WO2012093629A1 - Liquid crystal display and manufacturing method thereof - Google Patents

Liquid crystal display and manufacturing method thereof Download PDF

Info

Publication number
WO2012093629A1
WO2012093629A1 PCT/JP2011/080356 JP2011080356W WO2012093629A1 WO 2012093629 A1 WO2012093629 A1 WO 2012093629A1 JP 2011080356 W JP2011080356 W JP 2011080356W WO 2012093629 A1 WO2012093629 A1 WO 2012093629A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
group
display device
alignment film
Prior art date
Application number
PCT/JP2011/080356
Other languages
French (fr)
Japanese (ja)
Inventor
真伸 水▲崎▼
仲西 洋平
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012093629A1 publication Critical patent/WO2012093629A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a liquid crystal display device and a manufacturing method thereof. More specifically, the present invention relates to a liquid crystal display device using an alignment film to which a photo-alignment process is applied and a manufacturing method thereof.
  • a liquid crystal display device is a display device that uses a liquid crystal composition for display.
  • a typical display method is to apply a voltage to a liquid crystal composition sealed between a pair of substrates, and apply the applied voltage.
  • the amount of transmitted light is controlled by changing the alignment state of the liquid crystal molecules in the liquid crystal composition according to the above.
  • the alignment of liquid crystal molecules is generally controlled by an alignment film formed on the surface of the substrate.
  • This alignment film is subjected to an alignment process for aligning liquid crystal molecules in a predetermined direction.
  • rubbing with a fiber material has been used as a method of orientation treatment.
  • rubbing is a process of rubbing the substrate directly with a cloth, and there is a risk of damaging a thin film transistor formed on the substrate. As a result, display defects may occur.
  • the photo-alignment process is a process that gives predetermined alignment characteristics to the surface of the alignment film by irradiating the alignment film with light from a predetermined direction.
  • the term “light” is not limited to visible light, but includes ultraviolet light (ultraviolet light) that is an electromagnetic wave having a wavelength shorter than that of visible light.
  • an alignment film material in which a photoreactive group is introduced into a side chain is used (see, for example, Patent Document 1).
  • the photoreactive group include a functional group that isomerizes upon exposure and a functional group that crosslinks upon exposure.
  • the display method of the liquid crystal display device is classified into various modes depending on how the orientation state of the liquid crystal molecules is changed.
  • IPS in-plane switching
  • FFS fringe field switching
  • liquid crystal molecules are driven mainly in a plane parallel to the substrate surface, so that a wide viewing angle characteristic can be obtained.
  • this horizontal electric field type display method it is known that excellent display characteristics can be obtained by reducing the pretilt angle (see, for example, Patent Documents 2 and 3).
  • Patent Documents 4 to 6 disclose photo-alignment films that can be used in a horizontal electric field type display method. However, with respect to the horizontal electric field type display method, it cannot be said that research and development relating to an alignment film material suitable for optical alignment processing is sufficiently advanced, and alignment processing by rubbing is still common.
  • the photo-alignment films disclosed in Patent Documents 4 and 5 have room for improvement in that they are all photodegradable alignment films. That is, in the photodegradable alignment film, the photodecomposition residue may permeate into the liquid crystal layer, which may reduce the voltage holding ratio (VHR), which is one of the display characteristics of the liquid crystal display device. In addition, since it is necessary to irradiate light with a short wavelength of 300 nm or less for photolysis, it damages members other than the alignment film (for example, the TFT protective film) and reduces the voltage holding ratio (VHR). There was a risk of causing it.
  • VHR voltage holding ratio
  • Patent Document 5 discloses that the photo-alignment film is exposed at a substrate temperature of 100 ° C. or higher.
  • a substrate temperature 100 ° C. or higher.
  • an expensive photo-alignment processing apparatus is required.
  • the temperature variation in the substrate tends to be larger than in the case of exposure at room temperature, which may affect display characteristics such as display unevenness.
  • Patent Document 6 does not sufficiently indicate a guideline for realizing a photo-alignment film for horizontal alignment using polyimide that is widely used as an alignment film material.
  • the present invention has been made in view of the above situation, and provides a horizontal alignment type liquid crystal display device to which a photo-alignment process is applied and a decrease in voltage holding ratio (VHR) is suppressed, and a method for manufacturing the same. It is for the purpose.
  • the present inventors have used, as an alignment film material, a polyimide having a solvent state imidization ratio (imidation ratio by chemical imidization) of 80% or more before substrate coating.
  • the present inventors have found that the pretilt angle can be controlled to 5 ° or less by irradiating light, and a horizontally aligned liquid crystal display device can be manufactured. Further, it has been found that the voltage holding ratio (VHR) decreases with time when a photodegradable photo-alignment film is used.
  • VHR voltage holding ratio
  • an alignment film material using a photoreaction mechanism other than a photodegradation reaction is effective as a mechanism for developing a pretilt angle.
  • a material having a side chain containing a functional group that absorbs ultraviolet light and having one side chain per unit of the polyimide repeating structure is a horizontal alignment type. It was found that it is optimal for the production of liquid crystal display devices. As described above, the present inventors have conceived that the above problems can be solved brilliantly, and have reached the present invention.
  • one embodiment of the present invention is a liquid crystal layer including liquid crystal molecules having a pretilt angle of 5 ° or less; A first substrate and a second substrate sandwiching the liquid crystal layer; A first alignment film disposed between the first substrate and the liquid crystal layer; A liquid crystal display device comprising a second alignment film disposed between the second substrate and the liquid crystal layer, The first substrate and the second substrate have a pair of electrodes arranged to generate a lateral electric field in the liquid crystal layer, At least one of the first alignment film and the second alignment film is formed of an alignment film material capable of controlling the pretilt angle of the liquid crystal molecules to 5 ° or less by a photoreaction mechanism other than photolysis, and the alignment film
  • the material contains a polyimide having an imidization ratio of 80% or more, and the polyimide has a side chain containing a functional group that absorbs ultraviolet light, and the number of the side chain is one unit of the repeating structure of the polyimide. This is one liquid crystal display device.
  • Another aspect of the present invention is a liquid crystal layer containing liquid crystal molecules having a pretilt angle of 5 ° or less; A first substrate and a second substrate sandwiching the liquid crystal layer; A first alignment film disposed between the first substrate and the liquid crystal layer; A second alignment film disposed between the second substrate and the liquid crystal layer; The first substrate and the second substrate have a pair of electrodes arranged to generate a lateral electric field in the liquid crystal layer, At least one of the first alignment film and the second alignment film is a method for manufacturing a liquid crystal display device formed of an alignment film material containing polyimide having an imidization rate of 80% or more, The polyimide has a side chain containing a functional group that absorbs ultraviolet light, The number of the side chains is one per unit of the polyimide repeating structure, The manufacturing method irradiates light on the surface of the film formed of the alignment film material formed on at least one of the first alignment film and the second alignment film, and has a photoreaction mechanism other than photolysis. And a method of manufacturing a
  • the liquid crystal display device includes a pretilt angle (a tilt angle of liquid crystal molecules with respect to the surface of the first or second alignment film when no voltage is applied to the liquid crystal layer) by at least one of the first alignment film and the second alignment film. Is a so-called horizontal alignment type liquid crystal display device. When a voltage is applied to the liquid crystal layer, the alignment of liquid crystal molecules is controlled by an electric field generated between the pair of electrodes.
  • the present invention can be applied to all display modes in which the pretilt angle of liquid crystal molecules is 5 ° or less when no voltage is applied.
  • IPS in-plane switching
  • FFS fringe field switching It
  • TN TwistedTNematic
  • OCB Optically Compensated Bend
  • the alignment film material used in the present invention is not a material that changes the pretilt angle using photolysis, but a material that changes the pretilt angle using structural changes caused by other photoreactions. Therefore, the alignment film material used in the present invention may be a material that can undergo photolysis depending on the exposure conditions.
  • Examples of the material that changes the pretilt angle by utilizing the above photolysis include those containing a cyclobutane ring in the acid anhydride unit of the polyimide main chain.
  • the cyclobutane ring has a C—C—C bond angle of about 90 ° and has a low bond energy, and thus is considered to be a material that is easily photodegraded.
  • the pretilt angle is preferably 2 ° or less. That is, it is preferable that the alignment film material can control the pretilt angle of the liquid crystal molecules to 2 ° or less. Thereby, favorable visual characteristics can be obtained in the IPS mode and the FFS mode.
  • the pretilt angle is preferably about 2 ° from the viewpoint of reducing the probability of occurrence of reverse twist.
  • the pretilt angle is preferably 4 ° to 5 ° from the viewpoint of facilitating the spray-bend transition.
  • linearly polarized light is suitable.
  • a light irradiation mode it is preferable to irradiate the surface of the film formed of the alignment film material from an oblique direction.
  • One unit of the repeating structure of the polyimide is represented by the following formula (1).
  • the side chain is usually contained in the site Y in the following formula (1). Therefore, the number of the above side chains per unit of the polyimide repeating structure is one in which all m sites Y in the following formula (1) are composed of sites having one side chain. Yes, it may include both a site having one side chain and a site not having the side chain.
  • Examples of the polyimide include a copolymer containing at least two types of the repeating structures. According to such a copolymer, a horizontal alignment type liquid crystal display device can be realized by photoalignment treatment while sufficiently preventing a decrease in voltage holding ratio (VHR).
  • VHR voltage holding ratio
  • Examples of the photoreaction mechanism include at least one reaction mechanism selected from a dimerization reaction, a cis-trans transition reaction, and an angle change of a functional group due to light absorption. According to these reaction mechanisms, a decrease in voltage holding ratio (VHR) over time due to long-term use can be sufficiently suppressed.
  • VHR voltage holding ratio
  • the functional group that absorbs ultraviolet light examples include at least one functional group selected from a cinnamate group, a chalcone group, a coumarin group, and an azo group. According to these functional groups, the pretilt angle can be expressed not by a photolysis reaction but by a mechanism such as a dimerization reaction. For this reason, it is suppressed that a voltage holding rate (VHR) falls with time by long-term use.
  • VHR voltage holding rate
  • the side chain-containing site of the above formula (2) is composed of 1,3-phenylenediamine constituting a part of the main chain of the polyimide and the side chain of the polyimide containing a cinnamate group. According to the side chain-containing portion, a horizontal alignment type liquid crystal display device can be realized by a photoalignment process while sufficiently preventing a decrease in voltage holding ratio (VHR).
  • VHR voltage holding ratio
  • polyimide As said polyimide, the form which has a side chain containing site
  • VHR voltage holding ratio
  • a polymer layer formed by radical polymerization of a bifunctional monomer is provided between the first alignment film and the liquid crystal layer and between at least one of the second alignment film and the liquid crystal layer.
  • the polymer layer can be formed by PSA (Polymer Sustained Alignment) technology.
  • PSA Polymer Sustained Alignment
  • the PSA technique is a technique for forming a polymer layer having a surface state corresponding to the alignment of liquid crystal molecules when a voltage is applied on the alignment film. For example, a monomer is added to the liquid crystal layer, and then ultraviolet light is applied to the liquid crystal layer.
  • a polymer layer is formed by a method in which the monomer is photopolymerized by irradiation.
  • the said bifunctional monomer means the monomer which has two functional groups (polymerization group) which can become a reaction point of a polymerization reaction per molecule.
  • the polymerizable group include a functional group having a double bond formed between two carbon atoms and exhibiting radical reactivity.
  • Examples of the bifunctional monomer include those represented by the following general formula (I).
  • P 1 -A 1 -P 1 (I) (Wherein P 1 represents an acrylate group or a methacrylate group.
  • a 1 represents a 1,4-phenylene, 4,4′-biphenyl, naphthalene-2,6-diyl group represented by the following chemical formula (3).
  • a phenanthrene-2,7-diyl group, wherein the hydrogen atom contained in A 1 may be substituted with a halogen group, a methyl group, an ethyl group, or a propyl group.
  • the display mode of the liquid crystal display device is an IPS or FFS mode (lateral electric field mode), and the first substrate is arranged to generate a lateral electric field in the liquid crystal layer. It has an electrode.
  • Examples of other display modes to which the liquid crystal display device can be applied include a TN mode and an OCB mode.
  • a horizontal alignment type liquid crystal display device can be realized by photo-alignment processing, and thus formed on the first substrate or the second substrate by alignment processing. There is little risk of damaging components such as thin film transistors, and display defects can be prevented.
  • the pretilt angle of the liquid crystal molecules is controlled by a photoreaction mechanism other than photolysis, it is possible to prevent a decrease in voltage holding ratio (VHR) due to long-term use.
  • FIG. 6 is a schematic perspective view illustrating a state where no voltage is applied to a liquid crystal layer in a TN mode liquid crystal display device.
  • FIG. 5 is a schematic perspective view illustrating a state where a voltage is applied to a liquid crystal layer in a TN mode liquid crystal display device.
  • FIG. 5 is a schematic perspective view illustrating a state where a voltage is applied to a liquid crystal layer in a TN mode liquid crystal display device.
  • FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to an embodiment of the present invention.
  • the liquid crystal display device according to the embodiment of the present invention includes a liquid crystal display panel in which a liquid crystal layer 30 is sealed between an array substrate 10 bonded with a sealant 31 and a counter substrate 20.
  • the array substrate 10, the liquid crystal layer 30, and the counter substrate 20 are arranged in this order from the back side to the display surface (observation surface) side, and a backlight 50 is provided on the back side of the liquid crystal display panel.
  • the liquid crystal display device of the present embodiment is a transmissive liquid crystal display device that performs display using light emitted from the backlight 50, and light is transmitted in the order of the array substrate 10, the liquid crystal layer 30, and the counter substrate 20. .
  • the array substrate 10 is formed by, for example, laminating a conductive member such as a wiring, a pixel electrode, and a thin film transistor (Thin Film Transistor (TFT)) and a plurality of insulating films on an insulating transparent substrate (for example, a glass substrate). Has a structure.
  • An alignment film 12 is formed on the surface of the array substrate 10 on the liquid crystal layer 30 side.
  • the counter substrate 20 includes, for example, a color filter, a black matrix, and the like on an insulating transparent substrate (for example, a glass substrate). Further, an alignment film 22 is formed on the surface of the counter substrate 20 on the liquid crystal layer 30 side.
  • the liquid crystal layer 30 can use either a liquid crystal molecule having a positive dielectric anisotropy or a liquid crystal molecule having a negative dielectric anisotropy, and can be appropriately selected according to the display mode of the liquid crystal.
  • the alignment films 12 and 22 are made of polyimide having a main chain including an imide structure. By performing photo-alignment treatment on the surfaces of the alignment films 12 and 22, the alignment azimuth and pretilt angle (initial tilt when no voltage is applied) of the liquid crystal molecules can be oriented in a predetermined direction.
  • a polymer layer may be provided on the surface of the alignment films 12 and 22 on the liquid crystal layer 30 side.
  • the polymer layer has an effect of regulating the alignment of liquid crystal molecules when no voltage is applied, the alignment of the liquid crystal layer 30 can be stabilized, the response speed can be improved, and the like.
  • a method for forming the polymer layer a method in which a PSA monomer contained in the liquid crystal layer 30 is photopolymerized is known.
  • at least one PSA monomer is added to the liquid crystal layer 30 before the PSA polymerization step.
  • a polymerization initiator may be further added to the liquid crystal layer 30.
  • the PSA monomer absorbs light to generate radicals and start chain polymerization, it is not necessary to add a polymerization initiator to the liquid crystal layer 30.
  • the liquid crystal layer 30 is irradiated with light, whereby the PSA monomer starts to be polymerized, and a polymer layer is formed on the surface of the alignment films 12 and 22 on the liquid crystal layer 30 side.
  • a voltage may be applied to the liquid crystal layer 30 or may not be applied. If light irradiation is performed in a state where a voltage equal to or higher than the threshold is applied to the liquid crystal layer 30, a polymer layer having a shape corresponding to liquid crystal molecules aligned according to the voltage equal to or higher than the threshold is formed. By providing such a polymer layer, the orientation direction and pretilt angle of the liquid crystal molecules in a state in which no voltage is applied are defined.
  • the alignment direction and the pretilt angle of the liquid crystal molecules are regulated by applying an alignment process to the surfaces of the alignment films 12 and 22, a threshold value is applied to the liquid crystal layer 30 during light irradiation.
  • the above voltage need not be applied.
  • the polymer layer formed on the alignment films 12 and 22 further enhances the alignment stability of the alignment films 12 and 22. Acts as a film to enhance. By improving the alignment regulating force, the alignment of liquid crystal molecules is more uniformly controlled, the change in alignment with time is reduced, and image sticking is less likely to occur.
  • a polarizing plate is provided on the back side of the array substrate 10. Furthermore, a polarizing plate is also provided on the observation surface side of the counter substrate 20. A retardation plate may be disposed between the pair of polarizing plates.
  • the type of the backlight 50 is not particularly limited, and may be an edge light type or a direct type. Moreover, the kind of light source is not specifically limited, A light emitting diode (LED), a cold cathode tube (CCFL), etc. are mentioned.
  • LED light emitting diode
  • CCFL cold cathode tube
  • Examples of members constituting the backlight 50 include a light source, a reflection sheet, a diffusion sheet, a prism sheet, and a light guide plate.
  • a light source In the edge light type backlight, light emitted from the light source enters the light guide plate from the side surface of the light guide plate, is reflected, diffused, etc., and is emitted as planar light from the main surface of the light guide plate, Further, the light passes through a prism sheet or the like and is emitted as display light.
  • a direct type backlight light emitted from a light source passes directly through a reflection sheet, a diffusion sheet, a prism sheet, etc. without passing through a light guide plate, and is emitted as display light.
  • the array substrate 10 includes a reflection plate for reflecting outside light. Further, at least in a region where the reflected light is used as a display, the polarizing plate provided on the observation surface side of the counter substrate 20 is a circular polarizing plate provided with a so-called ⁇ / 4 retardation plate.
  • FIG. 2 is a schematic plan view illustrating a pixel configuration of an IPS or FFS mode liquid crystal display device.
  • a plurality of scanning signal lines 13 extending in parallel and a plurality of data signal lines 14 extending in parallel are arranged in a lattice shape so as to be substantially orthogonal to each other, and a thin film transistor is provided in the vicinity of each intersection thereof. 15 is arranged.
  • a pixel electrode 16 extends from the drain of the thin film transistor 15.
  • a common signal line 17 extending in parallel with the scanning signal line 13 is provided between the plurality of scanning signal lines 13. The common signal line 17 is connected to the common electrode 19 through the contact hole 18.
  • the alignment of the liquid crystal is controlled by an electric field formed between the pixel electrode 16 and the common electrode 19 formed on the array substrate 10.
  • Examples 1 and 2 and Comparative Examples 1 and 2 an alignment agent containing polyimide having a photoreactive functional group was applied to the surfaces of the array substrate 10 and the counter substrate 20.
  • the chemical formula of polyimide is as shown in the following formula (1).
  • X represents the chemical structure of the following formula (4)
  • Y represents the chemical structure of the following formula (2), and contains a cinnamate group as a photoreactive functional group.
  • the chemical imidation ratio of the polyimide in the alignment agent is as follows. 100% (Example 1) 80% (Example 2) 50% (Comparative Example 1) 0% (Comparative Example 2)
  • the alignment agent After applying the alignment agent, preliminary baking was performed at 80 ° C. for 5 minutes, followed by main baking at 200 ° C. for 40 minutes. Subsequently, the obtained alignment film was irradiated with linearly polarized light from an oblique direction of 40 °. Linearly polarized light was obtained by transmitting light emitted from a high-pressure mercury lamp (manufactured by USHIO INC.) Through a filter capable of blocking a wavelength component of 300 nm or less. Next, a sealant 31 was applied around the array substrate 10 and beads were dispersed over the entire surface of the counter substrate 20, and then the array substrate 10 and the counter substrate 20 were bonded together.
  • a high-pressure mercury lamp manufactured by USHIO INC.
  • a gap having a distance corresponding to the size of the bead is provided between the two substrates 10 and 20 bonded by the sealant 31. Subsequently, a liquid crystal having negative dielectric anisotropy was injected into the gap between the substrates. Thus, an IPS or FFS mode liquid crystal display panel was produced. The liquid crystal display panel was subjected to the following evaluation tests 1 to 4.
  • FIG. 3 is a photograph showing the results of an evaluation test conducted to confirm the correlation between the chemical imidation rate and the orientation of the liquid crystal.
  • the transmission axes of a pair of polarizing plates that sandwich the liquid crystal display panel are arranged in crossed Nicols.
  • the transmission axes of the pair of polarizing plates are arranged so as to have an angle of 45 ° with respect to the irradiation direction of the polarized light in the photo-alignment process.
  • FIG. 4 is an explanatory diagram illustrating the principle of visibility evaluation of a liquid crystal display panel. As shown in FIG. 4, the visibility when the display of the liquid crystal display panel is viewed from a direction inclined by an angle ⁇ (10 °, 30 °, 50 ° or 70 °) from the normal of the panel surface is the normal direction. We observed how much it changed compared to the visibility when viewed from above. The results are shown in Table 2 below.
  • Examples 3 and 4 and Comparative Examples 3 and 4 relate to IPS or FFS mode liquid crystal display devices, except that a polymer layer was formed on the liquid crystal layer 30 side surface of the alignment films 12 and 22 by the PSA process. The same as Example 1, 2 and Comparative Example 1, 2.
  • the chemical imidation ratio of the polyimide in the alignment agent used in Examples 3 and 4 and Comparative Examples 3 and 4 is as follows. 100% (Example 3) 80% (Example 4) 50% (Comparative Example 3) 0% (Comparative Example 4)
  • liquid crystal 0.3% by weight of a bifunctional biphenyl monomer (4,4-dimethacryloxybiphenyl) represented by the following formula (5) was added.
  • the liquid crystal layer 30 is irradiated with ultraviolet light from a black light (manufactured by Toshiba Lighting & Technology Corp., model number: FHF-32BLB) to photopolymerize the bifunctional biphenyl monomer.
  • a polymer layer was formed on the surface of the alignment films 12 and 22 on the liquid crystal layer 30 side.
  • Examples 5 and 6 and Comparative Examples 5 and 6 relate to a TN mode liquid crystal display device.
  • a liquid crystal having positive dielectric anisotropy is used, and the alignment treatment is performed so that the alignment direction of the horizontally aligned liquid crystal is twisted (twisted) by 90 ° between the array substrate 10 and the counter substrate 20. Is done.
  • an electrode without a slit is used in place of the electrode with a slit used in Examples 1 to 4 and the like showing the IPS or FFS mode.
  • FIG. 5 is a schematic perspective view showing a state in which no voltage is applied to the liquid crystal layer in the TN mode liquid crystal display device.
  • FIG. 5 when no voltage is applied to the liquid crystal 33 and the alignment of the liquid crystal 33 is twisted by 90 °, the light emitted from the backlight passes through the pair of polarizing plates 11 and 21 arranged in crossed Nicols. Since it can be transmitted, a white display screen 60 is obtained.
  • FIG. 6 is a schematic perspective view showing a state in which a voltage is applied to the liquid crystal layer in the TN mode liquid crystal display device. As shown in FIG.
  • the production conditions of the alignment films 12 and 22 in Examples 5 and 6 and Comparative Examples 5 and 6 are the same as those in Examples 1 and 2 and Comparative Examples 1 and 2.
  • the chemical imidation ratios of the polyimides in the alignment agents used in Examples 5 and 6 and Comparative Examples 5 and 6 are as follows. 100% (Example 5) 80% (Example 6) 50% (Comparative Example 5) 0% (Comparative Example 6)
  • Examples 7 and 8 and Comparative Examples 7 and 8 relate to an OCB mode liquid crystal display device, and use a liquid crystal having positive dielectric anisotropy.
  • the OCB mode liquid crystal 33 has a splay alignment as shown in FIG. 7 when no voltage is applied, and a bend alignment as shown in FIG. 8 when a bias voltage is applied.
  • the transmittance of the liquid crystal display panel is controlled by a voltage applied to the bend-aligned liquid crystal 33.
  • an electrode without a slit is used in place of the electrode with a slit used in Examples 1 to 4 and the like showing the IPS or FFS mode.
  • the production conditions of the alignment films 12 and 22 in Examples 7 and 8 and Comparative Examples 7 and 8 are the same as those in Examples 1 and 2 and Comparative Examples 1 and 2.
  • the chemical imidation ratios of the polyimides in the alignment agents used in Examples 7 and 8 and Comparative Examples 7 and 8 are as follows. 100% (Example 7) 80% (Example 8) 50% (Comparative Example 7) 0% (Comparative Example 8)
  • the liquid crystal display panels of Examples 7 and 8 and Comparative Examples 7 and 8 were subjected to the above-described evaluation tests 2 and 3, and the results are shown in Table 6 below.
  • the voltage holding ratio (VHR) was measured after applying a voltage of 10 V to the liquid crystal 33 to bend the liquid crystal 33.
  • Example 8 having a pretilt angle of 5 ° is particularly suitable from the viewpoint of facilitating the splay-bend transition.
  • Example 9 to 11 the use of a copolymer containing a side chain-containing moiety of the above formula (2) and a moiety having 1,4-phenylenediamine as polyimide, and positive dielectric anisotropy Example 1 is the same as Example 1 except that a liquid crystal having properties is used. That is, the chemical formula of polyimide is shown in the above formula (1). In the above formula (1), X represents the chemical structure of the above formula (4), and Y represents the chemical structure of the above formula (2). And 1,4-phenylenediamine. In Example 9, the proportion of the chemical structure of the above formula (2) is 75 mol%, and the proportion of 1,4-phenylenediamine is 25 mol%.
  • Example 10 the proportion of the chemical structure of the above formula (2) is 50 mol%, and the proportion of 1,4-phenylenediamine is 50 mol%.
  • Example 11 the proportion of the chemical structure of the above formula (2) is 25 mol%, and the proportion of 1,4-phenylenediamine is 75 mol%.
  • the method for preparing the copolymer is disclosed in, for example, International Publication No. 2008/117615.
  • Comparative Example 9 was the same as Example 1 except that a homopolymer containing a portion having 1,4-phenylenediamine was used as the polyimide, and a liquid crystal having positive dielectric anisotropy was used. It is. That is, the chemical formula of polyimide is as shown in the above formula (1). In the above formula (1), X represents the chemical structure of the above formula (4), and Y represents 1,4-phenylenediamine. . In Comparative Example 9, it can be said that the proportion of the chemical structure of the above formula (2) is 0 mol% and the proportion of 1,4-phenylenediamine is 100 mol%.
  • an IPS or FFS mode liquid crystal display panel could be produced using a copolymer having an introduction amount of 1,4-phenylenediamine monomer of 25, 50, 75 (mol%).
  • Comparative Example 9 since there was no photo-alignment functional group, it was not possible to align by irradiation with polarized ultraviolet light, and the pretilt angle could not be measured.
  • Examples 12 to 14 and Comparative Example 10 are the same as Examples 9 to 11 and Comparative Example 9, respectively, except that polyimide having a chemical imidation rate of 80% was used.
  • IPS was introduced by a copolymer having 1,4-phenylenediamine monomer introduced in amounts of 25, 50, and 75 (mol%).
  • an FFS mode liquid crystal display panel could be manufactured.
  • Comparative Example 10 since there was no photo-alignment functional group, it could not be aligned by irradiation with polarized ultraviolet light, and the pretilt angle could not be measured.
  • Example 15 to 17 the use of a copolymer containing a side chain-containing moiety of the above formula (2) and a moiety having 1,4-phenylenediamine as the polyimide, and positive dielectric anisotropy
  • This example is the same as Example 3 except that a liquid crystal having properties is used. That is, the chemical formula of polyimide is shown in the above formula (1).
  • X represents the chemical structure of the above formula (4)
  • Y represents the chemical structure of the above formula (2).
  • 1,4-phenylenediamine is 75 mol%, and the proportion of 1,4-phenylenediamine is 25 mol%.
  • Example 16 the proportion of the chemical structure of the above formula (2) is 50 mol%, and the proportion of 1,4-phenylenediamine is 50 mol%.
  • Example 17 the proportion of the chemical structure of the above formula (2) is 25 mol%, and the proportion of 1,4-phenylenediamine is 75 mol%.
  • Comparative Example 11 was the same as Example 3 except that a homopolymer containing a portion having 1,4-phenylenediamine was used as the polyimide, and a liquid crystal having positive dielectric anisotropy was used. It is. That is, the chemical formula of polyimide is as shown in the above formula (1). In the above formula (1), X represents the chemical structure of the above formula (4), and Y represents 1,4-phenylenediamine. . In Comparative Example 11, it can be said that the proportion of the chemical structure of the above formula (2) is 0 mol% and the proportion of 1,4-phenylenediamine is 100 mol%.
  • IPS or FFS was obtained depending on the copolymer in which the introduction amount of 1,4-phenylenediamine monomer was 25, 50, 75 (mol%).
  • a mode liquid crystal display panel could be fabricated.
  • Comparative Example 11 since there was no photo-alignment functional group, it could not be aligned by irradiation with polarized ultraviolet light, and the pretilt angle could not be measured.
  • Examples 18 to 20 and Comparative Example 12 are the same as Examples 15 to 17 and Comparative Example 11, respectively, except that polyimide having a chemical imidation rate of 80% was used.
  • Examples 1 to 20 described above the polyimide represented by the above formula (1) is used, but a polyimide having a main chain structure represented by the following formulas (7) to (9) may be used.
  • X represents the chemical structure of the following formula (8)
  • Y represents the chemical structure of the following formula (9).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

Disclosed is a photoaligned, horizontal alignment type liquid crystal display wherein decreases in the voltage holding ratio (VHR) have been suppressed; also disclosed is a manufacturing method of said liquid crystal display. The disclosed liquid crystal display is provided with a liquid crystal layer containing liquid crystal molecules with a pre-tilt angle of 5° or less, a first and a second substrate sandwiching the liquid crystal layer, a first oriented film arranged between the first substrate and the liquid crystal layer, and a second oriented film arranged between the second substrate and the liquid crystal layer. The first and the second substrates have a pair of electrodes arranged so as to generate an electric field in the liquid crystal layer, and at least one of the first and second orientation films is formed from an oriented film material capable of controlling the pre-tilt angle of the liquid crystal molecules to 5° or lower by means of a photoreaction mechanism other than photolysis. The oriented film material contains a polyimide with an imidization rate of 80% or greater, and the polyimide has side chains containing a functional group that absorbs ultraviolet light. The number of side chains is one for every one unit of the repeating structure of the polyimide.

Description

液晶表示装置及びその製造方法Liquid crystal display device and manufacturing method thereof
本発明は、液晶表示装置及びその製造方法に関する。より詳しくは、光配向処理が適用される配向膜を用いた液晶表示装置及びその製造方法に関するものである。 The present invention relates to a liquid crystal display device and a manufacturing method thereof. More specifically, the present invention relates to a liquid crystal display device using an alignment film to which a photo-alignment process is applied and a manufacturing method thereof.
液晶表示装置は、表示のために液晶組成物を利用する表示装置であり、その代表的な表示方式は、一対の基板間に封入された液晶組成物に対して電圧を印加し、印加した電圧に応じて液晶組成物中の液晶分子の配向状態を変化させることにより、光の透過量を制御するものである。 A liquid crystal display device is a display device that uses a liquid crystal composition for display. A typical display method is to apply a voltage to a liquid crystal composition sealed between a pair of substrates, and apply the applied voltage. The amount of transmitted light is controlled by changing the alignment state of the liquid crystal molecules in the liquid crystal composition according to the above.
電圧が印加されていない状態において、液晶分子の配向は、基板の表面に成膜された配向膜によって制御されるのが一般的である。この配向膜には、液晶分子を所定の向きに配向させるための配向処理が施される。 In a state where no voltage is applied, the alignment of liquid crystal molecules is generally controlled by an alignment film formed on the surface of the substrate. This alignment film is subjected to an alignment process for aligning liquid crystal molecules in a predetermined direction.
配向処理の方法として、従来一般には、繊維材料によるラビングが用いられてきたが、ラビングは、布で基板を直接擦る処理であることから、基板に形成された薄膜トランジスタを損傷するおそれがあり、その結果として、表示欠陥が発生するおそれがあった。 Conventionally, rubbing with a fiber material has been used as a method of orientation treatment. However, rubbing is a process of rubbing the substrate directly with a cloth, and there is a risk of damaging a thin film transistor formed on the substrate. As a result, display defects may occur.
最近では、ラビングに代わる配向処理の方法として、非接触型の光配向処理が用いられるようになってきている。光配向処理は、配向膜に所定の方向から光を照射することにより、配向膜の表面に所定の配向特性を与える処理である。なお、本明細書において、用語「光」は、可視光線に限定されるものではなく、可視光線よりも波長の短い電磁波である紫外線(紫外光)を含むものである。 Recently, a non-contact type photo-alignment process has come to be used as an alignment process method instead of rubbing. The photo-alignment process is a process that gives predetermined alignment characteristics to the surface of the alignment film by irradiating the alignment film with light from a predetermined direction. In this specification, the term “light” is not limited to visible light, but includes ultraviolet light (ultraviolet light) that is an electromagnetic wave having a wavelength shorter than that of visible light.
光配向処理には、例えば、光反応性基を側鎖に導入した配向膜材料が用いられる(例えば、特許文献1参照)。この光反応性基とは、例えば、露光により異性化する官能基、露光により架橋する官能基が挙げられる。 For the photo-alignment treatment, for example, an alignment film material in which a photoreactive group is introduced into a side chain is used (see, for example, Patent Document 1). Examples of the photoreactive group include a functional group that isomerizes upon exposure and a functional group that crosslinks upon exposure.
液晶表示装置の表示方式は、液晶分子の配向状態の変化のさせ方により種々のモードに分類されるが、広視野角が得られるモードとしては、面内スイッチング(In-Plain Switching(IPS))モード、フリンジ・フィールド・スイッチング(Fringe Field Switching(FFS))モード等の横電界型の表示方式が知られている。横電界型の表示方式では、液晶分子を基板面に対して主に平行な面内で駆動するため、広視野角特性が得られる。この横電界型の表示方式では、プレチルト角を小さくすることにより、優れた表示特性が得られることが知られている(例えば、特許文献2、3参照)。 The display method of the liquid crystal display device is classified into various modes depending on how the orientation state of the liquid crystal molecules is changed. As a mode that can obtain a wide viewing angle, in-plane switching (IPS) There are known horizontal electric field type display methods such as a mode and a fringe field switching (FFS) mode. In the horizontal electric field type display method, liquid crystal molecules are driven mainly in a plane parallel to the substrate surface, so that a wide viewing angle characteristic can be obtained. In this horizontal electric field type display method, it is known that excellent display characteristics can be obtained by reducing the pretilt angle (see, for example, Patent Documents 2 and 3).
横電界型の表示方式に利用可能な光配向膜に関しては、特許文献4~6に開示されている。しかしながら、横電界型の表示方式については、光配向処理に適した配向膜材料に関する研究開発が充分に進んでいるとは言えず、未だラビング処理による配向処理が一般的であった。 Patent Documents 4 to 6 disclose photo-alignment films that can be used in a horizontal electric field type display method. However, with respect to the horizontal electric field type display method, it cannot be said that research and development relating to an alignment film material suitable for optical alignment processing is sufficiently advanced, and alignment processing by rubbing is still common.
特表2009-520702号公報Special table 2009-520702 gazette 特開平9-160048号公報Japanese Patent Laid-Open No. 9-160048 国際公開第2008/078796号International Publication No. 2008/078796 特開2010-72011号公報JP 2010-72011 A 特開平11-218765号公報JP-A-11-218765 特開2000-53766号公報JP 2000-53766 A
特許文献4、5に開示された光配向膜は、いずれも光分解型の配向膜である点で改善の余地があった。すなわち、光分解型の配向膜では、光分解の残渣が液晶層に浸透し、液晶表示装置の表示特性の一つである電圧保持率(VHR)を低下させるおそれがあった。また、光分解のためには300nm以下の短波長の光を照射する必要があるため、配向膜以外の部材(例えば、TFT保護膜)に損傷を与え、電圧保持率(VHR)の低下等を引き起こすおそれがあった。 The photo-alignment films disclosed in Patent Documents 4 and 5 have room for improvement in that they are all photodegradable alignment films. That is, in the photodegradable alignment film, the photodecomposition residue may permeate into the liquid crystal layer, which may reduce the voltage holding ratio (VHR), which is one of the display characteristics of the liquid crystal display device. In addition, since it is necessary to irradiate light with a short wavelength of 300 nm or less for photolysis, it damages members other than the alignment film (for example, the TFT protective film) and reduces the voltage holding ratio (VHR). There was a risk of causing it.
更に、特許文献5には、基板温度を100℃以上にして光配向膜を露光することが開示されているが、そのような露光が必要な場合には、高価な光配向処理装置が必要となる。また、100℃以上で露光する場合には、室温で露光する場合に比べて、基板内での温度ばらつきが大きくなりやすく、それによって表示ムラ等の表示特性に影響を与えるおそれがあった。 Furthermore, Patent Document 5 discloses that the photo-alignment film is exposed at a substrate temperature of 100 ° C. or higher. However, when such exposure is necessary, an expensive photo-alignment processing apparatus is required. Become. In addition, when the exposure is performed at 100 ° C. or higher, the temperature variation in the substrate tends to be larger than in the case of exposure at room temperature, which may affect display characteristics such as display unevenness.
また、特許文献6は、配向膜材料として広く利用されているポリイミドを用いて水平配向用の光配向膜を実現するための指針を充分に示したものではない。 Further, Patent Document 6 does not sufficiently indicate a guideline for realizing a photo-alignment film for horizontal alignment using polyimide that is widely used as an alignment film material.
本発明は、上記現状に鑑みてなされたものであり、光配向処理が適用され、かつ電圧保持率(VHR)の低下が抑制された、水平配向型の液晶表示装置及びその製造方法を提供することを目的とするものである。 The present invention has been made in view of the above situation, and provides a horizontal alignment type liquid crystal display device to which a photo-alignment process is applied and a decrease in voltage holding ratio (VHR) is suppressed, and a method for manufacturing the same. It is for the purpose.
本発明者らは、光配向膜について種々の検討を行った結果、基板塗布前の溶剤状態のイミド化率(化学イミド化によるイミド化率)が80%以上のポリイミドを配向膜材料として用いれば、光を照射することによってプレチルト角を5°以下に制御可能であり、水平配向型の液晶表示装置を作製できることを見いだした。また、光分解型の光配向膜を用いた場合には、経時的に電圧保持率(VHR)が低下することを見いだした。そして、そのような表示特性の劣化を抑制するためには、プレチルト角を発現する機構として光分解反応以外の光反応機構を用いる配向膜材料が有効であることを明らかにした。更に、そのような配向膜材料として、紫外光を吸収する官能基を含む側鎖を有し、かつ当該側鎖の数がポリイミドの繰り返し構造の一単位当たり1つであるものが水平配向型の液晶表示装置の生産に最適であることを見いだした。以上のようにして、本発明者らは、上記課題をみごとに解決することができることに想到し、本発明に到達した。 As a result of various studies on the photo-alignment film, the present inventors have used, as an alignment film material, a polyimide having a solvent state imidization ratio (imidation ratio by chemical imidization) of 80% or more before substrate coating. The present inventors have found that the pretilt angle can be controlled to 5 ° or less by irradiating light, and a horizontally aligned liquid crystal display device can be manufactured. Further, it has been found that the voltage holding ratio (VHR) decreases with time when a photodegradable photo-alignment film is used. Then, in order to suppress such deterioration of display characteristics, it has been clarified that an alignment film material using a photoreaction mechanism other than a photodegradation reaction is effective as a mechanism for developing a pretilt angle. Further, as such an alignment film material, a material having a side chain containing a functional group that absorbs ultraviolet light and having one side chain per unit of the polyimide repeating structure is a horizontal alignment type. It was found that it is optimal for the production of liquid crystal display devices. As described above, the present inventors have conceived that the above problems can be solved brilliantly, and have reached the present invention.
すなわち、本発明の一態様は、プレチルト角が5°以下の液晶分子を含む液晶層と、
上記液晶層を挟持する第一基板及び第二基板と、
上記第一基板と上記液晶層の間に配置された第一配向膜と、
上記第二基板と上記液晶層の間に配置された第二配向膜とを備える液晶表示装置であって、
上記第一基板及び上記第二基板は、上記液晶層中に横電界を生じさせるように配置された一対の電極を有し、
上記第一配向膜及び上記第二配向膜の少なくとも一方は、光分解以外の光反応機構によって上記液晶分子のプレチルト角を5°以下に制御可能な配向膜材料で形成されており、上記配向膜材料は、イミド化率が80%以上のポリイミドを含有し、上記ポリイミドは、紫外光を吸収する官能基を含む側鎖を有し、上記側鎖の数は、上記ポリイミドの繰り返し構造の一単位当たり1つである液晶表示装置である。
That is, one embodiment of the present invention is a liquid crystal layer including liquid crystal molecules having a pretilt angle of 5 ° or less;
A first substrate and a second substrate sandwiching the liquid crystal layer;
A first alignment film disposed between the first substrate and the liquid crystal layer;
A liquid crystal display device comprising a second alignment film disposed between the second substrate and the liquid crystal layer,
The first substrate and the second substrate have a pair of electrodes arranged to generate a lateral electric field in the liquid crystal layer,
At least one of the first alignment film and the second alignment film is formed of an alignment film material capable of controlling the pretilt angle of the liquid crystal molecules to 5 ° or less by a photoreaction mechanism other than photolysis, and the alignment film The material contains a polyimide having an imidization ratio of 80% or more, and the polyimide has a side chain containing a functional group that absorbs ultraviolet light, and the number of the side chain is one unit of the repeating structure of the polyimide. This is one liquid crystal display device.
本発明の別の態様は、プレチルト角が5°以下の液晶分子を含む液晶層と、
上記液晶層を挟持する第一基板及び第二基板と、
上記第一基板と前記液晶層の間に配置された第一配向膜と、
上記第二基板と前記液晶層の間に配置された第二配向膜とを備え、
上記第一基板及び上記第二基板は、上記液晶層中に横電界を生じさせるように配置された一対の電極を有し、
上記第一配向膜及び上記第二配向膜の少なくとも一方は、イミド化率が80%以上のポリイミドを含有する配向膜材料で形成されている液晶表示装置の製造方法であって、
上記ポリイミドは、紫外光を吸収する官能基を含む側鎖を有し、
上記側鎖の数は、上記ポリイミドの繰り返し構造の一単位当たり1つであり、
上記製造方法は、上記第一配向膜及び上記第二配向膜の少なくとも一方に形成された上記配向膜材料で形成された膜の表面に対して光を照射し、光分解以外の光反応機構を用いて上記プレチルト角を5°以下に制御する工程を有する液晶表示装置の製造方法である。
Another aspect of the present invention is a liquid crystal layer containing liquid crystal molecules having a pretilt angle of 5 ° or less;
A first substrate and a second substrate sandwiching the liquid crystal layer;
A first alignment film disposed between the first substrate and the liquid crystal layer;
A second alignment film disposed between the second substrate and the liquid crystal layer;
The first substrate and the second substrate have a pair of electrodes arranged to generate a lateral electric field in the liquid crystal layer,
At least one of the first alignment film and the second alignment film is a method for manufacturing a liquid crystal display device formed of an alignment film material containing polyimide having an imidization rate of 80% or more,
The polyimide has a side chain containing a functional group that absorbs ultraviolet light,
The number of the side chains is one per unit of the polyimide repeating structure,
The manufacturing method irradiates light on the surface of the film formed of the alignment film material formed on at least one of the first alignment film and the second alignment film, and has a photoreaction mechanism other than photolysis. And a method of manufacturing a liquid crystal display device having a step of controlling the pretilt angle to 5 ° or less.
上記液晶表示装置は、上記第一配向膜及び上記第二配向膜の少なくとも一方によって、プレチルト角(上記液晶層への電圧無印加時の第一又は第二配向膜の表面に対する液晶分子のチルト角)が5°以下にされており、いわゆる水平配向型の液晶表示装置である。上記液晶層への電圧印加時には、上記一対の電極の間に生じる電界によって、液晶分子の配向が制御される。 The liquid crystal display device includes a pretilt angle (a tilt angle of liquid crystal molecules with respect to the surface of the first or second alignment film when no voltage is applied to the liquid crystal layer) by at least one of the first alignment film and the second alignment film. Is a so-called horizontal alignment type liquid crystal display device. When a voltage is applied to the liquid crystal layer, the alignment of liquid crystal molecules is controlled by an electric field generated between the pair of electrodes.
本発明は、電圧無印加時に液晶分子のプレチルト角を5°以下にする表示モードの全般に適用可能であり、例えば、面内スイッチング(In-Plane Switching(IPS))モード、フリンジ・フィールド・スイッチング(Fringe-Field Switching(FFS))モード、ツイステッド・ネマチック(Twisted Nematic(TN))モード、光学補償ベンド(Optically Compensated Bend(OCB))モード等に適用できる。 The present invention can be applied to all display modes in which the pretilt angle of liquid crystal molecules is 5 ° or less when no voltage is applied. For example, in-plane switching (IPS) mode, fringe field switching It can be applied to (Fringe-FieldSSwitching (FFS)) mode, TwistedTNematic (TN) mode, Optically Compensated Bend (OCB) mode, and the like.
本発明によれば、光配向処理により水平配向型の液晶表示装置を提供できることから、配向処理によって第一基板又は第二基板に形成された薄膜トランジスタ等の構成部材を損傷するおそれが少なく、表示欠陥の発生を防止できる。また、光分解以外の光反応機構によって上記液晶分子のプレチルト角を制御していることから、長期の使用による電圧保持率(VHR)の低下を防止できる。なお、本発明に用いられる配向膜材料は、光分解を利用してプレチルト角を変化させる材料ではなく、他の光反応による構造変化を利用してプレチルト角を変化させる材料である。したがって、本発明に用いられる配向膜材料は、露光条件によっては光分解を生じ得る材料であってもよく、そのような材料を用いる場合であっても、光分解を生じず他の光反応を生じる露光条件を選択すればよい。上記光分解を利用してプレチルト角を変化させる材料としては、ポリイミド主鎖の酸無水物ユニットにシクロブタン環を含むものが挙げられる。シクロブタン環は、C-C-C結合角が約90°であり、結合エネルギーが低いため、光分解しやすい材料であると考えられる。 According to the present invention, since a horizontal alignment type liquid crystal display device can be provided by photo-alignment processing, there is little possibility of damaging components such as thin film transistors formed on the first substrate or the second substrate by alignment processing, and display defects Can be prevented. In addition, since the pretilt angle of the liquid crystal molecules is controlled by a photoreaction mechanism other than photolysis, it is possible to prevent a decrease in voltage holding ratio (VHR) due to long-term use. The alignment film material used in the present invention is not a material that changes the pretilt angle using photolysis, but a material that changes the pretilt angle using structural changes caused by other photoreactions. Therefore, the alignment film material used in the present invention may be a material that can undergo photolysis depending on the exposure conditions. Even when such a material is used, other photoreactions are not caused. What is necessary is just to select the exposure conditions which arise. Examples of the material that changes the pretilt angle by utilizing the above photolysis include those containing a cyclobutane ring in the acid anhydride unit of the polyimide main chain. The cyclobutane ring has a C—C—C bond angle of about 90 ° and has a low bond energy, and thus is considered to be a material that is easily photodegraded.
上記プレチルト角は、2°以下であることが好ましい。すなわち、上記配向膜材料は、上記液晶分子のプレチルト角を2°以下に制御可能なものであることが好ましい。これにより、IPSモード及びFFSモードにおいて、良好な視覚特性を得ることができる。また、TNモードでは、逆ねじれの発生確率を下げる観点から、プレチルト角は2°程度であることが好ましい。OCBモードでは、スプレイ-ベンド転移を起こし易くする観点から、プレチルト角は4°~5°であることが好ましい。 The pretilt angle is preferably 2 ° or less. That is, it is preferable that the alignment film material can control the pretilt angle of the liquid crystal molecules to 2 ° or less. Thereby, favorable visual characteristics can be obtained in the IPS mode and the FFS mode. In the TN mode, the pretilt angle is preferably about 2 ° from the viewpoint of reducing the probability of occurrence of reverse twist. In the OCB mode, the pretilt angle is preferably 4 ° to 5 ° from the viewpoint of facilitating the spray-bend transition.
上記配向膜材料に照射される光としては、直線偏光が好適である。光の照射態様としては、配向膜材料で形成された膜の表面に対して斜め方向から照射することが好ましい。 As the light applied to the alignment film material, linearly polarized light is suitable. As a light irradiation mode, it is preferable to irradiate the surface of the film formed of the alignment film material from an oblique direction.
上記ポリイミドの繰り返し構造の一単位は、下記式(1)で表される。上記側鎖は、通常では下記式(1)中の部位Yに含まれる。したがって、ポリイミドの繰り返し構造の一単位当たり上記側鎖の数が1つであるとは、下記式(1)中の全m個の部位Yが、上記側鎖を1つ有する部位からなる場合であり、上記側鎖を1つ有する部位と上記側鎖を有さない部位の両方を含んでいてもよい。 One unit of the repeating structure of the polyimide is represented by the following formula (1). The side chain is usually contained in the site Y in the following formula (1). Therefore, the number of the above side chains per unit of the polyimide repeating structure is one in which all m sites Y in the following formula (1) are composed of sites having one side chain. Yes, it may include both a site having one side chain and a site not having the side chain.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
上記ポリイミドとしては、少なくとも2種の上記繰り返し構造を含む共重合体が挙げられる。このような共重合体によれば、電圧保持率(VHR)の低下を充分に防止しつつ、光配向処理により水平配向型の液晶表示装置を実現できる。 Examples of the polyimide include a copolymer containing at least two types of the repeating structures. According to such a copolymer, a horizontal alignment type liquid crystal display device can be realized by photoalignment treatment while sufficiently preventing a decrease in voltage holding ratio (VHR).
上記光反応機構としては、二量化反応、シス-トランス転移反応、及び、光吸収による官能基の角度変化から選択される少なくとも一つの反応機構が挙げられる。これらの反応機構によれば、長期の使用による経時的な電圧保持率(VHR)の低下を充分に抑制できる。 Examples of the photoreaction mechanism include at least one reaction mechanism selected from a dimerization reaction, a cis-trans transition reaction, and an angle change of a functional group due to light absorption. According to these reaction mechanisms, a decrease in voltage holding ratio (VHR) over time due to long-term use can be sufficiently suppressed.
上記紫外光を吸収する官能基としては、シンナメート基、カルコン基、クマリン基及びアゾ基から選択される少なくとも一つの官能基が挙げられる。これらの官能基によれば、光分解反応ではなく、二量化反応等の機構によって、プレチルト角を発現することができる。このため、長期の使用によって経時的に電圧保持率(VHR)が低下することが抑制されている。 Examples of the functional group that absorbs ultraviolet light include at least one functional group selected from a cinnamate group, a chalcone group, a coumarin group, and an azo group. According to these functional groups, the pretilt angle can be expressed not by a photolysis reaction but by a mechanism such as a dimerization reaction. For this reason, it is suppressed that a voltage holding rate (VHR) falls with time by long-term use.
上記ポリイミドとしては、下記式(2)で表される側鎖含有部位を含むものが挙げられる。 As said polyimide, what contains the side chain containing site | part represented by following formula (2) is mentioned.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、フェニル基(ベンゼン環)に直接結合した2つの窒素原子(N)は、いずれもイミド環又はアミド結合中に含まれる窒素原子である。) (In the formula, two nitrogen atoms (N) directly bonded to the phenyl group (benzene ring) are both nitrogen atoms contained in an imide ring or an amide bond.)
上記式(2)の側鎖含有部位は、ポリイミドの主鎖の一部を構成する1,3-フェニレンジアミンと、シンナメート基を含むポリイミドの側鎖とで構成されている。上記側鎖含有部位によれば、電圧保持率(VHR)の低下を充分に防止しつつ、光配向処理により水平配向型の液晶表示装置を実現できる。 The side chain-containing site of the above formula (2) is composed of 1,3-phenylenediamine constituting a part of the main chain of the polyimide and the side chain of the polyimide containing a cinnamate group. According to the side chain-containing portion, a horizontal alignment type liquid crystal display device can be realized by a photoalignment process while sufficiently preventing a decrease in voltage holding ratio (VHR).
上記ポリイミドとしては、上記式(2)に示された側鎖含有部位を有する形態が挙げられる。例えば、上記式(2)に示された側鎖含有部位を有するホモポリマー、上記式(2)に示された側鎖含有部位と、1,4-フェニレンジアミンを有する部位とを含む共重合体が挙げられる。この形態によれば、電圧保持率(VHR)の低下を充分に防止しつつ、光配向処理により水平配向型の液晶表示装置を実現できる。 As said polyimide, the form which has a side chain containing site | part shown by said Formula (2) is mentioned. For example, a homopolymer having a side chain-containing moiety represented by the above formula (2), a copolymer comprising a side chain-containing moiety represented by the above formula (2) and a moiety having 1,4-phenylenediamine Is mentioned. According to this embodiment, it is possible to realize a horizontal alignment type liquid crystal display device by the photo-alignment process while sufficiently preventing the voltage holding ratio (VHR) from decreasing.
ある実施形態では、上記第一配向膜と上記液晶層の間、及び、上記第二配向膜と上記液晶層の間の少なくとも一方に、二官能モノマーをラジカル重合して形成されたポリマー層を有する。ポリマー層を用いることによって、プレチルト角をより高精度に制御することが可能となるので、高輝度、高速応答を実現できる。ポリマー層は、PSA(Polymer Sustained Alignment)技術により形成できる。PSA技術とは、電圧印加時の液晶分子の配向に対応した表面状態を有するポリマー層を配向膜上に形成する技術であり、例えば、液晶層にモノマーを添加し、続いて液晶層に紫外光を照射してモノマーを光重合させる方法によりポリマー層を形成する。なお、上記二官能モノマーは、重合反応の反応点となり得る官能基(重合基)を一分子当たり2つ有するモノマーを意味する。重合基としては、2個の炭素原子間に形成された二重結合を有し、ラジカル反応性を示す官能基が挙げられる。 In one embodiment, a polymer layer formed by radical polymerization of a bifunctional monomer is provided between the first alignment film and the liquid crystal layer and between at least one of the second alignment film and the liquid crystal layer. . By using the polymer layer, the pretilt angle can be controlled with higher accuracy, so that high brightness and high speed response can be realized. The polymer layer can be formed by PSA (Polymer Sustained Alignment) technology. The PSA technique is a technique for forming a polymer layer having a surface state corresponding to the alignment of liquid crystal molecules when a voltage is applied on the alignment film. For example, a monomer is added to the liquid crystal layer, and then ultraviolet light is applied to the liquid crystal layer. A polymer layer is formed by a method in which the monomer is photopolymerized by irradiation. In addition, the said bifunctional monomer means the monomer which has two functional groups (polymerization group) which can become a reaction point of a polymerization reaction per molecule. Examples of the polymerizable group include a functional group having a double bond formed between two carbon atoms and exhibiting radical reactivity.
上記二官能モノマーとしては、下記一般式(I)で表わされるものが挙げられる。
-A-P   (I)
(式中、Pは、アクリレート基又はメタクリレート基を表す。Aは、下記化学式(3)に示した、1,4-フェニレン、4,4’-ビフェニル、ナフタレン-2,6-ジイル基又はフェナントレン-2,7-ジイル基を表す。Aに含まれる水素原子は、ハロゲン基、メチル基、エチル基、プロピル基に置換されていてもよい。)
Examples of the bifunctional monomer include those represented by the following general formula (I).
P 1 -A 1 -P 1 (I)
(Wherein P 1 represents an acrylate group or a methacrylate group. A 1 represents a 1,4-phenylene, 4,4′-biphenyl, naphthalene-2,6-diyl group represented by the following chemical formula (3). Or a phenanthrene-2,7-diyl group, wherein the hydrogen atom contained in A 1 may be substituted with a halogen group, a methyl group, an ethyl group, or a propyl group.)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
上記二官能モノマーとして、上記一般式(I)で表わされるモノマーを用いれば、プレチルト角を安定的に維持する点で有利である。 Use of the monomer represented by the general formula (I) as the bifunctional monomer is advantageous in that the pretilt angle is stably maintained.
ある実施形態では、上記液晶表示装置の表示モードは、IPS又はFFSモード(横電界モード)であり、上記第一基板は、上記液晶層中に横電界を生じさせるように配置された上記一対の電極を有する。上記液晶表示装置が適用可能な他の表示モードとしては、例えば、TNモード、OCBモード等が挙げられる。 In one embodiment, the display mode of the liquid crystal display device is an IPS or FFS mode (lateral electric field mode), and the first substrate is arranged to generate a lateral electric field in the liquid crystal layer. It has an electrode. Examples of other display modes to which the liquid crystal display device can be applied include a TN mode and an OCB mode.
本発明の液晶表示装置、及び、本発明の液晶表示装置の製造方法によれば、光配向処理により水平配向型の液晶表示装置を実現できることから、配向処理によって第一基板又は第二基板に形成された薄膜トランジスタ等の構成部材を損傷するおそれが少なく、表示欠陥の発生を防止できる。また、光分解以外の光反応機構によって液晶分子のプレチルト角を制御していることから、長期の使用による電圧保持率(VHR)の低下を防止できる。 According to the liquid crystal display device of the present invention and the method of manufacturing the liquid crystal display device of the present invention, a horizontal alignment type liquid crystal display device can be realized by photo-alignment processing, and thus formed on the first substrate or the second substrate by alignment processing. There is little risk of damaging components such as thin film transistors, and display defects can be prevented. In addition, since the pretilt angle of the liquid crystal molecules is controlled by a photoreaction mechanism other than photolysis, it is possible to prevent a decrease in voltage holding ratio (VHR) due to long-term use.
本発明に係る実施形態の液晶表示装置の断面模式図である。It is a cross-sectional schematic diagram of the liquid crystal display device of embodiment which concerns on this invention. IPS又はFFSモードの液晶表示装置の画素構成を示す平面模式図である。It is a plane schematic diagram which shows the pixel structure of the liquid crystal display device of IPS or FFS mode. 化学イミド化率と液晶の配向との相関を確認するために行った評価試験の結果を示す写真である。It is a photograph which shows the result of the evaluation test done in order to confirm the correlation with a chemical imidation rate and the orientation of a liquid crystal. 液晶表示パネルの視認性評価の原理を示す説明図である。It is explanatory drawing which shows the principle of the visibility evaluation of a liquid crystal display panel. TNモードの液晶表示装置において、液晶層に電圧が印加されていない状態を示す斜視模式図である。FIG. 6 is a schematic perspective view illustrating a state where no voltage is applied to a liquid crystal layer in a TN mode liquid crystal display device. TNモードの液晶表示装置において、液晶層に電圧が印加された状態を示す斜視模式図である。FIG. 5 is a schematic perspective view illustrating a state where a voltage is applied to a liquid crystal layer in a TN mode liquid crystal display device. OCBモードの液晶表示装置について、スプレイ配向の状態を示す断面模式図である。It is a cross-sectional schematic diagram which shows the state of spray orientation about the liquid crystal display device of OCB mode. OCBモードの液晶表示装置について、ベンド配向の状態を示す断面模式図である。It is a cross-sectional schematic diagram which shows the state of bend alignment about the liquid crystal display device of OCB mode.
図1は、本発明に係る実施形態の液晶表示装置の断面模式図である。図1に示すように、本発明に係る実施形態の液晶表示装置は、シール剤31によって貼り合わされたアレイ基板10と対向基板20との間に、液晶層30が封止された液晶表示パネルを備える。背面側から表示面(観察面)側に向かって、アレイ基板10、液晶層30及び対向基板20の順に配置され、更に液晶表示パネルよりも背面側には、バックライト50が設けられている。本実施形態の液晶表示装置は、バックライト50から出射された光を利用して表示を行う透過型の液晶表示装置であり、アレイ基板10、液晶層30及び対向基板20の順に光が透過する。 FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to an embodiment of the present invention. As shown in FIG. 1, the liquid crystal display device according to the embodiment of the present invention includes a liquid crystal display panel in which a liquid crystal layer 30 is sealed between an array substrate 10 bonded with a sealant 31 and a counter substrate 20. Prepare. The array substrate 10, the liquid crystal layer 30, and the counter substrate 20 are arranged in this order from the back side to the display surface (observation surface) side, and a backlight 50 is provided on the back side of the liquid crystal display panel. The liquid crystal display device of the present embodiment is a transmissive liquid crystal display device that performs display using light emitted from the backlight 50, and light is transmitted in the order of the array substrate 10, the liquid crystal layer 30, and the counter substrate 20. .
アレイ基板10は、例えば、絶縁性の透明基板(例えば、ガラス基板)上に、配線、画素電極、薄膜トランジスタ(Thin Film Transistor(TFT))等の導電部材と、複数の絶縁膜とが、積層された構造を有する。アレイ基板10の液晶層30側の表面には配向膜12が形成されている。 The array substrate 10 is formed by, for example, laminating a conductive member such as a wiring, a pixel electrode, and a thin film transistor (Thin Film Transistor (TFT)) and a plurality of insulating films on an insulating transparent substrate (for example, a glass substrate). Has a structure. An alignment film 12 is formed on the surface of the array substrate 10 on the liquid crystal layer 30 side.
対向基板20は、例えば、絶縁性の透明基板(例えば、ガラス基板)上に、カラーフィルタ、ブラックマトリクス等を備える。更に、対向基板20の液晶層30側の表面には配向膜22が形成されている。 The counter substrate 20 includes, for example, a color filter, a black matrix, and the like on an insulating transparent substrate (for example, a glass substrate). Further, an alignment film 22 is formed on the surface of the counter substrate 20 on the liquid crystal layer 30 side.
液晶層30は、正の誘電率異方性を有する液晶分子、負の誘電率異方性を有する液晶分子のいずれも用いることができ、液晶の表示モードに応じて適宜選択することができる。 The liquid crystal layer 30 can use either a liquid crystal molecule having a positive dielectric anisotropy or a liquid crystal molecule having a negative dielectric anisotropy, and can be appropriately selected according to the display mode of the liquid crystal.
配向膜12、22は、イミド構造を含む主鎖をもつポリイミドで構成される。配向膜12、22の表面に対し、光配向処理を施すことで、液晶分子の配向方位及びプレチルト角(電圧無印加時の初期傾斜)を所定の向きに方向付けることができる。 The alignment films 12 and 22 are made of polyimide having a main chain including an imide structure. By performing photo-alignment treatment on the surfaces of the alignment films 12 and 22, the alignment azimuth and pretilt angle (initial tilt when no voltage is applied) of the liquid crystal molecules can be oriented in a predetermined direction.
配向膜12、22の液晶層30側の表面にはポリマー層(PSA層)が設けられてもよい。ポリマー層が電圧無印加時の液晶分子の配向を規定する作用を奏することによって、液晶層30の配向安定化、応答速度の向上等が可能となる。 A polymer layer (PSA layer) may be provided on the surface of the alignment films 12 and 22 on the liquid crystal layer 30 side. When the polymer layer has an effect of regulating the alignment of liquid crystal molecules when no voltage is applied, the alignment of the liquid crystal layer 30 can be stabilized, the response speed can be improved, and the like.
ポリマー層の形成方法としては、液晶層30中に含有させたPSA用モノマーを光重合させる方法が知られている。この方法では、PSA重合工程前の液晶層30中に、少なくとも1種のPSA用モノマーが添加される。液晶層30には、更に重合開始剤が添加されてもよい。PSA用モノマーが吸光することによりラジカルを発生し連鎖重合を開始する場合には、液晶層30に重合開始剤を添加しなくてよい。そして、PSA重合工程において液晶層30に光を照射することによってPSA用モノマーは重合を開始し、配向膜12、22の液晶層30側の表面にポリマー層が形成される。 As a method for forming the polymer layer, a method in which a PSA monomer contained in the liquid crystal layer 30 is photopolymerized is known. In this method, at least one PSA monomer is added to the liquid crystal layer 30 before the PSA polymerization step. A polymerization initiator may be further added to the liquid crystal layer 30. When the PSA monomer absorbs light to generate radicals and start chain polymerization, it is not necessary to add a polymerization initiator to the liquid crystal layer 30. In the PSA polymerization step, the liquid crystal layer 30 is irradiated with light, whereby the PSA monomer starts to be polymerized, and a polymer layer is formed on the surface of the alignment films 12 and 22 on the liquid crystal layer 30 side.
光重合の際には、液晶層30に電圧を印加してもよいし、印加しなくてもよい。閾値以上の電圧を液晶層30に印加した状態で光照射を行えば、閾値以上の電圧に応じて配向した液晶分子に対応する形状のポリマー層が形成される。そのような形状のポリマー層が設けられることによって、電圧無印加状態における液晶分子の配向方位及びプレチルト角が規定される。 In the photopolymerization, a voltage may be applied to the liquid crystal layer 30 or may not be applied. If light irradiation is performed in a state where a voltage equal to or higher than the threshold is applied to the liquid crystal layer 30, a polymer layer having a shape corresponding to liquid crystal molecules aligned according to the voltage equal to or higher than the threshold is formed. By providing such a polymer layer, the orientation direction and pretilt angle of the liquid crystal molecules in a state in which no voltage is applied are defined.
配向膜12、22の表面に対して配向処理を施すことによって、電圧無印加状態における液晶分子の配向方位及びプレチルト角を規定している場合には、光照射の際に液晶層30に対し閾値以上の電圧を印加しなくてよい。配向膜12、22自体が液晶分子に対し配向方位及びプレチルト角を規定する特性を有する場合、配向膜12、22上に形成されるポリマー層は、配向膜12、22のもつ配向安定性をより高める膜として機能する。配向規制力が向上することで、液晶分子はより均一に配向制御され、配向の時間的な変化が少なくなるうえ、表示に焼き付きが生じにくくなる。 When the alignment direction and the pretilt angle of the liquid crystal molecules are regulated by applying an alignment process to the surfaces of the alignment films 12 and 22, a threshold value is applied to the liquid crystal layer 30 during light irradiation. The above voltage need not be applied. In the case where the alignment films 12 and 22 themselves have characteristics that define the alignment azimuth and pretilt angle with respect to the liquid crystal molecules, the polymer layer formed on the alignment films 12 and 22 further enhances the alignment stability of the alignment films 12 and 22. Acts as a film to enhance. By improving the alignment regulating force, the alignment of liquid crystal molecules is more uniformly controlled, the change in alignment with time is reduced, and image sticking is less likely to occur.
配向膜12、22の成分の解析、ポリマー層中に存在するポリマー層形成用モノマーの成分の解析、液晶層30中に含まれるポリマー層形成用モノマーの混入量、ポリマー層中のポリマー層形成用モノマーの存在比等については、液晶表示装置を分解して試料を採取し、13C-核磁気共鳴分析法(Nuclear Magnetic Resonance(NMR))、質量分析法(Mass Spectrometry(MS))等を用いた化学分析を行うことにより解析できる。 Analysis of the components of the alignment films 12 and 22, analysis of the components of the polymer layer forming monomer present in the polymer layer, the amount of the polymer layer forming monomer contained in the liquid crystal layer 30, the formation of the polymer layer in the polymer layer For the abundance ratio of monomers, etc., disassemble the liquid crystal display and collect a sample, and use 13 C-Nuclear Magnetic Resonance (NMR), Mass Spectrometry (MS), etc. It can be analyzed by performing chemical analysis.
また、アレイ基板10の背面側には、偏光板が備え付けられる。更に、対向基板20の観察面側にも、偏光板が備え付けられる。それら一対の偏光板の間に位相差板が配置されていてもよい。 Further, a polarizing plate is provided on the back side of the array substrate 10. Furthermore, a polarizing plate is also provided on the observation surface side of the counter substrate 20. A retardation plate may be disposed between the pair of polarizing plates.
バックライト50の種類は特に限定されず、エッジライト型であってもよく、直下型であってもよい。また、光源の種類は特に限定されず、発光ダイオード(LED)、冷陰極管(CCFL)等が挙げられる。 The type of the backlight 50 is not particularly limited, and may be an edge light type or a direct type. Moreover, the kind of light source is not specifically limited, A light emitting diode (LED), a cold cathode tube (CCFL), etc. are mentioned.
バックライト50を構成する部材としては、光源の他、反射シート、拡散シート、プリズムシート、導光板等が挙げられる。エッジライト型のバックライトでは、光源から出射された光は、導光板の側面から導光板内に入射し、反射、拡散等されて導光板の主面から面状の光となって出射され、更にプリズムシート等を通過し、表示光として出射される。直下型のバックライトでは、光源から出射された光は、導光板を経ずにダイレクトに反射シート、拡散シート、プリズムシート等を通過し、表示光として出射される。 Examples of members constituting the backlight 50 include a light source, a reflection sheet, a diffusion sheet, a prism sheet, and a light guide plate. In the edge light type backlight, light emitted from the light source enters the light guide plate from the side surface of the light guide plate, is reflected, diffused, etc., and is emitted as planar light from the main surface of the light guide plate, Further, the light passes through a prism sheet or the like and is emitted as display light. In a direct type backlight, light emitted from a light source passes directly through a reflection sheet, a diffusion sheet, a prism sheet, etc. without passing through a light guide plate, and is emitted as display light.
反射透過両用型であれば、アレイ基板10は、外光を反射するための反射板を備える。また、少なくとも反射光を表示として用いる領域においては、対向基板20の観察面側に設けられる偏光板は、いわゆるλ/4位相差板を備える円偏光板である。 In the case of the reflection / transmission type, the array substrate 10 includes a reflection plate for reflecting outside light. Further, at least in a region where the reflected light is used as a display, the polarizing plate provided on the observation surface side of the counter substrate 20 is a circular polarizing plate provided with a so-called λ / 4 retardation plate.
〔実施例1、2、比較例1、2〕
実施例1、2及び比較例1、2は、IPS又はFFSモードの液晶表示装置に関する。図2は、IPS又はFFSモードの液晶表示装置の画素構成を示す平面模式図である。図2に示すように、複数の平行に伸びる走査信号線13と複数の平行に伸びるデータ信号線14とが互いに略直交するように格子状に配置されており、それらの各交点の近傍に薄膜トランジスタ15が配置されている。薄膜トランジスタ15のドレインからは画素電極16が延伸している。また、複数の走査信号線13の間には、走査信号線13と平行に伸びる共通信号線17が設けられている。共通信号線17は、コンタクトホール18を通じて共通電極19に接続されている。IPS又はFFSモードでは、アレイ基板10に形成された画素電極16と共通電極19との間に形成される電界によって液晶の配向が制御される。
[Examples 1 and 2, Comparative Examples 1 and 2]
Examples 1 and 2 and Comparative Examples 1 and 2 relate to IPS or FFS mode liquid crystal display devices. FIG. 2 is a schematic plan view illustrating a pixel configuration of an IPS or FFS mode liquid crystal display device. As shown in FIG. 2, a plurality of scanning signal lines 13 extending in parallel and a plurality of data signal lines 14 extending in parallel are arranged in a lattice shape so as to be substantially orthogonal to each other, and a thin film transistor is provided in the vicinity of each intersection thereof. 15 is arranged. A pixel electrode 16 extends from the drain of the thin film transistor 15. A common signal line 17 extending in parallel with the scanning signal line 13 is provided between the plurality of scanning signal lines 13. The common signal line 17 is connected to the common electrode 19 through the contact hole 18. In the IPS or FFS mode, the alignment of the liquid crystal is controlled by an electric field formed between the pixel electrode 16 and the common electrode 19 formed on the array substrate 10.
実施例1、2及び比較例1、2では、アレイ基板10及び対向基板20の表面に、光反応性官能基を有するポリイミドを含有する配向剤を塗布した。ポリイミドの化学式は、下記式(1)に示すとおりである。 In Examples 1 and 2 and Comparative Examples 1 and 2, an alignment agent containing polyimide having a photoreactive functional group was applied to the surfaces of the array substrate 10 and the counter substrate 20. The chemical formula of polyimide is as shown in the following formula (1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
上記式(1)中、Xは、下記式(4)の化学構造を表し、Yは、下記式(2)の化学構造を表し、光反応性官能基としてシンナメート基を含んでいる。 In the above formula (1), X represents the chemical structure of the following formula (4), Y represents the chemical structure of the following formula (2), and contains a cinnamate group as a photoreactive functional group.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、フェニル基(ベンゼン環)に直接結合した2つの窒素原子(N)は、いずれもイミド環又はアミド結合中に含まれる窒素原子である。) (In the formula, two nitrogen atoms (N) directly bonded to the phenyl group (benzene ring) are both nitrogen atoms contained in an imide ring or an amide bond.)
配向剤中のポリイミドの化学イミド化率は、以下のとおりである。
100%  (実施例1)
80%   (実施例2)
50%   (比較例1)
0%    (比較例2)
The chemical imidation ratio of the polyimide in the alignment agent is as follows.
100% (Example 1)
80% (Example 2)
50% (Comparative Example 1)
0% (Comparative Example 2)
配向剤を塗布した後、80℃5分の仮焼成を行い、引き続き200℃40分の本焼成を行った。続いて、得られた配向膜に対して直線偏光を斜め40°方向から照射した。直線偏光は、高圧水銀ランプ(ウシオ電機社製)から放射された光を、300nm以下の波長成分を遮断できるフィルターを透過させることにより得た。次に、アレイ基板10の周囲にシール剤31を塗布し、対向基板20の表面全体にビーズを散布した後、アレイ基板10と対向基板20とを貼り合せた。シール剤31によって結合した両基板10、20の間には、ビーズの大きさに相当する距離の空隙が設けられている。続いて、負の誘電率異方性を有する液晶を基板間の空隙に注入した。以上のようにして、IPS又はFFSモードの液晶表示パネルが作製された。この液晶表示パネルについて、以下の評価試験1~4を行った。 After applying the alignment agent, preliminary baking was performed at 80 ° C. for 5 minutes, followed by main baking at 200 ° C. for 40 minutes. Subsequently, the obtained alignment film was irradiated with linearly polarized light from an oblique direction of 40 °. Linearly polarized light was obtained by transmitting light emitted from a high-pressure mercury lamp (manufactured by USHIO INC.) Through a filter capable of blocking a wavelength component of 300 nm or less. Next, a sealant 31 was applied around the array substrate 10 and beads were dispersed over the entire surface of the counter substrate 20, and then the array substrate 10 and the counter substrate 20 were bonded together. A gap having a distance corresponding to the size of the bead is provided between the two substrates 10 and 20 bonded by the sealant 31. Subsequently, a liquid crystal having negative dielectric anisotropy was injected into the gap between the substrates. Thus, an IPS or FFS mode liquid crystal display panel was produced. The liquid crystal display panel was subjected to the following evaluation tests 1 to 4.
(評価試験1)
図3は、化学イミド化率と液晶の配向との相関を確認するために行った評価試験の結果を示す写真である。評価試験では、液晶表示パネルを挟持する一対の偏光板の透過軸をクロスニコルに配置した。また、図3の上側の場合、光配向処理における偏光の照射方向に対して、一対の偏光板の透過軸がいずれも45°の角度を有するように配置されている。図3の下側の場合、光配向処理における偏光の照射方向に対して、一方の偏光板の透過軸が平行となり、他方の偏光板の透過軸が直交するように配置されている。以上の試験条件によれば、液晶分子が、光配向処理における偏光の照射方向に沿って水平に配向しているときには、図3の上側で光は透過し、図3の下側で光は遮断されることになる。一方、液晶分子が、配向膜に対して垂直に配向しているときには、図3の上側及び下側のいずれにおいても光は遮断されることになる。
(Evaluation Test 1)
FIG. 3 is a photograph showing the results of an evaluation test conducted to confirm the correlation between the chemical imidation rate and the orientation of the liquid crystal. In the evaluation test, the transmission axes of a pair of polarizing plates that sandwich the liquid crystal display panel are arranged in crossed Nicols. In the case of the upper side in FIG. 3, the transmission axes of the pair of polarizing plates are arranged so as to have an angle of 45 ° with respect to the irradiation direction of the polarized light in the photo-alignment process. In the case of the lower side of FIG. 3, it arrange | positions so that the transmission axis of one polarizing plate may become in parallel with the irradiation direction of the polarized light in a photo-alignment process, and the transmission axis of the other polarizing plate may be orthogonal. According to the above test conditions, when the liquid crystal molecules are aligned horizontally along the polarization irradiation direction in the photo-alignment process, light is transmitted on the upper side of FIG. 3 and light is blocked on the lower side of FIG. Will be. On the other hand, when the liquid crystal molecules are aligned perpendicular to the alignment film, light is blocked on both the upper and lower sides in FIG.
図3に結果を示したように、上記評価試験により、化学イミド化率が100%(実施例1)、80%(実施例2)のポリイミドを用いたときには、液晶分子は水平に配向し、その配向方位は、光配向処理における偏光の照射方向と一致していることが分かった。また、上記評価試験により、化学イミド化率が50%(比較例1)、0%(比較例2)のポリイミドを用いたときには、液晶分子は垂直に配向していることが分かった。以上の結果をまとめると、上記式(3)に示すポリイミドの化学イミド化率を80%以上にすることで、IPS又はFFSモードに適用可能な光配向膜を得ることができた。 As shown in FIG. 3, according to the evaluation test, when polyimide having a chemical imidization rate of 100% (Example 1) and 80% (Example 2) was used, the liquid crystal molecules were aligned horizontally, It was found that the orientation direction coincided with the irradiation direction of polarized light in the photo-alignment process. In addition, the above evaluation test revealed that the liquid crystal molecules were aligned vertically when polyimides having a chemical imidation ratio of 50% (Comparative Example 1) and 0% (Comparative Example 2) were used. Summarizing the above results, it was possible to obtain a photo-alignment film applicable to the IPS or FFS mode by setting the chemical imidization ratio of the polyimide represented by the above formula (3) to 80% or more.
(評価試験2)
実施例1、2及び比較例1、2の液晶表示パネルにおけるプレチルト角をクリスタルローテーション法により測定した。その結果を下記表1に示した。なお、本明細書において、「プレチルト角」とは、配向膜と接する液晶分子の、基板面からの傾き角を意味する。
(Evaluation test 2)
The pretilt angles in the liquid crystal display panels of Examples 1 and 2 and Comparative Examples 1 and 2 were measured by the crystal rotation method. The results are shown in Table 1 below. In this specification, the “pretilt angle” means the tilt angle of the liquid crystal molecules in contact with the alignment film from the substrate surface.
(評価試験3)
液晶表示パネルを70℃のオーブン中に入れ、1Vのパルス電圧を印加してから16.61ミリ秒(ms)後の電荷保持状態を測定することにより電圧保持率(VHR)を算出した。その結果を下記表1に示した。
(Evaluation Test 3)
The liquid crystal display panel was put in an oven at 70 ° C., and the voltage holding ratio (VHR) was calculated by measuring the charge holding state after 16.61 milliseconds (ms) after applying a pulse voltage of 1V. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
表1に示した結果からも、化学イミド化率が100%(実施例1)、80%(実施例2)のポリイミドを用いたときには、水平配向にできることが分かる。すなわち、化学イミド化率が80%以上であれば、プレチルト角を2°以下にすることができるので、視覚特性が非常に良好なIPS又はFFSモードの液晶表示パネルを作製できる。また、実施例1、2において、電圧保持率(VHR)の低下は見られなかった。 From the results shown in Table 1, it can be seen that when polyimides having chemical imidization rates of 100% (Example 1) and 80% (Example 2) are used, horizontal alignment can be achieved. That is, if the chemical imidization rate is 80% or more, the pretilt angle can be made 2 ° or less, and thus an IPS or FFS mode liquid crystal display panel with very good visual characteristics can be manufactured. In Examples 1 and 2, the voltage holding ratio (VHR) was not reduced.
(評価試験4)
実施例1、2及び比較例1、2の液晶表示パネルについて、視野角の視認評価を行った。
図4は、液晶表示パネルの視認性評価の原理を示す説明図である。図4に示したように、液晶表示パネルの表示をパネル面の法線から角度θ(10°、30°、50°又は70°)傾いた方向から見たときの視認性が、法線方向から見たときの視認性と比べて、どの程度変化したかを観察した。その結果を下記表2に示した。
(Evaluation Test 4)
The liquid crystal display panels of Examples 1 and 2 and Comparative Examples 1 and 2 were visually evaluated for viewing angle.
FIG. 4 is an explanatory diagram illustrating the principle of visibility evaluation of a liquid crystal display panel. As shown in FIG. 4, the visibility when the display of the liquid crystal display panel is viewed from a direction inclined by an angle θ (10 °, 30 °, 50 ° or 70 °) from the normal of the panel surface is the normal direction. We observed how much it changed compared to the visibility when viewed from above. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
化学イミド化率が100%、80%の実施例1、2では、水平配向状態における明表示の視認性の変化の程度を確認した。化学イミド化率が50%、0%の比較例1、2では、垂直配向状態における暗表示の視認性の変化の程度を確認した。その結果、実施例1、2では、70°方向から観察しても視認性の変化はわずかであり、明るい表示が得られた。一方、比較例3、4の暗表示では、10°傾けると、明らかな光抜けが観察された。 In Examples 1 and 2 where the chemical imidation ratios were 100% and 80%, the degree of change in the visibility of the bright display in the horizontal alignment state was confirmed. In Comparative Examples 1 and 2 where the chemical imidation ratio was 50% and 0%, the degree of change in the visibility of dark display in the vertical alignment state was confirmed. As a result, in Examples 1 and 2, a change in visibility was slight even when observed from the 70 ° direction, and a bright display was obtained. On the other hand, in the dark display of Comparative Examples 3 and 4, when light was tilted by 10 °, clear light leakage was observed.
〔実施例3、4及び比較例3、4〕
実施例3、4及び比較例3、4は、IPS又はFFSモードの液晶表示装置に関し、PSAプロセスにより配向膜12、22の液晶層30側の表面上にポリマー層を形成したこと以外は、実施例1、2及び比較例1、2と同様である。
[Examples 3 and 4 and Comparative Examples 3 and 4]
Examples 3 and 4 and Comparative Examples 3 and 4 relate to IPS or FFS mode liquid crystal display devices, except that a polymer layer was formed on the liquid crystal layer 30 side surface of the alignment films 12 and 22 by the PSA process. The same as Example 1, 2 and Comparative Example 1, 2.
実施例3、4及び比較例3、4で用いた配向剤中のポリイミドの化学イミド化率は、以下のとおりである。
100%  (実施例3)
80%   (実施例4)
50%   (比較例3)
0%    (比較例4)
The chemical imidation ratio of the polyimide in the alignment agent used in Examples 3 and 4 and Comparative Examples 3 and 4 is as follows.
100% (Example 3)
80% (Example 4)
50% (Comparative Example 3)
0% (Comparative Example 4)
液晶中には、下記式(5)に示した二官能ビフェニルモノマー(4,4-ジメタクリルオキシビフェニル)を0.3重量%添加した。液晶の注入後、液晶層30に電圧を印加した状態で、ブラックライト(東芝ライテック社製、型番:FHF-32BLB)から紫外光を液晶層30に照射し、二官能ビフェニルモノマーを光重合させて配向膜12、22の液晶層30側の表面上にポリマー層を形成した。 In the liquid crystal, 0.3% by weight of a bifunctional biphenyl monomer (4,4-dimethacryloxybiphenyl) represented by the following formula (5) was added. After injecting the liquid crystal, with the voltage applied to the liquid crystal layer 30, the liquid crystal layer 30 is irradiated with ultraviolet light from a black light (manufactured by Toshiba Lighting & Technology Corp., model number: FHF-32BLB) to photopolymerize the bifunctional biphenyl monomer. A polymer layer was formed on the surface of the alignment films 12 and 22 on the liquid crystal layer 30 side.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
実施例3、4及び比較例3、4の液晶表示パネルについて、上述の評価試験2~4を行い、それらの結果を下記表3、4に示した。 The liquid crystal display panels of Examples 3 and 4 and Comparative Examples 3 and 4 were subjected to the above-described evaluation tests 2 to 4, and the results are shown in Tables 3 and 4 below.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
表3に示した結果から、PSAプロセスによるポリマー層の形成を行った場合であっても、80%以上の化学イミド化率を有する光配向膜を用いたとき(実施例3、4)のプレチルト角及び電圧保持率(VHR)は、ポリマー層が形成されなかったとき(実施例1、2)と比べて変化はなく、水平配向にできることが分かる。一方、50%以下の化学イミド化率を有し、垂直配向を示した液晶表示パネル(比較例3、4)では、電圧保持率(VHR)に変化は見られなかったものの、プレチルト角がポリマー層を形成することで90°に近付いた。 From the results shown in Table 3, even when the polymer layer was formed by the PSA process, the pretilt when the photo-alignment film having a chemical imidization ratio of 80% or more was used (Examples 3 and 4). It can be seen that the corners and the voltage holding ratio (VHR) are not changed as compared with the case where the polymer layer was not formed (Examples 1 and 2), and the horizontal orientation can be achieved. On the other hand, in the liquid crystal display panel (Comparative Examples 3 and 4) having a chemical imidation ratio of 50% or less and showing a vertical alignment, the pretilt angle was a polymer although no change was observed in the voltage holding ratio (VHR). The formation of the layer approached 90 °.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
表4に示したように、実施例1、2と同様に、化学イミド化率が100%(実施例3)、80%(実施例4)の明表示では、70°方向から観察しても視認性の変化はわずかであり、明るい表示が得られた。一方、化学イミド化率が50%(比較例3)、0%(比較例4)の暗表示では、10°傾けると、明らかな光抜けが観察された。 As shown in Table 4, in the same manner as in Examples 1 and 2, the chemical imidization rate is 100% (Example 3) and 80% (Example 4). The change in visibility was slight and a bright display was obtained. On the other hand, in the dark display with the chemical imidization ratio of 50% (Comparative Example 3) and 0% (Comparative Example 4), clear light leakage was observed when tilted by 10 °.
〔実施例5、6及び比較例5、6〕
実施例5、6及び比較例5、6は、TNモードの液晶表示装置に関する。TNモードでは、正の誘電率異方性を有する液晶が用いられ、アレイ基板10と対向基板20との間で、水平配向した液晶の配向方位が90°ねじれる(ツイストする)ように配向処理がされる。また、IPS又はFFSモードを示した実施例1~4等で用いられたスリットを備える電極に代えて、スリットのない電極が用いられる。
[Examples 5 and 6 and Comparative Examples 5 and 6]
Examples 5 and 6 and Comparative Examples 5 and 6 relate to a TN mode liquid crystal display device. In the TN mode, a liquid crystal having positive dielectric anisotropy is used, and the alignment treatment is performed so that the alignment direction of the horizontally aligned liquid crystal is twisted (twisted) by 90 ° between the array substrate 10 and the counter substrate 20. Is done. In addition, an electrode without a slit is used in place of the electrode with a slit used in Examples 1 to 4 and the like showing the IPS or FFS mode.
図5は、TNモードの液晶表示装置において、液晶層に電圧が印加されていない状態を示す斜視模式図である。図5に示すように、液晶33に電圧が印加されず、液晶33の配向が90°ツイストした状態では、バックライトから放射された光は、クロスニコル配置された一対の偏光板11、21を透過できるので、白表示の画面60が得られる。一方、図6は、TNモードの液晶表示装置において、液晶層に電圧が印加された状態を示す斜視模式図である。図6に示すように、液晶33にある程度以上の電圧が印加され、液晶33が両基板10、20に対して垂直に配向した状態では、バックライトから放射された光は、クロスニコル配置された一対の偏光板11、21を透過できず、黒表示の画面61が得られる。図5に示した液晶配向と図6に示した液晶配向の中間状態において、中間調表示が行われる。 FIG. 5 is a schematic perspective view showing a state in which no voltage is applied to the liquid crystal layer in the TN mode liquid crystal display device. As shown in FIG. 5, when no voltage is applied to the liquid crystal 33 and the alignment of the liquid crystal 33 is twisted by 90 °, the light emitted from the backlight passes through the pair of polarizing plates 11 and 21 arranged in crossed Nicols. Since it can be transmitted, a white display screen 60 is obtained. On the other hand, FIG. 6 is a schematic perspective view showing a state in which a voltage is applied to the liquid crystal layer in the TN mode liquid crystal display device. As shown in FIG. 6, in a state where a voltage of a certain level or more is applied to the liquid crystal 33 and the liquid crystal 33 is oriented perpendicular to both the substrates 10 and 20, the light emitted from the backlight is arranged in a crossed Nicols arrangement. A black display screen 61 cannot be obtained through the pair of polarizing plates 11 and 21. In the intermediate state between the liquid crystal alignment shown in FIG. 5 and the liquid crystal alignment shown in FIG. 6, halftone display is performed.
実施例5、6及び比較例5、6における配向膜12、22の作製条件は、実施例1、2及び比較例1、2と同様である。実施例5、6及び比較例5、6で用いた配向剤中のポリイミドの化学イミド化率は、以下のとおりである。
100%  (実施例5)
80%   (実施例6)
50%   (比較例5)
0%    (比較例6)
The production conditions of the alignment films 12 and 22 in Examples 5 and 6 and Comparative Examples 5 and 6 are the same as those in Examples 1 and 2 and Comparative Examples 1 and 2. The chemical imidation ratios of the polyimides in the alignment agents used in Examples 5 and 6 and Comparative Examples 5 and 6 are as follows.
100% (Example 5)
80% (Example 6)
50% (Comparative Example 5)
0% (Comparative Example 6)
実施例5、6及び比較例5、6の液晶表示パネルについて、上述の評価試験2及び3を行い、それらの結果を下記表5に示した。 The liquid crystal display panels of Examples 5 and 6 and Comparative Examples 5 and 6 were subjected to the above-described evaluation tests 2 and 3, and the results are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
表5に示したように、実施例5、6において80%以上の化学イミド化率を有する光配向膜を用いたときには、TNモードに好適なプレチルト角が得られ、電圧保持率(VHR)の低下も生じなかった。 As shown in Table 5, when a photo-alignment film having a chemical imidization ratio of 80% or more was used in Examples 5 and 6, a pretilt angle suitable for the TN mode was obtained, and the voltage holding ratio (VHR) was There was no decline.
〔実施例7、8及び比較例7、8〕
実施例7、8及び比較例7、8は、OCBモードの液晶表示装置に関し、正の誘電率異方性を有する液晶を用いている。OCBモードの液晶33は、電圧無印加時には図7に示すようなスプレイ配向であり、バイアス電圧が印加されて図8に示すようなベンド配向にされる。液晶表示パネルの透過率は、ベンド配向の液晶33に対する印加電圧により制御される。また、IPS又はFFSモードを示した実施例1~4等で用いられたスリットを備える電極に代えて、スリットのない電極が用いられる。
[Examples 7 and 8 and Comparative Examples 7 and 8]
Examples 7 and 8 and Comparative Examples 7 and 8 relate to an OCB mode liquid crystal display device, and use a liquid crystal having positive dielectric anisotropy. The OCB mode liquid crystal 33 has a splay alignment as shown in FIG. 7 when no voltage is applied, and a bend alignment as shown in FIG. 8 when a bias voltage is applied. The transmittance of the liquid crystal display panel is controlled by a voltage applied to the bend-aligned liquid crystal 33. In addition, an electrode without a slit is used in place of the electrode with a slit used in Examples 1 to 4 and the like showing the IPS or FFS mode.
実施例7、8及び比較例7、8における配向膜12、22の作製条件は、実施例1、2及び比較例1、2と同様である。実施例7、8及び比較例7、8で用いた配向剤中のポリイミドの化学イミド化率は、以下のとおりである。
100%  (実施例7)
80%   (実施例8)
50%   (比較例7)
0%    (比較例8)
The production conditions of the alignment films 12 and 22 in Examples 7 and 8 and Comparative Examples 7 and 8 are the same as those in Examples 1 and 2 and Comparative Examples 1 and 2. The chemical imidation ratios of the polyimides in the alignment agents used in Examples 7 and 8 and Comparative Examples 7 and 8 are as follows.
100% (Example 7)
80% (Example 8)
50% (Comparative Example 7)
0% (Comparative Example 8)
実施例7、8及び比較例7、8の液晶表示パネルについて、上述の評価試験2及び3を行い、それらの結果を下記表6に示した。電圧保持率(VHR)は、液晶33に10Vの電圧を印加して液晶33をベンド配向させたうえで測定した。 The liquid crystal display panels of Examples 7 and 8 and Comparative Examples 7 and 8 were subjected to the above-described evaluation tests 2 and 3, and the results are shown in Table 6 below. The voltage holding ratio (VHR) was measured after applying a voltage of 10 V to the liquid crystal 33 to bend the liquid crystal 33.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
表6に示したように、実施例7、8において80%以上の化学イミド化率を有する光配向膜を用いたときには、OCBモードに好適なプレチルト角が得られ、電圧保持率(VHR)の低下も生じなかった。なお、OCBモードでは、スプレイ-ベンド転移を生じやすくする観点からは、プレチルト角が5°の実施例8が特に好適である。 As shown in Table 6, when a photo-alignment film having a chemical imidization rate of 80% or more was used in Examples 7 and 8, a pretilt angle suitable for the OCB mode was obtained, and the voltage holding ratio (VHR) was There was no decline. In the OCB mode, Example 8 having a pretilt angle of 5 ° is particularly suitable from the viewpoint of facilitating the splay-bend transition.
〔実施例9~11及び比較例9〕
実施例9~11は、ポリイミドとして、上記式(2)の側鎖含有部位と、1,4-フェニレンジアミンを有する部位とを含む共重合体を用いたこと、及び、正の誘電率異方性を有する液晶を用いたこと以外は、実施例1と同様である。すなわち、ポリイミドの化学式は、上記式(1)に示すものであり、上記式(1)中、Xは、上記式(4)の化学構造を表し、Yは、上記式(2)の化学構造及び1,4-フェニレンジアミンのいずれかを表す。実施例9では、上記式(2)の化学構造の割合が75モル%、1,4-フェニレンジアミンの割合が25モル%である。実施例10では、上記式(2)の化学構造の割合が50モル%、1,4-フェニレンジアミンの割合が50モル%である。実施例11では、上記式(2)の化学構造の割合が25モル%、1,4-フェニレンジアミンの割合が75モル%である。共重合体の調製方法については、例えば、国際公開第2008/117615号に開示がある。
[Examples 9 to 11 and Comparative Example 9]
In Examples 9 to 11, the use of a copolymer containing a side chain-containing moiety of the above formula (2) and a moiety having 1,4-phenylenediamine as polyimide, and positive dielectric anisotropy Example 1 is the same as Example 1 except that a liquid crystal having properties is used. That is, the chemical formula of polyimide is shown in the above formula (1). In the above formula (1), X represents the chemical structure of the above formula (4), and Y represents the chemical structure of the above formula (2). And 1,4-phenylenediamine. In Example 9, the proportion of the chemical structure of the above formula (2) is 75 mol%, and the proportion of 1,4-phenylenediamine is 25 mol%. In Example 10, the proportion of the chemical structure of the above formula (2) is 50 mol%, and the proportion of 1,4-phenylenediamine is 50 mol%. In Example 11, the proportion of the chemical structure of the above formula (2) is 25 mol%, and the proportion of 1,4-phenylenediamine is 75 mol%. The method for preparing the copolymer is disclosed in, for example, International Publication No. 2008/117615.
比較例9は、ポリイミドとして、1,4-フェニレンジアミンを有する部位を含むホモポリマーを用いたこと、及び、正の誘電率異方性を有する液晶を用いたこと以外は、実施例1と同様である。すなわち、ポリイミドの化学式は、上記式(1)に示すものであり、上記式(1)中、Xは、上記式(4)の化学構造を表し、Yは、1,4-フェニレンジアミンを表す。比較例9では、上記式(2)の化学構造の割合が0モル%、1,4-フェニレンジアミンの割合が100モル%であるとも言える。 Comparative Example 9 was the same as Example 1 except that a homopolymer containing a portion having 1,4-phenylenediamine was used as the polyimide, and a liquid crystal having positive dielectric anisotropy was used. It is. That is, the chemical formula of polyimide is as shown in the above formula (1). In the above formula (1), X represents the chemical structure of the above formula (4), and Y represents 1,4-phenylenediamine. . In Comparative Example 9, it can be said that the proportion of the chemical structure of the above formula (2) is 0 mol% and the proportion of 1,4-phenylenediamine is 100 mol%.
また、実施例9~11及び比較例9で用いた配向剤中のポリイミドの化学イミド化率は、すべて100%である。 Further, the chemical imidization ratios of the polyimides in the alignment agents used in Examples 9 to 11 and Comparative Example 9 are all 100%.
実施例9~11及び比較例9の液晶表示パネルについて、上述の評価試験2及び3を行い、それらの結果を下記表7に示した。 The liquid crystal display panels of Examples 9 to 11 and Comparative Example 9 were subjected to the above-described evaluation tests 2 and 3, and the results are shown in Table 7 below.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
表7に示したように、1,4-フェニレンジアミンモノマーの導入量が25、50、75(モル%)のコポリマーによってIPS又はFFSモードの液晶表示パネルを作製できた。また、比較例9では、光配向性官能基が存在しないため、偏光紫外光照射で配向させることができず、プレチルト角を測定できなかった。 As shown in Table 7, an IPS or FFS mode liquid crystal display panel could be produced using a copolymer having an introduction amount of 1,4-phenylenediamine monomer of 25, 50, 75 (mol%). In Comparative Example 9, since there was no photo-alignment functional group, it was not possible to align by irradiation with polarized ultraviolet light, and the pretilt angle could not be measured.
〔実施例12~14及び比較例10〕
実施例12~14、比較例10は、化学イミド化率が80%のポリイミドを用いたこと以外は、それぞれ実施例9~11、比較例9と同様である。
[Examples 12 to 14 and Comparative Example 10]
Examples 12 to 14 and Comparative Example 10 are the same as Examples 9 to 11 and Comparative Example 9, respectively, except that polyimide having a chemical imidation rate of 80% was used.
実施例12~14及び比較例10の液晶表示パネルについて、上述の評価試験2及び3を行い、それらの結果を下記表8に示した。 The liquid crystal display panels of Examples 12 to 14 and Comparative Example 10 were subjected to the above-described evaluation tests 2 and 3, and the results are shown in Table 8 below.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
表8に示したように、化学イミド化率が80%のポリイミドを用いた場合であっても、1,4-フェニレンジアミンモノマーの導入量が25、50、75(モル%)のコポリマーによってIPS又はFFSモードの液晶表示パネルを作製できた。また、比較例10では、光配向性官能基が存在しないため、偏光紫外光照射で配向させることができず、プレチルト角を測定できなかった。 As shown in Table 8, even when a polyimide having a chemical imidation rate of 80% was used, IPS was introduced by a copolymer having 1,4-phenylenediamine monomer introduced in amounts of 25, 50, and 75 (mol%). Alternatively, an FFS mode liquid crystal display panel could be manufactured. Moreover, in Comparative Example 10, since there was no photo-alignment functional group, it could not be aligned by irradiation with polarized ultraviolet light, and the pretilt angle could not be measured.
〔実施例15~17及び比較例11〕
実施例15~17は、ポリイミドとして、上記式(2)の側鎖含有部位と、1,4-フェニレンジアミンを有する部位とを含む共重合体を用いたこと、及び、正の誘電率異方性を有する液晶を用いたこと以外は、実施例3と同様である。すなわち、ポリイミドの化学式は、上記式(1)に示すものであり、上記式(1)中、Xは、上記式(4)の化学構造を表し、Yは、上記式(2)の化学構造及び1,4-フェニレンジアミンのいずれかを表す。実施例15では、上記式(2)の化学構造の割合が75モル%、1,4-フェニレンジアミンの割合が25モル%である。実施例16では、上記式(2)の化学構造の割合が50モル%、1,4-フェニレンジアミンの割合が50モル%である。実施例17では、上記式(2)の化学構造の割合が25モル%、1,4-フェニレンジアミンの割合が75モル%である。
[Examples 15 to 17 and Comparative Example 11]
In Examples 15 to 17, the use of a copolymer containing a side chain-containing moiety of the above formula (2) and a moiety having 1,4-phenylenediamine as the polyimide, and positive dielectric anisotropy This example is the same as Example 3 except that a liquid crystal having properties is used. That is, the chemical formula of polyimide is shown in the above formula (1). In the above formula (1), X represents the chemical structure of the above formula (4), and Y represents the chemical structure of the above formula (2). And 1,4-phenylenediamine. In Example 15, the proportion of the chemical structure of the above formula (2) is 75 mol%, and the proportion of 1,4-phenylenediamine is 25 mol%. In Example 16, the proportion of the chemical structure of the above formula (2) is 50 mol%, and the proportion of 1,4-phenylenediamine is 50 mol%. In Example 17, the proportion of the chemical structure of the above formula (2) is 25 mol%, and the proportion of 1,4-phenylenediamine is 75 mol%.
比較例11は、ポリイミドとして、1,4-フェニレンジアミンを有する部位を含むホモポリマーを用いたこと、及び、正の誘電率異方性を有する液晶を用いたこと以外は、実施例3と同様である。すなわち、ポリイミドの化学式は、上記式(1)に示すものであり、上記式(1)中、Xは、上記式(4)の化学構造を表し、Yは、1,4-フェニレンジアミンを表す。比較例11では、上記式(2)の化学構造の割合が0モル%、1,4-フェニレンジアミンの割合が100モル%であるとも言える。 Comparative Example 11 was the same as Example 3 except that a homopolymer containing a portion having 1,4-phenylenediamine was used as the polyimide, and a liquid crystal having positive dielectric anisotropy was used. It is. That is, the chemical formula of polyimide is as shown in the above formula (1). In the above formula (1), X represents the chemical structure of the above formula (4), and Y represents 1,4-phenylenediamine. . In Comparative Example 11, it can be said that the proportion of the chemical structure of the above formula (2) is 0 mol% and the proportion of 1,4-phenylenediamine is 100 mol%.
また、実施例15~17及び比較例11で用いた配向剤中のポリイミドの化学イミド化率は、すべて100%である。 Further, the chemical imidization ratios of the polyimides in the alignment agents used in Examples 15 to 17 and Comparative Example 11 are all 100%.
実施例15~17及び比較例11の液晶表示パネルについて、上述の評価試験2及び3を行い、それらの結果を下記表9に示した。 The liquid crystal display panels of Examples 15 to 17 and Comparative Example 11 were subjected to the above-described evaluation tests 2 and 3, and the results are shown in Table 9 below.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
表9に示したように、PSAプロセスによるポリマー層の形成を行った場合であっても、1,4-フェニレンジアミンモノマーの導入量が25、50、75(モル%)のコポリマーによってIPS又はFFSモードの液晶表示パネルを作製できた。また、比較例11では、光配向性官能基が存在しないため、偏光紫外光照射で配向させることができず、プレチルト角を測定できなかった。 As shown in Table 9, even when the polymer layer was formed by the PSA process, IPS or FFS was obtained depending on the copolymer in which the introduction amount of 1,4-phenylenediamine monomer was 25, 50, 75 (mol%). A mode liquid crystal display panel could be fabricated. Further, in Comparative Example 11, since there was no photo-alignment functional group, it could not be aligned by irradiation with polarized ultraviolet light, and the pretilt angle could not be measured.
〔実施例18~20及び比較例12〕
実施例18~20、比較例12は、化学イミド化率が80%のポリイミドを用いたこと以外は、それぞれ実施例15~17、比較例11と同様である。
[Examples 18 to 20 and Comparative Example 12]
Examples 18 to 20 and Comparative Example 12 are the same as Examples 15 to 17 and Comparative Example 11, respectively, except that polyimide having a chemical imidation rate of 80% was used.
実施例18~20及び比較例12の液晶表示パネルについて、上述の評価試験2及び3を行い、それらの結果を下記表10に示した。 The liquid crystal display panels of Examples 18 to 20 and Comparative Example 12 were subjected to the above-described evaluation tests 2 and 3, and the results are shown in Table 10 below.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
表10に示したように、化学イミド化率が80%のポリイミドを用い、かつPSAプロセスによるポリマー層の形成を行った場合であっても、1,4-フェニレンジアミンモノマーの導入量が25、50、75(モル%)のコポリマーによってIPS又はFFSモードの液晶表示パネルを作製できた。また、比較例12では、光配向性官能基が存在しないため、偏光紫外光照射で配向させることができず、プレチルト角を測定できなかった。 As shown in Table 10, even when polyimide having a chemical imidation rate of 80% was used and the polymer layer was formed by the PSA process, the amount of 1,4-phenylenediamine monomer introduced was 25, An IPS or FFS mode liquid crystal display panel could be produced with 50, 75 (mol%) copolymer. Further, in Comparative Example 12, since there was no photo-alignment functional group, it could not be aligned by irradiation with polarized ultraviolet light, and the pretilt angle could not be measured.
〔変形例〕
上述の実施例1~20では、上記式(1)に示したポリイミドを用いたが、下記式(6)に示した繰り返し単位を含む重合体や、下記式(I-1)~(I-24)に示したジアミンモノマーを含む重合体を用いてもよい。
[Modification]
In Examples 1 to 20 described above, the polyimide represented by the above formula (1) was used. However, a polymer containing a repeating unit represented by the following formula (6), and the following formulas (I-1) to (I— A polymer containing the diamine monomer shown in 24) may be used.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
上述の実施例1~20では、上記式(1)に示したポリイミドを用いたが、下記式(7)~(9)に示した主鎖構造を有するポリイミドを用いてもよい。 In Examples 1 to 20 described above, the polyimide represented by the above formula (1) is used, but a polyimide having a main chain structure represented by the following formulas (7) to (9) may be used.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
上記式(7)中、Xは、下記式(8)の化学構造を表し、Yは、下記式(9)の化学構造を表す。 In the above formula (7), X represents the chemical structure of the following formula (8), and Y represents the chemical structure of the following formula (9).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
なお、本願は、2011年1月6日に出願された日本国特許出願2011-001386号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。 The present application claims priority based on the Paris Convention or the laws and regulations in the country to which the transition is based on Japanese Patent Application No. 2011-001386 filed on January 6, 2011. The contents of the application are hereby incorporated by reference in their entirety.
10:アレイ基板
11、21:偏光板
12、22:配向膜
13:走査信号線
14:データ信号線
15:薄膜トランジスタ
16:画素電極
17:共通信号線
18:コンタクトホール
19:共通電極
20:対向基板
30:液晶層
31:シール剤
33:液晶
50:バックライト
60:白表示の画面
61:黒表示の画面
 
 
10: array substrate 11, 21: polarizing plate 12, 22: alignment film 13: scanning signal line 14: data signal line 15: thin film transistor 16: pixel electrode 17: common signal line 18: contact hole 19: common electrode 20: counter substrate 30: Liquid crystal layer 31: Sealing agent 33: Liquid crystal 50: Backlight 60: White display screen 61: Black display screen

Claims (20)

  1. プレチルト角が5°以下の液晶分子を含む液晶層と、
    前記液晶層を挟持する第一基板及び第二基板と、
    前記第一基板と前記液晶層の間に配置された第一配向膜と、
    前記第二基板と前記液晶層の間に配置された第二配向膜とを備える液晶表示装置であって、
    前記第一基板及び前記第二基板は、前記液晶層中に電界を生じさせるように配置された一対の電極を有し、
    前記第一配向膜及び前記第二配向膜の少なくとも一方は、光分解以外の光反応機構によって前記液晶分子のプレチルト角を5°以下に制御可能な配向膜材料で形成されており、
    前記配向膜材料は、イミド化率が80%以上のポリイミドを含有し、
    前記ポリイミドは、紫外光を吸収する官能基を含む側鎖を有し、
    前記側鎖の数は、前記ポリイミドの繰り返し構造の一単位当たり1つであることを特徴とする液晶表示装置。
    A liquid crystal layer containing liquid crystal molecules having a pretilt angle of 5 ° or less;
    A first substrate and a second substrate sandwiching the liquid crystal layer;
    A first alignment film disposed between the first substrate and the liquid crystal layer;
    A liquid crystal display device comprising a second alignment film disposed between the second substrate and the liquid crystal layer,
    The first substrate and the second substrate have a pair of electrodes arranged to generate an electric field in the liquid crystal layer,
    At least one of the first alignment film and the second alignment film is formed of an alignment film material capable of controlling the pretilt angle of the liquid crystal molecules to 5 ° or less by a photoreaction mechanism other than photolysis,
    The alignment film material contains polyimide having an imidization rate of 80% or more,
    The polyimide has a side chain containing a functional group that absorbs ultraviolet light,
    The number of the side chains is one per unit of the polyimide repeating structure.
  2. 前記ポリイミドは、少なくとも2種の前記繰り返し構造を含む共重合体であることを特徴とする請求項1に記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the polyimide is a copolymer including at least two kinds of the repeating structures.
  3. 前記光反応機構は、二量化反応、シス-トランス転移反応、及び、光吸収による官能基の角度変化から選択される少なくとも一つの反応機構であることを特徴とする請求項1又は2に記載の液晶表示装置。 3. The photoreaction mechanism is at least one reaction mechanism selected from a dimerization reaction, a cis-trans transition reaction, and an angle change of a functional group due to light absorption. Liquid crystal display device.
  4. 前記紫外光を吸収する官能基は、シンナメート基、カルコン基、クマリン基及びアゾ基から選択される少なくとも一つの官能基であることを特徴とする請求項1から3のいずれかに記載の液晶表示装置。 4. The liquid crystal display according to claim 1, wherein the functional group that absorbs ultraviolet light is at least one functional group selected from a cinnamate group, a chalcone group, a coumarin group, and an azo group. 5. apparatus.
  5. 前記ポリイミドは、下記式(A)で表される側鎖含有部位を含むことを特徴とする請求項1から4のいずれかに記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-C000001
    (式中、フェニル基(ベンゼン環)に直接結合した2つの窒素原子(N)は、いずれもイミド環又はアミド結合中に含まれる窒素原子である。)
    The liquid crystal display device according to claim 1, wherein the polyimide includes a side chain-containing portion represented by the following formula (A).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, two nitrogen atoms (N) directly bonded to the phenyl group (benzene ring) are both nitrogen atoms contained in an imide ring or an amide bond.)
  6. 前記ポリイミドは、前記式(A)に示された側鎖含有部位を有するホモポリマーであることを特徴とする請求項5に記載の液晶表示装置。 The liquid crystal display device according to claim 5, wherein the polyimide is a homopolymer having a side chain-containing site represented by the formula (A).
  7. 前記ポリイミドは、前記式(A)に示された側鎖含有部位と、1,4-フェニレンジアミンを有する部位とを含む共重合体であることを特徴とする請求項5に記載の液晶表示装置。 6. The liquid crystal display device according to claim 5, wherein the polyimide is a copolymer including a side chain-containing portion represented by the formula (A) and a portion having 1,4-phenylenediamine. .
  8. 前記第一配向膜と前記液晶層の間、及び、前記第二配向膜と前記液晶層の間の少なくとも一方に、二官能モノマーをラジカル重合して形成されたポリマー層を有することを特徴とする請求項1から7のいずれかに記載の液晶表示装置。 It has a polymer layer formed by radical polymerization of a bifunctional monomer between the first alignment film and the liquid crystal layer and between at least one of the second alignment film and the liquid crystal layer. The liquid crystal display device according to claim 1.
  9. 前記二官能モノマーは、下記一般式(I)で表わされることを特徴とする請求項8に記載の液晶表示装置。
    -A-P   (I)
    (式中、Pは、アクリレート基又はメタクリレート基を表す。Aは、1,4-フェニレン、4,4’-ビフェニル、ナフタレン-2,6-ジイル基又はフェナントレン-2,7-ジイル基を表す。Aに含まれる水素原子は、ハロゲン基、メチル基、エチル基、プロピル基に置換されていてもよい。)
    The liquid crystal display device according to claim 8, wherein the bifunctional monomer is represented by the following general formula (I).
    P 1 -A 1 -P 1 (I)
    (Wherein P 1 represents an acrylate group or a methacrylate group. A 1 represents 1,4-phenylene, 4,4′-biphenyl, naphthalene-2,6-diyl group or phenanthrene-2,7-diyl group. (The hydrogen atom contained in A 1 may be substituted with a halogen group, a methyl group, an ethyl group, or a propyl group.)
  10. 前記液晶表示装置の表示モードは、IPS又はFFSモードであり、
    前記第一基板は、前記液晶層中に横電界を生じさせるように配置された前記一対の電極を有することを特徴とする請求項1から9のいずれかに記載の液晶表示装置。
    The display mode of the liquid crystal display device is an IPS or FFS mode,
    10. The liquid crystal display device according to claim 1, wherein the first substrate has the pair of electrodes arranged so as to generate a lateral electric field in the liquid crystal layer. 11.
  11. プレチルト角が5°以下の液晶分子を含む液晶層と、
    前記液晶層を挟持する第一基板及び第二基板と、
    前記第一基板と前記液晶層の間に配置された第一配向膜と、
    前記第二基板と前記液晶層の間に配置された第二配向膜とを備え、
    前記第一基板及び前記第二基板は、前記液晶層中に電界を生じさせるように配置された一対の電極を有し、
    前記第一配向膜及び前記第二配向膜の少なくとも一方は、イミド化率が80%以上のポリイミドを含有する配向膜材料で形成されている液晶表示装置の製造方法であって、
    前記ポリイミドは、紫外光を吸収する官能基を含む側鎖を有し、
    前記側鎖の数は、前記ポリイミドの繰り返し構造の一単位当たり1つであり、
    前記製造方法は、前記第一配向膜及び前記第二配向膜の少なくとも一方に形成された前記配向膜材料で形成された膜の表面に対して光を照射し、光分解以外の光反応機構を用いて前記プレチルト角を5°以下に制御する工程を有することを特徴とする液晶表示装置の製造方法。
    A liquid crystal layer containing liquid crystal molecules having a pretilt angle of 5 ° or less;
    A first substrate and a second substrate sandwiching the liquid crystal layer;
    A first alignment film disposed between the first substrate and the liquid crystal layer;
    A second alignment film disposed between the second substrate and the liquid crystal layer;
    The first substrate and the second substrate have a pair of electrodes arranged to generate an electric field in the liquid crystal layer,
    At least one of the first alignment film and the second alignment film is a method of manufacturing a liquid crystal display device formed of an alignment film material containing polyimide having an imidization rate of 80% or more,
    The polyimide has a side chain containing a functional group that absorbs ultraviolet light,
    The number of the side chains is one per unit of the repeating structure of the polyimide,
    The manufacturing method irradiates light on the surface of the film formed of the alignment film material formed on at least one of the first alignment film and the second alignment film, and has a photoreaction mechanism other than photolysis. A method of manufacturing a liquid crystal display device, comprising using the step of controlling the pretilt angle to 5 ° or less.
  12. 前記ポリイミドは、少なくとも2種の前記繰り返し構造を含む共重合体であることを特徴とする請求項11に記載の液晶表示装置の製造方法。 The method for manufacturing a liquid crystal display device according to claim 11, wherein the polyimide is a copolymer including at least two kinds of the repeating structures.
  13. 前記光反応機構は、二量化反応、シス-トランス転移反応、及び、光吸収による官能基の角度変化から選択される少なくとも一つの反応機構であることを特徴とする請求項11又は12に記載の液晶表示装置の製造方法。 13. The photoreaction mechanism is at least one reaction mechanism selected from a dimerization reaction, a cis-trans transition reaction, and an angle change of a functional group due to light absorption. A method for manufacturing a liquid crystal display device.
  14. 前記紫外光を吸収する官能基は、シンナメート基、カルコン基、クマリン基及びアゾ基から選択される少なくとも一つの官能基であることを特徴とする請求項11から13のいずれかに記載の液晶表示装置の製造方法。 14. The liquid crystal display according to claim 11, wherein the functional group that absorbs ultraviolet light is at least one functional group selected from a cinnamate group, a chalcone group, a coumarin group, and an azo group. Device manufacturing method.
  15. 前記ポリイミドは、下記式(A)で表される側鎖含有部位を含むことを特徴とする請求項11から14のいずれかに記載の液晶表示装置の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式中、フェニル基(ベンゼン環)に直接結合した2つの窒素原子(N)は、いずれもイミド環又はアミド結合中に含まれる窒素原子である。)
    The said polyimide contains the side chain containing site | part represented by a following formula (A), The manufacturing method of the liquid crystal display device in any one of Claim 11 to 14 characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, two nitrogen atoms (N) directly bonded to the phenyl group (benzene ring) are both nitrogen atoms contained in an imide ring or an amide bond.)
  16. 前記ポリイミドは、前記式(A)に示された側鎖含有部位を有するホモポリマーであることを特徴とする請求項15に記載の液晶表示装置の製造方法。 The method for manufacturing a liquid crystal display device according to claim 15, wherein the polyimide is a homopolymer having a side chain-containing site represented by the formula (A).
  17. 前記ポリイミドは、前記式(A)に示された側鎖含有部位と、1,4-フェニレンジアミンを有する部位とを含む共重合体であることを特徴とする請求項15に記載の液晶表示装置の製造方法。 16. The liquid crystal display device according to claim 15, wherein the polyimide is a copolymer including a side chain-containing portion represented by the formula (A) and a portion having 1,4-phenylenediamine. Manufacturing method.
  18. 前記第一配向膜と前記液晶層の間、及び、前記第二配向膜と前記液晶層の間の少なくとも一方に、二官能モノマーをラジカル重合してポリマー層を形成することを特徴とする請求項11から17のいずれかに記載の液晶表示装置の製造方法。 The polymer layer is formed by radical polymerization of a bifunctional monomer between at least one of the first alignment film and the liquid crystal layer and between at least one of the second alignment film and the liquid crystal layer. 18. A method for producing a liquid crystal display device according to any one of 11 to 17.
  19. 前記二官能モノマーは、下記一般式(I)で表わされることを特徴とする請求項18に記載の液晶表示装置の製造方法。
    -A-P   (I)
    (式中、Pは、アクリレート基又はメタクリレート基を表す。Aは、1,4-フェニレン、4,4’-ビフェニル、ナフタレン-2,6-ジイル基又はフェナントレン-2,7-ジイル基を表す。Aに含まれる水素原子は、ハロゲン基、メチル基、エチル基、プロピル基に置換されていてもよい。)
    The method for manufacturing a liquid crystal display device according to claim 18, wherein the bifunctional monomer is represented by the following general formula (I).
    P 1 -A 1 -P 1 (I)
    (Wherein P 1 represents an acrylate group or a methacrylate group. A 1 represents 1,4-phenylene, 4,4′-biphenyl, naphthalene-2,6-diyl group or phenanthrene-2,7-diyl group. (The hydrogen atom contained in A 1 may be substituted with a halogen group, a methyl group, an ethyl group, or a propyl group.)
  20. 前記液晶表示装置の表示モードは、IPS又はFFSモードであり、
    前記第一基板は、前記液晶層中に横電界を生じさせるように配置された前記一対の電極を有することを特徴とする請求項11から19のいずれかに記載の液晶表示装置の製造方法。
     
     
    The display mode of the liquid crystal display device is an IPS or FFS mode,
    The method for manufacturing a liquid crystal display device according to claim 11, wherein the first substrate has the pair of electrodes arranged to generate a lateral electric field in the liquid crystal layer.

PCT/JP2011/080356 2011-01-06 2011-12-28 Liquid crystal display and manufacturing method thereof WO2012093629A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011001386 2011-01-06
JP2011-001386 2011-01-06

Publications (1)

Publication Number Publication Date
WO2012093629A1 true WO2012093629A1 (en) 2012-07-12

Family

ID=46457486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080356 WO2012093629A1 (en) 2011-01-06 2011-12-28 Liquid crystal display and manufacturing method thereof

Country Status (1)

Country Link
WO (1) WO2012093629A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014532104A (en) * 2011-10-03 2014-12-04 ロリク アーゲーRolic Ag Optical aligning material
WO2017141824A1 (en) * 2016-02-17 2017-08-24 シャープ株式会社 Liquid crystal display device
CN111752048A (en) * 2019-03-29 2020-10-09 夏普株式会社 Liquid crystal display device having a plurality of pixel electrodes
WO2021125319A1 (en) * 2019-12-18 2021-06-24 日産化学株式会社 Liquid crystal aligning agent, radical generation film and method for producing in-plane switching liquid crystal cell
CN114967241A (en) * 2022-04-11 2022-08-30 汕头大学 Preparation method of CD-ROM drive liquid crystal light modulator of multi-component composite system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05341293A (en) * 1992-06-08 1993-12-24 Casio Comput Co Ltd Liquid crystal display element
WO1996037807A1 (en) * 1995-05-26 1996-11-28 Hitachi Chemical Company, Ltd. Liquid-crystal alignment film
JPH10206856A (en) * 1997-01-16 1998-08-07 Hitachi Ltd Liquid crystal display device and its manufacture method
JP2009037104A (en) * 2007-08-03 2009-02-19 Jsr Corp Liquid crystal alignment agent, manufacturing method for liquid crystal alignment film, polyamic acid and polyamide and diamine compound
JP2009520702A (en) * 2005-12-23 2009-05-28 ロリク アーゲー Photocrosslinkable material
WO2010116551A1 (en) * 2009-03-30 2010-10-14 シャープ株式会社 Liquid crystal display device, process for producing liquid crystal display device, composition for forming polymer layer, and composition for forming liquid crystal layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05341293A (en) * 1992-06-08 1993-12-24 Casio Comput Co Ltd Liquid crystal display element
WO1996037807A1 (en) * 1995-05-26 1996-11-28 Hitachi Chemical Company, Ltd. Liquid-crystal alignment film
JPH10206856A (en) * 1997-01-16 1998-08-07 Hitachi Ltd Liquid crystal display device and its manufacture method
JP2009520702A (en) * 2005-12-23 2009-05-28 ロリク アーゲー Photocrosslinkable material
JP2009037104A (en) * 2007-08-03 2009-02-19 Jsr Corp Liquid crystal alignment agent, manufacturing method for liquid crystal alignment film, polyamic acid and polyamide and diamine compound
WO2010116551A1 (en) * 2009-03-30 2010-10-14 シャープ株式会社 Liquid crystal display device, process for producing liquid crystal display device, composition for forming polymer layer, and composition for forming liquid crystal layer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014532104A (en) * 2011-10-03 2014-12-04 ロリク アーゲーRolic Ag Optical aligning material
WO2017141824A1 (en) * 2016-02-17 2017-08-24 シャープ株式会社 Liquid crystal display device
CN111752048A (en) * 2019-03-29 2020-10-09 夏普株式会社 Liquid crystal display device having a plurality of pixel electrodes
CN111752048B (en) * 2019-03-29 2023-07-04 夏普株式会社 Liquid crystal display device having a light shielding layer
WO2021125319A1 (en) * 2019-12-18 2021-06-24 日産化学株式会社 Liquid crystal aligning agent, radical generation film and method for producing in-plane switching liquid crystal cell
CN114967241A (en) * 2022-04-11 2022-08-30 汕头大学 Preparation method of CD-ROM drive liquid crystal light modulator of multi-component composite system
CN114967241B (en) * 2022-04-11 2023-06-09 汕头大学 Preparation method of CD-ROM liquid crystal optical modulator of multicomponent composite system

Similar Documents

Publication Publication Date Title
TWI521263B (en) Liquid crystal display device
TWI578063B (en) A liquid crystal display device, and a liquid crystal display device
TWI559057B (en) A liquid crystal display device, and a liquid crystal display device
EP2418536B1 (en) LIQUID CRYSTAL DISPLAY DEVICE and COMPOSITION FOR FORMING a POLYMER LAYER
JP5620006B2 (en) Manufacturing method of liquid crystal display device
TWI519868B (en) Liquid crystal display device
WO2010116565A1 (en) Liquid crystal display device, method for manufacturing liquid crystal display device, composition for forming photopolymer film, and composition for forming liquid crystal layer
WO2010061491A1 (en) Orientation film, liquid crystal display having orientation film, and method for forming orientation film
WO2010079703A1 (en) Liquid crystal display device and composition for forming liquid crystal layer
WO2012086715A1 (en) Liquid crystal orienting agent, lcd device, and method for producing lcd device
TWI522699B (en) Liquid crystal display panel and liquid crystal display device
TW201310143A (en) Liquid-crystal display panel and liquid-crystal display device
US11209700B2 (en) Method for manufacturing liquid crystal panel, method for manufacturing retardation plate, and wire grid polarizing plate
WO2012093629A1 (en) Liquid crystal display and manufacturing method thereof
JP5113869B2 (en) Liquid crystal display device and manufacturing method thereof
WO2014045923A1 (en) Liquid crystal display device and method for manufacturing same
US20130342798A1 (en) Liquid crystal display panel, liquid crystal display apparatus, and liquid crystal display cell
WO2012086718A1 (en) Lcd device and method for producing same
JP6828360B2 (en) A liquid crystal alignment agent, a liquid crystal alignment film, a liquid crystal element, and a method for manufacturing a liquid crystal alignment film and a liquid crystal element.
JP2019152835A (en) Method for manufacturing substrate with alignment film
US20120207942A1 (en) Process for production of liquid crystal display device
JP7310823B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal element, and method for manufacturing liquid crystal element
WO2012063936A1 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
WO2012063938A1 (en) Liquid crystal display device and method for manufacturing liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP