WO2012093697A1 - Exhaust pipe and exhaust pipe manufacturing method - Google Patents

Exhaust pipe and exhaust pipe manufacturing method Download PDF

Info

Publication number
WO2012093697A1
WO2012093697A1 PCT/JP2012/050106 JP2012050106W WO2012093697A1 WO 2012093697 A1 WO2012093697 A1 WO 2012093697A1 JP 2012050106 W JP2012050106 W JP 2012050106W WO 2012093697 A1 WO2012093697 A1 WO 2012093697A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface coating
coating layer
layer
exhaust pipe
inorganic material
Prior art date
Application number
PCT/JP2012/050106
Other languages
French (fr)
Japanese (ja)
Inventor
史幸 陸田
祐生 藤田
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to DE112012000415T priority Critical patent/DE112012000415T5/en
Publication of WO2012093697A1 publication Critical patent/WO2012093697A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/02Surface coverings for thermal insulation

Definitions

  • the present invention relates to an exhaust pipe and an exhaust pipe manufacturing method.
  • a catalytic converter is provided in the path of the exhaust pipe.
  • catalyst activation temperature a temperature suitable for catalyst activation
  • the exhaust gas temperature may temporarily become a high temperature exceeding 1000 ° C., which may deviate from the upper limit value of the catalyst activation temperature.
  • the exhaust pipe connected to the automobile engine is required to be able to radiate the heat of the exhaust gas passing through the exhaust pipe to the outside during the high-speed operation of the automobile engine.
  • Patent Document 1 discloses an exhaust pipe in which a surface coating layer made of a crystalline inorganic material and an amorphous inorganic material is formed on the outer peripheral surface of a cylindrical base material made of metal. Yes.
  • the average thickness of the amorphous inorganic material located on the outer peripheral surface side with respect to the crystalline inorganic material is 20 ⁇ m or less, and it is said that the heat dissipation is excellent.
  • the temperature of the catalytic converter is lower than the catalyst activation temperature when the engine is started. Then, heat is applied to the catalytic converter by the inflow of high-temperature exhaust gas, and the temperature of the catalytic converter reaches the catalyst activation temperature after a predetermined time has elapsed from the start of the engine.
  • an exhaust gas purification system having a mechanism for directly energizing the catalytic converter to increase the temperature of the catalytic converter has been studied. Since an electrode may contact or adjoin to the exhaust pipe used in the exhaust gas purification system that directly energizes the catalytic converter, high insulation is required in order to prevent troubles such as electric leakage.
  • the inventors of the present invention have tried to increase the thickness of the surface coating layer in order to improve insulation in an exhaust pipe having a base material and a surface coating layer used as an exhaust pipe.
  • the insulation is improved by increasing the thickness of the surface coating layer, cracks occur in the surface coating layer in an environment where a thermal shock such as a rapid temperature increase or a rapid temperature decrease of 20 ° C./second or more is applied.
  • the problem that the coating layer was destroyed occurred.
  • the present invention has been made to solve such problems.
  • the present invention can ensure high insulation and can maintain heat resistance at low temperatures and at high temperatures. It aims at providing the exhaust pipe excellent in heat dissipation.
  • the exhaust pipe according to claim 1 is a base material made of metal, An exhaust pipe provided with a surface coating layer containing an amorphous inorganic material formed on the surface of the substrate, There are pores in the surface coating layer, The portion of the surface coating layer in the electron microscope image having a magnification of 500 times in the cross section parallel to the thickness direction of the exhaust pipe is perpendicular to the thickness direction of the exhaust pipe, and the thickness after cutting is the surface coating layer When the five strips are defined by cutting to be 1/5 of the thickness of Among the area of the pores present in the entire surface coating layer, there is at least one pore concentration portion which is a strip portion having pores of 30% or more as the pore area, The strip portion which is the pore concentration portion is a central strip portion of five strip portions or one or two strip portions adjacent to the central strip portion, The pores present in the surface coating layer have independent pores, and the independent pores do not communicate between the outside of the exhaust pipe and the surface of the substrate.
  • the surface covering layer is provided with a pore concentrating portion which is a strip portion in which 30% or more of the pores are present as the area of the pores in the entire surface covering layer. ing. It is considered that a crack generated in the surface coating layer due to thermal shock first occurs on the surface of the surface coating layer and progresses toward the base material in the thickness direction of the surface coating layer. When a crack generated in the surface coating layer develops and collides with an independent pore, the crack is prevented from progressing before the independent pore. That is, if at least one of the strips in the surface coating layer is a pore concentration part, even if a crack occurs on the surface of the surface coating layer, the crack easily collides with independent pores existing in the pore concentration part.
  • the pores have independent pores, and the independent pores do not communicate the outside of the exhaust pipe with the surface of the base material. If the independent pores do not communicate with the outside of the exhaust pipe and the surface of the base material, the crack does not penetrate the surface coating layer when the crack collides with the pores.
  • the surface coating layer is provided with pore concentrating portions, and the independent pores provided in the surface coating layer do not communicate with the outside of the exhaust pipe and the surface of the substrate, the surface coating is caused by thermal shock. Even when cracks occur in the layer, the progress of cracks can be prevented by the independent pores present in the pore concentration portion. As a result, the surface coating layer can be prevented from being destroyed. Therefore, the exhaust pipe can ensure high insulation.
  • the pore ratio is 0.02 or more, pores for preventing the progress of cracks are sufficiently present in the pore concentration portion, and the probability that the cracks collide with the pores increases. Therefore, since the progress of a crack is prevented more reliably, it is more preferable.
  • the surface coating layer further includes a crystalline inorganic material.
  • Crystalline inorganic materials tend to have high infrared emissivity. For this reason, if the surface coating layer contains a crystalline inorganic material, infrared radiation from the crystalline inorganic material is generated, so the emissivity of the surface coating layer increases, and the exhaust pipe has excellent heat dissipation at high temperatures. It can be.
  • the surface coating layer includes an amorphous inorganic material layer containing an amorphous inorganic material, and a mixed layer containing an amorphous inorganic material and a crystalline inorganic material.
  • the pore concentration part includes a boundary between the amorphous inorganic material layer and the mixed layer.
  • the pore concentration part is formed at a position including the boundary between the lower layer and the upper layer. That is, in the exhaust pipe according to claim 4, pores are formed at positions including a boundary between a lower layer (mixed layer or amorphous inorganic material layer) and an upper layer (amorphous inorganic material layer or mixed layer). A concentrated part is formed. If the pore concentrating portion is formed at this position, the thermal stress generated between the upper layer and the lower layer is relieved by the pores existing in the pore concentrating portion, so that the thermal shock resistance is excellent.
  • the crystalline inorganic material contains at least one oxide of manganese, iron, copper, cobalt, chromium, and aluminum.
  • the oxide has a high infrared emissivity, the emissivity of the surface coating layer can be further increased.
  • aluminum oxide when aluminum oxide is used, it contributes to the improvement of the insulation of the exhaust pipe.
  • the number of the pore concentrating portions is one with respect to one surface of the base material, and the strip portion serving as the pore concentrating portion includes five strip portions. This is the central strip.
  • the strength of thermal shock on the surface coating layer tends to increase.
  • the fact that the strip portion which is the pore concentration portion is the central strip portion of the five strip portions means that the pore concentration portion exists at a position where the surface coating layer is divided into two in the thickness direction. That is.
  • the pore concentrating portion exists at a position where the surface coating layer is divided into two in the thickness direction, the surface coating layer is divided into two portions having a half thickness by the pore concentrating portion. Therefore, the strength of the thermal shock on the surface coating layer becomes the same as that when the thickness of the surface coating layer is thin, and the surface coating layer can be more effectively prevented from being destroyed.
  • the number of the pore concentrating portions is two with respect to one surface of the base material, and the strip portion serving as the pore concentrating portion includes five strip portions. Of these, two strip portions adjacent to the central strip portion.
  • the surface coating layer is divided into three portions having a thickness of 1/3 by the two pore concentration portions.
  • the strength of the thermal shock to the surface coating layer is the same as that when the surface coating layer is thin, and the surface coating layer is destroyed. Can be prevented.
  • the thickness of the surface coating layer is 25 to 1000 ⁇ m.
  • the thickness of the surface coating layer is less than 25 ⁇ m, sufficient insulation cannot be secured when used as an exhaust pipe.
  • the thickness of the surface coating layer exceeds 1000 ⁇ m, the strength of the thermal shock to the surface coating layer becomes strong, and the surface coating layer is easily broken.
  • the thermal conductivity of the surface coating layer at room temperature is 0.1 to 2 W / m ⁇ K. If the thermal conductivity of the surface coating layer at room temperature is less than 0.1 W / m ⁇ K, the heat dissipation of the exhaust pipe in the high temperature region is insufficient, and the heat of the exhaust gas passing through the exhaust pipe is difficult to dissipate to the outside. Become. Also, if the thermal conductivity of the surface coating layer at room temperature exceeds 2 W / m ⁇ K, the heat retention of the exhaust pipe in the low temperature region becomes insufficient, and the time until the temperature of the catalytic converter reaches the catalyst activation temperature becomes longer.
  • the volume resistance value of the exhaust pipe is 10 7 to 10 14 ⁇ m. If the volume resistance value of the exhaust pipe is less than 10 7 ⁇ m, there is a risk of leakage from the exhaust pipe.
  • the surface coating layer is formed by coating the surface coating layer forming raw material composition a plurality of times.
  • the surface coating layer is formed by coating the raw material composition for forming the surface coating layer a plurality of times, the surface of the exhaust pipe and the surface of the substrate are formed in the surface coating layer formed by a single coating. Even if there is a communicating hole that communicates, the communicating hole is covered by the next coat. Therefore, the presence of pores communicating with the surface coating layer in the surface coating layer can be reliably prevented. If there are no pores communicating in the surface coating layer, moisture does not touch the surface of the base material, so that the base material made of metal does not rust and can be an exhaust pipe.
  • the surface coating layer further has blind pores, part of which communicates with the outside of the exhaust pipe.
  • Blind pores are pores that do not allow the outside of the exhaust pipe to communicate with the surface of the base material, like the independent pores. Therefore, even if the exhaust pipe has blind pores in the surface coating layer, it is possible to prevent cracks from progressing to the substrate side with respect to the boundary portion between the amorphous inorganic material layer and the mixed layer.
  • the exhaust pipe according to claim 13 a base material made of metal, An exhaust pipe provided with a surface coating layer containing an amorphous inorganic material formed on the surface of the substrate,
  • the surface coating layer has an amorphous inorganic material layer containing an amorphous inorganic material, and a mixed layer containing an amorphous inorganic material and a crystalline inorganic material,
  • the surface coating layer has independent pores, The independent pores do not communicate with the outside of the exhaust pipe and the surface of the base material, and the independent pores are localized at the boundary between the amorphous inorganic material layer and the mixed layer. To do.
  • a crack generated in the surface coating layer due to thermal shock first occurs on the surface of the surface coating layer and progresses toward the base material in the thickness direction of the surface coating layer.
  • a crack generated in the surface coating layer develops and collides with an independent pore, the crack is prevented from progressing before the independent pore.
  • blind pores are pores that do not allow the outside of the exhaust pipe to communicate with the surface of the base material, like the independent pores. Therefore, even if the exhaust pipe has blind pores in the surface coating layer, it is possible to prevent cracks from progressing to the substrate side with respect to the boundary portion between the amorphous inorganic material layer and the mixed layer.
  • the exhaust pipe manufacturing method comprises: Preparing a metal substrate; Preparing a raw material composition for forming a surface coating layer; A method for producing an exhaust pipe, comprising: a surface coating layer forming step of forming the surface coating layer by applying and firing the raw material composition for forming the surface coating layer on the metal substrate, In the step of preparing the surface coating layer forming raw material composition, the amorphous inorganic material layer raw material composition containing an amorphous inorganic material and / or a mixed layer containing an amorphous inorganic material and a crystalline inorganic material A raw material composition was prepared, and a pore-forming material was prepared by blending a pore-forming material with the amorphous inorganic material layer raw material composition or the mixed layer raw material composition, In the surface coating layer forming step, the pore concentration portion forming raw material composition is applied at least once and baked to form pores in the surface coating layer, and the amorphous inorganic material layer raw material composition or the above The mixed layer material
  • a pore-forming material is prepared by blending a pore-forming material with the amorphous inorganic material layer raw material composition or the mixed layer raw material composition, and the pore-concentrating portion-forming raw material composition is prepared.
  • the product is applied and fired. Since the pores are formed at the position where the pore-forming material exists by firing, an exhaust pipe having a pore concentration portion at a desired position of the surface coating layer can be manufactured.
  • the exhaust pipe manufacturing method comprises: Preparing a metal substrate; Preparing a raw material composition for forming a surface coating layer; A method for producing an exhaust pipe, comprising a step of forming a surface coating layer by applying the surface coating layer forming raw material composition a plurality of times on the metal substrate and firing the composition; In the surface coating layer forming step, a step of forming a lower surface coating layer by applying and baking the raw material composition for forming the surface coating layer at least once, A step of roughening the surface of the lower surface coating layer, and The surface coating layer forming raw material composition is applied to the surface of the roughened lower surface coating layer and baked to form an upper surface coating layer. At the same time, the lower surface coating layer and the upper surface coating layer are formed. It is characterized by forming pores between the layers.
  • the process of roughening the surface of the lower surface coating layer is performed.
  • the raw material composition for forming the upper surface coating layer is applied to the surface of the roughened lower surface coating layer, all the concave portions of the roughened surface on the surface of the lower surface coating layer are formed.
  • a space remains between the concave portion of the roughened surface on the surface of the lower surface coating layer and the raw material composition for forming the upper surface coating layer. Since the space becomes pores after firing, independent pores localized at the boundary between the lower surface coating layer and the upper surface coating layer can be formed. And the exhaust pipe which has a pore concentration part in the desired position of a surface coating layer can be manufactured.
  • FIG. 1 is a cross-sectional view schematically showing an example of a cross section of an exhaust pipe according to the first embodiment of the first invention.
  • FIG. 2A is a photograph of a part of the cross section of the exhaust pipe of the first embodiment of the first aspect of the present invention taken with an electron microscope image
  • FIG. 2B is a strip in FIG. It is the photograph which showed the part and the pore.
  • 3 (a), 3 (b), 3 (c) and 3 (d) are cross sections schematically showing an example of a cross section of another exhaust pipe of the first embodiment of the first invention.
  • FIG. FIG. 4 is a cross-sectional view schematically showing an example of a cross section of another exhaust pipe according to the first embodiment of the first invention.
  • FIGS. 5 (a), 5 (b) and 5 (c) are cross-sectional views schematically showing an example of a cross section of still another exhaust pipe of the first embodiment of the first invention.
  • FIGS. 6A and 6B are cross-sectional views schematically showing an example of a cross section of the exhaust pipe of the second embodiment of the first invention.
  • FIGS. 7A and 7B are cross-sectional views schematically showing an example of a cross section of the exhaust pipe of the third embodiment of the first invention.
  • 8 (a), 8 (b) and 8 (c) are cross-sectional views schematically showing a part of the process for manufacturing the exhaust pipe of the third embodiment of the first invention.
  • FIG. 9A and 9B are cross-sectional views schematically showing an example of a cross section of the exhaust pipe of the fourth embodiment of the first invention.
  • FIG. 10 is a cross-sectional view schematically showing an example of a cross section of the exhaust pipe of the fifth embodiment of the first present invention.
  • FIG. 11 is sectional drawing which shows typically an example of the cross section of the exhaust pipe of 6th embodiment of 2nd this invention.
  • 12 is a cross-sectional view showing a case where the surface coating layer in the exhaust pipe shown in FIG. 11 has five strip portions.
  • FIG. 13 is sectional drawing which shows typically an example of the cross section of the exhaust pipe of 7th embodiment of 2nd this invention.
  • FIG. 14 is a cross-sectional view schematically showing an example of a cross section of the exhaust pipe of the eighth embodiment of the second invention.
  • An exhaust pipe according to a first aspect of the present invention is an exhaust pipe including a base material made of a metal and a surface coating layer containing an amorphous inorganic material formed on the surface of the base material.
  • the layer has pores, and the portion of the surface coating layer in the electron microscope image with a magnification of 500 times in the cross section parallel to the thickness direction of the exhaust pipe is perpendicular to the thickness direction of the exhaust pipe.
  • the pores out of the area of the pores existing in the entire surface coating layer There is at least one pore concentrating portion which is a strip portion having pores of 30% or more as an area, and the strip portion serving as the pore concentrating portion is a central strip portion of the five strip portions or the center. Is one or two strip portions adjacent to the strip portion, and is present in the surface coating layer. Hole has a closed cell, and the closed cell is characterized in that that does not communicate with the outside surface of the base material of the exhaust pipe.
  • FIG. 1 is a cross-sectional view schematically showing an example of a cross section of an exhaust pipe according to the first embodiment of the first invention.
  • An exhaust pipe 1 as an example of the exhaust pipe of the present embodiment shown in FIG. 1 includes a base material 10 made of metal and a surface coating layer 20 formed on the surface of the base material 10.
  • Examples of the material of the base material 10 include metals such as stainless steel, steel, iron, and copper, and nickel alloys such as Inconel, Hastelloy, and Invar. Since these metal materials have high thermal conductivity, they can contribute to the improvement of heat dissipation of the exhaust pipe.
  • the shape of the base material 10 is not specifically limited, Since the shape of an exhaust pipe is usually a cylindrical shape, it is preferable to use a cylindrical shape.
  • the surface coating layer 20 has an amorphous inorganic material layer 21 containing an amorphous inorganic material 31 and a mixed layer 22 (22a, 22b) containing an amorphous inorganic material 31 and a crystalline inorganic material 32. Yes.
  • the surface coating layer 20 has a three-layer structure. Specifically, three layers are laminated in the order of the mixed layer 22b, the amorphous inorganic material layer 21, and the mixed layer 22a in this order from the substrate 10 side. Each layer is about 1/3 of the thickness of the surface coating layer 20.
  • the amorphous inorganic material layer 21 is preferably a layer containing a low-melting glass having a softening point of 300 to 1000 ° C. as the amorphous inorganic material 31.
  • the kind of the low-melting glass is not particularly limited, and examples thereof include barium glass, boron glass, strontium glass, alumina silicate glass, soda zinc glass, and soda barium glass. These glasses may be used alone or in combination of two or more.
  • Such a low-melting glass has a softening temperature in the range of 300 to 1000 ° C., it is melted and coated on the outer peripheral surface of the base material, and then subjected to a heat-firing treatment, whereby the outer peripheral surface of the base material is surface-coated.
  • the layer can be formed easily and firmly.
  • the softening point is preferably 300 to 1000 ° C.
  • the softening point of the low-melting glass is less than 300 ° C.
  • the softening glass is easily softened when an exhaust pipe is used, which may cause foreign matters to adhere to the surface coating layer.
  • the softening point of the low-melting glass exceeds 1000 ° C., the base material is likely to be deteriorated by heat treatment when the surface coating layer is formed.
  • the low melting point glass include, for example, SiO 2 —B 2 O 3 —ZnO glass, SiO 2 —B 2 O 3 —Bi 2 O 3 glass, SiO 2 —PbO glass, SiO 2 —PbO. —B 2 O 3 glass, SiO 2 —B 2 O 3 —PbO glass, B 2 O 3 —ZnO—PbO glass, B 2 O 3 —ZnO—Bi 2 O 3 glass, B 2 O 3 — Bi 2 O 3 glass, B 2 O 3 —ZnO glass, BaO—SiO 2 glass, and the like can be given.
  • the softening point should be measured, for example, using a glass automatic softening point / strain point measuring device (SSPM-31) manufactured by Opt Corp., based on the method specified in JIS R 3103-1: 2001. Can do.
  • the amorphous inorganic material may be composed of only one kind of low-melting glass among the above-described low-melting glasses, or may be composed of a plurality of kinds of low-melting glasses.
  • the mixed layer 22 is a layer that includes the amorphous inorganic material 31 included in the amorphous inorganic material layer 21 and further includes the crystalline inorganic material 32.
  • the crystalline inorganic material 32 it is desirable to use an oxide of a transition metal, and it is more desirable that the crystalline inorganic material 32 is an inorganic particle made of at least one oxide of manganese, iron, copper, cobalt, chromium, and aluminum. Inorganic particles composed of these oxides may be used alone or in combination of two or more. Since these transition metal oxides have high infrared emissivity, they contribute to improvement in heat dissipation from the exhaust pipe. In particular, when aluminum oxide is used, it contributes to the improvement of the insulation of the exhaust pipe.
  • pores 33 in the surface coating layer 20 of the exhaust pipe 1 according to the present embodiment are independent pores.
  • the independent pores are pores that exist inside the surface coating layer 20 and are not exposed from the surface of the surface coating layer.
  • the independent pores are pores that do not communicate the outside of the exhaust pipe with the surface of the base material.
  • a pore concentration portion 23 exists in the surface coating layer 20 of the exhaust pipe 1 according to the present embodiment.
  • a method for defining the pore concentration portion 23 will be described with reference to the drawings.
  • the strip portion 20 ⁇ / b> C is a pore concentration portion 23.
  • the pore concentration part 23 is a part of the amorphous inorganic material layer 21. It should be noted that the pores 33 may or may not exist in the parts other than the pore concentration part 23.
  • FIG. 2A is a photograph of a part of the cross section of the exhaust pipe of the first embodiment of the first aspect of the present invention taken with an electron microscope image
  • FIG. 2B is a strip in FIG. It is the photograph which showed the part and the pore.
  • the acceleration voltage is 10.0 kV
  • the magnification is 500 times
  • the photographing region is 250 ⁇ m.
  • the surface coating layer 20 in the exhaust pipe shown in the photographs of FIG. 2A and FIG. 2B is in order of an amorphous inorganic material layer, a mixed layer, and an amorphous inorganic material layer in this order from the base material 10 side. It has a configuration in which three layers are stacked. In the photographs of FIG. 2A and FIG. 2B, the boundary line of each layer cannot be clearly identified, but the thickness of each layer is about 25 ⁇ m.
  • the thickness of the surface coating layer is determined with the upper surface of the surface coating layer 20 as the starting point and the surface of the substrate as the end point, and cutting is performed. And each strip-shaped part cut
  • the position of the upper surface (starting point of cutting) of the surface coating layer 20 is determined, when the upper surface is uneven, the most concave portion is determined as the upper surface of the surface coating layer 20.
  • the position of the upper surface of the surface coating layer 20 is a position indicated by a broken line in FIG. In the photograph shown in FIG. 2B, no conspicuous unevenness exists on the upper surface of the surface coating layer.
  • the most concave portion is determined as the surface of the substrate.
  • the position of the surface of the substrate is the position indicated by the alternate long and short dash line in FIG.
  • the ratio of the area of the pores existing in the entire surface coating layer and the area of the pores existing in each strip portion out of the area of the pores existing in the entire surface coating layer is determined.
  • “pores” existing in the surface coating layer are determined.
  • pores having a pore diameter of 5 ⁇ m or more are referred to as “pores” in a cross-sectional photograph taken with an electron microscope.
  • the “pore diameter” is determined as the diameter of the pore if the shape is circular.
  • the maximum length when a straight line is drawn in the pores is determined as the diameter of the pores.
  • the pores determined as “pores” by the above procedure are indicated by circles.
  • the strip portion C shows the ratio of “the area of pores existing in the strip portion” of each strip portion to “the area of pores existing in the entire surface coating layer” for the strip portions A to E.
  • the ratio is 73.8%, which is 30% or more. Therefore, the strip portion C is defined as the pore concentration portion (pore concentration portion 23).
  • the other strips A, B, D, and E are not pore concentration portions because the ratio is less than 30%.
  • the pore ratio (B / A) which is the ratio of the area (B) occupied by the pores to the area (A) of the strips, is 0.02 or more in the pore concentration portion.
  • the pore ratio is determined by obtaining the area (A) of the strip portion, obtaining the “area of pores existing in the strip portion” (B) of each strip portion, and obtaining the ratio (B / A).
  • the porosity of the strip C shown in FIG. 2 (b) is 0.27.
  • the pore concentrating portion is only the strip portion C, and the number of the pore concentrating portions is one.
  • the number of pore concentrating portions is assumed to be one.
  • the number of pore concentration portions is two.
  • the thickness of the surface coating layer in the exhaust pipe of this embodiment is preferably 25 to 1000 ⁇ m.
  • the thermal conductivity of the surface coating layer at room temperature (25 ° C.) is preferably 0.1 to 2 W / m ⁇ K.
  • the thermal conductivity of the surface coating layer at room temperature is less than 0.1 W / m ⁇ K, the heat dissipation of the exhaust pipe in the high temperature region is insufficient, and the heat of the exhaust gas passing through the exhaust pipe is difficult to dissipate to the outside. Become. Also, if the thermal conductivity of the surface coating layer at room temperature exceeds 2 W / m ⁇ K, the heat retention of the exhaust pipe in the low temperature region becomes insufficient, and the time until the temperature of the catalytic converter reaches the catalyst activation temperature becomes longer.
  • the thermal conductivity of the surface coating layer at room temperature can be measured by a laser flash method.
  • the emissivity of the surface coating layer at a wavelength of 1 to 15 ⁇ m at room temperature (25 ° C.) is desirably 0.6 or more.
  • the emissivity of the surface coating layer at a wavelength of 1 to 15 ⁇ m at room temperature (25 ° C.) is desirably 0.99 or less. This is because it is difficult to increase the emissivity of the surface coating layer beyond 0.99.
  • the place where the electron microscope image of the magnification of 500 times of the cross section parallel to the thickness direction of the exhaust pipe is taken is the center point in the longitudinal direction of the exhaust pipe, the point 1/3 of the length in the longitudinal direction, the longitudinal direction
  • the total number of points is 2/3 of the length.
  • the center point in the longitudinal direction of the exhaust pipe and 1/3 of the length in the longitudinal direction of the portion where the surface coating layer is formed And 2/3 of the length in the longitudinal direction.
  • An exhaust pipe that satisfies the requirements defined in the first aspect of the present invention at any of these three measurement points is the exhaust pipe of the first aspect of the present invention.
  • FIG. 3 (a), 3 (b), 3 (c) and 3 (d) are cross sections schematically showing an example of a cross section of another exhaust pipe of the first embodiment of the first invention.
  • FIG. in the exhaust pipe 50 shown in FIG. 3A the surface coating layer 20 has a three-layer structure.
  • the arrangement of the mixed layer and the amorphous inorganic material layer is opposite to the arrangement of the mixed layer and the amorphous inorganic material layer in the exhaust pipe 1 shown in FIG.
  • three layers are laminated in the order of the amorphous inorganic material layer 21b, the mixed layer 22, and the amorphous inorganic material layer 21a. Is about 1/3 of the thickness of the surface coating layer 20.
  • the pore concentrating part 23 exists in the mixed layer 22 which is a central layer.
  • the surface coating layer 20 is composed of two layers, an amorphous inorganic material layer 21 and a mixed layer 22.
  • the portion of the surface coating layer 20 having a thickness of about 2/3 on the base material side is the mixed layer 22, and the portion of the surface side of the exhaust pipe having a thickness of about 1/3 is amorphous. This is the inorganic material layer 21.
  • the pore concentrating portion 23 exists in the mixed layer 22.
  • the surface coating layer 20 is composed of two layers, an amorphous inorganic material layer 21 and a mixed layer 22.
  • the portion of the surface coating layer 20 having a thickness of about 1/3 on the base material side is the mixed layer 22, and the portion of the surface side of the exhaust pipe having a thickness of about 2/3 is amorphous.
  • This is the inorganic material layer 21.
  • the pore concentration part 23 exists in the amorphous inorganic material layer 21.
  • each of the surface coating layers 20a and 20b has a two-layer structure similar to the surface coating layer shown in FIG.
  • the surface coating layer 20a has a configuration in which two layers are laminated in the order of the mixed layer 22a and the amorphous inorganic material layer 21a in this order from the substrate 10 side.
  • the pore concentration part 23a exists in the mixed layer 22a.
  • the surface coating layer 20b has a configuration in which two layers are laminated in the order of the mixed layer 22b and the amorphous inorganic material layer 21b in this order from the substrate 10 side.
  • the pore concentrating portion 23b exists in the mixed layer 22b.
  • the part having a thickness of about 2/3 on the substrate side is the mixed layer 22a and 22b, and the part having a thickness of about 1/3 on the surface side of the exhaust pipe.
  • the amorphous inorganic material layers 21a and 21b are the amorphous inorganic material layers 21a and 21b.
  • the order of lamination of the mixed layer 22 and the amorphous inorganic material layer 21 is not particularly limited, but as shown in FIGS. 1, 3B, 3C, and 3D. More preferably, the mixed layer 22 is disposed at a position in contact with the substrate 10. Since the adhesive force between the mixed layer 22 and the base material 10 is higher than the adhesive force between the amorphous inorganic material layer 21 and the base material 10, and is more preferable in that the adhesion between the base material and the surface coating layer can be improved. It is.
  • FIG. 4 is a cross-sectional view schematically showing an example of a cross section of another exhaust pipe according to the first embodiment of the first invention.
  • the surface coating layer 20 has a three-layer structure. Specifically, the three layers are laminated in this order from the substrate 10 side in the order of the mixed layer 22, the amorphous inorganic material layer 21b, and the amorphous inorganic material layer 21a.
  • the amorphous inorganic material layer 21 b has many large independent pores 33, and most of the strip portions 20 ⁇ / b> B are the amorphous inorganic material layer 21 b, so that the strip portions 20 ⁇ / b> B become the pore concentration portions 23.
  • the strip portion 20B is a strip portion adjacent to the central strip portion 20C among the five strip portions.
  • a pore forming material was blended with the mixed layer raw material composition and the amorphous inorganic material layer raw material composition in the method of manufacturing the exhaust pipe described later.
  • Application may be performed in the order of the pore concentration portion forming raw material composition and the amorphous inorganic material layer raw material composition, and the thickness of each layer may be adjusted by adjusting the application amount in each application step.
  • 5 (a), 5 (b) and 5 (c) are cross-sectional views schematically showing an example of a cross section of another exhaust pipe according to the first embodiment of the first invention.
  • the shape of a base material differs from the exhaust pipe of 1st embodiment of 1st this invention shown in FIG.
  • the shape of the base material 11 is a semi-cylindrical shape in which the cylinder is cut in half.
  • the surface coating layer 20 is formed on the surface of the base material 11 on the side having a larger area.
  • the configuration of the surface coating layer 20 in the exhaust pipe 90 is the same as the configuration of the surface coating layer 20 in the exhaust pipe 70 shown in FIG.
  • the surface on which the surface coating layer 20 is formed is the surface on the side having a smaller area (the side opposite to the form shown in FIG. 5A). Surface). Further, the surface coating layer 20 may be formed on both surfaces of the base material 11.
  • the shape of the base material 12 is a cylindrical shape.
  • the surface coating layer 20 is formed on the surface of the base material 11 on the side having the larger area (on the outer peripheral surface).
  • the configuration of the surface coating layer 20 in the exhaust pipe 100 is the same as the configuration of the surface coating layer 20 in the exhaust pipe 70 shown in FIG.
  • the surface on which the surface coating layer 20 is formed when the cylindrical substrate 12 is used may be a surface on the side having a smaller area (on the inner peripheral surface).
  • the shape of the base material 12 is a cylindrical shape.
  • the surface coating layer 20 is formed on both surfaces of the surface of the substrate 11, that is, on the outer peripheral surface and the inner peripheral surface.
  • the configuration of the surface coating layers 20a and 20b in the exhaust pipe 110 is the same as the configuration of the surface coating layer 20 in the exhaust pipe 70 shown in FIG.
  • the number of pore concentrating portions 23 is one with respect to one surface of the substrate, and the pore concentrating portions 23 exist in the central strip portion of the five strip portions. That is, the pore concentration part 23 exists in the position which divides the surface coating layer 20 (20a, 20b) into two in the thickness direction.
  • the fact that the pore concentrating portion is provided in the exhaust pipe of the present embodiment does not mean that the pores are evenly distributed in the surface coating layer, and the pores are not present in the portion other than the pore concentrating portion of the surface coating layer. It is shown that there are sites with less (non-stomach concentration part). The part with few pores contributes to the improvement of the mechanical strength and insulation of the entire surface coating layer. This is because the strength of the surface coating layer is higher as the number of pores is smaller, and the volume resistance is higher in a portion having fewer pores.
  • the dielectric breakdown distance of the pores is 3 kV / mm. When 500 V is applied, the insulation does not contribute to the improvement of the insulation without a pore diameter of 167 ⁇ m or more.
  • the exhaust pipe of the present embodiment can exhibit an advantageous effect as compared with the exhaust pipe in which many pores exist in the entire surface coating layer.
  • the method for producing an exhaust pipe according to the first embodiment of the first invention includes a step of preparing a metal substrate, Preparing a raw material composition for forming a surface coating layer;
  • a method for producing an exhaust pipe comprising: a surface coating layer forming step of forming the surface coating layer by applying and firing the raw material composition for forming the surface coating layer on the metal substrate,
  • the amorphous inorganic material layer raw material composition containing an amorphous inorganic material and / or a mixed layer containing an amorphous inorganic material and a crystalline inorganic material
  • a raw material composition was prepared, and a pore-forming material was prepared by blending a pore-forming material with the amorphous inorganic material layer raw material composition or the mixed layer raw material composition,
  • the pore concentration portion forming raw material composition In the surface coating layer forming step, the pore concentration portion forming raw material composition
  • a cleaning process is performed to remove impurities on the surface of the metal base material.
  • the cleaning process is not particularly limited, and a conventionally known cleaning process can be used. Specifically, for example, a method of performing ultrasonic cleaning in an alcohol solvent can be used.
  • the surface of the base material may be roughened to increase the specific surface area of the base material surface or to adjust the surface roughness of the base material.
  • a roughening process such as a sandblast process, an etching process, or a high temperature oxidation process may be performed. These may be used alone or in combination of two or more. You may perform a washing process after this roughening process.
  • a crystalline inorganic material and an amorphous inorganic material are wet-mixed to prepare a mixed layer raw material composition.
  • the powder of the crystalline inorganic material and the powder of the amorphous inorganic material are prepared so as to have a predetermined particle size, shape, etc., and each powder is dry-mixed at a predetermined blending ratio and mixed powder
  • the mixed layer raw material composition is prepared by adding water and wet mixing with a ball mill.
  • the mixing ratio of the mixed powder and water is not particularly limited, but is preferably about 100 parts by weight of water with respect to 100 parts by weight of the mixed powder. It is because it becomes a viscosity suitable for apply
  • a raw material composition for an amorphous inorganic material layer containing an amorphous inorganic material is prepared.
  • Preparation of the raw material composition for the amorphous inorganic material layer can be carried out in the same manner as in the preparation method of the raw material composition for the mixed layer, except that the crystalline inorganic material is not added and dry mixing is not performed. it can.
  • a raw material composition for forming pore concentration parts is prepared.
  • a method for forming the pore concentration part in the raw material composition for the mixed layer, at least one of a pore former, a foaming agent, a hollow filler, and inorganic fibers It is possible to use a method of preparing a pore concentration part forming raw material composition by blending one pore forming material. Among these, it is preferable to use a pore former.
  • the pore former for example, balloons that are fine hollow spheres containing oxide ceramics, spherical acrylic particles, graphite and the like can be used.
  • the raw material composition for an amorphous inorganic material layer when forming a pore concentration part in an amorphous inorganic material layer, at least one of a pore former, a foaming agent, a hollow filler, and an inorganic fiber is used as the raw material composition for an amorphous inorganic material layer.
  • a blending method can be used.
  • the mixed layer raw material composition and the amorphous inorganic material layer raw material composition including the pore concentration portion forming raw material composition are also referred to as a surface coating layer forming raw material composition.
  • the surface of the metal substrate is coated with a surface coating layer forming raw material composition (mixed layer raw material composition).
  • a surface coating layer forming raw material composition mixed layer raw material composition
  • the method for coating the mixed layer material composition include spray coating, electrostatic coating, inkjet, transfer using a stamp or roller, and brushing.
  • the mixed layer 22b, the amorphous inorganic material layer 21 including the pore concentrating portion 23, and the mixed layer 22a are sequentially stacked from the base material side. Therefore, first, the raw material composition for the mixed layer is coated on the surface of the metal substrate.
  • the metal substrate coated with the surface coating layer raw material composition (mixed layer raw material composition) is fired. Specifically, the metal substrate coated with the surface coating layer raw material composition is dried and then heated and fired to form the surface coating layer.
  • the firing temperature is preferably set to be equal to or higher than the softening point of the amorphous inorganic material, and is preferably 700 ° C. to 1100 ° C. depending on the kind of the blended amorphous inorganic material. By setting the firing temperature to a temperature equal to or higher than the softening point of the amorphous inorganic material, the metal substrate and the amorphous inorganic material can be firmly adhered, and the surface coating layer (mixed layer) firmly adhered to the substrate ) Can be formed.
  • a surface coating layer forming raw material composition (a pore concentration portion forming raw material composition) is coated on the surface of the surface coating layer (mixed layer).
  • the pore concentration portion forming raw material composition in which the pore former is blended in the amorphous inorganic material layer raw material composition is coated.
  • a surface coating layer is formed by baking by heating. Since pores are formed by the function of the pore former in the process of drying and heating and firing, the surface coating layer laminated in this step becomes an amorphous inorganic material layer including pore concentration portions.
  • the coating method and drying / firing method of the raw material composition for forming the surface coating layer can be performed in the same manner as in the above steps (5) and (6).
  • a surface coating layer forming raw material composition (mixed layer raw material composition) is coated on the surface of the surface coating layer (amorphous inorganic material layer including pore-concentrated portions). And after drying, a surface coating layer is formed by baking by heating. The surface coating layer laminated in this step becomes a mixed layer.
  • the coating method and drying / firing method of the raw material composition for forming the surface coating layer can be performed in the same manner as in the above steps (5) and (6).
  • the surface covering layer is provided with a pore concentrating portion which is a strip portion in which 30% or more of the pores exist as the area of the pores in the entire surface covering layer. It has been. It is considered that a crack generated in the surface coating layer due to thermal shock first occurs on the surface of the surface coating layer and progresses toward the base material in the thickness direction of the surface coating layer. When a crack generated in the surface coating layer progresses and collides with a pore, the crack is prevented from progressing before the pore.
  • the pores are independent pores, and the pores do not communicate the outside of the exhaust pipe with the surface of the substrate. If the pores do not communicate with the outside of the exhaust pipe and the surface of the substrate, the cracks do not penetrate the surface coating layer when the cracks collide with the pores.
  • the surface coating layer when the surface coating layer is provided with the pore concentrating portions, and the pores provided in the surface coating layer do not communicate with the outside of the exhaust pipe and the surface of the substrate, the surface coating layer is caused by thermal shock. Even if cracks occur in the inside, the progress of cracks can be prevented by the pores present in the pore concentration portion. As a result, the surface coating layer can be prevented from being destroyed. Therefore, the exhaust pipe can ensure high insulation.
  • the pore concentration portion has a pore ratio (B / A) that is a ratio of the area (B) occupied by the pores to the area (A) of the strip portion is 0.02 or more.
  • the pore ratio is 0.02 or more, the pores for preventing the progress of cracks are sufficiently present in the pore concentration portion, and the probability that the cracks collide with the pores increases. Therefore, the progress of cracks can be prevented more reliably.
  • the surface coating layer contains a crystalline inorganic material.
  • the crystalline inorganic material contains at least one oxide of manganese, iron, copper, cobalt, chromium, and aluminum. Since the oxide has a high infrared emissivity, the emissivity of the surface coating layer can be further increased. When the emissivity of the surface coating layer is increased, an exhaust pipe excellent in heat dissipation at high temperatures can be obtained. In particular, when an aluminum oxide is used, it contributes to an improvement in the insulation of the exhaust pipe.
  • the number of the pore concentrating portions is one with respect to one surface of the base material, and the strip portions serving as the pore concentrating portions are five strip portions. Including the case of the central strip portion. If the pore concentrating portion is present in the central strip portion where the surface covering layer is divided into two in the thickness direction, the surface covering layer is divided into two portions having a half thickness by the pore concentrating portion. Will be divided. Therefore, the strength of the thermal shock on the surface coating layer becomes the same as that when the thickness of the surface coating layer is thin, and the surface coating layer can be more effectively prevented from being destroyed.
  • the thickness of the surface coating layer is 25 to 1000 ⁇ m.
  • the thickness of the surface coating layer is less than 25 ⁇ m, sufficient insulation cannot be secured when used as an exhaust pipe.
  • the thickness of the surface coating layer exceeds 1000 ⁇ m, the strength of the thermal shock to the surface coating layer becomes strong, and the surface coating layer is easily broken.
  • a pore forming material is blended with the amorphous inorganic material layer raw material composition or the mixed layer raw material composition to prepare a pore concentration portion forming raw material composition.
  • the metal substrate coated with the raw material composition for forming pore concentration portions is subjected to a firing treatment. Since the pores are formed at the positions where the pore-forming material is present by the above-described treatment, it is possible to manufacture the exhaust pipe having the pore concentration portions at the desired positions of the surface coating layer.
  • a base material made of a metal As a base material made of a metal, a plate-like stainless steel base material (made of SUS430) having a thickness of 2 mm is used as a material, and ultrasonic cleaning is performed in an alcohol solvent. Was roughened. The sand blast treatment was performed for 10 minutes using # 80 Al 2 O 3 abrasive grains. A flat substrate was produced by the above treatment.
  • a cylindrical stainless steel substrate made of SUS430 having a diameter of 40 mm and a thickness of 2 mm as a material
  • the same cleaning treatment and roughening treatment as those performed on the flat substrate were performed, and a cylindrical substrate was obtained.
  • a material was prepared. Further, the cylindrical base material was cut in half to prepare a semi-cylindrical base material.
  • a crystalline inorganic material powder a powder composed of 30 wt% MnO 2 powder, 5 wt% FeO powder, 5 wt% CuO powder, and 5 wt% CoO powder was prepared.
  • K4006A-100M (Bi 2 O 3 -B 2 O 3 glass, softening point 770 ° C.) manufactured by Asahi Glass Co., Ltd. was prepared.
  • As an organic binder methyl cellulose (product name: METOLOSE-65SH) manufactured by Shin-Etsu Chemical Co., Ltd. was prepared.
  • a crystalline inorganic material powder and an amorphous inorganic material powder are dry mixed to prepare a mixed powder, and 100 parts by weight of water is added to 100 parts by weight of the mixed powder.
  • a slurry was prepared by wet mixing with a ball mill.
  • the mixed layer raw material composition two types of mixed layer raw material compositions X and mixed layer raw material composition Y were prepared.
  • the “trace amount” is 0.1 to 3 wt% when the total weight of the mixed layer raw material composition is 100 wt%.
  • a slurry to be the raw material composition for the amorphous inorganic material layer is prepared in the same manner except that the crystalline inorganic material is not used and the dry mixing step is not performed. Prepared.
  • this slurry is also referred to as a raw material composition Z for an amorphous inorganic material layer.
  • the raw material composition for pore concentration part formation prepared by adding a pore former to the raw material composition X for the mixed layer, the raw material composition Y for the mixed layer, and the raw material composition Z for the amorphous inorganic material layer, respectively, These are also referred to as a pore concentration part forming raw material composition X, a pore concentration part forming raw material composition Y, and a pore concentration part forming raw material composition Z.
  • Example 1 The raw material composition X for mixed layers was applied to the surface of a flat substrate by spray coating, and dried at 70 ° C. for 20 minutes in a dryer. Subsequently, a surface coating layer (mixed layer) was formed by heating and baking in air at 850 ° C. for 15 minutes. The thickness of the mixed layer was 25 ⁇ m. This layer is also referred to as the first layer.
  • the pore concentration part forming raw material composition Z was applied to the surface of the mixed layer by spray coating and dried in a dryer at 70 ° C. for 20 minutes.
  • a surface coating layer (amorphous inorganic material layer including pore concentrating portions) was formed by heating and baking in air at 850 ° C. for 15 minutes.
  • the thickness of the amorphous inorganic material layer including the pore concentration portion was 10 ⁇ m. This layer is also called the second layer.
  • the amorphous inorganic material layer raw material composition Z was applied by spray coating on the surface of the amorphous inorganic material layer including the pore-concentrated portions, and dried at 70 ° C. for 20 minutes in a dryer. Subsequently, a surface coating layer (amorphous inorganic material layer) was formed by heating and baking in air at 850 ° C. for 15 minutes. The thickness of the amorphous inorganic material layer was 25 ⁇ m. This layer is also called the third layer.
  • An exhaust pipe was manufactured by the above procedure.
  • the thickness of the surface coating layer of the exhaust pipe thus obtained was 60 ⁇ m. Moreover, the pore concentration part was formed at a position where the surface coating layer was divided into two in the thickness direction.
  • Example 2 Exhaust pipes were manufactured in the same manner as in Example 1 except that the structure of the surface coating layer was changed as shown in Table 1. Examples 2 to 7 differ from Example 1 in the following points.
  • the first layer is 25 ⁇ m using the mixed layer raw material composition X
  • the second layer is 10 ⁇ m using the pore concentration portion forming raw material composition X
  • the amorphous inorganic material layer raw material composition Z was used to form a third layer of 25 ⁇ m.
  • Example 3 the first layer is 25 ⁇ m using the mixed layer raw material composition X on both surfaces of the base material, the second layer is 25 ⁇ m using the pore concentration portion forming raw material composition Z, and for the mixed layer A third layer of 25 ⁇ m was formed using the raw material composition X.
  • Example 4 the first layer is 25 ⁇ m using the amorphous inorganic material layer raw material composition Z, the second layer is 25 ⁇ m using the pore concentration portion forming raw material composition X, and the amorphous inorganic material layer is used.
  • a third layer of 25 ⁇ m was formed using the raw material composition Z.
  • Example 5 the mixed layer raw material composition X is used to form the first layer of 5 ⁇ m, the pore concentration portion forming raw material composition Z is used to form the second layer of 10 ⁇ m, and the mixed layer raw material composition X is used. Three layers were formed to 5 ⁇ m.
  • the first layer is 100 ⁇ m using the mixed layer raw material composition X, the second layer is 50 ⁇ m using the pore concentration portion forming raw material composition Y, amorphous
  • a third layer of 50 ⁇ m was formed using the inorganic material layer raw material composition Z.
  • Example 7 the first layer was 250 ⁇ m using the mixed layer raw material composition X, the second layer was 100 ⁇ m using the pore concentration forming raw material composition Z, and the amorphous inorganic material layer raw material composition Z was used to form a third layer of 50 ⁇ m.
  • the number of pore concentration portions was one for one surface of the substrate.
  • the strip portion serving as the pore concentration portion was the central strip portion of the five strip portions.
  • the strip portion serving as the pore concentration portion is a strip portion (second strip portion from the top counted from the surface) adjacent to the central strip portion among the five strip portions. It was.
  • Example 8 In this example, a semi-cylindrical base material was used as the base material. Then, an exhaust pipe was manufactured in the same manner as in Example 1 except that a surface coating layer was formed on the surface of the semicylindrical base material on the surface having the larger area so as to have the configuration shown in Table 1. Specifically, the first layer is 50 ⁇ m using the mixed layer raw material composition X, the second layer is 50 ⁇ m using the pore concentration portion forming raw material composition X, and the amorphous inorganic material layer raw material composition Z. was used to form a third layer of 35 ⁇ m. Also in the present embodiment, the number of pore concentrating portions is one for one surface of the base material, and the strip portion serving as the pore concentrating portion is the central strip portion of the five strip portions. there were.
  • Example 9 In this example, a cylindrical base material was used as the base material. And the exhaust pipe was manufactured like Example 1 except having formed the surface coating layer on both surfaces of the surface of a cylindrical base material so that it might become the composition shown in Table 1. Specifically, the first layer is 50 ⁇ m using the mixed layer raw material composition X, the second layer is 50 ⁇ m using the pore concentration portion forming raw material composition X, and the amorphous inorganic material layer raw material composition Z. was used to form a third layer of 35 ⁇ m. Also in the present embodiment, the number of pore concentrating portions is one for one surface of the base material, and the strip portion serving as the pore concentrating portion is the central strip portion of the five strip portions. there were.
  • Comparative Examples 1 to 6 In each comparative example, the surface coating layer was formed so as to have the configuration shown in Table 1 without using the pore concentration portion forming raw material composition. In Comparative Examples 1 to 5, a surface coating layer was formed on one side of the substrate. In Comparative Example 1, the first layer is 20 ⁇ m using the mixed layer raw material composition X, the second layer is 20 ⁇ m using the mixed layer raw material composition X, and the third layer using the mixed layer raw material composition X. Was formed to 20 ⁇ m.
  • the first layer is 25 ⁇ m using the mixed layer raw material composition X
  • the second layer is 10 ⁇ m using the amorphous inorganic material layer raw material composition Z
  • the amorphous inorganic material layer raw material composition A third layer of 25 ⁇ m was formed using the object Z.
  • the first layer is 25 ⁇ m using the mixed layer raw material composition X
  • the second layer is 10 ⁇ m using the mixed layer raw material composition X
  • the amorphous inorganic material layer raw material composition Z is used.
  • a third layer of 25 ⁇ m was formed.
  • the first layer was formed to 50 ⁇ m using the mixed layer raw material composition X
  • the second layer was formed to 50 ⁇ m using the mixed layer raw material composition X.
  • the third layer was not formed.
  • a semi-cylindrical base material was used as the base material.
  • the first layer is 50 ⁇ m using the mixed layer raw material composition X
  • the second layer is 50 ⁇ m using the mixed layer raw material composition X
  • the third layer using the amorphous inorganic material layer raw material composition Z.
  • a layer of 35 ⁇ m was formed.
  • a cylindrical base material was used as the base material. And on both surfaces of the surface of the cylindrical base material, the first layer is 50 ⁇ m using the mixed layer raw material composition X
  • the second layer is 50 ⁇ m using the mixed layer raw material composition X
  • the amorphous inorganic material A third layer of 35 ⁇ m was formed using the layer raw material composition Z. In any of the comparative examples, there was no pore concentration portion in the surface coating layer.
  • Thermal shock test Each exhaust pipe was heated to 600 ° C., the 600 ° C. exhaust pipe was dropped into 25 ° C. water to give a thermal shock, and it was visually confirmed whether or not there was peeling on the surface coating layer.
  • “peeling during thermal shock test” in Table 2 “existing” indicates that there was peeling in this test, and “no” indicates that there was no peeling.
  • volume resistance value of each exhaust pipe was measured using a digital ultrahigh resistance / microammeter (model number: R8340) manufactured by Advantest Corporation. The measurement was performed by applying a voltage of 500 V and measuring the resistance value of each exhaust pipe according to the procedure defined in JIS C 2141. In addition, since the volume resistance value of a metal base material is very small, the volume resistance value measured here becomes a value depending on the magnitude of the volume resistance value of a surface coating layer substantially.
  • the emissivity of the surface coating layer of each exhaust pipe was measured using an emissivity meter AERD (manufactured by Kyoto Electronics Industry Co., Ltd.).
  • thermal conductivity of the surface coating layer of each exhaust pipe was measured using a laser flash device (thermal constant measuring device: NETZSCH LFA457 Microflash).
  • Table 2 shows the overall judgment as well as the measurement results for each exhaust pipe in four levels: excellent, good, good, and bad.
  • the overall criteria were as follows. (1) Detachment in thermal shock test: Defect (2) Not applicable to (1), Dielectric withstand voltage “No”: Yes (3) Not applicable to (1) and (2) The volume resistance value is 1. E + 10 [ ⁇ m] or less, emissivity less than 0.80, or surface coating layer thermal conductivity less than 0.5 [W / mK]: Good (4) (1) to (3 ) Not applicable to any of the above: Excellent In Examples 1 to 9 shown in Table 2, the evaluation result of Example 5 was “OK”, but other Examples 1 to 4 and Example 6 The evaluation results of ⁇ 9 were “excellent”.
  • Example 5 the total film thickness of the surface coating layer is as thin as 20 ⁇ m.
  • the insulation withstand voltage became “none” because sufficient insulation could not be secured.
  • the evaluation result was “possible”.
  • Comparative Examples 1 to 6 since the pore concentration portion was not formed, peeling occurred in the thermal shock test, and the evaluation results were all “bad”.
  • FIG. 6A and FIG. 6B are cross-sectional views schematically showing an example of the cross section of the exhaust pipe of the second embodiment of the first present invention.
  • the surface coating layer 20 is composed of only the amorphous inorganic material layer 21, and no mixed layer is present.
  • the pore concentrating portion 23 exists in the central strip portion of the five strip portions.
  • the surface coating layer 20 is composed only of the mixed layer 22, and there is no amorphous inorganic material layer.
  • the pore concentrating portion 23 exists in the central strip portion of the five strip portions.
  • the exhaust pipe of the present embodiment is the raw material composition for forming the surface coating layer, or only the raw material composition for the amorphous inorganic material layer, or It can manufacture by using only the raw material composition for mixed layers.
  • the coating of the raw material composition is made by each coat.
  • the surface coating layer to be formed is divided into five times so that the thickness is the same, and the raw material composition to be coated third is at least one of a pore former, a foaming agent, a hollow filler, and inorganic fibers.
  • blended is mentioned.
  • the coating of the raw material composition is divided into three times so that the thickness of the surface coating layer formed by each coating is the same, and as the raw material composition to be coated second, the above-mentioned pore concentration portion forming Even when the raw material composition is used, the pore concentration portion can be formed in the central strip portion of the five strip portions with high probability.
  • a pore concentration part can be formed in a desired position also by changing suitably the thickness of the surface coating layer formed by a coating according to the frequency
  • the exhaust pipe of this embodiment can exhibit the effects (1), (2), (4), and (5) of the exhaust pipe of the first embodiment of the first invention. Further, when the surface coating layer is composed only of the mixed layer, the effect (3) of the exhaust pipe of the first embodiment of the first aspect of the present invention can be exhibited.
  • Example 10 Similarly to the procedure performed in Example 1 of the first embodiment of the first aspect of the present invention, the structure of the surface coating layer was changed as shown in Table 3 to manufacture an exhaust pipe.
  • the first layer is 50 ⁇ m using the amorphous inorganic material layer raw material composition Z, and the pore concentrated portion forming raw material composition Z is used for the second.
  • a third layer was formed to 50 ⁇ m using the raw material composition Z for an amorphous inorganic material layer.
  • Example 11 on both surfaces of the surface of the cylindrical base material, the first layer is 50 ⁇ m using the mixed layer raw material composition X, the second layer is 50 ⁇ m using the pore concentration portion forming raw material composition X, A third layer of 50 ⁇ m was formed using the mixed layer raw material composition X.
  • the number of pore concentrating portions is one for one surface of the substrate, and the strip portion serving as the pore concentrating portion is the central strip portion of the five strip portions.
  • Met That is, in Example 10, a surface coating layer consisting only of an amorphous inorganic material layer was formed, and in Example 11, a surface coating layer consisting only of a mixed layer was formed. Evaluation similar to Example 1 of 1st embodiment of 1st this invention was performed, and the evaluation result of each Example was shown in Table 4.
  • Example 10 The overall judgment of Example 10 was “excellent”, and the overall judgment of Example 11 was “good”.
  • the pore concentrating portion was provided, no peeling occurred in the thermal shock test, and the surface coating layer was prevented from being broken.
  • the volume resistance value of the surface coating layer is 1. It was as high as E + 13 [ ⁇ m].
  • the exhaust pipe according to Example 11 has a surface coating layer composed of only a mixed layer and does not have an amorphous inorganic material layer, the volume resistance value of the surface coating layer is 1. It was as low as E + 08 [ ⁇ m]. Therefore, the evaluation result was “good”.
  • a third embodiment which is an embodiment of the exhaust pipe of the first invention and the method of manufacturing the exhaust pipe of the first invention.
  • the exhaust pipe of the third embodiment of the first aspect of the present invention differs from the first embodiment of the first aspect of the present invention in the method of forming the pore concentration portion.
  • the surface coating layer is divided into a plurality of layers.
  • the lower surface coating layer and the upper surface coating layer are formed by roughening the surface of the lower layer of the surface coating layer and forming an upper surface coating layer on the roughened surface.
  • a pore is formed at the boundary of the.
  • a portion including the boundary between the lower surface coating layer and the upper surface coating layer including the pores formed in this manner is a pore concentration portion.
  • the exhaust pipe of the present embodiment also has a pore concentrating portion, and the pore concentrating portion in the present embodiment is the same method as the method of defining the pore concentrating portion in the exhaust pipe of the first embodiment of the first present invention. It is determined using The “lower layer” refers to a layer on the side close to the substrate of the surface coating layer, and the “upper layer” refers to a layer on the side closer to the surface of the surface coating layer.
  • FIGS. 7A and 7B are cross-sectional views schematically showing an example of a cross section of the exhaust pipe of the third embodiment of the first invention.
  • the surface coating layer 20 includes a mixed layer 22a, an amorphous inorganic material layer 21, and a mixed layer 22b.
  • the pore concentration part 23 includes a boundary between the mixed layer 22 b on the side close to the base material 10 (lower layer) and the amorphous inorganic material layer 21.
  • the strip portion which is the pore concentrating portion 23 in FIG. 7A is a strip portion located second from the bottom among the five strip portions, and can be said to be a strip portion adjacent to the central strip portion. .
  • the structure of the surface coating layer 20 is the same as that of the exhaust pipe shown in FIG. 7A, but the thickness of the mixed layer 22b is the same as that of the amorphous inorganic material layer 21. It is almost equal to the total thickness of the thickness and the thickness of the mixed layer 22a. Therefore, the strip portion which is the pore concentrating portion 23 is a central strip portion of the five strip portions, and exists at a position where the surface coating layer 20 is divided into two in the thickness direction.
  • the method for producing an exhaust pipe according to the third embodiment of the first invention includes a step of preparing a metal substrate, Preparing a raw material composition for forming a surface coating layer;
  • a method for producing an exhaust pipe comprising a step of forming a surface coating layer by applying the surface coating layer forming raw material composition a plurality of times on the metal substrate and firing the composition;
  • the surface coating layer forming step a step of forming a lower surface coating layer by applying and baking the raw material composition for forming the surface coating layer at least once, A step of roughening the surface of the lower surface coating layer, and The surface coating layer forming raw material composition is applied to the surface of the roughened lower surface coating layer and baked to form an upper surface coating layer.
  • the exhaust according to the third embodiment of the first invention is taken as an example in the case of manufacturing the exhaust pipe 140 of the third embodiment of the first invention schematically shown in FIG. A method of manufacturing the tube will be described.
  • 8 (a), 8 (b) and 8 (c) are cross-sectional views schematically showing a part of the process for manufacturing the exhaust pipe of the third embodiment of the first invention.
  • FIG. 8A shows a state in which the mixed layer 22 b is formed on the base material 10.
  • FIG. 8B shows a state in which the surface of the mixed layer 22b has been roughened.
  • a roughening method sandblasting, etching, or the like can be used.
  • the surface roughness Rz JIS of the roughened surface is preferably 0.1 to 100 ⁇ m.
  • the surface roughness Rz JIS of the roughened surface can be measured according to JIS B 0601 (2001). When the surface roughness Rz JIS of the roughened surface is less than 0.1 ⁇ m, pores may not be sufficiently formed between the lower surface coating layer and the upper surface coating layer. The relaxation effect of is reduced.
  • the surface roughness Rz JIS of the roughened surface exceeds 100 ⁇ m, the adhesion area between the lower surface coating layer and the upper surface coating layer becomes small, and therefore the lower surface coating layer and the upper surface coating layer Adhesion decreases.
  • the surface roughness Rz JIS of the roughened surface can be measured according to JIS B 0601 (2001) using Handy Surf E-35B manufactured by Tokyo Seimitsu.
  • a surface coating layer forming raw material composition (amorphous inorganic material layer raw material composition) is coated on the surface of the lower surface coating layer subjected to the roughening treatment, dried, and then heated and fired. An amorphous inorganic material layer is formed.
  • FIG. 8C shows a state in which the amorphous inorganic material layer 21 is formed on the mixed layer 22b.
  • An upper surface coating layer (mixed layer) is formed on the substrate in the same manner as in the exhaust pipe manufacturing process (8) of the first embodiment of the first invention (not shown).
  • the exhaust pipe of the present embodiment (the exhaust pipe 140 schematically shown in FIG. 7A) can be manufactured.
  • the exhaust pipe 140 shown to Fig.7 (a) is only an example of the exhaust pipe of 3rd embodiment of 1st this invention, and is in the surface coating layer of the exhaust pipe of 3rd embodiment.
  • the position of the pore concentration portion is not limited to the position including the boundary between the lower mixed layer and the amorphous inorganic material layer.
  • the surface coating layer may consist of only an amorphous inorganic material layer or a mixed layer like the exhaust pipe of the second embodiment.
  • the exhaust pipe of this embodiment can exhibit the effects (1) to (5) of the exhaust pipe of the first embodiment of the first invention. Moreover, the manufacturing method of the exhaust pipe of this embodiment can exhibit the following effects. (7)
  • a step of roughening the surface of the lower surface coating layer is performed.
  • the raw material composition for forming the upper surface coating layer is applied to the surface of the roughened lower surface coating layer, all the concave portions of the roughened surface on the surface of the lower surface coating layer are formed. However, a space remains between the concave portion of the roughened surface on the surface of the lower surface coating layer and the raw material composition for forming the upper surface coating layer. Since the space becomes pores after firing, independent pores localized at the boundary between the lower surface coating layer and the upper surface coating layer can be formed. And the exhaust pipe which has a pore concentration part in the desired position of a surface coating layer can be manufactured.
  • Example 12 In the same manner as the procedure performed in Example 1 of the first embodiment of the first aspect of the present invention, a base material, a mixed layer raw material composition X, and an amorphous inorganic material layer raw material composition Z were prepared.
  • the raw material composition X for the mixed layer was applied to the surface of the flat substrate by spray coating, and the inside of the dryer And dried at 70 ° C. for 20 minutes.
  • a surface coating layer (mixed layer, first layer) was formed by heating and baking in air at 850 ° C. for 15 minutes. The thickness of the mixed layer was 20 ⁇ m.
  • the surface of the mixed layer was roughened by sandblasting.
  • the surface roughness Rz JIS of the surface of the roughened mixed layer was 10 ⁇ m.
  • the surface roughness Rz JIS of the roughened surface was measured according to JIS B 0601 (2001) using Handy Surf E-35B manufactured by Tokyo Seimitsu Co., Ltd.
  • the raw material composition for the amorphous inorganic material layer is formed by spray coating in the same manner as the procedure performed in Example 1 of the first embodiment of the first invention.
  • Product Z was applied and dried in a dryer at 70 ° C. for 20 minutes.
  • the surface coating layer (amorphous inorganic material layer, 2nd layer) was formed by heat-baking for 15 minutes at 850 degreeC in the air.
  • the thickness of the amorphous inorganic material layer was 20 ⁇ m.
  • the mixed layer raw material composition X was applied to the surface of the amorphous inorganic material layer by spray coating, and dried in a dryer at 70 ° C. for 20 minutes.
  • a surface coating layer (mixed layer, third layer) was formed by heating and baking in air at 850 ° C. for 15 minutes. The thickness of the mixed layer was 20 ⁇ m.
  • An exhaust pipe was manufactured by the above procedure. Table 5 collectively shows the structure of the surface coating layer of the exhaust pipe manufactured in Example 12. In the exhaust pipe manufactured in Example 12, the pore concentration portion was present at a position including the boundary between the layer 1 (lower mixed layer on the base material side) and the layer 2 (amorphous inorganic material layer).
  • the position of such a pore concentration portion is indicated as “between layer 1 and layer 2”.
  • the “roughening” column shows “Yes” when the surface of each layer was roughened, and “None” when the surface was not roughened.
  • the third layer indicated by “Layer 3” is a layer that appears on the surface of the exhaust pipe, and since the surface is not subjected to roughening treatment, the “roughening” column is not provided.
  • Example 13 to 19 Exhaust pipes were manufactured in the same manner as in Example 12 except that the configuration of the surface coating layer was changed as shown in Table 5. Examples 13 to 19 differ from Example 12 in the following points.
  • the first layer is 20 ⁇ m using the amorphous inorganic material layer raw material composition Z
  • the second layer is 20 ⁇ m using the mixed layer raw material composition X
  • the amorphous inorganic material layer raw material composition The third layer was formed to 20 ⁇ m using the object Z. The roughened surface was formed on the surface of the first layer.
  • Example 14 the first layer is 20 ⁇ m using the mixed layer raw material composition X, the second layer is 20 ⁇ m using the amorphous inorganic material layer raw material composition Z, and the mixed layer raw material composition X is used.
  • the third layer was formed to 20 ⁇ m.
  • the roughened surface was formed on the surface of the second layer.
  • the first layer is 20 ⁇ m using the amorphous inorganic material layer raw material composition Z
  • the second layer is 20 ⁇ m using the mixed layer raw material composition X
  • the amorphous inorganic material layer raw material composition The third layer was formed to 20 ⁇ m using the object Z.
  • the roughened surface was formed on the surface of the second layer.
  • Example 16 the first layer is 40 ⁇ m using the mixed layer raw material composition X, the second layer is 20 ⁇ m using the amorphous inorganic material layer raw material composition Z, and the mixed layer raw material composition X is used.
  • the third layer was formed to 20 ⁇ m.
  • the roughened surface was formed on the surface of the first layer.
  • Example 17 the first layer is 40 ⁇ m using the amorphous inorganic material layer raw material composition Z, the second layer is 20 ⁇ m using the mixed layer raw material composition X, and the amorphous inorganic material layer raw material composition
  • the third layer was formed to 20 ⁇ m using the object Z. The roughened surface was formed on the surface of the first layer.
  • Example 18 the first layer is 20 ⁇ m using the mixed layer raw material composition X, the second layer is 20 ⁇ m using the mixed layer raw material composition X, and the third layer using the mixed layer raw material composition X. was formed to 20 ⁇ m.
  • the roughened surface was formed on the surface of the first layer.
  • the first layer is 20 ⁇ m using the amorphous inorganic material layer raw material composition Z
  • the second layer is 20 ⁇ m using the amorphous inorganic material layer raw material composition Z
  • the amorphous inorganic material A third layer of 20 ⁇ m was formed using the layer raw material composition Z.
  • the roughened surface was formed on the surface of the first layer.
  • Example 14 and 15 the roughening treatment was performed on the surface of the layer indicated by Layer 2, and a pore concentration portion was formed between Layer 2 and Layer 3.
  • Example 16 and 17 as shown in FIG. 7B, the thickness of the layer 1 is increased to 40 ⁇ m, and the roughening treatment is performed on the surface of the layer indicated by the layer 1, whereby the layer 1 to the layer 2 A pore concentration part was formed between them. That is, the pore concentrating portion was formed at a central strip portion of the five strip portions, that is, at a position where the surface coating layer was divided into two in the thickness direction.
  • Example 18 a surface coating layer consisting only of a mixed layer was formed, and in Example 19, a surface coating layer consisting only of an amorphous inorganic material layer was formed.
  • Example 20 to 23 Exhaust pipes were manufactured in the same manner as in Example 12 except that the configuration of the surface coating layer was changed as shown in Table 5. Examples 20 to 23 differ from Example 12 in the following points.
  • the first layer was formed to 50 ⁇ m using the mixed layer raw material composition X
  • the second layer was formed to 30 ⁇ m using the amorphous inorganic material layer raw material composition Z.
  • the third layer was not formed.
  • the roughened surface was formed on the surface of the first layer.
  • Example 21 the first layer was formed to 30 ⁇ m using the amorphous inorganic material layer raw material composition Z
  • the second layer was formed to 50 ⁇ m using the mixed layer raw material composition X.
  • the third layer was not formed.
  • the roughened surface was formed on the surface of the first layer.
  • the first layer was formed to 20 ⁇ m using the mixed layer raw material composition X, and the second layer was formed to 200 ⁇ m using the amorphous inorganic material layer raw material composition Z.
  • the third layer was not formed.
  • the roughened surface was formed on the surface of the first layer.
  • the first layer was formed to 100 ⁇ m using the amorphous inorganic material layer raw material composition Z
  • the second layer was formed to 100 ⁇ m using the amorphous inorganic material layer raw material composition Z.
  • the third layer was not formed.
  • the roughened surface was formed on the surface of the first layer.
  • Example 12 to 17 and Examples 19 to 23 The overall judgment of Examples 12 to 17 and Examples 19 to 23 was “excellent”, and the overall judgment of Example 18 was “good”.
  • the pore concentrating portion since the pore concentrating portion was provided, no peeling occurred in the thermal shock test, and the surface coating layer was prevented from being broken.
  • the exhaust pipes according to Examples 12 to 17 and Examples 19 to 23 have a surface coating layer made of an amorphous inorganic material layer, the volume resistance value of the surface coating layer is 1. It was higher than E + 10 [ ⁇ m].
  • the exhaust pipe according to Example 18 has a surface coating layer composed of only a mixed layer and does not have an amorphous inorganic material layer, the volume resistivity of the surface coating layer is 1. It was as low as E + 08 [ ⁇ m]. Therefore, the evaluation result was “good”.
  • the pore concentration portion since the pore concentration portion was provided, no peeling occurred in the thermal shock test, and the surface coating layer was prevented from being destroyed.
  • FIGS. 9A and 9B are cross-sectional views schematically showing an example of a cross section of the exhaust pipe of the fourth embodiment of the first invention.
  • a pore concentrating portion is formed by blending a pore former or the like into the surface coating layer raw material composition. Is formed.
  • the surface coating layer includes a mixed layer 22a, an amorphous inorganic material layer 21a, a mixed layer 22b, an amorphous inorganic material layer 21b, and a mixed layer 22c.
  • the thicknesses of the mixed layer 22a, the amorphous inorganic material layer 21a, the mixed layer 22b, the amorphous inorganic material layer 21b, and the mixed layer 22c are the same.
  • each layer of the mixed layer 22a, the amorphous inorganic material layer 21a, the mixed layer 22b, the amorphous inorganic material layer 21b, and the mixed layer 22c can be regarded as five strip portions.
  • the amorphous inorganic material layer 21a is a pore concentration portion 23a
  • the amorphous inorganic material layer 21b is a pore concentration portion 23b. That is, the number of pore concentrating portions is two with respect to one surface of the base material, and two strip portions adjacent to the mixed layer 22b that is the central strip portion among the five strip portions are amorphous.
  • the inorganic material layer 21 a and the amorphous inorganic material layer 21 b serve as the pore concentration part 23. It can be said that the pore concentration portion 23a and the pore concentration portion 23b are present at positions where the surface coating layer 20 is divided into three in the thickness direction.
  • the pore concentrating portion is formed by roughening the surface of the lower layer of the surface coating layer, similarly to the exhaust pipe of the third embodiment of the first present invention.
  • the surface coating layer includes a mixed layer 22a, an amorphous inorganic material layer 21, and a mixed layer 22b.
  • the number of pore concentration portions is two, and the pore concentration portion 23a is a strip portion including a boundary between the mixed layer 22a on the surface side (upper layer) of the surface coating layer and the amorphous inorganic material layer 21,
  • the concentrated portion 23 b is a strip portion including a boundary between the mixed layer 22 b on the side close to the substrate 10 (lower layer) and the amorphous inorganic material layer 21.
  • the pore concentrating portion 23a and the pore concentrating portion 23b are two strip portions adjacent to the central strip portion of the five strip portions. It exists at a position that is divided into three in the direction.
  • the exhaust pipe of the present embodiment forms a pore concentrating portion in the exhaust pipe manufacturing method of the first embodiment of the first aspect of the present invention or the exhaust pipe manufacturing method of the third embodiment of the first aspect of the present invention. It can be manufactured in the same manner except that the step (application of the raw material composition for forming the pore concentrating portion or roughening treatment of the surface coating layer) is performed twice (two locations).
  • the exhaust pipe of the present embodiment is the operation effect (1) to (3), (5) to (7) of the exhaust pipe of the first embodiment of the first invention or the third embodiment of the first invention. Can be demonstrated. Further, the following effects can be exhibited.
  • the number of pore concentrating portions is two with respect to one surface of the base material, and the strip portions serving as the pore concentrating portions are among the five strip portions. These are two strip portions adjacent to the central strip portion. That is, the pore concentration portion exists at a position where the surface coating layer is divided into three in the thickness direction.
  • the surface coating layer is divided into three portions having a thickness of 1/3 by the two pore concentrating portions. become. Therefore, the strength of the thermal shock on the surface coating layer becomes the same as that when the thickness of the surface coating layer is thin, and the surface coating layer can be more effectively prevented from being destroyed.
  • Example 24 The exhaust pipe was manufactured by changing the configuration of the surface coating layer as shown in Table 7 in the same manner as the procedure performed in Example 1 of the first embodiment of the first present invention.
  • Example 24 is different from Example 1 of the first embodiment of the first aspect of the present invention in the following points.
  • the first layer was 30 ⁇ m using the mixed layer raw material composition X
  • the second layer was 10 ⁇ m using the pore-concentrated portion forming raw material composition Z
  • the mixed layer raw material composition X was used.
  • the third layer was formed to 20 ⁇ m
  • the pore-concentrated portion forming raw material composition Z was used to form the fourth layer of 10 ⁇ m
  • the mixed layer raw material composition X was used to form the fifth layer of 30 ⁇ m.
  • the fourth layer and the fifth layer were formed by forming a surface coating layer on the third layer in the same manner as the method for forming the first layer to the third layer.
  • Example 25 In the same manner as the procedure performed in Example 12 of the third embodiment of the first invention, the structure of the surface coating layer was changed as shown in Table 7 to manufacture an exhaust pipe.
  • Example 25 differs from Example 12 of the third embodiment of the first invention in the following points.
  • the first layer is 20 ⁇ m using the mixed layer raw material composition X
  • the second layer is 20 ⁇ m using the amorphous inorganic material layer raw material composition Z
  • the mixed layer raw material composition X is used.
  • the third layer was formed to 20 ⁇ m.
  • the roughened surface was formed on the surface of the first layer and the surface of the second layer. As a result, pore-concentrated portions were formed at two locations between layer 1 and layer 2 and between layer 2 and layer 3.
  • the position where the pore concentration portion includes the boundary between layer 1 (mixed layer on the lower layer on the base material side, first layer) and layer 2 (amorphous inorganic material layer, second layer), and layer 2 and layer 3 ( It existed in the strip part including the boundary of the surface layer (upper layer) mixed layer, the third layer) of the surface coating layer.
  • the item “pore forming material or roughening” indicates the presence or absence of the pore forming material in the raw material composition for forming the surface coating layer in Example 24, and the presence or absence of the roughening treatment applied to the surface of each layer in Example 25. Is shown. Evaluation similar to Example 1 of 1st embodiment of 1st this invention was performed, and the evaluation result of each Example was shown in Table 8.
  • Example 24 and Example 25 the evaluation result was “excellent”. In both Example 24 and Example 25, since the pore concentration portion was provided, no peeling occurred in the thermal shock test, and the surface coating layer was prevented from being destroyed.
  • FIG. 10 is a cross-sectional view schematically showing an example of a cross section of the exhaust pipe of the fifth embodiment of the first invention.
  • An exhaust pipe 180 according to the fifth embodiment of the first invention shown in FIG. 10 has blind pores 34 partially communicating with the outside of the exhaust pipe in the surface coating layer.
  • the other structure is the same as that of the exhaust pipe 1 of 1st embodiment of 1st this invention shown in FIG.
  • Blind pores are pores that partially communicate with the outside of the exhaust pipe. In other words, the blind pores indicate portions that are exposed to the surface coating layer and are recessed.
  • the blind pores do not communicate with the outside of the exhaust pipe and the surface of the base material, and are not pores reaching the surface of the base material.
  • the exhaust pipe of the present embodiment is used as a surface coating layer forming raw material composition for forming a surface coating layer that is the uppermost layer. It can manufacture by using the raw material composition for pore concentration part formation.
  • the exhaust pipe of this embodiment can exhibit the effects (1) to (5) of the exhaust pipe of the first embodiment of the first invention. It is also possible to provide blind pores in the exhaust pipe of the third embodiment of the first invention or the exhaust pipe of the fourth embodiment of the first invention. In that case, the effect (7) of the manufacturing method of the exhaust pipe of the third embodiment of the first aspect of the present invention or the effect (8) of the exhaust pipe of the fourth embodiment of the first aspect of the present invention is exhibited. Can do.
  • the sixth embodiment which is an embodiment of the exhaust pipe of the second invention, will be described below with reference to the drawings.
  • the exhaust pipe of the second aspect of the present invention comprises a base material made of metal, An exhaust pipe provided with a surface coating layer containing an amorphous inorganic material formed on the surface of the substrate,
  • the surface coating layer has an amorphous inorganic material layer containing an amorphous inorganic material, and a mixed layer containing an amorphous inorganic material and a crystalline inorganic material,
  • the surface coating layer has independent pores, The independent pores do not communicate with the outside of the exhaust pipe and the surface of the base material, and the independent pores are localized at the boundary between the amorphous inorganic material layer and the mixed layer. To do.
  • FIG. 11 is sectional drawing which shows typically an example of the cross section of the exhaust pipe of 6th embodiment of 2nd this invention.
  • the surface coating layer 220 includes a mixed layer 222a, an amorphous inorganic material layer 221, and a mixed layer 222b.
  • the composition of the mixed layers 222a and 222b in the exhaust pipe of the sixth embodiment of the second invention is the same as the composition of the mixed layer 22 in the first embodiment of the first invention.
  • the composition of the amorphous inorganic material layer 221 in the exhaust pipe of the sixth embodiment of the second invention is the same as the composition of the amorphous inorganic material layer 21 in the first embodiment of the first invention.
  • the thickness of the surface coating layer 220 is 25 to 1000 ⁇ m.
  • the surface coating layer 220 has independent pores 233, and the independent pores 233 do not communicate the outside of the exhaust pipe 200 with the surface of the substrate 10.
  • the independent pores 233 are localized at the boundary between the mixed layer 222b and the amorphous inorganic material layer 221.
  • independent pores are localized at the boundary between the mixed layer and the amorphous inorganic material layer.
  • Independent pores are localized at the boundary between the mixed layer and the amorphous inorganic material layer” means that the entire surface coating layer is located in a region within 40% of the thickness of the surface coating layer with the center line of the boundary as the center. In the area of the independent pores existing in the above, it means a state in which 60% or more of the independent pores exist as the pore area.
  • the surface of the mixed layer 222b is not a smooth surface but a roughened surface, and independent pores 233 exist between the mixed layer 222b and the amorphous inorganic material layer 221.
  • the boundary portion between the mixed layer and the amorphous inorganic material layer is a portion determined by the following method.
  • a line 240L passing through the lowest part of the roughened surface of the lower layer (mixed layer 222b in the exhaust pipe 200 shown in FIG. 11) is drawn, and a line 240H passing through the highest part of the roughened surface of the lower layer is drawn.
  • the middle line 240M of the line 240L and the line 240H is drawn.
  • the middle line 240M determined in this way becomes the center line of the boundary portion.
  • the line 240L, the line 240H, and the line 240M are parallel lines.
  • the thickness of the surface coating layer 220 is obtained.
  • the method for determining the thickness of the surface coating layer 220 is a method for determining the thickness of the surface coating layer with the upper surface of the surface coating layer 220 as the starting point and the surface of the substrate as the ending point. This is the same as the method used when determining the strip portion in the form. Then, a region of 40% of the thickness of the surface coating layer 220 is determined around the center line 240M of the boundary portion. Specifically, an area of 20% of the thickness of the surface coating layer 220 is defined on the upper side around the line 240M, and a boundary line 250H is drawn.
  • an area of 20% of the thickness of the surface coating layer 220 is defined on the lower side around the line 240M, and a boundary line 250L is drawn.
  • the line 250L, the line 250H, and the line 240M are parallel lines. “A region within 40% of the thickness of the surface coating layer centering on the center line of the boundary portion” is a region sandwiched between the lines 250H and 250L, and this region becomes the “boundary portion”.
  • the area of the independent pores existing in the entire surface coating layer is determined in the same manner as in the method described in the first embodiment of the first invention.
  • the method for determining the “pores” present in the surface coating layer is the same as the method described in the first embodiment of the first invention.
  • 60% or more of the independent pores are present in the boundary portion as the area of the independent pores existing in the entire surface coating layer.
  • pores are localized at the boundary between the lower surface coating layer and the upper surface coating layer.
  • the lower surface coating layer is the mixed layer 222 b and the upper surface coating layer is the amorphous inorganic material layer 221.
  • FIG. 12 shows a case where the surface covering layer in the exhaust pipe 200 shown in FIG.
  • the boundary line between the strip 220D located second from the bottom and the center strip 220C overlaps the center of the boundary, and the mixed layer 222b and the amorphous inorganic material layer 221 overlap.
  • the independent pores 233 are localized at the boundary portion.
  • the strip portion 220D located second from the bottom and the central strip portion 220C are independent of the entire surface coating layer.
  • the independent pores 233 are localized at the boundary between the mixed layer 222b and the amorphous inorganic material layer 221, it can be said that the exhaust pipe of the sixth embodiment of the second aspect of the present invention is obtained.
  • the portion including the boundary between the lower surface coating layer and the upper surface coating layer is a pore concentration portion
  • independent pores The mode localized at the boundary between the amorphous inorganic material layer and the mixed layer is included in the exhaust pipe of the sixth embodiment of the second aspect of the present invention.
  • the method for producing an exhaust pipe according to the sixth embodiment of the second invention comprises a step of preparing a metal substrate, Preparing a raw material composition for forming a surface coating layer;
  • a method for producing an exhaust pipe comprising a step of forming a surface coating layer by applying the surface coating layer forming raw material composition a plurality of times on the metal substrate and firing the composition;
  • the surface coating layer forming step a step of forming a lower surface coating layer by applying and baking the raw material composition for forming the surface coating layer at least once, A step of roughening the surface of the lower surface coating layer, and
  • the surface coating layer forming raw material composition is applied to the surface of the roughened lower surface coating layer and baked to form an upper surface coating layer.
  • the lower surface coating layer and the upper surface coating layer are formed. It is characterized by forming pores between the layers.
  • an exhaust pipe according to the sixth embodiment of the second invention is manufactured by taking as an example the case of manufacturing the exhaust pipe 200 of the sixth embodiment of the second invention shown schematically in FIG. How to do it will be explained.
  • Substrate, raw material composition for mixed layer and raw material composition for amorphous inorganic material layer in the same manner as in the manufacturing steps (1) to (3) of the exhaust pipe of the first embodiment of the first invention Prepare the product.
  • the lower surface coating layer (mixed layer) is formed on the substrate in the same manner as in the exhaust pipe manufacturing steps (5) to (6) of the first embodiment of the first invention.
  • a roughening treatment is applied to the surface of the lower surface coating layer.
  • a roughening method sandblasting, etching, or the like can be used.
  • the surface roughness Rz JIS of the roughened surface is preferably 0.1 to 100 ⁇ m.
  • the surface roughness Rz JIS of the roughened surface can be measured according to JIS B 0601 (2001). When the surface roughness Rz JIS of the roughened surface is less than 0.1 ⁇ m, pores may not be sufficiently formed between the lower surface coating layer and the upper surface coating layer. The relaxation effect of is reduced.
  • the surface roughness Rz JIS of the roughened surface exceeds 100 ⁇ m, the adhesion area between the lower surface coating layer and the upper surface coating layer becomes small, and therefore the lower surface coating layer and the upper surface coating layer Adhesion decreases.
  • the surface roughness Rz JIS of the roughened surface can be measured according to JIS B 0601 (2001) using Handy Surf E-35B manufactured by Tokyo Seimitsu Co., Ltd.
  • a surface coating layer forming raw material composition (amorphous inorganic material layer raw material composition) is coated on the surface of the lower surface coating layer subjected to the roughening treatment, dried, and then heated and fired. An amorphous inorganic material layer is formed.
  • amorphous inorganic material layer is formed on the surface of the lower surface coating layer (mixed layer) subjected to the roughening treatment, independent pores can be formed at the boundary between the two layers. Therefore, in the exhaust pipe manufacturing method of the present embodiment, independent pores localized at the boundary between the mixed layer and the amorphous inorganic material layer are formed.
  • the surface covering layer has independent pores, and the independent pores do not communicate the outside of the exhaust pipe with the surface of the base material, and the independent pores. Is localized at the boundary between the amorphous inorganic material layer and the mixed layer. It is considered that a crack generated in the surface coating layer due to thermal shock first occurs on the surface of the surface coating layer and progresses toward the base material in the thickness direction of the surface coating layer. When a crack generated in the surface coating layer develops and collides with an independent pore, the crack is prevented from progressing before the independent pore.
  • the surface coating layer contains a crystalline inorganic material.
  • the crystalline inorganic material contains at least one oxide of manganese, iron, copper, cobalt, chromium, and aluminum. Since the oxide has a high infrared emissivity, the emissivity of the surface coating layer can be further increased. When the emissivity of the surface coating layer is increased, an exhaust pipe excellent in heat dissipation at high temperatures can be obtained. In particular, when an aluminum oxide is used, it contributes to an improvement in the insulation of the exhaust pipe.
  • the thickness of the surface coating layer is 25 to 1000 ⁇ m.
  • the thickness of the surface coating layer is less than 25 ⁇ m, sufficient insulation cannot be secured when used as an exhaust pipe.
  • the thickness of the surface coating layer exceeds 1000 ⁇ m, the strength of the thermal shock to the surface coating layer becomes strong, and the surface coating layer is easily broken.
  • FIG. 13 is sectional drawing which shows typically an example of the cross section of the exhaust pipe of 7th embodiment of 2nd this invention.
  • the surface coating layer includes a mixed layer 222a, an amorphous inorganic material layer 221, and a mixed layer 222b.
  • the number of boundary portions determined using the method described in the sixth embodiment of the second invention is two.
  • the center lines 240Ma and 240Mb of the boundary portion are determined in the same manner as the method described in the sixth embodiment of the second invention.
  • two regions of 40% of the thickness of the surface coating layer 220 are determined with the center lines 240Ma and 240Mb of the boundary portions as the centers.
  • the “region within 40% of the thickness of the surface coating layer centering on the center line of the boundary” defined in this way is the region sandwiched between the lines 250Ha and 250La, and between the lines 250Hb and 250Lb. This area That is, the region sandwiched between the lines 250Ha and 250La and the region sandwiched between the lines 250Hb and 250Lb are both boundary portions.
  • the exhaust pipe of this embodiment has a plurality (two) of boundary portions.
  • the area of the independent pores existing in each boundary portion is calculated, and the total area of the independent pores existing in each boundary portion is present in the entire surface covering layer.
  • What is 60% or more of the area of the independent pores is the exhaust pipe of the second invention.
  • the sum of the areas of the independent pores existing at the two boundary portions is the surface. It is 60% or more of the area of the independent pores existing in the entire coating layer.
  • the exhaust pipe of the present embodiment is manufactured in the same manner as in the exhaust pipe manufacturing method of the sixth embodiment of the second invention, except that the surface coating layer is roughened twice (two locations). can do.
  • the exhaust pipe of this embodiment can exhibit the effects (9) to (11) of the exhaust pipe of the sixth embodiment of the second invention.
  • FIG. 14 is a cross-sectional view schematically showing an example of a cross section of the exhaust pipe of the eighth embodiment of the second invention.
  • the exhaust pipe 280 according to the eighth embodiment of the second aspect of the present invention shown in FIG. 14 has blind pores 34 partially communicating with the outside of the exhaust pipe in the surface coating layer.
  • the other structure is the same as that of the exhaust pipe 200 of 6th embodiment of 2nd this invention shown in FIG.
  • Blind pores are pores that partially communicate with the outside of the exhaust pipe. In other words, the blind pores indicate portions that are exposed to the surface coating layer and are recessed.
  • the blind pores do not communicate with the outside of the exhaust pipe and the surface of the base material, and are not pores reaching the surface of the base material.
  • the exhaust pipe of the present embodiment is a surface coating layer forming raw material composition for forming a surface coating layer that is the uppermost layer. It can manufacture by using the raw material composition for pore concentration part formation.
  • the exhaust pipe of this embodiment can exhibit the effects (9) to (11) of the exhaust pipe of the sixth embodiment of the second invention.
  • the surface coating layer in the exhaust pipe of the present invention there are no pores penetrating the surface coating layer, that is, pores communicating with the outside of the exhaust pipe and the surface of the substrate.
  • the surface of the base material made of metal is exposed, so moisture enters from the exposed surface, and the surface of the base material is exposed from the exposed surface.
  • the surface of the substrate is not exposed, so that moisture does not enter and the metal substrate is prevented from being rusted.
  • a method of coating the surface coating layer forming raw material composition a plurality of times on the surface of the substrate is used when forming the surface coating layer.
  • the thickness of the surface coating layer may be increased so that there are no pores penetrating the surface coating layer.
  • the blending amount of the amorphous inorganic material is based on the total weight of the amorphous inorganic material powder and the crystalline inorganic material powder, A desirable lower limit is 50% by weight and a desirable upper limit is 99.5% by weight. If the blending amount of the amorphous inorganic material is less than 50% by weight, the amount of the amorphous inorganic material that contributes to the adhesion between the surface coating layer and the substrate is too small, so the surface coating layer falls off in the manufactured exhaust pipe. Sometimes.
  • the blending amount of the amorphous inorganic material exceeds 99.5% by weight, the amount of the crystalline inorganic material is decreased, and the heat dissipation of the exhaust pipe may be lowered.
  • the more desirable lower limit of the blending amount of the amorphous inorganic material is 60% by weight, and the more desirable upper limit is 95% by weight.
  • the blending amount of the crystalline inorganic material is desirable with respect to the total weight of the amorphous inorganic material powder and the crystalline inorganic material powder.
  • the lower limit is 0.5% by weight
  • the desirable upper limit is 50% by weight.
  • the blending amount of the crystalline inorganic material exceeds 50% by weight, the amount of the amorphous inorganic material that contributes to the adhesion between the surface coating layer and the substrate decreases, and the surface coating layer falls off in the manufactured exhaust pipe. There are things to do.
  • dispersion medium which can be mix
  • organic solvents such as water and methanol, ethanol, acetone, etc.
  • the mixing ratio of the mixed powder and the dispersion medium is not particularly limited.
  • the dispersion medium is desirably 50 to 150 parts by weight with respect to 100 parts by weight of the mixed powder. This is because the viscosity is suitable for application to the exhaust pipe substrate.
  • blended with the raw material composition for surface coating layer formation polyvinyl alcohol, methylcellulose, ethylcellulose, carboxymethylcellulose etc. can be mentioned, for example. These may be used alone or in combination of two or more. Moreover, you may use a dispersion medium and an organic binder together.
  • the shape of the outer edge of the cross section may be an arbitrary shape such as an ellipse or a polygon.
  • the surface coating layer does not necessarily have to be formed on the entire outer peripheral surface of the base material, and only needs to be formed only on a portion that is insulated from the current-carrying portion (electrode). .
  • the exhaust pipe of the first aspect of the present invention includes a base material made of metal and a surface coating layer containing an amorphous inorganic material formed on the surface of the base material, and a cross section parallel to the thickness direction of the exhaust pipe
  • a plurality of strip portions are defined. It is an essential component that at least one strip portion of the plurality of strip portions is a pore concentrating portion in which the proportion of pores in a certain strip portion is larger than that of other strip portions.
  • the exhaust pipe of the second aspect of the present invention includes a base material made of a metal and a surface coating layer containing an amorphous inorganic material formed on the surface of the base material, and the surface coating layer is made of an amorphous material.
  • An amorphous inorganic material layer containing a porous inorganic material, and a mixed layer containing an amorphous inorganic material and a crystalline inorganic material, the surface coating layer has independent pores, and the independent pores are
  • the outside of the exhaust pipe does not communicate with the surface of the base material, and the independent pores are essential components that are localized at the boundary between the amorphous inorganic material layer and the mixed layer. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Silencers (AREA)

Abstract

Disclosed is an exhaust pipe comprising a metallic substrate and, formed on the surface of thereof, a surface coating layer containing an inorganic amorphous material. The surface coating layer is porous and, if the surface coating layer in an electron microscope image at 500x magnification of a cross section parallel to the thickness direction of the exhaust pipe is cut in the direction perpendicular to said exhaust pipe thickness direction into five rectangular sections that have 1/5 the thickness of the surface coating layer after said cut, there is at least one pore-concentrated section which is a rectangular section having pores making up 30% or more of the pore area of the entire surface coating layer. The pore-concentrated section comprises the central section of the five rectangular sections, or one or two of the rectangular sections adjacent to said central rectangular section. The pores present in the aforementioned surface coating layer include closed pores, but said closed pores do not connect the outside of the exhaust pipe and the surface of the aforementioned substrate.

Description

排気管及び排気管の製造方法Exhaust pipe and method of manufacturing exhaust pipe
本発明は、排気管及び排気管の製造方法に関する。 The present invention relates to an exhaust pipe and an exhaust pipe manufacturing method.
エンジンから排出された排ガス中に含まれる有害ガス等の有害物質を処理するため、排気管の経路には、触媒コンバータが設けられる。
触媒コンバータによる有害物質の浄化効率を高めるためには、排ガスや、排ガスが流通する排気管等の温度を触媒活性化に適した温度(以下、触媒活性化温度ともいう)に維持する必要がある。
しかしながら、エンジンの高速運転時には、一時的に排ガスの温度が1000℃を超えるような高温となる場合があり、触媒活性化温度の上限値を逸脱することがある。その結果、排ガスを効率的に浄化することが困難になったり、触媒が劣化するという問題がある。
In order to treat harmful substances such as harmful gases contained in the exhaust gas discharged from the engine, a catalytic converter is provided in the path of the exhaust pipe.
In order to increase the purification efficiency of harmful substances by the catalytic converter, it is necessary to maintain the temperature of exhaust gas and the exhaust pipe through which the exhaust gas circulates at a temperature suitable for catalyst activation (hereinafter also referred to as catalyst activation temperature). .
However, during high-speed operation of the engine, the exhaust gas temperature may temporarily become a high temperature exceeding 1000 ° C., which may deviate from the upper limit value of the catalyst activation temperature. As a result, there are problems that it becomes difficult to efficiently purify the exhaust gas and that the catalyst deteriorates.
そのため、例えば、自動車エンジンに接続される排気管は、自動車エンジンの高速運転時において、排気管内を通る排ガスの熱を外部に放熱することができることが要求されている。 Therefore, for example, the exhaust pipe connected to the automobile engine is required to be able to radiate the heat of the exhaust gas passing through the exhaust pipe to the outside during the high-speed operation of the automobile engine.
そこで、例えば、特許文献1には、金属からなる筒状の基材の外周面上に結晶性無機材と非晶質無機材とからなる表面被覆層を形成してなる排気管が開示されている。
特許文献1に記載されている従来の排気管では、結晶性無機材よりも外周面側に位置する非晶質無機材の平均厚さが20μm以下であり、放熱性に優れるとされている。
Therefore, for example, Patent Document 1 discloses an exhaust pipe in which a surface coating layer made of a crystalline inorganic material and an amorphous inorganic material is formed on the outer peripheral surface of a cylindrical base material made of metal. Yes.
In the conventional exhaust pipe described in Patent Document 1, the average thickness of the amorphous inorganic material located on the outer peripheral surface side with respect to the crystalline inorganic material is 20 μm or less, and it is said that the heat dissipation is excellent.
特開2009-133214号公報JP 2009-133214 A
従来の排ガス浄化システムにおいては、触媒コンバータの温度は、エンジンの始動時には触媒活性化温度よりも低い。そして、高温の排ガスの流入により触媒コンバータに熱が加わって、エンジンの始動から所定時間経過後に触媒コンバータの温度が触媒活性化温度にまで達する。近年、触媒コンバータの温度が触媒活性化温度に達するまでの時間を短くするために、触媒コンバータに直接通電して触媒コンバータの温度を高める機構を備えた排ガス浄化システムが検討されている。
上記触媒コンバータに直接通電する排ガス浄化システムにおいて用いられる排気管には、電極が接触又は隣接することがあるため、漏電等のトラブルを防止するために、高い絶縁性が求められる。
In the conventional exhaust gas purification system, the temperature of the catalytic converter is lower than the catalyst activation temperature when the engine is started. Then, heat is applied to the catalytic converter by the inflow of high-temperature exhaust gas, and the temperature of the catalytic converter reaches the catalyst activation temperature after a predetermined time has elapsed from the start of the engine. In recent years, in order to shorten the time until the temperature of the catalytic converter reaches the catalyst activation temperature, an exhaust gas purification system having a mechanism for directly energizing the catalytic converter to increase the temperature of the catalytic converter has been studied.
Since an electrode may contact or adjoin to the exhaust pipe used in the exhaust gas purification system that directly energizes the catalytic converter, high insulation is required in order to prevent troubles such as electric leakage.
本発明者らは、排気管として用いられる、基材と表面被覆層を備えた排気管において、絶縁性を向上させるために表面被覆層の厚さを厚くすることを試みた。表面被覆層の厚さを厚くすることによって、絶縁性は向上したものの、20℃/秒以上の急昇温、急降温といった熱衝撃が加わる環境下においては表面被覆層にクラックが生じて、表面被覆層が破壊されるという問題が発生した。
本発明は、このような問題を解決するためになされたものであり、排気管として使用した場合に、高い絶縁性を確保することができ、かつ、低温時の保温性、及び、高温での放熱性に優れた排気管を提供することを目的とする。
The inventors of the present invention have tried to increase the thickness of the surface coating layer in order to improve insulation in an exhaust pipe having a base material and a surface coating layer used as an exhaust pipe. Although the insulation is improved by increasing the thickness of the surface coating layer, cracks occur in the surface coating layer in an environment where a thermal shock such as a rapid temperature increase or a rapid temperature decrease of 20 ° C./second or more is applied. The problem that the coating layer was destroyed occurred.
The present invention has been made to solve such problems. When used as an exhaust pipe, the present invention can ensure high insulation and can maintain heat resistance at low temperatures and at high temperatures. It aims at providing the exhaust pipe excellent in heat dissipation.
本発明者らは、絶縁性を向上させるために表面被覆層の厚さを厚くした場合であっても、表面被覆層の破壊が生じないようにする方法について鋭意検討した結果、表面被覆層内に存在する気孔の位置を特定することによって、クラックの進展を防ぎ、表面被覆層が破壊されることを防止することができることを見出し、本発明に想到した。 As a result of earnestly examining the method of preventing the destruction of the surface coating layer even when the thickness of the surface coating layer is increased in order to improve the insulating property, The inventors have found that it is possible to prevent the development of cracks and the destruction of the surface coating layer by specifying the positions of the pores present in the present invention, and have arrived at the present invention.
すなわち、請求項1に記載の排気管は、金属からなる基材と、
上記基材の表面上に形成された非晶質無機材を含む表面被覆層とを備えた排気管であって、
上記表面被覆層には気孔が存在しており、
上記排気管の厚さ方向に平行な断面の倍率500倍の電子顕微鏡画像における表面被覆層の部分を、上記排気管の厚さ方向に対して垂直方向に、切断後の厚さが表面被覆層の厚さの1/5となるように切断して5つの短冊部を定めた際に、
上記表面被覆層全体に存在する気孔の面積のうち、気孔の面積として30%以上の気孔が存在する短冊部である気孔集中部が少なくとも1つ存在し、
上記気孔集中部となっている短冊部は、5つの短冊部のうちの中央の短冊部又は上記中央の短冊部に隣接する1つ又は2つの短冊部であり、
上記表面被覆層に存在する上記気孔は、独立気孔を有しており、かつ、上記独立気孔は排気管の外部と上記基材の表面を連通しないものであることを特徴とする。
That is, the exhaust pipe according to claim 1 is a base material made of metal,
An exhaust pipe provided with a surface coating layer containing an amorphous inorganic material formed on the surface of the substrate,
There are pores in the surface coating layer,
The portion of the surface coating layer in the electron microscope image having a magnification of 500 times in the cross section parallel to the thickness direction of the exhaust pipe is perpendicular to the thickness direction of the exhaust pipe, and the thickness after cutting is the surface coating layer When the five strips are defined by cutting to be 1/5 of the thickness of
Among the area of the pores present in the entire surface coating layer, there is at least one pore concentration portion which is a strip portion having pores of 30% or more as the pore area,
The strip portion which is the pore concentration portion is a central strip portion of five strip portions or one or two strip portions adjacent to the central strip portion,
The pores present in the surface coating layer have independent pores, and the independent pores do not communicate between the outside of the exhaust pipe and the surface of the substrate.
請求項1に記載の排気管では、表面被覆層に、表面被覆層全体に存在する気孔の面積のうち、気孔の面積として30%以上の気孔が存在する短冊部である気孔集中部が設けられている。
熱衝撃により表面被覆層に発生するクラックは、表面被覆層の表面にまず発生し、表面被覆層の厚み方向に、基材に向かって進展してゆくものと考えられる。
表面被覆層に発生したクラックが進展して、独立気孔に衝突した場合には、独立気孔より先にクラックが進展することが防止される。すなわち、表面被覆層内の短冊部の少なくとも1つが気孔集中部であると、表面被覆層の表面にクラックが発生したとしても、そのクラックは気孔集中部に存在する独立気孔に衝突しやすいため、気孔集中部よりも基材側にクラックが進展することが防止される。
また、気孔は、独立気孔を有しており、かつ、上記独立気孔は排気管の外部と上記基材の表面を連通しないものである。独立気孔が排気管の外部と上記基材の表面を連通しないものであると、クラックが気孔に衝突した場合にクラックは表面被覆層を貫通することがない。
このように、表面被覆層に気孔集中部が設けられており、表面被覆層に設けられた独立気孔が排気管の外部と上記基材の表面を連通しないものであると、熱衝撃により表面被覆層内にクラックが生じた場合であっても、気孔集中部に存在する独立気孔によってクラックの進展を防止することができる。
その結果、表面被覆層が破壊されることを防止することができる。そのため、上記排気管は、高い絶縁性を確保することができる。
In the exhaust pipe according to claim 1, the surface covering layer is provided with a pore concentrating portion which is a strip portion in which 30% or more of the pores are present as the area of the pores in the entire surface covering layer. ing.
It is considered that a crack generated in the surface coating layer due to thermal shock first occurs on the surface of the surface coating layer and progresses toward the base material in the thickness direction of the surface coating layer.
When a crack generated in the surface coating layer develops and collides with an independent pore, the crack is prevented from progressing before the independent pore. That is, if at least one of the strips in the surface coating layer is a pore concentration part, even if a crack occurs on the surface of the surface coating layer, the crack easily collides with independent pores existing in the pore concentration part. It is possible to prevent the crack from progressing to the base material side from the pore concentration portion.
The pores have independent pores, and the independent pores do not communicate the outside of the exhaust pipe with the surface of the base material. If the independent pores do not communicate with the outside of the exhaust pipe and the surface of the base material, the crack does not penetrate the surface coating layer when the crack collides with the pores.
As described above, when the surface coating layer is provided with pore concentrating portions, and the independent pores provided in the surface coating layer do not communicate with the outside of the exhaust pipe and the surface of the substrate, the surface coating is caused by thermal shock. Even when cracks occur in the layer, the progress of cracks can be prevented by the independent pores present in the pore concentration portion.
As a result, the surface coating layer can be prevented from being destroyed. Therefore, the exhaust pipe can ensure high insulation.
請求項2に記載の排気管において、上記気孔集中部は、短冊部の面積(A)に対する気孔が占める面積(B)の比である気孔割合(B/A)が0.02以上である。 3. The exhaust pipe according to claim 2, wherein the pore concentration portion has a pore ratio (B / A) that is a ratio of an area (B) occupied by pores to an area (A) of the strip portion of 0.02 or more.
上記気孔割合が0.02以上であると、クラックの進展を防止するための気孔が気孔集中部に充分に存在していることとなり、クラックが気孔に衝突する確率が高くなる。そのため、クラックの進展がより確実に防止されるため、より好ましい。 When the pore ratio is 0.02 or more, pores for preventing the progress of cracks are sufficiently present in the pore concentration portion, and the probability that the cracks collide with the pores increases. Therefore, since the progress of a crack is prevented more reliably, it is more preferable.
請求項3に記載の排気管では、上記表面被覆層は、さらに結晶性無機材を含む。 In the exhaust pipe according to claim 3, the surface coating layer further includes a crystalline inorganic material.
結晶性無機材は、赤外線の放射率が高い傾向にある。そのため、表面被覆層に結晶性無機材が含まれていると、結晶性無機材からの赤外線の放射が生じるため、表面被覆層の放射率が高くなり、高温での放熱性に優れた排気管とすることができる。 Crystalline inorganic materials tend to have high infrared emissivity. For this reason, if the surface coating layer contains a crystalline inorganic material, infrared radiation from the crystalline inorganic material is generated, so the emissivity of the surface coating layer increases, and the exhaust pipe has excellent heat dissipation at high temperatures. It can be.
請求項4に記載の排気管では、上記表面被覆層は、非晶質無機材を含む非晶質無機材層と、非晶質無機材及び結晶性無機材を含む混合層とを有しており、上記気孔集中部が、上記非晶質無機材層と上記混合層の境界を含んでいる。 In the exhaust pipe according to claim 4, the surface coating layer includes an amorphous inorganic material layer containing an amorphous inorganic material, and a mixed layer containing an amorphous inorganic material and a crystalline inorganic material. The pore concentration part includes a boundary between the amorphous inorganic material layer and the mixed layer.
表面被覆層を形成する際に、下層となる層(基材に近い側の層)の表面に粗化面を形成し、上記粗化面の上に上層となる層(下層とは材質が異なる層)を形成することによって、気孔集中部が下層と上層の境界を含む位置に形成される。
すなわち、請求項4に記載の排気管では、下層となる層(混合層又は非晶質無機材層)と上層となる層(非晶質無機材層又は混合層)の境界を含む位置に気孔集中部が形成されている。この位置に気孔集中部が形成されていると、気孔集中部に存在する気孔により上層と下層の間で発生する熱応力が緩和されるため耐熱衝撃性に優れる。
When forming the surface coating layer, a roughened surface is formed on the surface of the lower layer (the layer closer to the substrate), and the upper layer on the roughened surface (the material is different from the lower layer) By forming the layer, the pore concentration part is formed at a position including the boundary between the lower layer and the upper layer.
That is, in the exhaust pipe according to claim 4, pores are formed at positions including a boundary between a lower layer (mixed layer or amorphous inorganic material layer) and an upper layer (amorphous inorganic material layer or mixed layer). A concentrated part is formed. If the pore concentrating portion is formed at this position, the thermal stress generated between the upper layer and the lower layer is relieved by the pores existing in the pore concentrating portion, so that the thermal shock resistance is excellent.
請求項5に記載の排気管では、上記結晶性無機材は、マンガン、鉄、銅、コバルト、クロム、アルミニウムのうち少なくとも一種の酸化物を含有する。 In the exhaust pipe according to claim 5, the crystalline inorganic material contains at least one oxide of manganese, iron, copper, cobalt, chromium, and aluminum.
上記酸化物は、高い赤外線の放射率を有するため、表面被覆層の放射率をより高くすることができる。特に、アルミニウムの酸化物を用いた場合は、排気管の絶縁性の向上にも寄与する。 Since the oxide has a high infrared emissivity, the emissivity of the surface coating layer can be further increased. In particular, when aluminum oxide is used, it contributes to the improvement of the insulation of the exhaust pipe.
請求項6に記載の排気管では、上記気孔集中部の数は、上記基材の1つの面に対して1つであり、上記気孔集中部となっている短冊部は、5つの短冊部のうちの中央の短冊部である。 In the exhaust pipe according to claim 6, the number of the pore concentrating portions is one with respect to one surface of the base material, and the strip portion serving as the pore concentrating portion includes five strip portions. This is the central strip.
表面被覆層の厚さが大きいほど、表面被覆層に対する熱衝撃の強さが強くなる傾向にある。
気孔集中部となっている短冊部が、5つの短冊部のうちの中央の短冊部であるということは、気孔集中部が表面被覆層を厚さ方向に2分割する位置に存在しているということである。
気孔集中部が表面被覆層を厚さ方向に2分割する位置に存在していると、表面被覆層が、気孔集中部によって、半分の厚さを有する2つの部分に分けられることになる。そのため、表面被覆層に対する熱衝撃の強さが、表面被覆層の厚さが薄い場合と同程度になり、表面被覆層が破壊されることをより効果的に防止することができる。
As the thickness of the surface coating layer increases, the strength of thermal shock on the surface coating layer tends to increase.
The fact that the strip portion which is the pore concentration portion is the central strip portion of the five strip portions means that the pore concentration portion exists at a position where the surface coating layer is divided into two in the thickness direction. That is.
When the pore concentrating portion exists at a position where the surface coating layer is divided into two in the thickness direction, the surface coating layer is divided into two portions having a half thickness by the pore concentrating portion. Therefore, the strength of the thermal shock on the surface coating layer becomes the same as that when the thickness of the surface coating layer is thin, and the surface coating layer can be more effectively prevented from being destroyed.
請求項7に記載の排気管では、上記気孔集中部の数は、上記基材の1つの面に対して2つであり、上記気孔集中部となっている短冊部は、5つの短冊部のうちの、上記中央の短冊部に隣接する2つの短冊部である。 In the exhaust pipe according to claim 7, the number of the pore concentrating portions is two with respect to one surface of the base material, and the strip portion serving as the pore concentrating portion includes five strip portions. Of these, two strip portions adjacent to the central strip portion.
請求項7に記載の排気管では、表面被覆層が、2つの気孔集中部によって、1/3の厚さを有する3つの部分に分けられることになる。請求項6に記載の排気管と同様に、表面被覆層に対する熱衝撃の強さが、表面被覆層の厚さが薄い場合と同程度になり、表面被覆層が破壊されることをより効果的に防止することができる。 In the exhaust pipe according to claim 7, the surface coating layer is divided into three portions having a thickness of 1/3 by the two pore concentration portions. As in the exhaust pipe according to claim 6, it is more effective that the strength of the thermal shock to the surface coating layer is the same as that when the surface coating layer is thin, and the surface coating layer is destroyed. Can be prevented.
請求項8に記載の排気管では、上記表面被覆層の厚さは、25~1000μmである。 In the exhaust pipe according to claim 8, the thickness of the surface coating layer is 25 to 1000 μm.
表面被覆層の厚さが25μm未満であると、排気管として使用した場合に絶縁性が充分に確保できなくなる。また、表面被覆層の厚さが1000μmを超えると、表面被覆層に対する熱衝撃の強さが強くなり、表面被覆層が破壊されやすくなる。 When the thickness of the surface coating layer is less than 25 μm, sufficient insulation cannot be secured when used as an exhaust pipe. On the other hand, when the thickness of the surface coating layer exceeds 1000 μm, the strength of the thermal shock to the surface coating layer becomes strong, and the surface coating layer is easily broken.
請求項9に記載の排気管では、上記表面被覆層の室温での熱伝導率は、0.1~2W/m・Kである。
表面被覆層の室温での熱伝導率が、0.1W/m・K未満であると、高温領域での排気管の放熱性が不足し、排気管内を通る排ガスの熱が外部に放熱されにくくなる。
また、表面被覆層の室温での熱伝導率が2W/m・Kを超えると、低温領域での排気管の保温性が不充分となり、触媒コンバータの温度が触媒活性化温度まで達するまでの時間が長くなる。
In the exhaust pipe according to claim 9, the thermal conductivity of the surface coating layer at room temperature is 0.1 to 2 W / m · K.
If the thermal conductivity of the surface coating layer at room temperature is less than 0.1 W / m · K, the heat dissipation of the exhaust pipe in the high temperature region is insufficient, and the heat of the exhaust gas passing through the exhaust pipe is difficult to dissipate to the outside. Become.
Also, if the thermal conductivity of the surface coating layer at room temperature exceeds 2 W / m · K, the heat retention of the exhaust pipe in the low temperature region becomes insufficient, and the time until the temperature of the catalytic converter reaches the catalyst activation temperature Becomes longer.
請求項10に記載の排気管では、排気管の体積抵抗値は10~1014Ωmである。
排気管の体積抵抗値が10Ωm未満であると、排気管から漏電するおそれがある。
In the exhaust pipe according to claim 10, the volume resistance value of the exhaust pipe is 10 7 to 10 14 Ωm.
If the volume resistance value of the exhaust pipe is less than 10 7 Ωm, there is a risk of leakage from the exhaust pipe.
請求項11に記載の排気管では、上記表面被覆層は、表面被覆層形成用原料組成物を複数回コートすることによって形成されている。
表面被覆層が、表面被覆層形成用原料組成物を複数回コートすることによって形成されていると、一度のコートで形成された表面被覆層中に、排気管の外部と上記基材の表面を連通する連通気孔が存在した場合でも、次回のコートにより上記連通気孔が覆われる。そのため、表面被覆層中に表面被覆層中を連通する気孔が存在することを確実に防止することができる。表面被覆層中を連通する気孔が存在していないと、水分が基材の表面に触れることがないため、金属からなる基材が錆びることのない排気管とすることができる。
In the exhaust pipe according to claim 11, the surface coating layer is formed by coating the surface coating layer forming raw material composition a plurality of times.
When the surface coating layer is formed by coating the raw material composition for forming the surface coating layer a plurality of times, the surface of the exhaust pipe and the surface of the substrate are formed in the surface coating layer formed by a single coating. Even if there is a communicating hole that communicates, the communicating hole is covered by the next coat. Therefore, the presence of pores communicating with the surface coating layer in the surface coating layer can be reliably prevented. If there are no pores communicating in the surface coating layer, moisture does not touch the surface of the base material, so that the base material made of metal does not rust and can be an exhaust pipe.
請求項12に記載の排気管においては、上記表面被覆層は、その一部が排気管の外部と連通するブラインド気孔をさらに有する。
ブラインド気孔も、独立気孔と同様に排気管の外部と上記基材の表面を連通しない気孔である。そのため、表面被覆層にブラインド気孔を有する排気管であっても、非晶質無機材層と混合層の境界部よりも基材側にクラックが進展することが防止される。
In the exhaust pipe according to a twelfth aspect, the surface coating layer further has blind pores, part of which communicates with the outside of the exhaust pipe.
Blind pores are pores that do not allow the outside of the exhaust pipe to communicate with the surface of the base material, like the independent pores. Therefore, even if the exhaust pipe has blind pores in the surface coating layer, it is possible to prevent cracks from progressing to the substrate side with respect to the boundary portion between the amorphous inorganic material layer and the mixed layer.
請求項13に記載の排気管は、金属からなる基材と、
上記基材の表面上に形成された非晶質無機材を含む表面被覆層とを備えた排気管であって、
上記表面被覆層は、非晶質無機材を含む非晶質無機材層と、非晶質無機材及び結晶性無機材を含む混合層を有しており、
上記表面被覆層は独立気孔を有しており、
上記独立気孔は、排気管の外部と上記基材の表面を連通しないものであり、かつ、上記独立気孔は上記非晶質無機材層と上記混合層の境界部に局在することを特徴とする。
The exhaust pipe according to claim 13, a base material made of metal,
An exhaust pipe provided with a surface coating layer containing an amorphous inorganic material formed on the surface of the substrate,
The surface coating layer has an amorphous inorganic material layer containing an amorphous inorganic material, and a mixed layer containing an amorphous inorganic material and a crystalline inorganic material,
The surface coating layer has independent pores,
The independent pores do not communicate with the outside of the exhaust pipe and the surface of the base material, and the independent pores are localized at the boundary between the amorphous inorganic material layer and the mixed layer. To do.
熱衝撃により表面被覆層に発生するクラックは、表面被覆層の表面にまず発生し、表面被覆層の厚み方向に、基材に向かって進展してゆくものと考えられる。
表面被覆層に発生したクラックが進展して、独立気孔に衝突した場合には、独立気孔より先にクラックが進展することが防止される。
排気管の外部と上記基材の表面を連通しない独立気孔が非晶質無機材層と上記混合層の境界部に局在していると、表面被覆層の表面にクラックが発生したとしても、そのクラックは非晶質無機材層と混合層の境界部に局在する独立気孔に衝突しやすいため、非晶質無機材層と混合層の境界部よりも基材側にクラックが進展することが防止される。
その結果、表面被覆層が破壊されることを防止することができる。そのため、上記排気管は、高い絶縁性を確保することができる。
It is considered that a crack generated in the surface coating layer due to thermal shock first occurs on the surface of the surface coating layer and progresses toward the base material in the thickness direction of the surface coating layer.
When a crack generated in the surface coating layer develops and collides with an independent pore, the crack is prevented from progressing before the independent pore.
If independent pores that do not communicate with the outside of the exhaust pipe and the surface of the base material are localized at the boundary between the amorphous inorganic material layer and the mixed layer, even if a crack occurs on the surface of the surface coating layer, Since the cracks easily collide with the independent pores localized at the boundary between the amorphous inorganic material layer and the mixed layer, the crack propagates more toward the substrate than the boundary between the amorphous inorganic material layer and the mixed layer. Is prevented.
As a result, the surface coating layer can be prevented from being destroyed. Therefore, the exhaust pipe can ensure high insulation.
請求項14に記載の排気管において、上記表面被覆層は、その一部が排気管の外部と連通するブラインド気孔をさらに有する。
ブラインド気孔も、独立気孔と同様に排気管の外部と上記基材の表面を連通しない気孔である。そのため、表面被覆層にブラインド気孔を有する排気管であっても、非晶質無機材層と混合層の境界部よりも基材側にクラックが進展することが防止される。
15. The exhaust pipe according to claim 14, wherein the surface coating layer further has blind pores, part of which communicates with the outside of the exhaust pipe.
Blind pores are pores that do not allow the outside of the exhaust pipe to communicate with the surface of the base material, like the independent pores. Therefore, even if the exhaust pipe has blind pores in the surface coating layer, it is possible to prevent cracks from progressing to the substrate side with respect to the boundary portion between the amorphous inorganic material layer and the mixed layer.
請求項15に記載の排気管の製造方法は、
金属基材を準備する工程と、
表面被覆層形成用原料組成物を調製する工程と、
上記金属基材上に上記表面被覆層形成用原料組成物を塗布し、焼成することによって表面被覆層を形成する表面被覆層形成工程とを含む、排気管の製造方法であって、
上記表面被覆層形成用原料組成物を調製する工程において、非晶質無機材を含む非晶質無機材層用原料組成物及び/又は非晶質無機材及び結晶性無機材を含む混合層用原料組成物を調製し、かつ、上記非晶質無機材層用原料組成物又は上記混合層用原料組成物に気孔形成材料を配合して気孔集中部形成用原料組成物を調製し、
上記表面被覆層形成工程において、上記気孔集中部形成用原料組成物を少なくとも一度塗布し、焼成して表面被覆層内に気孔を形成し、かつ、非晶質無機材層用原料組成物又は上記混合層用原料組成物を少なくとも一度塗布することを特徴とする。
The exhaust pipe manufacturing method according to claim 15 comprises:
Preparing a metal substrate;
Preparing a raw material composition for forming a surface coating layer;
A method for producing an exhaust pipe, comprising: a surface coating layer forming step of forming the surface coating layer by applying and firing the raw material composition for forming the surface coating layer on the metal substrate,
In the step of preparing the surface coating layer forming raw material composition, the amorphous inorganic material layer raw material composition containing an amorphous inorganic material and / or a mixed layer containing an amorphous inorganic material and a crystalline inorganic material A raw material composition was prepared, and a pore-forming material was prepared by blending a pore-forming material with the amorphous inorganic material layer raw material composition or the mixed layer raw material composition,
In the surface coating layer forming step, the pore concentration portion forming raw material composition is applied at least once and baked to form pores in the surface coating layer, and the amorphous inorganic material layer raw material composition or the above The mixed layer material composition is applied at least once.
上記製造方法では、非晶質無機材層用原料組成物又は上記混合層用原料組成物に気孔形成材料を配合して気孔集中部形成用原料組成物を調製し、気孔集中部形成用原料組成物を塗布して焼成する。
焼成により気孔形成材料が存在する位置に気孔が形成されるため、表面被覆層の所望の位置に気孔集中部を有する排気管を製造することができる。
In the manufacturing method, a pore-forming material is prepared by blending a pore-forming material with the amorphous inorganic material layer raw material composition or the mixed layer raw material composition, and the pore-concentrating portion-forming raw material composition is prepared. The product is applied and fired.
Since the pores are formed at the position where the pore-forming material exists by firing, an exhaust pipe having a pore concentration portion at a desired position of the surface coating layer can be manufactured.
請求項16に記載の排気管の製造方法は、
金属基材を準備する工程と、
表面被覆層形成用原料組成物を調製する工程と、
上記金属基材上に上記表面被覆層形成用原料組成物を複数回塗布し、焼成することによって表面被覆層を形成する表面被覆層形成工程とを含む、排気管の製造方法であって、
上記表面被覆層形成工程において、表面被覆層形成用原料組成物の塗布及び焼成を少なくとも1回行い下層の表面被覆層を形成する工程、
上記下層の表面被覆層の表面を粗化する工程、及び、
上記粗化された下層の表面被覆層の表面に表面被覆層形成用原料組成物を塗布し、焼成することによって上層の表面被覆層を形成し、同時に、下層の表面被覆層と上層の表面被覆層の間に気孔を形成することを特徴とする。
The exhaust pipe manufacturing method according to claim 16 comprises:
Preparing a metal substrate;
Preparing a raw material composition for forming a surface coating layer;
A method for producing an exhaust pipe, comprising a step of forming a surface coating layer by applying the surface coating layer forming raw material composition a plurality of times on the metal substrate and firing the composition;
In the surface coating layer forming step, a step of forming a lower surface coating layer by applying and baking the raw material composition for forming the surface coating layer at least once,
A step of roughening the surface of the lower surface coating layer, and
The surface coating layer forming raw material composition is applied to the surface of the roughened lower surface coating layer and baked to form an upper surface coating layer. At the same time, the lower surface coating layer and the upper surface coating layer are formed. It is characterized by forming pores between the layers.
上記製造方法では、下層の表面被覆層の表面を粗化する工程を行う。粗化された下層の表面被覆層の表面に上層の表面被覆層形成用原料組成物を塗布すると、下層の表面被覆層の表面の粗化面の凹部の全てが表面被覆層形成用原料組成物によって埋められるわけではなく、下層の表面被覆層の表面の粗化面の凹部と上層の表面被覆層形成用原料組成物の間に空間が残留することとなる。そして、焼成後に上記空間が気孔となるため、下層の表面被覆層と上層の表面被覆層の境界部に局在した独立気孔を形成することができる。そして、表面被覆層の所望の位置に気孔集中部を有する排気管を製造することができる。 In the said manufacturing method, the process of roughening the surface of the lower surface coating layer is performed. When the raw material composition for forming the upper surface coating layer is applied to the surface of the roughened lower surface coating layer, all the concave portions of the roughened surface on the surface of the lower surface coating layer are formed. However, a space remains between the concave portion of the roughened surface on the surface of the lower surface coating layer and the raw material composition for forming the upper surface coating layer. Since the space becomes pores after firing, independent pores localized at the boundary between the lower surface coating layer and the upper surface coating layer can be formed. And the exhaust pipe which has a pore concentration part in the desired position of a surface coating layer can be manufactured.
図1は、第一の本発明の第一実施形態の排気管の断面の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of a cross section of an exhaust pipe according to the first embodiment of the first invention. 図2(a)は、第一の本発明の第一実施形態の排気管の断面の一部を電子顕微鏡画像で撮影した写真であり、図2(b)は、図2(a)において短冊部及び気孔を示した写真である。FIG. 2A is a photograph of a part of the cross section of the exhaust pipe of the first embodiment of the first aspect of the present invention taken with an electron microscope image, and FIG. 2B is a strip in FIG. It is the photograph which showed the part and the pore. 図3(a)、図3(b)、図3(c)及び図3(d)は、第一の本発明の第一実施形態の他の排気管の断面の一例を模式的に示す断面図である。3 (a), 3 (b), 3 (c) and 3 (d) are cross sections schematically showing an example of a cross section of another exhaust pipe of the first embodiment of the first invention. FIG. 図4は、第一の本発明の第一実施形態の他の排気管の断面の一例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing an example of a cross section of another exhaust pipe according to the first embodiment of the first invention. 図5(a)、図5(b)及び図5(c)は、第一の本発明の第一実施形態のさらに他の排気管の断面の一例を模式的に示す断面図である。5 (a), 5 (b) and 5 (c) are cross-sectional views schematically showing an example of a cross section of still another exhaust pipe of the first embodiment of the first invention. 図6(a)及び図6(b)は、第一の本発明の第二実施形態の排気管の断面の一例を模式的に示す断面図である。FIGS. 6A and 6B are cross-sectional views schematically showing an example of a cross section of the exhaust pipe of the second embodiment of the first invention. 図7(a)及び図7(b)は、第一の本発明の第三実施形態の排気管の断面の一例を模式的に示す断面図である。FIGS. 7A and 7B are cross-sectional views schematically showing an example of a cross section of the exhaust pipe of the third embodiment of the first invention. 図8(a)、図8(b)及び図8(c)は、第一の本発明の第三実施形態の排気管を製造する工程の一部を模式的に示した断面図である。8 (a), 8 (b) and 8 (c) are cross-sectional views schematically showing a part of the process for manufacturing the exhaust pipe of the third embodiment of the first invention. 図9(a)及び図9(b)は、第一の本発明の第四実施形態の排気管の断面の一例を模式的に示す断面図である。FIGS. 9A and 9B are cross-sectional views schematically showing an example of a cross section of the exhaust pipe of the fourth embodiment of the first invention. 図10は、第一の本発明の第五実施形態の排気管の断面の一例を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing an example of a cross section of the exhaust pipe of the fifth embodiment of the first present invention. 図11は、第二の本発明の第六実施形態の排気管の断面の一例を模式的に示す断面図である。FIG. 11: is sectional drawing which shows typically an example of the cross section of the exhaust pipe of 6th embodiment of 2nd this invention. 図12は、図11に示す排気管における表面被覆層を5つの短冊部とした場合を示す断面図である。12 is a cross-sectional view showing a case where the surface coating layer in the exhaust pipe shown in FIG. 11 has five strip portions. 図13は、第二の本発明の第七実施形態の排気管の断面の一例を模式的に示す断面図である。FIG. 13: is sectional drawing which shows typically an example of the cross section of the exhaust pipe of 7th embodiment of 2nd this invention. 図14は、第二の本発明の第八実施形態の排気管の断面の一例を模式的に示す断面図である。FIG. 14 is a cross-sectional view schematically showing an example of a cross section of the exhaust pipe of the eighth embodiment of the second invention.
(第一実施形態)
以下、第一の本発明の排気管の一実施形態である第一実施形態について図面を参照しながら説明する。
第一の本発明の排気管は、金属からなる基材と、上記基材の表面上に形成された非晶質無機材を含む表面被覆層とを備えた排気管であって、上記表面被覆層には気孔が存在しており、上記排気管の厚さ方向に平行な断面の倍率500倍の電子顕微鏡画像における表面被覆層の部分を、上記排気管の厚さ方向に対して垂直方向に、切断後の厚さが表面被覆層の厚さの1/5となるように切断して5つの短冊部を定めた際に、上記表面被覆層全体に存在する気孔の面積のうち、気孔の面積として30%以上の気孔が存在する短冊部である気孔集中部が少なくとも1つ存在し、上記気孔集中部となっている短冊部は、5つの短冊部のうちの中央の短冊部又は上記中央の短冊部に隣接する1つ又は2つの短冊部であり、上記表面被覆層に存在する上記気孔は、独立気孔を有しており、かつ、上記独立気孔は排気管の外部と上記基材の表面を連通しないものであることを特徴とする。
(First embodiment)
Hereinafter, a first embodiment which is an embodiment of the exhaust pipe of the first invention will be described with reference to the drawings.
An exhaust pipe according to a first aspect of the present invention is an exhaust pipe including a base material made of a metal and a surface coating layer containing an amorphous inorganic material formed on the surface of the base material. The layer has pores, and the portion of the surface coating layer in the electron microscope image with a magnification of 500 times in the cross section parallel to the thickness direction of the exhaust pipe is perpendicular to the thickness direction of the exhaust pipe. When the five strips are defined by cutting so that the thickness after cutting is 1/5 of the thickness of the surface coating layer, the pores out of the area of the pores existing in the entire surface coating layer There is at least one pore concentrating portion which is a strip portion having pores of 30% or more as an area, and the strip portion serving as the pore concentrating portion is a central strip portion of the five strip portions or the center. Is one or two strip portions adjacent to the strip portion, and is present in the surface coating layer. Hole has a closed cell, and the closed cell is characterized in that that does not communicate with the outside surface of the base material of the exhaust pipe.
図1は、第一の本発明の第一実施形態の排気管の断面の一例を模式的に示す断面図である。
図1に示す、本実施形態の排気管の一例である排気管1は、金属からなる基材10と、基材10の表面上に形成された表面被覆層20とを備えている。
FIG. 1 is a cross-sectional view schematically showing an example of a cross section of an exhaust pipe according to the first embodiment of the first invention.
An exhaust pipe 1 as an example of the exhaust pipe of the present embodiment shown in FIG. 1 includes a base material 10 made of metal and a surface coating layer 20 formed on the surface of the base material 10.
基材10の材質としては、例えば、ステンレス、鋼、鉄、銅等の金属、インコネル、ハステロイ、インバー等のニッケル合金等が挙げられる。これらの金属材料は熱伝導率が高いため、排気管の放熱性の向上に寄与することができる。
基材10の形状は特に限定されるものではないが、排気管の形状は通常は円筒形状であるため、円筒形状とすることが好ましい。
Examples of the material of the base material 10 include metals such as stainless steel, steel, iron, and copper, and nickel alloys such as Inconel, Hastelloy, and Invar. Since these metal materials have high thermal conductivity, they can contribute to the improvement of heat dissipation of the exhaust pipe.
Although the shape of the base material 10 is not specifically limited, Since the shape of an exhaust pipe is usually a cylindrical shape, it is preferable to use a cylindrical shape.
表面被覆層20は、非晶質無機材31を含む非晶質無機材層21と、非晶質無機材31及び結晶性無機材32を含む混合層22(22a、22b)とを有している。
表面被覆層20は三層構造となっており、具体的には、基材10側から順に、混合層22b、非晶質無機材層21、混合層22aの順で3つの層が積層された構成となっており、それぞれの層が表面被覆層20の厚さの約1/3となっている。
The surface coating layer 20 has an amorphous inorganic material layer 21 containing an amorphous inorganic material 31 and a mixed layer 22 (22a, 22b) containing an amorphous inorganic material 31 and a crystalline inorganic material 32. Yes.
The surface coating layer 20 has a three-layer structure. Specifically, three layers are laminated in the order of the mixed layer 22b, the amorphous inorganic material layer 21, and the mixed layer 22a in this order from the substrate 10 side. Each layer is about 1/3 of the thickness of the surface coating layer 20.
非晶質無機材層21は、非晶質無機材31として軟化点が300~1000℃である低融点ガラスを含む層であることが好ましい。また、上記低融点ガラスの種類は特に限定されるものではないが、バリウムガラス、ボロンガラス、ストロンチウムガラス、アルミナ珪酸ガラス、ソーダ亜鉛ガラス、ソーダバリウムガラス等が挙げられる。
これらのガラスは、単独で用いてもよいし、2種類以上が混合されていてもよい。
The amorphous inorganic material layer 21 is preferably a layer containing a low-melting glass having a softening point of 300 to 1000 ° C. as the amorphous inorganic material 31. The kind of the low-melting glass is not particularly limited, and examples thereof include barium glass, boron glass, strontium glass, alumina silicate glass, soda zinc glass, and soda barium glass.
These glasses may be used alone or in combination of two or more.
このような低融点ガラスは、軟化温度が300~1000℃の範囲にあるため、融解させて基材の外周面にコートした後、加熱焼成処理を施すことにより、基材の外周面に表面被覆層を容易にしかも強固に形成することができる。 Since such a low-melting glass has a softening temperature in the range of 300 to 1000 ° C., it is melted and coated on the outer peripheral surface of the base material, and then subjected to a heat-firing treatment, whereby the outer peripheral surface of the base material is surface-coated. The layer can be formed easily and firmly.
上記非晶質無機材が低融点ガラスである場合、その軟化点は、300~1000℃であることが望ましい。
上記低融点ガラスの軟化点が300℃未満では、排気管を用いる場合に容易に低融点ガラスが軟化し、表面被覆層に異物が付着する原因となることがある。一方、上記低融点ガラスの軟化点が1000℃を超えると、表面被覆層を形成する際の熱処理により、基材が劣化しやすくなる。
上記低融点ガラスの具体例としては、例えば、SiO-B-ZnO系ガラス、SiO-B-Bi系ガラス、SiO-PbO系ガラス、SiO-PbO-B系ガラス、SiO-B-PbO系ガラス、B-ZnO-PbO系ガラス、B-ZnO-Bi系ガラス、B-Bi系ガラス、B-ZnO系ガラス、BaO-SiO系ガラス等が挙げられる。
なお、軟化点は、JIS R 3103-1:2001に規定される方法に基づいて、例えば、有限会社オプト企業製の硝子自動軟化点・歪点測定装置(SSPM-31)を用いて測定することができる。
また、非晶質無機材は、上述した低融点ガラスのうちの一種類の低融点ガラスのみからなるものであってもよいし、複数種類の低融点ガラスからなるものであってもよい。
When the amorphous inorganic material is a low-melting glass, the softening point is preferably 300 to 1000 ° C.
When the softening point of the low-melting glass is less than 300 ° C., the low-melting glass is easily softened when an exhaust pipe is used, which may cause foreign matters to adhere to the surface coating layer. On the other hand, when the softening point of the low-melting glass exceeds 1000 ° C., the base material is likely to be deteriorated by heat treatment when the surface coating layer is formed.
Specific examples of the low melting point glass include, for example, SiO 2 —B 2 O 3 —ZnO glass, SiO 2 —B 2 O 3 —Bi 2 O 3 glass, SiO 2 —PbO glass, SiO 2 —PbO. —B 2 O 3 glass, SiO 2 —B 2 O 3 —PbO glass, B 2 O 3 —ZnO—PbO glass, B 2 O 3 —ZnO—Bi 2 O 3 glass, B 2 O 3 — Bi 2 O 3 glass, B 2 O 3 —ZnO glass, BaO—SiO 2 glass, and the like can be given.
The softening point should be measured, for example, using a glass automatic softening point / strain point measuring device (SSPM-31) manufactured by Opt Corp., based on the method specified in JIS R 3103-1: 2001. Can do.
The amorphous inorganic material may be composed of only one kind of low-melting glass among the above-described low-melting glasses, or may be composed of a plurality of kinds of low-melting glasses.
混合層22は、非晶質無機材層21に含まれる非晶質無機材31を含み、さらに結晶性無機材32を含む層である。結晶性無機材32としては、遷移金属の酸化物を用いることが望ましく、マンガン、鉄、銅、コバルト、クロム、アルミニウムのうちの少なくとも一種の酸化物からなる無機粒子であることがより望ましい。
これらの酸化物からなる無機粒子は、単独で用いてもよいし、2種類以上が混合されていてもよい。
これらの遷移金属の酸化物は、高い赤外線の放射率を有するため、排気管からの放熱性の向上に寄与する。
特に、アルミニウムの酸化物を用いた場合は、排気管の絶縁性の向上にも寄与する。
The mixed layer 22 is a layer that includes the amorphous inorganic material 31 included in the amorphous inorganic material layer 21 and further includes the crystalline inorganic material 32. As the crystalline inorganic material 32, it is desirable to use an oxide of a transition metal, and it is more desirable that the crystalline inorganic material 32 is an inorganic particle made of at least one oxide of manganese, iron, copper, cobalt, chromium, and aluminum.
Inorganic particles composed of these oxides may be used alone or in combination of two or more.
Since these transition metal oxides have high infrared emissivity, they contribute to improvement in heat dissipation from the exhaust pipe.
In particular, when aluminum oxide is used, it contributes to the improvement of the insulation of the exhaust pipe.
本実施形態に係る排気管1の表面被覆層20には、気孔33が存在する。
本実施形態に係る排気管1に存在する気孔33は、独立気孔である。独立気孔とは、表面被覆層20の内部に存在し、表面被覆層の表面から露出していない気孔である。
また、独立気孔は、排気管の外部と上記基材の表面を連通しない気孔である。
There are pores 33 in the surface coating layer 20 of the exhaust pipe 1 according to the present embodiment.
The pores 33 existing in the exhaust pipe 1 according to the present embodiment are independent pores. The independent pores are pores that exist inside the surface coating layer 20 and are not exposed from the surface of the surface coating layer.
The independent pores are pores that do not communicate the outside of the exhaust pipe with the surface of the base material.
本実施形態に係る排気管1の表面被覆層20には、気孔集中部23が存在する。
以下、気孔集中部23を定める方法について図面を参照して説明する。
気孔集中部を定める際には、排気管の厚さ方向に平行な断面の倍率500倍の電子顕微鏡画像を撮影し、表面被覆層の部分を、排気管の厚さ方向に対して垂直方向に、切断後の厚さが表面被覆層の厚さの1/5となるように切断して、5つの短冊部を定める。
図1には、5つの短冊部を、20A、20B、20C、20D及び20Eで示している。
そして、表面被覆層20全体に存在する気孔33の面積を算出し、表面被覆層20全体に存在する気孔33の面積のうち、気孔の面積として30%以上の気孔が存在する短冊部を気孔集中部と定める。
図1に示す排気管1では、短冊部20Cが気孔集中部23となっている。
また、気孔集中部23は非晶質無機材層21の一部である。
なお、気孔集中部23以外の部位には、気孔33は存在していてもよく、存在していなくてもよい。
In the surface coating layer 20 of the exhaust pipe 1 according to the present embodiment, a pore concentration portion 23 exists.
Hereinafter, a method for defining the pore concentration portion 23 will be described with reference to the drawings.
When determining the pore concentrating portion, an electron microscope image having a magnification of 500 times in a cross section parallel to the thickness direction of the exhaust pipe is taken, and the surface coating layer portion is perpendicular to the thickness direction of the exhaust pipe. Then, cutting is performed so that the thickness after cutting becomes 1/5 of the thickness of the surface coating layer, and five strips are defined.
In FIG. 1, five strip portions are indicated by 20A, 20B, 20C, 20D and 20E.
Then, the area of the pores 33 existing in the entire surface coating layer 20 is calculated, and among the areas of the pores 33 existing in the entire surface coating layer 20, the strip portion having 30% or more of the pores as the pore area is concentrated in the pores. Set as part.
In the exhaust pipe 1 shown in FIG. 1, the strip portion 20 </ b> C is a pore concentration portion 23.
The pore concentration part 23 is a part of the amorphous inorganic material layer 21.
It should be noted that the pores 33 may or may not exist in the parts other than the pore concentration part 23.
図2(a)は、第一の本発明の第一実施形態の排気管の断面の一部を電子顕微鏡画像で撮影した写真であり、図2(b)は、図2(a)において短冊部及び気孔を示した写真である。
図2(a)及び図2(b)に示す写真における加速電圧は10.0kV、倍率は500倍、写真の撮影領域(写真の横幅)は、250μmとなっている。
FIG. 2A is a photograph of a part of the cross section of the exhaust pipe of the first embodiment of the first aspect of the present invention taken with an electron microscope image, and FIG. 2B is a strip in FIG. It is the photograph which showed the part and the pore.
In the photographs shown in FIGS. 2A and 2B, the acceleration voltage is 10.0 kV, the magnification is 500 times, and the photographing region (the lateral width of the photograph) is 250 μm.
図2(a)及び図2(b)の写真に示す排気管における表面被覆層20は、基材10側から順に、非晶質無機材層、混合層、非晶質無機材層の順で3つの層が積層された構成を有している。
図2(a)及び図2(b)の写真上では、各層の境界線は明確に判別できないが、各層の厚さは約25μmとなっている。
The surface coating layer 20 in the exhaust pipe shown in the photographs of FIG. 2A and FIG. 2B is in order of an amorphous inorganic material layer, a mixed layer, and an amorphous inorganic material layer in this order from the base material 10 side. It has a configuration in which three layers are stacked.
In the photographs of FIG. 2A and FIG. 2B, the boundary line of each layer cannot be clearly identified, but the thickness of each layer is about 25 μm.
気孔集中部を定めるにあたっては、図2(a)及び図2(b)に示す断面写真において、表面被覆層の部分を、排気管の厚さ方向に対して垂直方向に、切断後の厚さが表面被覆層の厚さの1/5となるように短冊状に切断する。
この際、表面被覆層20の上面を開始点、基材の表面を終点として表面被覆層の厚さを定め、切断を行う。そして、上記手順で切断されたそれぞれの短冊状の部分を短冊部と定める。
In determining the pore concentration portion, in the cross-sectional photographs shown in FIG. Is cut into strips so that the thickness becomes 1/5 of the thickness of the surface coating layer.
At this time, the thickness of the surface coating layer is determined with the upper surface of the surface coating layer 20 as the starting point and the surface of the substrate as the end point, and cutting is performed. And each strip-shaped part cut | disconnected by the said procedure is defined as a strip part.
表面被覆層20の上面(切断の開始点)の位置を定める際、上面に凹凸がある場合などは、最も凹んでいる部分を表面被覆層20の上面と定める。表面被覆層20の上面の位置は、図2(b)に破線で示した位置である。
なお、図2(b)に示す写真では、表面被覆層の上面には目立った凹凸は存在していない。
When the position of the upper surface (starting point of cutting) of the surface coating layer 20 is determined, when the upper surface is uneven, the most concave portion is determined as the upper surface of the surface coating layer 20. The position of the upper surface of the surface coating layer 20 is a position indicated by a broken line in FIG.
In the photograph shown in FIG. 2B, no conspicuous unevenness exists on the upper surface of the surface coating layer.
また、基材の表面(切断の終点)の位置を定める際、基材の表面に凹凸がある場合などは、最も凹んでいる部分を基材の表面と定める。基材の表面の位置は、図2(b)に一点鎖線で示した位置である。 Further, when determining the position of the surface of the substrate (end point of cutting), when the surface of the substrate has irregularities, the most concave portion is determined as the surface of the substrate. The position of the surface of the substrate is the position indicated by the alternate long and short dash line in FIG.
図2(b)に示す写真では、上記手順により、表面被覆層の上面側から基材側に向かって、符号A~Eで示す5つの短冊部が定められている。 In the photograph shown in FIG. 2B, five strip portions indicated by reference signs A to E are defined from the upper surface side of the surface coating layer to the base material side by the above procedure.
このようにして短冊部を定めた後、表面被覆層全体に存在する気孔の面積、及び、表面被覆層全体に存在する気孔の面積のうち各短冊部に存在する気孔の面積の割合を定める。
気孔の面積を定めるにあたり、表面被覆層中に存在する「気孔」を確定する。
本明細書においては、電子顕微鏡による断面写真において、気孔径が5μm以上である気孔を「気孔」とすることとする。「気孔径」は、気孔の形状が円形であればその直径として定める。
気孔の形状が非円形である場合には、その気孔内で直線を引いたときの最大の長さを気孔の直径として定める。
図2(b)の写真では、上記手順により「気孔」と判定した気孔を丸で囲むことによって示している。
気孔の面積を算出する際には、丸で囲んだ気孔(「気孔」と判定した気孔)の面積のみを考慮することとする。
After determining the strip portion in this manner, the ratio of the area of the pores existing in the entire surface coating layer and the area of the pores existing in each strip portion out of the area of the pores existing in the entire surface coating layer is determined.
In determining the area of the pores, “pores” existing in the surface coating layer are determined.
In the present specification, pores having a pore diameter of 5 μm or more are referred to as “pores” in a cross-sectional photograph taken with an electron microscope. The “pore diameter” is determined as the diameter of the pore if the shape is circular.
When the shape of the pores is non-circular, the maximum length when a straight line is drawn in the pores is determined as the diameter of the pores.
In the photograph of FIG. 2B, the pores determined as “pores” by the above procedure are indicated by circles.
When calculating the area of the pores, only the area of the circled pores (the pores determined as “pores”) is considered.
表面被覆層中に存在する「気孔」を確定した後に、表面被覆層中に存在する気孔の面積を全て合計して、「表面被覆層全体に存在する気孔の面積」を求める。
続いて、各短冊部中に存在する全ての気孔の面積を合計して、各短冊部について「短冊部に存在する気孔の面積」を求める。
続いて、「表面被覆層全体に存在する気孔の面積」に対する、各短冊部の「短冊部に存在する気孔の面積」の割合を、「表面被覆層全体に存在する気孔の面積」を100%とした百分率で表す。
図2(b)には、短冊部A~Eについて、「表面被覆層全体に存在する気孔の面積」に対する、各短冊部の「短冊部に存在する気孔の面積」の割合を示している。
短冊部Cにおいて上記割合は73.8%となっており、30%以上となっているので短冊部Cを気孔集中部(気孔集中部23)と定める。
その他の短冊部A、B、D、Eはいずれも上記割合が30%未満であるため気孔集中部とはならない。
After the “pores” existing in the surface coating layer are determined, all the areas of the pores existing in the surface coating layer are totaled to obtain “the area of the pores existing in the entire surface coating layer”.
Subsequently, the areas of all the pores present in each strip portion are summed to obtain “the area of the pores present in the strip portion” for each strip portion.
Subsequently, the ratio of “the area of pores existing in the strip portion” of each strip portion to the “area of pores existing in the entire surface coating layer” is set to 100% of “the area of pores existing in the entire surface coating layer”. It is expressed as a percentage.
FIG. 2B shows the ratio of “the area of pores existing in the strip portion” of each strip portion to “the area of pores existing in the entire surface coating layer” for the strip portions A to E.
In the strip portion C, the ratio is 73.8%, which is 30% or more. Therefore, the strip portion C is defined as the pore concentration portion (pore concentration portion 23).
The other strips A, B, D, and E are not pore concentration portions because the ratio is less than 30%.
また、本実施形態では、気孔集中部において、短冊部の面積(A)に対する気孔が占める面積(B)の比である気孔割合(B/A)は0.02以上となっている。
気孔割合は、短冊部の面積(A)を求め、各短冊部の「短冊部に存在する気孔の面積」(B)を求めて、その比(B/A)を求めることによって定められる。
図2(b)に示す短冊部Cの気孔割合は、0.27である。
In the present embodiment, the pore ratio (B / A), which is the ratio of the area (B) occupied by the pores to the area (A) of the strips, is 0.02 or more in the pore concentration portion.
The pore ratio is determined by obtaining the area (A) of the strip portion, obtaining the “area of pores existing in the strip portion” (B) of each strip portion, and obtaining the ratio (B / A).
The porosity of the strip C shown in FIG. 2 (b) is 0.27.
図2(b)に示す写真では、気孔集中部は短冊部Cのみであり、気孔集中部の数は1つである。
表面被覆層中に存在する気孔集中部の数を数える際に、隣り合う短冊部がともに気孔集中部である場合は、気孔集中部の数は1つであるとする。
また、気孔集中部と気孔集中部の間に、気孔集中部ではない短冊部が存在している場合は、それらは別の気孔集中部であり、気孔集中部の数は2つであるとする。
In the photograph shown in FIG. 2B, the pore concentrating portion is only the strip portion C, and the number of the pore concentrating portions is one.
When counting the number of pore concentrating portions present in the surface coating layer, if both adjacent strip portions are pore concentrating portions, the number of pore concentrating portions is assumed to be one.
Further, when there are strip portions that are not pore concentration portions between the pore concentration portions and the pore concentration portions, they are different pore concentration portions, and the number of pore concentration portions is two. .
本実施形態の排気管における表面被覆層の厚さは、25~1000μmであることが望ましい。
表面被覆層の厚さが25μm未満であると、排気管として使用した場合に絶縁性が充分に確保できなくなる。また、表面被覆層の厚さが1000μmを超えると、表面被覆層に対する熱衝撃の強さが強くなり、表面被覆層が破壊されやすくなる。
また、表面被覆層の室温(25℃)での熱伝導率は、0.1~2W/m・Kであることが望ましい。
表面被覆層の室温での熱伝導率が、0.1W/m・K未満であると、高温領域での排気管の放熱性が不足し、排気管内を通る排ガスの熱が外部に放熱されにくくなる。
また、表面被覆層の室温での熱伝導率が2W/m・Kを超えると、低温領域での排気管の保温性が不充分となり、触媒コンバータの温度が触媒活性化温度まで達するまでの時間が長くなる。
表面被覆層の室温での熱伝導率は、レーザーフラッシュ法によって測定することができる。
また、表面被覆層の室温(25℃)での波長1~15μmにおける放射率は、0.6以上であることが望ましい。表面被覆層の放射率が0.6未満であると、高温領域での排気管の放熱性が不足し、排気管内を通る排ガスの熱が外部に放熱されにくくなる。
また、表面被覆層の室温(25℃)での波長1~15μmにおける放射率は、0.99以下であることが望ましい。表面被覆層の放射率を0.99を超えて大きくすることは困難であるためである。
The thickness of the surface coating layer in the exhaust pipe of this embodiment is preferably 25 to 1000 μm.
When the thickness of the surface coating layer is less than 25 μm, sufficient insulation cannot be secured when used as an exhaust pipe. On the other hand, when the thickness of the surface coating layer exceeds 1000 μm, the strength of the thermal shock to the surface coating layer becomes strong, and the surface coating layer is easily broken.
The thermal conductivity of the surface coating layer at room temperature (25 ° C.) is preferably 0.1 to 2 W / m · K.
If the thermal conductivity of the surface coating layer at room temperature is less than 0.1 W / m · K, the heat dissipation of the exhaust pipe in the high temperature region is insufficient, and the heat of the exhaust gas passing through the exhaust pipe is difficult to dissipate to the outside. Become.
Also, if the thermal conductivity of the surface coating layer at room temperature exceeds 2 W / m · K, the heat retention of the exhaust pipe in the low temperature region becomes insufficient, and the time until the temperature of the catalytic converter reaches the catalyst activation temperature Becomes longer.
The thermal conductivity of the surface coating layer at room temperature can be measured by a laser flash method.
The emissivity of the surface coating layer at a wavelength of 1 to 15 μm at room temperature (25 ° C.) is desirably 0.6 or more. When the emissivity of the surface coating layer is less than 0.6, the heat dissipation of the exhaust pipe in a high temperature region is insufficient, and the heat of the exhaust gas passing through the exhaust pipe is hardly radiated to the outside.
The emissivity of the surface coating layer at a wavelength of 1 to 15 μm at room temperature (25 ° C.) is desirably 0.99 or less. This is because it is difficult to increase the emissivity of the surface coating layer beyond 0.99.
排気管の厚さ方向に平行な断面の倍率500倍の電子顕微鏡画像を撮影する場所は、排気管の長手方向の中心の点、及び、長手方向の長さの1/3の点、長手方向の長さの2/3の点の、計3箇所とする。
表面被覆層が基材の一部にのみ形成されている場合は、表面被覆層が形成されている部分につき、排気管の長手方向の中心の点、及び、長手方向の長さの1/3の点、長手方向の長さの2/3の点の、計3箇所とする。
これら3箇所の測定点のいずれかで第一の本発明で定める要件を満たす排気管は、第一の本発明の排気管である。
The place where the electron microscope image of the magnification of 500 times of the cross section parallel to the thickness direction of the exhaust pipe is taken is the center point in the longitudinal direction of the exhaust pipe, the point 1/3 of the length in the longitudinal direction, the longitudinal direction The total number of points is 2/3 of the length.
When the surface coating layer is formed only on a part of the base material, the center point in the longitudinal direction of the exhaust pipe and 1/3 of the length in the longitudinal direction of the portion where the surface coating layer is formed , And 2/3 of the length in the longitudinal direction.
An exhaust pipe that satisfies the requirements defined in the first aspect of the present invention at any of these three measurement points is the exhaust pipe of the first aspect of the present invention.
図3(a)、図3(b)、図3(c)及び図3(d)は、第一の本発明の第一実施形態の他の排気管の断面の一例を模式的に示す断面図である。
図3(a)に示す排気管50では、表面被覆層20が三層構造となっている。そして、混合層と非晶質無機材層の配置が図1に示す排気管1における混合層と非晶質無機材層の配置とは反対となっている。
具体的には、基材10側から順に、非晶質無機材層21b、混合層22、非晶質無機材層21aの順で3つの層が積層された構成となっており、それぞれの層が表面被覆層20の厚さの約1/3となっている。
図3(a)に示す排気管50では、気孔集中部23は、中央の層である混合層22に存在している。
3 (a), 3 (b), 3 (c) and 3 (d) are cross sections schematically showing an example of a cross section of another exhaust pipe of the first embodiment of the first invention. FIG.
In the exhaust pipe 50 shown in FIG. 3A, the surface coating layer 20 has a three-layer structure. The arrangement of the mixed layer and the amorphous inorganic material layer is opposite to the arrangement of the mixed layer and the amorphous inorganic material layer in the exhaust pipe 1 shown in FIG.
Specifically, in order from the substrate 10 side, three layers are laminated in the order of the amorphous inorganic material layer 21b, the mixed layer 22, and the amorphous inorganic material layer 21a. Is about 1/3 of the thickness of the surface coating layer 20.
In the exhaust pipe 50 shown in FIG. 3A, the pore concentrating part 23 exists in the mixed layer 22 which is a central layer.
図3(b)に示す排気管60では、表面被覆層20は、非晶質無機材層21と混合層22の2層で構成されている。
排気管60においては、表面被覆層20のうち、基材側の厚さ約2/3の部分が混合層22であり、排気管の表面側の厚さ約1/3の部分が非晶質無機材層21である。
そして、図3(b)に示す排気管60では、気孔集中部23は混合層22に存在している。
In the exhaust pipe 60 shown in FIG. 3B, the surface coating layer 20 is composed of two layers, an amorphous inorganic material layer 21 and a mixed layer 22.
In the exhaust pipe 60, the portion of the surface coating layer 20 having a thickness of about 2/3 on the base material side is the mixed layer 22, and the portion of the surface side of the exhaust pipe having a thickness of about 1/3 is amorphous. This is the inorganic material layer 21.
In the exhaust pipe 60 shown in FIG. 3B, the pore concentrating portion 23 exists in the mixed layer 22.
図3(c)に示す排気管70では、表面被覆層20は、非晶質無機材層21と混合層22の2層で構成されている。
排気管70においては、表面被覆層20のうち、基材側の厚さ約1/3の部分が混合層22であり、排気管の表面側の厚さ約2/3の部分が非晶質無機材層21である。
そして、図3(c)に示す排気管70では、気孔集中部23は非晶質無機材層21に存在している。
In the exhaust pipe 70 shown in FIG. 3C, the surface coating layer 20 is composed of two layers, an amorphous inorganic material layer 21 and a mixed layer 22.
In the exhaust pipe 70, the portion of the surface coating layer 20 having a thickness of about 1/3 on the base material side is the mixed layer 22, and the portion of the surface side of the exhaust pipe having a thickness of about 2/3 is amorphous. This is the inorganic material layer 21.
In the exhaust pipe 70 shown in FIG. 3C, the pore concentration part 23 exists in the amorphous inorganic material layer 21.
図3(d)に示す排気管80では、表面被覆層(20a、20b)が基材10の両面に形成されている。
表面被覆層20a、20bは、それぞれ図3(b)に示す表面被覆層と同様の2層構造となっている。
表面被覆層20aは、基材10側から順に、混合層22a、非晶質無機材層21aの順で2つの層が積層された構成となっている。
図3(d)に示す排気管80では、気孔集中部23aは、混合層22aに存在している。
表面被覆層20bは、基材10側から順に、混合層22b、非晶質無機材層21bの順で2つの層が積層された構成となっている。
図3(d)に示す排気管80では、気孔集中部23bは、混合層22bに存在している。
排気管80においては、表面被覆層20a、20bのうち、基材側の厚さ約2/3の部分が混合層22a、22bであり、排気管の表面側の厚さ約1/3の部分が非晶質無機材層21a、21bである。
In the exhaust pipe 80 shown in FIG.
Each of the surface coating layers 20a and 20b has a two-layer structure similar to the surface coating layer shown in FIG.
The surface coating layer 20a has a configuration in which two layers are laminated in the order of the mixed layer 22a and the amorphous inorganic material layer 21a in this order from the substrate 10 side.
In the exhaust pipe 80 shown in FIG. 3D, the pore concentration part 23a exists in the mixed layer 22a.
The surface coating layer 20b has a configuration in which two layers are laminated in the order of the mixed layer 22b and the amorphous inorganic material layer 21b in this order from the substrate 10 side.
In the exhaust pipe 80 shown in FIG. 3D, the pore concentrating portion 23b exists in the mixed layer 22b.
In the exhaust pipe 80, of the surface coating layers 20a and 20b, the part having a thickness of about 2/3 on the substrate side is the mixed layer 22a and 22b, and the part having a thickness of about 1/3 on the surface side of the exhaust pipe. Are the amorphous inorganic material layers 21a and 21b.
なお、混合層22と非晶質無機材層21の積層順序は特に限定されるものではないが、図1、図3(b)、図3(c)及び図3(d)に示すように、基材10と接する位置に混合層22を配置することがより好ましい。混合層22と基材10の接着力は、非晶質無機材層21と基材10の接着力に比べて高く、基材と表面被覆層の密着性を高めることができる点でより好ましいためである。 The order of lamination of the mixed layer 22 and the amorphous inorganic material layer 21 is not particularly limited, but as shown in FIGS. 1, 3B, 3C, and 3D. More preferably, the mixed layer 22 is disposed at a position in contact with the substrate 10. Since the adhesive force between the mixed layer 22 and the base material 10 is higher than the adhesive force between the amorphous inorganic material layer 21 and the base material 10, and is more preferable in that the adhesion between the base material and the surface coating layer can be improved. It is.
図4は、第一の本発明の第一実施形態の他の排気管の断面の一例を模式的に示す断面図である。
図4に示す排気管190では、表面被覆層20が三層構造となっている。
具体的には、基材10側から順に、混合層22、非晶質無機材層21b、非晶質無機材層21aの順で3つの層が積層された構成となっている。
混合層22、非晶質無機材層21b、非晶質無機材層21aの厚さの比は、混合層22:非晶質無機材層21b:非晶質無機材層21a=25:10:5である。
図4には、上記厚さ比に対応させた5つの短冊部を、20A、20B、20C、20D及び20Eで示している。
非晶質無機材層21bには、大きな独立気孔33が多く存在しており、短冊部20Bの殆どは非晶質無機材層21bであるため、短冊部20Bは気孔集中部23となる。
短冊部20Bは、5つの短冊部のうちの中央の短冊部20Cに隣接する短冊部である。
FIG. 4 is a cross-sectional view schematically showing an example of a cross section of another exhaust pipe according to the first embodiment of the first invention.
In the exhaust pipe 190 shown in FIG. 4, the surface coating layer 20 has a three-layer structure.
Specifically, the three layers are laminated in this order from the substrate 10 side in the order of the mixed layer 22, the amorphous inorganic material layer 21b, and the amorphous inorganic material layer 21a.
The thickness ratio of the mixed layer 22, the amorphous inorganic material layer 21b, and the amorphous inorganic material layer 21a is as follows: mixed layer 22: amorphous inorganic material layer 21b: amorphous inorganic material layer 21a = 25: 10: 5.
In FIG. 4, five strip portions corresponding to the thickness ratio are indicated by 20A, 20B, 20C, 20D and 20E.
The amorphous inorganic material layer 21 b has many large independent pores 33, and most of the strip portions 20 </ b> B are the amorphous inorganic material layer 21 b, so that the strip portions 20 </ b> B become the pore concentration portions 23.
The strip portion 20B is a strip portion adjacent to the central strip portion 20C among the five strip portions.
図4に示すような表面被覆層を形成するためには、後述する排気管を製造する方法において、混合層用原料組成物、非晶質無機材層用原料組成物に気孔形成材料を配合した気孔集中部形成用原料組成物、非晶質無機材層用原料組成物の順に塗布を行えばよく、各塗布工程における塗布量を調節して各層の厚さ調整すればよい。 In order to form the surface coating layer as shown in FIG. 4, a pore forming material was blended with the mixed layer raw material composition and the amorphous inorganic material layer raw material composition in the method of manufacturing the exhaust pipe described later. Application may be performed in the order of the pore concentration portion forming raw material composition and the amorphous inorganic material layer raw material composition, and the thickness of each layer may be adjusted by adjusting the application amount in each application step.
図5(a)、図5(b)及び図5(c)は、第一の本発明の第一実施形態の他の排気管の断面の一例を模式的に示す断面図である。
図5(a)に示す排気管90では、基材の形状が図1に示す第一の本発明の第一実施形態の排気管と異なる。
排気管90においては、基材11の形状が、円筒を半分に切断した、半円筒の形状である。
表面被覆層20は、基材11の表面のうち、面積が大きい側の表面上に形成されている。排気管90における表面被覆層20の構成は図3(c)に示す排気管70における表面被覆層20の構成と同様である。
なお、本実施形態の排気管において、半円筒の基材11を用いた場合に表面被覆層20を形成する面は、面積が小さい側の面(図5(a)に示す形態と反対側の面)であってもよい。
また、表面被覆層20が基材11の両面に形成されていてもよい。
5 (a), 5 (b) and 5 (c) are cross-sectional views schematically showing an example of a cross section of another exhaust pipe according to the first embodiment of the first invention.
In the exhaust pipe 90 shown to Fig.5 (a), the shape of a base material differs from the exhaust pipe of 1st embodiment of 1st this invention shown in FIG.
In the exhaust pipe 90, the shape of the base material 11 is a semi-cylindrical shape in which the cylinder is cut in half.
The surface coating layer 20 is formed on the surface of the base material 11 on the side having a larger area. The configuration of the surface coating layer 20 in the exhaust pipe 90 is the same as the configuration of the surface coating layer 20 in the exhaust pipe 70 shown in FIG.
In the exhaust pipe of the present embodiment, when the semi-cylindrical base material 11 is used, the surface on which the surface coating layer 20 is formed is the surface on the side having a smaller area (the side opposite to the form shown in FIG. 5A). Surface).
Further, the surface coating layer 20 may be formed on both surfaces of the base material 11.
図5(b)に示す排気管100では、基材12の形状が、円筒形状である。
表面被覆層20は、基材11の表面のうち、面積が大きい側の表面上(外周面上)に形成されている。排気管100における表面被覆層20の構成は図3(c)に示す排気管70における表面被覆層20の構成と同様である。
なお、本実施形態の排気管において、円筒形状の基材12を用いた場合に表面被覆層20を形成する面は、面積が小さい側の面(内周面上)であってもよい。
In the exhaust pipe 100 shown in FIG.5 (b), the shape of the base material 12 is a cylindrical shape.
The surface coating layer 20 is formed on the surface of the base material 11 on the side having the larger area (on the outer peripheral surface). The configuration of the surface coating layer 20 in the exhaust pipe 100 is the same as the configuration of the surface coating layer 20 in the exhaust pipe 70 shown in FIG.
In the exhaust pipe of the present embodiment, the surface on which the surface coating layer 20 is formed when the cylindrical substrate 12 is used may be a surface on the side having a smaller area (on the inner peripheral surface).
図5(c)に示す排気管110では、基材12の形状が、円筒形状である。
表面被覆層20は、基材11の表面の両面、すなわち、外周面上及び内周面上に形成されている。
排気管110における表面被覆層20a、20bの構成は図3(c)に示す排気管70における表面被覆層20の構成と同様である。
In the exhaust pipe 110 shown in FIG.5 (c), the shape of the base material 12 is a cylindrical shape.
The surface coating layer 20 is formed on both surfaces of the surface of the substrate 11, that is, on the outer peripheral surface and the inner peripheral surface.
The configuration of the surface coating layers 20a and 20b in the exhaust pipe 110 is the same as the configuration of the surface coating layer 20 in the exhaust pipe 70 shown in FIG.
図1、図3(a)、図3(b)、図3(c)、図3(d)、図5(a)、図5(b)及び図5(c)に示した本実施形態の排気管では、気孔集中部23の数は基材の1つの面に対して1つであり、気孔集中部23が5つの短冊部のうちの中央の短冊部に存在している。すなわち、気孔集中部23が表面被覆層20(20a、20b)を厚さ方向に2分割する位置に存在している。 This embodiment shown in FIG. 1, FIG. 3 (a), FIG. 3 (b), FIG. 3 (c), FIG. 3 (d), FIG. 5 (a), FIG. 5 (b) and FIG. In this exhaust pipe, the number of pore concentrating portions 23 is one with respect to one surface of the substrate, and the pore concentrating portions 23 exist in the central strip portion of the five strip portions. That is, the pore concentration part 23 exists in the position which divides the surface coating layer 20 (20a, 20b) into two in the thickness direction.
また、本実施形態の排気管において気孔集中部が設けられているということは、気孔が表面被覆層に均等に分布しているわけではなく、表面被覆層の気孔集中部以外の部位には気孔が少ない部位(非気孔集中部)が存在することを示している。
気孔が少ない部位は、表面被覆層全体の機械強度と絶縁性の向上に寄与する。
表面被覆層の強度は、気孔が少ないほど高く、また、気孔が少ない部位は体積抵抗も高くなるためである。
気孔の部分の絶縁破壊距離は3kV/mmであり、500V印加時においては、167μm以上の気孔径がないと絶縁性の向上に寄与しない。
本実施形態の排気管における気孔径は167μm未満であることが殆どであるので、気孔が少ない部位の方が体積抵抗が高くなることになる。
そのため、本実施形態の排気管では、表面被覆層全体に気孔が多く存在している排気管と比較して有利な効果を発揮することができる。
In addition, the fact that the pore concentrating portion is provided in the exhaust pipe of the present embodiment does not mean that the pores are evenly distributed in the surface coating layer, and the pores are not present in the portion other than the pore concentrating portion of the surface coating layer. It is shown that there are sites with less (non-stomach concentration part).
The part with few pores contributes to the improvement of the mechanical strength and insulation of the entire surface coating layer.
This is because the strength of the surface coating layer is higher as the number of pores is smaller, and the volume resistance is higher in a portion having fewer pores.
The dielectric breakdown distance of the pores is 3 kV / mm. When 500 V is applied, the insulation does not contribute to the improvement of the insulation without a pore diameter of 167 μm or more.
Since the pore diameter in the exhaust pipe of the present embodiment is almost less than 167 μm, the volume resistance is higher in the portion having fewer pores.
Therefore, the exhaust pipe of the present embodiment can exhibit an advantageous effect as compared with the exhaust pipe in which many pores exist in the entire surface coating layer.
次に、第一の本発明の第一実施形態に係る排気管を製造する方法について工程順に説明する。
第一の本発明の第一実施形態に係る排気管を製造する方法は、金属基材を準備する工程と、
表面被覆層形成用原料組成物を調製する工程と、
上記金属基材上に上記表面被覆層形成用原料組成物を塗布し、焼成することによって表面被覆層を形成する表面被覆層形成工程とを含む、排気管の製造方法であって、
上記表面被覆層形成用原料組成物を調製する工程において、非晶質無機材を含む非晶質無機材層用原料組成物及び/又は非晶質無機材及び結晶性無機材を含む混合層用原料組成物を調製し、かつ、上記非晶質無機材層用原料組成物又は上記混合層用原料組成物に気孔形成材料を配合して気孔集中部形成用原料組成物を調製し、
上記表面被覆層形成工程において、上記気孔集中部形成用原料組成物を少なくとも一度塗布し、焼成して表面被覆層内に気孔を形成し、かつ、非晶質無機材層用原料組成物又は上記混合層用原料組成物を少なくとも一度塗布することを特徴とする。
ここでは、図1に模式的に示す、第一の本発明の第一実施形態の排気管1を製造する場合を例にして、第一の本発明の第一実施形態に係る排気管の製造方法を説明する。
Next, a method for manufacturing an exhaust pipe according to the first embodiment of the first invention will be described in the order of steps.
The method for producing an exhaust pipe according to the first embodiment of the first invention includes a step of preparing a metal substrate,
Preparing a raw material composition for forming a surface coating layer;
A method for producing an exhaust pipe, comprising: a surface coating layer forming step of forming the surface coating layer by applying and firing the raw material composition for forming the surface coating layer on the metal substrate,
In the step of preparing the surface coating layer forming raw material composition, the amorphous inorganic material layer raw material composition containing an amorphous inorganic material and / or a mixed layer containing an amorphous inorganic material and a crystalline inorganic material A raw material composition was prepared, and a pore-forming material was prepared by blending a pore-forming material with the amorphous inorganic material layer raw material composition or the mixed layer raw material composition,
In the surface coating layer forming step, the pore concentration portion forming raw material composition is applied at least once and baked to form pores in the surface coating layer, and the amorphous inorganic material layer raw material composition or the above The mixed layer material composition is applied at least once.
Here, taking the case of manufacturing the exhaust pipe 1 of the first embodiment of the first invention schematically shown in FIG. 1, the manufacture of the exhaust pipe according to the first embodiment of the first invention is taken as an example. The method will be described.
(1)金属からなる基材(金属基材)を出発材料とし、まず、金属基材の表面の不純物を除去すべく洗浄処理を行う。
上記洗浄処理としては特に限定されず、従来公知の洗浄処理を用いることができ、具体的には、例えば、アルコール溶媒中で超音波洗浄を行う方法等を用いることができる。
(1) Using a metal base material (metal base material) as a starting material, first, a cleaning process is performed to remove impurities on the surface of the metal base material.
The cleaning process is not particularly limited, and a conventionally known cleaning process can be used. Specifically, for example, a method of performing ultrasonic cleaning in an alcohol solvent can be used.
また、上記洗浄処理後には、必要に応じて、基材の表面の比表面積を大きくしたり、基材の表面の粗さを調整したりすべく、基材の表面に粗化処理を施してもよい。具体的には、例えば、サンドブラスト処理、エッチング処理、高温酸化処理等の粗化処理を施してもよい。これらは単独で用いてもよいし、2種以上併用してもよい。
この粗化処理後にさらに洗浄処理を行ってもよい。
Further, after the cleaning treatment, if necessary, the surface of the base material may be roughened to increase the specific surface area of the base material surface or to adjust the surface roughness of the base material. Good. Specifically, for example, a roughening process such as a sandblast process, an etching process, or a high temperature oxidation process may be performed. These may be used alone or in combination of two or more.
You may perform a washing process after this roughening process.
(2)結晶性無機材及び非晶質無機材を湿式混合し、混合層用原料組成物を調製する。
具体的には、結晶性無機材の粉末と、非晶質無機材の粉末とをそれぞれ所定の粒度、形状等になるように調製し、各粉末を所定の配合比率で乾式混合して混合粉末を調製し、さらに水を加えて、ボールミルで湿式混合することにより混合層用原料組成物を調製する。
ここで、混合粉末と水との配合比は、特に限定されるものでないが、混合粉末100重量部に対して、水100重量部程度が望ましい。金属基材に塗布するのに適した粘度となるからである。また、必要に応じて、上記混合層用原料組成物には、有機溶剤等の分散媒及び有機結合材を配合してもよい。
(2) A crystalline inorganic material and an amorphous inorganic material are wet-mixed to prepare a mixed layer raw material composition.
Specifically, the powder of the crystalline inorganic material and the powder of the amorphous inorganic material are prepared so as to have a predetermined particle size, shape, etc., and each powder is dry-mixed at a predetermined blending ratio and mixed powder The mixed layer raw material composition is prepared by adding water and wet mixing with a ball mill.
Here, the mixing ratio of the mixed powder and water is not particularly limited, but is preferably about 100 parts by weight of water with respect to 100 parts by weight of the mixed powder. It is because it becomes a viscosity suitable for apply | coating to a metal base material. Moreover, you may mix | blend dispersion media, such as an organic solvent, and an organic binder with the said raw material composition for mixed layers as needed.
(3)非晶質無機材を含む非晶質無機材層用原料組成物を調製する。
非晶質無機材層用原料組成物の調製は、上述した混合層用原料組成物の調製方法において、結晶性無機材を加えず、乾式混合を行わない他は同様にすることによって行うことができる。
(3) A raw material composition for an amorphous inorganic material layer containing an amorphous inorganic material is prepared.
Preparation of the raw material composition for the amorphous inorganic material layer can be carried out in the same manner as in the preparation method of the raw material composition for the mixed layer, except that the crystalline inorganic material is not added and dry mixing is not performed. it can.
(4)気孔集中部形成用原料組成物を調製する。
混合層中に気孔集中部を形成する場合、気孔集中部を形成するための方法として、混合層用原料組成物中に、造孔材、発泡剤、中空フィラー、及び、無機繊維のうちの少なくとも一つを含む気孔形成材料を配合して気孔集中部形成用原料組成物を調製する方法を用いることができる。
この中でも、造孔材を用いることが好ましい。
造孔材としては、例えば酸化物系セラミックを成分とする微小中空球体であるバルーン、球状アクリル粒子、グラファイト等を用いることができる。
なお、非晶質無機材層に気孔集中部を形成する場合は、造孔材、発泡剤、中空フィラー、及び、無機繊維のうちの少なくとも一つを非晶質無機材層用原料組成物に配合する方法を用いることができる。
なお、本明細書において、以後、気孔集中部形成用原料組成物を含む、混合層用原料組成物及び非晶質無機材層用原料組成物を、表面被覆層形成用原料組成物ともいう。
(4) A raw material composition for forming pore concentration parts is prepared.
When forming the pore concentration part in the mixed layer, as a method for forming the pore concentration part, in the raw material composition for the mixed layer, at least one of a pore former, a foaming agent, a hollow filler, and inorganic fibers It is possible to use a method of preparing a pore concentration part forming raw material composition by blending one pore forming material.
Among these, it is preferable to use a pore former.
As the pore former, for example, balloons that are fine hollow spheres containing oxide ceramics, spherical acrylic particles, graphite and the like can be used.
In addition, when forming a pore concentration part in an amorphous inorganic material layer, at least one of a pore former, a foaming agent, a hollow filler, and an inorganic fiber is used as the raw material composition for an amorphous inorganic material layer. A blending method can be used.
In the present specification, hereinafter, the mixed layer raw material composition and the amorphous inorganic material layer raw material composition including the pore concentration portion forming raw material composition are also referred to as a surface coating layer forming raw material composition.
(5)金属基材の表面に、表面被覆層形成用原料組成物(混合層用原料組成物)をコートする。
上記混合層用原料組成物をコートする方法としては、例えば、スプレーコート、静電塗装、インクジェット、スタンプやローラ等を用いた転写、ハケ塗り等の方法を用いることができる。
また、上記表面被覆層用原料組成物中に、上記金属基材を浸漬することにより、上記表面被覆層用原料組成物をコートしてもよい。
図1に示す排気管1を製造する場合は、基材側から順に混合層22b、気孔集中部23を含む非晶質無機材層21、混合層22aの順に積層することになる。
そのため、最初に、金属基材の表面に、混合層用原料組成物をコートする。
(5) The surface of the metal substrate is coated with a surface coating layer forming raw material composition (mixed layer raw material composition).
Examples of the method for coating the mixed layer material composition include spray coating, electrostatic coating, inkjet, transfer using a stamp or roller, and brushing.
Moreover, you may coat the said raw material composition for surface coating layers by immersing the said metal base material in the said raw material composition for surface coating layers.
When the exhaust pipe 1 shown in FIG. 1 is manufactured, the mixed layer 22b, the amorphous inorganic material layer 21 including the pore concentrating portion 23, and the mixed layer 22a are sequentially stacked from the base material side.
Therefore, first, the raw material composition for the mixed layer is coated on the surface of the metal substrate.
(6)表面被覆層用原料組成物(混合層用原料組成物)をコートした金属基材に焼成処理を施す。
具体的には、表面被覆層用原料組成物をコートした金属基材を乾燥後、加熱焼成することにより表面被覆層を形成する。
上記焼成温度は、非晶質無機材の軟化点以上とすることが望ましく、配合した非晶質無機材の種類にもよるが700℃~1100℃が望ましい。焼成温度を非晶質無機材の軟化点以上の温度とすることにより金属基材と非晶質無機材とを強固に密着させることができ、基材と強固に密着した表面被覆層(混合層)を形成することができるからである。
(6) The metal substrate coated with the surface coating layer raw material composition (mixed layer raw material composition) is fired.
Specifically, the metal substrate coated with the surface coating layer raw material composition is dried and then heated and fired to form the surface coating layer.
The firing temperature is preferably set to be equal to or higher than the softening point of the amorphous inorganic material, and is preferably 700 ° C. to 1100 ° C. depending on the kind of the blended amorphous inorganic material. By setting the firing temperature to a temperature equal to or higher than the softening point of the amorphous inorganic material, the metal substrate and the amorphous inorganic material can be firmly adhered, and the surface coating layer (mixed layer) firmly adhered to the substrate ) Can be formed.
(7)表面被覆層(混合層)の表面に、表面被覆層形成用原料組成物(気孔集中部形成用原料組成物)をコートする。この工程では、非晶質無機材層用原料組成物中に造孔材を配合した気孔集中部形成用原料組成物をコートする。そして、乾燥後、加熱焼成することにより表面被覆層を形成する。
乾燥、加熱焼成の過程で造孔材の働きにより気孔が形成されるので、この工程で積層した表面被覆層は気孔集中部を含む非晶質無機材層となる。
表面被覆層形成用原料組成物のコート方法及び乾燥、焼成方法は上記工程(5)及び(6)と同様に行うことができる。
(7) A surface coating layer forming raw material composition (a pore concentration portion forming raw material composition) is coated on the surface of the surface coating layer (mixed layer). In this step, the pore concentration portion forming raw material composition in which the pore former is blended in the amorphous inorganic material layer raw material composition is coated. And after drying, a surface coating layer is formed by baking by heating.
Since pores are formed by the function of the pore former in the process of drying and heating and firing, the surface coating layer laminated in this step becomes an amorphous inorganic material layer including pore concentration portions.
The coating method and drying / firing method of the raw material composition for forming the surface coating layer can be performed in the same manner as in the above steps (5) and (6).
(8)表面被覆層(気孔集中部を含む非晶質無機材層)の表面に、表面被覆層形成用原料組成物(混合層用原料組成物)をコートする。そして、乾燥後、加熱焼成することにより表面被覆層を形成する。この工程で積層した表面被覆層は混合層となる。
表面被覆層形成用原料組成物のコート方法及び乾燥、焼成方法は上記工程(5)及び(6)と同様に行うことができる。
上記手順により、本実施形態の排気管(図1に模式的に示す排気管1)を製造することができる。
(8) A surface coating layer forming raw material composition (mixed layer raw material composition) is coated on the surface of the surface coating layer (amorphous inorganic material layer including pore-concentrated portions). And after drying, a surface coating layer is formed by baking by heating. The surface coating layer laminated in this step becomes a mixed layer.
The coating method and drying / firing method of the raw material composition for forming the surface coating layer can be performed in the same manner as in the above steps (5) and (6).
By the above procedure, the exhaust pipe of the present embodiment (the exhaust pipe 1 schematically shown in FIG. 1) can be manufactured.
以下に、本実施形態の排気管及び本実施形態の排気管の製造方法の作用効果について列挙する。
(1)本実施形態の排気管では、表面被覆層に、表面被覆層全体に存在する気孔の面積のうち、気孔の面積として30%以上の気孔が存在する短冊部である気孔集中部が設けられている。
熱衝撃により表面被覆層に発生するクラックは、表面被覆層の表面にまず発生し、表面被覆層の厚み方向に、基材に向かって進展してゆくものと考えられる。
表面被覆層に発生したクラックが進展して、気孔に衝突した場合には、気孔より先にクラックが進展することが防止される。すなわち、表面被覆層内の短冊部の少なくとも1つが気孔集中部であると、表面被覆層の表面にクラックが発生したとしても、そのクラックは気孔集中部に存在する気孔に衝突しやすいため、気孔集中部よりも基材側にクラックが進展することが防止される。
また、気孔は、独立気孔であり、かつ、上記気孔は排気管の外部と上記基材の表面を連通しないものである。気孔が排気管の外部と上記基材の表面を連通しないものであると、クラックが気孔に衝突した場合にクラックは表面被覆層を貫通することがない。
このように、表面被覆層に気孔集中部が設けられており、表面被覆層に設けられた気孔が排気管の外部と上記基材の表面を連通しないものであると、熱衝撃により表面被覆層内にクラックが生じた場合であっても、気孔集中部に存在する気孔によってクラックの進展を防止することができる。
その結果、表面被覆層が破壊されることを防止することができる。そのため、上記排気管は、高い絶縁性を確保することができる。
The effects of the exhaust pipe of the present embodiment and the exhaust pipe manufacturing method of the present embodiment will be listed below.
(1) In the exhaust pipe of the present embodiment, the surface covering layer is provided with a pore concentrating portion which is a strip portion in which 30% or more of the pores exist as the area of the pores in the entire surface covering layer. It has been.
It is considered that a crack generated in the surface coating layer due to thermal shock first occurs on the surface of the surface coating layer and progresses toward the base material in the thickness direction of the surface coating layer.
When a crack generated in the surface coating layer progresses and collides with a pore, the crack is prevented from progressing before the pore. That is, if at least one of the strips in the surface coating layer is a pore concentration part, even if cracks occur on the surface of the surface coating layer, the cracks easily collide with the pores existing in the pore concentration part. It is possible to prevent cracks from developing on the substrate side with respect to the concentrated portion.
The pores are independent pores, and the pores do not communicate the outside of the exhaust pipe with the surface of the substrate. If the pores do not communicate with the outside of the exhaust pipe and the surface of the substrate, the cracks do not penetrate the surface coating layer when the cracks collide with the pores.
As described above, when the surface coating layer is provided with the pore concentrating portions, and the pores provided in the surface coating layer do not communicate with the outside of the exhaust pipe and the surface of the substrate, the surface coating layer is caused by thermal shock. Even if cracks occur in the inside, the progress of cracks can be prevented by the pores present in the pore concentration portion.
As a result, the surface coating layer can be prevented from being destroyed. Therefore, the exhaust pipe can ensure high insulation.
(2)本実施形態の排気管では、気孔集中部は、短冊部の面積(A)に対する気孔が占める面積(B)の比である気孔割合(B/A)が0.02以上である。上記気孔割合が0.02以上であると、クラックの進展を防止するための気孔が気孔集中部に充分に存在していることとなり、クラックが気孔に衝突する確率が高くなる。そのため、クラックの進展がより確実に防止される。 (2) In the exhaust pipe of the present embodiment, the pore concentration portion has a pore ratio (B / A) that is a ratio of the area (B) occupied by the pores to the area (A) of the strip portion is 0.02 or more. When the pore ratio is 0.02 or more, the pores for preventing the progress of cracks are sufficiently present in the pore concentration portion, and the probability that the cracks collide with the pores increases. Therefore, the progress of cracks can be prevented more reliably.
(3)本実施形態の排気管では、表面被覆層に結晶性無機材が含まれている。また、上記結晶性無機材は、マンガン、鉄、銅、コバルト、クロム、アルミニウムのうち少なくとも一種の酸化物を含有する。
上記酸化物は、高い赤外線の放射率を有するため、表面被覆層の放射率をより高くすることができる。表面被覆層の放射率が高くなると、高温での放熱性に優れた排気管とすることができる。
また、特に、アルミニウムの酸化物を用いた場合は、排気管の絶縁性の向上にも寄与する。
(3) In the exhaust pipe of this embodiment, the surface coating layer contains a crystalline inorganic material. The crystalline inorganic material contains at least one oxide of manganese, iron, copper, cobalt, chromium, and aluminum.
Since the oxide has a high infrared emissivity, the emissivity of the surface coating layer can be further increased. When the emissivity of the surface coating layer is increased, an exhaust pipe excellent in heat dissipation at high temperatures can be obtained.
In particular, when an aluminum oxide is used, it contributes to an improvement in the insulation of the exhaust pipe.
(4)本実施形態の排気管では、上記気孔集中部の数は、上記基材の1つの面に対して1つであり、上記気孔集中部となっている短冊部は、5つの短冊部のうちの中央の短冊部である場合を含む。
気孔集中部が表面被覆層を厚さ方向に2分割する位置である、中央の短冊部に存在していると、表面被覆層が、気孔集中部によって、半分の厚さを有する2つの部分に分けられることになる。そのため、表面被覆層に対する熱衝撃の強さが、表面被覆層の厚さが薄い場合と同程度になり、表面被覆層が破壊されることをより効果的に防止することができる。
(4) In the exhaust pipe of the present embodiment, the number of the pore concentrating portions is one with respect to one surface of the base material, and the strip portions serving as the pore concentrating portions are five strip portions. Including the case of the central strip portion.
If the pore concentrating portion is present in the central strip portion where the surface covering layer is divided into two in the thickness direction, the surface covering layer is divided into two portions having a half thickness by the pore concentrating portion. Will be divided. Therefore, the strength of the thermal shock on the surface coating layer becomes the same as that when the thickness of the surface coating layer is thin, and the surface coating layer can be more effectively prevented from being destroyed.
(5)本実施形態の排気管では、上記表面被覆層の厚さは、25~1000μmである。
表面被覆層の厚さが25μm未満であると、排気管として使用した場合に絶縁性が充分に確保できなくなる。また、表面被覆層の厚さが1000μmを超えると、表面被覆層に対する熱衝撃の強さが強くなり、表面被覆層が破壊されやすくなる。
(6)本実施形態の排気管の製造方法では、非晶質無機材層用原料組成物又は上記混合層用原料組成物に気孔形成材料を配合して気孔集中部形成用原料組成物を調製し、気孔集中部形成用原料組成物をコートした金属基材に焼成処理を施す。
上記処理により、気孔形成材料が存在する位置に気孔が形成されるため、表面被覆層の所望の位置に気孔集中部を有する排気管を製造することができる。
(5) In the exhaust pipe of this embodiment, the thickness of the surface coating layer is 25 to 1000 μm.
When the thickness of the surface coating layer is less than 25 μm, sufficient insulation cannot be secured when used as an exhaust pipe. On the other hand, when the thickness of the surface coating layer exceeds 1000 μm, the strength of the thermal shock to the surface coating layer becomes strong, and the surface coating layer is easily broken.
(6) In the exhaust pipe manufacturing method of the present embodiment, a pore forming material is blended with the amorphous inorganic material layer raw material composition or the mixed layer raw material composition to prepare a pore concentration portion forming raw material composition. Then, the metal substrate coated with the raw material composition for forming pore concentration portions is subjected to a firing treatment.
Since the pores are formed at the positions where the pore-forming material is present by the above-described treatment, it is possible to manufacture the exhaust pipe having the pore concentration portions at the desired positions of the surface coating layer.
(実施例)
以下に実施例を掲げ第一の本発明をさらに詳しく説明するが、第一の本発明はこれら実施例のみに限定されない。
(Example)
Hereinafter, the first invention will be described in more detail with reference to examples, but the first invention is not limited to these examples.
(基材の準備)
金属からなる基材として、厚さ2mmの平板状のステンレス基材(SUS430製)を材料として、アルコール溶媒中で超音波洗浄を行い、続いて、サンドブラスト処理を行って基材の表面(両面)を粗化した。サンドブラスト処理は、♯80のAl砥粒を用いて10分間行った。
上記処理により、平板状の基材を作製した。
(Preparation of base material)
As a base material made of a metal, a plate-like stainless steel base material (made of SUS430) having a thickness of 2 mm is used as a material, and ultrasonic cleaning is performed in an alcohol solvent. Was roughened. The sand blast treatment was performed for 10 minutes using # 80 Al 2 O 3 abrasive grains.
A flat substrate was produced by the above treatment.
直径40mm、厚さ2mmの円筒状のステンレス基材(SUS430製)を材料として、上記平板状の基材に対して行った上記処理と同様の洗浄処理及び粗化処理を行い、円筒状の基材を作製した。
また、上記円筒状の基材を半分に切断することによって、半円筒の基材を作製した。
Using a cylindrical stainless steel substrate (made of SUS430) having a diameter of 40 mm and a thickness of 2 mm as a material, the same cleaning treatment and roughening treatment as those performed on the flat substrate were performed, and a cylindrical substrate was obtained. A material was prepared.
Further, the cylindrical base material was cut in half to prepare a semi-cylindrical base material.
(混合層用原料組成物の調製)
結晶性無機材の粉末として、MnO粉末30wt%、FeO粉末5wt%、CuO粉末5wt%、CoO粉末5wt%からなる粉末を準備した。
非晶質無機材の粉末として、旭硝子株式会社製K4006A-100M(Bi-B系ガラス、軟化点770℃)を準備した。
有機結合材として、信越化学工業株式会社製のメチルセルロース(製品名:METOLOSE-65SH)を準備した。
混合層用原料組成物の調製にあたっては、結晶性無機材の粉末と非晶質無機材の粉末を乾式混合して混合粉末を調製し、混合粉末100重量部にさらに水を100重量部加えて、ボールミルで湿式混合することによりスラリーを調製した。
混合層用原料組成物として、2種類の混合層用原料組成物X、混合層用原料組成物Yを調製した。
混合層用原料組成物Xの配合比は、結晶性無機材:非晶質無機材:有機結合材=4:6:微量(wt%)であり、混合層用原料組成物Yの配合比(wt%)は、結晶性無機材:非晶質無機材:有機結合材=1:9:微量である。
ここで、「微量」とは、混合層原料用組成物の全体の重量を100wt%として、0.1~3wt%である。
(Preparation of mixed layer raw material composition)
As a crystalline inorganic material powder, a powder composed of 30 wt% MnO 2 powder, 5 wt% FeO powder, 5 wt% CuO powder, and 5 wt% CoO powder was prepared.
As an amorphous inorganic material powder, K4006A-100M (Bi 2 O 3 -B 2 O 3 glass, softening point 770 ° C.) manufactured by Asahi Glass Co., Ltd. was prepared.
As an organic binder, methyl cellulose (product name: METOLOSE-65SH) manufactured by Shin-Etsu Chemical Co., Ltd. was prepared.
In preparing the mixed layer raw material composition, a crystalline inorganic material powder and an amorphous inorganic material powder are dry mixed to prepare a mixed powder, and 100 parts by weight of water is added to 100 parts by weight of the mixed powder. A slurry was prepared by wet mixing with a ball mill.
As the mixed layer raw material composition, two types of mixed layer raw material compositions X and mixed layer raw material composition Y were prepared.
The mixing ratio of the mixed layer raw material composition X is crystalline inorganic material: amorphous inorganic material: organic binder = 4: 6: trace amount (wt%), and the mixing ratio of the mixed layer raw material composition Y ( wt%) is crystalline inorganic material: amorphous inorganic material: organic binder = 1: 9: trace amount.
Here, the “trace amount” is 0.1 to 3 wt% when the total weight of the mixed layer raw material composition is 100 wt%.
(非晶質無機材層用原料組成物の調製)
上記混合層用原料組成物の調製手順において、結晶性無機材を用いないこと、及び、乾式混合工程を行わないこと以外は同様にして、非晶質無機材層用原料組成物となるスラリーを調製した。
このスラリーを、以後、非晶質無機材層用原料組成物Zともいうこととする。
(Preparation of raw material composition for amorphous inorganic material layer)
In the preparation procedure of the raw material composition for the mixed layer, a slurry to be the raw material composition for the amorphous inorganic material layer is prepared in the same manner except that the crystalline inorganic material is not used and the dry mixing step is not performed. Prepared.
Hereinafter, this slurry is also referred to as a raw material composition Z for an amorphous inorganic material layer.
(気孔集中部形成用原料組成物の調製)
上記混合層用原料組成物の調製手順、又は、非晶質無機材層用原料組成物の調製手順において、湿式混合を行う際に造孔材としてシリカを主成分とする微小中空球体を10重量部加えることによって、気孔集中部形成用原料組成物を調製した。
なお、混合層用原料組成物X、混合層用原料組成物Y、非晶質無機材層用原料組成物Zにそれぞれ造孔材を加えて調製した気孔集中部形成用原料組成物を、それぞれ、気孔集中部形成用原料組成物X、気孔集中部形成用原料組成物Y、気孔集中部形成用原料組成物Zともいうこととする。
(Preparation of raw material composition for forming pore concentration part)
In the preparation procedure of the raw material composition for the mixed layer or the preparation procedure of the raw material composition for the amorphous inorganic material layer, 10 wt% of fine hollow spheres mainly composed of silica as a pore-forming material when wet mixing is performed. By adding part, a raw material composition for forming a pore concentration part was prepared.
In addition, the raw material composition for pore concentration part formation prepared by adding a pore former to the raw material composition X for the mixed layer, the raw material composition Y for the mixed layer, and the raw material composition Z for the amorphous inorganic material layer, respectively, These are also referred to as a pore concentration part forming raw material composition X, a pore concentration part forming raw material composition Y, and a pore concentration part forming raw material composition Z.
上記手順により準備した基材、混合層用原料組成物、非晶質無機材層用原料組成物、及び、気孔集中部形成用原料組成物を用いて、下記実施例及び比較例を実施した。
(実施例1)
平板状の基材の表面に、スプレーコートにより混合層用原料組成物Xを塗布し、乾燥機内で70℃で20分乾燥した。続いて、空気中、850℃で15分加熱焼成処理することにより表面被覆層(混合層)を形成した。混合層の厚さは25μmであった。この層を第1層とも呼ぶ。
The following examples and comparative examples were carried out using the base material, the mixed layer raw material composition, the amorphous inorganic material layer raw material composition, and the pore concentration part forming raw material composition prepared by the above procedure.
Example 1
The raw material composition X for mixed layers was applied to the surface of a flat substrate by spray coating, and dried at 70 ° C. for 20 minutes in a dryer. Subsequently, a surface coating layer (mixed layer) was formed by heating and baking in air at 850 ° C. for 15 minutes. The thickness of the mixed layer was 25 μm. This layer is also referred to as the first layer.
続いて、混合層の表面に、スプレーコートにより気孔集中部形成用原料組成物Zを塗布し、乾燥機内で70℃で20分乾燥した。続いて、空気中、850℃で15分加熱焼成処理することにより表面被覆層(気孔集中部を含む非晶質無機材層)を形成した。気孔集中部を含む非晶質無機材層の厚さは10μmであった。この層を第2層とも呼ぶ。 Subsequently, the pore concentration part forming raw material composition Z was applied to the surface of the mixed layer by spray coating and dried in a dryer at 70 ° C. for 20 minutes. Subsequently, a surface coating layer (amorphous inorganic material layer including pore concentrating portions) was formed by heating and baking in air at 850 ° C. for 15 minutes. The thickness of the amorphous inorganic material layer including the pore concentration portion was 10 μm. This layer is also called the second layer.
続いて、気孔集中部を含む非晶質無機材層の表面に、スプレーコートにより非晶質無機材層用原料組成物Zを塗布し、乾燥機内で70℃で20分乾燥した。続いて、空気中、850℃で15分加熱焼成処理することにより表面被覆層(非晶質無機材層)を形成した。非晶質無機材層の厚さは25μmであった。この層を第3層とも呼ぶ。
上記手順により排気管を製造した。
Subsequently, the amorphous inorganic material layer raw material composition Z was applied by spray coating on the surface of the amorphous inorganic material layer including the pore-concentrated portions, and dried at 70 ° C. for 20 minutes in a dryer. Subsequently, a surface coating layer (amorphous inorganic material layer) was formed by heating and baking in air at 850 ° C. for 15 minutes. The thickness of the amorphous inorganic material layer was 25 μm. This layer is also called the third layer.
An exhaust pipe was manufactured by the above procedure.
このようにして得られた排気管の表面被覆層の膜厚は60μmであった。
また、気孔集中部が表面被覆層を厚さ方向に2分割する位置に形成されていた。
The thickness of the surface coating layer of the exhaust pipe thus obtained was 60 μm.
Moreover, the pore concentration part was formed at a position where the surface coating layer was divided into two in the thickness direction.
(実施例2~7)
表面被覆層の構成を表1に示すように変更した他は実施例1と同様にして排気管を製造した。
実施例2~7において実施例1と異なる点は以下の点である。
実施例2では、混合層用原料組成物Xを用いて第1層を25μm、気孔集中部形成用原料組成物Xを用いて第2層を10μm、非晶質無機材層用原料組成物Zを用いて第3層を25μm形成した。
実施例3では、基材の表面の両面に、混合層用原料組成物Xを用いて第1層を25μm、気孔集中部形成用原料組成物Zを用いて第2層を25μm、混合層用原料組成物Xを用いて第3層を25μm形成した。
実施例4では、非晶質無機材層用原料組成物Zを用いて第1層を25μm、気孔集中部形成用原料組成物Xを用いて第2層を25μm、非晶質無機材層用原料組成物Zを用いて第3層を25μm形成した。
実施例5では、混合層用原料組成物Xを用いて第1層を5μm、気孔集中部形成用原料組成物Zを用いて第2層を10μm、混合層用原料組成物Xを用いて第3層を5μm形成した。
実施例6では、基材の表面の両面に、混合層用原料組成物Xを用いて第1層を100μm、気孔集中部形成用原料組成物Yを用いて第2層を50μm、非晶質無機材層用原料組成物Zを用いて第3層を50μm形成した。
実施例7では、混合層用原料組成物Xを用いて第1層を250μm、気孔集中部形成用原料組成物Zを用いて第2層を100μm、非晶質無機材層用原料組成物Zを用いて第3層を50μm形成した。
いずれの実施例においても、気孔集中部の数は、基材の1つの面に対して1つであった。実施例1~5においては、気孔集中部となっている短冊部は、5つの短冊部のうちの中央の短冊部であった。
実施例6、7においては、気孔集中部となっている短冊部は、5つの短冊部のうちの中央の短冊部に隣接する短冊部(表面から数えて上から2番目の短冊部)であった。
(Examples 2 to 7)
Exhaust pipes were manufactured in the same manner as in Example 1 except that the structure of the surface coating layer was changed as shown in Table 1.
Examples 2 to 7 differ from Example 1 in the following points.
In Example 2, the first layer is 25 μm using the mixed layer raw material composition X, the second layer is 10 μm using the pore concentration portion forming raw material composition X, and the amorphous inorganic material layer raw material composition Z Was used to form a third layer of 25 μm.
In Example 3, the first layer is 25 μm using the mixed layer raw material composition X on both surfaces of the base material, the second layer is 25 μm using the pore concentration portion forming raw material composition Z, and for the mixed layer A third layer of 25 μm was formed using the raw material composition X.
In Example 4, the first layer is 25 μm using the amorphous inorganic material layer raw material composition Z, the second layer is 25 μm using the pore concentration portion forming raw material composition X, and the amorphous inorganic material layer is used. A third layer of 25 μm was formed using the raw material composition Z.
In Example 5, the mixed layer raw material composition X is used to form the first layer of 5 μm, the pore concentration portion forming raw material composition Z is used to form the second layer of 10 μm, and the mixed layer raw material composition X is used. Three layers were formed to 5 μm.
In Example 6, on both surfaces of the base material, the first layer is 100 μm using the mixed layer raw material composition X, the second layer is 50 μm using the pore concentration portion forming raw material composition Y, amorphous A third layer of 50 μm was formed using the inorganic material layer raw material composition Z.
In Example 7, the first layer was 250 μm using the mixed layer raw material composition X, the second layer was 100 μm using the pore concentration forming raw material composition Z, and the amorphous inorganic material layer raw material composition Z Was used to form a third layer of 50 μm.
In any of the examples, the number of pore concentration portions was one for one surface of the substrate. In Examples 1 to 5, the strip portion serving as the pore concentration portion was the central strip portion of the five strip portions.
In Examples 6 and 7, the strip portion serving as the pore concentration portion is a strip portion (second strip portion from the top counted from the surface) adjacent to the central strip portion among the five strip portions. It was.
(実施例8)
本実施例では、基材として半円筒の基材を用いた。
そして、半円筒の基材の表面のうち、面積が大きい側の表面上に表面被覆層を表1に示す構成となるように形成した他は実施例1と同様にして排気管を製造した。
具体的には、混合層用原料組成物Xを用いて第1層を50μm、気孔集中部形成用原料組成物Xを用いて第2層を50μm、非晶質無機材層用原料組成物Zを用いて第3層を35μm形成した。
本実施例においても、気孔集中部の数は、基材の1つの面に対して1つであり、気孔集中部となっている短冊部は、5つの短冊部のうちの中央の短冊部であった。
(Example 8)
In this example, a semi-cylindrical base material was used as the base material.
Then, an exhaust pipe was manufactured in the same manner as in Example 1 except that a surface coating layer was formed on the surface of the semicylindrical base material on the surface having the larger area so as to have the configuration shown in Table 1.
Specifically, the first layer is 50 μm using the mixed layer raw material composition X, the second layer is 50 μm using the pore concentration portion forming raw material composition X, and the amorphous inorganic material layer raw material composition Z. Was used to form a third layer of 35 μm.
Also in the present embodiment, the number of pore concentrating portions is one for one surface of the base material, and the strip portion serving as the pore concentrating portion is the central strip portion of the five strip portions. there were.
(実施例9)
本実施例では、基材として円筒状の基材を用いた。
そして、円筒状の基材の表面の両面に表面被覆層を表1に示す構成となるように形成した他は実施例1と同様にして排気管を製造した。
具体的には、混合層用原料組成物Xを用いて第1層を50μm、気孔集中部形成用原料組成物Xを用いて第2層を50μm、非晶質無機材層用原料組成物Zを用いて第3層を35μm形成した。
本実施例においても、気孔集中部の数は、基材の1つの面に対して1つであり、気孔集中部となっている短冊部は、5つの短冊部のうちの中央の短冊部であった。
Example 9
In this example, a cylindrical base material was used as the base material.
And the exhaust pipe was manufactured like Example 1 except having formed the surface coating layer on both surfaces of the surface of a cylindrical base material so that it might become the composition shown in Table 1.
Specifically, the first layer is 50 μm using the mixed layer raw material composition X, the second layer is 50 μm using the pore concentration portion forming raw material composition X, and the amorphous inorganic material layer raw material composition Z. Was used to form a third layer of 35 μm.
Also in the present embodiment, the number of pore concentrating portions is one for one surface of the base material, and the strip portion serving as the pore concentrating portion is the central strip portion of the five strip portions. there were.
(比較例1~6)
各比較例においては、気孔集中部形成用原料組成物を用いずに、表1に示す構成となるように表面被覆層を形成した。比較例1~5では基材の片面に表面被覆層を形成した。
比較例1では、混合層用原料組成物Xを用いて第1層を20μm、混合層用原料組成物Xを用いて第2層を20μm、混合層用原料組成物Xを用いて第3層を20μm形成した。
比較例2では、混合層用原料組成物Xを用いて第1層を25μm、非晶質無機材層用原料組成物Zを用いて第2層を10μm、非晶質無機材層用原料組成物Zを用いて第3層を25μm形成した。
比較例3では、混合層用原料組成物Xを用いて第1層を25μm、混合層用原料組成物Xを用いて第2層を10μm、非晶質無機材層用原料組成物Zを用いて第3層を25μm形成した。
比較例4では、混合層用原料組成物Xを用いて第1層を50μm、混合層用原料組成物Xを用いて第2層を50μm形成した。第3層は形成しなかった。
比較例5では、基材として半円筒の基材を用いた。そして、混合層用原料組成物Xを用いて第1層を50μm、混合層用原料組成物Xを用いて第2層を50μm、非晶質無機材層用原料組成物Zを用いて第3層を35μm形成した。
比較例6では、基材として円筒の基材を用いた。そして、円筒状の基材の表面の両面に、混合層用原料組成物Xを用いて第1層を50μm、混合層用原料組成物Xを用いて第2層を50μm、非晶質無機材層用原料組成物Zを用いて第3層を35μm形成した。
いずれの比較例においても、表面被覆層に気孔集中部は存在していなかった。
(Comparative Examples 1 to 6)
In each comparative example, the surface coating layer was formed so as to have the configuration shown in Table 1 without using the pore concentration portion forming raw material composition. In Comparative Examples 1 to 5, a surface coating layer was formed on one side of the substrate.
In Comparative Example 1, the first layer is 20 μm using the mixed layer raw material composition X, the second layer is 20 μm using the mixed layer raw material composition X, and the third layer using the mixed layer raw material composition X. Was formed to 20 μm.
In Comparative Example 2, the first layer is 25 μm using the mixed layer raw material composition X, the second layer is 10 μm using the amorphous inorganic material layer raw material composition Z, and the amorphous inorganic material layer raw material composition A third layer of 25 μm was formed using the object Z.
In Comparative Example 3, the first layer is 25 μm using the mixed layer raw material composition X, the second layer is 10 μm using the mixed layer raw material composition X, and the amorphous inorganic material layer raw material composition Z is used. A third layer of 25 μm was formed.
In Comparative Example 4, the first layer was formed to 50 μm using the mixed layer raw material composition X, and the second layer was formed to 50 μm using the mixed layer raw material composition X. The third layer was not formed.
In Comparative Example 5, a semi-cylindrical base material was used as the base material. The first layer is 50 μm using the mixed layer raw material composition X, the second layer is 50 μm using the mixed layer raw material composition X, and the third layer using the amorphous inorganic material layer raw material composition Z. A layer of 35 μm was formed.
In Comparative Example 6, a cylindrical base material was used as the base material. And on both surfaces of the surface of the cylindrical base material, the first layer is 50 μm using the mixed layer raw material composition X, the second layer is 50 μm using the mixed layer raw material composition X, and the amorphous inorganic material A third layer of 35 μm was formed using the layer raw material composition Z.
In any of the comparative examples, there was no pore concentration portion in the surface coating layer.
(排気管の特性の評価)
実施例及び比較例で製造した排気管について、その特性を以下の手順で評価した。
各特性の評価結果をまとめて表2に示した。
(Evaluation of exhaust pipe characteristics)
About the exhaust pipe manufactured by the Example and the comparative example, the characteristic was evaluated in the following procedures.
The evaluation results for each characteristic are summarized in Table 2.
(熱衝撃試験)
各排気管を600℃に加熱し、600℃の排気管を25℃の水に投下して熱衝撃を与え、表面被覆層に剥離が存在しているかを目視で確認した。
表2の「熱衝撃試験時剥離」の欄には、本試験で剥離が存在したものを「有」、存在しなかったものを「無」と示した。
(Thermal shock test)
Each exhaust pipe was heated to 600 ° C., the 600 ° C. exhaust pipe was dropped into 25 ° C. water to give a thermal shock, and it was visually confirmed whether or not there was peeling on the surface coating layer.
In the column of “peeling during thermal shock test” in Table 2, “existing” indicates that there was peeling in this test, and “no” indicates that there was no peeling.
(体積抵抗値の測定)
各排気管の体積抵抗値を、株式会社アドバンテスト製のデジタル超高抵抗/微小電流計(型番:R8340)を用いて測定した。測定は、JIS C 2141に規定された手順に従い、500Vの電圧を印加し、各排気管の抵抗値を測定することによって行った。
なお、金属基材の体積抵抗値は非常に小さいので、ここで測定している体積抵抗値は、実質的には表面被覆層の体積抵抗値の大小に依存した値となる。
(Measurement of volume resistance)
The volume resistance value of each exhaust pipe was measured using a digital ultrahigh resistance / microammeter (model number: R8340) manufactured by Advantest Corporation. The measurement was performed by applying a voltage of 500 V and measuring the resistance value of each exhaust pipe according to the procedure defined in JIS C 2141.
In addition, since the volume resistance value of a metal base material is very small, the volume resistance value measured here becomes a value depending on the magnitude of the volume resistance value of a surface coating layer substantially.
(絶縁耐圧の測定)
JIS C 2110-2に規定された手順に従い、500Vの電圧を排気管の表裏に印加して、各排気管の絶縁破壊の有無を目視で確認した。
排気管の片面にのみ表面被覆層が形成されている場合は、一方の電極を表面被覆層の上面に、他方の電極を基材に接触させた。
排気管の両面に表面被覆層が形成されている場合は、一方の電極を一方の面の表面被覆層の上面に、他方の電極を他方の面の表面被覆層の上面に接触させた。
表2の「絶縁耐圧(500V)」の欄には、絶縁破壊が生じなかったものを絶縁耐圧があるとして「有」と示し、絶縁破壊が生じたものを絶縁耐圧がないとして「無」と示した。
(Measurement of dielectric strength)
According to the procedure specified in JIS C 2110-2, a voltage of 500 V was applied to the front and back of the exhaust pipe, and the presence or absence of dielectric breakdown of each exhaust pipe was visually confirmed.
When the surface coating layer was formed only on one side of the exhaust pipe, one electrode was brought into contact with the upper surface of the surface coating layer and the other electrode was brought into contact with the substrate.
When the surface coating layer was formed on both surfaces of the exhaust pipe, one electrode was brought into contact with the upper surface of the surface coating layer on one surface, and the other electrode was brought into contact with the upper surface of the surface coating layer on the other surface.
In the column of “Dielectric withstand voltage (500V)” in Table 2, “Yes” indicates that the dielectric breakdown does not occur, and “No” indicates that the dielectric breakdown does not occur. Indicated.
(放射率の測定)
各排気管の表面被覆層の放射率を放射率計AERD(京都電子工業株式会社製)を用いて計測した。
(Measurement of emissivity)
The emissivity of the surface coating layer of each exhaust pipe was measured using an emissivity meter AERD (manufactured by Kyoto Electronics Industry Co., Ltd.).
(表面被覆層の熱伝導率の測定)
各排気管の表面被覆層の熱伝導率をレーザーフラッシュ装置(熱定数測定装置:NETZSCH LFA457 Microflash)を用いて測定した。
(Measurement of thermal conductivity of surface coating layer)
The thermal conductivity of the surface coating layer of each exhaust pipe was measured using a laser flash device (thermal constant measuring device: NETZSCH LFA457 Microflash).
表2には、各排気管の測定結果とともに、総合判定を優、良、可、不良の4段階で示した。
総合判定基準は、以下の通りとした。
(1)熱衝撃試験で剥離が生じたもの:不良
(2)(1)に該当せず、絶縁耐圧「無」のもの:可
(3)(1)及び(2)のいずれにも該当せず、体積抵抗値が1.E+10[Ωm]未満のもの、放射率が0.80未満のもの、又は、表面被覆層の熱伝導率が0.5[W/mK]未満のもの:良
(4)(1)~(3)のいずれにも該当しないもの:優
なお、表2に示す実施例1~9では、実施例5の評価結果が「可」であったが、それ以外の実施例1~4及び実施例6~9の評価結果は「優」であった。
各実施例では、気孔集中部が形成されているため、熱衝撃試験における剥離の発生がなく、表面被覆層が破壊されることが防止されていた。
実施例5では、表面被覆層の合計膜厚が20μmと薄い。表面被覆層の厚さが薄いと、絶縁性を充分に確保することができないことに起因して、絶縁耐圧が「無」となった。そして、絶縁耐圧が「無」となったために評価結果が「可」となった。
比較例1~6では、気孔集中部が形成されていないため、熱衝撃試験において剥離が発生しており、評価結果は全て「不良」となった。
Table 2 shows the overall judgment as well as the measurement results for each exhaust pipe in four levels: excellent, good, good, and bad.
The overall criteria were as follows.
(1) Detachment in thermal shock test: Defect (2) Not applicable to (1), Dielectric withstand voltage “No”: Yes (3) Not applicable to (1) and (2) The volume resistance value is 1. E + 10 [Ωm] or less, emissivity less than 0.80, or surface coating layer thermal conductivity less than 0.5 [W / mK]: Good (4) (1) to (3 ) Not applicable to any of the above: Excellent In Examples 1 to 9 shown in Table 2, the evaluation result of Example 5 was “OK”, but other Examples 1 to 4 and Example 6 The evaluation results of ˜9 were “excellent”.
In each example, since the pore concentration portion was formed, no peeling occurred in the thermal shock test, and the surface coating layer was prevented from being broken.
In Example 5, the total film thickness of the surface coating layer is as thin as 20 μm. When the thickness of the surface coating layer was small, the insulation withstand voltage became “none” because sufficient insulation could not be secured. And since the withstand voltage became “none”, the evaluation result was “possible”.
In Comparative Examples 1 to 6, since the pore concentration portion was not formed, peeling occurred in the thermal shock test, and the evaluation results were all “bad”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(第二実施形態)
次に、第一の本発明の排気管の一実施形態である第二実施形態について説明する。
第一の本発明の第二実施形態の排気管は、表面被覆層が、非晶質無機材層のみ、又は、混合層のみからなる。その他の構成は第一の本発明の第一実施形態の排気管と同様である。
図6(a)及び図6(b)は、第一の本発明の第二実施形態の排気管の断面の一例を模式的に示す断面図である。
(Second embodiment)
Next, a second embodiment which is an embodiment of the exhaust pipe of the first invention will be described.
In the exhaust pipe of the second embodiment of the first aspect of the present invention, the surface coating layer consists of only an amorphous inorganic material layer or a mixed layer. The other structure is the same as that of the exhaust pipe of 1st embodiment of 1st this invention.
FIG. 6A and FIG. 6B are cross-sectional views schematically showing an example of the cross section of the exhaust pipe of the second embodiment of the first present invention.
図6(a)に示す排気管120では、表面被覆層20が非晶質無機材層21のみからなり、混合層は存在していない。気孔集中部23は、5つの短冊部のうちの中央の短冊部に存在している。 In the exhaust pipe 120 shown in FIG. 6A, the surface coating layer 20 is composed of only the amorphous inorganic material layer 21, and no mixed layer is present. The pore concentrating portion 23 exists in the central strip portion of the five strip portions.
図6(b)に示す排気管130では、表面被覆層20が混合層22のみからなり、非晶質無機材層は存在していない。気孔集中部23は、5つの短冊部のうちの中央の短冊部に存在している。 In the exhaust pipe 130 shown in FIG. 6B, the surface coating layer 20 is composed only of the mixed layer 22, and there is no amorphous inorganic material layer. The pore concentrating portion 23 exists in the central strip portion of the five strip portions.
本実施形態の排気管は、第一の本発明の第一実施形態の排気管の製造方法において、表面被覆層形成用原料組成物として、非晶質無機材層用原料組成物のみ、又は、混合層用原料組成物のみを用いることによって製造することができる。
図6(a)及び図6(b)に示すように、5つの短冊部のうちの中央の短冊部に気孔集中部を形成するための方法としては、原料組成物のコートを、各コートにより形成する表面被覆層の厚さが同じになるようにして5回に分けて行い、3番目にコートする原料組成物として、造孔材、発泡剤、中空フィラー、及び、無機繊維のうちの少なくとも一つが配合された気孔集中部形成用原料組成物を使用する方法が挙げられる。
また、原料組成物のコートを、各コートにより形成する表面被覆層の厚さが同じになるようにして3回に分けて行い、2番目にコートする原料組成物として、上記気孔集中部形成用原料組成物を使用した場合であっても、高い確率で5つの短冊部のうちの中央の短冊部に気孔集中部を形成することができる。
また、コートにより形成する表面被覆層の厚さを、コート回数に応じて適宜変更することによっても、所望の位置に気孔集中部を形成することができる。
In the exhaust pipe manufacturing method of the first embodiment of the first aspect of the present invention, the exhaust pipe of the present embodiment is the raw material composition for forming the surface coating layer, or only the raw material composition for the amorphous inorganic material layer, or It can manufacture by using only the raw material composition for mixed layers.
As shown in FIGS. 6 (a) and 6 (b), as a method for forming a pore concentrating portion in the central strip portion of the five strip portions, the coating of the raw material composition is made by each coat. The surface coating layer to be formed is divided into five times so that the thickness is the same, and the raw material composition to be coated third is at least one of a pore former, a foaming agent, a hollow filler, and inorganic fibers. The method of using the raw material composition for pore concentration part formation with which one was mix | blended is mentioned.
In addition, the coating of the raw material composition is divided into three times so that the thickness of the surface coating layer formed by each coating is the same, and as the raw material composition to be coated second, the above-mentioned pore concentration portion forming Even when the raw material composition is used, the pore concentration portion can be formed in the central strip portion of the five strip portions with high probability.
Moreover, a pore concentration part can be formed in a desired position also by changing suitably the thickness of the surface coating layer formed by a coating according to the frequency | count of a coating.
本実施形態の排気管は、第一の本発明の第一実施形態の排気管の作用効果(1)、(2)、(4)、(5)を発揮することができる。また、表面被覆層が混合層のみからなる場合には第一の本発明の第一実施形態の排気管の作用効果(3)を発揮することができる。 The exhaust pipe of this embodiment can exhibit the effects (1), (2), (4), and (5) of the exhaust pipe of the first embodiment of the first invention. Further, when the surface coating layer is composed only of the mixed layer, the effect (3) of the exhaust pipe of the first embodiment of the first aspect of the present invention can be exhibited.
(実施例10、11)
第一の本発明の第一実施形態の実施例1において行った手順と同様にして、表面被覆層の構成を表3に示すように変更して排気管を製造した。
実施例10では、円筒状の基材の表面の両面に、非晶質無機材層用原料組成物Zを用いて第1層を50μm、気孔集中部形成用原料組成物Zを用いて第2層を50μm、非晶質無機材層用原料組成物Zを用いて第3層を50μm形成した。
実施例11では、円筒状の基材の表面の両面に、混合層用原料組成物Xを用いて第1層を50μm、気孔集中部形成用原料組成物Xを用いて第2層を50μm、混合層用原料組成物Xを用いて第3層を50μm形成した。
いずれの実施例においても、気孔集中部の数は、基材の1つの面に対して1つであり、気孔集中部となっている短冊部は、5つの短冊部のうちの中央の短冊部であった。
すなわち、実施例10では非晶質無機材層のみからなる表面被覆層を形成し、実施例11では混合層のみからなる表面被覆層を形成した。
第一の本発明の第一実施形態の実施例1と同様の評価を行い、各実施例の評価結果を表4に示した。
(Examples 10 and 11)
Similarly to the procedure performed in Example 1 of the first embodiment of the first aspect of the present invention, the structure of the surface coating layer was changed as shown in Table 3 to manufacture an exhaust pipe.
In Example 10, on both surfaces of the cylindrical base material, the first layer is 50 μm using the amorphous inorganic material layer raw material composition Z, and the pore concentrated portion forming raw material composition Z is used for the second. A third layer was formed to 50 μm using the raw material composition Z for an amorphous inorganic material layer.
In Example 11, on both surfaces of the surface of the cylindrical base material, the first layer is 50 μm using the mixed layer raw material composition X, the second layer is 50 μm using the pore concentration portion forming raw material composition X, A third layer of 50 μm was formed using the mixed layer raw material composition X.
In any embodiment, the number of pore concentrating portions is one for one surface of the substrate, and the strip portion serving as the pore concentrating portion is the central strip portion of the five strip portions. Met.
That is, in Example 10, a surface coating layer consisting only of an amorphous inorganic material layer was formed, and in Example 11, a surface coating layer consisting only of a mixed layer was formed.
Evaluation similar to Example 1 of 1st embodiment of 1st this invention was performed, and the evaluation result of each Example was shown in Table 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実施例10の総合判定は「優」であり、実施例11の総合判定は「良」であった。
いずれの実施例においても、気孔集中部が設けられているため、熱衝撃試験における剥離の発生がなく、表面被覆層が破壊されることが防止されていた。
実施例10に係る排気管は、非晶質無機材層のみからなる表面被覆層を有するため、表面被覆層の体積抵抗値が1.E+13[Ωm]と高くなっていた。
一方、実施例11に係る排気管は、混合層のみからなる表面被覆層を有し、非晶質無機材層を有さないため、表面被覆層の体積抵抗値が1.E+08[Ωm]と低くなっていた。そのため、評価結果が「良」となった。
The overall judgment of Example 10 was “excellent”, and the overall judgment of Example 11 was “good”.
In any of the examples, since the pore concentrating portion was provided, no peeling occurred in the thermal shock test, and the surface coating layer was prevented from being broken.
Since the exhaust pipe according to Example 10 has a surface coating layer made of only an amorphous inorganic material layer, the volume resistance value of the surface coating layer is 1. It was as high as E + 13 [Ωm].
On the other hand, since the exhaust pipe according to Example 11 has a surface coating layer composed of only a mixed layer and does not have an amorphous inorganic material layer, the volume resistance value of the surface coating layer is 1. It was as low as E + 08 [Ωm]. Therefore, the evaluation result was “good”.
(第三実施形態)
次に、第一の本発明の排気管及び第一の本発明の排気管の製造方法の一実施形態である第三実施形態について説明する。
第一の本発明の第三実施形態の排気管は、気孔集中部の形成方法が第一の本発明の第一実施形態と異なる。
本実施形態の排気管は、表面被覆層が複数層に分けて形成されている。
表面被覆層を形成する工程において、表面被覆層の下層の表面を粗化し、粗化された表面の上に上層の表面被覆層を形成することによって、下層の表面被覆層と上層の表面被覆層の境界に気孔が形成される。このようにして形成された気孔を含む、下層の表面被覆層と上層の表面被覆層の境界を含む部分が気孔集中部となっている。
本実施形態の排気管も気孔集中部を有しており、本実施形態における気孔集中部は、第一の本発明の第一実施形態の排気管において気孔集中部を定めた方法と同様の方法を用いて定められる。
なお、「下層」とは表面被覆層の基材に近い側の層を指し、「上層」は表面被覆層の表面に近い側の層を指す。
(Third embodiment)
Next, a description will be given of a third embodiment which is an embodiment of the exhaust pipe of the first invention and the method of manufacturing the exhaust pipe of the first invention.
The exhaust pipe of the third embodiment of the first aspect of the present invention differs from the first embodiment of the first aspect of the present invention in the method of forming the pore concentration portion.
In the exhaust pipe of the present embodiment, the surface coating layer is divided into a plurality of layers.
In the step of forming the surface coating layer, the lower surface coating layer and the upper surface coating layer are formed by roughening the surface of the lower layer of the surface coating layer and forming an upper surface coating layer on the roughened surface. A pore is formed at the boundary of the. A portion including the boundary between the lower surface coating layer and the upper surface coating layer including the pores formed in this manner is a pore concentration portion.
The exhaust pipe of the present embodiment also has a pore concentrating portion, and the pore concentrating portion in the present embodiment is the same method as the method of defining the pore concentrating portion in the exhaust pipe of the first embodiment of the first present invention. It is determined using
The “lower layer” refers to a layer on the side close to the substrate of the surface coating layer, and the “upper layer” refers to a layer on the side closer to the surface of the surface coating layer.
図7(a)及び図7(b)は、第一の本発明の第三実施形態の排気管の断面の一例を模式的に示す断面図である。
図7(a)に示す排気管140では、表面被覆層20が混合層22a、非晶質無機材層21、及び、混合層22bからなる。
気孔集中部23は、基材10に近い側(下層)の混合層22bと、非晶質無機材層21との境界を含んでいる。
図7(a)において気孔集中部23となっている短冊部は、5つの短冊部のうち、下から2番目に位置する短冊部であり、中央の短冊部に隣接する短冊部であるといえる。
FIGS. 7A and 7B are cross-sectional views schematically showing an example of a cross section of the exhaust pipe of the third embodiment of the first invention.
In the exhaust pipe 140 shown in FIG. 7A, the surface coating layer 20 includes a mixed layer 22a, an amorphous inorganic material layer 21, and a mixed layer 22b.
The pore concentration part 23 includes a boundary between the mixed layer 22 b on the side close to the base material 10 (lower layer) and the amorphous inorganic material layer 21.
The strip portion which is the pore concentrating portion 23 in FIG. 7A is a strip portion located second from the bottom among the five strip portions, and can be said to be a strip portion adjacent to the central strip portion. .
図7(b)に示す排気管150では、表面被覆層20の構成は図7(a)に示す排気管と同様であるが、混合層22bの厚さが、非晶質無機材層21の厚さ及び混合層22aの厚さの合計の厚さとほぼ等しくなっている。
そのため、気孔集中部23となっている短冊部は、5つの短冊部のうちの中央の短冊部であり、表面被覆層20を厚さ方向に2分割する位置に存在している。
In the exhaust pipe 150 shown in FIG. 7B, the structure of the surface coating layer 20 is the same as that of the exhaust pipe shown in FIG. 7A, but the thickness of the mixed layer 22b is the same as that of the amorphous inorganic material layer 21. It is almost equal to the total thickness of the thickness and the thickness of the mixed layer 22a.
Therefore, the strip portion which is the pore concentrating portion 23 is a central strip portion of the five strip portions, and exists at a position where the surface coating layer 20 is divided into two in the thickness direction.
本実施形態の排気管を製造する方法について工程順に説明する。
第一の本発明の第三実施形態に係る排気管を製造する方法は、金属基材を準備する工程と、
表面被覆層形成用原料組成物を調製する工程と、
上記金属基材上に上記表面被覆層形成用原料組成物を複数回塗布し、焼成することによって表面被覆層を形成する表面被覆層形成工程とを含む、排気管の製造方法であって、
上記表面被覆層形成工程において、表面被覆層形成用原料組成物の塗布及び焼成を少なくとも1回行い下層の表面被覆層を形成する工程、
上記下層の表面被覆層の表面を粗化する工程、及び、
上記粗化された下層の表面被覆層の表面に表面被覆層形成用原料組成物を塗布し、焼成することによって上層の表面被覆層を形成し、同時に、下層の表面被覆層と上層の表面被覆層の間に気孔を形成することを特徴とする。
ここでは、図7(a)に模式的に示す、第一の本発明の第三実施形態の排気管140を製造する場合を例にして、第一の本発明の第三実施形態に係る排気管を製造する方法を説明する。
図8(a)、図8(b)及び図8(c)は、第一の本発明の第三実施形態の排気管を製造する工程の一部を模式的に示した断面図である。
(1)第一の本発明の第一実施形態の排気管の製造工程(1)~(3)と同様にして、基材、混合層用原料組成物及び非晶質無機材層用原料組成物を調製する。
A method for manufacturing the exhaust pipe of this embodiment will be described in the order of steps.
The method for producing an exhaust pipe according to the third embodiment of the first invention includes a step of preparing a metal substrate,
Preparing a raw material composition for forming a surface coating layer;
A method for producing an exhaust pipe, comprising a step of forming a surface coating layer by applying the surface coating layer forming raw material composition a plurality of times on the metal substrate and firing the composition;
In the surface coating layer forming step, a step of forming a lower surface coating layer by applying and baking the raw material composition for forming the surface coating layer at least once,
A step of roughening the surface of the lower surface coating layer, and
The surface coating layer forming raw material composition is applied to the surface of the roughened lower surface coating layer and baked to form an upper surface coating layer. At the same time, the lower surface coating layer and the upper surface coating layer are formed. It is characterized by forming pores between the layers.
Here, the exhaust according to the third embodiment of the first invention is taken as an example in the case of manufacturing the exhaust pipe 140 of the third embodiment of the first invention schematically shown in FIG. A method of manufacturing the tube will be described.
8 (a), 8 (b) and 8 (c) are cross-sectional views schematically showing a part of the process for manufacturing the exhaust pipe of the third embodiment of the first invention.
(1) Substrate, raw material composition for mixed layer and raw material composition for amorphous inorganic material layer in the same manner as in the manufacturing steps (1) to (3) of the exhaust pipe of the first embodiment of the first invention Prepare the product.
(2)第一の本発明の第一実施形態の排気管の製造工程(5)~(6)と同様にして、基材に下層の表面被覆層(混合層)を形成する。
図8(a)には、基材10に混合層22bが形成された状態を示している。
(2) A lower surface coating layer (mixed layer) is formed on the substrate in the same manner as in the exhaust pipe manufacturing steps (5) to (6) of the first embodiment of the first aspect of the present invention.
FIG. 8A shows a state in which the mixed layer 22 b is formed on the base material 10.
(3)下層の表面被覆層の表面に粗化処理を施す。
図8(b)には、混合層22bの表面に粗化処理を施した状態を示している。粗化処理の方法としては、サンドブラスト処理、エッチング処理等を用いることができる。
粗化面の表面粗さRzJISは、0.1~100μmが好ましい。
粗化面の表面粗さRzJISは、JIS B 0601(2001)に準拠して測定することができる。
粗化面の表面粗さRzJISが0.1μm未満であると、下層の表面被覆層と上層の表面被覆層の間に気孔が充分に形成されないことがあるため、表面被覆層の熱衝撃性の緩和効果が小さくなる。また、粗化面の表面粗さRzJISが100μmを超えると、下層の表面被覆層と上層の表面被覆層との接着面積が小さくなるため、下層の表面被覆層と上層の表面被覆層との密着性が低下する。
粗化面の表面粗さRzJISは、東京精密製、ハンディサーフE-35Bを用いてJIS B 0601(2001)に準拠して測定することができる。
(3) A roughening treatment is applied to the surface of the lower surface coating layer.
FIG. 8B shows a state in which the surface of the mixed layer 22b has been roughened. As a roughening method, sandblasting, etching, or the like can be used.
The surface roughness Rz JIS of the roughened surface is preferably 0.1 to 100 μm.
The surface roughness Rz JIS of the roughened surface can be measured according to JIS B 0601 (2001).
When the surface roughness Rz JIS of the roughened surface is less than 0.1 μm, pores may not be sufficiently formed between the lower surface coating layer and the upper surface coating layer. The relaxation effect of is reduced. Further, when the surface roughness Rz JIS of the roughened surface exceeds 100 μm, the adhesion area between the lower surface coating layer and the upper surface coating layer becomes small, and therefore the lower surface coating layer and the upper surface coating layer Adhesion decreases.
The surface roughness Rz JIS of the roughened surface can be measured according to JIS B 0601 (2001) using Handy Surf E-35B manufactured by Tokyo Seimitsu.
(4)粗化処理を施した下層の表面被覆層の表面に、表面被覆層形成用原料組成物(非晶質無機材層用原料組成物)をコートし、乾燥後、加熱焼成することにより非晶質無機材層を形成する。
図8(c)には、混合層22bの上に非晶質無機材層21を形成した状態を示している。
粗化処理を施した下層の表面被覆層(混合層)の表面に非晶質無機材層を形成すると、2つの層の境界に気孔を作ることができる。従って、本実施形態の排気管の製造方法では、粗化処理を施した表面を含む位置に気孔集中部23が形成されることとなる。
(4) A surface coating layer forming raw material composition (amorphous inorganic material layer raw material composition) is coated on the surface of the lower surface coating layer subjected to the roughening treatment, dried, and then heated and fired. An amorphous inorganic material layer is formed.
FIG. 8C shows a state in which the amorphous inorganic material layer 21 is formed on the mixed layer 22b.
When an amorphous inorganic material layer is formed on the surface of the lower surface coating layer (mixed layer) subjected to the roughening treatment, pores can be formed at the boundary between the two layers. Therefore, in the exhaust pipe manufacturing method according to the present embodiment, the pore concentrating portion 23 is formed at a position including the roughened surface.
(5)第一の本発明の第一実施形態の排気管の製造工程(8)と同様にして、基材に上層の表面被覆層(混合層)を形成する(図示は省略)。
上記手順により、本実施形態の排気管(図7(a)に模式的に示す排気管140)を製造することができる。
(5) An upper surface coating layer (mixed layer) is formed on the substrate in the same manner as in the exhaust pipe manufacturing process (8) of the first embodiment of the first invention (not shown).
By the above procedure, the exhaust pipe of the present embodiment (the exhaust pipe 140 schematically shown in FIG. 7A) can be manufactured.
なお、図7(a)に示した排気管140は、第一の本発明の第三実施形態の排気管の一例を示しているに過ぎず、第三実施形態の排気管の表面被覆層において、気孔集中部の位置は、下層の混合層と非晶質無機材層との境界を含む位置に限定されるものではない。
また、表面被覆層は第二実施形態の排気管のように非晶質無機材層のみ、又は、混合層のみからなっていてもよい。
In addition, the exhaust pipe 140 shown to Fig.7 (a) is only an example of the exhaust pipe of 3rd embodiment of 1st this invention, and is in the surface coating layer of the exhaust pipe of 3rd embodiment. The position of the pore concentration portion is not limited to the position including the boundary between the lower mixed layer and the amorphous inorganic material layer.
Moreover, the surface coating layer may consist of only an amorphous inorganic material layer or a mixed layer like the exhaust pipe of the second embodiment.
本実施形態の排気管は、第一の本発明の第一実施形態の排気管の作用効果(1)~(5)を発揮することができる。また、本実施形態の排気管の製造方法は、以下の効果を発揮することができる。
(7)本実施形態の排気管の製造方法では、表面被覆層を形成する際に、下層の表面被覆層の表面を粗化する工程を行う。粗化された下層の表面被覆層の表面に上層の表面被覆層形成用原料組成物を塗布すると、下層の表面被覆層の表面の粗化面の凹部の全てが表面被覆層形成用原料組成物によって埋められるわけではなく、下層の表面被覆層の表面の粗化面の凹部と上層の表面被覆層形成用原料組成物の間に空間が残留することとなる。そして、焼成後に上記空間が気孔となるため、下層の表面被覆層と上層の表面被覆層の境界部に局在した独立気孔を形成することができる。そして、表面被覆層の所望の位置に気孔集中部を有する排気管を製造することができる。
The exhaust pipe of this embodiment can exhibit the effects (1) to (5) of the exhaust pipe of the first embodiment of the first invention. Moreover, the manufacturing method of the exhaust pipe of this embodiment can exhibit the following effects.
(7) In the exhaust pipe manufacturing method of the present embodiment, when forming the surface coating layer, a step of roughening the surface of the lower surface coating layer is performed. When the raw material composition for forming the upper surface coating layer is applied to the surface of the roughened lower surface coating layer, all the concave portions of the roughened surface on the surface of the lower surface coating layer are formed. However, a space remains between the concave portion of the roughened surface on the surface of the lower surface coating layer and the raw material composition for forming the upper surface coating layer. Since the space becomes pores after firing, independent pores localized at the boundary between the lower surface coating layer and the upper surface coating layer can be formed. And the exhaust pipe which has a pore concentration part in the desired position of a surface coating layer can be manufactured.
(実施例12)
第一の本発明の第一実施形態の実施例1において行った手順と同様にして、基材、混合層用原料組成物X、非晶質無機材層用原料組成物Zを準備した。
まず、第一の本発明の第一実施形態の実施例1において行った手順と同様にして、平板状の基材の表面に、スプレーコートにより混合層用原料組成物Xを塗布し、乾燥機内で70℃で20分乾燥した。続いて、空気中、850℃で15分加熱焼成処理することにより表面被覆層(混合層、第1層)を形成した。混合層の厚さは20μmであった。
(Example 12)
In the same manner as the procedure performed in Example 1 of the first embodiment of the first aspect of the present invention, a base material, a mixed layer raw material composition X, and an amorphous inorganic material layer raw material composition Z were prepared.
First, in the same manner as the procedure performed in Example 1 of the first embodiment of the first aspect of the present invention, the raw material composition X for the mixed layer was applied to the surface of the flat substrate by spray coating, and the inside of the dryer And dried at 70 ° C. for 20 minutes. Subsequently, a surface coating layer (mixed layer, first layer) was formed by heating and baking in air at 850 ° C. for 15 minutes. The thickness of the mixed layer was 20 μm.
続いて、サンドブラスト処理によって、混合層の表面を粗化した。粗化した混合層の表面の表面粗さRzJISは10μmであった。
粗化面の表面粗さRzJISは、東京精密社製、ハンディサーフE-35Bを用いてJIS B 0601(2001)に準拠して測定した。
Subsequently, the surface of the mixed layer was roughened by sandblasting. The surface roughness Rz JIS of the surface of the roughened mixed layer was 10 μm.
The surface roughness Rz JIS of the roughened surface was measured according to JIS B 0601 (2001) using Handy Surf E-35B manufactured by Tokyo Seimitsu Co., Ltd.
続いて、粗化処理を施した混合層の表面に、第一の本発明の第一実施形態の実施例1において行った手順と同様にして、スプレーコートにより非晶質無機材層用原料組成物Zを塗布し、乾燥機内で70℃で20分乾燥した。続いて、空気中、850℃で15分加熱焼成処理することにより表面被覆層(非晶質無機材層、第2層)を形成した。非晶質無機材層の厚さは20μmであった。 Subsequently, on the surface of the mixed layer subjected to the roughening treatment, the raw material composition for the amorphous inorganic material layer is formed by spray coating in the same manner as the procedure performed in Example 1 of the first embodiment of the first invention. Product Z was applied and dried in a dryer at 70 ° C. for 20 minutes. Then, the surface coating layer (amorphous inorganic material layer, 2nd layer) was formed by heat-baking for 15 minutes at 850 degreeC in the air. The thickness of the amorphous inorganic material layer was 20 μm.
続いて、非晶質無機材層の表面に、スプレーコートにより混合層用原料組成物Xを塗布し、乾燥機内で70℃で20分乾燥した。続いて、空気中、850℃で15分加熱焼成処理することにより表面被覆層(混合層、第3層)を形成した。混合層の厚さは20μmであった。
上記手順により排気管を製造した。
表5には、実施例12で製造した排気管の表面被覆層の構成をまとめて示した。
実施例12で製造した排気管には、気孔集中部が、層1(基材側の下層の混合層)と層2(非晶質無機材層)の境界を含む位置に存在していた。表5では、このような気孔集中部の位置を「層1-層2間」と示した。
表5において、「粗化」の欄は、各層の表面に粗化処理を施した場合に「有」、粗化処理を施していない場合には「無」と示した。「層3」で示す3番目の層は、排気管の表面に現れる層であり、表面に粗化処理をすることはないため「粗化」の欄は設けていない。
Subsequently, the mixed layer raw material composition X was applied to the surface of the amorphous inorganic material layer by spray coating, and dried in a dryer at 70 ° C. for 20 minutes. Subsequently, a surface coating layer (mixed layer, third layer) was formed by heating and baking in air at 850 ° C. for 15 minutes. The thickness of the mixed layer was 20 μm.
An exhaust pipe was manufactured by the above procedure.
Table 5 collectively shows the structure of the surface coating layer of the exhaust pipe manufactured in Example 12.
In the exhaust pipe manufactured in Example 12, the pore concentration portion was present at a position including the boundary between the layer 1 (lower mixed layer on the base material side) and the layer 2 (amorphous inorganic material layer). In Table 5, the position of such a pore concentration portion is indicated as “between layer 1 and layer 2”.
In Table 5, the “roughening” column shows “Yes” when the surface of each layer was roughened, and “None” when the surface was not roughened. The third layer indicated by “Layer 3” is a layer that appears on the surface of the exhaust pipe, and since the surface is not subjected to roughening treatment, the “roughening” column is not provided.
(実施例13~19)
表面被覆層の構成を表5に示すように変更した他は実施例12と同様にして排気管を製造した。
実施例13~19において実施例12と異なる点は以下の点である。
実施例13では、非晶質無機材層用原料組成物Zを用いて第1層を20μm、混合層用原料組成物Xを用いて第2層を20μm、非晶質無機材層用原料組成物Zを用いて第3層を20μm形成した。
粗化面は、第1層の表面に形成した。
実施例14では、混合層用原料組成物Xを用いて第1層を20μm、非晶質無機材層用原料組成物Zを用いて第2層を20μm、混合層用原料組成物Xを用いて第3層を20μm形成した。
粗化面は、第2層の表面に形成した。
実施例15では、非晶質無機材層用原料組成物Zを用いて第1層を20μm、混合層用原料組成物Xを用いて第2層を20μm、非晶質無機材層用原料組成物Zを用いて第3層を20μm形成した。
粗化面は、第2層の表面に形成した。
実施例16では、混合層用原料組成物Xを用いて第1層を40μm、非晶質無機材層用原料組成物Zを用いて第2層を20μm、混合層用原料組成物Xを用いて第3層を20μm形成した。
粗化面は、第1層の表面に形成した。
実施例17では、非晶質無機材層用原料組成物Zを用いて第1層を40μm、混合層用原料組成物Xを用いて第2層を20μm、非晶質無機材層用原料組成物Zを用いて第3層を20μm形成した。
粗化面は、第1層の表面に形成した。
実施例18では、混合層用原料組成物Xを用いて第1層を20μm、混合層用原料組成物Xを用いて第2層を20μm、混合層用原料組成物Xを用いて第3層を20μm形成した。
粗化面は、第1層の表面に形成した。
実施例19では、非晶質無機材層用原料組成物Zを用いて第1層を20μm、非晶質無機材層用原料組成物Zを用いて第2層を20μm、非晶質無機材層用原料組成物Zを用いて第3層を20μm形成した。粗化面は、第1層の表面に形成した。
実施例14、15では、粗化処理を層2で示す層の表面に行い、層2-層3間に気孔集中部を形成した。
実施例16、17では、図7(b)に示すように、層1の厚さを40μmと厚くして、粗化処理を層1で示す層の表面に行うことによって、層1-層2間に気孔集中部を形成した。
すなわち、気孔集中部を、5つの短冊部のうちの中央の短冊部、すなわち、表面被覆層を厚さ方向に2分割する位置に形成した。
実施例18では混合層のみからなる表面被覆層を形成し、実施例19では非晶質無機材層のみからなる表面被覆層を形成した。
(Examples 13 to 19)
Exhaust pipes were manufactured in the same manner as in Example 12 except that the configuration of the surface coating layer was changed as shown in Table 5.
Examples 13 to 19 differ from Example 12 in the following points.
In Example 13, the first layer is 20 μm using the amorphous inorganic material layer raw material composition Z, the second layer is 20 μm using the mixed layer raw material composition X, and the amorphous inorganic material layer raw material composition The third layer was formed to 20 μm using the object Z.
The roughened surface was formed on the surface of the first layer.
In Example 14, the first layer is 20 μm using the mixed layer raw material composition X, the second layer is 20 μm using the amorphous inorganic material layer raw material composition Z, and the mixed layer raw material composition X is used. The third layer was formed to 20 μm.
The roughened surface was formed on the surface of the second layer.
In Example 15, the first layer is 20 μm using the amorphous inorganic material layer raw material composition Z, the second layer is 20 μm using the mixed layer raw material composition X, and the amorphous inorganic material layer raw material composition The third layer was formed to 20 μm using the object Z.
The roughened surface was formed on the surface of the second layer.
In Example 16, the first layer is 40 μm using the mixed layer raw material composition X, the second layer is 20 μm using the amorphous inorganic material layer raw material composition Z, and the mixed layer raw material composition X is used. The third layer was formed to 20 μm.
The roughened surface was formed on the surface of the first layer.
In Example 17, the first layer is 40 μm using the amorphous inorganic material layer raw material composition Z, the second layer is 20 μm using the mixed layer raw material composition X, and the amorphous inorganic material layer raw material composition The third layer was formed to 20 μm using the object Z.
The roughened surface was formed on the surface of the first layer.
In Example 18, the first layer is 20 μm using the mixed layer raw material composition X, the second layer is 20 μm using the mixed layer raw material composition X, and the third layer using the mixed layer raw material composition X. Was formed to 20 μm.
The roughened surface was formed on the surface of the first layer.
In Example 19, the first layer is 20 μm using the amorphous inorganic material layer raw material composition Z, the second layer is 20 μm using the amorphous inorganic material layer raw material composition Z, and the amorphous inorganic material A third layer of 20 μm was formed using the layer raw material composition Z. The roughened surface was formed on the surface of the first layer.
In Examples 14 and 15, the roughening treatment was performed on the surface of the layer indicated by Layer 2, and a pore concentration portion was formed between Layer 2 and Layer 3.
In Examples 16 and 17, as shown in FIG. 7B, the thickness of the layer 1 is increased to 40 μm, and the roughening treatment is performed on the surface of the layer indicated by the layer 1, whereby the layer 1 to the layer 2 A pore concentration part was formed between them.
That is, the pore concentrating portion was formed at a central strip portion of the five strip portions, that is, at a position where the surface coating layer was divided into two in the thickness direction.
In Example 18, a surface coating layer consisting only of a mixed layer was formed, and in Example 19, a surface coating layer consisting only of an amorphous inorganic material layer was formed.
(実施例20~23)
表面被覆層の構成を表5に示すように変更した他は実施例12と同様にして排気管を製造した。
実施例20~23において実施例12と異なる点は以下の点である。
実施例20では、混合層用原料組成物Xを用いて第1層を50μm、非晶質無機材層用原料組成物Zを用いて第2層を30μm形成した。第3層は形成しなかった。
粗化面は、第1層の表面に形成した。
実施例21では、非晶質無機材層用原料組成物Zを用いて第1層を30μm、混合層用原料組成物Xを用いて第2層を50μm形成した。第3層は形成しなかった。
粗化面は、第1層の表面に形成した。
実施例22では、混合層用原料組成物Xを用いて第1層を20μm、非晶質無機材層用原料組成物Zを用いて第2層を200μm形成した。第3層は形成しなかった。
粗化面は、第1層の表面に形成した。
実施例23では、非晶質無機材層用原料組成物Zを用いて第1層を100μm、非晶質無機材層用原料組成物Zを用いて第2層を100μm形成した。第3層は形成しなかった。
粗化面は、第1層の表面に形成した。
これらの実施例では、粗化処理を層1で示す層の表面に行うことによって、層1-層2間に気孔集中部を形成した。なお、これらの実施例では、層3は設けていない。
第一の本発明の第一実施形態の実施例1と同様の評価を行い、各実施例の評価結果を表6に示した。
(Examples 20 to 23)
Exhaust pipes were manufactured in the same manner as in Example 12 except that the configuration of the surface coating layer was changed as shown in Table 5.
Examples 20 to 23 differ from Example 12 in the following points.
In Example 20, the first layer was formed to 50 μm using the mixed layer raw material composition X, and the second layer was formed to 30 μm using the amorphous inorganic material layer raw material composition Z. The third layer was not formed.
The roughened surface was formed on the surface of the first layer.
In Example 21, the first layer was formed to 30 μm using the amorphous inorganic material layer raw material composition Z, and the second layer was formed to 50 μm using the mixed layer raw material composition X. The third layer was not formed.
The roughened surface was formed on the surface of the first layer.
In Example 22, the first layer was formed to 20 μm using the mixed layer raw material composition X, and the second layer was formed to 200 μm using the amorphous inorganic material layer raw material composition Z. The third layer was not formed.
The roughened surface was formed on the surface of the first layer.
In Example 23, the first layer was formed to 100 μm using the amorphous inorganic material layer raw material composition Z, and the second layer was formed to 100 μm using the amorphous inorganic material layer raw material composition Z. The third layer was not formed.
The roughened surface was formed on the surface of the first layer.
In these examples, roughening treatment was performed on the surface of the layer indicated by layer 1 to form a pore concentration portion between layer 1 and layer 2. In these examples, the layer 3 is not provided.
Evaluation similar to Example 1 of 1st embodiment of 1st this invention was performed, and the evaluation result of each Example was shown in Table 6.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
実施例12~17及び実施例19~23の総合判定は「優」であり、実施例18の総合判定は「良」であった。
いずれの実施例においても、気孔集中部が設けられているため、熱衝撃試験における剥離の発生がなく、表面被覆層が破壊されることが防止されていた。
実施例12~17及び実施例19~23に係る排気管は、非晶質無機材層からなる表面被覆層を有するため、表面被覆層の体積抵抗値が1.E+10[Ωm]を超えて高くなっていた。
一方、実施例18に係る排気管は、混合層のみからなる表面被覆層を有し、非晶質無機材層を有さないため、表面被覆層の体積抵抗値が1.E+08[Ωm]と低くなっていた。そのため、評価結果が「良」となった。
実施例12~23のいずれにおいても、気孔集中部が設けられているため、熱衝撃試験における剥離の発生がなく、表面被覆層が破壊されることが防止されていた。
The overall judgment of Examples 12 to 17 and Examples 19 to 23 was “excellent”, and the overall judgment of Example 18 was “good”.
In any of the examples, since the pore concentrating portion was provided, no peeling occurred in the thermal shock test, and the surface coating layer was prevented from being broken.
Since the exhaust pipes according to Examples 12 to 17 and Examples 19 to 23 have a surface coating layer made of an amorphous inorganic material layer, the volume resistance value of the surface coating layer is 1. It was higher than E + 10 [Ωm].
On the other hand, since the exhaust pipe according to Example 18 has a surface coating layer composed of only a mixed layer and does not have an amorphous inorganic material layer, the volume resistivity of the surface coating layer is 1. It was as low as E + 08 [Ωm]. Therefore, the evaluation result was “good”.
In any of Examples 12 to 23, since the pore concentration portion was provided, no peeling occurred in the thermal shock test, and the surface coating layer was prevented from being destroyed.
(第四実施形態)
次に、第一の本発明の排気管の一実施形態である第四実施形態について説明する。
第一の本発明の第四実施形態の排気管は、気孔集中部の数が2つであり、気孔集中部が表面被覆層を厚さ方向に3分割する位置に存在している。その他の構成は第一の本発明の第一実施形態の排気管と同様である。
図9(a)及び図9(b)は、第一の本発明の第四実施形態の排気管の断面の一例を模式的に示す断面図である。
(Fourth embodiment)
Next, a fourth embodiment which is an embodiment of the exhaust pipe of the first invention will be described.
The exhaust pipe of the fourth embodiment of the first aspect of the present invention has two pore concentrating portions, and the pore concentrating portions are present at positions where the surface coating layer is divided into three in the thickness direction. The other structure is the same as that of the exhaust pipe of 1st embodiment of 1st this invention.
FIGS. 9A and 9B are cross-sectional views schematically showing an example of a cross section of the exhaust pipe of the fourth embodiment of the first invention.
図9(a)に示す排気管160では、第一の本発明の第一実施形態の排気管と同様に、表面被覆層用原料組成物中に造孔材等を配合することによって気孔集中部が形成されている。
図9(a)に示す排気管160では、表面被覆層が、混合層22a、非晶質無機材層21a、混合層22b、非晶質無機材層21b及び混合層22cからなる。
混合層22a、非晶質無機材層21a、混合層22b、非晶質無機材層21b及び混合層22cの厚さは同じである。そのため、混合層22a、非晶質無機材層21a、混合層22b、非晶質無機材層21b及び混合層22cの各層はそれぞれ5つの短冊部と同視し得る。
そして、非晶質無機材層21aが気孔集中部23aとなっており、非晶質無機材層21bが気孔集中部23bとなっている。
すなわち、基材の1つの面に対して気孔集中部の数は2つであり、5つの短冊部のうちの中央の短冊部である混合層22bに隣接する2つの短冊部である非晶質無機材層21a及び非晶質無機材層21bが気孔集中部23となっている。
気孔集中部23a、気孔集中部23bは、表面被覆層20を厚さ方向に3分割する位置に存在しているといえる。
In the exhaust pipe 160 shown in FIG. 9 (a), as in the exhaust pipe of the first embodiment of the first aspect of the present invention, a pore concentrating portion is formed by blending a pore former or the like into the surface coating layer raw material composition. Is formed.
In the exhaust pipe 160 shown in FIG. 9A, the surface coating layer includes a mixed layer 22a, an amorphous inorganic material layer 21a, a mixed layer 22b, an amorphous inorganic material layer 21b, and a mixed layer 22c.
The thicknesses of the mixed layer 22a, the amorphous inorganic material layer 21a, the mixed layer 22b, the amorphous inorganic material layer 21b, and the mixed layer 22c are the same. Therefore, each layer of the mixed layer 22a, the amorphous inorganic material layer 21a, the mixed layer 22b, the amorphous inorganic material layer 21b, and the mixed layer 22c can be regarded as five strip portions.
The amorphous inorganic material layer 21a is a pore concentration portion 23a, and the amorphous inorganic material layer 21b is a pore concentration portion 23b.
That is, the number of pore concentrating portions is two with respect to one surface of the base material, and two strip portions adjacent to the mixed layer 22b that is the central strip portion among the five strip portions are amorphous. The inorganic material layer 21 a and the amorphous inorganic material layer 21 b serve as the pore concentration part 23.
It can be said that the pore concentration portion 23a and the pore concentration portion 23b are present at positions where the surface coating layer 20 is divided into three in the thickness direction.
図9(b)に示す排気管170では、第一の本発明の第三実施形態の排気管と同様に、表面被覆層の下層の表面を粗化することによって気孔集中部が形成されている。
図9(b)に示す排気管170では、表面被覆層が、混合層22a、非晶質無機材層21、混合層22bからなる。
気孔集中部の数は2つであり、気孔集中部23aは、表面被覆層の表面側(上層)の混合層22aと、非晶質無機材層21との境界を含む短冊部であり、気孔集中部23bは、基材10に近い側(下層)の混合層22bと、非晶質無機材層21との境界を含む短冊部である。
気孔集中部23a及び気孔集中部23bは、5つの短冊部のうちの中央の短冊部に隣接する2つの短冊部であり、気孔集中部23a、気孔集中部23bは、表面被覆層20を厚さ方向に3分割する位置に存在している。
In the exhaust pipe 170 shown in FIG. 9 (b), the pore concentrating portion is formed by roughening the surface of the lower layer of the surface coating layer, similarly to the exhaust pipe of the third embodiment of the first present invention. .
In the exhaust pipe 170 shown in FIG. 9B, the surface coating layer includes a mixed layer 22a, an amorphous inorganic material layer 21, and a mixed layer 22b.
The number of pore concentration portions is two, and the pore concentration portion 23a is a strip portion including a boundary between the mixed layer 22a on the surface side (upper layer) of the surface coating layer and the amorphous inorganic material layer 21, The concentrated portion 23 b is a strip portion including a boundary between the mixed layer 22 b on the side close to the substrate 10 (lower layer) and the amorphous inorganic material layer 21.
The pore concentrating portion 23a and the pore concentrating portion 23b are two strip portions adjacent to the central strip portion of the five strip portions. It exists at a position that is divided into three in the direction.
本実施形態の排気管は、第一の本発明の第一実施形態の排気管の製造方法、又は、第一の本発明の第三実施形態の排気管の製造方法において、気孔集中部を形成するための工程(気孔集中部形成用原料組成物の塗布、又は、表面被覆層の粗化処理)を2回(2ヶ所)行う他は、同様にすることによって製造することができる。 The exhaust pipe of the present embodiment forms a pore concentrating portion in the exhaust pipe manufacturing method of the first embodiment of the first aspect of the present invention or the exhaust pipe manufacturing method of the third embodiment of the first aspect of the present invention. It can be manufactured in the same manner except that the step (application of the raw material composition for forming the pore concentrating portion or roughening treatment of the surface coating layer) is performed twice (two locations).
本実施形態の排気管は、第一の本発明の第一実施形態又は第一の本発明の第三実施形態の排気管の作用効果(1)~(3)、(5)~(7)を発揮することができる。
また、さらに以下の効果を発揮することができる。
(8)本実施形態の排気管は、気孔集中部の数は、基材の1つの面に対して2つであり、上記気孔集中部となっている短冊部は、5つの短冊部のうちの、上記中央の短冊部に隣接する2つの短冊部である2つである。すなわち、気孔集中部は表面被覆層を厚さ方向に3分割する位置に存在している。
気孔集中部が表面被覆層を厚さ方向に3分割する位置に存在していると、表面被覆層が、2つの気孔集中部によって、1/3の厚さを有する3つの部分に分けられることになる。そのため、表面被覆層に対する熱衝撃の強さが、表面被覆層の厚さが薄い場合と同程度になり、表面被覆層が破壊されることをより効果的に防止することができる。
The exhaust pipe of the present embodiment is the operation effect (1) to (3), (5) to (7) of the exhaust pipe of the first embodiment of the first invention or the third embodiment of the first invention. Can be demonstrated.
Further, the following effects can be exhibited.
(8) In the exhaust pipe of the present embodiment, the number of pore concentrating portions is two with respect to one surface of the base material, and the strip portions serving as the pore concentrating portions are among the five strip portions. These are two strip portions adjacent to the central strip portion. That is, the pore concentration portion exists at a position where the surface coating layer is divided into three in the thickness direction.
When the pore concentrating portion exists at a position where the surface coating layer is divided into three in the thickness direction, the surface coating layer is divided into three portions having a thickness of 1/3 by the two pore concentrating portions. become. Therefore, the strength of the thermal shock on the surface coating layer becomes the same as that when the thickness of the surface coating layer is thin, and the surface coating layer can be more effectively prevented from being destroyed.
(実施例24)
第一の本発明の第一実施形態の実施例1において行った手順と同様にして、表面被覆層の構成を表7に示すように変更して排気管を製造した。
実施例24において第一の本発明の第一実施形態の実施例1と異なる点は以下の点である。
実施例24では、混合層用原料組成物Xを用いて第1層を30μm、気孔集中部形成用原料組成物Zを用いて第2層を10μm、混合層用原料組成物Xを用いて第3層を20μm、気孔集中部形成用原料組成物Zを用いて第4層を10μm、混合層用原料組成物Xを用いて第5層を30μm形成した。第4層、第5層の形成は、第3層の上に第1層~第3層の形成方法と同様にして表面被覆層を形成することによって行った。
上記手順により、気孔集中部を第2層と第4層の2ヶ所に形成した。
(Example 24)
The exhaust pipe was manufactured by changing the configuration of the surface coating layer as shown in Table 7 in the same manner as the procedure performed in Example 1 of the first embodiment of the first present invention.
Example 24 is different from Example 1 of the first embodiment of the first aspect of the present invention in the following points.
In Example 24, the first layer was 30 μm using the mixed layer raw material composition X, the second layer was 10 μm using the pore-concentrated portion forming raw material composition Z, and the mixed layer raw material composition X was used. The third layer was formed to 20 μm, the pore-concentrated portion forming raw material composition Z was used to form the fourth layer of 10 μm, and the mixed layer raw material composition X was used to form the fifth layer of 30 μm. The fourth layer and the fifth layer were formed by forming a surface coating layer on the third layer in the same manner as the method for forming the first layer to the third layer.
By the above procedure, pore concentrating portions were formed in two places, the second layer and the fourth layer.
(実施例25)
第一の本発明の第三実施形態の実施例12において行った手順と同様にして、表面被覆層の構成を表7に示すように変更して排気管を製造した。
実施例25において第一の本発明の第三実施形態の実施例12と異なる点は以下の点である。
実施例25では、混合層用原料組成物Xを用いて第1層を20μm、非晶質無機材層用原料組成物Zを用いて第2層を20μm、混合層用原料組成物Xを用いて第3層を20μm形成した。
粗化面は、第1層の表面及び第2層の表面に形成した。
その結果、層1-層2間及び層2-層3間の2箇所に気孔集中部を形成した。
気孔集中部が、層1(基材側の下層の混合層、第1層)と層2(非晶質無機材層、第2層)の境界を含む位置、及び、層2と層3(表面被覆層の表面側(上層)の混合層、第3層)の境界を含む短冊部に存在していた。
(Example 25)
In the same manner as the procedure performed in Example 12 of the third embodiment of the first invention, the structure of the surface coating layer was changed as shown in Table 7 to manufacture an exhaust pipe.
Example 25 differs from Example 12 of the third embodiment of the first invention in the following points.
In Example 25, the first layer is 20 μm using the mixed layer raw material composition X, the second layer is 20 μm using the amorphous inorganic material layer raw material composition Z, and the mixed layer raw material composition X is used. The third layer was formed to 20 μm.
The roughened surface was formed on the surface of the first layer and the surface of the second layer.
As a result, pore-concentrated portions were formed at two locations between layer 1 and layer 2 and between layer 2 and layer 3.
The position where the pore concentration portion includes the boundary between layer 1 (mixed layer on the lower layer on the base material side, first layer) and layer 2 (amorphous inorganic material layer, second layer), and layer 2 and layer 3 ( It existed in the strip part including the boundary of the surface layer (upper layer) mixed layer, the third layer) of the surface coating layer.
表7において「造孔材又は粗化」の項目は、実施例24では表面被覆層形成用原料組成物中の造孔材の有無、実施例25では各層の表面に施した粗化処理の有無を示している。
第一の本発明の第一実施形態の実施例1と同様の評価を行い、各実施例の評価結果を表8に示した。
In Table 7, the item “pore forming material or roughening” indicates the presence or absence of the pore forming material in the raw material composition for forming the surface coating layer in Example 24, and the presence or absence of the roughening treatment applied to the surface of each layer in Example 25. Is shown.
Evaluation similar to Example 1 of 1st embodiment of 1st this invention was performed, and the evaluation result of each Example was shown in Table 8.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
実施例24、実施例25のいずれにおいても、その評価結果は「優」であった。
実施例24、実施例25のいずれにおいても、気孔集中部が設けられているため、熱衝撃試験における剥離の発生がなく、表面被覆層が破壊されることが防止されていた。
In both Example 24 and Example 25, the evaluation result was “excellent”.
In both Example 24 and Example 25, since the pore concentration portion was provided, no peeling occurred in the thermal shock test, and the surface coating layer was prevented from being destroyed.
(第五実施形態)
次に、第一の本発明の排気管の一実施形態である第五実施形態について説明する。
第一の本発明の第五実施形態の排気管は、表面被覆層に、その一部が排気管の外部と連通するブラインド気孔を有する。
図10は、第一の本発明の第五実施形態の排気管の断面の一例を模式的に示す断面図である。
図10に示す第一の本発明の第五実施形態の排気管180は、表面被覆層に、その一部が排気管の外部と連通するブラインド気孔34を有する。
その他の構成は、図1に示す第一の本発明の第一実施形態の排気管1の構成と同様である。
ブラインド気孔とは、その一部が排気管の外部と連通する気孔であり、言い換えれば、表面被覆層に露出して、凹みになっている部分のことを指す。また、ブラインド気孔は、排気管の外部と上記基材の表面を連通しないものであり、基材の表面まで到達する気孔ではない。
(Fifth embodiment)
Next, a fifth embodiment which is an embodiment of the exhaust pipe of the first aspect of the present invention will be described.
The exhaust pipe of the fifth embodiment of the first aspect of the present invention has blind pores partially communicating with the outside of the exhaust pipe in the surface coating layer.
FIG. 10 is a cross-sectional view schematically showing an example of a cross section of the exhaust pipe of the fifth embodiment of the first invention.
An exhaust pipe 180 according to the fifth embodiment of the first invention shown in FIG. 10 has blind pores 34 partially communicating with the outside of the exhaust pipe in the surface coating layer.
The other structure is the same as that of the exhaust pipe 1 of 1st embodiment of 1st this invention shown in FIG.
Blind pores are pores that partially communicate with the outside of the exhaust pipe. In other words, the blind pores indicate portions that are exposed to the surface coating layer and are recessed. The blind pores do not communicate with the outside of the exhaust pipe and the surface of the base material, and are not pores reaching the surface of the base material.
本実施形態の排気管は、第一の本発明の第一実施形態の排気管の製造方法において、最も上の層となる表面被覆層を形成するための表面被覆層形成用原料組成物として、気孔集中部形成用原料組成物を用いることによって製造することができる。 In the exhaust pipe manufacturing method of the first embodiment of the first aspect of the present invention, the exhaust pipe of the present embodiment is used as a surface coating layer forming raw material composition for forming a surface coating layer that is the uppermost layer. It can manufacture by using the raw material composition for pore concentration part formation.
本実施形態の排気管は、第一の本発明の第一実施形態の排気管の作用効果(1)~(5)を発揮することができる。
また、第一の本発明の第三実施形態の排気管又は第一の本発明の第四実施形態の排気管においてブラインド気孔を設けることも可能である。その場合は、第一の本発明の第三実施形態の排気管の製造方法の作用効果(7)又は第一の本発明の第四実施形態の排気管の作用効果(8)を発揮することができる。
The exhaust pipe of this embodiment can exhibit the effects (1) to (5) of the exhaust pipe of the first embodiment of the first invention.
It is also possible to provide blind pores in the exhaust pipe of the third embodiment of the first invention or the exhaust pipe of the fourth embodiment of the first invention. In that case, the effect (7) of the manufacturing method of the exhaust pipe of the third embodiment of the first aspect of the present invention or the effect (8) of the exhaust pipe of the fourth embodiment of the first aspect of the present invention is exhibited. Can do.
(第六実施形態)
以下、第二の本発明の排気管の一実施形態である第六実施形態について図面を参照しながら説明する。
第二の本発明の排気管は、金属からなる基材と、
上記基材の表面上に形成された非晶質無機材を含む表面被覆層とを備えた排気管であって、
上記表面被覆層は、非晶質無機材を含む非晶質無機材層と、非晶質無機材及び結晶性無機材を含む混合層を有しており、
上記表面被覆層は独立気孔を有しており、
上記独立気孔は、排気管の外部と上記基材の表面を連通しないものであり、かつ、上記独立気孔は上記非晶質無機材層と上記混合層の境界部に局在することを特徴とする。
(Sixth embodiment)
The sixth embodiment, which is an embodiment of the exhaust pipe of the second invention, will be described below with reference to the drawings.
The exhaust pipe of the second aspect of the present invention comprises a base material made of metal,
An exhaust pipe provided with a surface coating layer containing an amorphous inorganic material formed on the surface of the substrate,
The surface coating layer has an amorphous inorganic material layer containing an amorphous inorganic material, and a mixed layer containing an amorphous inorganic material and a crystalline inorganic material,
The surface coating layer has independent pores,
The independent pores do not communicate with the outside of the exhaust pipe and the surface of the base material, and the independent pores are localized at the boundary between the amorphous inorganic material layer and the mixed layer. To do.
図11は、第二の本発明の第六実施形態の排気管の断面の一例を模式的に示す断面図である。
図11に示す排気管200では、表面被覆層220が混合層222a、非晶質無機材層221、及び、混合層222bからなる。
第二の本発明の第六実施形態の排気管における混合層222a、222bの組成は第一の本発明の第一実施形態における混合層22の組成と同様である。
第二の本発明の第六実施形態の排気管における非晶質無機材層221の組成は第一の本発明の第一実施形態における非晶質無機材層21の組成と同様である。
また、表面被覆層220の厚さは25~1000μmである。
表面被覆層220は独立気孔233を有しており、独立気孔233は排気管200の外部と基材10の表面を連通しないものである。
また、独立気孔233は、混合層222bと非晶質無機材層221の境界部に局在している。
FIG. 11: is sectional drawing which shows typically an example of the cross section of the exhaust pipe of 6th embodiment of 2nd this invention.
In the exhaust pipe 200 shown in FIG. 11, the surface coating layer 220 includes a mixed layer 222a, an amorphous inorganic material layer 221, and a mixed layer 222b.
The composition of the mixed layers 222a and 222b in the exhaust pipe of the sixth embodiment of the second invention is the same as the composition of the mixed layer 22 in the first embodiment of the first invention.
The composition of the amorphous inorganic material layer 221 in the exhaust pipe of the sixth embodiment of the second invention is the same as the composition of the amorphous inorganic material layer 21 in the first embodiment of the first invention.
The thickness of the surface coating layer 220 is 25 to 1000 μm.
The surface coating layer 220 has independent pores 233, and the independent pores 233 do not communicate the outside of the exhaust pipe 200 with the surface of the substrate 10.
The independent pores 233 are localized at the boundary between the mixed layer 222b and the amorphous inorganic material layer 221.
以下、図11を参照して、「独立気孔が混合層と非晶質無機材層の境界部に局在する」ことについて説明する。
「独立気孔が混合層と非晶質無機材層の境界部に局在する」とは、境界部の中心線を中心として表面被覆層の厚さの40%以内の領域に、表面被覆層全体に存在する独立気孔の面積のうち、気孔の面積として60%以上の独立気孔が存在する状態を意味する。
Hereinafter, with reference to FIG. 11, it will be described that “independent pores are localized at the boundary between the mixed layer and the amorphous inorganic material layer”.
“Independent pores are localized at the boundary between the mixed layer and the amorphous inorganic material layer” means that the entire surface coating layer is located in a region within 40% of the thickness of the surface coating layer with the center line of the boundary as the center. In the area of the independent pores existing in the above, it means a state in which 60% or more of the independent pores exist as the pore area.
図11に示す排気管200では、混合層222bの表面は平滑ではなく、粗化面となっており、混合層222bと非晶質無機材層221の間に独立気孔233が存在している。 In the exhaust pipe 200 shown in FIG. 11, the surface of the mixed layer 222b is not a smooth surface but a roughened surface, and independent pores 233 exist between the mixed layer 222b and the amorphous inorganic material layer 221.
混合層と非晶質無機材層の境界部は以下の方法で定められる部分である。
下層となる層(図11に示す排気管200では混合層222b)の粗化面の最も低い部分を通る線240Lを引き、下層となる層の粗化面の最も高い部分を通る線240Hを引き、線240Lと線240Hの中線240Mを引く。
このようにして定められた中線240Mが境界部の中心線となる。
ここで、線240L、線240H及び線240Mは平行な線である。
The boundary portion between the mixed layer and the amorphous inorganic material layer is a portion determined by the following method.
A line 240L passing through the lowest part of the roughened surface of the lower layer (mixed layer 222b in the exhaust pipe 200 shown in FIG. 11) is drawn, and a line 240H passing through the highest part of the roughened surface of the lower layer is drawn. The middle line 240M of the line 240L and the line 240H is drawn.
The middle line 240M determined in this way becomes the center line of the boundary portion.
Here, the line 240L, the line 240H, and the line 240M are parallel lines.
表面被覆層220の厚さを求める。表面被覆層220の厚さを求める方法は、表面被覆層220の上面を開始点、基材の表面を終点として表面被覆層の厚さを定める方法であり、第一の本発明の第一実施形態において短冊部を定める際に使用する方法と同じである。
そして、境界部の中心線240Mを中心にして、表面被覆層220の厚さの40%の領域を定める。具体的には、線240Mを中心にして上側に表面被覆層220の厚さの20%の領域を定め、境界線250Hを引く。さらに、線240Mを中心にして下側に表面被覆層220の厚さの20%の領域を定め、境界線250Lを引く。
ここで、線250L、線250H及び線240Mは平行な線である。
「境界部の中心線を中心として表面被覆層の厚さの40%以内の領域」は、線250H及び線250Lで挟まれた領域であり、この領域が「境界部」となる。
The thickness of the surface coating layer 220 is obtained. The method for determining the thickness of the surface coating layer 220 is a method for determining the thickness of the surface coating layer with the upper surface of the surface coating layer 220 as the starting point and the surface of the substrate as the ending point. This is the same as the method used when determining the strip portion in the form.
Then, a region of 40% of the thickness of the surface coating layer 220 is determined around the center line 240M of the boundary portion. Specifically, an area of 20% of the thickness of the surface coating layer 220 is defined on the upper side around the line 240M, and a boundary line 250H is drawn. Further, an area of 20% of the thickness of the surface coating layer 220 is defined on the lower side around the line 240M, and a boundary line 250L is drawn.
Here, the line 250L, the line 250H, and the line 240M are parallel lines.
“A region within 40% of the thickness of the surface coating layer centering on the center line of the boundary portion” is a region sandwiched between the lines 250H and 250L, and this region becomes the “boundary portion”.
第一の本発明の第一実施形態において説明した方法と同様にして、表面被覆層全体に存在する独立気孔の面積を定める。独立気孔の面積を定めるにあたり、表面被覆層中に存在する「気孔」を確定する方法も、第一の本発明の第一実施形態において説明した方法と同様である。
第二の本発明の第六実施形態に係る排気管では、表面被覆層全体に存在する独立気孔の面積のうち、気孔の面積として60%以上の独立気孔が境界部に存在している。
The area of the independent pores existing in the entire surface coating layer is determined in the same manner as in the method described in the first embodiment of the first invention. In determining the area of the independent pores, the method for determining the “pores” present in the surface coating layer is the same as the method described in the first embodiment of the first invention.
In the exhaust pipe according to the sixth embodiment of the second aspect of the present invention, 60% or more of the independent pores are present in the boundary portion as the area of the independent pores existing in the entire surface coating layer.
第二の本発明の第六実施形態の排気管は、下層の表面被覆層と上層の表面被覆層の境界部に気孔が局在している。
図11に示す第二の本発明の第六実施形態の排気管200では、下層の表面被覆層は混合層222bであり、上層の表面被覆層は非晶質無機材層221である。
In the exhaust pipe of the sixth embodiment of the second aspect of the present invention, pores are localized at the boundary between the lower surface coating layer and the upper surface coating layer.
In the exhaust pipe 200 according to the sixth embodiment of the second invention shown in FIG. 11, the lower surface coating layer is the mixed layer 222 b and the upper surface coating layer is the amorphous inorganic material layer 221.
但し、第二の本発明の第六実施形態の排気管は、第一の本発明の第三実施形態の排気管のような、表面被覆層を切断して5つの短冊部を定めた場合に定義される気孔集中部を必ずしも有している必要はない。
図12には、図11に示す排気管200における表面被覆層を5つの短冊部220A、220B、220C、220D、220Eとした場合を示している。
図12に示す排気管200では、下から2番目に位置する短冊部220Dと中央の短冊部220Cの境界線と、境界部の中心が重なっており、混合層222bと非晶質無機材層221の境界部に独立気孔233が局在している。
このような態様であると、表面被覆層を5つの短冊部とした場合に、下から2番目に位置する短冊部220Dにも、中央の短冊部220Cにも、表面被覆層全体に存在する独立気孔の面積のうち、気孔の面積として30%以上の独立気孔が存在しない場合があり得る。この場合、表面被覆層を切断して5つの短冊部を定めた場合に定義される気孔集中部は存在しないこととなり、その場合、第一の本発明の第三実施形態の排気管とはならない。しかしながら、混合層222bと非晶質無機材層221の境界部に独立気孔233が局在しているので第二の本発明の第六実施形態の排気管となるといえる。
また、第一の本発明の第三実施形態の排気管のように、下層の表面被覆層と上層の表面被覆層の境界を含む部分が気孔集中部となっている態様のうち、独立気孔が非晶質無機材層と上記混合層の境界部に局在している態様については、第二の本発明の第六実施形態の排気管に含まれる。
However, the exhaust pipe of the sixth embodiment of the second invention is the same as the exhaust pipe of the third embodiment of the first invention when the surface coating layer is cut and five strips are defined. It is not always necessary to have the defined pore concentration portion.
FIG. 12 shows a case where the surface covering layer in the exhaust pipe 200 shown in FIG.
In the exhaust pipe 200 shown in FIG. 12, the boundary line between the strip 220D located second from the bottom and the center strip 220C overlaps the center of the boundary, and the mixed layer 222b and the amorphous inorganic material layer 221 overlap. The independent pores 233 are localized at the boundary portion.
In such an embodiment, when the surface coating layer has five strip portions, the strip portion 220D located second from the bottom and the central strip portion 220C are independent of the entire surface coating layer. There may be a case where 30% or more of independent pores do not exist in the pore area. In this case, there is no pore concentrating part defined when the surface coating layer is cut and five strips are defined, and in that case, the exhaust pipe of the third embodiment of the first invention is not provided. . However, since the independent pores 233 are localized at the boundary between the mixed layer 222b and the amorphous inorganic material layer 221, it can be said that the exhaust pipe of the sixth embodiment of the second aspect of the present invention is obtained.
In addition, as in the exhaust pipe according to the third embodiment of the first aspect of the present invention, among the aspects in which the portion including the boundary between the lower surface coating layer and the upper surface coating layer is a pore concentration portion, independent pores The mode localized at the boundary between the amorphous inorganic material layer and the mixed layer is included in the exhaust pipe of the sixth embodiment of the second aspect of the present invention.
本実施形態の排気管を製造する方法について工程順に説明する。
第二の本発明の第六実施形態に係る排気管を製造する方法は、金属基材を準備する工程と、
表面被覆層形成用原料組成物を調製する工程と、
上記金属基材上に上記表面被覆層形成用原料組成物を複数回塗布し、焼成することによって表面被覆層を形成する表面被覆層形成工程とを含む、排気管の製造方法であって、
上記表面被覆層形成工程において、表面被覆層形成用原料組成物の塗布及び焼成を少なくとも1回行い下層の表面被覆層を形成する工程、
上記下層の表面被覆層の表面を粗化する工程、及び、
上記粗化された下層の表面被覆層の表面に表面被覆層形成用原料組成物を塗布し、焼成することによって上層の表面被覆層を形成し、同時に、下層の表面被覆層と上層の表面被覆層の間に気孔を形成することを特徴とする。
A method for manufacturing the exhaust pipe of this embodiment will be described in the order of steps.
The method for producing an exhaust pipe according to the sixth embodiment of the second invention comprises a step of preparing a metal substrate,
Preparing a raw material composition for forming a surface coating layer;
A method for producing an exhaust pipe, comprising a step of forming a surface coating layer by applying the surface coating layer forming raw material composition a plurality of times on the metal substrate and firing the composition;
In the surface coating layer forming step, a step of forming a lower surface coating layer by applying and baking the raw material composition for forming the surface coating layer at least once,
A step of roughening the surface of the lower surface coating layer, and
The surface coating layer forming raw material composition is applied to the surface of the roughened lower surface coating layer and baked to form an upper surface coating layer. At the same time, the lower surface coating layer and the upper surface coating layer are formed. It is characterized by forming pores between the layers.
ここでは、図11に模式的に示す、第二の本発明の第六実施形態の排気管200を製造する場合を例にして、第二の本発明の第六実施形態に係る排気管を製造する方法を説明する。
(1)第一の本発明の第一実施形態の排気管の製造工程(1)~(3)と同様にして、基材、混合層用原料組成物及び非晶質無機材層用原料組成物を調製する。
Here, an exhaust pipe according to the sixth embodiment of the second invention is manufactured by taking as an example the case of manufacturing the exhaust pipe 200 of the sixth embodiment of the second invention shown schematically in FIG. How to do it will be explained.
(1) Substrate, raw material composition for mixed layer and raw material composition for amorphous inorganic material layer in the same manner as in the manufacturing steps (1) to (3) of the exhaust pipe of the first embodiment of the first invention Prepare the product.
(2)第一の本発明の第一実施形態の排気管の製造工程(5)~(6)と同様にして、基材に下層の表面被覆層(混合層)を形成する。 (2) The lower surface coating layer (mixed layer) is formed on the substrate in the same manner as in the exhaust pipe manufacturing steps (5) to (6) of the first embodiment of the first invention.
(3)下層の表面被覆層の表面に粗化処理を施す。
粗化処理の方法としては、サンドブラスト処理、エッチング処理等を用いることができる。
粗化面の表面粗さRzJISは、0.1~100μmが好ましい。
粗化面の表面粗さRzJISは、JIS B 0601(2001)に準拠して測定することができる。
粗化面の表面粗さRzJISが0.1μm未満であると、下層の表面被覆層と上層の表面被覆層の間に気孔が充分に形成されないことがあるため、表面被覆層の熱衝撃性の緩和効果が小さくなる。また、粗化面の表面粗さRzJISが100μmを超えると、下層の表面被覆層と上層の表面被覆層との接着面積が小さくなるため、下層の表面被覆層と上層の表面被覆層との密着性が低下する。
粗化面の表面粗さRzJISは、東京精密社製、ハンディサーフE-35Bを用いてJIS B 0601(2001)に準拠して測定することができる。
(3) A roughening treatment is applied to the surface of the lower surface coating layer.
As a roughening method, sandblasting, etching, or the like can be used.
The surface roughness Rz JIS of the roughened surface is preferably 0.1 to 100 μm.
The surface roughness Rz JIS of the roughened surface can be measured according to JIS B 0601 (2001).
When the surface roughness Rz JIS of the roughened surface is less than 0.1 μm, pores may not be sufficiently formed between the lower surface coating layer and the upper surface coating layer. The relaxation effect of is reduced. Further, when the surface roughness Rz JIS of the roughened surface exceeds 100 μm, the adhesion area between the lower surface coating layer and the upper surface coating layer becomes small, and therefore the lower surface coating layer and the upper surface coating layer Adhesion decreases.
The surface roughness Rz JIS of the roughened surface can be measured according to JIS B 0601 (2001) using Handy Surf E-35B manufactured by Tokyo Seimitsu Co., Ltd.
(4)粗化処理を施した下層の表面被覆層の表面に、表面被覆層形成用原料組成物(非晶質無機材層用原料組成物)をコートし、乾燥後、加熱焼成することにより非晶質無機材層を形成する。
粗化処理を施した下層の表面被覆層(混合層)の表面に非晶質無機材層を形成すると、2つの層の境界部に独立気孔を作ることができる。
従って、本実施形態の排気管の製造方法では、混合層と非晶質無機材層の境界部に局在する独立気孔が形成されることとなる。
(4) A surface coating layer forming raw material composition (amorphous inorganic material layer raw material composition) is coated on the surface of the lower surface coating layer subjected to the roughening treatment, dried, and then heated and fired. An amorphous inorganic material layer is formed.
When an amorphous inorganic material layer is formed on the surface of the lower surface coating layer (mixed layer) subjected to the roughening treatment, independent pores can be formed at the boundary between the two layers.
Therefore, in the exhaust pipe manufacturing method of the present embodiment, independent pores localized at the boundary between the mixed layer and the amorphous inorganic material layer are formed.
(5)第一の本発明の第一実施形態の排気管の製造工程(8)と同様にして、基材に上層の表面被覆層(混合層)を形成する。
上記手順により、本実施形態の排気管(図11に模式的に示す排気管200)を製造することができる。
(5) An upper surface coating layer (mixed layer) is formed on the substrate in the same manner as in the exhaust pipe manufacturing step (8) of the first embodiment of the first invention.
By the above procedure, the exhaust pipe of the present embodiment (exhaust pipe 200 schematically shown in FIG. 11) can be manufactured.
以下に、本実施形態の排気管及び本実施形態の排気管の製造方法の作用効果について列挙する。
(9)本実施形態の排気管では、表面被覆層は独立気孔を有しており、上記独立気孔は、排気管の外部と上記基材の表面を連通しないものであり、かつ、上記独立気孔は上記非晶質無機材層と上記混合層の境界部に局在する。
熱衝撃により表面被覆層に発生するクラックは、表面被覆層の表面にまず発生し、表面被覆層の厚み方向に、基材に向かって進展してゆくものと考えられる。
表面被覆層に発生したクラックが進展して、独立気孔に衝突した場合には、独立気孔より先にクラックが進展することが防止される。
排気管の外部と上記基材の表面を連通しない独立気孔が非晶質無機材層と上記混合層の境界部に局在していると、表面被覆層の表面にクラックが発生したとしても、そのクラックは非晶質無機材層と混合層の境界部に局在する独立気孔に衝突しやすいため、非晶質無機材層と混合層の境界部よりも基材側にクラックが進展することが防止される。
その結果、表面被覆層が破壊されることを防止することができる。そのため、上記排気管は、高い絶縁性を確保することができる。
The effects of the exhaust pipe of the present embodiment and the exhaust pipe manufacturing method of the present embodiment will be listed below.
(9) In the exhaust pipe of the present embodiment, the surface covering layer has independent pores, and the independent pores do not communicate the outside of the exhaust pipe with the surface of the base material, and the independent pores. Is localized at the boundary between the amorphous inorganic material layer and the mixed layer.
It is considered that a crack generated in the surface coating layer due to thermal shock first occurs on the surface of the surface coating layer and progresses toward the base material in the thickness direction of the surface coating layer.
When a crack generated in the surface coating layer develops and collides with an independent pore, the crack is prevented from progressing before the independent pore.
If independent pores that do not communicate with the outside of the exhaust pipe and the surface of the base material are localized at the boundary between the amorphous inorganic material layer and the mixed layer, even if a crack occurs on the surface of the surface coating layer, Since the cracks easily collide with the independent pores localized at the boundary between the amorphous inorganic material layer and the mixed layer, the crack propagates more toward the substrate than the boundary between the amorphous inorganic material layer and the mixed layer. Is prevented.
As a result, the surface coating layer can be prevented from being destroyed. Therefore, the exhaust pipe can ensure high insulation.
(10)本実施形態の排気管では、表面被覆層に結晶性無機材が含まれている。また、上記結晶性無機材は、マンガン、鉄、銅、コバルト、クロム、アルミニウムのうち少なくとも一種の酸化物を含有する。
上記酸化物は、高い赤外線の放射率を有するため、表面被覆層の放射率をより高くすることができる。表面被覆層の放射率が高くなると、高温での放熱性に優れた排気管とすることができる。
また、特に、アルミニウムの酸化物を用いた場合は、排気管の絶縁性の向上にも寄与する。
(10) In the exhaust pipe of this embodiment, the surface coating layer contains a crystalline inorganic material. The crystalline inorganic material contains at least one oxide of manganese, iron, copper, cobalt, chromium, and aluminum.
Since the oxide has a high infrared emissivity, the emissivity of the surface coating layer can be further increased. When the emissivity of the surface coating layer is increased, an exhaust pipe excellent in heat dissipation at high temperatures can be obtained.
In particular, when an aluminum oxide is used, it contributes to an improvement in the insulation of the exhaust pipe.
(11)本実施形態の排気管では、上記表面被覆層の厚さは、25~1000μmである。
表面被覆層の厚さが25μm未満であると、排気管として使用した場合に絶縁性が充分に確保できなくなる。また、表面被覆層の厚さが1000μmを超えると、表面被覆層に対する熱衝撃の強さが強くなり、表面被覆層が破壊されやすくなる。
(11) In the exhaust pipe of this embodiment, the thickness of the surface coating layer is 25 to 1000 μm.
When the thickness of the surface coating layer is less than 25 μm, sufficient insulation cannot be secured when used as an exhaust pipe. On the other hand, when the thickness of the surface coating layer exceeds 1000 μm, the strength of the thermal shock to the surface coating layer becomes strong, and the surface coating layer is easily broken.
(12)本実施形態の排気管の製造方法では、表面被覆層を形成する際に、下層の表面被覆層の表面を粗化する工程を行う。粗化された下層の表面被覆層の表面に上層の表面被覆層形成用原料組成物を塗布すると、下層の表面被覆層の表面の粗化面の凹部の全てが表面被覆層形成用原料組成物によって埋められるわけではなく、下層の表面被覆層の表面の粗化面の凹部と上層の表面被覆層形成用原料組成物の間に空間が残留することとなる。そして、焼成後に上記空間が独立気孔となるため、下層の表面被覆層と上層の表面被覆層の境界部に局在する独立気孔を形成することができる。
そして、表面被覆層の非晶質無機材層と混合層の境界部に独立気孔が局在する排気管を製造することができる。
(12) In the exhaust pipe manufacturing method of the present embodiment, when the surface coating layer is formed, a step of roughening the surface of the lower surface coating layer is performed. When the raw material composition for forming the upper surface coating layer is applied to the surface of the roughened lower surface coating layer, all the concave portions of the roughened surface on the surface of the lower surface coating layer are formed. However, a space remains between the concave portion of the roughened surface on the surface of the lower surface coating layer and the raw material composition for forming the upper surface coating layer. And since the said space becomes an independent pore after baking, the independent pore localized at the boundary part of the lower surface coating layer and the upper surface coating layer can be formed.
An exhaust pipe in which independent pores are localized at the boundary between the amorphous inorganic material layer and the mixed layer of the surface coating layer can be manufactured.
(第七実施形態)
次に、第二の本発明の排気管の一実施形態である第七実施形態について説明する。
第二の本発明の第七実施形態の排気管は、独立気孔が局在する境界部が2箇所に存在する。
図13は、第二の本発明の第七実施形態の排気管の断面の一例を模式的に示す断面図である。
(Seventh embodiment)
Next, a seventh embodiment which is an embodiment of the exhaust pipe of the second invention will be described.
In the exhaust pipe of the seventh embodiment of the second aspect of the present invention, there are two boundary portions where the independent pores are localized.
FIG. 13: is sectional drawing which shows typically an example of the cross section of the exhaust pipe of 7th embodiment of 2nd this invention.
図13に示す排気管270では、第二の本発明の第六実施形態の排気管と同様に、表面被覆層の下層の表面を粗化することによって、非晶質無機材層と混合層の境界部に独立気孔が形成されている。
図13に示す排気管270では、表面被覆層が、混合層222a、非晶質無機材層221、混合層222bからなる。
第二の本発明の第六実施形態で説明した方法を用いて定める境界部の数は2つである。
本実施形態では、第二の本発明の第六実施形態で説明した方法と同様にして、境界部の中心線240Ma及び240Mbを定める。そして、境界部の中心線240Ma及び240Mbをそれぞれ中心にして、表面被覆層220の厚さの40%の領域を2箇所定める。
このようにして定められる「境界部の中心線を中心として表面被覆層の厚さの40%以内の領域」は、線250Ha及び線250Laで挟まれた領域、及び、線250Hb及び線250Lbで挟まれた領域である。
すなわち、線250Ha及び線250Laで挟まれた領域、及び、線250Hb及び線250Lbで挟まれた領域がともに境界部である。
In the exhaust pipe 270 shown in FIG. 13, similarly to the exhaust pipe of the sixth embodiment of the second aspect of the present invention, by roughening the surface of the lower layer of the surface coating layer, the amorphous inorganic material layer and the mixed layer are formed. Independent pores are formed at the boundary.
In the exhaust pipe 270 shown in FIG. 13, the surface coating layer includes a mixed layer 222a, an amorphous inorganic material layer 221, and a mixed layer 222b.
The number of boundary portions determined using the method described in the sixth embodiment of the second invention is two.
In the present embodiment, the center lines 240Ma and 240Mb of the boundary portion are determined in the same manner as the method described in the sixth embodiment of the second invention. Then, two regions of 40% of the thickness of the surface coating layer 220 are determined with the center lines 240Ma and 240Mb of the boundary portions as the centers.
The “region within 40% of the thickness of the surface coating layer centering on the center line of the boundary” defined in this way is the region sandwiched between the lines 250Ha and 250La, and between the lines 250Hb and 250Lb. This area
That is, the region sandwiched between the lines 250Ha and 250La and the region sandwiched between the lines 250Hb and 250Lb are both boundary portions.
本実施形態の排気管は、境界部を複数(2つ)有している。表面被覆層に境界部が複数存在する場合は、各境界部に存在する独立気孔の面積をそれぞれ算出して、各境界部に存在する独立気孔の面積の合計が、表面被覆層全体に存在する独立気孔の面積の60%以上であるものが第二の本発明の排気管となる。
本実施形態の排気管では、2つの境界部(線250Ha及び線250Laで挟まれた領域、及び、線250Hb及び線250Lbで挟まれた領域)にそれぞれ存在する独立気孔の面積の合計が、表面被覆層全体に存在する独立気孔の面積の60%以上となっている。
The exhaust pipe of this embodiment has a plurality (two) of boundary portions. When there are multiple boundary portions in the surface covering layer, the area of the independent pores existing in each boundary portion is calculated, and the total area of the independent pores existing in each boundary portion is present in the entire surface covering layer. What is 60% or more of the area of the independent pores is the exhaust pipe of the second invention.
In the exhaust pipe of the present embodiment, the sum of the areas of the independent pores existing at the two boundary portions (the region sandwiched between the lines 250Ha and 250La and the region sandwiched between the lines 250Hb and 250Lb) is the surface. It is 60% or more of the area of the independent pores existing in the entire coating layer.
本実施形態の排気管は、第二の本発明の第六実施形態の排気管の製造方法において、表面被覆層の粗化処理を2回(2ヶ所)行う他は、同様にすることによって製造することができる。 The exhaust pipe of the present embodiment is manufactured in the same manner as in the exhaust pipe manufacturing method of the sixth embodiment of the second invention, except that the surface coating layer is roughened twice (two locations). can do.
本実施形態の排気管は、第二の本発明の第六実施形態の排気管の作用効果(9)~(11)を発揮することができる。 The exhaust pipe of this embodiment can exhibit the effects (9) to (11) of the exhaust pipe of the sixth embodiment of the second invention.
(第八実施形態)
次に、第二の本発明の排気管の一実施形態である第八実施形態について説明する。
第二の本発明の第八実施形態の排気管は、表面被覆層に、その一部が排気管の外部と連通するブラインド気孔を有する。
図14は、第二の本発明の第八実施形態の排気管の断面の一例を模式的に示す断面図である。
図14に示す第二の本発明の第八実施形態の排気管280は、表面被覆層に、その一部が排気管の外部と連通するブラインド気孔34を有する。
その他の構成は、図11に示す第二の本発明の第六実施形態の排気管200の構成と同様である。
ブラインド気孔とは、その一部が排気管の外部と連通する気孔であり、言い換えれば、表面被覆層に露出して、凹みになっている部分のことを指す。また、ブラインド気孔は、排気管の外部と上記基材の表面を連通しないものであり、基材の表面まで到達する気孔ではない。
(Eighth embodiment)
Next, an eighth embodiment which is an embodiment of the exhaust pipe of the second invention will be described.
The exhaust pipe according to the eighth embodiment of the second aspect of the present invention has blind pores partially communicating with the outside of the exhaust pipe in the surface coating layer.
FIG. 14 is a cross-sectional view schematically showing an example of a cross section of the exhaust pipe of the eighth embodiment of the second invention.
The exhaust pipe 280 according to the eighth embodiment of the second aspect of the present invention shown in FIG. 14 has blind pores 34 partially communicating with the outside of the exhaust pipe in the surface coating layer.
The other structure is the same as that of the exhaust pipe 200 of 6th embodiment of 2nd this invention shown in FIG.
Blind pores are pores that partially communicate with the outside of the exhaust pipe. In other words, the blind pores indicate portions that are exposed to the surface coating layer and are recessed. The blind pores do not communicate with the outside of the exhaust pipe and the surface of the base material, and are not pores reaching the surface of the base material.
本実施形態の排気管は、第二の本発明の第六実施形態の排気管の製造方法において、最も上の層となる表面被覆層を形成するための表面被覆層形成用原料組成物として、気孔集中部形成用原料組成物を用いることによって製造することができる。 In the exhaust pipe manufacturing method of the sixth embodiment of the second aspect of the present invention, the exhaust pipe of the present embodiment is a surface coating layer forming raw material composition for forming a surface coating layer that is the uppermost layer. It can manufacture by using the raw material composition for pore concentration part formation.
本実施形態の排気管は、第二の本発明の第六実施形態の排気管の作用効果(9)~(11)を発揮することができる。 The exhaust pipe of this embodiment can exhibit the effects (9) to (11) of the exhaust pipe of the sixth embodiment of the second invention.
(その他の実施形態)
本発明の排気管における表面被覆層中には、上記表面被覆層を貫通する気孔、すなわち、排気管の外部と基材の表面を連通する気孔が存在していない。
表面被覆層を貫通する気孔が存在している場合、金属からなる基材の表面が露出していることになるため、その露出した表面から水分が入り、その露出した表面から基材の表面が錆びる可能性がある。表面被覆層を貫通する気孔が存在していない場合、基材の表面は露出しないため、水分が入ることがなく、金属からなる基材が錆びることが防止される。
また、表面被覆層を貫通する気孔が存在しないようにするためには、表面被覆層を形成する際に、基材の表面に表面被覆層形成用原料組成物を複数回コートする方法を用いることが好ましい。
また、表面被覆層を貫通する気孔が存在しないようにするためには、表面被覆層の厚さを厚くしてもよい。
(Other embodiments)
In the surface coating layer in the exhaust pipe of the present invention, there are no pores penetrating the surface coating layer, that is, pores communicating with the outside of the exhaust pipe and the surface of the substrate.
When there are pores penetrating the surface coating layer, the surface of the base material made of metal is exposed, so moisture enters from the exposed surface, and the surface of the base material is exposed from the exposed surface. There is a possibility of rusting. When there are no pores penetrating the surface coating layer, the surface of the substrate is not exposed, so that moisture does not enter and the metal substrate is prevented from being rusted.
Also, in order to prevent the presence of pores penetrating the surface coating layer, a method of coating the surface coating layer forming raw material composition a plurality of times on the surface of the substrate is used when forming the surface coating layer. Is preferred.
In addition, the thickness of the surface coating layer may be increased so that there are no pores penetrating the surface coating layer.
表面被覆層形成用原料組成物である混合層形成用原料組成物において、非晶質無機材の配合量は、非晶質無機材の粉末と結晶性無機材の粉末の合計重量に対して、望ましい下限が50重量%、望ましい上限が99.5重量%である。
非晶質無機材の配合量が50重量%未満では、表面被覆層と基材の接着に寄与する非晶質無機材の量が少なすぎるので、作製された排気管において表面被覆層が脱落することがある。一方、非晶質無機材の配合量が99.5重量%を超えると、結晶性無機材の量が少なくなり、排気管の放熱性が低下する場合がある。非晶質無機材の配合量は、より望ましい下限が60重量%であり、より望ましい上限が95重量%である。
In the raw material composition for forming a mixed layer which is a raw material composition for forming a surface coating layer, the blending amount of the amorphous inorganic material is based on the total weight of the amorphous inorganic material powder and the crystalline inorganic material powder, A desirable lower limit is 50% by weight and a desirable upper limit is 99.5% by weight.
If the blending amount of the amorphous inorganic material is less than 50% by weight, the amount of the amorphous inorganic material that contributes to the adhesion between the surface coating layer and the substrate is too small, so the surface coating layer falls off in the manufactured exhaust pipe. Sometimes. On the other hand, if the blending amount of the amorphous inorganic material exceeds 99.5% by weight, the amount of the crystalline inorganic material is decreased, and the heat dissipation of the exhaust pipe may be lowered. The more desirable lower limit of the blending amount of the amorphous inorganic material is 60% by weight, and the more desirable upper limit is 95% by weight.
表面被覆層形成用原料組成物である混合層形成用原料組成物において、結晶性無機材の配合量は、非晶質無機材の粉末と結晶性無機材の粉末の合計重量に対して、望ましい下限が0.5重量%、望ましい上限が50重量%である。
結晶性無機材の配合量が0.5重量%未満では、放熱性を有する結晶性無機材の量が少なすぎるので、排気管の放熱性が低下することがある。一方、結晶性無機材の配合量が50重量%を超えると、表面被覆層と基材の接着に寄与する非晶質無機材の量が少なくなり、作製された排気管において表面被覆層が脱落することがある。
In the raw material composition for forming a mixed layer, which is a raw material composition for forming a surface coating layer, the blending amount of the crystalline inorganic material is desirable with respect to the total weight of the amorphous inorganic material powder and the crystalline inorganic material powder. The lower limit is 0.5% by weight, and the desirable upper limit is 50% by weight.
When the amount of the crystalline inorganic material is less than 0.5% by weight, the amount of the crystalline inorganic material having heat dissipation is too small, and the heat dissipation of the exhaust pipe may be lowered. On the other hand, when the blending amount of the crystalline inorganic material exceeds 50% by weight, the amount of the amorphous inorganic material that contributes to the adhesion between the surface coating layer and the substrate decreases, and the surface coating layer falls off in the manufactured exhaust pipe. There are things to do.
表面被覆層形成用原料組成物に配合することのできる分散媒としては、例えば、水や、メタノール、エタノール、アセトン等の有機溶媒等が挙げられる。混合粉末と分散媒との配合比は、特に限定されるものでないが、例えば、混合粉末100重量部に対して、分散媒が50~150重量部であることが望ましい。排気管用基材に塗布するのに適した粘度となるからである。
表面被覆層形成用原料組成物に配合することのできる有機結合材としては、例えば、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等を挙げることができる。これらは、単独で用いてもよく、2種以上を併用してもよい。
また、分散媒と有機結合材とを併用してもよい。
As a dispersion medium which can be mix | blended with the raw material composition for surface coating layer formation, organic solvents, such as water and methanol, ethanol, acetone, etc. are mentioned, for example. The mixing ratio of the mixed powder and the dispersion medium is not particularly limited. For example, the dispersion medium is desirably 50 to 150 parts by weight with respect to 100 parts by weight of the mixed powder. This is because the viscosity is suitable for application to the exhaust pipe substrate.
As an organic binder which can be mix | blended with the raw material composition for surface coating layer formation, polyvinyl alcohol, methylcellulose, ethylcellulose, carboxymethylcellulose etc. can be mentioned, for example. These may be used alone or in combination of two or more.
Moreover, you may use a dispersion medium and an organic binder together.
基材の形状は、平板、半円筒、円筒状の他、その断面の外縁の形状は、楕円形、多角形等の任意の形状であってもよい。 In addition to a flat plate, a semi-cylinder, and a cylindrical shape, the shape of the outer edge of the cross section may be an arbitrary shape such as an ellipse or a polygon.
本発明の排気管において、表面被覆層は、必ずしも基材の外周面上全体に形成されている必要はなく、最低限通電部(電極)との絶縁をとる部分にのみ形成されていればよい。 In the exhaust pipe of the present invention, the surface coating layer does not necessarily have to be formed on the entire outer peripheral surface of the base material, and only needs to be formed only on a portion that is insulated from the current-carrying portion (electrode). .
第一の本発明の排気管は、金属からなる基材と上記基材の表面上に形成された非晶質無機材を含む表面被覆層とを備え、排気管の厚さ方向に平行な断面の顕微鏡画像における表面被覆層の部分を、上記排気管の厚さ方向に対して垂直方向に、切断後の厚さが10μmとなる短冊状に切断して複数の短冊部を定めた場合に、上記複数の短冊部のうちの少なくとも一つの短冊部は、ある短冊部中に気孔が占める割合が他の短冊部よりも大きい気孔集中部であることが必須の構成要素である。
また、第二の本発明の排気管は、金属からなる基材と上記基材の表面上に形成された非晶質無機材を含む表面被覆層とを備え、上記表面被覆層は、非晶質無機材を含む非晶質無機材層と、非晶質無機材及び結晶性無機材を含む混合層を有しており、上記表面被覆層は独立気孔を有しており、上記独立気孔は、排気管の外部と上記基材の表面を連通しないものであり、かつ、上記独立気孔は上記非晶質無機材層と上記混合層の境界部に局在することが必須の構成要素である。
係る必須の構成要素に、第一~第八実施形態及びその他の実施形態で詳述した種々の構成(例えば、結晶性無機材層の有無、混合層の有無、造孔材等の添加により形成された気孔、粗化処理によって形成された気孔等)を適宜組み合わせることにより所望の効果を得ることができる。
The exhaust pipe of the first aspect of the present invention includes a base material made of metal and a surface coating layer containing an amorphous inorganic material formed on the surface of the base material, and a cross section parallel to the thickness direction of the exhaust pipe When the portion of the surface coating layer in the microscope image is cut into a strip shape having a thickness after cutting of 10 μm in a direction perpendicular to the thickness direction of the exhaust pipe, a plurality of strip portions are defined. It is an essential component that at least one strip portion of the plurality of strip portions is a pore concentrating portion in which the proportion of pores in a certain strip portion is larger than that of other strip portions.
The exhaust pipe of the second aspect of the present invention includes a base material made of a metal and a surface coating layer containing an amorphous inorganic material formed on the surface of the base material, and the surface coating layer is made of an amorphous material. An amorphous inorganic material layer containing a porous inorganic material, and a mixed layer containing an amorphous inorganic material and a crystalline inorganic material, the surface coating layer has independent pores, and the independent pores are In addition, the outside of the exhaust pipe does not communicate with the surface of the base material, and the independent pores are essential components that are localized at the boundary between the amorphous inorganic material layer and the mixed layer. .
Various constituents detailed in the first to eighth embodiments and other embodiments (for example, the presence or absence of a crystalline inorganic material layer, the presence or absence of a mixed layer, the addition of a pore former, etc.) are included in such essential components. The desired effect can be obtained by appropriately combining the formed pores and the pores formed by the roughening treatment.
1、50、60、70、80、90、100、110、120、130、140、150、160、170、180、190、200、270、280 排気管
10、11、12 基材
20、220 表面被覆層
20A、20B、20C、20D、20E 短冊部
21、21a、21b、221 非晶質無機材層
22、22a、22b、22c、222a、222b 混合層
23、23a、23b 気孔集中部
31 非晶質無機材
32 結晶性無機材
33、233 独立気孔
34 ブラインド気孔
 
1, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 270, 280 Exhaust pipe 10, 11, 12 Base material 20, 220 Surface Coating layer 20A, 20B, 20C, 20D, 20E Strip portion 21, 21a, 21b, 221 Amorphous inorganic material layer 22, 22a, 22b, 22c, 222a, 222b Mixed layer 23, 23a, 23b Pore concentration portion 31 Amorphous Inorganic material 32 Crystalline inorganic material 33, 233 Independent pore 34 Blind pore

Claims (16)

  1. 金属からなる基材と、
    前記基材の表面上に形成された非晶質無機材を含む表面被覆層とを備えた排気管であって、
    前記表面被覆層には気孔が存在しており、
    前記排気管の厚さ方向に平行な断面の倍率500倍の電子顕微鏡画像における表面被覆層の部分を、前記排気管の厚さ方向に対して垂直方向に、切断後の厚さが表面被覆層の厚さの1/5となるように切断して5つの短冊部を定めた際に、
    前記表面被覆層全体に存在する気孔の面積のうち、気孔の面積として30%以上の気孔が存在する短冊部である気孔集中部が少なくとも1つ存在し、
    前記気孔集中部となっている短冊部は、5つの短冊部のうちの中央の短冊部又は前記中央の短冊部に隣接する1つ又は2つの短冊部であり、
    前記表面被覆層に存在する前記気孔は、独立気孔を有しており、かつ、前記独立気孔は排気管の外部と前記基材の表面を連通しないものであることを特徴とする排気管。
    A base material made of metal;
    An exhaust pipe provided with a surface coating layer containing an amorphous inorganic material formed on the surface of the substrate,
    There are pores in the surface coating layer,
    A portion of the surface coating layer in the electron microscope image having a magnification of 500 times in a cross section parallel to the thickness direction of the exhaust pipe is perpendicular to the thickness direction of the exhaust pipe, and the thickness after cutting is the surface coating layer When the five strips are defined by cutting to be 1/5 of the thickness of
    Of the area of the pores present in the entire surface coating layer, there is at least one pore concentration portion that is a strip portion in which pores of 30% or more exist as pore areas,
    The strip portion which is the pore concentration portion is a central strip portion of five strip portions or one or two strip portions adjacent to the central strip portion,
    The exhaust pipe, wherein the pores present in the surface coating layer have independent pores, and the independent pores do not communicate with the outside of the exhaust pipe and the surface of the substrate.
  2. 前記気孔集中部は、短冊部の面積(A)に対する気孔が占める面積(B)の比である気孔割合(B/A)が0.02以上である請求項1に記載の排気管。 2. The exhaust pipe according to claim 1, wherein the pore concentration portion has a pore ratio (B / A) that is a ratio of an area (B) occupied by pores to an area (A) of the strip portion of 0.02 or more.
  3. 前記表面被覆層は、さらに結晶性無機材を含む請求項1又は2に記載の排気管。 The exhaust pipe according to claim 1, wherein the surface coating layer further includes a crystalline inorganic material.
  4. 前記表面被覆層は、非晶質無機材を含む非晶質無機材層と、非晶質無機材及び結晶性無機材を含む混合層を有しており、前記気孔集中部が、前記非晶質無機材層と前記混合層の境界を含んでいる請求項3に記載の排気管。 The surface coating layer has an amorphous inorganic material layer containing an amorphous inorganic material, and a mixed layer containing an amorphous inorganic material and a crystalline inorganic material, and the pore concentration portion is formed of the amorphous material. The exhaust pipe according to claim 3, comprising a boundary between a porous inorganic material layer and the mixed layer.
  5. 前記結晶性無機材は、マンガン、鉄、銅、コバルト、クロム、アルミニウムのうち少なくとも一種の酸化物を含有する請求項3又は4に記載の排気管。 The exhaust pipe according to claim 3 or 4, wherein the crystalline inorganic material contains at least one oxide of manganese, iron, copper, cobalt, chromium, and aluminum.
  6. 前記気孔集中部の数は、前記基材の1つの面に対して1つであり、前記気孔集中部となっている短冊部は、5つの短冊部のうちの中央の短冊部である請求項1~5のいずれかに記載の排気管。 The number of the pore concentrating portions is one for one surface of the base material, and the strip portion serving as the pore concentrating portion is a central strip portion of five strip portions. The exhaust pipe according to any one of 1 to 5.
  7. 前記気孔集中部の数は、前記基材の1つの面に対して2つであり、前記気孔集中部となっている短冊部は、5つの短冊部のうちの、前記中央の短冊部に隣接する2つの短冊部である請求項1~5のいずれかに記載の排気管。 The number of pore concentrating portions is two for one surface of the base material, and the strip portion serving as the pore concentrating portion is adjacent to the central strip portion of the five strip portions. The exhaust pipe according to any one of claims 1 to 5, which has two strip portions.
  8. 前記表面被覆層の厚さは、25~1000μmである請求項1~7のいずれかに記載の排気管。 The exhaust pipe according to any one of claims 1 to 7, wherein the thickness of the surface coating layer is 25 to 1000 袖 m.
  9. 前記表面被覆層の室温での熱伝導率は、0.1~2W/m・Kである請求項1~8のいずれかに記載の排気管。 The exhaust pipe according to any one of claims 1 to 8, wherein a thermal conductivity of the surface coating layer at room temperature is 0.1 to 2 W / m · K.
  10. 排気管の体積抵抗値が10~1014Ωmである請求項1~9のいずれかに記載の排気管。 The exhaust pipe according to any one of claims 1 to 9, wherein a volume resistance value of the exhaust pipe is 10 7 to 10 14 Ωm.
  11. 前記表面被覆層は、表面被覆層形成用原料組成物を複数回コートすることによって形成されている請求項1~10のいずれかに記載の排気管。 The exhaust pipe according to any one of claims 1 to 10, wherein the surface coating layer is formed by coating the raw material composition for forming the surface coating layer a plurality of times.
  12. 前記表面被覆層は、その一部が排気管の外部と連通するブラインド気孔をさらに有する請求項1~11のいずれかに記載の排気管。 The exhaust pipe according to any one of claims 1 to 11, wherein the surface coating layer further has blind pores, part of which communicates with the outside of the exhaust pipe.
  13. 金属からなる基材と、
    前記基材の表面上に形成された非晶質無機材を含む表面被覆層とを備えた排気管であって、
    前記表面被覆層は、非晶質無機材を含む非晶質無機材層と、非晶質無機材及び結晶性無機材を含む混合層を有しており、
    前記表面被覆層は独立気孔を有しており、
    前記独立気孔は、排気管の外部と前記基材の表面を連通しないものであり、かつ、前記独立気孔は前記非晶質無機材層と前記混合層の境界部に局在することを特徴とする排気管。
    A base material made of metal;
    An exhaust pipe provided with a surface coating layer containing an amorphous inorganic material formed on the surface of the substrate,
    The surface coating layer has an amorphous inorganic material layer containing an amorphous inorganic material, and a mixed layer containing an amorphous inorganic material and a crystalline inorganic material,
    The surface coating layer has independent pores;
    The independent pores do not communicate with the outside of the exhaust pipe and the surface of the base material, and the independent pores are localized at the boundary between the amorphous inorganic material layer and the mixed layer. Exhaust pipe.
  14. 前記表面被覆層は、その一部が排気管の外部と連通するブラインド気孔をさらに有する請求項13に記載の排気管。 The exhaust pipe according to claim 13, wherein the surface coating layer further has blind pores, part of which communicates with the outside of the exhaust pipe.
  15. 金属基材を準備する工程と、
    表面被覆層形成用原料組成物を調製する工程と、
    前記金属基材上に前記表面被覆層形成用原料組成物を塗布し、焼成することによって表面被覆層を形成する表面被覆層形成工程とを含む、排気管の製造方法であって、
    前記表面被覆層形成用原料組成物を調製する工程において、非晶質無機材を含む非晶質無機材層用原料組成物及び/又は非晶質無機材及び結晶性無機材を含む混合層用原料組成物を調製し、かつ、前記非晶質無機材層用原料組成物又は前記混合層用原料組成物に気孔形成材料を配合して気孔集中部形成用原料組成物を調製し、
    前記表面被覆層形成工程において、前記気孔集中部形成用原料組成物を少なくとも一度塗布し、焼成して表面被覆層内に気孔を形成し、かつ、非晶質無機材層用原料組成物又は前記混合層用原料組成物を少なくとも一度塗布することを特徴とする、排気管の製造方法。
    Preparing a metal substrate;
    Preparing a raw material composition for forming a surface coating layer;
    A method for producing an exhaust pipe, comprising: applying a surface coating layer forming raw material composition on the metal substrate, and forming a surface coating layer by firing;
    In the step of preparing the surface coating layer forming raw material composition, the amorphous inorganic material layer raw material composition containing an amorphous inorganic material and / or a mixed layer containing an amorphous inorganic material and a crystalline inorganic material A raw material composition is prepared, and a pore-forming material is prepared by blending a pore-forming material with the amorphous inorganic material layer raw material composition or the mixed layer raw material composition,
    In the surface coating layer forming step, the pore concentration portion forming raw material composition is applied at least once and baked to form pores in the surface coating layer, and the amorphous inorganic material layer raw material composition or the A method for producing an exhaust pipe, wherein the mixed layer raw material composition is applied at least once.
  16. 金属基材を準備する工程と、
    表面被覆層形成用原料組成物を調製する工程と、
    前記金属基材上に前記表面被覆層形成用原料組成物を複数回塗布し、焼成することによって表面被覆層を形成する表面被覆層形成工程とを含む、排気管の製造方法であって、
    前記表面被覆層形成工程において、表面被覆層形成用原料組成物の塗布及び焼成を少なくとも1回行い下層の表面被覆層を形成する工程、
    前記下層の表面被覆層の表面を粗化する工程、及び、
    前記粗化された下層の表面被覆層の表面に表面被覆層形成用原料組成物を塗布し、焼成することによって上層の表面被覆層を形成し、同時に、下層の表面被覆層と上層の表面被覆層の間に気孔を形成することを特徴とする、排気管の製造方法。
     
    Preparing a metal substrate;
    Preparing a raw material composition for forming a surface coating layer;
    A method for producing an exhaust pipe, comprising a step of forming a surface coating layer by applying the surface coating layer forming raw material composition a plurality of times on the metal substrate and firing the composition;
    In the surface coating layer forming step, a step of forming a lower surface coating layer by applying and firing the raw material composition for forming the surface coating layer at least once,
    Roughening the surface of the lower surface coating layer, and
    A surface coating layer forming raw material composition is applied to the surface of the roughened lower surface coating layer and baked to form an upper surface coating layer. At the same time, the lower surface coating layer and the upper surface coating layer are formed. A method for manufacturing an exhaust pipe, wherein pores are formed between layers.
PCT/JP2012/050106 2011-01-06 2012-01-05 Exhaust pipe and exhaust pipe manufacturing method WO2012093697A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112012000415T DE112012000415T5 (en) 2011-01-06 2012-01-05 Exhaust pipe and manufacturing method for an exhaust pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-001423 2011-01-06
JP2011001423 2011-01-06

Publications (1)

Publication Number Publication Date
WO2012093697A1 true WO2012093697A1 (en) 2012-07-12

Family

ID=46457547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050106 WO2012093697A1 (en) 2011-01-06 2012-01-05 Exhaust pipe and exhaust pipe manufacturing method

Country Status (2)

Country Link
DE (1) DE112012000415T5 (en)
WO (1) WO2012093697A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120159936A1 (en) * 2010-12-27 2012-06-28 Toyota Jidosha Kabushiki Kaisha Exhaust pipe
WO2014034395A1 (en) * 2012-08-27 2014-03-06 イビデン株式会社 Paint for exhaust system component and exhaust system component
JP2015075061A (en) * 2013-10-10 2015-04-20 イビデン株式会社 Structure and surface coating layer formation paint
WO2015146246A1 (en) * 2014-03-26 2015-10-01 イビデン株式会社 Structure
WO2016111023A1 (en) * 2015-01-05 2016-07-14 イビデン株式会社 Metal member with coat layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047559A (en) * 1999-08-09 2001-02-20 Aisan Ind Co Ltd Glass coated material
JP2003253475A (en) * 2002-03-04 2003-09-10 Aisan Ind Co Ltd Glass-coated body, its manufacturing method, and aluminum-alloy material
JP2009133214A (en) * 2007-11-28 2009-06-18 Ibiden Co Ltd Exhaust pipe
JP2010168998A (en) * 2009-01-22 2010-08-05 Ibiden Co Ltd Exhaust pipe paint, method of using exhaust pipe paint, and exhaust pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001047559A (en) * 1999-08-09 2001-02-20 Aisan Ind Co Ltd Glass coated material
JP2003253475A (en) * 2002-03-04 2003-09-10 Aisan Ind Co Ltd Glass-coated body, its manufacturing method, and aluminum-alloy material
JP2009133214A (en) * 2007-11-28 2009-06-18 Ibiden Co Ltd Exhaust pipe
JP2010168998A (en) * 2009-01-22 2010-08-05 Ibiden Co Ltd Exhaust pipe paint, method of using exhaust pipe paint, and exhaust pipe

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120159936A1 (en) * 2010-12-27 2012-06-28 Toyota Jidosha Kabushiki Kaisha Exhaust pipe
US8756925B2 (en) * 2010-12-27 2014-06-24 Toyota Jidosha Kabushiki Kaisha Exhaust pipe
WO2014034395A1 (en) * 2012-08-27 2014-03-06 イビデン株式会社 Paint for exhaust system component and exhaust system component
JPWO2014034395A1 (en) * 2012-08-27 2016-08-08 イビデン株式会社 Paint for exhaust system parts and exhaust system parts
JP2015075061A (en) * 2013-10-10 2015-04-20 イビデン株式会社 Structure and surface coating layer formation paint
WO2015146246A1 (en) * 2014-03-26 2015-10-01 イビデン株式会社 Structure
JP2015183286A (en) * 2014-03-26 2015-10-22 イビデン株式会社 structure
WO2016111023A1 (en) * 2015-01-05 2016-07-14 イビデン株式会社 Metal member with coat layer
JPWO2016111023A1 (en) * 2015-01-05 2017-10-12 イビデン株式会社 Metal member with coat layer

Also Published As

Publication number Publication date
DE112012000415T5 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5727808B2 (en) Structure and manufacturing method of structure
WO2012093697A1 (en) Exhaust pipe and exhaust pipe manufacturing method
WO2012093480A1 (en) Exhaust gas treatment apparatus
JP5864213B2 (en) Exhaust gas treatment equipment
US8871152B2 (en) Exhaust gas processing device
JP6182146B2 (en) Paint for exhaust system parts and exhaust system parts
JP6472384B2 (en) Thermal insulation film and thermal insulation film structure
EP3075719B1 (en) Porous material and heat insulating film
JP6165896B2 (en) Exhaust gas treatment equipment
JP6813718B2 (en) Composite member
EP3100994A1 (en) Porous plate-shaped filler
US10597336B2 (en) Porous ceramic structure
JP6423360B2 (en) Thermal insulation film and thermal insulation film structure
JP6285684B2 (en) Paint for forming structure and surface coating layer
WO2015053242A1 (en) Gas circulation member
JP2004193233A (en) Laminated ceramic electronic component
JP6407180B2 (en) Honeycomb structure and method for manufacturing honeycomb structure
JP6177085B2 (en) Structure and paint set
WO2020262368A1 (en) Electrostatic chuck heater
WO2022014611A1 (en) Composite member
JP6126765B1 (en) Porous ceramic particles
JP2015075061A (en) Structure and surface coating layer formation paint
JP2022017128A (en) Composite member
JP6526944B2 (en) Structure
CN110314464A (en) Honeycomb structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12731963

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112012000415

Country of ref document: DE

Ref document number: 1120120004159

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12731963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP