferably performed in an atmosphere of an inert gas such as nitrogen or argon and in a sealed environment.
  • 1,10-phenanthroline it is preferable to add 1,10-phenanthroline to the molten salt bath to make the surface smooth.
  • the amount of 1,10-phenanthroline added is preferably 0.25 g / l or more and 7 g / l or less.
  • the addition amount is less than 0.25 g / l, it is difficult to obtain the effect of smoothing the surface.
  • the effect of smoothing the surface increases as the amount of 1,10-phenanthroline added increases, but the effect does not change much even if the amount is increased to more than 7 g / l.
  • a more preferable range of the addition amount is 2.5 g / l or more and 5 g / l or less.
  • the method of reducing the viscosity by adding an organic solvent or the like to the molten salt bath requires equipment for preventing volatilization of the organic solvent and safety equipment for preventing ignition by the organic solvent.
  • the temperature is kept within a certain range. Since the viscosity of the molten salt bath is reduced, plating with simple equipment becomes possible. Further, 1,10-phenanthroline does not volatilize in the range of 45 ° C. to 100 ° C., and thus has the same effect.
  • FIG. 5 is a diagram schematically showing the configuration of an apparatus for continuously performing metal plating on the above-described belt-shaped resin.
  • a configuration in which the belt-like resin 22 whose surface is made conductive is sent from the left to the right in the figure.
  • the first plating tank 21a includes a cylindrical electrode 24, an anode 25 provided on the inner wall of the container, and a plating bath 23. By passing the strip-shaped resin 22 along the cylindrical electrode 24 through the plating bath 23, a uniform current can easily flow through the entire porous resin body, and uniform plating can be obtained.
  • the second plating tank 21b is a tank for applying a thicker and more uniform plating, and is configured to be repeatedly plated in a plurality of tanks.
  • Plating is performed by passing the belt-like resin 22 having a conductive surface through a plating bath 28 while sequentially feeding the belt-like resin 22 by an electrode roller 26 that also serves as a feeding roller and an out-of-vessel feeding cathode.
  • anodes 27 provided on opposite surfaces of the porous resin body via the plating bath 28, and uniform plating can be applied to both surfaces of the porous resin body.
  • an aluminum structure (aluminum porous body) having a porous resin body as a skeleton core is obtained.
  • the resin and metal composite may be used as they are.
  • the resin may be removed when used as a metal structure having no resin due to restrictions on the use environment. Removal of the resin can be performed by any method such as decomposition (dissolution) with an organic solvent, molten salt, or supercritical water, and thermal decomposition. Since aluminum is difficult to reduce once oxidized, unlike nickel or the like, for example, when used as an electrode material for a battery or the like, it is preferable to remove the resin by a method in which oxidation of aluminum hardly occurs. For example, a method of removing the resin by thermal decomposition in a molten salt described below is preferably used.
  • Thermal decomposition in the molten salt is performed by the following method.
  • a porous resin body having an aluminum plating layer formed on the surface is immersed in a molten salt, and heated while applying a negative potential to the aluminum layer to decompose the porous resin body.
  • the heating temperature can be appropriately selected according to the type of the porous resin body.
  • a preferable temperature range is 500 ° C. or more and 600 ° C. or less.
  • the amount of negative potential to be applied is on the minus side of the reduction potential of aluminum and on the plus side of the reduction potential of cations in the molten salt.
  • an alkali metal or alkaline earth metal halide salt or nitrate which can lower the electrode potential of aluminum can be used.
  • LiNiO 2 lithium cobaltate
  • LiMn 2 O 4 lithium manganate
  • LiNiO 2 lithium nickelate
  • the active material is used in combination with a conductive additive and a binder.
  • Conventional positive electrode materials for lithium ion batteries have an active material coated on the surface of an aluminum foil. In order to improve the battery capacity per unit area, the coating thickness of the active material is increased.
  • the aluminum foil and the active material need to be in electrical contact with each other, so that the active material is used in combination with a conductive additive.
  • the porous aluminum body of the present invention has a high porosity and a large surface area per unit area. Therefore, even if the active material is thinly supported on the surface of the porous body, the active material can be used effectively, the capacity of the battery can be improved, and the mixing amount of the conductive auxiliary agent can be reduced.
  • a lithium ion battery uses the above positive electrode material as a positive electrode, graphite as the negative electrode, and organic electrolyte as the electrolyte. Since such a lithium ion battery can improve capacity even with a small electrode area, the energy density of the battery can be made higher than that of a conventional lithium ion battery.
  • the aluminum porous body can also be used as an electrode material for a molten salt battery.
  • a metal compound capable of intercalating cations of a molten salt serving as an electrolyte such as sodium chromite (NaCrO 2 ) and titanium disulfide (TiS 2 ) as an active material Is used.
  • the active material is used in combination with a conductive additive and a binder.
  • a conductive assistant acetylene black or the like can be used.
  • PTFE polytetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • the aluminum porous body can also be used as a negative electrode material for a molten salt battery.
  • an aluminum porous body is used as a negative electrode material
  • sodium alone, an alloy of sodium and another metal, carbon, or the like can be used as an active material.
  • the melting point of sodium is about 98 ° C., and the metal softens as the temperature rises. Therefore, it is preferable to alloy sodium with other metals (Si, Sn, In, etc.). Of these, an alloy of sodium and Sn is particularly preferable because it is easy to handle.
  • Sodium or a sodium alloy can be supported on the surface of the porous aluminum body by a method such as electrolytic plating or hot dipping.
  • a metal (such as Si) that is alloyed with sodium is attached to the aluminum porous body by a method such as plating, a sodium alloy can be obtained by charging in a molten salt battery.
  • FIG. 6 is a schematic sectional view showing an example of a molten salt battery using the battery electrode material.
  • the molten salt battery includes a positive electrode 121 carrying a positive electrode active material on the surface of an aluminum skeleton part of an aluminum porous body, a negative electrode 122 carrying a negative electrode active material on the surface of the aluminum skeleton part of an aluminum porous body, and an electrolyte.
  • a separator 123 impregnated with molten salt is housed in a case 127. Between the upper surface of the case 127 and the negative electrode, a pressing member 126 including a pressing plate 124 and a spring 125 that presses the pressing plate is disposed.
  • the current collector (aluminum porous body) of the positive electrode 121 and the current collector (aluminum porous body) of the negative electrode 122 are connected to the positive electrode terminal 128 and the negative electrode terminal 129 by lead wires 130, respectively.
  • molten salt As the electrolyte, various inorganic salts or organic salts that melt at the operating temperature can be used.
  • alkali metals such as lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs), beryllium (Be), magnesium (Mg), calcium (Ca)
  • strontium (Sr) and barium (Ba) can be used.
  • the operating temperature of the battery can be made 90 ° C. or lower.
  • a separator is for preventing a positive electrode and a negative electrode from contacting, and a glass nonwoven fabric, a porous resin porous body, etc. can be used for it.
  • the above positive electrode, negative electrode, and separator impregnated with molten salt are stacked and housed in a case to be used as a battery.
  • the aluminum porous body can also be used as an electrode material for an electric double layer capacitor.
  • activated carbon or the like is used as an electrode active material.
  • Activated carbon is used in combination with a conductive aid and a binder.
  • conductive auxiliary agent graphite, carbon nanotube, etc. can be used.
  • binder polytetrafluoroethylene (PTFE), styrene butadiene rubber or the like can be used.
  • FIG. 7 is a schematic cross-sectional view showing an example of an electric double layer capacitor using the above electrode material for an electric double layer capacitor.
  • an electrode material in which an electrode active material is supported on a porous aluminum body is disposed as a polarizable electrode 141.
  • the electrode material 141 is connected to the lead wire 144, and the whole is housed in the case 145.
  • an aluminum porous body as a current collector, the surface area of the current collector is increased, and an electric double layer capacitor capable of high output and high capacity can be obtained even when activated carbon as an active material is thinly applied. .
  • a urethane foam having a thickness of 1 mm, a porosity of 95%, and a pore diameter of 300 ⁇ m was prepared as a porous resin body, and cut into 80 mm ⁇ 50 mm squares.
  • a conductive layer having carbon particles attached to the entire surface was formed.
  • the components of the suspension include graphite + carbon black 25%, and include a resin binder, a penetrating agent, and an antifoaming agent.
  • the particle size of carbon black was 0.5 ⁇ m.
  • the DC current having the current density shown in Table 1 is applied for 90 minutes in the case of 2 A / cm 2 (hereinafter referred to as “A / cm 2 ”), 30 minutes in the case of 6 ASD, and 10 minutes in the case of 15 ASD.
  • Aluminum was plated.
  • Stirring was performed with a stirrer using a Teflon (registered trademark) rotor.
  • the current density is a value calculated by the apparent area of the urethane foam.
  • the plating property inside the obtained aluminum porous body was evaluated.
  • the plating thickness inside the porous body is thin, and the case where the urethane foam was removed after peeling into two sheets was marked as x, and the inside of the porous body was plated and the sample did not peel off. It was.
  • a cross-sectional evaluation a sample cut from a cross section perpendicular to the extending direction of the surface portion and the skeleton was extracted from what was plated inside the porous body and the sample did not peel off, embedded in resin and polished Later, the cross section was observed.
  • FIG. 8 is a photograph obtained by observing, with a scanning electron microscope, an aluminum structure produced by performing aluminum plating at a phenanthroline concentration of 0.25 g / l, a current density of 6 ASD, and a plating temperature of 60 ° C. with respect to a sample in which an aluminum conductive layer is formed.
  • FIG. 9 is a photograph of an aluminum structure produced by performing aluminum plating on a sample in which an aluminum conductive layer is formed at a phenanthroline concentration of 5 g / l, a current density of 6 ASD, and a plating temperature of 60 ° C., as observed with a scanning electron microscope.
  • the phenanthroline concentration is high, the surface of the aluminum plating is smooth, but in FIG. 8 where the phenanthroline concentration is low, it can be seen that the plating surface is uneven.
  • the present invention it is possible to obtain a structure in which the surface of a resin molded body is plated with aluminum, and an aluminum structure from which the resin molded body is removed.
  • the present invention can be widely applied to the case where the characteristics of aluminum are utilized in electric materials, filters for various types of filtration, catalyst carriers, and the like.

Abstract

The purpose of the present invention is to enable the aluminum plating of the surface of an article even when the article is a porous resin molding having a three-dimensional network structure, and to form a plating film having a uniform thickness, thereby forming an aluminum structure having high purity. A process for producing an aluminum structure, comprising a step of plating a resin porous article which has a three-dimensional network structure and of which at least the surface is rendered electrically conductive with aluminum in a bath of a molten salt, wherein the molten salt is a mixed salt of aluminum chloride and an organic salt and the plating is carried out while setting the temperature of the bath of the molten salt at a temperature falling within the range from 45 to 100˚C inclusive. It is preferred that the bath of the molten salt additionally contains 1,10-phenanthroline at a concentration of 0.25 to 7 g/l inclusive.

Description

アルミニウム構造体の製造方法およびアルミニウム構造体Aluminum structure manufacturing method and aluminum structure
 本発明は、アルミニウムめっきにより樹脂表面にアルミニウム構造体を形成する方法に関し、特に各種フィルタや電池用電極などの用途で金属多孔体として好適に用いることができるアルミニウム構造体とその製造方法に関する。 The present invention relates to a method of forming an aluminum structure on a resin surface by aluminum plating, and particularly to an aluminum structure that can be suitably used as a porous metal body in applications such as various filters and battery electrodes, and a method for producing the same.
 三次元網目構造を有する金属多孔体は、各種フィルタ、触媒担体、電池用電極など多方面に用いられている。例えばニッケルからなるセルメット(住友電気工業(株)製:登録商標)がニッケル水素電池やニッケルカドミウム電池等の電池の電極材料として使用されている。セルメットは連通気孔を有する金属多孔体であり、金属不織布など他の多孔体に比べて気孔率が高い(90%以上)という特徴がある。これは発泡ウレタン等の連通気孔を有する多孔体樹脂の骨格表面にニッケル層を形成した後、熱処理して発泡樹脂成形体を分解し、さらにニッケルを還元処理することで得られる。ニッケル層の形成は、発泡樹脂成形体の骨格表面にカーボン粉末等を塗布して導電化処理した後、電気めっきによってニッケルを析出させることで行われる。 Metal porous bodies having a three-dimensional network structure are used in various fields such as various filters, catalyst carriers, and battery electrodes. For example, cermet made of nickel (manufactured by Sumitomo Electric Industries, Ltd .: registered trademark) is used as an electrode material for batteries such as nickel metal hydride batteries and nickel cadmium batteries. Celmet is a metal porous body having continuous air holes, and has a feature of high porosity (90% or more) compared to other porous bodies such as a metal nonwoven fabric. This can be obtained by forming a nickel layer on the surface of the porous resin skeleton having continuous air holes such as urethane foam, then heat-treating it to decompose the foamed resin molding, and further reducing the nickel. Formation of the nickel layer is performed by depositing nickel by electroplating after applying a carbon powder or the like to the surface of the skeleton of the foamed resin molded body and conducting a conductive treatment.
 アルミニウムは導電性、耐腐食性、軽量などの優れた特徴がある。電池用途では例えば、リチウムイオン電池の正極として、アルミニウム箔の表面にコバルト酸リチウム等の活物質を塗布したものが使用されている。正極の容量を向上するためには、アルミニウムを多孔体にして表面積を大きくし、アルミニウム内部にも活物質を充填することが考えられる。そうすると電極を厚くしても活物質を利用でき、単位面積当たりの活物質利用率が向上するからである。 Aluminum has excellent characteristics such as conductivity, corrosion resistance, and light weight. In battery applications, for example, a positive electrode of a lithium ion battery in which an active material such as lithium cobaltate is applied to the surface of an aluminum foil is used. In order to improve the capacity of the positive electrode, it can be considered that aluminum is made porous to increase the surface area, and the active material is also filled inside the aluminum. This is because the active material can be used even if the electrode is thickened, and the active material utilization rate per unit area is improved.
 アルミニウム多孔体の製造方法として、特許文献1には、内部連通空間を有する三次元網状のプラスチック基体にアークイオンプレーティング法によりアルミニウムの蒸着処理を施して、2~20μmの金属アルミニウム層を形成する方法が記載されている。また、特許文献2には、三次元網目状構造を有する発泡樹脂成形体の骨格にアルミニウムの融点以下で共晶合金を形成する金属(銅等)による皮膜を形成した後、アルミニウムペーストを塗布し、非酸化性雰囲気下で550℃以上750℃以下の温度で熱処理をすることで有機成分(発泡樹脂)の消失及びアルミニウム粉末の焼結を行い、金属多孔体を得る方法が記載されている。 As a method for producing a porous aluminum body, Patent Document 1 discloses that a metal aluminum layer having a thickness of 2 to 20 μm is formed by subjecting a three-dimensional net-like plastic substrate having an internal communication space to aluminum vapor deposition by an arc ion plating method. A method is described. In Patent Document 2, a film made of a metal (such as copper) that forms a eutectic alloy below the melting point of aluminum is formed on the skeleton of a foamed resin molding having a three-dimensional network structure, and then an aluminum paste is applied. In addition, a method is described in which a metal porous body is obtained by performing heat treatment at a temperature of 550 ° C. or higher and 750 ° C. or lower in a non-oxidizing atmosphere to eliminate organic components (foamed resin) and sinter aluminum powder.
 一方、アルミニウムのめっきは、アルミニウムの酸素に対する親和力が大きく、電位が水素より低いために水溶液系のめっき浴で電気めっきを行うことが困難である。このため、従来よりアルミニウムの電気めっきは非水溶液系のめっき浴で検討が行われている。例えば、金属の表面の酸化防止などの目的でアルミニウムをめっきする技術として、特許文献3にはオニウムハロゲン化物とアルミニウムハロゲン化物とを混合溶融した低融点組成物をめっき浴として用い、浴中の水分量を2wt%以下に維持しながら陰極にアルミニウムを析出させることを特徴とする電気アルミニウムめっき方法が開示されている。 On the other hand, aluminum plating is difficult to perform electroplating in an aqueous plating bath because aluminum has a high affinity for oxygen and has a lower potential than hydrogen. For this reason, conventionally, electroplating of aluminum has been studied using a non-aqueous plating bath. For example, as a technique for plating aluminum for the purpose of preventing oxidation of the surface of a metal, Patent Document 3 uses a low melting point composition in which onium halide and aluminum halide are mixed and melted as a plating bath. An electrolytic aluminum plating method is disclosed, in which aluminum is deposited on the cathode while maintaining the amount at 2 wt% or less.
特許第3413662号公報Japanese Patent No. 3413662 特開平8-170126号公報JP-A-8-170126 特許第3202072号公報Japanese Patent No. 3202072
 上記特許文献1の方法によれば、2~20μmの厚さのアルミニウム多孔体が得られるとされているが、気相法によるため大面積での製造は困難であり、基体の厚さや気孔率によっては内部まで均一な層の形成が難しい。またアルミニウム層の形成速度が遅い、設備が高価などにより製造コストが増大するなどの問題点がある。さらに、厚膜を形成する場合には、膜に亀裂が生じたりアルミニウムの脱落が生じるおそれがある。特許文献2の方法によればアルミニウムと共晶合金を形成する層が出来てしまい、純度の高いアルミニウム層が形成できない。一方、アルミニウムの電気めっき方法自体は知られているものの、金属表面へのめっきが可能であるのみで、樹脂成形体表面への電気めっき、とりわけ三次元網目構造を有する多孔質樹脂成形体の表面に電気めっきする方法は知られていなかった。これには、めっき浴中における多孔質樹脂の溶解などの問題が影響していると考えられる。 According to the method of Patent Document 1, an aluminum porous body having a thickness of 2 to 20 μm is obtained. However, since it is based on a gas phase method, it is difficult to produce a large area, and the thickness and porosity of the substrate are difficult. In some cases, it is difficult to form a uniform layer up to the inside. In addition, there are problems such as a slow formation rate of the aluminum layer and an increase in manufacturing cost due to expensive equipment. Furthermore, when a thick film is formed, there is a possibility that the film may crack or aluminum may fall off. According to the method of Patent Document 2, a layer that forms a eutectic alloy with aluminum is formed, and a high-purity aluminum layer cannot be formed. On the other hand, although the electroplating method of aluminum itself is known, it is only possible to plate on the metal surface, and electroplating on the surface of the resin molded body, especially the surface of the porous resin molded body having a three-dimensional network structure. The method of electroplating was not known. This is considered to be affected by problems such as dissolution of the porous resin in the plating bath.
 そこで本発明は、三次元網目構造を有する多孔質樹脂成形体であっても、その表面へのアルミニウムのめっきを可能とし、厚膜を均一に形成することで純度の高いアルミニウム構造体を形成することが可能な方法、および特に大面積のアルミニウム多孔体を得ることが可能な方法を提供することを目的とする。 Therefore, the present invention enables the plating of aluminum on the surface of a porous resin molded body having a three-dimensional network structure, and forms a high-purity aluminum structure by forming a thick film uniformly. It is an object of the present invention to provide a method capable of obtaining a porous aluminum body having a large area.
 上記課題解決のため、本願発明者らは、ポリウレタンやメラミン樹脂などの三次元網目構造を有する樹脂成形体の表面にアルミニウムを電気めっきする方法に想到した。すなわち本発明は、少なくとも表面が導電化された、三次元網目構造を有する樹脂成形体に、アルミニウムを溶融塩浴中でめっきするアルミニウム構造体の製造方法であって、前記溶融塩は塩化アルミニウムと有機塩との混合塩であり、前記溶融塩浴の温度を45℃以上100℃以下としてめっきする、アルミニウム構造体の製造方法である(請求項1)。 In order to solve the above problems, the present inventors have come up with a method of electroplating aluminum on the surface of a resin molded body having a three-dimensional network structure such as polyurethane or melamine resin. That is, the present invention is a method for producing an aluminum structure in which aluminum is plated in a molten salt bath on a resin molded body having a three-dimensional network structure with at least a surface conductive. A method for producing an aluminum structure, which is a mixed salt with an organic salt and is plated at a temperature of the molten salt bath of 45 ° C. to 100 ° C. (Claim 1).
 本発明者らは、三次元網目構造を有する樹脂成型体の表面にアルミニウムをめっきする方法として、有機塩と塩化アルミニウムとの混合塩である溶融塩浴中でアルミニウムをめっきする方法が有効であることを見いだした。イミダゾリウム塩などの有機塩と塩化アルミニウムとの混合塩は常温で液体となるため、めっき浴の温度は室温付近の温度とするのが一般的である。しかし常温付近の温度では溶融塩の粘度が高く、三次元網目構造を有する樹脂成形体のような複雑な骨格構造を持つものでは、めっきの条件によっては良好なめっきができない場合がある。特に大面積のアルミニウム多孔体を製造する際には電流密度を上げる必要があるが、溶融塩の粘度が低いとめっき可能な電流密度範囲が狭くなる。溶融塩浴の温度を45℃以上100℃以下とすると溶融塩浴の粘度を下げることができ、三次元網目構造を有する樹脂成形体(多孔体)の内部にも溶融塩を充分に行き渡らせることができる。そのため多孔体の表面部と内部とのめっき厚の差が小さい均一なめっきが可能になる。また均一な厚みのめっきを形成できることで、アルミニウム層の強度が強くなり、樹脂成形体を除去した後も骨格構造の破断が少ないアルミニウム構造体を得ることができる。 As a method of plating aluminum on the surface of a resin molded body having a three-dimensional network structure, the present inventors are effective in plating aluminum in a molten salt bath that is a mixed salt of an organic salt and aluminum chloride. I found out. Since a mixed salt of an organic salt such as an imidazolium salt and aluminum chloride becomes liquid at room temperature, the temperature of the plating bath is generally set to a temperature near room temperature. However, when the molten salt has a high viscosity at a temperature near room temperature and has a complicated skeleton structure such as a resin molded body having a three-dimensional network structure, good plating may not be possible depending on the plating conditions. In particular, when producing a porous aluminum body having a large area, it is necessary to increase the current density. However, when the viscosity of the molten salt is low, the current density range that can be plated becomes narrow. When the temperature of the molten salt bath is 45 ° C. or higher and 100 ° C. or lower, the viscosity of the molten salt bath can be lowered, and the molten salt can be sufficiently distributed even inside the resin molded body (porous body) having a three-dimensional network structure. Can do. Therefore, uniform plating with a small difference in plating thickness between the surface portion and the inside of the porous body becomes possible. Moreover, since the plating with a uniform thickness can be formed, the strength of the aluminum layer is increased, and an aluminum structure with little breakage of the skeleton structure can be obtained even after the resin molded body is removed.
 前記溶融塩中に、さらに1,10-フェナントロリンを0.25g/l以上7g/l以下の濃度で含有すると、めっき表面の平滑性が向上して好ましい(請求項2)。溶融塩浴の温度を一定の範囲として粘度を下げた上で1,10-フェナントロリンを添加することで、両者の相乗効果によって、骨格表面のめっきが粒状(凹凸が大きく表面観察で粒のように見える)から平坦な形状に改善されることにより、厚さが薄く細い骨格でも強固になり折れにくいアルミニウム構造体を得ることができる。 When the molten salt further contains 1,10-phenanthroline at a concentration of 0.25 g / l or more and 7 g / l or less, the smoothness of the plating surface is improved (Claim 2). By adding 1,10-phenanthroline after lowering the viscosity of the molten salt bath within a certain range and adding a synergistic effect, the surface of the skeletal surface becomes grainy (the surface has large irregularities and looks like grains in the surface observation). It is possible to obtain an aluminum structure that is strong even in a thin skeleton and is not easily broken.
 前記有機塩は窒素を含有した溶融塩が好ましく、中でもイミダゾリウム塩が好ましく用いられる(請求項3)。 The organic salt is preferably a molten salt containing nitrogen, and among them, an imidazolium salt is preferably used (Claim 3).
 イミダゾリウム塩と塩化アルミニウムとの混合塩は、比較的低い温度で溶融し、また導電率が高いため溶融塩浴として好ましい。イミダゾリウム塩として、1,3位にアルキル基を持つイミダゾリウムカチオンを含む塩が好ましく用いられ、特に1-エチル-3-メチルイミダゾリウムクロライドと塩化アルミニウムとの混合塩(AlCl-EMIC)は安定性が高く分解し難いことから最も好ましく用いられる。なお、イミダゾリウム塩浴は水分と酸素の存在を嫌うため、密閉環境下においてアルゴンや窒素など不活性ガス雰囲気でのめっきを行うと良い。 A mixed salt of an imidazolium salt and aluminum chloride is preferable as a molten salt bath because it melts at a relatively low temperature and has high conductivity. As the imidazolium salt, a salt containing an imidazolium cation having an alkyl group at the 1,3-position is preferably used. Particularly, a mixed salt of 1-ethyl-3-methylimidazolium chloride and aluminum chloride (AlCl 3 -EMIC) is used. It is most preferably used because it is highly stable and hardly decomposes. In addition, since the imidazolium salt bath does not like the presence of moisture and oxygen, it is preferable to perform plating in an inert gas atmosphere such as argon or nitrogen in a sealed environment.
 発泡ウレタン及び発泡メラミンは気孔率が高く、また気孔の連通性があるとともに熱分解性にも優れているため樹脂多孔体として好ましく使用できる(請求項4)。発泡ウレタンは気孔の均一性や入手の容易さ等の点で好ましく、発泡メラミンは気孔径の小さなものが得られる点で好ましい。 Urethane foam and foamed melamine can be preferably used as a porous resin body because they have high porosity, have pore connectivity and are excellent in thermal decomposability (Claim 4). Foamed urethane is preferred in terms of pore uniformity and availability, and foamed melamine is preferred in that a product having a small pore diameter can be obtained.
 樹脂多孔体表面の導電化の手法は既知の方法を含めて選択可能である。無電解めっきや気相法によるアルミニウム、ニッケル等の金属層の形成や、導電性塗料による金属やカーボン層の形成が可能である。気相法によるアルミニウム層の形成やカーボンによる導電化は、めっき後のアルミニウム構造体にアルミニウム以外の金属を混入することなくできることから、金属として実質的にアルミニウムのみからなる構造体を製造することが可能となる。 The method of conducting the resin porous body surface can be selected including known methods. It is possible to form a metal layer such as aluminum or nickel by electroless plating or vapor phase method, or to form a metal or carbon layer by conductive paint. The formation of an aluminum layer by vapor phase method and the electrical conductivity by carbon can be performed without mixing a metal other than aluminum into the aluminum structure after plating. Therefore, it is possible to produce a structure made of substantially only aluminum as a metal. It becomes possible.
 以上の工程により、金属層を表面に備えた樹脂成形体を有するアルミニウム構造体が得られる。各種フィルタや触媒担体などの用途によっては、このまま樹脂と金属の複合体として使用しても良いし、また使用環境の制約などから樹脂が無い金属構造体として用いる場合には樹脂を除去しても良い(請求項5)。 Through the above steps, an aluminum structure having a resin molded body having a metal layer on the surface is obtained. Depending on applications such as various filters and catalyst carriers, it may be used as a composite of resin and metal as it is, or when used as a metal structure without resin due to restrictions on the usage environment, the resin may be removed. Good (claim 5).
 以上の、折れにくい、めっき厚が内外で均一という2つの特徴により、完成したアルミニウム多孔体をプレスする場合などに、骨格全体が折れにくく均等にプレスされた多孔体を得ることができる。アルミニウム多孔体を電池等の電極材料として用いる場合に、電極に電極活物質を充填してプレスにより密度を上げることが行われ、活物質の充填工程やプレス時に骨格が折れやすいため、このような用途では極めて有効である。 Due to the above-described two characteristics that are difficult to break and the plating thickness is uniform inside and outside, when the finished aluminum porous body is pressed, it is possible to obtain a porous body in which the entire skeleton is hardly broken and is uniformly pressed. When an aluminum porous body is used as an electrode material for a battery or the like, the electrode is filled with an electrode active material and the density is increased by pressing, and the skeleton easily breaks during the active material filling process or pressing. It is extremely effective in applications.
 本発明によれば、特に三次元網目構造を有する多孔質樹脂成形体に対して表面へのアルミニウムのめっきが可能となり、ほぼ均一な厚膜で純度の高い、また大面積のアルミニウム構造体を形成することが可能な方法、およびアルミニウム構造体を提供することができる。 According to the present invention, it is possible to plate aluminum on the surface of a porous resin molded body having a three-dimensional network structure in particular, and form an aluminum structure having a high purity and a large area with a substantially uniform thick film. And an aluminum structure can be provided.
本発明によるアルミニウム構造体の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of the aluminum structure by this invention. 本発明によるアルミニウム構造体の製造工程を説明する断面模式図である。It is a cross-sectional schematic diagram explaining the manufacturing process of the aluminum structure by this invention. 多孔質樹脂成形体の一例としての発泡ウレタン樹脂の構造を示す表面拡大写真である。It is a surface enlarged photograph which shows the structure of the urethane foam resin as an example of a porous resin molding. 導電性塗料による樹脂成形体表面の連続導電化工程の一例を説明する図である。It is a figure explaining an example of the continuous electroconductivity process of the resin molding body surface with an electroconductive coating material. 溶融塩めっきによるアルミニウム連続めっき工程の一例を説明する図である。It is a figure explaining an example of the aluminum continuous plating process by molten salt plating. アルミニウム多孔体を溶融塩電池に適用した構造例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structural example which applied the aluminum porous body to the molten salt battery. アルミニウム多孔体を電気二重層コンデンサに適用した構造例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structural example which applied the aluminum porous body to the electrical double layer capacitor. 実施例にかかるアルミニウム構造体の表面拡大写真である。It is the surface enlarged photograph of the aluminum structure concerning an Example. 実施例にかかるアルミニウム構造体の表面拡大写真である。It is the surface enlarged photograph of the aluminum structure concerning an Example.
 以下、本発明の実施の形態をアルミニウム多孔体を製造するプロセスを代表例として適宜図を参照して説明する。以下で参照する図面で同じ番号が付されている部分は同一またはそれに相当する部分である。なお、本発明はこれに限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings as an example of a process for producing a porous aluminum body as a representative example. In the drawings to be referred to below, the same reference numerals are the same or corresponding parts. In addition, this invention is not limited to this, It is shown by the claim, and it is intended that all the changes within the meaning and range equivalent to a claim are included.
(アルミニウム構造体の製造工程)
 図1は、本発明によるアルミニウム構造体の製造工程を示すフロー図である。また図2は、フロー図に対応して樹脂多孔体を芯材としてアルミニウム構造体を形成する様子を模式的に示したものである。両図を参照して製造工程全体の流れを説明する。まず基体樹脂成形体の準備101を行う。図2(a)は、基体樹脂成形体の例として、三次元網目構造を有する樹脂多孔体(発泡樹脂成形体)の表面を拡大視した拡大模式図である。発泡樹脂成形体1を骨格として気孔が形成されている。次に樹脂成形体表面の導電化102を行う。この工程により、図2(b)に示すように発泡樹脂成形体1の表面には薄く導電体による導電層2が形成される。続いて溶融塩中でのアルミニウムめっき103を行い、導電層が形成された樹脂成形体の表面にアルミニウムめっき層3を形成する(図2(c))。これで、樹脂成形体を基材として表面にアルミニウムめっき層3が形成されたアルミニウム構造体が得られる。さらに、基体樹脂成形体の除去104を行っても良い。発泡樹脂成形体1を分解等して消失させることにより金属層のみが残ったアルミニウム構造体(多孔体)を得ることができる(図2(d))。以下各工程について順を追って説明する。
(Aluminum structure manufacturing process)
FIG. 1 is a flow diagram showing a manufacturing process of an aluminum structure according to the present invention. FIG. 2 schematically shows a state in which an aluminum structure is formed using a porous resin body as a core material corresponding to the flow diagram. The flow of the entire manufacturing process will be described with reference to both drawings. First, preparation 101 of the base resin molded body is performed. FIG. 2A is an enlarged schematic view in which the surface of a porous resin body (foamed resin molded body) having a three-dimensional network structure is enlarged as an example of the base resin molded body. The pores are formed with the foamed resin molded body 1 as a skeleton. Next, the surface 102 of the resin molded body is made conductive. Through this step, a thin conductive layer 2 made of a conductive material is formed on the surface of the foamed resin molded body 1 as shown in FIG. Subsequently, aluminum plating 103 in molten salt is performed to form an aluminum plating layer 3 on the surface of the resin molded body on which the conductive layer is formed (FIG. 2C). Thus, an aluminum structure in which the aluminum plating layer 3 is formed on the surface using the resin molded body as a base material is obtained. Further, the removal 104 of the base resin molded body may be performed. An aluminum structure (porous body) in which only the metal layer remains can be obtained by disassembling and disappearing the foamed resin molded body 1 (FIG. 2D). Hereinafter, each step will be described in order.
(樹脂多孔体の準備)
 三次元網目構造を有する樹脂多孔体を準備する。樹脂多孔体の素材は任意の樹脂を選択できる。ポリウレタン、メラミン樹脂、ポリプロピレン、ポリエチレン等の発泡樹脂成形体が素材として例示できる。連続した気孔(連通気孔)を有するものであれば任意の形状の樹脂多孔体を選択できる。例えば繊維状の樹脂を絡めて不織布のような形状を有するものも樹脂多孔体として使用可能である。樹脂多孔体の気孔率は80%~98%、気孔径は50μm~500μmとするのが好ましい。発泡ウレタン及び発泡メラミンは気孔率が高く、また気孔の連通性があるとともに熱分解性にも優れているため樹脂多孔体として好ましく使用できる。発泡ウレタン(ウレタン発泡体)は気孔の均一性や入手の容易さ等の点で好ましく、発泡メラミンは気孔径の小さなものが得られる点で好ましい。
(Preparation of porous resin)
A resin porous body having a three-dimensional network structure is prepared. Arbitrary resin can be selected as the material of the resin porous body. Examples of the material include foamed resin moldings such as polyurethane, melamine resin, polypropylene, and polyethylene. A resin porous body having an arbitrary shape can be selected as long as it has continuous pores (continuous vent holes). For example, what has a shape like a nonwoven fabric entangled with a fibrous resin can be used as the porous resin body. The porous resin body preferably has a porosity of 80% to 98% and a pore diameter of 50 μm to 500 μm. Foamed urethane and foamed melamine can be preferably used as a porous resin body because they have high porosity, have pore connectivity and are excellent in thermal decomposability. Urethane foam (urethane foam) is preferable in terms of pore uniformity and availability, and foamed melamine is preferable in that a product having a small pore diameter is obtained.
 樹脂多孔体には発泡体製造過程での製泡剤や未反応モノマーなどの残留物があることが多く、洗浄処理を行うことが後の工程のために好ましい。樹脂多孔体の例として、発泡ウレタンを前処理として洗浄処理したものを図3に示す。樹脂成形体が骨格として三次元的に網目を構成することで、全体として連続した気孔を構成している。発泡ウレタンの骨格はその延在方向に垂直な断面において略三角形状をなしている。ここで気孔率は、次式で定義される。
 気孔率=(1-(多孔質材の重量[g]/(多孔質材の体積[cm]×素材密度)))×100[%]
 また、気孔径は、樹脂成形体表面を顕微鏡写真等で拡大し、1インチ(25.4mm)あたりの気孔数をセル数として計数して、平均孔径=25.4mm/セル数として平均的な値を求める。
The resin porous body often has residues such as foaming agents and unreacted monomers in the foam production process, and it is preferable to perform a washing treatment for the subsequent steps. FIG. 3 shows an example of the porous resin body, which is obtained by washing urethane foam as a pretreatment. The resin molded body forms a three-dimensional network as a skeleton, thereby forming continuous pores as a whole. The urethane skeleton has a substantially triangular shape in a cross section perpendicular to the extending direction. Here, the porosity is defined by the following equation.
Porosity = (1− (weight of porous material [g] / (volume of porous material [cm 3 ] × material density))) × 100 [%]
The pore diameter is an average of the average pore diameter = 25.4 mm / cell count by enlarging the surface of the resin molded body with a micrograph and counting the number of pores per inch (25.4 mm) as the number of cells. Find the value.
(樹脂多孔体表面の導電化:カーボン塗布)
 導電性塗料としてのカーボン塗料を準備する。導電性塗料としての懸濁液は、好ましくは、カーボン粒子、粘結剤、分散剤および分散媒を含む。導電性粒子の塗布を均一に行うには、懸濁液が均一な懸濁状態を維持している必要がある。このため、懸濁液は、20℃~40℃に維持されていることが好ましい。その理由は、懸濁液の温度が20℃未満になった場合、均一な懸濁状態が崩れ、樹脂多孔体の網状構造をなす骨格の表面に粘結剤のみが集中して層を形成するからである。この場合、塗布されたカーボン粒子の層は剥離し易く、強固に密着した金属めっきを形成し難い。一方、懸濁液の温度が40℃を越えた場合は、分散剤の蒸発量が大きく、塗布処理時間の経過とともに懸濁液が濃縮されてカーボンの塗布量が変動しやすい。また、カーボン粒子の粒径は、0.01~5μmで、好ましくは0.01~0.5μmである。粒径が大きいと樹脂多孔体の空孔を詰まらせたり、平滑なめっきを阻害する要因となり、小さすぎると十分な導電性を確保することが難しくなる。
(Conductivity of porous resin surface: Carbon coating)
Prepare carbon paint as conductive paint. The suspension as the conductive paint preferably contains carbon particles, a binder, a dispersant and a dispersion medium. In order to uniformly apply the conductive particles, the suspension needs to maintain a uniform suspension state. For this reason, the suspension is preferably maintained at 20 ° C. to 40 ° C. The reason is that when the temperature of the suspension is less than 20 ° C., the uniform suspension state is lost, and only the binder is concentrated on the surface of the skeleton forming the network structure of the porous resin body to form a layer. Because. In this case, the applied carbon particle layer is easy to peel off, and it is difficult to form a metal plating that is firmly adhered. On the other hand, when the temperature of the suspension exceeds 40 ° C., the amount of evaporation of the dispersant is large, and the suspension is concentrated as the coating treatment time elapses, and the amount of carbon applied tends to fluctuate. The particle size of the carbon particles is 0.01 to 5 μm, preferably 0.01 to 0.5 μm. If the particle size is large, the pores of the porous resin body may be clogged or smooth plating may be hindered. If the particle size is too small, it is difficult to ensure sufficient conductivity.
 樹脂多孔体へのカーボン粒子の塗布は、上記懸濁液に対象となる樹脂多孔体を浸漬し、絞りと乾燥を行うことで可能である。図4は実用上の製造工程の一例として、骨格となる帯状の樹脂多孔体を導電化する処理装置の構成例を模式的に示す図である。図示の如くこの装置は、帯状樹脂11を供給するサプライボビン12と、導電性塗料の懸濁液14を収容した槽15と、槽15の上方に配置された1対の絞りロール17と、走行する帯状樹脂11の後方に対向して設けられた複数の熱風ノズル16と、処理後の帯状樹脂11を巻き取る巻取りボビン18とを備えている。また、帯状樹脂11を案内するためのデフレクタロール13が適宜配置されている。以上のように構成された装置において、三次元網状構造を有する帯状樹脂1は、サプライボビン12から巻き戻され、デフレクタロール13により案内されて、槽15内の懸濁液内に浸漬される。槽15内で懸濁液14に浸漬された帯状樹脂11は、上方に向きを変え、懸濁液14の液面上方の絞りロール17の間を走行する。このとき、絞りロール17の間隔は、帯状樹脂11の厚さよりも小さくなっており、帯状樹脂11は圧縮される。従って、帯状樹脂11に含浸された過剰な懸濁液は、絞り出されて槽15内に戻る。 Application of the carbon particles to the resin porous body is possible by immersing the target resin porous body in the suspension, and performing squeezing and drying. FIG. 4 is a diagram schematically showing a configuration example of a processing apparatus that conducts a band-shaped resin porous body serving as a skeleton as an example of a practical manufacturing process. As shown in the figure, this apparatus includes a supply bobbin 12 for supplying a belt-shaped resin 11, a tank 15 containing a conductive paint suspension 14, a pair of squeezing rolls 17 disposed above the tank 15, A plurality of hot air nozzles 16 provided opposite to the back of the belt-like resin 11 to be wound, and a winding bobbin 18 for winding up the belt-like resin 11 after processing. Further, a deflector roll 13 for guiding the belt-shaped resin 11 is appropriately disposed. In the apparatus configured as described above, the strip-shaped resin 1 having a three-dimensional network structure is unwound from the supply bobbin 12, guided by the deflector roll 13, and immersed in the suspension in the tank 15. The strip-shaped resin 11 immersed in the suspension 14 in the tank 15 changes its direction upward and travels between the squeeze rolls 17 above the liquid level of the suspension 14. At this time, the distance between the squeezing rolls 17 is smaller than the thickness of the belt-shaped resin 11, and the belt-shaped resin 11 is compressed. Therefore, the excess suspension impregnated in the belt-shaped resin 11 is squeezed out and returned to the tank 15.
 続いて、帯状樹脂11は、再び走行方向を変える。ここで、複数のノズルから構成された熱風ノズル16が噴射する熱風により懸濁液の分散媒等が除去され、充分に乾燥された上で帯状樹脂11は巻取りボビン18に巻き取られる。尚、熱風ノズル16の噴出する熱風の温度は40℃から80℃の範囲であることが好ましい。以上のような装置を用いると、自動的かつ連続的に導電化処理を実施することができ、目詰まりのない網目構造を有し、且つ、均一な導電層を具備した骨格が形成されるので、次工程の金属めっきを円滑に行うことができる。 Subsequently, the strip-shaped resin 11 changes the traveling direction again. Here, the suspension dispersion medium and the like are removed by hot air jetted by the hot air nozzle 16 composed of a plurality of nozzles, and the belt-like resin 11 is wound around the winding bobbin 18 after sufficiently drying. The temperature of the hot air ejected from the hot air nozzle 16 is preferably in the range of 40 ° C to 80 ° C. When the apparatus as described above is used, the conductive treatment can be carried out automatically and continuously, and a skeleton having a network structure without clogging and having a uniform conductive layer is formed. The metal plating in the next process can be performed smoothly.
(アルミニウム層の形成:溶融塩めっき)
 次に溶融塩中で電解めっきを行い、樹脂多孔体表面にアルミニウムめっき層を形成する。表面が導電化された樹脂多孔体を陰極、純度99.99%のアルミニウム板を陽極として溶融塩中で直流電流を印加する。溶融塩としては、塩化アルミニウムと有機塩との混合塩(共晶塩)を使用する。比較的低温で溶融する有機溶融塩浴を使用すると、基材である樹脂多孔体を分解することなくめっきができ好ましい。有機塩としてはイミダゾリウム塩、ピリジニウム塩等が使用できる。なかでも1-エチル-3-メチルイミダゾリウムクロライド(EMIC)、ブチルピリジニウムクロライド(BPC)が好ましい。
(Formation of aluminum layer: Molten salt plating)
Next, electrolytic plating is performed in a molten salt to form an aluminum plating layer on the surface of the porous resin body. A direct current is applied in a molten salt using a porous resin body having a conductive surface as a cathode and an aluminum plate having a purity of 99.99% as an anode. As the molten salt, a mixed salt (eutectic salt) of aluminum chloride and an organic salt is used. Use of an organic molten salt bath that melts at a relatively low temperature is preferable because plating can be performed without decomposing the porous resin body as a base material. As the organic salt, imidazolium salt, pyridinium salt and the like can be used. Of these, 1-ethyl-3-methylimidazolium chloride (EMIC) and butylpyridinium chloride (BPC) are preferable.
 溶融塩の粘度を下げるため、溶融塩浴の温度は45℃以上100℃以下とする。温度が45℃よりも低い場合は粘度を充分に低くすることができない。また温度が100℃よりも高い場合は有機塩が分解する可能性がある。さらに好ましい温度は50℃以上80℃以下である。溶融塩中に水分や酸素が混入すると溶融塩が劣化するため、めっきは窒素、アルゴン等の不活性ガス雰囲気下で、かつ密閉した環境下で行うことが好ましい。 In order to lower the viscosity of the molten salt, the temperature of the molten salt bath is set to 45 ° C. or higher and 100 ° C. or lower. When the temperature is lower than 45 ° C., the viscosity cannot be lowered sufficiently. Moreover, when temperature is higher than 100 degreeC, an organic salt may decompose | disassemble. A more preferable temperature is 50 ° C. or higher and 80 ° C. or lower. Since the molten salt deteriorates when moisture or oxygen is mixed in the molten salt, the plating is preferably performed in an atmosphere of an inert gas such as nitrogen or argon and in a sealed environment.
 溶融塩浴に1,10-フェナントロリンを添加すると表面が平滑となり好ましい。1,10-フェナントロリンの添加量は0.25g/l以上7g/l以下が好ましい。添加量が0.25g/lより少ないと表面を平滑とする効果が得られ難い。1,10-フェナントロリンの添加量が多くなるほど表面を平滑にする効果が高くなるが、7g/lよりも多くしても効果はあまり変わらない。さらに好ましい添加量の範囲は2.5g/l以上5g/l以下である。 It is preferable to add 1,10-phenanthroline to the molten salt bath to make the surface smooth. The amount of 1,10-phenanthroline added is preferably 0.25 g / l or more and 7 g / l or less. When the addition amount is less than 0.25 g / l, it is difficult to obtain the effect of smoothing the surface. The effect of smoothing the surface increases as the amount of 1,10-phenanthroline added increases, but the effect does not change much even if the amount is increased to more than 7 g / l. A more preferable range of the addition amount is 2.5 g / l or more and 5 g / l or less.
 有機溶媒等を溶融塩浴に添加して粘度を下げる方法では有機溶剤の揮発を防ぐための設備や有機溶剤による引火を防ぐための安全設備が必要となるが、本発明では温度を一定の範囲として溶融塩浴の粘度を低下させるため、簡便な設備でのめっきが可能となる。また1,10-フェナントロリンも45℃~100℃の範囲では揮発しないため、同様の効果がある。 The method of reducing the viscosity by adding an organic solvent or the like to the molten salt bath requires equipment for preventing volatilization of the organic solvent and safety equipment for preventing ignition by the organic solvent. In the present invention, the temperature is kept within a certain range. Since the viscosity of the molten salt bath is reduced, plating with simple equipment becomes possible. Further, 1,10-phenanthroline does not volatilize in the range of 45 ° C. to 100 ° C., and thus has the same effect.
 図5は前述の帯状樹脂に対して金属メッキ処理を連続的に行うための装置の構成を模式的に示す図である。表面が導電化された帯状樹脂22が、図の左から右に送られる構成を示す。第1のめっき槽21aは、円筒状電極24と容器内壁に設けられた陽極25およびめっき浴23から構成される。帯状樹脂22は円筒状電極24に沿ってめっき浴23の中を通過することにより、樹脂多孔体全体に均一に電流が流れやすく、均一なめっきを得ることが出来る。第2のめっき槽21bは、さらにめっきを厚く均一に付けるための槽であり複数の槽で繰り返しめっきされるように構成されている。表面が導電化された帯状樹脂22を送りローラと槽外給電陰極を兼ねた電極ローラ26により順次送りながら、めっき浴28に通過させることでめっきを行う。複数の槽内には樹脂多孔体の両面の対向面にめっき浴28を介して設けられた陽極27があり、樹脂多孔体の両面により均一なめっきを付けることができる。 FIG. 5 is a diagram schematically showing the configuration of an apparatus for continuously performing metal plating on the above-described belt-shaped resin. A configuration in which the belt-like resin 22 whose surface is made conductive is sent from the left to the right in the figure. The first plating tank 21a includes a cylindrical electrode 24, an anode 25 provided on the inner wall of the container, and a plating bath 23. By passing the strip-shaped resin 22 along the cylindrical electrode 24 through the plating bath 23, a uniform current can easily flow through the entire porous resin body, and uniform plating can be obtained. The second plating tank 21b is a tank for applying a thicker and more uniform plating, and is configured to be repeatedly plated in a plurality of tanks. Plating is performed by passing the belt-like resin 22 having a conductive surface through a plating bath 28 while sequentially feeding the belt-like resin 22 by an electrode roller 26 that also serves as a feeding roller and an out-of-vessel feeding cathode. In the plurality of tanks, there are anodes 27 provided on opposite surfaces of the porous resin body via the plating bath 28, and uniform plating can be applied to both surfaces of the porous resin body.
 以上の工程により骨格の芯として樹脂多孔体を有するアルミニウム構造体(アルミニウム多孔体)が得られる。各種フィルタや触媒担体などの用途によっては、このまま樹脂と金属の複合体として使用しても良い。また使用環境の制約などから樹脂が無い金属構造体として用いる場合には樹脂を除去しても良い。樹脂の除去は、有機溶媒、溶融塩、又は超臨界水による分解(溶解)、加熱分解等任意の方法で行うことができる。アルミニウムはニッケル等と異なり、一旦酸化すると還元処理が困難であるため、たとえば電池等の電極材料として使用する場合には、アルミニウムの酸化が起こりにくい方法で樹脂を除去することが好ましい。例えば以下説明する溶融塩中での熱分解により樹脂を除去する方法が好ましく用いられる。 Through the above steps, an aluminum structure (aluminum porous body) having a porous resin body as a skeleton core is obtained. Depending on applications such as various filters and catalyst carriers, the resin and metal composite may be used as they are. Further, the resin may be removed when used as a metal structure having no resin due to restrictions on the use environment. Removal of the resin can be performed by any method such as decomposition (dissolution) with an organic solvent, molten salt, or supercritical water, and thermal decomposition. Since aluminum is difficult to reduce once oxidized, unlike nickel or the like, for example, when used as an electrode material for a battery or the like, it is preferable to remove the resin by a method in which oxidation of aluminum hardly occurs. For example, a method of removing the resin by thermal decomposition in a molten salt described below is preferably used.
(樹脂の除去:溶融塩中熱分解)
 溶融塩中での熱分解は以下の方法で行う。表面にアルミニウムめっき層を形成した樹脂多孔体を溶融塩に浸漬し、アルミニウム層に負電位を印加しながら加熱して樹脂多孔体を分解する。溶融塩に浸漬した状態で負電位を印加すると、アルミニウムを酸化させることなく樹脂多孔体を分解することができる。加熱温度は樹脂多孔体の種類に合わせて適宜選択できるが、アルミニウムを溶融させないためにはアルミニウムの融点(660℃)以下の温度で処理する必要がある。好ましい温度範囲は500℃以上600℃以下である。また印加する負電位の量は、アルミニウムの還元電位よりマイナス側で、かつ溶融塩中のカチオンの還元電位よりプラス側とする。
(Resin removal: thermal decomposition in molten salt)
Thermal decomposition in the molten salt is performed by the following method. A porous resin body having an aluminum plating layer formed on the surface is immersed in a molten salt, and heated while applying a negative potential to the aluminum layer to decompose the porous resin body. When a negative potential is applied in a state immersed in the molten salt, the porous resin body can be decomposed without oxidizing aluminum. The heating temperature can be appropriately selected according to the type of the porous resin body. However, in order not to melt aluminum, it is necessary to treat at a temperature not higher than the melting point of aluminum (660 ° C.). A preferable temperature range is 500 ° C. or more and 600 ° C. or less. The amount of negative potential to be applied is on the minus side of the reduction potential of aluminum and on the plus side of the reduction potential of cations in the molten salt.
 樹脂の熱分解に使用する溶融塩としては、アルミニウムの電極電位が卑となるようなアルカリ金属又はアルカリ土類金属のハロゲン化物の塩または硝酸塩が使用できる。具体的には塩化リチウム(LiCl)、塩化カリウム(KCl)、塩化ナトリウム(NaCl)、塩化アルミニウム(AlCl)、硝酸リチウム(LiNO)、亜硝酸リチウム(LiNO)、硝酸カリウム(KNO)、亜硝酸カリウム(KNO)、硝酸ナトリウム(NaNO)、及び亜硝酸ナトリウム(NaNO)からなる群より選択される1種以上を含むと好ましい。このような方法によって、表面の酸化層が薄く酸素量の少ないアルミニウム多孔体を得ることができる。 As the molten salt used for the thermal decomposition of the resin, an alkali metal or alkaline earth metal halide salt or nitrate which can lower the electrode potential of aluminum can be used. Specifically, lithium chloride (LiCl), potassium chloride (KCl), sodium chloride (NaCl), aluminum chloride (AlCl 3 ), lithium nitrate (LiNO 3 ), lithium nitrite (LiNO 2 ), potassium nitrate (KNO 3 ), It is preferable to include one or more selected from the group consisting of potassium nitrite (KNO 2 ), sodium nitrate (NaNO 3 ), and sodium nitrite (NaNO 2 ). By such a method, a porous aluminum body having a thin surface oxide layer and a small amount of oxygen can be obtained.
(リチウムイオン電池)
 次にアルミニウム多孔体を用いた電池用電極材料及び電池について説明する。例えばリチウムイオン電池の正極に使用する場合は、活物質としてコバルト酸リチウム(LiCoO)、マンガン酸リチウム(LiMn)、ニッケル酸リチウム(LiNiO)等を使用する。活物質は導電助剤及びバインダーと組み合わせて使用する。従来のリチウムイオン電池用正極材料は、アルミニウム箔の表面に活物質を塗布している。単位面積当たりの電池容量を向上するために、活物質の塗布厚みを厚くしている。また活物質を有効に利用するためにはアルミニウム箔と活物質とが電気的に接触している必要があるので活物質は導電助剤と混合して用いられている。これに対し、本発明のアルミニウム多孔体は気孔率が高く単位面積当たりの表面積が大きい。よって多孔体の表面に薄く活物質を担持させても活物質を有効に利用でき、電池の容量を向上できるとともに、導電助剤の混合量を少なくすることができる。リチウムイオン電池は、上記の正極材料を正極とし、負極には黒鉛、電解質には有機電解液を使用する。このようなリチウムイオン電池は、小さい電極面積でも容量を向上できるため、従来のリチウムイオン電池よりも電池のエネルギー密度を高くすることができる。
(Lithium ion battery)
Next, a battery electrode material and a battery using an aluminum porous body will be described. For example, when used for a positive electrode of a lithium ion battery, lithium cobaltate (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium nickelate (LiNiO 2 ), or the like is used as an active material. The active material is used in combination with a conductive additive and a binder. Conventional positive electrode materials for lithium ion batteries have an active material coated on the surface of an aluminum foil. In order to improve the battery capacity per unit area, the coating thickness of the active material is increased. In order to effectively use the active material, the aluminum foil and the active material need to be in electrical contact with each other, so that the active material is used in combination with a conductive additive. In contrast, the porous aluminum body of the present invention has a high porosity and a large surface area per unit area. Therefore, even if the active material is thinly supported on the surface of the porous body, the active material can be used effectively, the capacity of the battery can be improved, and the mixing amount of the conductive auxiliary agent can be reduced. A lithium ion battery uses the above positive electrode material as a positive electrode, graphite as the negative electrode, and organic electrolyte as the electrolyte. Since such a lithium ion battery can improve capacity even with a small electrode area, the energy density of the battery can be made higher than that of a conventional lithium ion battery.
(溶融塩電池)
 アルミニウム多孔体は、溶融塩電池用の電極材料として使用することもできる。アルミニウム多孔体を正極材料として使用する場合は、活物質として亜クロム酸ナトリウム(NaCrO)、二硫化チタン(TiS)等、電解質となる溶融塩のカチオンをインターカレーションすることができる金属化合物を使用する。活物質は導電助剤及びバインダーと組み合わせて使用する。導電助剤としてはアセチレンブラック等が使用できる。またバインダーとしてはポリテトラフルオロエチレン(PTFE)等を使用できる。活物質として亜クロム酸ナトリウムを使用し、導電助剤としてアセチレンブラックを使用する場合には、PTFEはこの両者をより強固に固着することができ好ましい。
(Molten salt battery)
The aluminum porous body can also be used as an electrode material for a molten salt battery. When an aluminum porous body is used as a positive electrode material, a metal compound capable of intercalating cations of a molten salt serving as an electrolyte, such as sodium chromite (NaCrO 2 ) and titanium disulfide (TiS 2 ) as an active material Is used. The active material is used in combination with a conductive additive and a binder. As the conductive assistant, acetylene black or the like can be used. As the binder, polytetrafluoroethylene (PTFE) or the like can be used. When sodium chromite is used as the active material and acetylene black is used as the conductive additive, PTFE is preferable because both can be firmly fixed.
 アルミニウム多孔体は、溶融塩電池用の負極材料として用いることもできる。アルミニウム多孔体を負極材料として使用する場合は、活物質としてナトリウム単体やナトリウムと他の金属との合金、カーボン等を使用できる。ナトリウムの融点は約98℃であり、また温度が上がるにつれて金属が軟化するため、ナトリウムと他の金属(Si、Sn、In等)とを合金化すると好ましい。このなかでも特にナトリウムとSnとを合金化したものは扱いやすいため好ましい。ナトリウム又はナトリウム合金は、アルミニウム多孔体の表面に電解メッキ、溶融メッキ等の方法で担持させることができる。また、アルミニウム多孔体にナトリウムと合金化させる金属(Si等)をメッキ等の方法で付着させた後、溶融塩電池中で充電することでナトリウム合金とすることもできる。 The aluminum porous body can also be used as a negative electrode material for a molten salt battery. When an aluminum porous body is used as a negative electrode material, sodium alone, an alloy of sodium and another metal, carbon, or the like can be used as an active material. The melting point of sodium is about 98 ° C., and the metal softens as the temperature rises. Therefore, it is preferable to alloy sodium with other metals (Si, Sn, In, etc.). Of these, an alloy of sodium and Sn is particularly preferable because it is easy to handle. Sodium or a sodium alloy can be supported on the surface of the porous aluminum body by a method such as electrolytic plating or hot dipping. In addition, after a metal (such as Si) that is alloyed with sodium is attached to the aluminum porous body by a method such as plating, a sodium alloy can be obtained by charging in a molten salt battery.
 図6は上記の電池用電極材料を用いた溶融塩電池の一例を示す断面模式図である。溶融塩電池は、アルミニウム多孔体のアルミ骨格部の表面に正極用活物質を担持した正極121と、アルミニウム多孔体のアルミ骨格部の表面に負極用活物質を担持した負極122と、電解質である溶融塩を含浸させたセパレータ123とをケース127内に収納したものである。ケース127の上面と負極との間には、押え板124と押え板を押圧するバネ125とからなる押圧部材126が配置されている。押圧部材を設けることで、正極121、負極122、セパレータ123の体積変化があった場合でも均等押圧してそれぞれの部材を接触させることができる。正極121の集電体(アルミニウム多孔体)、負極122の集電体(アルミニウム多孔体)はそれぞれ、正極端子128、負極端子129に、リード線130で接続されている。 FIG. 6 is a schematic sectional view showing an example of a molten salt battery using the battery electrode material. The molten salt battery includes a positive electrode 121 carrying a positive electrode active material on the surface of an aluminum skeleton part of an aluminum porous body, a negative electrode 122 carrying a negative electrode active material on the surface of the aluminum skeleton part of an aluminum porous body, and an electrolyte. A separator 123 impregnated with molten salt is housed in a case 127. Between the upper surface of the case 127 and the negative electrode, a pressing member 126 including a pressing plate 124 and a spring 125 that presses the pressing plate is disposed. By providing the pressing member, even when there is a volume change of the positive electrode 121, the negative electrode 122, and the separator 123, the respective members can be brought into contact with each other by being pressed evenly. The current collector (aluminum porous body) of the positive electrode 121 and the current collector (aluminum porous body) of the negative electrode 122 are connected to the positive electrode terminal 128 and the negative electrode terminal 129 by lead wires 130, respectively.
 電解質としての溶融塩としては、動作温度で溶融する各種の無機塩又は有機塩を使用することができる。溶融塩のカチオンとしては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)及びセシウム(Cs)等のアルカリ金属、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)及びバリウム(Ba)等のアルカリ土類金属から選択した1種以上を用いることができる。 As the molten salt as the electrolyte, various inorganic salts or organic salts that melt at the operating temperature can be used. As the cation of the molten salt, alkali metals such as lithium (Li), sodium (Na), potassium (K), rubidium (Rb) and cesium (Cs), beryllium (Be), magnesium (Mg), calcium (Ca) One or more selected from alkaline earth metals such as strontium (Sr) and barium (Ba) can be used.
 溶融塩の融点を低下させるために、2種以上の塩を混合して使用することが好ましい。例えばカリウムビス(フルオロスルフォニル)アミド(KFSA)とナトリウムビス(フルオロスルフォニル)アミド(NaFSA)とを組み合わせて使用すると、電池の動作温度を90℃以下とすることができる。 In order to lower the melting point of the molten salt, it is preferable to use a mixture of two or more salts. For example, when potassium bis (fluorosulfonyl) amide (KFSA) and sodium bis (fluorosulfonyl) amide (NaFSA) are used in combination, the operating temperature of the battery can be made 90 ° C. or lower.
 溶融塩はセパレータに含浸させて使用する。セパレータは正極と負極とが接触するのを防ぐためのものであり、ガラス不織布や、多孔質樹脂多孔体等を使用できる。上記の正極、負極、溶融塩を含浸させたセパレータを積層してケース内に収納し、電池として使用する。 ¡Use molten salt by impregnating the separator. A separator is for preventing a positive electrode and a negative electrode from contacting, and a glass nonwoven fabric, a porous resin porous body, etc. can be used for it. The above positive electrode, negative electrode, and separator impregnated with molten salt are stacked and housed in a case to be used as a battery.
(電気二重層コンデンサ)
 アルミニウム多孔体は、電気二重層コンデンサ用の電極材料として使用することもできる。アルミニウム多孔体を電気二重層コンデンサ用の電極材料として使用する場合は、電極活物質として活性炭等を使用する。活性炭は導電助剤やバインダーと組み合わせて使用する。導電助剤としては黒鉛、カーボンナノチューブ等が使用できる。またバインダーとしてはポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム等を使用できる。
(Electric double layer capacitor)
The aluminum porous body can also be used as an electrode material for an electric double layer capacitor. When an aluminum porous body is used as an electrode material for an electric double layer capacitor, activated carbon or the like is used as an electrode active material. Activated carbon is used in combination with a conductive aid and a binder. As the conductive auxiliary agent, graphite, carbon nanotube, etc. can be used. As the binder, polytetrafluoroethylene (PTFE), styrene butadiene rubber or the like can be used.
 図7は上記の電気二重層コンデンサ用電極材料を用いた電気二重層コンデンサの一例を示す断面模式図である。セパレータ142で仕切られた有機電解液143中に、アルミニウム多孔体に電極活物質を担持した電極材料を分極性電極141として配置している。電極材料141はリード線144に接続しており、これら全体がケース145中に収納されている。アルミニウム多孔体を集電体として使用することで、集電体の表面積が大きくなり、活物質としての活性炭を薄く塗布しても高出力、高容量化可能な電気二重層コンデンサを得ることができる。 FIG. 7 is a schematic cross-sectional view showing an example of an electric double layer capacitor using the above electrode material for an electric double layer capacitor. In the organic electrolyte solution 143 partitioned by the separator 142, an electrode material in which an electrode active material is supported on a porous aluminum body is disposed as a polarizable electrode 141. The electrode material 141 is connected to the lead wire 144, and the whole is housed in the case 145. By using an aluminum porous body as a current collector, the surface area of the current collector is increased, and an electric double layer capacitor capable of high output and high capacity can be obtained even when activated carbon as an active material is thinly applied. .
(導電層の形成:カーボン塗布)
 以下、アルミニウム多孔体の製造例を具体的に説明する。樹脂多孔体として、厚み1mm、気孔率95%、気孔径300μmのウレタン発泡体を準備し、80mm×50mm角に切断した。ウレタン発泡体をカーボン懸濁液に浸漬し乾燥することで、表面全体にカーボン粒子が付着した導電層を形成した。懸濁液の成分は、黒鉛+カーボンブラック25%を含み、樹脂バインダー、浸透剤、消泡剤を含む。カーボンブラックの粒径は0.5μmとした。
(Formation of conductive layer: carbon coating)
Hereinafter, a production example of the aluminum porous body will be specifically described. A urethane foam having a thickness of 1 mm, a porosity of 95%, and a pore diameter of 300 μm was prepared as a porous resin body, and cut into 80 mm × 50 mm squares. By immersing the urethane foam in a carbon suspension and drying, a conductive layer having carbon particles attached to the entire surface was formed. The components of the suspension include graphite + carbon black 25%, and include a resin binder, a penetrating agent, and an antifoaming agent. The particle size of carbon black was 0.5 μm.
(導電層の形成:アルミニウム蒸着)
 カーボン塗布の場合と同じ樹脂多孔体を準備し、表面にアルミニウムを蒸着して厚み0.7μmのアルミニウム導電層を形成した。
(Conductive layer formation: aluminum deposition)
The same porous resin as in the case of carbon coating was prepared, and aluminum was deposited on the surface to form an aluminum conductive layer having a thickness of 0.7 μm.
(溶融塩めっき)
 表面に導電層を形成したウレタン発泡体をワークとして、給電機能を有する治具にセットした後、アルゴン雰囲気かつ低水分(露点-30℃以下)としたグローブボックス内に入れ、表1、表2に示す温度の溶融塩浴(33mol%EMIC-67mol%AlCl)に浸漬した。なお溶融塩浴中には表1、表2に示す濃度の1,10-フェナントロリンを添加している。ワークをセットした治具を整流器の陰極側に接続し、アルミニウム板(純度99.99%)を対極の陽極側に接続した。表1に示す電流密度の直流電流を2A/cm(以下、「A/cm」をASDと称する)の場合は90分間、6ASDの場合は30分間、15ASDの場合は10分間印加してアルミニウムをめっきした。攪拌はテフロン(登録商標)製の回転子を用いてスターラーにて行った。ここで、電流密度はウレタン発泡体の見かけの面積で計算した値である。
(Molten salt plating)
After setting urethane foam with a conductive layer on the surface as a work piece to a jig having a power feeding function, it was put in a glove box with an argon atmosphere and low moisture (dew point -30 ° C or less). It was immersed in a molten salt bath (33 mol% EMIC-67 mol% AlCl 3 ) having the temperature shown in FIG. In the molten salt bath, 1,10-phenanthroline having the concentrations shown in Tables 1 and 2 was added. The jig on which the workpiece was set was connected to the cathode side of the rectifier, and an aluminum plate (purity 99.99%) was connected to the anode side of the counter electrode. The DC current having the current density shown in Table 1 is applied for 90 minutes in the case of 2 A / cm 2 (hereinafter referred to as “A / cm 2 ”), 30 minutes in the case of 6 ASD, and 10 minutes in the case of 15 ASD. Aluminum was plated. Stirring was performed with a stirrer using a Teflon (registered trademark) rotor. Here, the current density is a value calculated by the apparent area of the urethane foam.
(樹脂多孔体の分解)
 アルミニウムめっき層を形成したそれぞれの樹脂多孔体を温度500℃のLiCl-KCl共晶溶融塩に浸漬し、-1Vの負電位を5分間印加してポリウレタンを分解除去してアルミニウム多孔体を得た。
(Decomposition of porous resin)
Each porous resin body on which the aluminum plating layer was formed was immersed in a LiCl—KCl eutectic molten salt at a temperature of 500 ° C., and a negative potential of −1 V was applied for 5 minutes to decompose and remove polyurethane to obtain an aluminum porous body. .
 得られたアルミニウム多孔体の内部へのめっき性を評価した。内部めっきの評価として、多孔体内部のめっき厚みが薄く、ウレタン発泡体の除去後に2枚に剥離したものは×とし、多孔体内部へもめっきされておりサンプルの剥離が起こらなかったものを○とした。また断面の評価として、多孔体内部へもめっきされておりサンプルの剥離が起こらなかったものから、表面部分及び骨格の延在方向に直角な断面で切断したものを抽出し樹脂に埋め込み、研磨したのち断面を観察した。断面を観察し、内部のめっきの厚さが外部のめっきの厚さの70%以上のものを○とし、50%以上70%未満のものを△とし、50%未満のものを×とした。さらにめっきの表面平滑性(各表中では「表面」と記載している)を評価するため、アルミニウム多孔体を走査電子顕微鏡で観察し、倍率が1000倍で表面が平滑なものを○、明らかに凹凸が大きいものを×とした。以上の結果を表1、表2に示す。 The plating property inside the obtained aluminum porous body was evaluated. As the evaluation of internal plating, the plating thickness inside the porous body is thin, and the case where the urethane foam was removed after peeling into two sheets was marked as x, and the inside of the porous body was plated and the sample did not peel off. It was. In addition, as a cross-sectional evaluation, a sample cut from a cross section perpendicular to the extending direction of the surface portion and the skeleton was extracted from what was plated inside the porous body and the sample did not peel off, embedded in resin and polished Later, the cross section was observed. The cross section was observed, and the case where the thickness of the internal plating was 70% or more of the thickness of the external plating was evaluated as “◯”, the case where it was 50% or more and less than 70% was evaluated as “Δ”, Furthermore, in order to evaluate the surface smoothness of the plating (indicated as “surface” in each table), the aluminum porous body was observed with a scanning electron microscope. Those having large irregularities were marked with ×. The above results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
表1及び表2に示すように、めっき温度を室温としたものでは内部へのめっき性が悪く、ウレタン発泡体の除去後に2枚に剥離した。めっき温度を60℃、80℃としたものでは剥離は起こらず内部にもめっき可能となっている。ただし、めっき状態を詳細に観察した断面評価及び表面評価では、フェナントロリン濃度が0.25g/lの条件では評価が×のものが多い。特に電流密度を高くするほど評価結果が悪くなっており、フェナントロリンの添加量が少ない場合はめっきの表面平滑性を良好にするためには電流密度を低くしてゆっくりとめっきする必要がある。 As shown in Tables 1 and 2, when the plating temperature was set to room temperature, the plating ability to the inside was poor and the urethane foam was peeled off after removing the urethane foam. When the plating temperature is 60 ° C. or 80 ° C., peeling does not occur and the inside can be plated. However, in the cross-sectional evaluation and surface evaluation in which the plating state is observed in detail, there are many cases where the evaluation is x under the condition that the phenanthroline concentration is 0.25 g / l. In particular, the higher the current density, the worse the evaluation results. When the amount of phenanthroline added is small, it is necessary to lower the current density and perform plating slowly in order to improve the surface smoothness of the plating.
 図8は、アルミニウム導電層を形成したサンプルについて、フェナントロリン濃度0.25g/l、電流密度6ASD、めっき温度60℃でアルミニウムめっきを行って作製したアルミニウム構造体を走査電子顕微鏡で観察した写真である。また図9はアルミニウム導電層を形成したサンプルについて、フェナントロリン濃度5g/l、電流密度6ASD、めっき温度60℃でアルミニウムめっきを行って作製したアルミニウム構造体を走査電子顕微鏡で観察した写真である。フェナントロリン濃度が高い図9では、アルミニウムめっきの表面が平滑であるが、フェナントロリン濃度が低い図8ではめっきの表面に凹凸が生じていることがわかる。 FIG. 8 is a photograph obtained by observing, with a scanning electron microscope, an aluminum structure produced by performing aluminum plating at a phenanthroline concentration of 0.25 g / l, a current density of 6 ASD, and a plating temperature of 60 ° C. with respect to a sample in which an aluminum conductive layer is formed. . FIG. 9 is a photograph of an aluminum structure produced by performing aluminum plating on a sample in which an aluminum conductive layer is formed at a phenanthroline concentration of 5 g / l, a current density of 6 ASD, and a plating temperature of 60 ° C., as observed with a scanning electron microscope. In FIG. 9 where the phenanthroline concentration is high, the surface of the aluminum plating is smooth, but in FIG. 8 where the phenanthroline concentration is low, it can be seen that the plating surface is uneven.
 以上の如く本発明によれば、樹脂成形体表面にアルミニウムをめっきした構造体、またそこから樹脂成形体を除去したアルミニウム構造体を得ることができるので、例えばアルミニウム多孔体として電池用電極等の電気材料や、各種濾過用のフィルタ、触媒担体などにおいて、アルミニウムの特性が活かされる場合に広く適用することができる。 As described above, according to the present invention, it is possible to obtain a structure in which the surface of a resin molded body is plated with aluminum, and an aluminum structure from which the resin molded body is removed. The present invention can be widely applied to the case where the characteristics of aluminum are utilized in electric materials, filters for various types of filtration, catalyst carriers, and the like.
1 発泡樹脂成形体  2 導電層  3 アルミニウムめっき層
11 帯状樹脂  12 サプライボビン  13 デフレクタロール  14 懸濁液
15 槽  16 熱風ノズル  17 絞りロール  18 巻取りボビン
21a,21b めっき槽  22 帯状樹脂  23,28 めっき浴
24 円筒状電極  25,27 正電極  26 電極ローラ
121 正極  122 負極  123 セパレータ  124 押さえ板
125 バネ  126 押圧部材  127 ケース  128 正極端子
129 負極端子  130 リード線
141 分極性電極  142 セパレータ  143 有機電解液
144 リード線   145 ケース
DESCRIPTION OF SYMBOLS 1 Foamed resin molding 2 Conductive layer 3 Aluminum plating layer 11 Band-shaped resin 12 Supply bobbin 13 Deflector roll 14 Suspension 15 tank 16 Hot air nozzle 17 Drawing roll 18 Winding bobbin 21a, 21b Plating tank 22 Band-shaped resin 23, 28 Plating bath 24 Cylindrical electrode 25, 27 Positive electrode 26 Electrode roller 121 Positive electrode 122 Negative electrode 123 Separator 124 Holding plate 125 Spring 126 Pressing member 127 Case 128 Positive electrode terminal 129 Negative electrode terminal 130 Lead wire 141 Polarized electrode 142 Separator 143 Organic electrolyte 144 Lead wire 145 cases

Claims (6)

  1.  少なくとも表面が導電化された、三次元網目構造を有する樹脂多孔体に、アルミニウムを溶融塩浴中でめっきする工程を有するアルミニウム構造体の製造方法であって、
    前記溶融塩は塩化アルミニウムと有機塩との混合塩であり、前記溶融塩浴の温度を45℃以上100℃以下としてめっきする、アルミニウム構造体の製造方法。
    A method for producing an aluminum structure comprising a step of plating aluminum in a molten salt bath on a resin porous body having a three-dimensional network structure at least having a conductive surface,
    The molten salt is a mixed salt of aluminum chloride and an organic salt, and is plated at a temperature of the molten salt bath of 45 ° C. or higher and 100 ° C. or lower.
  2.  前記溶融塩浴中に、さらに1,10-フェナントロリンを0.25g/l以上7g/l以下の濃度で含有する、請求項1に記載のアルミニウム構造体の製造方法。 The method for producing an aluminum structure according to claim 1, wherein the molten salt bath further contains 1,10-phenanthroline at a concentration of 0.25 g / l or more and 7 g / l or less.
  3.  前記有機塩はイミダゾリウム塩である、請求項1または2に記載のアルミニウム構造体の製造方法。 The method for producing an aluminum structure according to claim 1 or 2, wherein the organic salt is an imidazolium salt.
  4.  前記樹脂多孔体はポリウレタンまたはメラミン樹脂である、請求項1~3のいずれか1項に記載のアルミニウム構造体の製造方法。 The method for producing an aluminum structure according to any one of claims 1 to 3, wherein the resin porous body is polyurethane or melamine resin.
  5.  前記めっきする工程の後に、さらに前記樹脂成形体を除去する工程を有する、請求項1~4のいずれか1項に記載のアルミニウム構造体の製造方法。 The method for producing an aluminum structure according to any one of claims 1 to 4, further comprising a step of removing the resin molded body after the step of plating.
  6.  請求項1~5のいずれか1項に記載の製造方法により製造されたアルミニウム構造体。 An aluminum structure produced by the production method according to any one of claims 1 to 5.
PCT/JP2012/050130 2011-01-11 2012-01-06 Process for production of aluminum structure, and aluminum structure WO2012096220A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137015416A KR20140005179A (en) 2011-01-11 2012-01-06 Process for production of aluminum structure, and aluminum structure
DE112012000442T DE112012000442T5 (en) 2011-01-11 2012-01-06 Process for producing an aluminum structure and aluminum structure
CN201280004624XA CN103282553A (en) 2011-01-11 2012-01-06 Process for production of aluminum structure, and aluminum structure
US13/488,618 US20120292191A1 (en) 2011-01-11 2012-06-05 Method of producing aluminum structure and aluminum structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-002760 2011-01-11
JP2011002760A JP2012144763A (en) 2011-01-11 2011-01-11 Method for producing aluminum structure, and aluminum structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/488,618 Continuation US20120292191A1 (en) 2011-01-11 2012-06-05 Method of producing aluminum structure and aluminum structure

Publications (1)

Publication Number Publication Date
WO2012096220A1 true WO2012096220A1 (en) 2012-07-19

Family

ID=46507120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050130 WO2012096220A1 (en) 2011-01-11 2012-01-06 Process for production of aluminum structure, and aluminum structure

Country Status (7)

Country Link
US (1) US20120292191A1 (en)
JP (1) JP2012144763A (en)
KR (1) KR20140005179A (en)
CN (1) CN103282553A (en)
DE (1) DE112012000442T5 (en)
TW (1) TW201241243A (en)
WO (1) WO2012096220A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068410A1 (en) * 2013-11-08 2015-05-14 住友電気工業株式会社 Alkali metal ion capacitor, method for manufacturing same, and method for charging/discharging same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080257744A1 (en) * 2007-04-19 2008-10-23 Infineon Technologies Ag Method of making an integrated circuit including electrodeposition of aluminium
JP5880364B2 (en) * 2012-09-05 2016-03-09 住友電気工業株式会社 Aluminum plating apparatus and aluminum film manufacturing method using the same
KR20150056497A (en) * 2012-09-18 2015-05-26 스미토모덴키고교가부시키가이샤 Method for manufacturing aluminum film and method for manufacturing aluminum foil
JP5950162B2 (en) * 2012-09-18 2016-07-13 住友電気工業株式会社 Method for producing aluminum film
JP2014080632A (en) * 2012-10-12 2014-05-08 Sumitomo Electric Ind Ltd Production method of aluminum foil and production apparatus of aluminum foil
JP2016000838A (en) * 2012-10-15 2016-01-07 住友電気工業株式会社 Aluminum film, aluminum film formed body and production method of aluminum film
JP2015025154A (en) * 2013-07-25 2015-02-05 住友電気工業株式会社 Method of analyzing plating solution and method of producing metallic body
JP6318689B2 (en) 2014-02-20 2018-05-09 日立金属株式会社 Electrolytic aluminum foil and method for producing the same, current collector for power storage device, electrode for power storage device, power storage device
JP2016027190A (en) * 2014-06-24 2016-02-18 住友電気工業株式会社 Aluminum plating solution, aluminum film manufacturing method, and porous aluminum object
JP2016044147A (en) * 2014-08-25 2016-04-04 住友電気工業株式会社 Manufacturing method of organic halide
KR102037846B1 (en) 2015-09-05 2019-10-29 가부시키가이샤 유에이씨제이 Manufacturing method of electrolytic aluminum foil
US10240245B2 (en) 2017-06-28 2019-03-26 Honeywell International Inc. Systems, methods, and anodes for enhanced ionic liquid bath plating of turbomachine components and other workpieces

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195990A (en) * 2007-02-09 2008-08-28 Dipsol Chem Co Ltd Electric aluminum plating bath and plating method using the same
JP2010232171A (en) * 2009-03-05 2010-10-14 Hitachi Metals Ltd Aluminum porous material and its manufacturing method, and power storage device using the aluminum porous material as electrode current collector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326931A (en) * 1978-10-12 1982-04-27 Sumitomo Electric Industries, Ltd. Process for continuous production of porous metal
US5087245A (en) 1989-03-13 1992-02-11 Ivac Corporation System and method for detecting abnormalities in intravascular infusion
US5074973A (en) * 1989-05-23 1991-12-24 Nisshin Steel Co. Ltd. Non-aqueous electrolytic aluminum plating bath composition
JP3568052B2 (en) 1994-12-15 2004-09-22 住友電気工業株式会社 Porous metal body, method for producing the same, and battery electrode plate using the same
US5804053A (en) * 1995-12-07 1998-09-08 Eltech Systems Corporation Continuously electroplated foam of improved weight distribution
US8110076B2 (en) * 2006-04-20 2012-02-07 Inco Limited Apparatus and foam electroplating process
JP5270846B2 (en) * 2007-02-09 2013-08-21 ディップソール株式会社 Electric Al-Zr alloy plating bath using room temperature molten salt bath and plating method using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195990A (en) * 2007-02-09 2008-08-28 Dipsol Chem Co Ltd Electric aluminum plating bath and plating method using the same
JP2010232171A (en) * 2009-03-05 2010-10-14 Hitachi Metals Ltd Aluminum porous material and its manufacturing method, and power storage device using the aluminum porous material as electrode current collector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068410A1 (en) * 2013-11-08 2015-05-14 住友電気工業株式会社 Alkali metal ion capacitor, method for manufacturing same, and method for charging/discharging same
JP2015095485A (en) * 2013-11-08 2015-05-18 住友電気工業株式会社 Alkali metal ion capacitor, method for manufacturing the same, and charge/discharge method

Also Published As

Publication number Publication date
DE112012000442T5 (en) 2013-10-24
KR20140005179A (en) 2014-01-14
US20120292191A1 (en) 2012-11-22
JP2012144763A (en) 2012-08-02
CN103282553A (en) 2013-09-04
TW201241243A (en) 2012-10-16

Similar Documents

Publication Publication Date Title
WO2012096220A1 (en) Process for production of aluminum structure, and aluminum structure
WO2011132538A1 (en) Method for producing aluminum structure and aluminum structure
JP5663938B2 (en) Aluminum structure manufacturing method and aluminum structure
JP5703739B2 (en) Method for producing porous aluminum body, battery electrode material using porous aluminum body, and electrode material for electric double layer capacitor
WO2012165213A1 (en) Porous metallic body, electrode material using same, and cell
WO2012111615A1 (en) Air battery and electrode
JP5648588B2 (en) Aluminum structure manufacturing method and aluminum structure
JP5803301B2 (en) Method and apparatus for manufacturing aluminum porous body
JP2012186160A (en) Battery
WO2012036065A1 (en) Method for producing aluminum structure and aluminum structure
JP5704026B2 (en) Method for manufacturing aluminum structure
JP5692233B2 (en) Aluminum structure manufacturing method and aluminum structure
JP2013194308A (en) Porous metallic body, electrode material using the same, and battery
JP2011246779A (en) Method of manufacturing aluminum structure and the aluminum structure
JP2015083716A (en) Electrode material containing aluminum structure, battery and electric double-layer capacitor using the same, and filtration filter and catalyst carrier using aluminum structure
JP2016023322A (en) Production method of aluminum porous body
JP5488994B2 (en) Aluminum structure manufacturing method and aluminum structure
JP5488996B2 (en) Aluminum structure manufacturing method and aluminum structure
JP2012255187A (en) Manufacturing method and manufacturing apparatus for aluminum porous body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12733842

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137015416

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120004426

Country of ref document: DE

Ref document number: 112012000442

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12733842

Country of ref document: EP

Kind code of ref document: A1