WO2012093887A2 - 시스템 신호 측정 방법 및 장치 - Google Patents

시스템 신호 측정 방법 및 장치 Download PDF

Info

Publication number
WO2012093887A2
WO2012093887A2 PCT/KR2012/000148 KR2012000148W WO2012093887A2 WO 2012093887 A2 WO2012093887 A2 WO 2012093887A2 KR 2012000148 W KR2012000148 W KR 2012000148W WO 2012093887 A2 WO2012093887 A2 WO 2012093887A2
Authority
WO
WIPO (PCT)
Prior art keywords
serving cell
mode
scan mode
signal
cell signal
Prior art date
Application number
PCT/KR2012/000148
Other languages
English (en)
French (fr)
Other versions
WO2012093887A3 (ko
Inventor
정정수
김성훈
정경인
김상범
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to US13/978,520 priority Critical patent/US9338746B2/en
Priority to EP12732449.9A priority patent/EP2663119B1/en
Publication of WO2012093887A2 publication Critical patent/WO2012093887A2/ko
Publication of WO2012093887A3 publication Critical patent/WO2012093887A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a system signal measuring method and apparatus.
  • the mobile communication system targeted by the present invention includes a first generation of analog type, a second generation of digital type, and a fourth generation mobile communication system that provides ultra-high speed multimedia service following the third generation of high speed multimedia service of IMT-2000. It may include.
  • Representative mobile communication systems having a channel structure for high-speed data transmission among the third generation mobile communication systems include a CDMA High Rate Packet Data (HRPD) system or a WCDMA High Speed Packet Access (HSPA).
  • the CDMA HRPD system is a system using a code division multiple access (CDMA) scheme.
  • FIG. 1 is a structural diagram of a conventional HRPD system.
  • the HRPD system includes a packet data service node (hereinafter referred to as a PDSN) 101 for transmitting high-speed packet data to the base station 103 in connection with the Internet network, and a packet controller for controlling the base station 103 ( Packet Control Function (PCF) 102.
  • the base station 103 wirelessly communicates with a plurality of terminals 104 and transmits the high speed packet data to a terminal having the best transmission rate.
  • the 4th generation mobile communication system developed from the 3rd generation mobile communication system such as the HRPD system is aiming at a transmission speed of 20Mbps or more for high speed multimedia service.
  • the fourth generation mobile communication system mainly uses orthogonal frequencies, such as orthogonal frequency division multiplexing (OFDM).
  • OFDM orthogonal frequency division multiplexing
  • a representative example of such a 4G mobile communication system is an LTE or LTE-Advanced (LTE-A) system which is being standardized in 3GPP.
  • FIG. 2 is a structural diagram of a conventional LTE system.
  • LTE system wirelessly communicates with a plurality of terminals 201, MME and serving gateway (S-GW) for managing the mobility, call processing and data transmission paths of the base station 202 and the terminal providing a high-speed multimedia service 203 and a PDN-GW (PDN-GW, P-GW) 204 connected to the Internet network and transmitting high-speed packet data to the terminal through the base station.
  • S-GW serving gateway
  • M2M communication machine-to-machine communication
  • M2M communication machine-to-machine communication
  • Smart Meter intelligent metering that measures flow management, remote monitoring of machinery and equipment, operating hours on construction machinery and automatic measurement of heat or electricity usage in point-of-sales and security-related applications.
  • M2M communication has a great influence in the fields of (Smart Meter).
  • the communication terminal between the device and the device has various features different from the terminal in the conventional sense. Some of these features are listed below.
  • Devices such as controllers and instruments are not mobile or exhibit mobility at very low frequency.
  • the communication is performed in the form of sending and receiving data only at a preset time.
  • Some device-to-device communication terminals should be able to accommodate the delay even when data communication is performed. (Delay tolerant)
  • the terminal may request connection establishment.
  • a terminal that does not need paging does not need to frequently observe a message transmitted by the base station to receive paging.
  • an intended operation may be performed only by occasionally receiving a control channel. Reducing the frequency of receiving control channels is also a very important technique to ensure high power efficiency.
  • DRX Discontinuous Reception
  • FIG. 3 illustrates a DRX cycle of a communication terminal between a conventional terminal and a device.
  • the horizontal axis 301 of FIG. 3 means a system frame number which is a transmission period of LTE.
  • the conventional terminal may be designed to have a relatively short DRX cycle 302, while the inter-device communication terminal has a longer DRX cycle 303.
  • a period for observing a radio channel is defined to be linked with a DRX period. That is, the terminal performs an operation of measuring the reception sensitivity of the radio channel by a given number within the DRX cycle. Accordingly, as shown in FIG. 3, when the DRX cycle is longer, a conventional channel change monitoring cycle is lengthened, and thus a terminal in a wireless environment does not quickly reflect the change. That is, even when the channel situation is worsened and a plurality of radio channel measurement results are combined to determine reselection to another base station, it may take a long time to make a decision about the radio channel measurement cycle. This can cause problems such as not receiving paging for several DRX cycles.
  • the present invention has been proposed to solve the above problems, and an object thereof is to provide a method and apparatus for measuring a system signal which can efficiently reflect the surrounding environment while using power efficiently.
  • a signal measuring method determining whether the current subframe corresponds to the measurement period, if the current subframe is the measurement period, measuring the serving cell signal, the current Determining whether the measurement mode is a normal scan mode or a short scan mode that measures a serving cell signal more frequently than the normal scan mode; and if the current measurement mode is a normal scan mode, whether the measured serving cell signal is below a preset lower limit signal threshold And determining the current measurement mode to a short scan mode when the measured serving cell signal is less than the lower limit signal threshold.
  • the control unit for determining whether the current subframe corresponds to the measurement period includes a radio frequency unit for measuring the serving cell signal if the current subframe is a measurement period.
  • the controller determines whether the current measurement mode is a normal scan mode or a short scan mode in which a serving cell signal is measured more frequently than the normal scan mode, and when the current measurement mode is a normal scan mode, the measured serving cell signal is a preset lower limit signal threshold. If the measured serving cell signal is less than the lower limit signal threshold, the current measurement mode may be changed to a short scan mode.
  • the device-to-device communication terminal can prevent the situation of missing call setup or SMS message by selecting the best base station faster when the channel situation is bad.
  • FIG. 1 is a structural diagram of a conventional HRPD system.
  • FIG. 2 is a structural diagram of a conventional LTE system.
  • FIG. 3 illustrates a DRX cycle of a communication terminal between a conventional terminal and a device.
  • FIG. 4 illustrates a signal measuring method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a signal measurement process of the device-to-device communication terminal according to the first embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating a signal measurement process of the device-to-device communication terminal according to the second embodiment of the present invention.
  • FIG. 7 is a block diagram of the terminal 730 and the base station 700 according to an embodiment of the present invention.
  • DRX Discontinuous Reception
  • a period for observing a radio channel is defined to be linked with a DRX period. That is, the terminal performs an operation of measuring the reception sensitivity of the wireless channel by a given number within the DRX cycle. Therefore, when the DRX cycle is lengthened, a cycle for observing a change in a conventional channel is lengthened, which may cause a problem that the change in the wireless environment cannot be quickly reflected.
  • the present invention proposes a method of quickly reflecting a channel situation by changing a period for measuring the surrounding signal according to the surrounding channel situation in which the device-to-device communication terminal including the serving base station to solve the problem.
  • step 401 the device-to-device communication terminal measures the peripheral signal once every DRX cycle.
  • a state in which the peripheral signal is measured a predetermined number of times per DRX cycle is referred to as a "normal scan mode".
  • the inter-device communication terminal detects that the strength of the signal received from the serving base station is smaller than the preset lower limit signal threshold. In this case, the inter-device communication terminal measures the peripheral signal more frequently by reducing the period for measuring the peripheral signal to a value promised between the base station and the terminal (a value smaller than the original period).
  • the state in which the peripheral signal is measured more frequently in this specification is referred to as a "short scan mode".
  • the inter-device communication terminal then detects that the strength of the signal received from the serving base station in step 403 exceeds a preset upper limit signal threshold. In this case, the device-to-device communication terminal restores the period of measuring the peripheral signal to its original state. In addition, even when the inter-device communication terminal changes the communication target to a new base station, it may return to the original signal measurement period (normal scan mode) in step 403.
  • a method of changing the DRX cycle according to a channel situation is proposed as a method of changing the signal measurement cycle.
  • the number of times of measuring the peripheral signal within the DRX cycle can be kept the same.
  • the present invention proposes a method of changing only the number of measurements of the peripheral signal within the DRX cycle while maintaining the DRX cycle as a method of changing the signal measurement cycle.
  • FIG. 5 is a flowchart illustrating a signal measurement process of the device-to-device communication terminal according to the first embodiment of the present invention. The operation in subframe k of the inter-device communication terminal is described.
  • step 501 the inter-device communication terminal determines whether the corresponding terminal is operating in the DRX mode. If the terminal does not operate in the DRX mode performs the operation defined in the conventional LTE. Since the operation of the conventional LTE is a known technique, a detailed description thereof will be omitted. If the terminal is operating in the DRX mode, the process proceeds to step 502.
  • step 502 the inter-device communication terminal determines whether the subframe k corresponds to a period for measuring the peripheral signal. If the subframe k does not correspond to the period for measuring the peripheral signal, the terminal performs the operation defined in the conventional LTE. If subframe k corresponds to a period for measuring a signal of a neighboring base station in DRX mode, the process proceeds to step 503.
  • the device-to-device communication terminal performs a signal measurement operation on a neighboring base station. Thereafter, in step 504, the terminal performs a filtering operation in which the past measured values of the surrounding signals are reflected to the newly measured value at a specific ratio. The terminal uses the filtered value in step 504 as a measurement for the neighbor base station in a later step. The filtering operation of step 504 may be omitted. Thereafter, in step 505, the UE determines whether the UE is currently operating in a short scan mode in which peripheral signals are received at short intervals. If not, the process proceeds to step 506.
  • step 506 the terminal determines whether the signal measurement value of the serving base station currently being observed for call reception is smaller than a predetermined lower limit signal threshold value threshold_a between the base station and the terminal. If the signal measurement of the serving base station is smaller than the lower limit signal threshold, the process proceeds to step 507.
  • the terminal initializes previous measurement values stored in step 507.
  • step 508 the terminal sets the DRX cycle to a new value promised between the base station and the terminal.
  • the DRX cycle set in step 508 may be set to a smaller value than the cycle when operating in the normal scan mode.
  • the terminal sets the period for measuring the peripheral signal to the short scan mode (Short scan mode). Operation after step 508 follows that of conventional LTE.
  • the signal measurement value of the serving base station is greater than the preset lower limit signal threshold in step 506, the subsequent operation follows the operation of the conventional LTE.
  • step 505 the process proceeds to step 509.
  • step 509 the terminal determines whether the signal measurement value of the serving base station is greater than a predetermined upper limit signal threshold value threshold_b. If the signal measurement of the serving base station is greater than the upper limit signal threshold, the process proceeds to step 510.
  • step 510 the terminal resets the DRX cycle to the cycle used in the conventional normal scan mode and sets the method of measuring the peripheral signal to the normal scan mode. Operation after step 510 follows the operation of the conventional LTE system.
  • step 511 the terminal performs an operation related to changing a serving base station. Since the detailed operation of step 511 is not suggested by the present invention, the detailed description is omitted here.
  • step 512 the terminal determines whether a new serving base station is selected as a result of step 511. If a new serving base station is selected, the process proceeds to step 510. As described above, the UE resets the DRX cycle to the cycle used in the conventional normal scan mode and sets the method of measuring the peripheral signal to the normal scan mode in step 510. If a new serving base station is not selected in step 512, the terminal performs subsequent operations according to the scheme defined in the conventional LTE.
  • FIG. 6 is a flowchart illustrating a signal measurement process of the device-to-device communication terminal according to the second embodiment of the present invention. The operation in subframe k of the inter-device communication terminal is described.
  • step 601 the inter-device communication terminal determines whether the corresponding terminal is operating in the DRX mode. If the terminal does not operate in the DRX mode performs the operation defined in the conventional LTE. Since the operation of the conventional LTE is a known technique, a detailed description thereof will be omitted. If the terminal is operating in the DRX mode, the process proceeds to step 602.
  • step 602 the inter-device communication terminal determines whether the subframe k corresponds to a period for measuring the peripheral signal. If the subframe k does not correspond to the period for measuring the peripheral signal, the terminal performs the operation defined in the conventional LTE. If subframe k corresponds to a period for measuring a signal of a neighboring base station in DRX mode, the process proceeds to step 603.
  • the device-to-device communication terminal performs a signal measurement operation on a neighbor base station. Thereafter, in step 604, the terminal performs a filtering operation in which the past measured values of the neighboring signals are reflected at a new ratio. The terminal uses the filtered value in step 604 as a measurement for the neighboring base station in a later step. The filtering operation of step 604 may be omitted. Thereafter, in step 605, the UE determines whether the UE is currently operating in a short scan mode in which peripheral signals are received at short intervals. If it is not the short scan mode, the process proceeds to step 606.
  • step 606 the terminal determines whether the signal measurement value of the serving base station currently observed for call reception is smaller than a predetermined lower limit signal threshold value threshold_a between the base station and the terminal. If the signal measurement value of the serving base station is smaller than the lower limit signal threshold, the process proceeds to step 607. The terminal initializes previous measurement values stored in step 607.
  • step 608 the terminal sets settings related to signal measurement to a value independent of the DRX cycle promised between the base station and the terminal. That is, in step 608, the UE may set the number of times of measuring the ambient signal within the DRX cycle to a value greater than a predetermined number of times. In addition, the time for determining the strength of the signal by measuring the ambient signal may be set to a value shorter or longer than a predetermined time. You can also change the way you filter and the previously measured signal so that the new measured value is more reflected in the final measured value. In addition, in step 608, the terminal sets a period for measuring the peripheral signal to the short scan mode ("Short scan mode"). Operation after step 608 follows that of conventional LTE. In addition, if the signal measurement value of the serving base station is greater than the lower limit signal threshold in step 606, the subsequent operation follows the operation of the conventional LTE.
  • Short scan mode Short scan mode
  • step 605 If the UE is operating in a short scan mode (“Short scan mode”) in step 605, the process proceeds to step 609.
  • step 609 the UE determines whether the signal measurement value of the serving base station is greater than a predetermined upper limit signal threshold value threshold_b. If the signal measurement of the serving base station is greater than the upper limit signal threshold, the process proceeds to step 610.
  • step 610 the UE resets the settings related to signal measurement to the values used in the conventional normal scan mode and sets the method of measuring the peripheral signals to the normal scan mode. Operation after step 610 follows the operation of the conventional LTE system.
  • step 611 the terminal performs an operation related to changing a serving base station. Detailed operation of step 611 is not suggested by the present invention, and thus detailed description thereof is omitted here.
  • step 612 the terminal determines whether a new serving base station is selected as a result of step 611. If a new serving base station is selected, the process proceeds to step 610. As described above, the UE resets the DRX cycle to the cycle used in the conventional normal scan mode in step 610 and sets the method of measuring the peripheral signal to the normal scan mode. If a new serving base station is not selected in step 612, the terminal performs subsequent operations according to the scheme defined in the conventional LTE.
  • FIG. 7 is a block diagram of the terminal 730 and the base station 700 according to an embodiment of the present invention.
  • the base station 700 includes a scheduler and controller 710, an RF unit 720, and a data queue 715.
  • a terminal according to an embodiment of the present invention includes a transmitter 735, a demodulator 740, a decoder 750, a controller 760, an encoder 755. And a modulator 745.
  • the control unit 710 of the base station 700 may set various parameter values for controlling signal measurement periods for peripheral signals, such as various threshold values, setting values, and DRX cycles, used in any one of the embodiments of the present invention.
  • the controller 710 may set the parameter value when the call is set up or terminated by the terminal 730, when the terminal 730 and the base station 700 negotiate setting values related to a wireless connection, or the base station 700 coverage. All of the terminals 730 in the broadcast may be transmitted in the form of.
  • the data queue 715 of the base station 700 classifies the data received from the upper network node according to the terminal 730 or the service and stores the data in the queue.
  • the scheduler and the controller 710 selectively control data of a specific user or a specific queue in consideration of forward channel condition information, service characteristics, fairness, etc., in which the terminals 730 transmit data stored in each queue.
  • the radio frequency unit 720 transmits the screened control data signal or control signal to the terminal 730.
  • the controller 760 of the terminal 730 increases or decreases the period for measuring the peripheral signal according to the channel condition of the neighboring base station including the serving base station according to any one of the embodiments of the present invention. In addition, the controller 760 performs an operation of resetting the period for measuring the peripheral signal to an initial value when a situation of selecting a new serving base station occurs.
  • the terminal detects the signal received by the transceiver 735 at every measurement period determined by the controller 760.
  • the terminal 730 demodulates the detected signal in the demodulator 740, decodes the signal in the decoder 750, and determines and processes the signal in the controller 760.
  • the encoder 755 encodes the data to be transmitted and the modulator 745 modulates the encoded data.

Abstract

본 발명은 신호 측정 방법 및 장치에 관한 것으로 본 발명의 일 실시 예에 따르는 신호 측정방법은, 현재 서브프레임이 측정 주기에 해당하는지 판단하는 단계, 현재 서브프레임이 측정 주기이면 서빙 셀 신호를 측정하는 단계, 현재 측정 모드가 일반 스캔 모드인지, 일반 스캔 모드보다 빈번히 서빙 셀 신호를 측정하는 짧은 스캔 모드인지 판단하는 단계, 현재 측정 모드가 일반 스캔 모드이면 상기 측정된 서빙 셀 신호가 미리 설정된 하한 신호 문턱값 미만인지 판단하는 단계 및 상기 측정된 서빙 셀 신호가 상기 하한 신호 문턱값 미만이면 현재 측정 모드를 짧은 스캔 모드로 변경하는 단계를 포함할 수 있다. 본 발명의 일 실시 예에 따르면 전력을 효율적으로 사용하면서도 주변 환경을 빠르게 반영할 수 있는 시스템 신호 측정 방법 및 장치를 제공할 수 있다.

Description

시스템 신호 측정 방법 및 장치
본 발명은 시스템 신호 측정 방법 및 장치에 관한 것이다.
본 발명에서 대상으로 삼고 있는 이동 통신 시스템은 아날로그 방식의 1세대, 디지털 방식의 2세대, IMT-2000의 고속 멀티미디어 서비스를 제공하는 3세대에 이어 초고속 멀티미디어 서비스를 제공하는 4세대 이동통신 시스템 등을 포함할 수 있다.
상기 3세대 이동통신 시스템 중에서 고속 데이터 전송을 위한 채널 구조를 가지는 대표적인 이동 통신시스템으로는 CDMA HRPD (High Rate Packet Data) 시스템이나 WCDMA HSPA(High Speed Packet Access) 등이 있다. CDMA HRPD 시스템은 부호 분할 다중 접속(Code Division Multiple Access, 이하 CDMA) 방식을 이용하는 시스템이다.
도 1은 통상적인 HRPD 시스템의 구조도이다.
HRPD 시스템은 인터넷 망과 연결되어 고속 패킷 데이터를 기지국(103)으로 전송하는 패킷 데이터 서비스 노드(Packet Data Service Node 이하, PDSN라 함)(101)와, 상기 기지국(103)을 제어하는 패킷 제어기(Packet Control Function: PCF)(102)를 포함한다. 상기 기지국(103)은 다수의 단말(104)과 무선으로 통신하며, 상기 고속의 패킷 데이터를 전송률이 가장 좋은 단말기로 전송한다.
HRPD 시스템과 같은 3세대 이동통신 시스템에서 발전한 4세대 이동 통신 시스템은 초속 멀티미디어 서비스를 위해 20Mbps 이상의 전송 속도를 목표로 하고 있다. 4세대 이동통신 시스템은 주로 직교 분할 다중(Orthogonal Frequency Division Multiplexing 이하, OFDM) 방식과 같이 직교 주파수를 사용한다. 이와 같은 4세대 이동통신 시스템의 대표적인 예로 3GPP에서 표준화를 진행 중인 LTE 혹은 LTE-A(LTE-Advanced) 시스템이 있다.
도 2는 통상적인 LTE 시스템의 구조도이다.
LTE 시스템은 다수의 단말(201)과 무선으로 통신하며, 초속 멀티미디어 서비스를 제공하는 기지국(202)과 단말들의 이동성, 호 처리 및 데이터 전송 경로를 관리하는 MME 및 서빙 게이트웨이(Serving Gateway, S-GW)(203), 인터넷 망과 연결되어 고속 패킷 데이터를 기지국을 통해 단말로 전송하는 PDN-게이트웨이(Packet Data Network Gateway, PDN-GW, P-GW)(204)를 포함한다.
근래에 들어 통신 기술의 지속적인 발전으로 인해 종래에는 통신 시스템에 접속되어 있지 않던 다양한 제어기, 계측기, 가전기기 등의 장치가 유, 무선 통신 시스템에 연결되는 추세를 보이고 있다. 통신 시스템에 연결된 이러한 장치들은 사람이 기기의 눈금을 읽거나 손으로 기기를 제어하는 등의 동작을 사람의 직접적인 개입 없이 통신 시스템을 통해 수행하여 효율성의 향상과 함께 유지 비용이 절감되는 효과를 보이고 있다.
사람이 주체가 되어 진행되는 전통적인 통신과 달리 상기와 같은 제어기, 계측기, 가전기기와 통신 시스템 사이의 통신을 기기 간 통신(Machine to Machine, 이하 M2M 통신)이라고 한다. M2M 통신의 개념이 처음 도입된 1990년대 초반에는 원격 조정이나 텔레매틱스 정도를 M2M 통신의 예로 생각하였고, 관련 시장자체도 매우 한정적이었다. 그러나, 지난 몇 년간 M2M 통신은 고속 성장을 거듭하여 대상 기기들이 늘어나고 우리나라뿐만 아니라 전 세계적으로 주목 받는 시장으로 성장하였다. 특히, 판매 관리 시스템(POS, Point Of Sales)과 보안 관련 응용 시장에서 물류 관리(Fleet Management), 기계 및 설비의 원격 모니터링, 건설 기계 설비상의 작동시간 측정 및 열이나 전기 사용량을 자동 측정하는 지능 검침(Smart Meter) 등의 분야에서 M2M 통신은 큰 영향력을 발휘하고 있다.
상기와 기기 간 통신 단말은 전통적인 의미의 단말과는 다른 여러 가지의 특징을 가진다. 이런 특징들 중 대표적인 것들을 나열해 보면 아래와 같다.
1. 제어기나 계측기와 같은 기기들은 이동성이 없거나 매우 낮은 빈도로 이동성을 보인다.
2. 일부 기기 간 통신 단말의 경우 사전에 설정된 시간에만 데이터를 주고 받는 형태로 통신을 수행한다.
3. 일부 기기 간 통신 단말의 경우 데이터 통신을 수행할 때 지연이 발생하여도 이를 수용할 수 있어야 한다. (Delay tolerant)
4. 일부 기기 간 통신 단말의 경우 음성 통신과 관련된 기능이 불필요하다.
5. 이동 통신 시스템으로부터 페이징(Paging)이 필요하지 않으며 데이터 통신이 필요할 때에는 단말이 연결 설정을 요청할 수 있다.
6. 다양한 종류의 기기들이 기기 간 통신을 지원하게 되면서 인구 밀도가 높은 지역의 경우 전통적인 의미의 통신 단말보다 훨씬 많은 수의 단말들이 존재할 수 있다.
7. 배터리를 이용하여 동작하는 기기 간 통신 단말의 경우 일일이 배터리를 교체하기가 어려울 수 있으므로 배터리를 효율적으로 사용하여야 한다. 즉, 기기 간 통신 단말은 효율적으로 전력을 사용하도록 설계되어야 한다.
앞서 설명한 기기 간 통신 단말의 특성들 중 페이징이 불필요한 단말의 경우 페이징을 수신하기 위해 기지국이 전송하는 메시지를 빈번하게 관찰할 필요가 없다. 상기 단말들의 경우 시스템이 전송하는 시스템 정보를 수신하기 위해 가끔씩 제어 채널을 수신하는 것 만으로도 목적한 동작을 수행할 수 있다. 또한 제어 채널을 수신하는 빈도를 낮추는 것은 높은 전력 효율성을 보장하기 위해서도 매우 중요한 기술이다.
이런 동작을 LTE 시스템에 도입하기 위해 단말이 휴지 상태에서 시스템을 관찰하는 주기를 늘리는 방안이 제안되었다. 단말이 휴지 상태에서 시스템을 관찰하는 주기를 DRX(Discontinuous Reception) 주기라고 한다.
도 3은 전통적인 단말과 기기 간 통신 단말의 DRX 주기를 나타낸 도면이다.
도 3의 가로축(301)은 LTE의 전송 주기인 시스템 프레임(System frame number)을 의미한다. 전통적인 단말의 경우 비교적 짧은 DRX 주기(302)를 가지는 반면 기기 간 통신 단말의 경우 보다 긴 주기의 DRX 주기(303)를 가지도록 설계될 수 있다.
LTE 시스템에서는 무선 채널을 관찰하는 주기가 DRX 주기와 연동되도록 정의된다. 즉, 단말은 DRX 주기 내에 주어진 수만큼 무선 채널의 수신 감도를 측정하는 동작을 수행하게 된다. 따라서 상기 도 3과 같이 DRX 주기가 길어질 경우 종래의 채널 변화를 관찰하는 주기가 함께 길어져 무선 환경의 단말이 변화를 빠르게 반영하지 못하는 문제가 발생한다. 즉, 채널 상황이 나빠져 복수의 무선 채널 측정 결과를 종합하여 다른 기지국으로 재선택(reselection)을 결정하는 경우에도 무선 채널 측정 주기가 길어 이에 대한 결정을 내리는데 오랜 시간이 걸릴 수 있다. 이럴 경우 여러 DRX 주기 동안 페이징을 수신하지 못하는 등의 문제가 발생할 수 있다.
본 발명은 상술한 문제를 해결하기 위하여 제안된 것으로 전력을 효율적으로 사용하면서도 주변 환경을 빠르게 반영할 수 있는 시스템 신호 측정 방법 및 장치를 제공하는 데 그 목적이 있다
상술한 과제를 달성하기 위하여, 본 발명의 일 실시 예에 따르는 신호 측정방법은, 현재 서브프레임이 측정 주기에 해당하는지 판단하는 단계, 현재 서브프레임이 측정 주기이면 서빙 셀 신호를 측정하는 단계, 현재 측정 모드가 일반 스캔 모드인지, 일반 스캔 모드보다 빈번히 서빙 셀 신호를 측정하는 짧은 스캔 모드인지 판단하는 단계, 현재 측정 모드가 일반 스캔 모드이면 상기 측정된 서빙 셀 신호가 미리 설정된 하한 신호 문턱값 미만인지 판단하는 단계 및 상기 측정된 서빙 셀 신호가 상기 하한 신호 문턱값 미만이면 현재 측정 모드를 짧은 스캔 모드로 변경하는 단계를 포함할 수 있다.
상술한 과제를 달성하기 위하여, 본 발명의 일 실시 예에 따르는 단말은, 현재 서브프레임이 측정 주기에 해당하는지 판단하는 제어부 및 현재 서브프레임이 측정 주기이면 서빙 셀 신호를 측정하는 무선 주파수부를 포함할 수 있다. 상기 제어부는 현재 측정 모드가 일반 스캔 모드인지, 일반 스캔 모드보다 빈번히 서빙 셀 신호를 측정하는 짧은 스캔 모드인지 판단하고, 현재 측정 모드가 일반 스캔 모드이면 상기 측정된 서빙 셀 신호가 미리 설정된 하한 신호 문턱값 미만인지 판단하고, 상기 측정된 서빙 셀 신호가 상기 하한 신호 문턱값 미만이면 현재 측정 모드를 짧은 스캔 모드로 변경할 수 있다.
본 발명의 일 실시 예에 따르면 전력을 효율적으로 사용하면서도 주변 환경을 빠르게 반영할 수 있는 시스템 신호 측정 방법 및 장치를 제공할 수 있다.
또한 본 발명의 일 실시 예에 따르면 기기 간 통신 단말은 채널 상황이 나쁠 때 최선의 기지국을 보다 빠르게 선택하여 호 설정이나 SMS 메시지를 놓치는 상황을 사전에 방지할 수 있다.
도 1은 통상적인 HRPD 시스템의 구조도이다.
도 2는 통상적인 LTE 시스템의 구조도이다.
도 3은 전통적인 단말과 기기 간 통신 단말의 DRX 주기를 나타낸 도면이다.
도 4는 본 발명의 일 실시 예에 따르는 신호 측정 방식을 나타낸 도면이다.
도 5는 본 발명의 제1 실시 예에 따르는 기기 간 통신 단말의 신호 측정 과정의 순서도이다.
도 6은 본 발명의 제2 실시 예에 따르는 기기 간 통신 단말의 신호 측정 과정의 순서도이다.
도 7은 본 발명의 일 실시 예에 따르는 단말(730) 및 기지국(700)의 블럭구성도이다.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 대한 동작 원리를 상세히 설명한다. 도면상에 표시된 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 참조번호로 나타내었으며, 다음에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
상기 설명한 바와 같이 기기 간 통신 단말의 특성을 보다 효율적으로 지원하기 위해 기기 간 통신 단말의 경우 휴지 상태에서 시스템을 관찰하는 주기인 DRX(Discontinuous reception) 주기를 늘리는 방안이 제안되었다. LTE 시스템에서는 무선 채널을 관찰하는 주기가 DRX 주기와 연동되도록 정의된다. 즉, 단말은 DRX 주기 내에 주어지 수만큼 무선 채널의 수신 감도를 측정하는 동작을 수행하게 된다. 따라서 DRX 주기가 길어질 경우 종래의 채널 변화를 관찰하는 주기가 함께 길어져 무선 환경의 변화를 빠르게 반영하지 못하는 문제가 발생할 수 있다.
본 발명에서는 상기 문제를 해결하기 위해 기기 간 통신 단말이 서빙 기지국을 포함하는 주변 채널 상황에 따라 주변 신호를 측정하는 주기를 변경하여 채널 상황을 빠르게 반영하는 방법을 제안한다.
도 4는 본 발명의 일 실시 예에 따르는 DRX 주기 설정 과정을 나타낸 도면이다. 단계 401에서 기기 간 통신 단말은 DRX 주기 마다 한 번씩 주변 신호를 측정한다. 이하 본 명세서에서는 이와 같이 DRX 주기 마다 사전에 정해진 횟수만큼 주변 신호를 측정하는 상태를 "일반 스캔 모드"("Normal scan mode")라고 칭한다.
이후 단계 402에서 기기 간 통신 단말은 서빙 기지국으로부터 수신한 신호의 세기가 미리 설정된 하한 신호 문턱값보다 작은 것을 감지한다. 이 경우 상기 기기 간 통신 단말은 주변 신호를 측정하는 주기를 기지국과 단말 사이에 약속된 값(원래의 주기보다 작은 값)으로 줄여 보다 빈번하게 주변 신호를 측정한다. 이하 본 명세서에서 이와 같이 보다 빈번하게 주변 신호를 측정하는 상태를 "짧은 스캔 모드"("Short scan mode")라고 칭한다.
상기 기기 간 통신 단말은 이후 단계 403에서 서빙 기지국으로부터 수신한 신호의 세기가 미리 설정된 상한 신호 문턱값을 초과하는 것을 감지한다. 이 경우 기기 간 통신 단말은 주변 신호를 측정하는 주기를 원래대로 원상 회복한다. 또한 상기 기기 간 통신 단말이 새로운 기지국으로 통신 대상을 변경하는 경우(reselection)에도 단계 403에서 원래의 신호 측정 주기(일반 스캔 모드)로 돌아갈 수 있다.
본 명세서에서는 상기 신호 측정 주기를 변경하는 방법으로서 채널 상황에 따라 DRX 주기를 변경하는 방법을 제안한다. 이 때 DRX 주기 내에서 주변 신호를 측정하는 회수는 동일하게 유지될 수 있다. 또한 본 발명에서는 신호 측정 주기를 변경하는 방법으로 DRX 주기를 유지하면서 DRX 주기 내에서 주변 신호 측정하는 회수만 변경하는 방법을 제안한다.
도 5는 본 발명의 제1 실시 예에 따르는 기기 간 통신 단말의 신호 측정 과정의 순서도이다. 기기 간 통신 단말의 서브프레임 k에서의 동작이 기술된다.
도 5를 참조하면, 단계 501에서 기기 간 통신 단말은 해당 단말이 DRX 모드로 동작 중인지를 판단한다. 만약 단말이 DRX 모드로 동작하지 않는다면 종래의 LTE에서 정의하는 동작을 수행한다. 종래 LTE의 동작은 기 공지된 기술이므로 여기서는 상세한 설명을 생략한다. 만약 상기 단말이 DRX 모드로 동작 중이라면 과정은 단계 502로 진행한다.
단계 502에서 기기 간 통신 단말은 서브프레임 k가 주변 신호를 측정하는 주기에 해당하는지 판단한다. 만약 서브프레임 k가 주변 신호를 측정하는 주기에 해당되지 않는다면 단말은 종래의 LTE에서 정의하는 동작을 수행한다. 만약 서브프레임 k가 DRX 모드에서 주변 기지국의 신호를 측정하는 주기에 해당된다면 과정은 단계 503으로 진행한다.
단계 503에서 기기 간 통신 단말은 주변 기지국에 대한 신호 측정 동작을 수행한다. 이후 단말은 단계 504에서 주변 신호들의 과거 측정 값을 새로이 측정한 값에 특정 비율로 반영하는 필터링 동작을 수행한다. 단말은 단계 504에서 필터링된 값을 이후의 단계에서 주변 기지국에 대한 측정값으로 사용한다. 상기 단계 504의 필터링 동작은 생략될 수도 있다. 이후 단계 505에서 상기 단말은 현재 단말이 짧은 주기로 주변 신호들을 수신하는 짧은 스캔 모드(Short scan mode)에서 동작을 수행하고 있는지 판단한다. 만약 짧은 스캔 모드(Short scan mode)가 아니라면 과정은 단계 506으로 진행한다.
상기 단말은 단계 506에서 현재 호 수신을 위해 관찰 중인 서빙 기지국의 신호 측정값이 기지국과 단말 사이에 사전에 정해진 하한 신호 문턱값(threshold_a)보다 작은지 판단한다. 만약 서빙 기지국의 신호 측정값이 하한 신호 문턱값보다 작다면 과정은 단계 507로 진행한다. 상기 단말은 단계 507에서 저장한 이전 측정값들을 초기화한다. 단계 508에서 단말은 DRX 주기를 기지국과 단말 사이에 약속된 새로운 값으로 설정한다. 단계 508에서 설정되는 DRX 주기는 일반 스캔 모드(Normal scan mode)로 동작할 때의 주기보다 작은 값으로 설정할 수 있다. 또한 단말은 단계 508에서 이후 주변 신호를 측정하는 주기를 짧은 스캔 모드(Short scan mode)로 설정한다. 단계 508 이후의 동작은 종래 LTE의 동작을 따른다. 또한 단계 506에서 서빙 기지국의 신호 측정값이 미리 설정된 하한 신호 문턱값보다 크다면 그 이후의 동작은 종래 LTE의 동작을 따른다.
단계 505에서 단말이 짧은 스캔 모드("Short scan mode")로 동작하고 있을 경우 과정은 단계 509로 진행한다. 단계 509에서 단말은 서빙 기지국의 신호 측정값이 사전에 정해진 상한 신호 문턱값(threshold_b)보다 큰지 판단한다. 만약 서빙 기지국의 신호 측정값이 상기 상한 신호 문턱값보다 큰 경우, 과정은 단계 510으로 진행한다.
단말은 단계 510에서 DRX 주기를 종래 일반 스캔 모드(Normal scan mode)에서 사용하던 주기로 다시 설정하고, 주변 신호를 측정하는 방식을 일반 스캔 모드(Normal scan mode)로 설정한다. 단계 510 이후의 동작은 종래 LTE 시스템의 동작을 따른다.
만약 단계 509에서 서빙 기지국의 신호 측정값이 상기 상한 신호 문턱값보다 작은 경우, 과정은 단계 511로 진행한다. 단말은 단계 511에서 서빙 기지국 변경과 관련된 동작을 수행한다. 단계 511의 상세한 동작은 본 발명에서 제안하는 내용이 아니므로 여기서는 상세한 설명을 생략한다. 단계 512에서 단말은 단계 511의 결과로 새로운 서빙 기지국이 선택되었는지 판단한다. 새로운 서빙 기지국이 선택된 경우 과정은 단계 510으로 진행한다. 상술한 바와 같이 단말은 단계 510에서 DRX 주기를 종래 일반 스캔 모드(Normal scan mode)에서 사용하던 주기로 다시 설정하고, 주변 신호를 측정하는 방식을 일반 스캔 모드(Normal scan mode)로 설정한다. 만약 단계 512에서 새로운 서빙 기지국이 선택되지 않았다면 단말은 종래 LTE에서 정의하는 방식에 따라 이후 동작을 수행한다.
도 6은 본 발명의 제2 실시 예에 따르는 기기 간 통신 단말의 신호 측정 과정의 순서도이다. 기기 간 통신 단말의 서브프레임 k에서의 동작이 기술된다.
도 6을 참조하면, 단계 601에서 기기 간 통신 단말은 해당 단말이 DRX 모드로 동작 중인지를 판단한다. 만약 단말이 DRX 모드로 동작하지 않는다면 종래의 LTE에서 정의하는 동작을 수행한다. 종래 LTE의 동작은 기 공지된 기술이므로 여기서는 상세한 설명을 생략한다. 만약 상기 단말이 DRX 모드로 동작 중이라면 과정은 단계 602로 진행한다.
단계 602에서 기기 간 통신 단말은 서브프레임 k가 주변 신호를 측정하는 주기에 해당하는지 판단한다. 만약 서브프레임 k가 주변 신호를 측정하는 주기에 해당되지 않는다면 단말은 종래의 LTE에서 정의하는 동작을 수행한다. 만약 서브프레임 k가 DRX 모드에서 주변 기지국의 신호를 측정하는 주기에 해당된다면 과정은 단계 603으로 진행한다.
단계 603에서 기기 간 통신 단말은 주변 기지국에 대한 신호 측정 동작을 수행한다. 이후 단말은 단계 604에서 주변 신호들의 과거 측정 값을 새로이 측정한 값에 특정 비율로 반영하는 필터링 동작을 수행한다. 단말은 단계 604에서 필터링된 값을 이후의 단계에서 주변 기지국에 대한 측정값으로 사용한다. 상기 단계 604의 필터링 동작은 생략될 수도 있다. 이후 단계 605에서 상기 단말은 현재 단말이 짧은 주기로 주변 신호들을 수신하는 짧은 스캔 모드(Short scan mode)에서 동작을 수행하고 있는지 판단한다. 만약 짧은 스캔 모드(Short scan mode)가 아니라면 과정은 단계 606으로 진행한다.
상기 단말은 단계 606에서 현재 호 수신을 위해 관찰 중인 서빙 기지국의 신호 측정값이 기지국과 단말 사이에 사전에 정해진 하한 신호 문턱값(threshold_a)보다 작은지 판단한다. 만약 서빙 기지국의 신호 측정값이 하한 신호 문턱값보다 작다면 과정은 단계 607로 진행한다. 상기 단말은 단계 607에서 저장한 이전 측정값들을 초기화한다.
단계 608에서 단말은 신호 측정과 관련된 설정들을 기지국과 단말 사이에 약속된 DRX 주기와 무관한 값으로 설정한다. 즉, 단계 608에서 단말은 DRX 주기 내에서 주변 신호를 측정하는 회수를 사전에 정해진 회수 보다 큰 값으로 설정할 수 있다. 또한 주변 신호를 측정하여 신호의 세기를 판단하는 시간을 사전에 정해진 시간보다 짧거나 긴 값으로 설정할 수 있다. 또한 이전에 측정한 신호와 필터링하는 방식을 변경하여 새로이 측정된 값이 최종 측정값에 더 크게 반영되도록 설정할 수 있다. 또한 단말은 단계 608에서 이후 주변 신호를 측정하는 주기를 짧은 스캔 모드("Short scan mode")로 설정한다. 단계 608 이후의 동작은 종래 LTE의 동작을 따른다. 또한 단계 606에서 서빙 기지국의 신호 측정값이 하한 신호 문턱값보다 크다면 그 이후의 동작은 종래 LTE의 동작을 따른다.
단계 605에서 단말이 짧은 스캔 모드("Short scan mode")로 동작하고 있을 경우 과정은 단계 609로 진행한다. 단계 609에서 단말은 서빙 기지국의 신호 측정값이 사전에 정해진 상한 신호 문턱값(threshold_b)보다 큰지 판단한다. 만약 서빙 기지국의 신호 측정값이 상기 상한 신호 문턱값보다 큰 경우, 과정은 단계 610으로 진행한다.
단말은 단계 610에서 신호 측정과 관련된 설정들을 종래 일반 스캔 모드(Normal scan mode)에서 사용하던 값으로 다시 설정하고, 주변 신호를 측정하는 방식을 일반 스캔 모드(Normal scan mode)로 설정한다. 단계 610이후의 동작은 종래 LTE 시스템의 동작을 따른다.
만약 단계 609에서 서빙 기지국의 신호 측정값이 상기 상한 신호 문턱값보다 작은 경우, 과정은 단계 611로 진행한다. 단말은 단계 611에서 서빙 기지국 변경과 관련된 동작을 수행한다. 단계 611의 상세한 동작은 본 발명에서 제안하는 내용이 아니므로 여기서는 상세한 설명을 생략한다. 단계 612에서 단말은 단계 611의 결과로 새로운 서빙 기지국이 선택되었는지 판단한다. 새로운 서빙 기지국이 선택된 경우 과정은 단계 610으로 진행한다. 상술한 바와 같이 단말은 단계 610에서 DRX 주기를 종래 일반 스캔 모드(Normal scan mode)에서 사용하던 주기로 다시 설정하고, 주변 신호를 측정하는 방식을 일반 스캔 모드(Normal scan mode)로 설정한다. 만약 단계 612에서 새로운 서빙 기지국이 선택되지 않았다면 단말은 종래 LTE에서 정의하는 방식에 따라 이후 동작을 수행한다.
도 7은 본 발명의 일 실시 예에 따르는 단말(730) 및 기지국(700)의 블럭구성도이다.
본 발명의 일 실시 예에 따르는 기지국(700)은 스케줄러 및 제어부(Scheduler & Controller)(710), 무선 주파수부(RF unit)(720) 및 데이터 큐(Data Queue)(715)를 포함한다. 본 발명의 일 실시 예에 따르는 단말은 송수신부(transmitter)(735), 디모듈레이터(Demodulator)(740), 디코더(Decoder)(750), 제어부(Controller)(760), 인코더(Encoder)(755) 및 모듈레이터(Modulator)(745)를 포함한다.
상기 기지국(700)의 제어부(710)는 본 발명의 실시 예 중 어느 하나에서 사용하는 여러 문턱값과 설정값, DRX 주기 등 주변 신호 대한 신호 측정 주기를 제어하는 여러 파라미터 값을 설정할 수 있다. 제어부(710)는 상기 파라미터 값을 단말(730)의 호 설정 혹은 종료 시 설정하거나, 단말(730)과 기지국(700)이 무선 접속과 관련된 설정 값들을 협상할 때 설정하거나, 기지국(700) 커버리지 내의 모든 단말(730)들에게 방송의 형태로 전송할 수 있다. 상기 기지국(700)의 데이터 큐(715)는 상위 네트워크 노드로부터 수신한 데이터를 단말(730) 또는 서비스에 따라 분류하여 큐에 저장한다. 스케쥴러 및 제어부(710)는 각 큐에 저장된 데이터를 단말(730)들이 전송하는 순방향 채널 상황 정보, 서비스 특성, 공정성 등을 고려하여 특정 사용자 또는 특정 큐의 데이터를 선별 제어한다. 무선 주파수부(720)는 선별 제어된 데이터 신호나 제어 신호를 상기 단말(730)로 전송한다.
상기 단말(730)의 제어부(760)는 본 발명의 실시 예 중 어느 하나에 따라 주변 신호를 측정하는 주기를 서빙 기지국을 포함하는 주변 기지국의 채널 상황에 따라 증가 혹은 감소시키는 동작을 수행한다. 또한 상기 제어부(760)는 새로운 서빙 기지국을 선택하는 상황이 발생한 경우 주변 신호를 측정하는 주기를 초기 값으로 재설정하는 동작을 수행한다. 상기 단말은 제어부(760)에서 결정한 측정 주기마다 송수신부(735)에서 수신한 신호를 검출한다. 상기 단말(730)은 검출한 신호를 디모듈레이터(740)에서 복조하고, 디코더(750)부에서 복호하여 제어부(760)에서 판단 및 처리한다. 인코더(755)는 송신 대상 데이터를 인코드하고 모듈레이터(745)는 인코드된 데이터를 변조한다.
한편 본 발명의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 안되며 후술하는 특허 청구의 범위뿐만 아니라 이 특허 청구의 범위와 균등한 것들에 의해 정해져야 한다.

Claims (14)

  1. 현재 서브프레임이 측정 주기에 해당하는지 판단하는 단계;
    현재 서브프레임이 측정 주기이면 서빙 셀 신호를 측정하는 단계;
    현재 측정 모드가 일반 스캔 모드인지, 일반 스캔 모드보다 빈번히 서빙 셀 신호를 측정하는 짧은 스캔 모드인지 판단하는 단계;
    현재 측정 모드가 일반 스캔 모드이면 상기 측정된 서빙 셀 신호가 미리 설정된 하한 신호 문턱값 미만인지 판단하는 단계; 및
    상기 측정된 서빙 셀 신호가 상기 하한 신호 문턱값 미만이면 현재 측정 모드를 짧은 스캔 모드로 변경하는 단계를 포함하는 신호 측정 방법.
  2. 제1항에 있어서,
    현재 측정 모드가 일반 스캔 모드이고, 상기 측정된 서빙 셀 신호가 상기 하한 신호 문턱값 미만이면 이전의 측정 결과를 재설정하는 단계를 더 포함하는 신호 측정 방법.
  3. 제2항에 있어서,
    현재 측정 모드가 일반 스캔 모드이고, 상기 측정된 서빙 셀 신호가 상기 하한 신호 문턱값 미만이면 서빙 셀 신호 측정 파라미터를 DRX 독립적 파라미터로 변경하는 단계를 더 포함하는 신호 측정 방법.
  4. 제1항에 있어서,
    현재 측정 모드가 상기 짧은 스캔 모드이면, 상기 측정된 서빙 셀 신호가 미리 설정된 상한 신호 문턱값을 초과하는지 판단하는 단계; 및
    상기 측정된 서빙 셀 신호가 미리 설정된 상한 신호 문턱값을 초과하면 현재 측정 모드를 일반 스캔 모드로 변경하는 단계를 더 포함하는 신호 측정 방법.
  5. 제4항에 있어서,
    현재 측정 모드가 상기 짧은 스캔 모드이고, 상기 측정된 서빙 셀 신호가 미리 설정된 상한 신호 문턱값을 초과하지 않으면, 셀 재선택을 시도하는 단계; 및
    셀 재선택의 시도 결과 셀이 재선택되면 현재 측정 모드를 일반 스캔 모드로 변경하는 단계를 더 포함하는 신호 측정 방법.
  6. 제4항에 있어서,
    현재 측정 모드가 상기 짧은 스캔 모드이고, 상기 측정된 서빙 셀 신호가 미리 설정된 상한 신호 문턱값을 초과하면, 서빙 셀 신호 측정 파라미터를 DRX 독립적 파라미터로 변경하는 단계를 더 포함하는 신호 측정 방법.
  7. 제5항에 있어서,
    셀 재선택의 시도 결과 셀이 재선택되면 서빙 셀 신호 측정 파라미터를 DRX 독립적 파라미터로 변경하는 단계를 더 포함하는 신호 측정 방법.
  8. 현재 서브프레임이 측정 주기에 해당하는지 판단하는 제어부; 및
    현재 서브프레임이 측정 주기이면 서빙 셀 신호를 측정하는 송수신부를 포함하고,
    상기 제어부는 현재 측정 모드가 일반 스캔 모드인지, 일반 스캔 모드보다 빈번히 서빙 셀 신호를 측정하는 짧은 스캔 모드인지 판단하고, 현재 측정 모드가 일반 스캔 모드이면 상기 측정된 서빙 셀 신호가 미리 설정된 하한 신호 문턱값 미만인지 판단하고, 상기 측정된 서빙 셀 신호가 상기 하한 신호 문턱값 미만이면 현재 측정 모드를 짧은 스캔 모드로 변경하는 것을 특징으로 하는 단말.
  9. 제8항에 있어서,
    상기 제어부는 현재 측정 모드가 일반 스캔 모드이고, 상기 측정된 서빙 셀 신호가 상기 하한 신호 문턱값 미만이면 이전의 측정 결과를 재설정하는 것을 특징으로 하는 단말.
  10. 제9항에 있어서,
    상기 제어부는 현재 측정 모드가 일반 스캔 모드이고, 상기 측정된 서빙 셀 신호가 상기 하한 신호 문턱값 미만이면 서빙 셀 신호 측정 파라미터를 DRX 독립적 파라미터로 변경하는 것을 특징으로 하는 단말.
  11. 제8항에 있어서,
    상기 제어부는 현재 측정 모드가 상기 짧은 스캔 모드이면, 상기 측정된 서빙 셀 신호가 미리 설정된 상한 신호 문턱값을 초과하는지 판단하고, 상기 측정된 서빙 셀 신호가 미리 설정된 상한 신호 문턱값을 초과하면 현재 측정 모드를 일반 스캔 모드로 변경하는 것을 특징으로 하는 단말.
  12. 제11항에 있어서,
    상기 제어부는 현재 측정 모드가 상기 짧은 스캔 모드이고, 상기 측정된 서빙 셀 신호가 미리 설정된 상한 신호 문턱값을 초과하지 않으면, 셀 재선택을 시도하고, 셀 재선택의 시도 결과 셀이 재선택되면 현재 측정 모드를 일반 스캔 모드로 변경하는 것을 특징으로 하는 단말.
  13. 제11항에 있어서,
    상기 제어부는 현재 측정 모드가 상기 짧은 스캔 모드이고, 상기 측정된 서빙 셀 신호가 미리 설정된 상한 신호 문턱값을 초과하면, 서빙 셀 신호 측정 파라미터를 DRX 독립적 파라미터로 변경하는 것을 특징으로 하는 단말.
  14. 제12항에 있어서,
    상기 제어부는 셀 재선택의 시도 결과 셀이 재선택되면 서빙 셀 신호 측정 파라미터를 DRX 독립적 파라미터로 변경하는 것을 특징으로 하는 단말.
PCT/KR2012/000148 2011-01-07 2012-01-06 시스템 신호 측정 방법 및 장치 WO2012093887A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/978,520 US9338746B2 (en) 2011-01-07 2012-01-06 Method and apparatus for measuring system signal
EP12732449.9A EP2663119B1 (en) 2011-01-07 2012-01-06 Method and apparatus for measuring system signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110001840A KR20120080403A (ko) 2011-01-07 2011-01-07 시스템 신호 측정 방법 및 장치
KR10-2011-0001840 2011-01-07

Publications (2)

Publication Number Publication Date
WO2012093887A2 true WO2012093887A2 (ko) 2012-07-12
WO2012093887A3 WO2012093887A3 (ko) 2012-11-08

Family

ID=46457872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/000148 WO2012093887A2 (ko) 2011-01-07 2012-01-06 시스템 신호 측정 방법 및 장치

Country Status (4)

Country Link
US (1) US9338746B2 (ko)
EP (1) EP2663119B1 (ko)
KR (1) KR20120080403A (ko)
WO (1) WO2012093887A2 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101617888B1 (ko) 2010-01-08 2016-05-04 삼성전자주식회사 이동통신 시스템에서 고절전 수신모드 디바이스 통신을 위한 페이징 방법 및 장치와 그 시스템
GB2502275B (en) * 2012-05-21 2017-04-19 Sony Corp Telecommunications systems and methods
GB2502274B (en) * 2012-05-21 2017-04-19 Sony Corp Telecommunications systems and methods
WO2016112988A1 (en) * 2015-01-15 2016-07-21 Sony Corporation Radio terminal measurements in extended drx
US10805000B2 (en) 2015-07-23 2020-10-13 Qualcomm Incorporated Method and apparatus for discontinuous transmission in bent-pipe relay in satellite communication systems
WO2018012949A1 (ko) 2016-07-15 2018-01-18 삼성전자 주식회사 이동 통신 시스템의 단말의 상태 제어 방법 및 장치
WO2021062625A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 小区测量的方法与通信装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7321567B2 (en) * 2003-09-30 2008-01-22 Motorola, Inc. Method and apparatus for preventing a spurious retransmission after a planned interruption of communications
US7555319B2 (en) * 2006-03-21 2009-06-30 Telefonaktiebolaget L M Ericsson (Publ) Adaptive power efficient radio environment measurements
KR100938754B1 (ko) 2006-10-30 2010-01-26 엘지전자 주식회사 비연속 수신을 이용한 데이터 수신 및 전송 방법
KR101312876B1 (ko) * 2006-12-13 2013-09-30 삼성전자주식회사 이동통신시스템에서 단말기의 측정 방법 및 장치
KR20080066561A (ko) 2007-01-12 2008-07-16 한국전자통신연구원 패킷 기반 통신 시스템에서 측정 정보 보고 방법
AU2008210980A1 (en) 2007-01-30 2008-08-07 Interdigital Technology Corporation Implicit DRX cycle length adjustment control in LTE_active mode
US8451803B2 (en) * 2007-10-05 2013-05-28 Qualcomm Incorporated Methods and apparatus for managing measurement behavior of DRX mode UE
US8320287B2 (en) * 2008-03-21 2012-11-27 Research In Motion Limited Method and system for the indication of long DRX in a wireless network
US9913206B2 (en) 2008-03-21 2018-03-06 Interdigital Patent Holdings, Inc. Method and apparatus for searching for closed subscriber group cells
US9008647B2 (en) * 2010-05-03 2015-04-14 Intel Mobile Communications GmbH Mobile radio communication network device, mobile terminal, and method for transmission/reception of control information

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2663119A4

Also Published As

Publication number Publication date
KR20120080403A (ko) 2012-07-17
WO2012093887A3 (ko) 2012-11-08
EP2663119B1 (en) 2020-06-10
US9338746B2 (en) 2016-05-10
EP2663119A4 (en) 2017-08-09
EP2663119A2 (en) 2013-11-13
US20140016492A1 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
WO2012093887A2 (ko) 시스템 신호 측정 방법 및 장치
US10735968B2 (en) Method and apparatus for supporting licensed-assisted access technology in wireless communication system
US9814070B2 (en) Small data communications in a wireless communication network
KR101930776B1 (ko) 무선 통신 시스템에서 상시 연결을 위한 시스템 및 방법
WO2013081376A1 (en) Apparatus and method for machine-type communications
EP2749071B1 (en) Mobile communications system, infrastructure equipment, base station and method
EP3583803A2 (en) Method and user equipment for performing initial beam alignment during random access (rach) procedure
WO2015170916A1 (en) Method and device for power saving mode control in mobile communication system
WO2012057407A1 (ko) 장치간 통신을 위한 스케줄링 방법
CN104796986A (zh) 一种d2d通信方法及设备
US20150111574A1 (en) Relay device, wireless terminal device, communication system and communication method
WO2011087298A2 (ko) 이동통신시스템에서 이동성이 낮은 아이들모드 디바이스의 통신을 위한 메저먼트 장치 및 방법
WO2012053857A2 (ko) 무선통신 시스템에서 네트워크 진입/재진입을 수행하는 방법 및 그 장치
WO2016060523A1 (en) Methods and systems for enabling channel measurement of unlicensed carrier in cellular on unlicensed band systems
CN103491578A (zh) 网络分流方法及装置
KR101781761B1 (ko) 통신 제어 장치, 통신 제어 방법, 단말 장치 및 정보 처리 장치
US20210105863A1 (en) Terminal devices, infrastructure equipment and methods
US9615313B2 (en) Method, device, and system for sending and receiving message for proximity service
WO2010143833A2 (ko) 이동통신시스템의 신호 측정 시스템 및 방법
US20230276324A1 (en) Cell Reselection-Related Information Associated with Network Slice or Closed Access Group For Wireless Networks
WO2016064230A1 (en) Method and apparatus for interworking wireless lan according to camping cell
CN104823514B (zh) 建立回程链路方法、装置及系统
CN104684020A (zh) 一种信令拥塞的处理方法、装置、基站及系统
EP3209073A1 (en) Small base station and communication control method therefor
CN106686693B (zh) 一种系统信息的传输方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12732449

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012732449

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13978520

Country of ref document: US