WO2012093951A2 - Générateur électrique polyphasé à reluctance commutée - Google Patents

Générateur électrique polyphasé à reluctance commutée Download PDF

Info

Publication number
WO2012093951A2
WO2012093951A2 PCT/RO2011/000010 RO2011000010W WO2012093951A2 WO 2012093951 A2 WO2012093951 A2 WO 2012093951A2 RO 2011000010 W RO2011000010 W RO 2011000010W WO 2012093951 A2 WO2012093951 A2 WO 2012093951A2
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
phase
poles
electric generator
stator
Prior art date
Application number
PCT/RO2011/000010
Other languages
English (en)
Other versions
WO2012093951A4 (fr
WO2012093951A3 (fr
Inventor
Florin-Eugen TUDOR-FRUNZĂ
lordan STAVĂR
Original Assignee
Tudor-Frunza Florin-Eugen
Stavar Lordan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ROA201100001A external-priority patent/RO126894A0/ro
Application filed by Tudor-Frunza Florin-Eugen, Stavar Lordan filed Critical Tudor-Frunza Florin-Eugen
Publication of WO2012093951A2 publication Critical patent/WO2012093951A2/fr
Publication of WO2012093951A3 publication Critical patent/WO2012093951A3/fr
Publication of WO2012093951A4 publication Critical patent/WO2012093951A4/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/18Synchronous generators having windings each turn of which co-operates only with poles of one polarity, e.g. homopolar generators
    • H02K19/20Synchronous generators having windings each turn of which co-operates only with poles of one polarity, e.g. homopolar generators with variable-reluctance soft-iron rotors without winding

Definitions

  • the invention relates to an electric generator, with switched reluctance, with fixed inductor and induced, for the production of electricity, by the mechanical motion of a magnetic circuit switch, usable in any application of a power system, including renewable.
  • magnetic flux variation can be obtain by varying the magnetic circuit permeability in some generator machines based on variation phenomenon of the reluctance of the stator magnetic field by the variation of the electrical gap, according to:
  • the efficiency of the machine is relatively low related to the volume and the mass of the constituents
  • the technical problem solved by the invention is that it ensures a reduction of the mechanical energy necessary to produce electric power by the fact that the resistive mechanical torque is relatively independent to the value of the current from the electric charge and a significant increase in reliability by the fact that the inductor coils o the permanent magnets and the induced coils are rigidly fastened on the stator.
  • the electric generator with switched reluctance due to the construction, it provides a significant increase of the conversion efficiency of the mechanical energy in electric power because it uses a magnetic circuit neutral switch between the inductors (the magnetic tension generators) and induced, by the switching of routing of the stator magnetic flux without the relative movement of those, one to another.
  • electric generating machine has the following advantages:
  • the resistant mechanical torque (on the shaft) is relatively independent to charging with the electric charge; which implies that over a certain generated electric power, the necessary mechanical power is significantly lower than the most efficient electric generators known, respectively the synchronous generators with permanent magnets located on the rotor, with or without polar parts;
  • the electric generator with switched reluctance is an alternating current electrical machine composed of a stator (1) (ferromagnetic) that contains, in the basic version, four poles PI, P2, P3 and P4 ; with two electro- generator windings (2) and (2') arranged on two opposite sides and two permanent magnets (3) and (3') inserted on the other two sides, oriented in such a way that the direction of the magnetization to be convergent toward the winding side (2)
  • a rotor (4) (ferromagnetic) that performs a magnetic circuit closing between two opposite poles on the « minimum reluctance » principle, respectively Pland P3 (according to the Fig.2.1), or P2 and P4 (according to the Fig.2.2).
  • the inductor made with permanent magnets having two excitation windings placed according to the Fig.1., called « inductor » on which there will be applied direct current voltages in such a way that to be respected the magnetic polarization principle that assures the convergence of the fields between the windings called « induced » similarly with the representation of the fields from the Fig.2.1 or Fig.2.2.
  • « inductor » on which there will be applied direct current voltages in such a way that to be respected the magnetic polarization principle that assures the convergence of the fields between the windings called « induced » similarly with the representation of the fields from the Fig.2.1 or Fig.2.2.
  • the value of the inductor flux is defined by a function variable in time that vectorial sums the fluxes generated by the two permanent magnets that create two intensities of magnetic field Hp , respectively Hp' thus :
  • ⁇ E (t) is the magnetic flux from the stator, generated by the magnet (3)
  • ⁇ ' ⁇ ( ⁇ ) is the magnetic flux from the stator, generated by the magnet (3');
  • the inductor flux variation is performed by the switching of the convergent magnetic circuits in the space ⁇ on the « minimum reluctance » principle; the value of the reluctance having a variation depending on time Rm (t) expressed by the relationship:
  • l sta t id is the length of the magnetic circuit space in the stator
  • lrot is the length of the magnetic circuit space in the rotor
  • N (t) - ⁇ ⁇ ⁇ HFe (d n P ⁇ sin ⁇ ⁇ ⁇
  • K (mg / ((po ⁇ + (stat + (wt ), represents the length of the magnetic circuit
  • N (t) N ⁇ 2 ⁇ ⁇ 0,5Hc (d Ke-n P 2ni sin2n P Dt Where D is the rotative speed on the generator shaft.
  • Umax NSE ⁇ ⁇ 0,5 ⁇ ⁇ ⁇ ⁇ 2 ⁇ ⁇
  • the value of the induced voltages in the induced windings is a function variable in time, that can be used directly or by electronic modifications and processing.
  • the Gaussian aspect of the torque recommends the generator with variable reluctance for the use in the applications of welding and charging of the storage cell batteries; without the use of additional equipments of adjustment.
  • the multi-phase and multi-polar generator is composed of an assembly of the mono-phase modular stacks stators, coaxially placed and displaced in phase steps shifts against to the monobloc rotor, ornot displaced in phase, but coaxially placed against to an modular stacks rotor displaced in phase steps shifts to the left or right to central midway phase position (according to the Fig. 5.4), so as to achieve a total compensation of dynamic and static reluctant (cogging) torques having the mover or resistant torques sum equal to zero to any position of the rotor, that produce electromotive voltages in
  • the coaxial modular model for the placing of the stators For designing for rotative speeds and powers different from the basic configurations, it will be used the coaxial modular model for the placing of the stators, fact that allows the obtaining however phases, and of any power with different values of voltage and currents at nominal rotative speeds that can go down to values of 50 rot/min and for optimization there can be build the stator from an assembly of individual coiled stator segments and modularly mounted (according to the Fig. 6.1 and 6.2) so as to restore the stator circular shape, facilitating the automated coiling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

L'invention concerne un générateur électrique à reluctance commutée, doté d'un inducteur et d'un induit fixes, destiné à la production d'électricité en courant alternatif de telle façon que, du fait des particularités constructives, la variation de flux magnétique est réalisée par le mouvement mécanique d'un commutateur de circuits magnétiques qui effectue la commutation ou acheminement des circuits magnétiques du stator, sans déplacement relatif de l'inducteur par rapport à l'induit et sans variation de longueur de l'entrefer électrique entre ceux-ci, ledit générateur étant utilisable dans n'importe quelle application de système d'énergie, y compris renouvelable. Selon l'invention, le générateur électrique est composé, dans sa version de base monophasée, par ordre de succession, d'enroulements d'inducteur ou d'aimants permanents d'inducteur, bobinés respectivement insérés transversalement sur un stator ferromagnétique circulaire entre des pôles adjacents, orientés de telle façon que la direction d'aimantation converge vers des enroulements d'induit placés et bobinés transversalement le long du circuit magnétique entre les pôles suivants, pour la production d'électricité, par la commutation du circuit magnétique via un commutateur ferromagnétique appelé "rotor", qui effectue une commutation de flux magnétique dans les enroulements d'induit faisant fonction de générateur électrique, par un mouvement de rotation mécanique, réalisant un circuit magnétique qui se ferme consécutivement entre les pôles pris deux à deux, sur le principe de la "reluctance minimale". Dans le cas de certaines applications à énergie renouvelable (éoliennes ou turbines hydrauliques) où il est nécessaire d'obtenir des valeurs de fréquence et de tension utilisables à de faibles vitesses de rotation du rotor, le générateur électrique selon l'invention peut être réalisé avec un nombre supplémentaire de pôles de stator monophasés par multiples de quatre, selon la relation : Psk=4xk pôles, où k= 1,2,...,n; n ∈ N; pour obtenir des valeurs de fréquence utilisables par le réseau, à des vitesses de rotation nominales réduites du rotor, sans utiliser de réducteurs ou de multiplicateurs mécaniques entre l'arbre d'hélice et l'arbre du générateur. Pour la compensation interne du couple de reluctance au démarrage (saillance), une variante du générateur est construite, caractérisée en ce que l'ensemble de stators feuilletés modulaires monophasés est placé coaxialement et déphasé par rapport à un rotor monobloc, ou sans déphasage mais placé coaxialement par rapport à un rotor feuilleté modulaire déphasé par incréments, de telle façon que les couples dynamique et statique s'annulent dans n'importe quelle position du rotor.
PCT/RO2011/000010 2011-01-03 2011-03-28 Générateur électrique polyphasé à reluctance commutée WO2012093951A2 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ROA201100001A RO126894A0 (ro) 2011-01-03 2011-01-03 Generator electric cu reluctanţă comutată
ROA201100001 2011-01-03
ROA201100233 2011-03-17
RO201100233 2011-03-17

Publications (3)

Publication Number Publication Date
WO2012093951A2 true WO2012093951A2 (fr) 2012-07-12
WO2012093951A3 WO2012093951A3 (fr) 2012-12-27
WO2012093951A4 WO2012093951A4 (fr) 2013-03-07

Family

ID=45478448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RO2011/000010 WO2012093951A2 (fr) 2011-01-03 2011-03-28 Générateur électrique polyphasé à reluctance commutée

Country Status (1)

Country Link
WO (1) WO2012093951A2 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3253170A (en) 1963-02-12 1966-05-24 Curtiss Wright Corp Quiet flux-switch alternator
US4636674A (en) 1985-07-19 1987-01-13 Allied Corporation Linear flux switch alternator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2505130A (en) * 1948-01-10 1950-04-25 Indiana Steel Products Co Inductor generator
SE358779B (fr) * 1970-01-08 1973-08-06 Asea Ab
CA2034163A1 (fr) * 1991-01-15 1992-07-16 Leslie I. Szabo Methode pour accroitre le rendement d'une generatrice
GB2386479B (en) * 1998-07-07 2004-08-25 Branko Richard Babic Electrical generator and electrical machine including the electrical generator
JP4193859B2 (ja) * 2006-04-04 2008-12-10 トヨタ自動車株式会社 モータおよびそのモータの通電制御装置
GB2454170A (en) * 2007-10-29 2009-05-06 Technelec Ltd Pole number changing in permanent magnet reluctance machines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3253170A (en) 1963-02-12 1966-05-24 Curtiss Wright Corp Quiet flux-switch alternator
US4636674A (en) 1985-07-19 1987-01-13 Allied Corporation Linear flux switch alternator

Also Published As

Publication number Publication date
WO2012093951A4 (fr) 2013-03-07
WO2012093951A3 (fr) 2012-12-27

Similar Documents

Publication Publication Date Title
US10033302B2 (en) Rotary solar converter
Liu et al. Design and performance analysis of a doubly excited brushless machine for wind power generator application
WO2013123531A2 (fr) Machine électrique synchrone
Ogunjuyigbe et al. Analysis of synchronous reluctance machine with magnetically coupled three-phase windings and reactive power compensation
RU151437U1 (ru) Магнитоэлектрическая машина
EP2495853A1 (fr) Moteur magnéto-électrique
RU2437202C1 (ru) Магнитоэлектрическая бесконтактная машина с аксиальным возбуждением
More et al. Outer rotor flux reversal machine for rooftop wind generator
WO2021112725A1 (fr) Stator de moteur électrique
CN103904856B (zh) 一种具有初始自励磁能力的无刷谐波励磁同步发电机
Behjat et al. Experimental and 3D finite element analysis of a slotless air-cored axial flux PMSG for wind turbine application
Kamper et al. Comparison of air-cored and iron-cored non-overlap winding radial flux permanent magnet direct drive wind generators
Schreier et al. Analysis of influence of third spatial harmonic on currents and torque of multi-phase synchronous machine with permanent magnets
WO2012093951A2 (fr) Générateur électrique polyphasé à reluctance commutée
Fukami et al. Prediction of field currents in flux-modulating synchronous machines under loaded conditions
RU2716489C2 (ru) Электромеханический преобразователь
RU2414793C1 (ru) Бесконтактная модульная магнитоэлектрическая машина
Setyawan et al. Design and Performance Analysis of Double Axial Flux Permanent Magnet Generator
RU2723297C1 (ru) Статор электродвигателя
Tapia-Hernandez et al. Efficiency optimization for radial permanent magnets electric generators
RU2414794C1 (ru) Бесконтактная модульная синхронная магнитоэлектрическая машина
Yoshida et al. Calculation method of circulating current in parallel armature windings in consideration of magnetic circuit
Ukaji et al. Claw pole magnetic-geared generator for hub dynamos
Dobzhanskyi et al. Performance Analysis of the Transverse-Flux Machine with High number of Poles for Large Wind, Hydro, and Electric Ship Propulsion Systems
RU2672562C1 (ru) Многофазный синхронный генератор с однополупериодным выпрямителем

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11808389

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11808389

Country of ref document: EP

Kind code of ref document: A2