WO2012092732A1 - Method, device and system for encoding and decoding video of red green and blue (rgb) space - Google Patents

Method, device and system for encoding and decoding video of red green and blue (rgb) space Download PDF

Info

Publication number
WO2012092732A1
WO2012092732A1 PCT/CN2011/073508 CN2011073508W WO2012092732A1 WO 2012092732 A1 WO2012092732 A1 WO 2012092732A1 CN 2011073508 W CN2011073508 W CN 2011073508W WO 2012092732 A1 WO2012092732 A1 WO 2012092732A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
video
red
blue
video sequence
Prior art date
Application number
PCT/CN2011/073508
Other languages
French (fr)
Chinese (zh)
Inventor
张智雄
Original Assignee
深圳市融创天下科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市融创天下科技股份有限公司 filed Critical 深圳市融创天下科技股份有限公司
Publication of WO2012092732A1 publication Critical patent/WO2012092732A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/641Multi-purpose receivers, e.g. for auxiliary information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression

Definitions

  • the present invention relates to the field of video codec technology, and in particular, to a video codec method, apparatus and system for RGB space. Background technique
  • RGB is a color that describes the color according to the principle of a three-primary glazing system. Each color can be represented by three variables - the intensity of red R (Red), green G (Green), and blue B (Blue). According to the principle of three primary colors, any color light F can be added and mixed with different components of R, G, and B.
  • r, g, and b are the coefficients of the three primary colors participating in the mixing.
  • the three primary color components are all 0 (the weakest), they are mixed into black light; and when the three primary color components are all k (the strongest), they are mixed into white light.
  • r, g, and b you can mix a variety of shades of light between black and white light.
  • YUV describes the color according to the principle of brightness and chromatic aberration.
  • a three-tube color camera or a color CCD camera is usually used for imaging, and then the captured color image signal is subjected to color separation, separately amplified and corrected to obtain RGB, and then subjected to a matrix conversion circuit to obtain a luminance signal Y and two.
  • the color difference signals R_Y (ie, U) and BY (ie, V), the last transmitting end encodes the three signals of luminance and color difference respectively, and transmits them by the same channel.
  • This representation of color is the so-called YUV color space representation.
  • the bandwidth of the luminance signal is twice the bandwidth of the chrominance signal.
  • the color sampling method can be adopted for digitization, that is, the sampling rate of the color difference component of the signal is lower than the sampling rate of the luminance component.
  • Y:U: V is used to represent the sampling ratio of the three components of YUV.
  • the sampling format of the digital video is 4:2:0, 4:1:1, 4:2:2, and 4:4:4, respectively. Since the human visual system is more sensitive to brightness than color, in order to better compress video information, the existing video coding method generally uses RGB color space to convert into YUV color space for encoding. Since the current general display devices are echoed on the RBG space, the conventional video player must perform matrix operation from the YUV color space to the RGB color space for echo playback, and perform color space conversion. The process is very CPU intensive. Summary of the invention
  • the purpose of the embodiment of the present invention is to provide a video coding method method in RGB space, which aims to solve the problem that the color space conversion process in the prior art consumes CPU resources.
  • the embodiment of the present invention is implemented in this manner, and provides a video encoding method in an RGB space, where the method includes:
  • the red component of the video sequence in the order of MxN and in the order of ⁇ G:! ⁇ and the blue component 1 ⁇ perform a downsampling of ⁇ ⁇ ⁇ ⁇ to obtain a red component I and blue with a resolution of
  • the red component R and the blue component are first linearly processed to obtain a red component I 'and a blue component ⁇ ';
  • Another object of the embodiments of the present invention is to provide a video decoding method in RGB space, the method comprising:
  • the second component of the red component I ' and the blue component ⁇ 2 '' is linearly processed to obtain a red component I and a blue bin 2 ' ; up ⁇ ⁇ ⁇ upsampling to obtain a resolution
  • a third object of the embodiments of the present invention is to provide a video encoding apparatus in an RGB space, where the encoding apparatus includes:
  • Downsampling module used to set the resolution to MxN, press! ⁇ G, 1 ⁇
  • the red and blue components of the video sequence arranged in sequence are downsampled by M X N ⁇ X to obtain a red color with a resolution of X
  • is the green component
  • M represents the horizontal resolution of the video sequence
  • N represents the vertical resolution of the video sequence
  • the first linear processing module is used to convert the red component I
  • the blue component A' is first linearly processed to obtain a red component RT and a blue component ⁇
  • a first reordering module for reordering the video sequences of the RGB color mode in the order of G ⁇ 'B'
  • a fourth object of the embodiments of the present invention is to provide a video decoding apparatus in an RGB space, where the decoding apparatus includes:
  • a decoding module configured to decode the encoded code stream, and obtain a video sequence arranged in the order of G 2R2 "B 2 " after restoration, wherein G 2 is a green component, R 2 "is a red component, and B 2 " is a blue a second linear processing module for performing a second linear processing on the red component R 2 "and the blue component B 2 " to obtain a red component R 2 ' and a blue component B 2 '; an upsampling module for For the red component 1 2 ' and the blue component B 2 '
  • the red component R 2 and the blue component ⁇ 2 having a resolution of ⁇ ⁇ are obtained, where ⁇ represents the horizontal resolution of the video sequence, ⁇ represents the vertical resolution of the video sequence, and the second reordering module is used to follow R 2 G 2 8 2 order reordering the 3 color points of the video sequence
  • a fifth object of the embodiments of the present invention is to provide a video codec system in an RGB space,
  • the system comprises: an encoding device and a decoding device;
  • the encoding device comprises: a downsampling module for setting the resolution to MxN, pressing! ⁇ G, 1 ⁇
  • the red and blue components of the video sequence arranged in sequence are downsampled by M X N ⁇ X to obtain a red color with a resolution of X
  • is the green component
  • M represents the horizontal resolution of the video sequence
  • N represents the vertical resolution of the video sequence
  • the first linear processing module is used to convert the red component I
  • the blue component A' is first linearly processed to obtain a red component RT and a blue component ⁇ ;
  • the decoding device includes: a decoding module, configured to decode a video coded code stream in the encoding device, and obtain a video sequence arranged in G 2 IV′B 2 ′′ order after reduction, where G 2 is a green component.
  • R 2 " is a red component
  • B 2 " is a blue component
  • a second linear processing module is used to perform a second linear processing on the red component R 2 " and the blue component B 2 " to obtain a red component R 2 'and Blue component B 2 '
  • upsampling module for red component 1 2 ' and blue component B 2 '
  • the degree of perception is different, even In the RGB color space, the human eye is also sensitive to different colors. The human eye is more sensitive to green than red and blue.
  • the blue component of the video signal is encoded with higher definition, and the blue and red components are encoded with lower definition, so as to obtain a better visual coding effect at the cost of slightly lowering the image coding quality. Improves the decoding and echo speed of the decoder device, especially for low-end handheld devices.
  • FIG. 1 is a flow chart of a video encoding method in an RGB space according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a video decoding method in an RGB space according to an embodiment of the present invention
  • FIG. 3 is a structural diagram of a video encoding apparatus in an RGB space according to an embodiment of the present invention.
  • FIG. 4 is a structural diagram of a video decoding apparatus in an RGB space according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of a video codec system in an RGB space according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a video encoding method in an RGB space according to an embodiment of the present invention, where the method includes the following steps:
  • Blue component ⁇ represents the green component, ⁇ represents the horizontal resolution of the video sequence, and ⁇ represents the direct resolution of the video sequence.
  • the downsampling of M X N ⁇ X is as follows:
  • R 1 '(i,j) (R 1 (2i,2j) + R 1 (2i + l,2j) + R 1 (2i,2j+l) + R 1 (2i + l,2j+l)) /4
  • B 1 '(i,j) (B 1 (2i,2j) + B 1 (2i + l,2j) + B 1 (2i,2j +!) + 6 ⁇ 21 + 1,2] +1))/4 where: i, j represent row subscript and column subscript respectively;
  • the RBG signal of 1: 1: 1 format can be converted into the 4: 1: 1 format YUV signal, making it suitable for the current mainstream encoder of 4: 2: 0 format.
  • S102 Perform a first linear processing on the red component I and the blue component A′ to obtain a red component I′ blue component B′.
  • the first linear processing of the red component I and the blue component B is specifically as follows:
  • S104 Perform video coding on the reordered G ⁇ 'B' video sequence.
  • the encoder used in the embodiment of the present invention is an encoder of 4:2:0 format, such as JM or x264 encoding.
  • the blue component of the video signal is encoded with higher definition, and the blue and red components are encoded with lower definition, so as to obtain a better visual coding effect at the cost of slightly lowering the image coding quality.
  • FIG. 2 is a flowchart of a video decoding method in an RGB space according to an embodiment of the present invention, where the method includes the following steps:
  • S201 Decode the encoded code stream to obtain a video sequence arranged in the order of G 2 I 'B 2 '' after restoration.
  • the green component is a red component, "is a blue component;
  • the encoded code stream is a 4: 1:1 format YUV signal, and the decoder used is a 4:2:0 format decoder, such as JM or x264 decoder, etc.
  • S202 Perform a second linear processing on the red component and the blue component ⁇ 2 '' to obtain a red component I and a blue component ⁇ 2 '.
  • the second linear processing of the red component I′ and the blue component ⁇ 2 ′′ is specifically as follows:
  • R 2 ' (R 2 "-128)x2 + 128 ( 3 )
  • the resolution is ⁇ X ⁇ red component and blue component ⁇ 2 .
  • S204 Rearrange the three color components of the video sequence in the order of R 2 G 2 8 2 .
  • FIG. 3 is a structural diagram of a video encoding apparatus in an RGB space according to an embodiment of the present invention, where the encoding apparatus includes:
  • Downsampling module used to set the resolution to MxN, press! ⁇ G, 1 ⁇
  • the red and blue components of the video sequence arranged in sequence are downsampled by M X N ⁇ X to obtain a red color with a resolution of X
  • R 1 '(i,j) (R 1 (2i,2j) + R 1 (2i + l,2j) + R 1 (2i,2j+l) + R 1 (2i + l,2j+l)) /4
  • B 1 '(i,j) (B 1 (2i,2j) + B 1 (2i + l,2j) + B 1 (2i,2j +! + 6 ⁇ 21 + 1,2] + 1)) / 4 where: i, j respectively represent the row subscript and the column subscript; the first linear processing module is used to perform the first linear processing of the red component I and the blue component A' to obtain the red component RT and blue Color component ⁇ ; wherein, the first linear processing of the red component I and the blue component B is specifically:
  • B 1 " (B 1 '-128)/2 + 128 a first reordering module for reordering the video sequences of the RGB color mode in the order of G ⁇ 'B';
  • An encoding module configured to perform video encoding on the reordered G ⁇ 'B' video sequence.
  • the blue component of the video signal is encoded with higher definition, and the blue and red components are encoded with lower definition, so as to obtain a better visual coding effect at the cost of slightly lowering the image coding quality.
  • FIG. 4 is a structural diagram of a video decoding apparatus in an RGB space according to an embodiment of the present invention, where the decoding apparatus includes:
  • a decoding module configured to decode the encoded code stream, and obtain a video sequence arranged in G 2 IV 'B 2 '' order after reduction;
  • a second linear processing module configured to pair the red component and the blue component B 2 "Do the second linear processing to obtain the red component I and the blue component B 2 '.
  • the second linear processing of the red component I ' and the blue component ⁇ 2 '' is specifically as follows:
  • R 2 ' (R 2 "-128)x2 + 128 ( 3 )
  • B 2 ' (B 2 "-128)x2 + 128 upsampling module for ⁇ on red component I and blue component B 2 '
  • FIG. 5 is a structural diagram of a video codec system in an RGB space according to an embodiment of the present invention, where the system includes: an encoding device and a decoding device.
  • the encoding device comprises: a downsampling module for setting the resolution to MxN, pressing! ⁇ G, 1 ⁇
  • the red and blue components of the video sequence arranged in sequence are downsampled by M X N ⁇ X to obtain a red color with a resolution of X
  • R 1 '(i,j) (R 1 (2i,2j) + R 1 (2i + l,2j) + R 1 (2i,2j+l) + R 1 (2i + l,2j+l)) /4
  • B 1 '(i,j) (B 1 (2i,2j) + B 1 (2i + l,2j) + B 1 (2i,2j +!) + 6 ⁇ 21 + 1,2] +1))/4
  • i, j respectively represent the row subscript and the column subscript
  • the first linear processing module is configured to perform the first linear processing on the red component I and the blue component A' to obtain the red component RT and The blue component ⁇ ; wherein, the first linear processing of the red component I and the blue component B is specifically:
  • the decoding device includes: a decoding module, configured to decode a video encoded code stream in the encoding device, and obtain a video sequence arranged in a G 2 "B 2 '' order after restoration; a second linear processing module, configured to For the second linear processing of the red component R 2 " and the blue component B 2 ", a red component R 2 ' and a blue component B 2 ' are obtained.
  • R 2 ' (R 2 "-128)x2 + 128
  • B 2 ' (B 2 "-128)x2 + 128 upsampling module for red component 1 2 ' and blue component B 2 'on x MxN
  • i, j represent row subscript and column subscript respectively
  • second reordering module for reordering the three color subscores of the video sequence in the order of R 2 G 2 8 2
  • the blue component of the video signal is encoded with higher definition, and the blue and red components are encoded with lower definition, so as to obtain a better visual coding effect at the cost of slightly lowering the image coding quality.
  • the storage medium may be a ROM, a RAM, a magnetic disk, an optical disk, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Systems (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

A method for encoding and decoding video of a red green and blue (RGB) space is provided in the present invention. Said method includes: performing down sampling on a red component R1 and a blue component B1 of a video sequence with the resolution ratio M×N and in a R1 G1 B1 serial arrangement to obtain a red component R1' and a blue component B1' with the resolution ratio; performing first linear processing on the red component R1' and the blue component B1' to obtain a red component R1" and a blue component B1"; rearranging the video sequence of said RGB color mode in a G1 R1"B1" sequence; and performing video encoding on the rearranged G1 R1"B1" video sequence. The method of the present invention encodes the green component of the video signal by relatively high definition and encodes the blue component and the red component by relatively low definition, thus obtaining relatively good vision encoding effect at cost of relatively reducing image encoding quality, and increasing decoding and echo speed of a decoding end apparatus. The method is especially suitable for low-end handheld devices.

Description

一种 RGB空间的视频编解码方法、 装置和系统  Video coding and decoding method, device and system in RGB space
技术领域 Technical field
本发明涉及视频编解码技术领域,尤其涉及一种 RGB空间的视频编解码方 法、 装置和系统。 背景技术  The present invention relates to the field of video codec technology, and in particular, to a video codec method, apparatus and system for RGB space. Background technique
自然界的颜色千变万化, 为了给颜色一个量化的衡量标准, 就需要建立色 彩空间模型来描述各种各样的颜色,由于人对色彩的感知是一个复杂的生理和 心理联合作用的过程,所以在不同的应用领域中为了更好更准确的满足各自的 需求, 就出现了各种各样的色彩空间模型来量化的描述颜色。我们比较常接触 到的就包括 RGB I CMYK I YIQ / YUV / HSI等等。 对于数字电子多媒体领域 来说, 我们经常接触到的色彩空间的概念, 主要是 RGB , YUV。  The color of nature is ever-changing. In order to give a quantitative measure of color, it is necessary to establish a color space model to describe a variety of colors. Since human perception of color is a complex process of physical and psychological interaction, it is different. In order to better and more accurately meet their respective needs, a variety of color space models have emerged to quantify the color of description. We often come across RGB I CMYK I YIQ / YUV / HSI and so on. For the field of digital electronic multimedia, the concept of color space that we often touch, mainly RGB, YUV.
RGB 是按三基色加光系统的原理来描述颜色, 每种颜色都可用三个变量 来表示 -红色 R (Red), 绿色 G (Green) 以及蓝色 B (Blue) 的强度。 根据三 基色原理, 任意一种色光 F都可以用不同分量的 R、 G、 B三色相加混合而成。  RGB is a color that describes the color according to the principle of a three-primary glazing system. Each color can be represented by three variables - the intensity of red R (Red), green G (Green), and blue B (Blue). According to the principle of three primary colors, any color light F can be added and mixed with different components of R, G, and B.
F = r [ R ] + g [ G ] + b [ B ]  F = r [ R ] + g [ G ] + b [ B ]
其中, r、 g、 b分别为三基色参与混合的系数。 当三基色分量都为 0 (最 弱) 时混合为黑色光; 而当三基色分量都为 k (最强) 时混合为白色光。 调整 r、 g、 b三个系数的值, 可以混合出介于黑色光和白色光之间的各种各样的色 光。  Where r, g, and b are the coefficients of the three primary colors participating in the mixing. When the three primary color components are all 0 (the weakest), they are mixed into black light; and when the three primary color components are all k (the strongest), they are mixed into white light. By adjusting the values of the three coefficients r, g, and b, you can mix a variety of shades of light between black and white light.
而 YUV则是按照亮度、 色差的原理来描述颜色。 在现代彩色电视系统中, 通常采用三管彩色摄像机或彩色 CCD摄像机进行摄像,然后把摄得的彩色图像 信号经分色、 分别放大校正后得到 RGB, 再经过矩阵变换电路得到亮度信号 Y 和两个色差信号 R— Y (即 U)、 B-Y (即 V), 最后发送端将亮度和色差三个信 号分别进行编码, 用同一信道发送出去。 这种色彩的表示方法就是所谓的 YUV 色彩空间表示。根据电视信号的特征,亮度信号的带宽是色度信号带宽的两倍。 因此其数字化时可采用幅色采样法,即对信号的色差分量的采样率低于对亮度 分量的采样率。 用 Y:U: V来表示 YUV三分量的采样比例,则数字视频的采样格 式分别有 4:2:0 ,4:1:1、 4:2:2和 4:4:4多种。 由于人类视觉系统对亮度比色彩更敏感, 为了更好的压缩视频信息,现有 的视频编码的方法一般采用将 RGB色彩空间转换成 YUV色彩空间进行编码。而 由于目前一般显示设备都在 RBG空间上进行回显,因此传统的视频播放器在解 码后,还必须进行矩阵运算从 YUV色彩空间转成 RGB色彩空间的运算以便回显, 而作色彩空间转换的过程非常耗费 CPU资源。 发明内容 YUV describes the color according to the principle of brightness and chromatic aberration. In the modern color television system, a three-tube color camera or a color CCD camera is usually used for imaging, and then the captured color image signal is subjected to color separation, separately amplified and corrected to obtain RGB, and then subjected to a matrix conversion circuit to obtain a luminance signal Y and two. The color difference signals R_Y (ie, U) and BY (ie, V), the last transmitting end encodes the three signals of luminance and color difference respectively, and transmits them by the same channel. This representation of color is the so-called YUV color space representation. Depending on the characteristics of the television signal, the bandwidth of the luminance signal is twice the bandwidth of the chrominance signal. Therefore, the color sampling method can be adopted for digitization, that is, the sampling rate of the color difference component of the signal is lower than the sampling rate of the luminance component. Y:U: V is used to represent the sampling ratio of the three components of YUV. The sampling format of the digital video is 4:2:0, 4:1:1, 4:2:2, and 4:4:4, respectively. Since the human visual system is more sensitive to brightness than color, in order to better compress video information, the existing video coding method generally uses RGB color space to convert into YUV color space for encoding. Since the current general display devices are echoed on the RBG space, the conventional video player must perform matrix operation from the YUV color space to the RGB color space for echo playback, and perform color space conversion. The process is very CPU intensive. Summary of the invention
本发明实施例的目的在于提出一种 RGB空间的视频编码方法方法,旨在解 决现有技术中色彩空间转换过程非常耗费 CPU资源的问题。  The purpose of the embodiment of the present invention is to provide a video coding method method in RGB space, which aims to solve the problem that the color space conversion process in the prior art consumes CPU resources.
本发明实施例是这样实现的, 提供一种 RGB空间的视频编码方法,所述方 法包括:  The embodiment of the present invention is implemented in this manner, and provides a video encoding method in an RGB space, where the method includes:
将分辨率为 MxN、 按^ G: 顺序排列的视频序列的红色分量!^和蓝色分 量1^进行 Μ χ Ν ^^χ 的下采样, 得到分辨率为 的红色分量 I 和蓝色  The red component of the video sequence in the order of MxN and in the order of ^ G:! ^ and the blue component 1^ perform a downsampling of Μ χ Ν ^^χ to obtain a red component I and blue with a resolution of
2 2 2 2  2 2 2 2
分量 Α '; Component Α ';
将红色分量 R和蓝色分量 做第一线性处理,获得红色分量 I '和蓝色分 量 Β ' ;  The red component R and the blue component are first linearly processed to obtain a red component I 'and a blue component Β ';
将所述 RGB色彩模式的视频序列按照 G^'B '的顺序重排序; 对重排序后的 RT ' '视频序列进行视频编码; 其中, ^为绿色分量, M表示视频序列的水平分辨率, N表示视频序列的 垂直分辨率。 本发明实施例的另一目的在于提出一种 RGB空间的视频解码方法,所述方 法包括:  Reordering the video sequences of the RGB color mode in the order of G^'B'; performing video encoding on the reordered RT ' 'video sequence; where ^ is a green component and M is a horizontal resolution of the video sequence, N represents the vertical resolution of the video sequence. Another object of the embodiments of the present invention is to provide a video decoding method in RGB space, the method comprising:
对编码后的码流进行解码, 得到还原后按 G2 "B2 ' '顺序排列的视频序列, 其中 G2为绿色分量, I '为红色分量, B2"为蓝色分量; Decoding the encoded code stream to obtain a video sequence arranged in G 2 "B 2 '' after restoration, wherein G 2 is a green component, I 'is a red component, and B 2 " is a blue component;
将红色分量 I '和蓝色分量 Β2' '做第二线性处理, 获得红色分量 I 和蓝色 分 Β2' ; Μ χ Ν的上采样, 得到分辨率
Figure imgf000004_0001
The second component of the red component I ' and the blue component Β 2 '' is linearly processed to obtain a red component I and a blue bin 2 '; up采样 Ν 上 upsampling to obtain a resolution
Figure imgf000004_0001
为 Μ χ Ν的红色分量 和蓝色分量 Β2, 其中 Μ表示视频序列的水平分辨率, Ν 表示视频序列的垂直分辨率; 按照 G2 B2的顺序重排列视频序列的 3个颜色分量。 本发明实施例的第三目的在于提出一种 RGB空间的视频编码装置,所述编 码装置包括: The red component and the blue component Β 2 of Μ , , where Μ represents the horizontal resolution of the video sequence and Ν represents the vertical resolution of the video sequence; The three color components of the video sequence are rearranged in the order of G 2 B 2 . A third object of the embodiments of the present invention is to provide a video encoding apparatus in an RGB space, where the encoding apparatus includes:
下采样模块, 用于将分辨率为 MxN、 按!^ G, 1^顺序排列的视频序列的红色 分量 和蓝色分量 进行 M X N→ X 的下采样, 得到分辨率为 X 的红色  Downsampling module, used to set the resolution to MxN, press! ^ G, 1^ The red and blue components of the video sequence arranged in sequence are downsampled by M X N→ X to obtain a red color with a resolution of X
2 2 2 2 分量 I 和蓝色分量 B ; 其中, ^为绿色分量, M表示视频序列的水平分辨率, N表示视频序列的垂直分辨率; 第一线性处理模块, 用于将红色分量 I 和蓝色分量 A '做第一线性处理, 获得红色分量 RT和蓝色分量 Β ; 第一重排序模块, 用于将所述 RGB色彩模式的视频序列按照 G^'B '的顺 序重排序; 编码模块, 用于对重排序后的 G^'B '视频序列进行视频编码。 2 2 2 2 component I and blue component B ; where ^ is the green component, M represents the horizontal resolution of the video sequence, N represents the vertical resolution of the video sequence; the first linear processing module is used to convert the red component I and The blue component A' is first linearly processed to obtain a red component RT and a blue component Β; a first reordering module for reordering the video sequences of the RGB color mode in the order of G^'B'; Module for video encoding the reordered G^'B' video sequence.
本发明实施例的第四目的在于还提出一种 RGB空间的视频解码装置,所述 解码装置包括:  A fourth object of the embodiments of the present invention is to provide a video decoding apparatus in an RGB space, where the decoding apparatus includes:
解码模块, 用于对编码后的码流进行解码, 得到还原后按 G2R2 "B2"顺序排 列的视频序列, 其中 G2为绿色分量, R2"为红色分量, B2"为蓝色分量; 第二线性处理模块, 用于对将红色分量 R2"和蓝色分量 B2"做第二线性处 理, 获得红色分量 R2'和蓝色分量 B2 '; 上采样模块, 用于对红色分量1 2 '和蓝色分量 B2 '进行 a decoding module, configured to decode the encoded code stream, and obtain a video sequence arranged in the order of G 2R2 "B 2 " after restoration, wherein G 2 is a green component, R 2 "is a red component, and B 2 " is a blue a second linear processing module for performing a second linear processing on the red component R 2 "and the blue component B 2 " to obtain a red component R 2 ' and a blue component B 2 '; an upsampling module for For the red component 1 2 ' and the blue component B 2 '
2 χ →Μ χ Ν的上 2  2 χ →Μ χ Ν上上 2
采样, 得到分辨率为 Μ χ Ν的红色分量 R2和蓝色分量 Β2, 其中 Μ表示视频序列 的水平分辨率, Ν表示视频序列的垂直分辨率; 第二重排序模块, 用于按照 R2 G2 82的顺序重排列视频序列的 3个颜色分 Sampling, the red component R 2 and the blue component Β 2 having a resolution of Μ Ν , are obtained, where Μ represents the horizontal resolution of the video sequence, Ν represents the vertical resolution of the video sequence, and the second reordering module is used to follow R 2 G 2 8 2 order reordering the 3 color points of the video sequence
本发明实施例的第五目的在于提出一种 RGB空间的视频编解码系统,所述 系统包括: 编码装置和解码装置; A fifth object of the embodiments of the present invention is to provide a video codec system in an RGB space, The system comprises: an encoding device and a decoding device;
所述编码装置包括: 下采样模块, 用于将分辨率为 MxN、 按!^ G, 1^顺序排列的视频序列的红色 分量 和蓝色分量 进行 M X N→ X 的下采样, 得到分辨率为 X 的红色  The encoding device comprises: a downsampling module for setting the resolution to MxN, pressing! ^ G, 1^ The red and blue components of the video sequence arranged in sequence are downsampled by M X N→ X to obtain a red color with a resolution of X
2 2 2 2 分量 I 和蓝色分量 B ; 其中, ^为绿色分量, M表示视频序列的水平分辨率, N表示视频序列的垂直分辨率; 第一线性处理模块, 用于将红色分量 I 和蓝色分量 A '做第一线性处理, 获得红色分量 RT和蓝色分量 Β ; 2 2 2 2 component I and blue component B ; where ^ is the green component, M represents the horizontal resolution of the video sequence, N represents the vertical resolution of the video sequence; the first linear processing module is used to convert the red component I and The blue component A' is first linearly processed to obtain a red component RT and a blue component Β;
第一重排序模块, 用于将所述 RGB色彩模式的视频序列按照 G^'B '的顺 序重排序; 编码模块, 用于对重排序后的 G^'B '视频序列进行视频编码; 所述解码装置包括: 解码模块, 用于对所述编码装置中视频编码后的码流进行解码,得到还原 后按 G2IV'B2' '顺序排列的视频序列, 其中 G2为绿色分量, R2"为红色分量, B2" 为蓝色分量; 第二线性处理模块, 用于对将红色分量 R2"和蓝色分量 B2"做第二线性处 理, 获得红色分量 R2'和蓝色分量 B2 '; 上采样模块, 用于对红色分量1 2 '和蓝色分量 B2 '进行 a first reordering module, configured to reorder the video sequences of the RGB color mode in the order of G^'B'; and an encoding module, configured to perform video encoding on the reordered G^'B' video sequence; The decoding device includes: a decoding module, configured to decode a video coded code stream in the encoding device, and obtain a video sequence arranged in G 2 IV′B 2 ′′ order after reduction, where G 2 is a green component. R 2 " is a red component, B 2 " is a blue component; a second linear processing module is used to perform a second linear processing on the red component R 2 " and the blue component B 2 " to obtain a red component R 2 'and Blue component B 2 '; upsampling module for red component 1 2 ' and blue component B 2 '
2 χ →Μ χ Ν的上 2  2 χ →Μ χ Ν上上 2
采样, 得到分辨率为 Μ X Ν的红色分量 R2和蓝色分量 B2; 第二重排序模块, 用于按照 R2 G2 82的顺序重排列视频序列的 3个颜色分 Sampling, obtaining a red component R 2 and a blue component B 2 having a resolution of Μ X ; ; a second reordering module for rearranging the three color points of the video sequence in the order of R 2 G 2 8 2
本发明的有益效果: The beneficial effects of the invention:
化的感知程度是不一样的,即使 在 RGB色彩空间, 人眼对不同色彩的感觉敏感程度也是不一样的, 人眼对绿色 的刺激要比红色和蓝色更为敏感一些。本发明实施例通过对视频信号的绿色分 量进行清晰度较高的编码,对蓝色和红色分量进行清晰度较低的编码, 以稍降 低图像编码质量为代价, 获取较好的视觉编码效果, 提高了解码端设备的解码 和回显速度, 尤其适用于低端手持设备。 The degree of perception is different, even In the RGB color space, the human eye is also sensitive to different colors. The human eye is more sensitive to green than red and blue. In the embodiment of the present invention, the blue component of the video signal is encoded with higher definition, and the blue and red components are encoded with lower definition, so as to obtain a better visual coding effect at the cost of slightly lowering the image coding quality. Improves the decoding and echo speed of the decoder device, especially for low-end handheld devices.
附图说明 DRAWINGS
图 1是本发明实施例一种 RGB空间的视频编码方法流程图;  1 is a flow chart of a video encoding method in an RGB space according to an embodiment of the present invention;
图 2是本发明实施例一种 RGB空间的视频解码方法流程图;  2 is a flowchart of a video decoding method in an RGB space according to an embodiment of the present invention;
图 3是本发明实施例一种 RGB空间的视频编码装置结构图;  3 is a structural diagram of a video encoding apparatus in an RGB space according to an embodiment of the present invention;
图 4是本发明实施例一种 RGB空间的视频解码装置结构图;  4 is a structural diagram of a video decoding apparatus in an RGB space according to an embodiment of the present invention;
图 5是本发明实施例一种 RGB空间的视频编解码系统结构图。  FIG. 5 is a structural diagram of a video codec system in an RGB space according to an embodiment of the present invention.
具体实舫式 为了使本发明的目的、技术方案及优点更加清楚明白, 以下结合附图和实 施例, 对本发明进行进一步详细说明, 为了便于说明, 仅示出了与本发明实施 例相关的部分。 应当理解, 此处所描写的具体实施例, 仅仅用于解释本发明, 并不用以限制本发明。 The present invention will be further described in detail below with reference to the accompanying drawings and embodiments. For the convenience of description, only the parts related to the embodiments of the present invention are shown. . It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
人眼对组成彩色信号的各个色彩分量的变化的感知程度是不一样的,即使 在 RGB色彩空间, 人眼对不同色彩的感觉敏感程度也是不一样的, 人眼对绿色 的刺激要比红色和蓝色更为敏感一些。本发明实施例通过对视频信号的绿色分 量进行清晰度较高的编码,对蓝色和红色分量进行清晰度较低的编码, 以稍降 低图像编码质量为代价, 获取较好的视觉编码效果, 提高了解码端设备的解码 和回显速度, 尤其适用于低端手持设备。 如图 1所示是本发明实施例一种 RGB空间的视频编码方法流程图,所述 法包括以下步骤: The human eye's perception of the changes in the individual color components that make up the color signal is different. Even in the RGB color space, the human eye is sensitive to different colors. The human eye is more irritating to green than the red color. Blue is more sensitive. In the embodiment of the present invention, the blue component of the video signal is encoded with higher definition, and the blue and red components are encoded with lower definition, so as to obtain a better visual coding effect at the cost of slightly lowering the image coding quality. Improves the decoding and echo speed of the decoder device, especially for low-end handheld devices. FIG. 1 is a flowchart of a video encoding method in an RGB space according to an embodiment of the present invention, where the method includes the following steps:
S101: 将分辨率为 MxN、 按^ d 顺序排列的视频序列的红色分量!^和 色分量 进行 M X N→ X 的下采样, 得到分辨率为 X 的红色分量 '  S101: The red component of the video sequence in the order of MxN and in the order of ^d! ^ and color components are downsampled by M X N→ X to obtain a red component with resolution X.
2 2 2 2  2 2 2 2
蓝色分量 Β 。 其中, 为绿色分量, Μ表示视频序列的水平分辨率, Ν表示视频序列的 直分辨率。 Blue component Β . Where is the green component, Μ represents the horizontal resolution of the video sequence, and Ν represents the direct resolution of the video sequence.
将分辨率为 ΜχΝ、 按^ G: 顺序排列的视频序列的红色分量 和蓝色分: 进行 M X N→ X 的下采样具体为:  The red component and the blue component of the video sequence with the resolution of ΜχΝ, in the order of ^ G:: The downsampling of M X N→ X is as follows:
2 2  twenty two
R1'(i,j) = (R1(2i,2j) + R1(2i + l,2j) + R1(2i,2j+l) + R1(2i + l,2j+l))/4 Q) B1'(i,j) = (B1(2i,2j) + B1(2i + l,2j) + B1(2i,2j +!) + 6^21 + 1,2] +1))/4 其中: i, j分别表示行下标和列下标; R 1 '(i,j) = (R 1 (2i,2j) + R 1 (2i + l,2j) + R 1 (2i,2j+l) + R 1 (2i + l,2j+l)) /4 Q) B 1 '(i,j) = (B 1 (2i,2j) + B 1 (2i + l,2j) + B 1 (2i,2j +!) + 6^21 + 1,2] +1))/4 where: i, j represent row subscript and column subscript respectively;
通过本步骤的变换, 可将 1: 1: 1格式的 RBG信号转化为 4: 1: 1格式 YUV信号, 使其适用于当前 4: 2: 0制式的主流编码器。  Through the transformation of this step, the RBG signal of 1: 1: 1 format can be converted into the 4: 1: 1 format YUV signal, making it suitable for the current mainstream encoder of 4: 2: 0 format.
S102: 将红色分量 I 和蓝色分量 A '做第一线性处理, 获得红色分量 I ' 蓝色分量 B '。 所述将红色分量 I 和蓝色分量 B 做第一线性处理具体为: S102: Perform a first linear processing on the red component I and the blue component A′ to obtain a red component I′ blue component B′. The first linear processing of the red component I and the blue component B is specifically as follows:
1^"=(1^'-128)/2 + 128 (2) 1^"=(1^'-128)/2 + 128 ( 2 )
B1"=(B1'-128)/2 + 128 B 1 "=(B 1 '-128)/2 + 128
S103: 将 RGB色彩模式的视频序列按照 G^'B '的顺序重排序。 S103: Reorder the video sequences of the RGB color mode in the order of G^'B'.
S104: 对重排序后的 G^'B '视频序列进行视频编码。 S104: Perform video coding on the reordered G^'B' video sequence.
本发明实施例采用的编码器为 4: 2: 0制式的编码器, 如 JM或 x264编码 本发明实施例通过对视频信号的绿色分量进行清晰度较高的编码,对蓝色 和红色分量进行清晰度较低的编码, 以稍降低图像编码质量为代价, 获取较好 的视觉编码效果,提高了解码端设备的解码和回显速度, 尤其适用于低端手持 设备。 The encoder used in the embodiment of the present invention is an encoder of 4:2:0 format, such as JM or x264 encoding. In the embodiment of the present invention, the blue component of the video signal is encoded with higher definition, and the blue and red components are encoded with lower definition, so as to obtain a better visual coding effect at the cost of slightly lowering the image coding quality. Improves the decoding and echo speed of the decoder device, especially for low-end handheld devices.
实施例二 Embodiment 2
如图 2所示是本发明实施例一种 RGB空间的视频解码方法流程图,所述方 法包括以下步骤:  FIG. 2 is a flowchart of a video decoding method in an RGB space according to an embodiment of the present invention, where the method includes the following steps:
S201: 对编码后的码流进行解码, 得到还原后按 G2I 'B2' '顺序排列的视频 序列。 其中, 为绿色分量, 为红色分量, "为蓝色分量; 所述编码后的 码流为 4: 1: 1格式的 YUV信号, 采用的解码器为 4: 2: 0制式的解码器, 如 JM或 x264解码器等。 S201: Decode the encoded code stream to obtain a video sequence arranged in the order of G 2 I 'B 2 '' after restoration. Wherein, the green component is a red component, "is a blue component; the encoded code stream is a 4: 1:1 format YUV signal, and the decoder used is a 4:2:0 format decoder, such as JM or x264 decoder, etc.
S202:将红色分量 和蓝色分量 Β2' '做第二线性处理,获得红色分量 I 和 蓝色分量 Β2'。 所述将红色分量 I '和蓝色分量 Β2' '做第二线性处理具体为: S202: Perform a second linear processing on the red component and the blue component Β 2 '' to obtain a red component I and a blue component Β 2 '. The second linear processing of the red component I′ and the blue component Β 2 ′′ is specifically as follows:
R2'=(R2"-128)x2 + 128 (3) R 2 '=(R 2 "-128)x2 + 128 ( 3 )
B2'=(B2"-128)x2 + 128 B 2 '=(B 2 "-128)x2 + 128
S203: 对红色分量 I 和蓝色分量 B2 '进行 χ →ΜχΝ的上采样, 得到 S203: Perform χ→ΜχΝ upsampling on the red component I and the blue component B 2 ' to obtain
2 2  twenty two
分辨率为 Μ X Ν的红色分量 和蓝色分量 Β2。 其中, 所述对红色分量 I 和蓝色分量 Β2 '进行 χ →ΜχΝ的上采样具体 The resolution is 红色 X Ν red component and blue component Β 2 . Wherein, the upsampling of the red component I and the blue component Β 2 '
2 2  twenty two
为: For:
= IV(2i,2j) = IV(2i + l,2j) = IV(2i,2j +1) = ¾'(21 + 1,2] +1) (4) B2(i, j) = B2'(2i,2j) = B2'(2i + l,2j) = B2'(2i,2j+1) = B2'(2i + l,2j +1) 其中: i, j分别表示行下标和列下标; 通过本步骤的变换, 可将 4: 1: 1格式的 YUV信号转化为 1: 1: 1格式的 RBG 信号, 以便其在显示设备上进行显示。 = IV(2i,2j) = IV(2i + l,2j) = IV(2i,2j +1) = 3⁄4'(21 + 1,2] +1) (4) B 2 (i, j) = B 2 '(2i,2j) = B 2 '(2i + l,2j) = B 2 '(2i,2j+1) = B 2 '(2i + l,2j +1) Where: i, j represent the row subscript and the column subscript respectively; by the transformation of this step, the YUV signal of the 4: 1:1 format can be converted into the RBG signal of the 1: 1: format, so that it is on the display device Display.
S204: 按照 R2G282的顺序重排列视频序列的 3个颜色分量。 S204: Rearrange the three color components of the video sequence in the order of R 2 G 2 8 2 .
实施例三 Embodiment 3
如图 3所示是本发明实施例一种 RGB空间的视频编码装置结构图,所述编 码装置包括:  FIG. 3 is a structural diagram of a video encoding apparatus in an RGB space according to an embodiment of the present invention, where the encoding apparatus includes:
下采样模块, 用于将分辨率为 MxN、 按!^ G, 1^顺序排列的视频序列的红色 分量 和蓝色分量 进行 M X N→ X 的下采样, 得到分辨率为 X 的红色  Downsampling module, used to set the resolution to MxN, press! ^ G, 1^ The red and blue components of the video sequence arranged in sequence are downsampled by M X N→ X to obtain a red color with a resolution of X
Figure imgf000010_0001
Figure imgf000010_0001
:述将红色分量 和蓝色分量 进行 MxN^ x 的下采样具体为 : The downsampling of the red and blue components by MxN^ x is specifically
2 2  twenty two
R1'(i,j) = (R1(2i,2j) + R1(2i + l,2j) + R1(2i,2j+l) + R1(2i + l,2j+l))/4 R 1 '(i,j) = (R 1 (2i,2j) + R 1 (2i + l,2j) + R 1 (2i,2j+l) + R 1 (2i + l,2j+l)) /4
(1) B1'(i,j) = (B1(2i,2j) + B1(2i + l,2j) + B1(2i,2j +!) + 6^21 + 1,2] +1))/4 其中: i, j分别表示行下标和列下标; 第一线性处理模块, 用于将红色分量 I 和蓝色分量 A '做第一线性处理, 获得红色分量 RT和蓝色分量 Β ; 其中, 所述将红色分量 I 和蓝色分量 B 做第一线性处理具体为: (1) B 1 '(i,j) = (B 1 (2i,2j) + B 1 (2i + l,2j) + B 1 (2i,2j +!) + 6^21 + 1,2] + 1)) / 4 where: i, j respectively represent the row subscript and the column subscript; the first linear processing module is used to perform the first linear processing of the red component I and the blue component A' to obtain the red component RT and blue Color component Β ; wherein, the first linear processing of the red component I and the blue component B is specifically:
1^"=(1^'-128)/2 + 128 (2) 1^"=(1^'-128)/2 + 128 ( 2 )
B1"=(B1'-128)/2 + 128 第一重排序模块, 用于将 RGB色彩模式的视频序列按照 G^'B '的顺序重 排序; 编码模块, 用于对重排序后的 G^'B '视频序列进行视频编码。 本发明实施例通过对视频信号的绿色分量进行清晰度较高的编码,对蓝色 和红色分量进行清晰度较低的编码, 以稍降低图像编码质量为代价, 获取较好 的视觉编码效果,提高了解码端设备的解码和回显速度, 尤其适用于低端手持 设备。 B 1 "=(B 1 '-128)/2 + 128 a first reordering module for reordering the video sequences of the RGB color mode in the order of G^'B'; An encoding module, configured to perform video encoding on the reordered G^'B' video sequence. In the embodiment of the present invention, the blue component of the video signal is encoded with higher definition, and the blue and red components are encoded with lower definition, so as to obtain a better visual coding effect at the cost of slightly lowering the image coding quality. Improves the decoding and echo speed of the decoder device, especially for low-end handheld devices.
实施例四 Embodiment 4
如图 4所示是本发明实施例一种 RGB空间的视频解码装置结构图,所述解 码装置包括:  FIG. 4 is a structural diagram of a video decoding apparatus in an RGB space according to an embodiment of the present invention, where the decoding apparatus includes:
解码模块, 用于对编码后的码流进行解码, 得到还原后按 G2IV'B2''顺序排 列的视频序列; 第二线性处理模块, 用于对将红色分量 和蓝色分量 B2"做第二线性处 理, 获得红色分量 I 和蓝色分量 B2'。 所述将红色分量 I '和蓝色分量 Β2' '做第二线性处理具体为: a decoding module, configured to decode the encoded code stream, and obtain a video sequence arranged in G 2 IV 'B 2 '' order after reduction; a second linear processing module, configured to pair the red component and the blue component B 2 "Do the second linear processing to obtain the red component I and the blue component B 2 '. The second linear processing of the red component I ' and the blue component Β 2 '' is specifically as follows:
R2'=(R2"-128)x2 + 128 (3) R 2 '=(R 2 "-128)x2 + 128 ( 3 )
B2'=(B2"-128)x2 + 128 上采样模块, 用于对红色分量 I 和蓝色分量 B2 '进行 χ →ΜχΝ的上 B 2 '=(B 2 "-128)x2 + 128 upsampling module for 红色→ΜχΝ on red component I and blue component B 2 '
2 2  twenty two
采样, 得到分辨率为 Μ X Ν的红色分量 和蓝色分量 Β2。 其中, 所述对红色分量 I 和蓝色分量 Β2 '进行 χ →ΜχΝ的上采样具体 Sampling yields a red component and a blue component Β 2 with a resolution of Μ X Ν. Wherein, the upsampling of the red component I and the blue component Β 2 '
2 2  twenty two
为: For:
= IV(2i,2j) = IV(2i + l,2j) = IV(2i,2j +1) = ¾'(21 + 1,2] +1) (4) B2(i, j) = B2'(2i,2j) = B2'(2i + l,2j) = B2'(2i,2j+1) = B2'(2i + l,2j +1) 其中: i, j分别表示行下标和列下标; 第二重排序模块, 用于按照 82的顺序重排列视频序列的 3个颜色分 实施例五 = IV(2i,2j) = IV(2i + l,2j) = IV(2i,2j +1) = 3⁄4'(21 + 1,2] +1) (4) B 2 (i, j) = B 2 '(2i,2j) = B 2 '(2i + l,2j) = B 2 '(2i,2j+1) = B 2 '(2i + l,2j +1) where: i, j respectively represent the line Subscript and column subscript; second reordering module, for reordering the three color points of the video sequence in the order of 8 2 Embodiment 5
如图 5所示是本发明实施例一种 RGB空间的视频编解码系统结构图,所述 系统包括: 编码装置和解码装置。 所述编码装置包括: 下采样模块, 用于将分辨率为 MxN、 按!^ G, 1^顺序排列的视频序列的红色 分量 和蓝色分量 进行 M X N→ X 的下采样, 得到分辨率为 X 的红色  FIG. 5 is a structural diagram of a video codec system in an RGB space according to an embodiment of the present invention, where the system includes: an encoding device and a decoding device. The encoding device comprises: a downsampling module for setting the resolution to MxN, pressing! ^ G, 1^ The red and blue components of the video sequence arranged in sequence are downsampled by M X N→ X to obtain a red color with a resolution of X
2 2 2 2 分量 I 和蓝色分量 ΒΛ 其中, ^为绿色分量, M表示视频序列的水平分辨率, N表示视频序列的 垂直分辨率。 所述将红色分量^和蓝色分量 进行 ΜχΝ^^χ 的下采样具体为:  2 2 2 2 Component I and blue component ΒΛ where ^ is the green component, M is the horizontal resolution of the video sequence, and N is the vertical resolution of the video sequence. The downsampling of the red component ^ and the blue component is specifically:
2 2  twenty two
R1'(i,j) = (R1(2i,2j) + R1(2i + l,2j) + R1(2i,2j+l) + R1(2i + l,2j+l))/4 Q) B1'(i,j) = (B1(2i,2j) + B1(2i + l,2j) + B1(2i,2j +!) + 6^21 + 1,2] +1))/4 其中: i, j分别表示行下标和列下标; 第一线性处理模块, 用于将红色分量 I 和蓝色分量 A '做第一线性处理, 获得红色分量 RT和蓝色分量 Β ; 其中, 所述将红色分量 I 和蓝色分量 B 做第一线性处理具体为: R 1 '(i,j) = (R 1 (2i,2j) + R 1 (2i + l,2j) + R 1 (2i,2j+l) + R 1 (2i + l,2j+l)) /4 Q) B 1 '(i,j) = (B 1 (2i,2j) + B 1 (2i + l,2j) + B 1 (2i,2j +!) + 6^21 + 1,2] +1))/4 where: i, j respectively represent the row subscript and the column subscript; the first linear processing module is configured to perform the first linear processing on the red component I and the blue component A' to obtain the red component RT and The blue component Β; wherein, the first linear processing of the red component I and the blue component B is specifically:
1^"=(1^'-128)/2 + 128 (2) 1^"=(1^'-128)/2 + 128 ( 2 )
B1"=(B1'-128)/2 + 128 第一重排序模块, 用于将 RGB色彩模式的视频序列按照 G^'B '的顺序重 排序; 编码模块, 用于对重排序后的 G^'B '视频序列进行视频编码。 所述解码装置包括: 解码模块, 用于对编码装置中的视频编码后的码流进行解码,得到还原后 按 G2 " B2 ' '顺序排列的视频序列; 第二线性处理模块, 用于对将红色分量 R2"和蓝色分量 B2"做第二线性处 理, 获得红色分量 R2'和蓝色分量 B2'。 所述将红色分量 R7 ' '和蓝色分量 B7 ' '做第二线性处理具体为: B 1 "=(B 1 '-128)/2 + 128 a first reordering module for reordering the video sequences of the RGB color mode in the order of G^'B'; an encoding module for reordering The G^'B' video sequence is video encoded. The decoding device includes: a decoding module, configured to decode a video encoded code stream in the encoding device, and obtain a video sequence arranged in a G 2 "B 2 '' order after restoration; a second linear processing module, configured to For the second linear processing of the red component R 2 " and the blue component B 2 ", a red component R 2 ' and a blue component B 2 ' are obtained. The red component R 7 '' and the blue component B 7 ''Do the second linear processing specifically:
R2'=(R2"-128)x2 + 128 R 2 '=(R 2 "-128)x2 + 128
(3)  (3)
B2'=(B2"-128)x2 + 128 上采样模块, 用于对红色分量12 '和蓝色分量 B2 '进行 x MxN的上 B 2 '=(B 2 "-128)x2 + 128 upsampling module for red component 1 2 ' and blue component B 2 'on x MxN
2 2  twenty two
采样, 得到分辨率为 M X N的红色分量 R2和蓝色分量 B2。 其中, 所述对红色分量 R2 '和蓝色分量 B2 '进行 X → M X N的上采样具体 Sampling yields a red component R 2 and a blue component B 2 with a resolution of MXN. Wherein, the red component R 2 ' and the blue component B 2 ' are upsampled by X → MXN
2 2  twenty two
为: For:
= IV(2i,2j) = IV(2i + l,2j) = IV(2i,2j +1) = ¾'(21 + 1,2] +1)  = IV(2i,2j) = IV(2i + l,2j) = IV(2i,2j +1) = 3⁄4'(21 + 1,2] +1)
(4)  (4)
B2(i, j) = B2'(2i,2j) = B2'(2i + l,2j) = B2'(2i,2j+1) = B2'(2i + l,2j +1) 其中: i, j分别表示行下标和列下标; 第二重排序模块, 用于按照 R2G282的顺序重排列视频序列的 3个颜色分 B 2 (i, j) = B 2 '(2i, 2j) = B 2 '(2i + l, 2j) = B 2 '(2i, 2j+1) = B 2 '(2i + l, 2j +1 Where: i, j represent row subscript and column subscript respectively; second reordering module, for reordering the three color subscores of the video sequence in the order of R 2 G 2 8 2
本发明实施例通过对视频信号的绿色分量进行清晰度较高的编码,对蓝色 和红色分量进行清晰度较低的编码, 以稍降低图像编码质量为代价, 获取较好 的视觉编码效果,提高了解码端设备的解码和回显速度, 尤其适用于低端手寺 设备 < In the embodiment of the present invention, the blue component of the video signal is encoded with higher definition, and the blue and red components are encoded with lower definition, so as to obtain a better visual coding effect at the cost of slightly lowering the image coding quality. Improve the decoding and echo speed of the decoding device, especially for low-end temple equipment <
本领域的普通技术人员可以理解,实现上述实施例方法中的全部或部分 骤是可以通过程序指令相关硬件来完成的,所述的程序可
Figure imgf000013_0001
It will be understood by those skilled in the art that all or part of the steps of the foregoing embodiments may be implemented by a program instruction related hardware, and the program may be
Figure imgf000013_0001
读取存储介质中, 所述的存储介质可以为 R0M、 RAM, 磁盘、 光盘等。 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、等同替换和改进等, 均应包含在本发明的保 护范围之内。 In reading the storage medium, the storage medium may be a ROM, a RAM, a magnetic disk, an optical disk, or the like. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention should be included in the protection of the present invention. Within the scope.

Claims

权 利 要 求 Rights request
1、 一种 RGB空间的视频编码方法, 其特征在于, 所述方法包括: 将分辨率为 MxN、 按^ G: 顺序排列的视频序列的红色分量!^和蓝色分 量 进行 M X N→ X 的下采样, 得到分辨率为 X 的红色分量 I 和蓝色 A video encoding method for RGB space, characterized in that the method comprises: red components of a video sequence arranged in order of resolution MxN and in order of ^ G:! ^ and blue components downsample M X N→ X to get red component I and blue with resolution X
2 2 2 2  2 2 2 2
分量 A '; Component A ';
将红色分量 I 和蓝色分量 ^做第一线性处理,获得红色分量 RT和蓝色分 量 Β ';  The red component I and the blue component ^ are first linearly processed to obtain a red component RT and a blue component Β ';
将所述 RGB色彩模式的视频序列按照 G^'B '的顺序重排序; 对重排序后的 G^'B '视频序列进行视频编码; 其中, ^为绿色分量, M表示视频序列的水平分辨率, N表示视频序列的 垂直分辨率。  Reordering the video sequences of the RGB color mode in the order of G^'B'; performing video encoding on the reordered G^'B' video sequence; wherein, ^ is a green component, and M is a horizontal resolution of the video sequence Rate, N represents the vertical resolution of the video sequence.
2、 如权利要求 1所述的 RGB空间的视频编码方法, 其特征在于, 所述将分辨 率为 MxN、 按!^ d 顺序排列的视频序列的红色分量 和蓝色分量 ^进行 2. The video coding method of RGB space according to claim 1, wherein the resolution is MxN, press! ^ d The red and blue components of the sequence of video sequences are processed ^
ΜχΝ^^χ 的下采样具体为: The downsampling of ΜχΝ^^χ is as follows:
2 2  twenty two
R1'(i,j) = (R1(2i,2j) + R1(2i + l,2j) + R1(2i,2j+l) + R1(2i + l,2j+l))/4 Q ) B1'(i,j) = (B1(2i,2j) + B1(2i + l,2j) + B1(2i,2j+l) + B1(2i + l,2j+l))/4 其中: i, j分别表示行下标和列下标。 R 1 '(i,j) = (R 1 (2i,2j) + R 1 (2i + l,2j) + R 1 (2i,2j+l) + R 1 (2i + l,2j+l)) /4 Q ) B 1 '(i,j) = (B 1 (2i,2j) + B 1 (2i + l,2j) + B 1 (2i,2j+l) + B 1 (2i + l,2j +l))/4 where: i, j represent the row subscript and column subscript respectively.
3、 如权利要求 1所述的 RGB空间的视频编码方法, 其特征在于, 所述将红 色分量 I 和蓝色分量 B 做第一线性处理具体为: 3. The video coding method of RGB space according to claim 1, wherein the first linear processing of the red component I and the blue component B is specifically:
1^"=(1^'-128)/2 + 128 (2) 1^"=(1^'-128)/2 + 128 ( 2 )
B1"=(B1'-128)/2 + 128 ° B 1 "=(B 1 '-128)/2 + 128 °
4、 一种 RGB空间的视频解码方法, 其特征在于, 所述方法包括: 对编码后的码流进行解码, 得到还原后按 G2 "B2 ' '顺序排列的视频序列, 其中 G2为绿色分量, I '为红色分量, B2"为蓝色分量; A video decoding method for RGB space, the method comprising: decoding a coded code stream, and obtaining a video sequence arranged in a G 2 "B 2 '' order after restoration, wherein G 2 is The green component, I 'is the red component, and B 2 " is the blue component;
将红色分量 I '和蓝色分量 Β2' '做第二线性处理, 获得红色分量 I 和蓝色 分量 Β2'; 对红色分量 R2'和蓝色分量 B2 '进行 x → M X N的上采样, 得到分辨率 The red component I 'and the blue component Β 2 '' are subjected to a second linear process to obtain a red component I and a blue component Β 2 '; Upsampling the red component R 2 ' and the blue component B 2 ' by x → MXN to obtain resolution
2 2  twenty two
为 ΜχΝ的红色分量 和蓝色分量 B2, 其中 M表示视频序列的水平分辨率, N 表示视频序列的垂直分辨率; a red component and a blue component B 2 , where M represents the horizontal resolution of the video sequence and N represents the vertical resolution of the video sequence;
按照 R2 G2 B2的顺序重排列视频序列的 3个颜色分量。 The three color components of the video sequence are rearranged in the order of R 2 G 2 B 2 .
5、 如权利要求 4所述的 RGB空间的视频解码方法, 其特征在于, 所述将红 色分量 R7 ' '和蓝色分量 B7 ' '做第二线性处理具体为: The video decoding method of the RGB space according to claim 4, wherein the second linear processing of the red component R 7 '' and the blue component B 7 '' is specifically:
R2'=(R2"-128)x2 + 128 R 2 '=(R 2 "-128)x2 + 128
(3)  (3)
B2'=(B2"-128)x2 + 128 B 2 '=(B 2 "-128)x2 + 128
6、 如权利要求 4所述的 RGB空间的视频解码方法, 其特征在于, 所述对红色 分量 R2 '和蓝色分量 B2 '进行 X → M X N的上采样具体为: The video decoding method of the RGB space according to claim 4, wherein the upsampling of the X→MXN for the red component R 2 ′ and the blue component B 2 ′ is specifically:
¾(ί,]) = IV(2i,2j) = IV(2i + l,2j) = IV(2i,2j +1) = ^'(21 + 1,2] +1) 3⁄4(ί,]) = IV(2i,2j) = IV(2i + l,2j) = IV(2i,2j +1) = ^'(21 + 1,2] +1)
(4)  (4)
B2(i, j) = B2'(2i,2j) = B2'(2i + l,2j) = B2'(2i,2j+1) = B2'(2i + l,2j +1) 其中: i, j分别表示行下标和列下标。 B 2 (i, j) = B 2 '(2i, 2j) = B 2 '(2i + l, 2j) = B 2 '(2i, 2j+1) = B 2 '(2i + l, 2j +1 Where: i, j represent the row subscript and column subscript respectively.
7、 一种 RGB空间的视频编码装置, 其特征在于, 所述编码装置包括: 下采样模块, 用于将分辨率为 MxN、 按!^ G, 1^顺序排列的视频序列的红色 分 和蓝色分量 进行 M χΝ χ 的下采样, 得到分辨率为 Μ χ 的红色 7. A video encoding device in RGB space, wherein the encoding device comprises: a downsampling module, configured to convert the resolution to MxN, press! ^ G, 1^ The red and blue components of the video sequence arranged in sequence are downsampled by M χΝ , to obtain a red with a resolution of Μ χ
2 2 2 2  2 2 2 2
分 I 和蓝色分量 Β ; 其中, 为绿色分量, M 视频序列的水平分辨率, 视频序列的垂直分辨率; 第一线性处理模块, 用于将红色分量 I 和蓝色分量 A '做第一线性处理, 获得红色分量 RT和蓝色分量 Β ; Divided into I and blue components Β ; where, is the green component, the horizontal resolution of the M video sequence, the vertical resolution of the video sequence; the first linear processing module, which is used to make the red component I and the blue component A' first Linear processing, obtaining red component RT and blue component Β;
第一重排序模块, 用于将所述 RGB色彩模式的视频序列按照 G^'B '的顺 序重排序;  a first reordering module, configured to reorder the video sequences of the RGB color mode in the order of G^'B';
编码模块, 用于对重排序后的 G^'B '视频序列进行视频编码。  An encoding module, configured to video encode the reordered G^'B' video sequence.
8、 如权利要求 7所述的 RGB空间的视频编码装置, 其特征在于, 所述将分辨 率为 MxN、 按!^ Gl 顺序排列的视频序列的红色分量 和蓝色分量 ^进行 8. The RGB spatial video encoding apparatus according to claim 7, wherein said distinguishing Rate MxN, press! ^ G l sequentially arranged the red and blue components of the video sequence ^
ΜχΝ^^χ 的下采样具体为: The downsampling of ΜχΝ^^χ is as follows:
2 2  twenty two
R1'(i,j) = (R1(2i,2j) + R1(2i + l,2j) + R1(2i,2j+l) + R1(2i + l,2j+l))/4 R 1 '(i,j) = (R 1 (2i,2j) + R 1 (2i + l,2j) + R 1 (2i,2j+l) + R 1 (2i + l,2j+l)) /4
(1) B1'(i,j) = (B1(2i,2j) + B1(2i + l,2j) + B1(2i,2j +!) + 6^21 + 1,2] +1))/4 其中: i, j分别表示行下标和列下标。 (1) B 1 '(i,j) = (B 1 (2i,2j) + B 1 (2i + l,2j) + B 1 (2i,2j +!) + 6^21 + 1,2] + 1)) / 4 where: i, j represent the line subscript and column subscript respectively.
9、 如权利要求 7所述的 RGB空间的视频编码装置, 其特征在于, 所述其中, 所述将红色分量 I 和蓝色分量 A '做第一线性处理具体为: 9. The RGB spatial video encoding apparatus according to claim 7, wherein the first linear processing of the red component I and the blue component A' is:
1^"=(1^'-128)/2 + 128 (2) B1"=(B1'-128)/2 + 128 。 1^"=(1^'-128)/2 + 128 ( 2 ) B 1 "=(B 1 '-128)/2 + 128 .
10、 一种 RGB空间的视频解码装置, 其特征在于, 所述解码装置包括: 解码模块, 用于对编码后的码流进行解码, 得到还原后按 G2IV'B2''顺序排 列的视频序列, 其中 G2为绿色分量, R2"为红色分量, B2"为蓝色分量; 第二线性处理模块, 用于对将红色分量 R2"和蓝色分量 B2"做第二线性处 理, 获得红色分量 R2'和蓝色分量 B2 '; 上采样模块, 用于对红色分量12 '和蓝色分量 B2 '进行 χ →ΜχΝ的上 A video decoding device for RGB space, characterized in that: the decoding device comprises: a decoding module, configured to decode the encoded code stream, and obtain a sequence of G 2 IV 'B 2 '' after restoration. a video sequence, where G 2 is a green component, R 2 "is a red component, B 2 " is a blue component; and a second linear processing module is used to make the second component of the red component R 2 " and the blue component B 2 " Linear processing, obtaining a red component R 2 ' and a blue component B 2 '; an upsampling module for performing χ → 对 on the red component 1 2 ' and the blue component B 2 '
2 2  twenty two
采样, 得到分辨率为 ΜχΝ的红色分量 R2和蓝色分量 Β2, 其中 Μ表示视频序列 的水平分辨率, Ν表示视频序列的垂直分辨率; 第二重排序模块, 用于按照 R2G282的顺序重排列视频序列的 3个颜色分 Sampling, obtaining a red component R 2 and a blue component Β 2 with a resolution of ΜχΝ, where Μ represents the horizontal resolution of the video sequence, Ν represents the vertical resolution of the video sequence; and a second reordering module, for R 2 G Rearrange the 3 color points of the video sequence in the order of 2 8 2
11、 如权利要求 10所述的 RGB空间的视频解码装置, 其特征在于, 所述将 红色分量 R2"和蓝色分量 Β2' '做第二线性处理具体为:
Figure imgf000017_0001
11. The RGB spatial video decoding apparatus according to claim 10, wherein the performing the second linear processing of the red component R 2 " and the blue component Β 2 '' is specifically:
Figure imgf000017_0001
12、 如权利要求 10所述的 RGB空间的视频解码装置, 其特征在于, 所述对红 色分量 R2 '和蓝色分量 B2 '进行 χ → Μ χ N的上采样具体为: 12. The RGB spatial video decoding apparatus according to claim 10, wherein said pair of red The upper component of the color component R 2 ' and the blue component B 2 ' is χ → Μ χ N is specifically:
2 2  twenty two
¾(ί,]) = IV(2i,2j) = IV(2i + l,2j) = IV(2i,2j +1) = ¾'(21 + 1,2] +1) (4) B2(i, j) = B2'(2i,2j) = B2'(2i + l,2j) = B2'(2i,2j+1) = B2'(2i + l,2j +1) 其中: i, j分别表示行下标和列下标。 3⁄4(ί,]) = IV(2i,2j) = IV(2i + l,2j) = IV(2i,2j +1) = 3⁄4'(21 + 1,2] +1) (4) B 2 ( i, j) = B 2 '(2i, 2j) = B 2 '(2i + l, 2j) = B 2 '(2i, 2j+1) = B 2 '(2i + l, 2j +1) where: i, j represent the line subscript and column subscript respectively.
13、 一种 RGB空间的视频编解码系统, 其特征在于, 所述系统包括: 编码 装置和解码装置;  13. A video codec system for RGB space, the system comprising: an encoding device and a decoding device;
所述编码装置包括: 下采样模块, 用于将分辨率为 MxN、 按!^ G, 1^顺序排列的视频序列的红色 分量 和蓝色分量 进行 M X N→ X 的下采样, 得到分辨率为 X 的红色  The encoding device comprises: a downsampling module for setting the resolution to MxN, pressing! ^ G, 1^ The red and blue components of the video sequence arranged in sequence are downsampled by M X N→ X to obtain a red color with a resolution of X
2 2 2 2  2 2 2 2
分量 I 和蓝色分量 B ; 其中, ^为绿色分量, M表示视频序列的水平分辨率, N表示视频序列的垂直分辨率; 第一线性处理模块, 用于将红色分量 I 和蓝色分量 A '做第一线性处理, 获得红色分量 RT和蓝色分量 Β ; 第一重排序模块, 用于将所述 RGB色彩模式的视频序列按照 G^'B '的顺 序重排序; 编码模块, 用于对重排序后的 G^'B '视频序列进行视频编码; 所述解码装置包括: 解码模块, 用于对所述编码装置中视频编码后的码流进行解码,得到还原 后按 G2IV'B2' '顺序排列的视频序列, 其中 G2为绿色分量, 为红色分量, B2" 为蓝色分量; 第二线性处理模块, 用于对将红色分量 和蓝色分量 B2"做第二线性处 理, 获得红色分量 I 和蓝色分量 B2 '; 上采样模块, 用于对红色分量 I 和蓝色分量 B2 '进行 χ →ΜχΝ的上 Component I and blue component B ; where ^ is the green component, M represents the horizontal resolution of the video sequence, N represents the vertical resolution of the video sequence, and the first linear processing module is used to convert the red component I and the blue component A 'Doing a first linear processing, obtaining a red component RT and a blue component Β; a first reordering module for reordering the video sequences of the RGB color mode in the order of G^'B'; an encoding module, for Performing video coding on the reordered G^'B' video sequence; the decoding apparatus includes: a decoding module, configured to decode a video encoded video stream in the encoding device, and obtain a restored G 2 IV' B 2 ''a sequence of video sequences, where G 2 is a green component, a red component, B 2 " is a blue component; a second linear processing module is used to make the red component and the blue component B 2 " Two linear processing, obtaining a red component I and a blue component B 2 '; an upsampling module for performing χ→ΜχΝ on the red component I and the blue component B 2 '
2 2  twenty two
采样, 得到分辨率为 Μ X Ν的红色分量 和蓝色分量 Β2; 第二重排序模块, 用于按照^ G7 B,的顺序重排列视频序列的 3个颜色分 Sampling, obtaining a red component and a blue component Β 2 with a resolution of Μ X ; ; a second reordering module for rearranging the three color points of the video sequence in the order of ^ G 7 B
14、 如权利要求 13所述
Figure imgf000019_0001
分辨率为 MxN、 按^ G: 顺序排列的视频序列的红色分量 和蓝色分量 ^进行
14. The method of claim 13
Figure imgf000019_0001
The red component and the blue component of the video sequence whose resolution is MxN and arranged in the order of ^ G:
ΜχΝ^^χ 的下采样具体为: The downsampling of ΜχΝ^^χ is as follows:
2 2  twenty two
R1'(i,j) = (R1(2i,2j) + R1(2i + l,2j) + R1(2i,2j+l) + R1(2i + l,2j+l))/4 R 1 '(i,j) = (R 1 (2i,2j) + R 1 (2i + l,2j) + R 1 (2i,2j+l) + R 1 (2i + l,2j+l)) /4
(1)  (1)
B1'(i,j) = (B1(2i,2j) + B1(2i + l,2j) + B1(2i,2j +!) + 6^21 + 1,2] +1))/4 其中: i, j分别表示行下标和列下标。 B 1 '(i,j) = (B 1 (2i,2j) + B 1 (2i + l,2j) + B 1 (2i,2j +!) + 6^21 + 1,2] +1)) /4 where: i, j represent the row subscript and the column subscript, respectively.
15、 如权利要求 13所述的 RGB空间的视频编解码系统, 其特征在于,
Figure imgf000019_0002
将红色分量 I 和蓝色分量 A '做第一线性处理具体为:
Figure imgf000019_0003
15. The video codec system of RGB space according to claim 13, wherein:
Figure imgf000019_0002
The first linear processing of the red component I and the blue component A' is specifically as follows:
Figure imgf000019_0003
16、 如权利要求 13所述的 RGB空间的视频编解码系统, 其特征在于, 将红色分量 R7 ' '和蓝色分量 B7 "做第二线性处理具体为 Video codec system 16, the RGB space as claimed in claim 13, characterized in that the red component R 7 '' and a blue component B 7 "do a second linear processing is specifically
R2'=(R2"-128)x2 + 128 R 2 '=(R 2 "-128)x2 + 128
(3)  (3)
B2'=(B2"-128)x2 + 128 B 2 '=(B 2 "-128)x2 + 128
17、 如权利要求 13所述
Figure imgf000019_0004
红色分量 R2 '和蓝色分量 B2 '进行 X → M X N的上采样具体为
17. The method of claim 13
Figure imgf000019_0004
The red component R 2 ' and the blue component B 2 ' perform X → MXN upsampling, specifically
2 2  twenty two
= IV(2i,2j) = IV(2i + l,2j) = IV(2i,2j +1) = ¾'(21 + 1,2] +1)  = IV(2i,2j) = IV(2i + l,2j) = IV(2i,2j +1) = 3⁄4'(21 + 1,2] +1)
(4) B2(i, j) = B2'(2i,2j) = B2'(2i + l,2j) = B2'(2i,2j+1) = B2'(2i + l,2j +1) 其中: i, j分别表示行下标和列下标。 (4) B 2 (i, j) = B 2 '(2i, 2j) = B 2 '(2i + l, 2j) = B 2 '(2i, 2j+1) = B 2 '(2i + l, 2j +1) where: i, j represent the row subscript and column subscript respectively.
PCT/CN2011/073508 2011-01-07 2011-04-29 Method, device and system for encoding and decoding video of red green and blue (rgb) space WO2012092732A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110003323.2 2011-01-07
CN201110003323.2A CN102075750B (en) 2011-01-07 2011-01-07 Method, device and system for encoding and decoding videos of red green and blue (RGB) space

Publications (1)

Publication Number Publication Date
WO2012092732A1 true WO2012092732A1 (en) 2012-07-12

Family

ID=44034073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073508 WO2012092732A1 (en) 2011-01-07 2011-04-29 Method, device and system for encoding and decoding video of red green and blue (rgb) space

Country Status (2)

Country Link
CN (1) CN102075750B (en)
WO (1) WO2012092732A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015192780A1 (en) * 2014-06-19 2015-12-23 Mediatek Singapore Pte. Ltd. Method and apparatus of candidate generation for single sample mode in video coding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1748430A (en) * 2003-02-14 2006-03-15 皇家飞利浦电子股份有限公司 Processing picture signals for a color sequential display
CN101378506A (en) * 2007-08-30 2009-03-04 崴强科技股份有限公司 Method for compressing image
CN101507277A (en) * 2006-08-16 2009-08-12 三星电子株式会社 Image encoding/decoding method and apparatus
EP2224724A2 (en) * 2003-12-27 2010-09-01 Samsung Electronics Co., Ltd. Image encoding and decoding method using residue sampling
CN101917629A (en) * 2010-08-10 2010-12-15 浙江大学 Green component and color difference space-based Bayer format color interpolation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7480417B2 (en) * 2004-10-19 2009-01-20 Microsoft Corp. System and method for encoding mosaiced image data employing a reversible color transform
EP2039145A2 (en) * 2006-06-28 2009-03-25 Nxp B.V. System and method for correcting colour images
CN100551080C (en) * 2006-08-28 2009-10-14 华为技术有限公司 Video input apparatus gamma characteristic correcting method and device in the video communication
CN101076125B (en) * 2007-06-18 2010-07-28 山东经济学院 Algorithm for optimizing RGB and YCbCr conversion computing in image compression
CN101226633B (en) * 2008-01-30 2011-04-20 哈尔滨工程大学 Method for segmentation of corps canopy image based on average dispersion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1748430A (en) * 2003-02-14 2006-03-15 皇家飞利浦电子股份有限公司 Processing picture signals for a color sequential display
EP2224724A2 (en) * 2003-12-27 2010-09-01 Samsung Electronics Co., Ltd. Image encoding and decoding method using residue sampling
CN101507277A (en) * 2006-08-16 2009-08-12 三星电子株式会社 Image encoding/decoding method and apparatus
CN101378506A (en) * 2007-08-30 2009-03-04 崴强科技股份有限公司 Method for compressing image
CN101917629A (en) * 2010-08-10 2010-12-15 浙江大学 Green component and color difference space-based Bayer format color interpolation method

Also Published As

Publication number Publication date
CN102075750A (en) 2011-05-25
CN102075750B (en) 2014-06-18

Similar Documents

Publication Publication Date Title
EP4089627A2 (en) A method and apparatus of encoding and decoding a color picture
KR20180123046A (en) Method and device for encoding high dynamic range picture, corresponding decoding method and decoding device
US11062432B2 (en) Method and device for reconstructing an HDR image
CN106027886B (en) A kind of panoramic video realizes the method and system of synchronization frame
KR20180044291A (en) Coding and decoding methods and corresponding devices
CN112995664B (en) Image sampling format conversion method, computer-readable storage medium, and encoder
CN102231836B (en) Graphics interchange format (GIF) file processing method and device for digital television system
CN107396002B (en) A kind of processing method and mobile terminal of video image
EP3562165B1 (en) Custom data indicating nominal range of samples of media content
CN102308582A (en) Method for the segmentation encoding of an image
US7688334B2 (en) Method and system for video format transformation in a mobile terminal having a video display
EP2222087A1 (en) Bit depth upscaling in RGB colour space for reducing propagation of errors due to transformation to YUV colour space
CN101923455A (en) Method for displaying and analyzing digital image in YUV format
CN110719484B (en) Image processing method
WO2012092732A1 (en) Method, device and system for encoding and decoding video of red green and blue (rgb) space
TWI472232B (en) Video transmission by decoupling color components and apparatus thereof and processor readable tangible medium encoded with instructions
EP3172718B1 (en) Method and apparatus for processing image data
WO2023279560A1 (en) Method for implementing coding and decoding of yuv444 image on basis of h.265
CN204929035U (en) High -definition audio and video collector
CN103533322B (en) YUV frame is transcoded into method and the device of RGB frame
CN109618144A (en) The method for identifying YUV signal source in more primary image signals
EP3051825A1 (en) A method and apparatus of encoding and decoding a color picture
CN2922341Y (en) Video meeting terminal capable of realizing high-definition rideo signal input and output
CN110225327B (en) Method for transmitting multi-primary-color chrominance information compatible with YUV format
CN103237225A (en) Method for correcting video encoding and decoding errors through utilizing luma and chroma (YUV) and red, green and blue (RGB) space union

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS (EPO FORM 1205A DATED 22-11-2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11855092

Country of ref document: EP

Kind code of ref document: A1