WO2012091220A1 - Composition for the prevention or treatment of neoplastic diseases, comprising mirna as an active ingredient - Google Patents

Composition for the prevention or treatment of neoplastic diseases, comprising mirna as an active ingredient Download PDF

Info

Publication number
WO2012091220A1
WO2012091220A1 PCT/KR2011/001688 KR2011001688W WO2012091220A1 WO 2012091220 A1 WO2012091220 A1 WO 2012091220A1 KR 2011001688 W KR2011001688 W KR 2011001688W WO 2012091220 A1 WO2012091220 A1 WO 2012091220A1
Authority
WO
WIPO (PCT)
Prior art keywords
kit
mir
disease
sequence
expression
Prior art date
Application number
PCT/KR2011/001688
Other languages
French (fr)
Korean (ko)
Inventor
김호근
김원규
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of WO2012091220A1 publication Critical patent/WO2012091220A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1135Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Definitions

  • composition for the prevention or treatment of tumor diseases comprising m i RNA as an active ingredient
  • the present invention relates to miR-494 and its use as negative regulators of KIT in GIST.
  • GISTs gastrointestinal stromal tumors
  • KIT oncogenes of the receptor tyrosine kinase family
  • PDGFRA v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog
  • KIT oncogenes of the receptor tyrosine kinase family
  • PDGFRA v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog
  • KIT v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog
  • PDGFRA v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog
  • Mutations in these genes lead to their continued activation, resulting in constant stimulation of downstream signaling pathways of KIT and PDGFRA [4, 5].
  • KIT activation is important for the development and progression of GIST [3].
  • the downstream molecular pathways involved in GIST tumorigenesis following KIT mutations are PI3-kinase, Src family kinase and Ras-E. And JAK-STAT, etc. [6] ⁇ The activation of the molecular pathways described above after KIT activation results in a GIST tumor formation process through cell proliferation activation and apoptotic signal inhibition [4, 6, 7].
  • imatinib (STI571), which competitively binds to the ATP binding pocket.
  • Treatment of imatinib inhibits KIT activation and molecularly blocks downstream MAP kinase and PI3-kinase -AKT pathways [7, 8].
  • GIST patients who become imatinib-resistant during imatinib treatment are resistant to the inhibitory effects of imatinib.
  • KIT Overexpression of KIT has been reported as a typical feature of GIST, and the presence of KIT mutations always leads to potent KIT expression [12, 13]. Although KIT mutations are present in about 70% of GIST patients, overexpression of KIT is found in over 90% of GIST patients, indicating that another complementary mechanism is present in KIT overexpression [2, 14]. Because microRNAs (miRNAs) play an important role in regulating gene expression in cancer, they are mechanisms that can regulate their aberrations [15, 16]. Currently, miRNAs known to target KIT are miR-221 and miR-222 [17]. Previously, we have identified five candidate miRNAs showing relatively inverse expression to KIT expression by comparing KIT expression and miRNA expression profiles in GIST patients [13].
  • the inventors have sought to develop new targets for the treatment of gastrointestinal stromal tumors (GISTs).
  • GISTs gastrointestinal stromal tumors
  • the inventors directly bind miR-494 to two different seed match sites present in KIT mRNA to down-regulate KIT expression, and downstream molecules of the KIT signaling transition pathway (eg, The present invention was completed by discovering that the expression of phospho-AKT and phospho-STAT3) is inhibited to inhibit the growth and proliferation of GIST cell lines (eg, GIST882 cell line) with KIT-activating mutations.
  • Kit-v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog KIT-mediated disease, disorder or condition.
  • a pharmaceutical composition for preventing or treating diseases, disorders or conditions is provided.
  • Another object of the present invention to provide a nucleotide sequence for the prevention or treatment of the disease, disorder or condition.
  • Another object of the present invention to provide a method for treating the disease, disorder or condition.
  • the present invention provides microRNA-494 (miR-494). Or v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) comprising an agent that induces overexpression of miR-494-a mediated disease, disease or condition (tyrosine kinase—mediated diseases, A pharmaceutical composition for preventing or treating disorders or conditions) is provided.
  • miR-494 miR-494
  • KIT Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog
  • the present invention provides a sequence of 20-100 for the treatment of tumor diseases comprising an antisense oligonucleotide sequence having a sequence complementary to the 8th to 15th nucleotide sequence of the nucleotide sequence of SEQ ID NO: 2 sequence Provide the nucleotide sequence.
  • the present invention provides a continuous sequence of 20-100 for the treatment of tumor diseases comprising an antisense oligonucleotide sequence having a sequence complementary to the 8th to 15th nucleotide sequence of the nucleotide sequence of SEQ ID NO: 3 sequence Provide the nucleotide sequence.
  • the invention provides a method of treating a KIT-mediated disease, disorder or condition comprising the step of treating an agent that induces micro RNA-494 (miR-494) or miR-494 overexpression. to provide.
  • the invention processes 20-100 consecutive nucleotide sequences comprising an antisense oligonucleotide sequence having a sequence complementary to the 8th to 15th nucleotide sequences of the nucleotide sequence of SEQ ID NO: 2. It provides a method of treating a KIT-mediated disease, disorder or condition comprising the steps of:
  • the invention processes 20-100 consecutive nucleotide sequences comprising an antisense oligonucleotide sequence having a complementary sequence to the 8th to 15th nucleotide sequences of the nucleotide sequence of SEQ ID NO: 3 It provides a method of treating a KIT-mediated disease, disorder or condition comprising the steps of:
  • the inventors have sought to develop new targets for the treatment of gastrointestinal stromal tumors (GISTs).
  • KIT kinase is one of the receptor tyrosine kinases.
  • KIT kinase kinase kinase kinase kinase kinase kinase kinase kinase kinase kinase kinase kinase kinase kinase kinase kinase kinase kinase kinase kinase kinase.
  • SCF stem cell factor
  • GIST gastrointestinal stromal tumors
  • SCLC small cell lung cancer
  • AML acute myelogenous leukemia
  • Mast cell leukemia Mast cell leukemia
  • GIST Gastrointestinal stromal tumors
  • the present invention is the first invention to discover the function of miR-494 as a negative regulator of KIT kinase that causes gastrointestinal stromal tumors.
  • miR-494 of the present invention directly binds to 3′-UTR (untranslated region) of KIT mRNA and down-regulates expression of KIT.
  • miR-494 of the present invention reduced phosphorylation (eg, phospho-AKT and phospho-STAT3) of downstream molecules of the KIT signaling transition pathway (see FIG. 5).
  • miRNA miRNA microRNA
  • miRNA miRNA
  • Drosha RNasem type enzymes
  • pre-miRNAs precursor miRNAs of stem-loop structure, which are transported into the cytoplasm and cleaved by Dicer into mature miRNAs [Kim VN et al. . , Nat Rev Mol Cell Biol. 2005 May; 6 (5): 376-385.
  • the miRNA prepared as described above is involved in development, cell proliferation and death, fat metabolism, tumor formation, etc. by controlling the expression of target proteins [Wienholds E et al. , Science, 309 (5732): 310-311 (2005); Nelson P et al., Trends Biochem Sci. , 28: 534-540 (2003); Lee RC et al. , Cell, 75: 843-854 (1993); and Esquela—Kerscher A et al., Nat Rev Cancer. 6: 259-269 (2006).
  • the number of the miRNA is a number assigned according to the found order of small RNA (small RNA)
  • miR-494 means the miRNA found in the 494th, which is obvious to those skilled in the art (http: //www.mirbase.org).
  • miR-494 overexpression agents encompasses all agents that induce overexpression of miR-494 of the present invention and include chemicals, nucleotides, antisense-RNAs, siRNACsmall interference RNAs. ) And natural extracts, but is not limited thereto.
  • miR-494 is located at No. 14 of the human chromosome and is described in SEQ ID NO: 1.
  • the base sequence is a mature form of miRNA-494, which is derived from the precursor miRNA (precusor microRNA) of the miR-494 hairpin structure. From 2nd in Sequence 1
  • the nucleotide sequence up to the eighth is the key sequence of miR-494.
  • the key sequence of miRNA is a very important sequence for target recognition (Krenz, M. et al., J. Am. Coll. Cardiol. 44: 2390-2397 (2004); H. Kiriazis, et. al., Annu. Rev. Physiol. 62: 321 (2000)), conserved for various species.
  • the antisense oligonucleotides of the present invention are sequences capable of binding to sequences present in the target (preferably KIT) of miR-494, and are preferably capable of binding to the sequence 2nd sequence and the sequence 3rd sequence.
  • nucleotide sequence is the second sequence Having a sequence complementary to T sense oligonucleotide is 20 to 100 contiguous nucleotide sequence or the antisense oligonucleotide SEQ ID NO. 2 coming from 100 consecutive nucleotide sequence containing a nucleotide sequence having a sequence complementary to the nucleotide sequence of the third sequence comprising a nucleotide sequence.
  • antisense oligonucleotide herein includes a nucleic acid-based molecule that has a complementary sequence to a miRNA, particularly the key sequence of the miRNA, and that can then hybridize to the target sequence of the miRNA.
  • antisense oligonucleotide can be described herein as a "complementary nucleic acid-based inhibitor.”
  • the term "complementary" as used to refer to an antisense oligonucleotide is sufficient to allow the antisense oligonucleotide to selectively localize to a miR-494 target under certain localization or annealing conditions, preferably physiological conditions.
  • Complementary means having one or more mismatch sequences, meaning substantially encompassing both substantially com lementary and perfectly complementary, preferably Means completely complementary.
  • the key match sites / sequences of the miR-494 of the invention are described in SEQ ID NO: 2 and SEQ ID NO: 3. Most preferably, the position / sequence is at 3′-UTR of KIT mRNA.
  • Antisense oligonucleotides in the present invention include various molecules. Antisense oligonucleotides are DNA or RNA molecules, more preferably RNA molecules. Optionally, the antisense oligonucleotides used in the present invention include ribonucleotides (RNA), deoxyribonucleotides (DNA), 2'-0-modified oligonucleotides, phosphorothioate-backbone deoxyribonucleotides, peptide nucleic acid (PNA) or LNAGocked. nucleic acid).
  • RNA ribonucleotides
  • DNA deoxyribonucleotides
  • PNA phosphorothioate-backbone deoxyribonucleotides
  • PNA peptide nucleic acid
  • LNAGocked. nucleic acid LNAGocked. nucleic acid
  • the 2'-0-modified oligonucleotide is preferably a 2'-0-alkyl oligonucleotide, more preferably a 2'-0-d-3 alkyl oligonucleotide, even more preferably a 2'-0- d-3 methyl oligonucleotide.
  • antisense oligonucleotides in the present invention have a broad meaning including nucleic acid-based inhibitors having sequences complementary to the target sequence of miR-494. Included in the antisense oligonucleotides of the present invention include, for example, antisense oligonucleotides in a narrow sense. Inhibition of function on the miR-494 target of the invention can be achieved by administering a typical antisense oligonucleotide. Antisense oligonucleotides are ribonucleotides
  • Antisense oligonucleotides may comprise one or more locked nucleic acids (LNAs).
  • LNA is a modified ribonucleotide that has a locked form, including an additional bridge between 2 'and 4' carbons of the ribose sugar moiety, so that oligonucleotides with LNA have improved thermal stability [J Weiler, J. Hunziker and J Hall Gene Therapy (2006) 13, 496.502].
  • antisense oligonucleotides may include peptide nucleic acids (PNAs), which include peptide-based backbones instead of sugar-phosphate backbones.
  • PNAs peptide nucleic acids
  • antisense oligonucleotides may include include 2'-0-alkyl (eg, 2'-0_methyl, 2'-0-methoxyethyl), 2'-fluoro and 4'-thio modifications.
  • Sugar modifications such as;
  • Backbone modifications such as phosphorothioate, morpholino or phosphonocarboxylate linkages (eg, US Pat. Nos. 6,693,187 and 7,067,641).
  • a suitable antisense oligonucleotide is 2'-0_methoxyethyl "gapmer” 'which includes 2'-0-methoxyethyl-modified ribonucleotides at the 5'-terminus and 3'-terminus Has at least 10 deoxyribonucleotides in.
  • This "gapmer” can trigger an RNase I-dependent disruption mechanism of an RNA target.
  • the antisense oligonucleotides are 7-50 nucleotides in length, preferably 10-40 nucleotides, more preferably 15-30 nucleotides, and most preferably 2-25 nucleotides.
  • the agents inducing miR-494 or miR-494 overexpression of the invention inhibit the expression of KIT or inhibit the phosphorylation of AKT or STAT3.
  • MiR-494 of the present invention inhibited the expression of the KIT at the mRNA or protein level, and phosphorylation of the AKT or STAT3 was inhibited (see FIGS. 4B and 5).
  • Inducing overexpression of miR-494 inhibited GIST cell growth (consistent with changes in cell cycle phase and S phase: see FIG. 6).
  • inhibitory RNA molecules include, but are not limited to, small interference RNA (siRNA), short hairpin RNA (shRNA), ribozyme (r ibozyme), DNAzyme or peptide nucleic acids (PNA).
  • siRNA small interference RNA
  • shRNA short hairpin RNA
  • r ibozyme ribozyme
  • PNA peptide nucleic acids
  • siRNA refers to a nucleic acid molecule capable of mediating RNA interference or gene silencing (W0 00/44895, W0 01/36646, W0 99/32619, W0 01/29058, W0 99 / 07409 and W0 00/44914).
  • siRNA is provided as an efficient gene knockdown method or gene therapy method because it can inhibit the expression of the target gene.
  • siRNA was first discovered in plants, worms, fruit flies and parasites, but has recently been used in mammalian cell research by developing / using siRNA (Degot S, et al. 2002; Degot S, et al. 2004; Ballut L, et al. 2005).
  • diseases that can be treated by the pharmaceutical composition of the present invention include KIT-mediated diseases, diseases or conditions, diseases, diseases or conditions induced by the overexpressed or mutated form of the KIT gene or protein More preferably, neoplastic disorder, inflammatory disease, autoimmune disease, cancer, allergic disease, irritable bowel syndrome (IBS), graft versus host disease (GVHD), metabolic syndrome, CNS (central nervous system) )-Related diseases Degenerative neuropathy, mast-cell associated disease, pain, substance-abuse disease, prion disease, heart disease, fibrotic disease, idiopathic pulmonary hypertension (IPAH), primary pulmonary hypertension (PPH), glioma or cardiovascular disease, even more preferably neoplastic disease.
  • neoplastic disorder preferably, inflammatory disease, autoimmune disease, cancer, allergic disease, irritable bowel syndrome (IBS), graft versus host disease (GVHD), metabolic syndrome, CNS (central nervous system)
  • IBS irritable bowel syndrome
  • the neoplastic disorder of the present invention is gastrointestinal stromal tumor (gatrointe 'stinal stromal tumors, GISTs), small cell lung cancer (small cell lung cancer), non-small cell lung cancer, acute myeloid leukemia (acute myelocytic leukemia, acute lymphocytic leukemia, myelodyplastic syndrome, chronic myeloid leukemia, large intestine Carcinoma, gastric carcinoma, testicular cancer, glioblastoma astrocytoma or mastocytosis, most preferably gastrointestinal stromal tumor.
  • GISTs gastrointestinal stromal tumor
  • small cell lung cancer small cell lung cancer
  • non-small cell lung cancer non-small cell lung cancer
  • acute myeloid leukemia acute myelocytic leukemia, acute lymphocytic leukemia, myelodyplastic syndrome, chronic myeloid leukemia, large intestine Carcinoma, gastric carcinoma, testicular cancer, glioblastoma astro
  • the carcinoma of the present invention is testicular cancer, ovarian cancer, lung cancer, breast cancer, colon cancer, brain cancer, colon cancer, neuroendocrine cancer, gastric cancer, liver cancer, bronchial cancer, nasopharyngeal cancer, laryngeal cancer, pancreatic cancer, bladder cancer, Adrenal cancer, cervical cancer, prostate cancer, bone cancer, skin cancer, thyroid cancer, parathyroid cancer or ureter cancer.
  • the pharmaceutical composition of the present invention includes a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers included in the pharmaceutical composition of the present invention are commonly used in the preparation, lactose, dextrose, sucrose, sorbbi, manny, starch, acacia rubber, phosphate chalc, alginate, gelatin, calcium silicate, microcrystalline saelreul Ross, polyvinyl an pyrrolidone, selreul Ross, water, syrup, methyl selreul Ross, methyl hydroxybenzoate, propyl hydroxybenzoate,, talc, magnesium stearate, and mineral oils such as Including, but not limited to.
  • the pharmaceutical composition of the present invention may further include a lubricant, a humectant, a sweetener, a flavoring agent, an emulsifier, a suspending agent, a preservative, and the like.
  • a lubricant e.g., talc, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, a kaolin, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol, mann
  • compositions of the invention may be oral or parenteral (eg, intravenous, subcutaneous or topical).
  • Suitable dosages of the pharmaceutical compositions of the present invention may vary depending on factors such as the formulation method, mode of administration, age, weight, sex, morbidity, food, time of administration, route of administration, rate of excretion and reaction in response to the patient. It may be prescribed. On the other hand, the dosage of the pharmaceutical composition of the present invention is preferably 0.0001 ⁇ 100 mg / kg (body weight) per day.
  • compositions of the present invention may be prepared in unit dose form by formulating with a pharmaceutically acceptable carrier and / or excipient according to methods which can be easily carried out by those skilled in the art. Or may be prepared by incorporating into a multi-dose container.
  • the formulation is a solution suspension or emulsion in an oil or aqueous medium It may also be in the form of extracts, powders, granules, tablets or capsules, and may further include a dispersant or stabilizer.
  • the invention comprises the steps of (a) treating a test substance to a cell comprising a micro RNA-494 (miR-494) -encoding nucleotide sequence; And (b) analyzing the expression of miR-494 in the cells.
  • a method for screening a therapeutic agent for neoplastic disorders comprising: increasing the expression of miR-494 and treating it as a tumor drug do.
  • a sample to be analyzed is contacted with a cell comprising the nucleotide sequence of the target of the present invention (preferably miR-494-encoding nucleotide sequence).
  • Cells comprising the nucleotide sequence of the target of the present invention are not particularly limited, preferably cells that overexpress KIT or contain KIT-activating mutations, and more preferably are gastrointestinal stromal cell lines.
  • the cell is preferably a primary cultured cell, an established cell line or a tumor cell.
  • the cell comprising the nucleotide sequence of the present invention is a human gastrointestinal stromal tumor line.
  • test material refers to an unknown material used in screening to examine whether it affects the expression level of the marker of the present invention.
  • the test substance includes, but is not limited to, chemicals, nucleotides, antisense -RNAs, siRNAC small interference RNAs) and natural extracts.
  • the expression level of the target of the present invention is measured in the cells treated with the test substance.
  • the amount of expression can be measured as described below.
  • the test substance is used for tumorous disease. It can be determined as a prophylactic or therapeutic substance.
  • Measurement of the expression level change of miR-494 and KIT of the present invention can be carried out through various methods known in the art. For example, RT-PCR (Sambrook et al., Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press (200D), Northern blotting (Peter B.
  • RNA is isolated from cells treated with the test substance, and then, first-chain cDNA is prepared using oligo dT primer and reverse transcriptase. Subsequently, the first chain cDNA is used as a template, and a PCR reaction is performed using a miR-494- or KIT-specific primer set. Then, the PCR amplification product is electrophoresed, and the formed band is analyzed to measure the change in the expression level of miR-494 or KIT.
  • the amplification of the invention is carried out according to real-time PCR.
  • Real-time PCR is a technique for monitoring and analyzing the increase in PCR amplification products in real time (Levak KJ, et al., PCR Methods Appl., 4 (6): 357-62 (1995)).
  • PCR reactions can be monitored by recording the fluorescence emission in each cycle during an exponential phase in which the increase in PCR product is proportional to the initial amount of the target template. The higher the starting copy number of the nucleic acid target, the faster the fluorescence increase is observed and the lower the C r value (threshold cycle).
  • a marked increase in fluorescence above the reference value measured between 3-15 cycles means detection of accumulated PCR product.
  • real-time PCR has the following advantages: (a) Conventional PCR is measured in the plateau, while real-time PCR is used during the exponential growth phase. Data can be obtained; (b) the increase in the reporter fluorescence signal is directly proportional to the number of amplicons generated; (c) the cleaved probe provides permanent record amplification of the amplicon; (d) increase the detection range; (e) requires at least 1,000 times less nucleic acid than conventional PCR methods; (f) electrophoresis Detection of amplified DNA is possible without separation through; (g) small amplicon sizes may be used to achieve increased amplification efficiency; And (h) the risk of contamination is low.
  • PCR amplification products are detected by fluorescence.
  • Detection methods are largely an interchelating method (SYBR Green I method), a method using a fluorescent labeled probe (TaqMan probe method), and the like.
  • the interchelating method uses a double-stranded DNA binding die, which includes non-specific amplification and primer-dimer complexes using a non-sequence specific fluorescence interchelating reagent (SYBR Green I or ethidium bromide).
  • SYBR Green I is a fluorescent die that binds to the minor groove of double-stranded DNA. It is a reagent that shows little fluorescence in solution but shows strong fluorescence when bound to double-stranded DNA (Morrison TB, Biotechniques., 24 (6): 954-8, 960, 962 (1998).
  • SYBR Green Real-Time PCR is accompanied by optimization procedures such as melting point or dissociation curve analysis for amplicon identification. Normally, SYBR greens are used for singleplex reactions, but they can be used for multiplex reactions when accompanied by melting curve analysis (Siraj AK, et al., Clin Cancer Res., 8 ( 12): 3832-40 (2002); and Vrettou C., et al., Hum Mutat., Vol 23 (5): 513-521 (2004)).
  • the threshold cycle (C T ) value is the number of cycles in which the fluorescence generated in the reaction exceeds the threshold, which is the initial copy number. Inversely proportional to algebra Therefore, the Cr value assigned to a particular well reflects the number of cycles in which the stratified number of amplicons accumulated in the reaction.
  • the C r value is the cycle in which an increase in ARn was first detected. Rn means the magnitude of the fluorescence signal generated during PCR at each time point, and ARn means the fluorescence emission intensity (standardized reporter signal) of the reporter die divided by the fluorescence emission intensity of the reference die.
  • the Cr value is also named CpCcrossing point in LightCycler.
  • the Cr value represents the point in time when the system begins to detect an increase in the fluorescence signal associated with the exponential growth of the PCR product in a log-linear phase. This period provides the most useful information about reaction.
  • the slope of the log-linear step represents the amplification efficiency (Eff) (hUp: //w.appl iedbiosystems.co.kr/).
  • TaqMan probes typically contain primers (eg, 20-30 nucleotides) comprising a fluorescent at the 5'-end and a quencher at the 3'-end (eg, TAM A or non-fluorescent something (NFQ)). It is longer than ligonucleotides.
  • Taqman probes are designed to anneal to internal sites of PCR products. Preferably, the Taqman probe may be designed as an internal sequence of the first sequence of Sequence Listing.
  • Taqman probes specifically hybridize to template DNA in the annealing step, but fluorescence is suppressed by the quencher on the probe.
  • the Taq DNA polymerase activity possessed by Taq DNA polymerase decomposes the Taqman probe, which is localized in the template, and the fluorescent dye is released from the probe.
  • the 5'-end of the Taqman probe should be located downstream of the 3'-end of the extension primer. That is, when the 3'-end of the extension primer is extended by the template-dependent nucleic acid polymerase, the 5'-end of the Taqman probe is cleaved by the 5 'to 3' nuclease activity of the polymerase to The fluorescent signal is generated. .
  • Fluorescent reporter molecules and those molecules that can be used in the present invention can be any known in the art, for example: (The number in parentheses is the maximum emission wavelength in nanometers): Cy2 TM (506), Y0-PR0 TM -1 (509), YOYO TM -1 (509), Calcein (517), FITC (518), FluorX TM (519), Alexa TM (520), Rhodamine 110 (520) , 5-FAM (522), Oregon Green TM 500 (522), Oregon Green TM 488 (524), RiboGreen TM (525), Rhodamine Green TM (527), Rhodamine 123 (529), Magnesium Green TM (531), Calcium Green TM (533), T0-PR0 TM -1 (533), T0T01 (533), JOE (548), B0DIPY530 / 550 (550), Di 1 (565), B0DIPY TMR (568), B0
  • DNACgDNA or cDNA DNACgDNA or cDNA
  • RNA molecules more preferably RNA molecules.
  • the method of annealing or hybridizing the target nucleic acid to the extension primers and probes can be carried out by the method of known in the art.
  • suitable isomerization conditions can be determined in a series of procedures by an optimization procedure. This procedure is carried out by a person skilled in the art in order to establish a protocol for use in the laboratory.
  • conditions such as temperature, concentration of components, time to shake and reaction, buffer components and their pH and ionic strength depend on various factors such as the length and GC amount of the oligonucleotide and the target nucleotide sequence.
  • Detailed conditions for the shake are described by Joseph Sambrook, et al. , Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2001); and M.L.M. Anderson, Nucleic Acid Hybridization, Springer I Verlag New York Inc. N.Y. (1999).
  • the template-dependent nucleic acid polymerase used in the present invention is an enzyme having 5 'to 3' nuclease activity.
  • the template-dependent nucleic acid polymerase used in the present invention is preferably a DNA polymerase.
  • DNA polymerases typically have 5 'to 3' nuclease activity.
  • Template-dependent nucleic acid polymerases used in the present invention include E. coli DNA polymerase I, thermostable DNA polymerase and bacteriophage T7 DNA polymerase.
  • the template-dependent nucleic acid polymerase is a thermostable DNA polymerase obtained from various bacterial species, which is Thermus aguatjeusi Taq), Thermus , Thermus filiformis, Therm is flavus, Thermococcus literal is, Pyrococcus fur / osusiPfu), Thermus antranikiani i, Thermus caldophi lus, Thermus chl iarophi lus, Thermus flavus, Thermus igniterrae, Thermus lacteus, Thermus rubenoshier, Thermus rubenoshier DNA polymerases of scotoductus, Thermus silvanus, Thermus species Z05, Thermus species sps 17, Thermus thermophi lus, Ther otoga maritima, Thermotoga neapol itana and Thermos ipho africanus.
  • template-dependent extension reaction catalyze
  • the real-time PCR of the present invention is carried out by Taqman probe method.
  • changes in the amount of KIT protein can be carried out through various immunoassay methods known in the art.
  • changes in the amount of granulation factor protein may include immunostaining, radioimmunoassay, radioimmunoprecipitation, western blotting, immunoprecipitation, enzyme-linked immunosorbent assay, capture-ELISA, inhibition or competition assay, and Including but not limited to sandwich analysis.
  • the immunoassay or method of immunostaining is described in Enzyme Immunoassay, E. T. Maggio, ed. , CRC Press, Boca Raton, Florida, 1980; Gaastra, W., Enzyme-1 inked immunosorbent assay (ELISA), in Methods in Molecular Biology, Vol. 1, Walker, J.M. ed. , Humana Press, NJ, 1984; and Ed Harlow and David Lane, Using Ant i bodies- ⁇ Laboratory Manual, Cold Spring Harbor Laboratory Press, 1999, which is incorporated herein by reference.
  • an antibody labeled with a radioisotope detects a marker molecule of the present invention. It can be used to.
  • the present invention comprises the steps of: (i) coating an unknown cell sample lysate to be analyzed on the surface of a solid substrate; ( ⁇ ) reacting the cell lysate with the antibody to the target as a primary antibody; (iii) reacting the resultant of step (ii) with the secondary antibody to which the enzyme is bound; And (iv) measuring the activity of the enzyme.
  • Suitable as the solid substrate are hydrocarbon polymers (eg polystyrene and polypropylene), glass, metal or gel, most preferably microtiter plates.
  • Enzymes bound to the secondary antibody include, but are not limited to, enzymes catalyzing color reaction, fluorescent reaction, luminescence reaction or infrared reaction, for example, luciferase, alkaline phosphatase, ⁇ _galacto Oxidase, horse radish peroxidase and cytochrome p 450 .
  • alkaline phosphatase When alkaline phosphatase is used as the enzyme binding to the secondary antibody, bromochloroindolyl phosphate (BCIP), nitro blue tetrazolium ( ⁇ ), and naph are -AS-B1-phosphate (naphthol— When chromogenic reaction substrates such as AS-Bl-phosphate (ECF) and enhanced chemi fluorescence (ECF) are used, and when horse radish peroxidase is used, chloronaph, aminoethylcarbazole, diaminobenzidine, D—luciferin, lucifer Genine (bis-N-methylacridinium nitrate) Resorphin benzyl ether, luminol, Amplex Red reagent (10-acetyl-3,7-dihydroxyphenoxazine), HYR (-pheny 1 ened i am i ne ⁇ HC 1 and pyrocatechol), TMB (tetra
  • certain embodiments of the invention comprise the steps of (coating an antibody against a target of the invention as a capturing antibody on the surface of a solid substrate; (ii) Reacting the capture antibody with the cell sample (iii) reacting the product of step (ii) with a detecting antibody that has a label that generates a signal and specifically reacts with the granulation factor protein And (iv) measuring the signal resulting from the label.
  • the detection antibody carries a label which generates a detectable signal.
  • the label may include chemicals (eg biotin), enzymes (alkaline phosphatase ⁇ ⁇ -galactosidase, horse radish peroxidase and cytochrome ⁇ 450 ), radioactive substances (eg C 14 , I 125 , ⁇ 32 and S 35 ), fluorescent materials (eg, fluorescein), luminescent materials, chemi luminescent, and fluorescence resonance energy transfer (FRET).
  • chemicals eg biotin
  • enzymes alkaline phosphatase ⁇ ⁇ -galactosidase, horse radish peroxidase and cytochrome ⁇ 450
  • radioactive substances eg C 14 , I 125 , ⁇ 32 and S 35
  • fluorescent materials eg, fluorescein
  • luminescent materials eg, chemi luminescent, and fluorescence resonance energy transfer (FRET).
  • the ELISA Methods and Capture The measurement of the final enzyme activity or signal in the ELISA method can be carried out according to various methods known in the art. Detection of such signals allows for qualitative or quantitative analysis of the targets of the present invention. If biotin is used as a label, the signal can be easily detected with streptavidin and luciferin if luciferase is used.
  • the present invention relates to a novel function of miR-494 as a negative regulator of KIT in GIST.
  • miR-494 of the present invention binds directly to two other key match sites / sequences within the KIT 3′-UTR to down-regulate KIT and downstream molecules of the KIT signaling transition pathway (Eg, phospho-AKT and phospho-STAT3).
  • compositions and methods of the present invention comprising a miR-494 of the present invention and a substance that promotes its expression or a substance that inhibits KIT expression as an active ingredient can be used for the prevention or prevention of KIT-mediated diseases, diseases or conditions. It can be usefully applied to treatment.
  • FIG. 1 is a Western blot result investigating the effects of five candidate miRNAs on KIT protein expression.
  • Five candidate miRNAs miR-9, miR-142-5p, miR-370, miR-494 and miR-510) in total 25 nM were transfected into KIT-overexpressing GIST882 cell lines, respectively.
  • GAPDH was used as loading control.
  • N.C. represents a negative control.
  • FIG. 3 shows KIT protein (3a), miR-494 levels (3b) and graph (3c) simultaneously expressed in 31 GIST patients.
  • GIST patient tissues from Cases 1 to 25 had KIT mutations, and GIST patient tissues from Cases 26 to 31 did not contain KIT mutations.
  • Each case extracted both RNA and protein from the same tissue.
  • KIT expression levels were quantified from Western blot results.
  • the amount of mature miR-494 was measured using a Taqman miRNA assay.
  • Expression levels of miR-494 and KIT were normalized to U6 RNA and GAPDH, respectively and normalized values of miR-494 and KIT expression levels were divided by the mean value of miR-494 and KIT for comparison.
  • 4 is a reporter assay result for determining miR-494 binding sites present within the KIT 3′-UTR site.
  • 4A is a diagrammatic representation of vector constructs used in a reporter assay.
  • the original vector (N vector) comprises the total sequence of the Renilla luciferase-encoding site and the 3′-UTR site of KIT obtained from GIST882 cDNA.
  • the M construct comprises four mutated nucleotide sequences (GTTKXGG) from the binding seed sequence of miR-494 predicted according to target scan 3.0.
  • Ma, Mb and Mc constructs were prepared by replacing the possible miR-494 binding sites found by the inventors with four nucleotide sequences (GTTTCCGG) in the M construct.
  • the 0 vector was used to confirm that all constructs function properly using miR-221 and miR-222 (GTAGCAGA), previously reported to target the 3'-UTR of the KIT.
  • 4B transfected the He constructs containing M constructs containing miR-494 or zero constructs containing miR-221. Transfection After 2 days, cells were obtained and subjected to a dual luciferase assay. When the predicted miR-221 and miR-222 binding sites were mutated, luciferase activity was restored. Transfection with miR-494 and M mutant vectors resulted in only slight recovery (FIG. 4B, top panel).
  • FIG. 4C is the result of Tapan-miRNA assay (top panel) examining the expression level of miR-494 in different cancer cell lines (top panel) from which HeLa, SNU216 and GIST882 cell lines were selected for future study (bottom panel).
  • HeLa and SNU216 cells exhibited high expression levels of miR-494.
  • Transfection of the N vector with a 50 nM miR-494 inhibitor in the cell line showed significantly increased luciferase activity compared to cells transfected with non-targeting miRNA (negative control).
  • the GIST882 cell line showed low expression levels of miR-494 and did not show any significant change in luciferase activity compared to cells transfected with non-targeted miRNA (negative control) (bottom panel).
  • the above results indicate that endogenous miR-494 directly down-regulates KIT.
  • NC represents negative control.
  • FIG. 5 is a Western blot result of measuring the expression of p-AKT and p_STAT in cell lines transfected with miR-494.
  • Transfection of miR-494 into the GIST882 cell line caused significant changes in the AKT and STAT signaling pathways.
  • GIST882 cell lines were transfected with 50 nM of untargeted miRNA, miR-221, miR-494 or miR-494 inhibitors.
  • Western blots for KIT, phospho-KIT, STAT3, phospho-STAT3, AKT phospho-AKT, ERK, phospho-ERK and GAPDH were repeated in the same blot for each antibody.
  • Expression levels of KIT and phospho-KIT were markedly reduced by transfection of GIST882 with miR-494. Both downstream molecules of the KIT signaling pathway, phospho-AKT and phospho-STAT3, were reduced. Other results indicate that the control group There was little difference between the samples and the samples treated with the miR-494 inhibitor. NC
  • FIG. 6 shows that GIST cell proliferation is inhibited by miR-494.
  • FIG. 6A shows the GIST882 morphology 12 days after transfection. Cells were cultured in 60-mm cell culture dishes and pictures were taken before cell counting. Poor cell clusters and irregular cell morphology appeared on day 12 in GIST882 cell line transfected with miR-494 (right panel).
  • FIG. 6B shows GIST882 cells were cultured in 60-mm dish with 2 ⁇ 10 6 cells and dispensed into each dish. Cells were counted twice manually at 3, 6 and 12 days after transfection and counted average values were used. Cells were transfected twice on day 0 and day 6.
  • FIG. 6C shows the results of transfecting GIST882 cells with non-targeted miRNA (top panel) or miR-494 (bottom panel) on day 4, and then staining with propidium iodide. Both samples were analyzed by flow cytometry.
  • MiR-494 treatment showed a 5.6% increase in stage III cells and a 5.7% decrease in S phase cells compared to cells transfected with non-targeted miRNAs. NC represents negative control.
  • GIST882 cell lines with activated KIT mutations were kindly presented by Dr. Jonathan Fletcher of Harvard University (Cambridge, Mass.).
  • SNU216, SNU638, SNU1, NCI-N-87 and HeLa cell lines were purchased from Korean Cell Line Bank; Cancer Research Institute, Seoul Korea.
  • Cell culture images were obtained using IX71 (01ympus, Tokyo, Japan). Patient and tissue feed
  • GIST patients were divided into four groups based on tumor risk according to Fletcher et al. [33].
  • qRT-PCR Quantitative RT-PCR
  • KITCPrimerBank ID; 4557695a2) and the qRT-PCR primer sequences for GAPDH were obtained from Primerbank database (ht tp: / /pga.mgh.harvard.edu/pr i merbank /).
  • the reaction was carried out at a total dose of 20 ⁇ containing Premix Ex Taq (TAKARA, Tokyo, Japan) according to the manufacturer's instructions. All reactions were run in three pairs in an ABI Prism 7300 real-time PCR system. miRNA mimetics (mimics) and transformation
  • Total lysates from the samples were obtained with passive lysis buffer (Pr omega, Madison, Wis., USA).
  • Primary antibodies used in the present invention are GAPDHCTrevigen, Gaitherburg, MD, USA), c-KIT, STAT3, ERK, phospho-ERK (Santa Cruz Biotechnology, Santa Cruz, CA, USA), phospho c—KIT (Invitrogen) , AKT, phospho-AKT and phospho STAT3 (Cel 1 Signaling, Danvers, MA USA).
  • Western blot images were analyzed using the LAS-4000 Mini (Fuj i f i lm, Tokyo, Japan). Luciferase Reporter Assay
  • N vectors were prepared. Total 3′-URT sequences obtained from GIST882 via PCR amplification were cloned downstream of the SV40 enhancer and early promoter-regulated Renilla luciferase cassette in pRL3 vector (Promega). The N vector was then used to prepare five mutation constructs to replace mutations in the key sequences complementary to the miR-494, miR-221 or miR-222 binding sites. The PGL3 luciferase reporter vector was used as a control vector for the dual luciferase assay (Promega). Oligonucleotide sequences used for the vector constructs are listed in Table 2. Table 2
  • Dual luciferase assays were performed each time by co-transfecting the control vector with N, M, 0, Ma, Mb or Mc vectors. All miRNA mimetics were transfected with 5 nM. After 2 days of transfection, luciferase activity was measured according to the manufacturer's instructions.
  • Cell proliferation assay
  • GIST882 cells were aliquoted into 60-mm dishes with 2 ⁇ 10 6 cells and then transfected with 50 nM of untargeted miRNA or miR-494. Cell counts were manually counted on days 3, 6 and 12. Another transfection was performed on day 6 for the samples to be counted on day 12. Cell morphology was checked daily. Samples consisted of two pairs and mean values were used for further analysis. Each sample was obtained and analyzed by Western blot to confirm sustained inhibition on KIT expression. Cell cycle analysis GIST882 cells were transfected with 50 nM of untargeted miRNA or miR-494 in 60-dish.
  • miRNAs (miR-9, miR-142-5p, miR-370, miR-494 and miR-510) were transfected into KIT-overexpressing GIST882 cell lines, respectively.
  • Western blot analysis of the transfected samples revealed that only miR-494 consistently reduced KIT protein expression (FIG. 1). The inventors then conducted further studies on miR-494.
  • m iR-494 The ability of m iR-494 to induce KIT down-regulation was confirmed by transfecting 25 nM of nontargeting miRNA miR-494, miR-221 or miR-494 inhibitors to the GIST882 cell line. Untargeted miRNA was a negative control compared to miR-494, and miR-221 was a positive control compared to miR-494. miR-221 and miR-222 are both known to directly target the 3'-UTR of KIT mRNA [17]. Three days after transfection, cells were obtained and subjected to quantitative reverse transcription polymerase chain react ion (qRT-PCR) and western blotting.
  • qRT-PCR quantitative reverse transcription polymerase chain react ion
  • the inventors performed miRNA qRT-PCR to analyze the expression level of miR-494 and western blot to analyze the expression level of KIT protein, thereby inversely correlating KIT expression and miR-494 expression in GIST. correlat ion).
  • the assay used 31 freshly-frozen samples of GIST patients consisting of 25 GIST patients with KIT mutations and 6 GIST patients without KIT mutations (Table 1).
  • the miR-494 levels were determined using a Taqman miRNA assay and analyzed by ABI real-time PCR 7300 using mean values obtained from three independent experiments in each case.
  • the levels of KIT and miR-494 from each case were presented as a relative fold change over the mean value of KIT and miR-494 compared to the respective expression levels (FIGS.
  • KIT mRNA is a direct target of miR-494 by identifying the binding position of miR-494 to 3′-UTR of KIT mRNA. 1897-1903 via a target scan 3.0 database (http: // www, target scan, org /) to detect miR-494's algorithm-based binding site for the 3'-UTR of KIT mRNA One binding site located at was expected (FIG. 4A).
  • N vector a vector named N (N vector) comprising the encoding sequence for the total 3′-UTR sequence of Renilla luciferase and KIT mRNA obtained from cDNA of GIST883 cell line. Devised.
  • the KIT 3′-UTR position was amplified by PCR and cloned to the right after the Renilla luciferase encoding sequence in the pRL3 vector.
  • N vectors (5 nM) comprising non-targeting miRNA, miR-494, miR-221 or miR-222 were tested.
  • HeLa cell line was transfected. Two days after transfection, cells were harvested and subjected to dual luciferase assay using a dual luciferase assay (DLR) assay kit.
  • DLR dual luciferase assay
  • Non-targeting miRNA, miR-494, miR-221 or miR-222 was transfected into an N, M or 0 vector, and a reporter assay was performed. Luciferase activity in cells transfected with 0 vectors containing miR-221 or miR-222 was fully restored compared to the negative control (cells transfected with N vectors containing untargeted miRNAs). miR-221 and miR-222 directly target KIT mRNA. However, samples transfected with M vector and miR-494 showed very slightly restored luciferase activity compared to the negative control (FIG. 4B, top panel). Above The results show that miR-494 can directly target the 3'-UTR of KIT mRNA or there may be additional binding sites.
  • KIT expression was reduced in cells transfected with m iR-221, but less than miR-494.
  • miR-494 inhibitors did not affect KIT expression, probably because the expression level of miR-494 in the GIST882 cell line is very low.
  • the expression of p-KIT (pY703) was also tested with phospho-specific antibodies, which significantly reduced expression levels.
  • the activation forms of the three downstream molecules of the KIT signaling pathway (AKT, ERK and STAT3) were also analyzed. As measured with phospho-AKT specific antibodies, phospho-AKT levels decreased after miR-221 and miR-494 treatment (FIG. 5), and were more phospho after miR-494 treatment than miR-221 treatment. Down-regulation of AKT occurred.
  • the effect of miR-494 on proliferation of GIST882 cells was confirmed by a cell proliferation assay in which GIST882 cells were cultured by dispensing GIST882 cells into 60-mm dishes with 2 ⁇ 10 6 cells. Normal cell morphology was checked regularly, and transfection was performed in a total of 12 dishes on the third day of subculture. Cells were transfected with 50 nM of untargeted miRNA or miR-494 on the first and sixth days, respectively, and counted the cell number on days 3, 6 and 12 after initial transfection. Each experiment was conducted in two pairs and used for the data analysis. After 3 days no distinct change occurred.
  • miRNAs can play a major regulatory role in signal transduction and tumorigenesis [15, 16]. Mutations and overexpression of KIT are internally associated with KIT-induced tumorigenic processes, and dysregulated miRNAs may explain KIT overexpression and subsequent tumorigenic processes [12, 13]. miR-221 and miR-222 have been reported as negative regulators of erythroid cell proliferation by targeting KIT [17]. However, miRNAs involved in GIST tumor formation by targeting KIT have not been reported yet. In the present invention, we propose that miR-494 directly targets KIT and that inhibition of miR-494 induces KIT overexpression by demonstrating that endogenous miR-494 induces KIT down-regulation.
  • miR-494 Down-regulation of KIT occurs more strongly at int by miR-494 than miR-221 and miR-222 previously reported with KIT-targeting miRNAs. Furthermore, expression levels of miR-221 and miR-222 were not associated with KIT expression in GIST [13]. Thus, we could conclude that miR-494 is the major miRNA that regulates KIT expression in GIST. To date, reports on the function of miR-494 have shown that miR-494 induces down-regulation of PTEN in chemically transformed cell lines and miR-494 expression is reduced in lymphoma and head and neck squamous cell carcinoma according to miRNA profile studies. There were no reports but [19-21]. However, no direct target has been reported on miR-494's direct targets. This is the first study to demonstrate that miR-494 is a direct target of KIT in GIST.
  • KIT proteins are high oncogenic tyrosine kinases belonging to the RTK family and are included in the major signal transduction pathways of PI3-kinase, Six family kinases and Ras-Erk, and the minor signal transduction pathways of JAK-STAT [6]. Mutations in transmembrane domains continue to activate downstream signals by activating dimerization of the KIT receptor [22] .Acquired mutations are often found in exons 9, 11, 13 and 17 of the KIT gene, which is a GIST tumor formation process. Contribute to [3, 23]. This study shows that down-regulation of KIT induced by miR-494 It has been demonstrated that regulation affects the levels of p-AKT and p-STAT3.
  • Tumor proteins can be inhibited in post-translational fashion or in post-transcriptional fashion [27].
  • Inhibition of KIT by imatinib is an example of post-translational inhibition via competitive binding of KIT to the ATP binding forge.
  • inhibition of KIT by imatinib is incomplete because resistance through potential mutational changes of amino acid residues that may occur during processing may occur.
  • imatinib resistance occurs by inhibiting the binding of imatinib to ATP binding forks of KIT [11].
  • Such possible mutation-derived resistance is urgently needed for more powerful therapeutic means including miR-494.
  • miR-494 therapeutic use of miR-494 to inactivate KIT would have to be supplemented because conventional RNA-based therapies are paradoxically unstable in the blood with the enormous molecular size of small interfering RNAs.
  • novel delivery systems such as 3 ⁇ 4 timer, nanoparticles and liposomes [28-30].
  • miR-494 could be used as a novel therapeutic means for treating GIST.
  • miR-494 is a potent regulator of KIT in GIST, and introducing miR-494 into GIST patients may be a novel way to suppress tumor progression.
  • Kang HJ Nam SW, Kim H, et al. Correlation of KIT and platelet-derived growth factor receptor al ha mutat ions with gene activation and expression profiles in gastrointestinal stromal tumors. Oncogene 2005; 24: 1066-74.

Abstract

The present invention relates to a pharmaceutical composition for the prevention or treatment of KIT(v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homologue)-mediated diseases, disorders or conditions, which comprises microRNA-494 (miR-494) or an agent (agents) that induces (induce) miR-494 overexpression. The present invention also relates to a screening method using the pharmaceutical composition. The miR-494 of the present invention binds directly to two different core sequence sites (seed match sites/sequences) in KIT 3'-UTR and so effects top-down control of KIT, and reduces the expression of downstream molecules (e.g. phospho-AKT and phospho-STAT3) in the KIT signalling transition pathway, and the miR-494 overexpression induction of the present invention suppresses the growth of neoplastic cells and preferably GIST cell lines. Consequently, when preventing or treating KIT-mediated diseases, disorders or conditions, it is advantageous to use the composition of the present invention which comprises miR-494 and a substance that promotes expression thereof or a substance that suppresses KIT expression of the present invention as an active ingredient.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
m i RNA를 유효성분으로 포함하는 종양성 질환 예방 또는 치료용 조성물  composition for the prevention or treatment of tumor diseases comprising m i RNA as an active ingredient
【기술 분야】 [Technical field]
본 발명은 GIST 에서 KIT 의 음성적 조절인자로서 miR-494 및 이의 용도에 관한 것이다.  The present invention relates to miR-494 and its use as negative regulators of KIT in GIST.
[배경 기술】 [Background technology]
위장관 긴질종양 (gatrointestinal stromal tumors, GISTs)의 분자유전학은 인간 종양 중에서 가장 잘 이해된 종양 중 하나이다 [1]. 수용체 타이로신 키나제 패밀리의 종양유전자들 중 두 개의 유전자, 즉 KIT(v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homo log) 및 PDGFRA 는 각각 GIST 의 약 70% 및 15%에서 기능획득 돌연변이 (gain-of- f unction mutations)로 나타난다 [2, 3]. 상기 유전자들의 돌연변이는 자신의 지속적인 활성화를 야기하여 KIT 및 PDGFRA 의 다운스트림 시그널링 경로의 끊임없는 자극을 초래한다 [4, 5]. 이들 중, 특히 KIT 의 활성화가 GIST 의 발병 및 진행에 중요하다 [3]· KIT 돌연변이 후 GIST 종양형성 과정 (tumorigenesis)에 포함된 다운스트림 분자 경로들은 PI3-키나제, Src 패밀리 키나제 , Ras-E 가 및 JAK-STAT 등을 포함한다 [6] · KIT 활성화 후 상술한 분자 경로들의 활성화는 세포 증식 활성화 및 아팝토틱 시그널 억제를 통해 GIST종양형성 과정을 초래한다 [4, 6, 7].  Molecular genetics of gastrointestinal stromal tumors (GISTs) is one of the best understood tumors of human tumors [1]. Two of the oncogenes of the receptor tyrosine kinase family, the v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) and PDGFRA, are gain-of-gain mutations in about 70% and 15% of GIST, respectively. f unction mutations [2, 3]. Mutations in these genes lead to their continued activation, resulting in constant stimulation of downstream signaling pathways of KIT and PDGFRA [4, 5]. Among these, KIT activation is important for the development and progression of GIST [3]. The downstream molecular pathways involved in GIST tumorigenesis following KIT mutations are PI3-kinase, Src family kinase and Ras-E. And JAK-STAT, etc. [6] · The activation of the molecular pathways described above after KIT activation results in a GIST tumor formation process through cell proliferation activation and apoptotic signal inhibition [4, 6, 7].
GIST 의 진행은 ATP 결합 포켓에 경쟁적으로 결합하는 이마티닙 (imatinib; STI571)에 의해 성공적으로 차단된다. 상기 이마티닙의 처리는 KIT 활성화를 억제하고 다운스트림 MAP 키나제 및 PI3- 키나제 -AKT 경로를 분자적으로 차단한다 [7, 8]. 하지만, 이마티닙 처리 동안 이마티닙-저항성을 가지게 된 GIST 환자는 이마티닙의 억제 효과에 저항성을 가진다. 따라서, 전사후 (posttranscriptional) 조절 및 해독후 (posttranslational) 조절 모두에 의해 활성화된 KIT 를 억제할 수 있는 보다 더 다양한 접근방법이 KIT 활성화가 중요한 GIST 환자에 요구되고 있다 [9-11]. Progression of GIST is successfully blocked by imatinib (STI571), which competitively binds to the ATP binding pocket. Treatment of imatinib inhibits KIT activation and molecularly blocks downstream MAP kinase and PI3-kinase -AKT pathways [7, 8]. However, GIST patients who become imatinib-resistant during imatinib treatment are resistant to the inhibitory effects of imatinib. Thus, it is possible to inhibit activated KIT by both posttranscriptional and posttranslational regulation. More diverse approaches are needed for GIST patients where KIT activation is important [9–11].
KIT 의 과다발현 (overexpression)은 GIST 의 전형적인 특징으로 보고되었으며, KIT 돌연변이의 존재는 항상 강력한 KIT 발현으로 이어진다 [12, 13]. 비록 KIT 돌연변이가 약 70%의 GIST 환자에 존재할 지라도, KIT 의 과다발현이 90% 이상의 GIST환자에서 발견되는데, 이는 또 다른 보충 기작이 KIT 과다발현에 존재한다는 것을 의미한다 [2, 14]. 마이크로 RNA(microRNAs, miRNAs)가 암에서 유전자 발현을 조절하는 데 중요한 역할을 하기 때문에, 이의 이상조절이 가능한 기작이다 [15, 16]. 현재, KIT 를 타겟팅한다고 알려진 miRNA 는 오직 miR-221 및 miR- 222 이다 [17]. 이전에, 본 발명자들은 GIST 환자에서 KIT 발현과 miRNA 발현 프로파일을 비교하여 KIT 발현에 상대적으로 반비례적인 발현을 나타내는 다섯 개의 후보 miRNA들올 동정하였다 [13]· 본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다. 【발명의 상세한 설명】  Overexpression of KIT has been reported as a typical feature of GIST, and the presence of KIT mutations always leads to potent KIT expression [12, 13]. Although KIT mutations are present in about 70% of GIST patients, overexpression of KIT is found in over 90% of GIST patients, indicating that another complementary mechanism is present in KIT overexpression [2, 14]. Because microRNAs (miRNAs) play an important role in regulating gene expression in cancer, they are mechanisms that can regulate their aberrations [15, 16]. Currently, miRNAs known to target KIT are miR-221 and miR-222 [17]. Previously, we have identified five candidate miRNAs showing relatively inverse expression to KIT expression by comparing KIT expression and miRNA expression profiles in GIST patients [13]. Is referenced and its citation is indicated. The disclosures of cited papers and patent documents are incorporated herein by reference in their entirety, and the level of the technical field to which the present invention belongs and the contents of the present invention are more clearly explained. [Detailed Description of the Invention]
본 발명자들은 위장관 간질종양 (gatrointestinal stromal tumors, GISTs)을 치료하기 위한 신규한 타겟을 개발하고자 노력하였다. 그 결과, 발명자들은 miR-494 가 KIT mRNA 내에 존재하는 두 개의 다른 핵심 서열 위치 (seed match sites)에 직접적으로 결합하여 KIT 발현을 하향 -조절하고, KIT 시그널링 전이 경로의 다운스트림 분자들 (예컨대, 포스포 -AKT 및 포스포 -STAT3)의 발현을 감소시켜 KIT-활성화 돌연변이를 가지는 GIST 세포주 (예컨대, GIST882 세포주)의 성장 및 증식을 억제시킨다는 것을 발견함으로써, 본 발명을 완성하게 되었다.  The inventors have sought to develop new targets for the treatment of gastrointestinal stromal tumors (GISTs). As a result, the inventors directly bind miR-494 to two different seed match sites present in KIT mRNA to down-regulate KIT expression, and downstream molecules of the KIT signaling transition pathway (eg, The present invention was completed by discovering that the expression of phospho-AKT and phospho-STAT3) is inhibited to inhibit the growth and proliferation of GIST cell lines (eg, GIST882 cell line) with KIT-activating mutations.
본 발명의 목적은 KIT(v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog)-매개된 질환, 질병 또는 -상태 (KIT-mediated diseases, disorders or conditions)의 예방 또는 치료용 약제학적 조성물올 제공한다. It is an object of the present invention to provide a kit-v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT-mediated disease, disorder or condition). Provided is a pharmaceutical composition for preventing or treating diseases, disorders or conditions).
본 발명의 다른 목적은 상기 질환, 질병 또는 상태의 예방 또는 치료용 뉴클레오타이드 서열을 제공하는 데 있다.  Another object of the present invention to provide a nucleotide sequence for the prevention or treatment of the disease, disorder or condition.
본 발명의 다른 목적은 상기 질환, 질병 또는 상태의 치료방법을 제공하는 데 있다.  Another object of the present invention to provide a method for treating the disease, disorder or condition.
본 발명의 또 다른 목적은 상기 뉴클레오타이드 서열을 처리하는 단계를 포함하는 KIT-매개된 질환, 질병 또는 상태의 치료방법을 제공하는 데 있다.  It is another object of the present invention to provide a method for treating a KIT-mediated disease, disease or condition comprising the step of processing the nucleotide sequence.
본 발명의 또 다른 목적은 종양성 질환 (neoplastic disorders) 치료제의 스크리닝 방법을 제공하는 데 있다. 본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다. 본 발명의 일 양태에 따르면, 본 발명은 마이크로 RNA-494(miR-494) . 또는 miR-494 과다발현을 유도하는 제제 (agents)를 유효성분으로 포함하는 KIT(v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homo log) - 매개된 질환, 질병 또는 상태 (tyrosine kinase— mediated diseases, disorders or conditions)의 예방 또는 치료용 약제학적 조성물을 제공한다. 본 발명의 다른 양태에 따르면, 본 발명은 서열목록 제 2 서열의 뉴클레오타이드 서열 중 8 번째부터 15 번째 뉴클레오타이드 서열에 상보적인 서열을 가지는 안티센스 올리고뉴클레오타이드 서열을 포함하는 종양성 질환 치료용 20-100개의 연속 뉴클레오타이드 서열을 제공한다.  It is another object of the present invention to provide a method for screening an agent for treating neoplastic disorders. Other objects and advantages of the present invention will become apparent from the following detailed description, claims and drawings. According to one aspect of the present invention, the present invention provides microRNA-494 (miR-494). Or v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) comprising an agent that induces overexpression of miR-494-a mediated disease, disease or condition (tyrosine kinase—mediated diseases, A pharmaceutical composition for preventing or treating disorders or conditions) is provided. According to another aspect of the present invention, the present invention provides a sequence of 20-100 for the treatment of tumor diseases comprising an antisense oligonucleotide sequence having a sequence complementary to the 8th to 15th nucleotide sequence of the nucleotide sequence of SEQ ID NO: 2 sequence Provide the nucleotide sequence.
본 발명의 다른 양태에 따르면, 본 발명은 서열목록 제 3 서열의 뉴클레오타이드 서열 중 8 번째부터 15 번째 뉴클레오타이드 서열에 상보적인 서열을 가지는 안티센스 올리고뉴클레오타이드 서열을 포함하는 종양성 질환 치료용 20-100개의 연속 뉴클레오타이드 서열을 제공한다.  According to another aspect of the present invention, the present invention provides a continuous sequence of 20-100 for the treatment of tumor diseases comprising an antisense oligonucleotide sequence having a sequence complementary to the 8th to 15th nucleotide sequence of the nucleotide sequence of SEQ ID NO: 3 sequence Provide the nucleotide sequence.
본 발명의 다른 양태에 따르면, 본 발명은 마이크로 RNA-494(miR- 494) 또는 miR-494 과다발현을 유도하는 제제를 처리하는 단계를 포함하는 KIT-매개된 질환, 질병 또는 상태의 치료방법을 제공한다. 본 발명의 또 다른 양태에 따르면, 본 발명은 서열목록 제 2 서열의 뉴클레오타이드 서열 중 8 번째부터 15 번째 뉴클레오타이드 서열에 상보적인 서열을 가지는 안티센스 올리고뉴클레오타이드 서열을 포함하는 20-100 개의 연속 뉴클레오타이드 서열을 처리하는 단계를 포함하는 KIT- 매개된 질환, 질병 또는 상태의 치료방법을 제공한다. According to another aspect of the invention, the invention provides a method of treating a KIT-mediated disease, disorder or condition comprising the step of treating an agent that induces micro RNA-494 (miR-494) or miR-494 overexpression. to provide. According to another aspect of the invention, the invention processes 20-100 consecutive nucleotide sequences comprising an antisense oligonucleotide sequence having a sequence complementary to the 8th to 15th nucleotide sequences of the nucleotide sequence of SEQ ID NO: 2. It provides a method of treating a KIT-mediated disease, disorder or condition comprising the steps of:
본 발명의 또 다른 양태에 따르면, 본 발명은 서열목록 제 3 서열의 뉴클레오타이드 서열 중 8 번째부터 15 번째 뉴클레오타이드 서열에 상보적인 서열을 가지는 안티센스 올리고뉴클레오타이드 서열을 포함하는 20-100 개의 연속 뉴클레오타이드 서열을 처리하는 단계를 포함하는 KIT- 매개된 질환, 질병 또는 상태의 치료방법을 제공한다. 본 발명자들은 위장관 간질종양 (gatrointestinal stromal tumors, GISTs)을 치료하기 위한 신규한 타겟을 개발하고자 노력하였다. 그 결과, 본 발명자들은 miR-494 가 KIT mRNA 내에 존재하는 두 개의 다른 핵심 서열 위치 (seed match sites)에 직접적으로 결합하여 KIT 발현을 하향 -조절하고, KIT 시그널링 전이 경로의 다운스트림 분자들 (예컨대, 포스포 -AKT 및 포스포— STAT3)의 발현을 감소시켜 KIT-활성화 돌연변이를 가지는 GIST 세포주 (예컨대, GIST882 세포주)의 성장 및 증식을 억제시킨다는 것을 발견하였다.  According to another aspect of the invention, the invention processes 20-100 consecutive nucleotide sequences comprising an antisense oligonucleotide sequence having a complementary sequence to the 8th to 15th nucleotide sequences of the nucleotide sequence of SEQ ID NO: 3 It provides a method of treating a KIT-mediated disease, disorder or condition comprising the steps of: The inventors have sought to develop new targets for the treatment of gastrointestinal stromal tumors (GISTs). As a result, we directly bind to two different seed match sites where miR-494 is present in KIT mRNA, down-regulate KIT expression, and downstream molecules of the KIT signaling transition pathway (eg, It has been found that the expression of phospho-AKT and phospho-STAT3) is inhibited to inhibit the growth and proliferation of GIST cell lines (eg, GIST882 cell line) with KIT-activating mutations.
KIT 키나제는 수용체 타이로신 키나제의 하나로, 특이적인 리간드인 KIT kinase is one of the receptor tyrosine kinases.
SCF(stem cell factor)와 결합한다. 상기 결합은 키나제의 다이머화를 야기하고 이후 키나제의 활성화를 초래한다. 그 결과, KIT 키나제의 많은 기질들이 인산화된다 (Blume-Jensen P. et al. , EMB0 J. 10, 4121-4128, 1991; and Lev S. et al . , EMB0 J., 10, 647-654, 1991). KIT 키나제의 비정상적인 활성화는 특정 형태의 암세포에서 증식 시그널을 발생시키는데, 이는 암 발생 또는 악성 형질전환의 원인으로 생각되고 있다. 상기 KIT 키나제의 비정상적인 활성화에 의해 야기되는 대표적인 질환들은 위장관 간질종양 (gastrointestinal stromal tumors, GIST), 소세포 폐암 (Small cell lung cancer , SCLC) , 급성 골수성 백혈병 (Acute myelogenous leukemia, AML), 지방세포 백혈병 (Mast cell leukemia) 및 암을 포함한다. 본 발명의 "위장관 간질종양 (gastrointestinal stromal tumors, GIST)" 은 KIT 키나제를 발현하는 위장관에서 발병하는 간질종양을 의미하며, 약 5OT의 빈도로 KIT 키나제의 돌연변이가 활성화되고, 매우 높은 악성을 가진 GIST 환자는 더 높은 빈도로 상기 돌연변이가 발견되었는데, 이는 상기 돌연변이의 가능성이 진단인자일 수 있다는 것이다 (Lasota J. et al. , Am. J. Pathol. , 157, 1091-1095, 2000; and Taniguchi M. et al. , Cancer Res. , 59, 4297-4300, 1999) . 하지만, KIT 발현과 miRNA 간의 상관관계에 대해 보고된 바는 아직까지 없다. Combines with stem cell factor (SCF). The binding results in dimerization of the kinase and subsequently activation of the kinase. As a result, many substrates of KIT kinase are phosphorylated (Blume-Jensen P. et al., EMB0 J. 10, 4121-4128, 1991; and Lev S. et al., EMB0 J., 10, 647-654, 1991). Abnormal activation of KIT kinase generates proliferative signals in certain types of cancer cells, which are thought to be the cause of cancer development or malignant transformation. Representative diseases caused by abnormal activation of KIT kinase include gastrointestinal stromal tumors (GIST), small cell lung cancer (SCLC), acute myelogenous leukemia (AML), adipocyte leukemia ( Mast cell leukemia) and cancer. "Gastrointestinal stromal tumors (GIST)" of the present invention means an epileptic tumor that occurs in the gastrointestinal tract expressing KIT kinase, and the mutation of KIT kinase is activated at a frequency of about 5 OT, and GIST with very high malignancy Patients were found to have the mutation at a higher frequency, suggesting that the possibility of the mutation may be a diagnostic factor (Lasota J. et al., Am. J. Pathol., 157, 1091-1095, 2000; and Taniguchi M et al., Cancer Res., 59, 4297-4300, 1999). However, no correlation has been reported on the correlation between KIT expression and miRNA.
본 발명은 위장관 간질종양을 유발하는 KIT 키나제에 대한 음성 조절자로서 miR-494의 기능을 밝혀낸 최초의 발명이다. 본 발명에 따르면 : 본 발명의 miR-494 는 KIT mRNA 의 3' -UTR(untranslated region)에 직접적으로 결합하여 KIT 의 발현을 하향—조절하였다. 또한, 본 발명의 miR-494 는 KIT 시그널링 전이 경로의 다운스트림 분자들의 인산화 (예컨대, 포스포 -AKT 및 포스포— STAT3)를 감소시켰다 (참고: 도 5). The present invention is the first invention to discover the function of miR-494 as a negative regulator of KIT kinase that causes gastrointestinal stromal tumors. According to the present invention : miR-494 of the present invention directly binds to 3′-UTR (untranslated region) of KIT mRNA and down-regulates expression of KIT. In addition, miR-494 of the present invention reduced phosphorylation (eg, phospho-AKT and phospho-STAT3) of downstream molecules of the KIT signaling transition pathway (see FIG. 5).
본 명세서의 용어 "마이크로 RNA microRNA, miRNA)" 는 21-25 nt 의 단일가닥 RNA 분자로서 mRNA(messengerRNA)의 3'-UTR 에 결합하여, 진핵생물의 유전자 발현을 제어하는 물질이다 [Bartel DP et al . , Cell. 2004 Jan 23; 116(2): 281-297] . miRNA 의 생성은 Drosha(RNasem type 효소)에 의해 스템 -루프 구조의 전구체 miRNA(pre-miRNA)로 만들어지고, 세포질로 이동하여 다이서 (Dicer)에 의해 절단되어 성숙한 miRNA 로 만들어진다 [Kim VN et al . , Nat Rev Mol Cell Biol. 2005 May;6(5): 376- 385]. 상술한 바와 같이 제조된 miRNA 는 표적단백질의 발현을 조절함으로써 발생, 세포증식 및 사멸, 지방대사, 종양형성 등에 관여한다 [Wienholds E et al. , Science, 309(5732): 310-311(2005); Nelson P et al., Trends Biochem Sci. , 28: 534-540(2003); Lee RC et al. , Cell, 75: 843-854(1993); 및 Esquela— Kerscher A et al ., Nat Rev Cancer . 6: 259-269(2006)].  As used herein, the term “micro RNA microRNA (miRNA)” is a 21-25 nt single-stranded RNA molecule that binds to the 3′-UTR of mRNA (messengerRNA) to control gene expression in eukaryotes [Bartel DP et. al. , Cell. 2004 Jan 23; 116 (2): 281-297]. The production of miRNAs is made by Drosha (RNasem type enzymes) into precursor miRNAs (pre-miRNAs) of stem-loop structure, which are transported into the cytoplasm and cleaved by Dicer into mature miRNAs [Kim VN et al. . , Nat Rev Mol Cell Biol. 2005 May; 6 (5): 376-385. The miRNA prepared as described above is involved in development, cell proliferation and death, fat metabolism, tumor formation, etc. by controlling the expression of target proteins [Wienholds E et al. , Science, 309 (5732): 310-311 (2005); Nelson P et al., Trends Biochem Sci. , 28: 534-540 (2003); Lee RC et al. , Cell, 75: 843-854 (1993); and Esquela—Kerscher A et al., Nat Rev Cancer. 6: 259-269 (2006).
본 발명의 조성물에 있어서, 상기 miRNA 의 넘버는 작은 RNA(small RNA)의 발견된 순서에 따라 매겨진 번호로써, miR-494는 494번째에 발견된 miRNA를 의미하며, 이는 당업자에게 자명하다 (http://www.mirbase.org). 본 명세서의 용어 "miR-494 과다발현을 유도하는 제제 (agents)" 는 본 발명의 miR-494 의 과다발현을 유도하는 모든 제제를 포괄하는 것으로, 화학물질, 뉴클레오타이드, 안티센스 -RNA, siRNACsmall interference RNA) 및 천연물 추출물을 포함하나, 이에 한정되는 것은 아니다. In the composition of the present invention, the number of the miRNA is a number assigned according to the found order of small RNA (small RNA), miR-494 means the miRNA found in the 494th, which is obvious to those skilled in the art (http: //www.mirbase.org). As used herein, the term “miR-494 overexpression agents” encompasses all agents that induce overexpression of miR-494 of the present invention and include chemicals, nucleotides, antisense-RNAs, siRNACsmall interference RNAs. ) And natural extracts, but is not limited thereto.
바람직하게는, 상기 miR-494 는 사람 염색체의 14 번에 위치하며 서열목록 제 1 서열에 기재되어 있다. 상기 염기서열은 miRNA-494 의 성숙한 형태로써, miR-494 헤어핀 구조의 전구체 miRNA(precusor microRNA)로부터 유래한다. 서열목록 제 1 서열에서 2 번째부터 Preferably, miR-494 is located at No. 14 of the human chromosome and is described in SEQ ID NO: 1. The base sequence is a mature form of miRNA-494, which is derived from the precursor miRNA (precusor microRNA) of the miR-494 hairpin structure. From 2nd in Sequence 1
8 번째까지의 뉴클레오타이드 서열은 miR-494 의 핵심 서열이다. 일반적으로, miRNA의 핵심 서열 (seed sequence)은 타겟 인지에 매우 중요한 서열로서 (Krenz, M. et al., J. Am. Coll. Cardiol. 44: 2390-2397(2004); H. Kiriazis, et al . , Annu. Rev. Physiol. 62: 321(2000)), 다양한 종에 대하여 보존적 (conserved)이다. 따라서, 본 발명의 안티센스 올리고뉴클레오타이드는 miR-494의 타겟 (바람직하게는, KIT) 내에 존재하는 서열에 결합할 수 있는 서열이고, 바람직하게는 서열목록 제 2 서열 및 서열목록 제 3 서열에 결합할 수 있는 서열이며, 보다 바람직하게는 서열목록 제 2 서열의 뉴클레오타이드 서열 중 8 번째부터 15 번째 뉴클레오타이드 서열에 상보적인 서열을 가지는 안티센스 올리고뉴클레오타이드 서열을 포함하는 20-100 개의 연속 뉴클레오타이드 서열 또는 서열목록 제 3서열의 뉴클레오타이드 서열 중 8번째부터 15번째 뉴클레오타이드 서열에 상보적인 서열을 가지는 안티센스 올리고뉴클레오타이드 서열을 포함하는 20-100 개의 연속 뉴클레오타,이드 서열이고, 가장 바람직하게는 서열목록 제 2 서열의 뉴클레오타이드 서열에 상보적인 서열을 가지는 안티센스 올리고뉴클레오타이드 서열을 포함하는 20-100 개의 연속 뉴클레오타이드 서열 또는 서열목록 제 3 서열의 뉴클레오타이드 서열에 상보적인 서열을 가지는 안티센스 올리고뉴클레오타이드 서열을 포함하는 2으100 개의 연속 뉴클레오타이드 서열이다. The nucleotide sequence up to the eighth is the key sequence of miR-494. In general, the key sequence of miRNA is a very important sequence for target recognition (Krenz, M. et al., J. Am. Coll. Cardiol. 44: 2390-2397 (2004); H. Kiriazis, et. al., Annu. Rev. Physiol. 62: 321 (2000)), conserved for various species. Thus, the antisense oligonucleotides of the present invention are sequences capable of binding to sequences present in the target (preferably KIT) of miR-494, and are preferably capable of binding to the sequence 2nd sequence and the sequence 3rd sequence. 20-100 contiguous nucleotide sequences or SEQ ID NO: 3, more preferably comprising an antisense oligonucleotide sequence having a sequence complementary to the eighth to fifteenth nucleotide sequence of the nucleotide sequence of SEQ ID NO: 2 and of the nucleotide sequence of SEQ ID from the 8th 15th nucleotide sequence complementary to 20 to 100 consecutive nucleoside another, id sequence antisense oligonucleotide having a sequence containing a nucleotide sequence in, most preferably in the sequence Listing, the nucleotide sequence is the second sequence Having a sequence complementary to T sense oligonucleotide is 20 to 100 contiguous nucleotide sequence or the antisense oligonucleotide SEQ ID NO. 2 coming from 100 consecutive nucleotide sequence containing a nucleotide sequence having a sequence complementary to the nucleotide sequence of the third sequence comprising a nucleotide sequence.
본 명세서에서 용어 "안티센스 올리고뉴클레오타이드" 는 miRNA, 특히 miRNA 의 핵심 서열 (seed sequence)에 대한 상보적인 서열을 가지고 있어 miRNA 의 타겟 서열에 흔성화할 수 있는 핵산 -기반 분자를 포함한다. 따라서, 본 명세서에서 용어 "안티센스 올리고뉴클레오타이드" 는 "상보적 핵산 -기반 억제제" 로 기재될 수 있다. The term “antisense oligonucleotide” herein includes a nucleic acid-based molecule that has a complementary sequence to a miRNA, particularly the key sequence of the miRNA, and that can then hybridize to the target sequence of the miRNA. Thus, the term "antisense oligonucleotide" can be described herein as a "complementary nucleic acid-based inhibitor."
본 명세서에서 안티센스 올리고뉴클레오타이드를 언급하면서 사용되는 용어 "상보적" 은 소정의 흔성화 또는 어닐링 조건, 바람직하게는 생리학적 조건 하에서 안티센스 을리고뉴클레오타이드가 miR- 494 타겟에 선택적으로 흔성화 할 정도로 층분히 상보적인 것을 의미하는 것으로 하나 또는 그 이상의 미스매치 (mismatch) 염기서열을 가질 수 있으며, 실질적으로 상보적 (substantially com lementary) 및 완전히 상보적 (perfectly complementary)인 것을 모두 포괄하는 의미를 가지며, 바람직하게는 완전히 상보적인 것을 의미한다.  As used herein, the term "complementary" as used to refer to an antisense oligonucleotide is sufficient to allow the antisense oligonucleotide to selectively localize to a miR-494 target under certain localization or annealing conditions, preferably physiological conditions. Complementary means having one or more mismatch sequences, meaning substantially encompassing both substantially com lementary and perfectly complementary, preferably Means completely complementary.
본 발명의 바람직한 구현예에 따르면, 본 발명의 miR-494 의 핵심 결합 위치 /서열 (seed match sites/sequence)은 서열목록 제 2 서열 및 서열목록 제 3서열에 기재되어 있다. 가장 바람직하게는, 상기 위치 /서열은 KIT mRNA의 3' —UTR에 존재한다.  According to a preferred embodiment of the invention, the key match sites / sequences of the miR-494 of the invention are described in SEQ ID NO: 2 and SEQ ID NO: 3. Most preferably, the position / sequence is at 3′-UTR of KIT mRNA.
본 발명에서 안티센스 올리고뉴클레오타이드는 다양한 분자를 포함한다. 안티센스 올리고뉴클레오타이드는 DNA 또는 RNA 분자이며, 보다 바람직하게는 RNA 분자이다. 선택적으로, 본 발명에서 이용되는 안티센스 올리고뉴클레오타이드는 리보뉴클레오타이드 (RNA), 디옥시리보뉴클레오타이드 (DNA), 2 '-0-변형 올리고뉴클레오타이드, 포스포로티오에이트 -백본 디옥시리보뉴클레오타이드, PNA(peptide nucleic acid) 또는 LNAGocked nucleic acid)이다. 2 '-0-변형 을리고뉴클레오타이드는 바람직하게는 2' -0-알킬 올리고뉴클레오타이드이고, 보다 바람직하게는 2' -0-d-3 알킬 올리고뉴클레오타이드이며, 보다 더 바람직하게는 2' -0-d-3 메틸 올리고뉴클레오타이드이다.  Antisense oligonucleotides in the present invention include various molecules. Antisense oligonucleotides are DNA or RNA molecules, more preferably RNA molecules. Optionally, the antisense oligonucleotides used in the present invention include ribonucleotides (RNA), deoxyribonucleotides (DNA), 2'-0-modified oligonucleotides, phosphorothioate-backbone deoxyribonucleotides, peptide nucleic acid (PNA) or LNAGocked. nucleic acid). The 2'-0-modified oligonucleotide is preferably a 2'-0-alkyl oligonucleotide, more preferably a 2'-0-d-3 alkyl oligonucleotide, even more preferably a 2'-0- d-3 methyl oligonucleotide.
상술한 바와 같이, 본 발명에서 안티센스 올리고뉴클레오타이드는 miR-494 의 타겟 서열에 상보적인 서열을 가지는 핵산 -기반 억제제를 포함하는 포괄적인 의미를 갖는다. 본 발명의 안티센스 올리고뉴클레오타이드에 포함되는 것은, 예를 들어 좁은 의미의 안티센스 을리고뉴클레오타이드를 포함한다. 본 발명의 miR-494 타겟에 대한 기능의 억제는 전형적인 안티센스 올리고뉴클레오타이드를 투여하여 달성될 수 있다. 안티센스 올리고뉴클레오타이드는 리보뉴클레오타이드 As described above, antisense oligonucleotides in the present invention have a broad meaning including nucleic acid-based inhibitors having sequences complementary to the target sequence of miR-494. Included in the antisense oligonucleotides of the present invention include, for example, antisense oligonucleotides in a narrow sense. Inhibition of function on the miR-494 target of the invention can be achieved by administering a typical antisense oligonucleotide. Antisense oligonucleotides are ribonucleotides
디옥시리보뉴클레오타이드이다. 바람직하게는, i티센스 올리고뉴클레오타이드는 적어도 하나의 화학적 변형을 포함한다. 안티센스 올리고뉴클레오타이드는 하나 또는 그 이상의 LNAs(Locked nucleic acids)를 포함할 수 있다. LNA 는 변형 리보뉴클레오타이드로서 리보오스 당 부위의 2 ' 내지 4' 탄소 사이에 추가적인 브리지를 포함하여 잠금 (locked) 형태를 가지게 되며 이에 LNA가 있는 올리고뉴클레오타이드는 개선된 열 안정성을 가지게 된다 [J Weiler, J Hunziker and J Hall Gene Therapy (2006) 13, 496.502]. 택일적으로, 안티센스 올리고뉴클레오타이드는 PNAs(peptide nucleic acids)를 포함할 수 있으며, 이는 당—포스페이트 백본 대신에 펩타이드 -기반 백본을 포함한다. 안티센스 올리고뉴클레오타이드가 포함할 수 있는 다른 화학적 변형은, 2'- 0-알킬 (예컨대, 2'-0_메틸, 2'-0-메특시에틸), 2'-플루오로 및 4'-티오 변형과 같은 당 변형; 포스포로티오에이트, 모포리노 또는 포스포노카복실레이트 결합과 같은 백본 변형 (예컨대, 미국 특허 제 6,693,187 호 및 제 7,067,641 호)을 포함한다. 다른 구현예에서, 적합한 안티센스 올리고뉴클레오타이드는 2'-0_메톡시에틸 "갭머' '이며 이는 5 '-말단 및 3' -말단에 2'-0-메특시에틸 -변형 리보뉴클레오타이드를 포함하며 중앙에 적어도 10 개의 디옥시리보뉴클레오타이드를 갖는다. 이 "갭머' '는 RNA 타켓의 RNase I-의존성 파쇄 기전을 촉발시킬 수 있다. 안틴센스 올리고뉴클레오타이드의 길이는 7-50 뉴클레오타이드, 바람직하게는 10-40 뉴클레오타이드, 보다 바람직하게는 15-30 뉴클레오타이드, 가장 바람직하게는 2으25 뉴클레오타이드이다. Deoxyribonucleotides. Preferably, the itisense oligonucleotide comprises at least one chemical modification. Antisense oligonucleotides may comprise one or more locked nucleic acids (LNAs). LNA is a modified ribonucleotide that has a locked form, including an additional bridge between 2 'and 4' carbons of the ribose sugar moiety, so that oligonucleotides with LNA have improved thermal stability [J Weiler, J. Hunziker and J Hall Gene Therapy (2006) 13, 496.502]. Alternatively, antisense oligonucleotides may include peptide nucleic acids (PNAs), which include peptide-based backbones instead of sugar-phosphate backbones. Other chemical modifications that antisense oligonucleotides may include include 2'-0-alkyl (eg, 2'-0_methyl, 2'-0-methoxyethyl), 2'-fluoro and 4'-thio modifications. Sugar modifications such as; Backbone modifications such as phosphorothioate, morpholino or phosphonocarboxylate linkages (eg, US Pat. Nos. 6,693,187 and 7,067,641). In another embodiment, a suitable antisense oligonucleotide is 2'-0_methoxyethyl "gapmer" 'which includes 2'-0-methoxyethyl-modified ribonucleotides at the 5'-terminus and 3'-terminus Has at least 10 deoxyribonucleotides in. This "gapmer" can trigger an RNase I-dependent disruption mechanism of an RNA target. The antisense oligonucleotides are 7-50 nucleotides in length, preferably 10-40 nucleotides, more preferably 15-30 nucleotides, and most preferably 2-25 nucleotides.
본 발명의 바람직한 구현예에 따르면, 본 발명의 miR-494 또는 miR- 494 과다발현을 유도하는 제제 (agents)는 KIT 의 발현을 억제시키거나 또는 AKT 또는 STAT3 의 인산화를 억제한다. 본 발명의 miR-494 에 의해 상기 KIT 의 발현이 mRNA 또는 단백질 레벨에서 억제되고, 상기 AKT 또는 STAT3 의 인산화가 억제되었다 (참고: 도 4b 및 도 5). 또한, 본 발명의 miR-494 의 과다발현을 유도하는 것은 GIST 세포 성장을 억제하였다 (세포주기의 기 및 S기의 변화와 일치 : 참고, 도 6). According to a preferred embodiment of the invention, the agents inducing miR-494 or miR-494 overexpression of the invention inhibit the expression of KIT or inhibit the phosphorylation of AKT or STAT3. MiR-494 of the present invention inhibited the expression of the KIT at the mRNA or protein level, and phosphorylation of the AKT or STAT3 was inhibited (see FIGS. 4B and 5). In addition, of the present invention Inducing overexpression of miR-494 inhibited GIST cell growth (consistent with changes in cell cycle phase and S phase: see FIG. 6).
택일적으로, 본 발명의 miR-494 와 유사한 다른 접근 방식은 억제 RNA 분자를 투여하는 것이며 , 상기 억제 RNA 분자는 miR-494의 타겟 서열에 상보적인 서열을 포함한다. 이러한 억제 RNA 분자는 siRNA(small interference RNA), shRNA( short hairpin RNA), 리보자임 (r ibozyme), DNAzyme 또는 PNA(peptide nucleic acids)를 포함하지만, 이에 한정되는 것은 아니다.  Alternatively, another approach similar to miR-494 of the present invention is to administer an inhibitory RNA molecule, wherein the inhibitory RNA molecule comprises a sequence complementary to the target sequence of miR-494. Such inhibitory RNA molecules include, but are not limited to, small interference RNA (siRNA), short hairpin RNA (shRNA), ribozyme (r ibozyme), DNAzyme or peptide nucleic acids (PNA).
본 발명에서 용어 "siRNA" 는 RNA 방해 또는 유전자 사일런싱을 매개할 수 있는 핵산 분자를 의미한다 (참조: W0 00/44895, W0 01/36646, W0 99/32619, W0 01/29058, W0 99/07409 및 W0 00/44914) . siRNA 는 표적 유전자의 발현을 억제할 수 있기 때문에 효율적인 유전자 넉다운 방법으로서 또는 유전자치료 방법으로 제공된다. siRNA 는 식물, 벌레, 초파리 및 기생충에서 처음으로 발견되었으나, 최근에 siRNA 를 개발 /이용하여 포유류 세포 연구에 웅용되었다 (Degot S, et al . 2002; Degot S, et al. 2004; Ballut L, et al. 2005) .  As used herein, the term "siRNA" refers to a nucleic acid molecule capable of mediating RNA interference or gene silencing (W0 00/44895, W0 01/36646, W0 99/32619, W0 01/29058, W0 99 / 07409 and W0 00/44914). siRNA is provided as an efficient gene knockdown method or gene therapy method because it can inhibit the expression of the target gene. siRNA was first discovered in plants, worms, fruit flies and parasites, but has recently been used in mammalian cell research by developing / using siRNA (Degot S, et al. 2002; Degot S, et al. 2004; Ballut L, et al. 2005).
한편, 본 발명의 약제학적 조성물에 의해 치료될 수 있는 질환은 KIT-매개된 질환, 질병 또는 상태로, KIT 유전자 또는 단백질이 과다발현되거나 또는 돌연변이된 형태에 의해 유도되는 질환, 질병 또는 상태를 포함하고, 보다 바람직하게는 종양성 질환 (neoplastic disorder), 염증성 질환, 자가면역질환, 암, 알러지 질환, 과민성 대장증후군 (IBS), 이식편대 숙주질환 (GVHD), 대사성 증훈군, CNS(central nervous system)- 관계된 질환 퇴행성 신경질환, 비만세포 -관련 질환 (mast-cell associated disease), 고통, 물질 -남용 질환, 프라이온 질환, 심장 질환, 섬유성 질환, 특발성 폐동맥고혈압 (IPAH), 일차성 폐고혈압 (PPH), 신경교종 또는 심혈관 질환을 포함하며 , 보다 더 바람직하게는 종양성 질환을 포함한다.  On the other hand, diseases that can be treated by the pharmaceutical composition of the present invention include KIT-mediated diseases, diseases or conditions, diseases, diseases or conditions induced by the overexpressed or mutated form of the KIT gene or protein More preferably, neoplastic disorder, inflammatory disease, autoimmune disease, cancer, allergic disease, irritable bowel syndrome (IBS), graft versus host disease (GVHD), metabolic syndrome, CNS (central nervous system) )-Related diseases Degenerative neuropathy, mast-cell associated disease, pain, substance-abuse disease, prion disease, heart disease, fibrotic disease, idiopathic pulmonary hypertension (IPAH), primary pulmonary hypertension (PPH), glioma or cardiovascular disease, even more preferably neoplastic disease.
본 발명의 바람직한 구현예에 따르면, 본 발명의 종양성 질환은 위장관 간질종양 (gatrointe'stinal stromal tumors, GISTs), 소세포 폐암 (small cell lung cancer), 비-소세포성 폐암, 급성 골수성 백혈병 (acute myelocytic leukemia), 급성 림프구성 백혈병, 골수이형성증후군 (myelodyplastic syndrome), 만성 골수성 백혈병, 대장 암종, 위 암종, 고환암 (testicular cancer), 신경교종 (gl ioblastoma) 성상세포종 (astrocytoma) 또는 비만세포종 (mastocytosis)을 포함하고, 가장 바람직하게는 위장관 간질종양이다. According to a preferred embodiment, the neoplastic disorder of the present invention is gastrointestinal stromal tumor (gatrointe 'stinal stromal tumors, GISTs), small cell lung cancer (small cell lung cancer), non-small cell lung cancer, acute myeloid leukemia (acute myelocytic leukemia, acute lymphocytic leukemia, myelodyplastic syndrome, chronic myeloid leukemia, large intestine Carcinoma, gastric carcinoma, testicular cancer, glioblastoma astrocytoma or mastocytosis, most preferably gastrointestinal stromal tumor.
본 발명의 바람직한 구현 예에 따르면, 본 발명의 암종은 고환암, 난소암, 폐암, 유방암, 대장암, 뇌암, 결장암, 신경내분비 암, 위암, 간암, 기관지암, 비인두암, 후두암, 췌장암, 방광암, 부신암, 자궁경부암, 전립선암, 골암, 피부암, 갑상선암, 부갑상선암 또는 요관암을 포함하지만, 이에 한정되는 것은 아니다.  According to a preferred embodiment of the present invention, the carcinoma of the present invention is testicular cancer, ovarian cancer, lung cancer, breast cancer, colon cancer, brain cancer, colon cancer, neuroendocrine cancer, gastric cancer, liver cancer, bronchial cancer, nasopharyngeal cancer, laryngeal cancer, pancreatic cancer, bladder cancer, Adrenal cancer, cervical cancer, prostate cancer, bone cancer, skin cancer, thyroid cancer, parathyroid cancer or ureter cancer.
본 발명의 약제학적 조성물은 약제학적으로 허용되는 담체를 포함한다 . 본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비를, 만니를, 전분, 아카시아 고무, 인산 칼슴, 알기네이트 , 젤라틴, 규산 칼슘, 미세결정성 샐를로스, 폴리비닐피를리돈, 셀를로스, 물, 시럽, 메틸 셀를로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, ' 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제,, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed. , 1995)에 상세히 기재되어 있다. The pharmaceutical composition of the present invention includes a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers included in the pharmaceutical composition of the present invention are commonly used in the preparation, lactose, dextrose, sucrose, sorbbi, manny, starch, acacia rubber, phosphate chalc, alginate, gelatin, calcium silicate, microcrystalline saelreul Ross, polyvinyl an pyrrolidone, selreul Ross, water, syrup, methyl selreul Ross, methyl hydroxybenzoate, propyl hydroxybenzoate,, talc, magnesium stearate, and mineral oils such as Including, but not limited to. In addition to the above components, the pharmaceutical composition of the present invention may further include a lubricant, a humectant, a sweetener, a flavoring agent, an emulsifier, a suspending agent, a preservative, and the like. Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995).
본 발명의 약제학적 조성물은 경구 또는 비경구 투여 (예컨대, 정맥내 투여 , 피하 투여 또는 국부 투여)할 수 있다.  The pharmaceutical compositions of the invention may be oral or parenteral (eg, intravenous, subcutaneous or topical).
본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반웅 감웅성과 같은 요인들에 의해 다양하게 처방될 수 있다. 한편, 본 발명의 약제학적 조성물의 투여량은 바람직하게는 1 일 당 0.0001ᅳ 100 mg/kg (체중)이다.  Suitable dosages of the pharmaceutical compositions of the present invention may vary depending on factors such as the formulation method, mode of administration, age, weight, sex, morbidity, food, time of administration, route of administration, rate of excretion and reaction in response to the patient. It may be prescribed. On the other hand, the dosage of the pharmaceutical composition of the present invention is preferably 0.0001 ᅳ 100 mg / kg (body weight) per day.
본 발명의 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및 /또는 부형제를 이용하여 제제화함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캅샐제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다 . 본 발명의 또 다른 양태에 따르면, 본 발명은 (a) 마이크로 RNA- 494(miR-494)_인코딩 뉴클레오타이드 서열을 포함하는 세포에 시험물질을 처리하는 단계; 및 (b) 상기 세포에서 miR-494 의 발현을 분석하는 단계를 포함하는 종양성 질환 (neoplastic disorders) 치료제의 스크리닝 방법으로, 상기 시험물질이 miR-494 의 발현을 증가시키면 종양성 질환 치료제로 판단된다. The pharmaceutical compositions of the present invention may be prepared in unit dose form by formulating with a pharmaceutically acceptable carrier and / or excipient according to methods which can be easily carried out by those skilled in the art. Or may be prepared by incorporating into a multi-dose container. Wherein the formulation is a solution suspension or emulsion in an oil or aqueous medium It may also be in the form of extracts, powders, granules, tablets or capsules, and may further include a dispersant or stabilizer. According to another aspect of the invention, the invention comprises the steps of (a) treating a test substance to a cell comprising a micro RNA-494 (miR-494) -encoding nucleotide sequence; And (b) analyzing the expression of miR-494 in the cells. A method for screening a therapeutic agent for neoplastic disorders, the method comprising: increasing the expression of miR-494 and treating it as a tumor drug do.
본 발명의 방법에 따르면, 우선 본 발명 타겟의 뉴클레오타이드 서열 (바람직하게는, miR-494-인코딩 뉴클레오타이드 서열)을 포함하는 세포에 분석하고자 하는 시료를 접촉시킨다. 본 발명 타겟의 뉴클레오타이드 서열을 포함하는 세포는 특별하게 제한되지 않으며, 바람직하게는 KIT 를 과다발현하거나 KIT-활성화 돌연변이를 포함하는 세포이고, 보다 바람직하게는 위장관 간질종양 세포주이다. 상기 세포는 바람직하게는 초기배양 세포 (primary cultured cells), 구축세포주 ( established cell line) 또는 종양세포이다. 가장 바람직하게는, 본 발명의 뉴클레오티드 서열을 포함하는 세포는 인간의 위장관 간질종양 세포주이다. 본 발명 스크리닝 방법을 언급하면서 사용되는 용어 "시험물질" 은 본 발명의 마커의 발현량에 영향을 미치는 지 여부를 검사하기 위하여 스크리닝에서 이용되는 미지의 물질을 의미한다. 상기 시험물질은 화학물질, 뉴클레오타이드, 안티센스 -RNA, siRNAC small interference RNA) 및 천연물 추출물을 포함하나, 이에 한정되는 것은 아니다.  According to the method of the present invention, first, a sample to be analyzed is contacted with a cell comprising the nucleotide sequence of the target of the present invention (preferably miR-494-encoding nucleotide sequence). Cells comprising the nucleotide sequence of the target of the present invention are not particularly limited, preferably cells that overexpress KIT or contain KIT-activating mutations, and more preferably are gastrointestinal stromal cell lines. The cell is preferably a primary cultured cell, an established cell line or a tumor cell. Most preferably, the cell comprising the nucleotide sequence of the present invention is a human gastrointestinal stromal tumor line. As used to refer to the screening methods of the present invention, the term "test material" refers to an unknown material used in screening to examine whether it affects the expression level of the marker of the present invention. The test substance includes, but is not limited to, chemicals, nucleotides, antisense -RNAs, siRNAC small interference RNAs) and natural extracts.
이어, 시험물질이 처리된 세포에서 본 발명의 타겟의 발현량을 측정한다. 발현량의 측정은 하기 기재한 바와 같이 실시할 수 있으며, 측정 결과, 본 발명의 마커의 뉴클레오티드 서열의 발현이 증가되거나 또는 이의 타켓인 KIT 의 발현이 억제되는 경우에는 상기 시험물질은 종양성 질환의 예방또는 치료용 물질로 판정될 수 있다.  Then, the expression level of the target of the present invention is measured in the cells treated with the test substance. The amount of expression can be measured as described below. When the result of the measurement indicates that the expression of the nucleotide sequence of the marker of the present invention is increased or the expression of KIT, which is a target thereof, is suppressed, the test substance is used for tumorous disease. It can be determined as a prophylactic or therapeutic substance.
본 발명의 miR-494 및 KIT 의 발현량 변화의 측정은 당업계에 공지된 다양한 방법을 통해 실시될 수 있다. 예를 들에 RT-PCR(Sambrook 등, Molecular Cloning. A Laboratory Manual , 3rd ed. Cold Spring Harbor Press(200D), 노던 블롯팅 (Peter B. aufma et al. , Molecular and Cellular Methods in Biology and Medicine, 102-108, CRC press) , cDNA 마이크로어레이를 이용한 흔성화 반웅 (Sambrook 등, Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001)) 또는 인 시투 situ) 흔성화 반웅 (Sambrook 등, Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press(2001))을 이용하여 실시할 수 있다. Measurement of the expression level change of miR-494 and KIT of the present invention can be carried out through various methods known in the art. For example, RT-PCR (Sambrook et al., Molecular Cloning. A Laboratory Manual, 3rd ed. Cold Spring Harbor Press (200D), Northern blotting (Peter B. aufma et al., Molecular and Cellular Methods in Biology and Medicine, 102-108, CRC press), and localization using cDNA microarrays (Sambrook et al., Molecular Cloning.A Laboratory Manual, 3rd ed.Cold Spring Harbor Press (2001)) or in situ) oscillation reaction (Sambrook et al., Molecular Cloning.A Laboratory Manual, 3rd ed.Cold Spring Harbor Press (2001)) It can be carried out.
RT-PCR 프로토콜에 따라 실시하는 경우에는 우선, 시험물질을 처리한 세포에서 총 RNA 를 분리한 다음, 올리고 dT 프라이머 및 역전사효소를 이용하여 제 1 쇄 cDNA 를 제조한다. 이어, 제 1 쇄 cDNA 를 주형으로 이용하고, miR-494- 또는 KIT-특이적 프라이머 세트를 이용하여 PCR 반응을 실시한다. 그런 다음, PCR 증폭 산물을 전기영동하고, 형성된 밴드를 분석하여 miR-494또는 KIT의 발현량 변화를 측정한다.  In case of carrying out the RT-PCR protocol, first, total RNA is isolated from cells treated with the test substance, and then, first-chain cDNA is prepared using oligo dT primer and reverse transcriptase. Subsequently, the first chain cDNA is used as a template, and a PCR reaction is performed using a miR-494- or KIT-specific primer set. Then, the PCR amplification product is electrophoresed, and the formed band is analyzed to measure the change in the expression level of miR-494 or KIT.
본 발명의 바람직한 구현예에 따르면, 본 발명의 증폭은 실- 시간 (real-time) PCR에 따라 실시된다.  According to a preferred embodiment of the invention, the amplification of the invention is carried out according to real-time PCR.
실 -시간 PCR 은 PCR 증폭 산물의 증가를 실-시간으로 모니터링하여 분석하는 기술이다 (Levak KJ, et al., PCR Methods Appl. , 4(6): 357- 62(1995)). PCR 생산물의 증가가 타겟 템플레이트의 초기 양과 비례하는 지수기 (exponential phase) 동안 각 사이클에서 형광 방출량올 기록하여 PCR 반웅을 모니터링할 수 있다. 핵산 타겟의 출발 카피 수가 높을수록, 형광 증가가 더 빨리 관찰되고 더 낮은 Cr값 (threshold cycle)을 가지게 된다. 3-15 사이클 사이에서 측정된 기준값보다 높은 형광의 뚜렷한 증가는 축적된 PCR 생산물의 검출을 의미한다. 종래의 PCR 방법에 비해, 실 -시간 PCR 은 다음과 같은 장점을 가진다: (a) 종래의 PCR 은 정체 상태 (plateau)에서 측정되는 반면에, 실 -시간 PCR 은 지수성장기 (exponential growth phase) 동안 데이터를 얻을 수 있다; (b) 리포터 형광 시그널의 증가는 발생된 앰플리콘 (amplicons)의 수와 직접적으로 비례한다; (c) 분해된 프로브는 앰플리콘의 영구적인 기록 증폭 (record ampl if ication)을 제공한다; (d) 검출 범위의 증가; (e) 종래 PCR 방법에 비해 1,000 배 이상 적은 핵산을 필요로 한다; (f) 전기영동을 통한 분리 없이 증폭된 DNA 의 검출이 가능하다; (g) 작은 앰플리콘 크기를 이용하여 증가된 증폭 효율을 획득할 수 있다; 및 (h) 오염 위험성이 적다. Real-time PCR is a technique for monitoring and analyzing the increase in PCR amplification products in real time (Levak KJ, et al., PCR Methods Appl., 4 (6): 357-62 (1995)). PCR reactions can be monitored by recording the fluorescence emission in each cycle during an exponential phase in which the increase in PCR product is proportional to the initial amount of the target template. The higher the starting copy number of the nucleic acid target, the faster the fluorescence increase is observed and the lower the C r value (threshold cycle). A marked increase in fluorescence above the reference value measured between 3-15 cycles means detection of accumulated PCR product. Compared to conventional PCR methods, real-time PCR has the following advantages: (a) Conventional PCR is measured in the plateau, while real-time PCR is used during the exponential growth phase. Data can be obtained; (b) the increase in the reporter fluorescence signal is directly proportional to the number of amplicons generated; (c) the cleaved probe provides permanent record amplification of the amplicon; (d) increase the detection range; (e) requires at least 1,000 times less nucleic acid than conventional PCR methods; (f) electrophoresis Detection of amplified DNA is possible without separation through; (g) small amplicon sizes may be used to achieve increased amplification efficiency; And (h) the risk of contamination is low.
PCR 증폭 산물량은 형광으로 검출 가능한 양에 도달하면 증폭곡선이 일어나기 시작해 지수적으로 시그널이 상승하다가 정체 상태에 도달한다. 초기 DNA 량이 많을수록 증폭 산물량이 검출 가능한 양에 달하는 사이클 수가 적어지므로 증폭곡선이 빨리 나타난다. 따라서, 단계적으로 희석한 표준시료를 사용하여 실 -시간 PCR 반응을 하면 초기 DNA 량이 많은 순서로 같은 간격으로 늘어선 증폭 곡선이 얻어진다. 여기서 적당한 지점에 한계치 (threshold)를 설정하면 한계치와 증폭 곡선이 교차하는 지점 Cr값이 산출된다. When the amount of PCR amplification products reaches a detectable amount by fluorescence, an amplification curve begins to occur, and the signal rises exponentially and reaches a steady state. The larger the initial DNA amount, the less the number of cycles the amplification product reaches to detectable amount, so the amplification curve appears faster. Therefore, real-time PCR reaction using a standard sample diluted in stages yields amplification curves arranged at equal intervals in the order of increasing initial DNA content. Setting a threshold at an appropriate point here yields the point C r at which the threshold intersects the amplification curve.
실 -시간 PCR 에서는 PCR 증폭 산물을 형광을 통해 검출한다. 검출 방법은 크게 인터킬레이팅 (interchelating) 방법 (SYBR 그린 I 방법), 형광 표지 프로브를 이용하는 방법 (TaqMan프로브 방법 ) 등이 있다.  In real-time PCR, PCR amplification products are detected by fluorescence. Detection methods are largely an interchelating method (SYBR Green I method), a method using a fluorescent labeled probe (TaqMan probe method), and the like.
먼저, 인터킬레이팅 방법은 이중 가닥 DNA 결합 다이를 이용하는 방법으로, 비 -서열 특이적 형광 인터킬레이팅 시약 (SYBR 그린 I 또는 ethidium bromide)을 이용하여 비-특이적 증폭 및 프라이머-다이머 복합체를 포함하는 앰플리콘 생산을 정량하는 것이다. 상기 시약은 ssDNA 와는 결합하지 않는다. SYBR 그린 I 은 이중 가닥 DNA 의 마이너 그루브 (minor groove)에 결합하는 형광성 다이로, 용액 상에서는 거의 형광을 보이지 않지만 이중 가닥 DNA 와 결합하면 강한 형광을 나타내는 시약 (interchelator)이다 (Morrison TB, Biotechniques. , 24(6): 954—8, 960, 962(1998)). 따라서, SYBR 그린 I 과 이중 가닥 DNA 간의 결합을 통해 형광을 방출하기 때문에 증폭 산물의 생성량을 측정할 수 있다. SYBR 그린 실 -시간 PCR 은 앰플리콘 동정을 위해 융해점 (melting point) 또는 해리 곡선 (dissociation curve) 분석과 같은 최적화 과정을 동반한다. 정상적으로 SYBR 그린은 싱글플렉스 (singleplex) 반웅에 이용되지만, 융해곡선 (melting curve) 분석이 동반되면 멀티플렉스 (multiplex) 반웅에 이용될 수 있다 (Siraj AK, et al., Clin Cancer Res., 8(12): 3832- 40(2002); 및 Vrettou C. , et al . , Hum Mutat., Vol 23(5): 513-521(2004)).  First, the interchelating method uses a double-stranded DNA binding die, which includes non-specific amplification and primer-dimer complexes using a non-sequence specific fluorescence interchelating reagent (SYBR Green I or ethidium bromide). To quantify amplicon production. The reagent does not bind to ssDNA. SYBR Green I is a fluorescent die that binds to the minor groove of double-stranded DNA. It is a reagent that shows little fluorescence in solution but shows strong fluorescence when bound to double-stranded DNA (Morrison TB, Biotechniques., 24 (6): 954-8, 960, 962 (1998). Therefore, since the fluorescence is emitted through the binding between SYBR Green I and the double-stranded DNA, the amount of amplified product can be measured. SYBR Green Real-Time PCR is accompanied by optimization procedures such as melting point or dissociation curve analysis for amplicon identification. Normally, SYBR greens are used for singleplex reactions, but they can be used for multiplex reactions when accompanied by melting curve analysis (Siraj AK, et al., Clin Cancer Res., 8 ( 12): 3832-40 (2002); and Vrettou C., et al., Hum Mutat., Vol 23 (5): 513-521 (2004)).
CT (threshold cycle) 값은 반응에서 발생된 형광이 역치 (threshold)를 넘어서는 사이클 수를 의미하며, 이는 초기 카피 수의 대수에 반비례한다. 그러므로, 특정 웰에 할당된 Cr 값은 반응에서 앰플리콘의 층분한 수가 축적된 사이클의 수를 반영한다. Cr값은 ARn 의 증가가 처음으로 검출된 사이클이다. Rn 은 각 시점에서 PCR 동안 발생된 형광 시그널의 크기를 의미하며, ARn은 레퍼런스 다이의 형광 방출 강도로 나뉘어진 리포터 다이의 형광방출 강도 (표준화된 리포터 시그널)를 의미한다. Cr값은 LightCycler 에서는 CpCcrossing point)로도 명명된다. Cr 값은 시스템이 로그 -선형 단계 (log-linear phase)에서 PCR 생산물의 지수성장과 관련된 형광 시그널의 증가를 검출하기 시작하는 시점을 나타낸다. 이 시기는 반웅에 대한 가장 유용한 정보를 제공한다. 로그- 선형 단계의 기울기는 증폭 효율 (amplification efficiency, Eff)을 나타낸다 (hUp://w .appl iedbiosystems.co.kr/) . The threshold cycle (C T ) value is the number of cycles in which the fluorescence generated in the reaction exceeds the threshold, which is the initial copy number. Inversely proportional to algebra Therefore, the Cr value assigned to a particular well reflects the number of cycles in which the stratified number of amplicons accumulated in the reaction. The C r value is the cycle in which an increase in ARn was first detected. Rn means the magnitude of the fluorescence signal generated during PCR at each time point, and ARn means the fluorescence emission intensity (standardized reporter signal) of the reporter die divided by the fluorescence emission intensity of the reference die. The Cr value is also named CpCcrossing point in LightCycler. The Cr value represents the point in time when the system begins to detect an increase in the fluorescence signal associated with the exponential growth of the PCR product in a log-linear phase. This period provides the most useful information about reaction. The slope of the log-linear step represents the amplification efficiency (Eff) (hUp: //w.appl iedbiosystems.co.kr/).
한편, 택맨 (TaqMan) 프로브는 전형적으로 5' -말단에 형광물질 및 3' -말단에 퀀처 (예컨대, TAM A 또는 비 -형광 뭔처 (NFQ))를 포함하는 프라이머 (예컨대 , 20-30 뉴클레오타이드) 보다 더 긴 을리고뉴클레오타이드이다. 여기된 형광물질은 형광을 내기 보다는 근처의 뭔처에 에너지를 전달한다 (FRET = Forster or fluorescence resonance energy transfer; Chen, X. , et al . , Proc Natl Acad Sci USA, 94(20): 10756-61(1997)). 그러므로, 프로브가 정상인 경우, 어떠한 형광도 발생되지 않는다. 택맨 프로브는 PCR 생산물의 내부 부위에 어닐링할 수 있도록 고안된다. 바람직하게는, 택맨 프로브는 서열목록 제 1서열의 내부서열로 고안될 수 있다.  TaqMan probes, on the other hand, typically contain primers (eg, 20-30 nucleotides) comprising a fluorescent at the 5'-end and a quencher at the 3'-end (eg, TAM A or non-fluorescent something (NFQ)). It is longer than ligonucleotides. The excited fluorescent material transfers energy to something nearby rather than to fluoresce (FRET = Forster or fluorescence resonance energy transfer; Chen, X., et al., Proc Natl Acad Sci USA, 94 (20): 10756-61 (1997)). Therefore, no fluorescence is generated when the probe is normal. Taqman probes are designed to anneal to internal sites of PCR products. Preferably, the Taqman probe may be designed as an internal sequence of the first sequence of Sequence Listing.
택맨 프로브는 어닐링 단계에서 템플레이트 DNA 에 특이적으로 흔성화하지만, 프로브 상에 퀀처에 의해 형광 발색이 억제된다. 연장 반응 시에 Taq DNA 폴리머라제가 갖는 5' to 3' 뉴클레아제 활성에 의해 템플레이트에 흔성화한 택맨 프로브가 분해되어 형광 색소가 프로브로부터 유리되면서 퀀처에 의한 억제가 해제되어 형광은 나타낸다. 이 때, 택맨 프로브의 5' -말단은 상기 연장 프라이머의 3' -말단의 다운스트림에 위치하여야 한다. 즉, 연장 프라이머의 3' —말단이 주형-의존성 핵산 중합효소에 의해 연장되는 경우, 이 중합효소의 5' to 3' 뉴클레아제 활성에 의해 택맨 프로브의 5' -말단이 절단되어 리포터 분자의 형광 시그널이 발생하게 된다. . 택맨 프로브에 결합되어 있는 상기 리포터 분자 및 뭔처 분자는 모두 형광성 물질이다. 본 발명에 이용될 수 있는 형광성 리포터 분자 및 뭔처 분자는 당업계에 공지되어 있는 어떠한 것도 이용할 수 있으며, 그 예는 다음과 같다 (괄호의 숫자는 나노미터 단위로 표시한 발광 최대 파장이다): Cy2™(506), Y0-PR0™- 1(509), YOYO™- 1( 509 ) , Calcein(517) , FITC(518), FluorX™(519), Alexa™(520), Rhodamine 110(520), 5-FAM(522), Oregon Green™ 500(522), Oregon Green™ 488(524), RiboGreen™(525) , Rhodamine Green™ (527), Rhodamine 123(529), Magnesium Green™ (531), Calcium Green™ (533), T0-PR0™- 1(533) , T0T01 (533) , JOE (548), B0DIPY530/550(550), Di 1(565), B0DIPY TMR(568), B0DIPY558/568(568) , B0DIPY564/570(570), Cy3™(570), Alexa™ 546(570), TRITC(572), Magnesium Orange™ (575) , Phycoerythr in R&B(575) , Rhodamine Phalloidin(575), Calcium 0range™(576) , Pyronin Y(580), Rhodamine B(580), TAMRAC582), Rhodamine Red™ (590), Cy3.5™(596), ROX(608), Calcium Cr imson™(615) , Alexa™ 594(615), Texas Red(615), Nile Red(628) , Y0-PR0™-3(631) , Y0Y0™-3(631) , R-phycocyanin(642) , C- Phycocyanin(648), T0-PR0™-3 660), T0T03(660), DiD Di 1C(5)(665) , Cy5™(670), Thiadicarbocyanine(671) 및 Cy5.5(694). Taqman probes specifically hybridize to template DNA in the annealing step, but fluorescence is suppressed by the quencher on the probe. During the extension reaction, the Taq DNA polymerase activity possessed by Taq DNA polymerase decomposes the Taqman probe, which is localized in the template, and the fluorescent dye is released from the probe. At this time, the 5'-end of the Taqman probe should be located downstream of the 3'-end of the extension primer. That is, when the 3'-end of the extension primer is extended by the template-dependent nucleic acid polymerase, the 5'-end of the Taqman probe is cleaved by the 5 'to 3' nuclease activity of the polymerase to The fluorescent signal is generated. . Both the reporter molecule and the molecule somewhere bound to the Taqman probe are fluorescent materials. Fluorescent reporter molecules and those molecules that can be used in the present invention can be any known in the art, for example: (The number in parentheses is the maximum emission wavelength in nanometers): Cy2 ™ (506), Y0-PR0 ™ -1 (509), YOYO ™ -1 (509), Calcein (517), FITC (518), FluorX ™ (519), Alexa ™ (520), Rhodamine 110 (520) , 5-FAM (522), Oregon Green ™ 500 (522), Oregon Green ™ 488 (524), RiboGreen ™ (525), Rhodamine Green ™ (527), Rhodamine 123 (529), Magnesium Green ™ (531), Calcium Green ™ (533), T0-PR0 ™ -1 (533), T0T01 (533), JOE (548), B0DIPY530 / 550 (550), Di 1 (565), B0DIPY TMR (568), B0DIPY558 / 568 ( 568), B0DIPY564 / 570 (570), Cy3 ™ (570), Alexa ™ 546 (570), TRITC (572), Magnesium Orange ™ (575), Phycoerythr in R & B (575), Rhodamine Phalloidin (575), Calcium 0range ™ (576), Pyronin Y (580), Rhodamine B (580), TAMRAC582), Rhodamine Red ™ (590), Cy3.5 ™ (596), ROX (608), Calcium Crimson ™ (615), Alexa ™ 594 (615 ), Texas Red (615), Nile Red (628), Y0-PR0 ™ -3 (631), Y0Y0 ™ -3 (631), R-phycocyanin (642), C- Phycocyanin (648), T0-PR0 ™ -3 660), T0T03 (660), DiD Di 1C (5) (665), Cy5 ™ (670), Thiadicarbocyanine (671) and Cy5.5 (694).
적합한 리포터 -뭔처 쌍은 많은 문헌에 개시되어 있다: Pesce et al., editors, FLUORESCENCE SPECTROSCOPY (Marcel Dekker , New York, 1971); White et al., FLUORESCENCE ANALYSIS: A PRACTICAL APPROACH (Marcel Dekker , New York, 1970); Berlman, HANDBOOK OF FLUORESCENCE SPECTRA OF AROMATIC MOLECULES, 2nd EDITION (Academic Press, New York, 1971); Griffiths, COLOUR AND CONSTITUTION OF ORGANIC MOLECULES (Academic Press, New York, 1976); Bishop, editor, INDICATORS (Pergamon Press, Oxford, 1972); Haugland, HANDBOOK OF FLUORESCENT PROBES AND RESEARCH CHEMICALS (Molecular Probes , Eugene, 1992); Pr ingsheim, FLUORESCENCE AND PHOSPHORESCENCE (Inter science Publishers, New York, 1949); Haugland, R. P., HANDBOOK OF FLUORESCENT PROBES AND RESEARCH CHEMICALS, Sixth Edition, Molecular Probes, Eugene, Oreg. , 1996; U.S. Pat. Nos. 3,996,345 and 4,351,760. 본 발명에서 이용되는 타겟 핵산은 특별하게 제한되지 않으며,Suitable reporter-something pairs are disclosed in many literatures: Pesce et al., Editors, FLUORESCENCE SPECTROSCOPY (Marcel Dekker, New York, 1971); White et al., FLUORESCENCE ANALYSIS: A PRACTICAL APPROACH (Marcel Dekker, New York, Berlman, HANDBOOK OF FLUORESCENCE SPECTRA OF AROMATIC MOLECULES, 2nd EDITION (Academic Press, New York, 1971); Griffiths, COLOUR AND CONSTITUTION OF ORGANIC MOLECULES (Academic Press, New York, 1976); Bishop, editor, INDICATORS (Pergamon Press, Oxford, 1972); Haugland, HANDBOOK OF FLUORESCENT PROBES AND RESEARCH CHEMICALS (Molecular Probes, Eugene, 1992); Pingsheim, FLUORESCENCE AND PHOSPHORESCENCE (Inter science Publishers, New York, 1949); Haugland, RP, HANDBOOK B FLUORESCENT AND RESEARCH CHEMICALS, Sixth Edition, Molecular Probes, Eugene, Oreg. , 1996; US Pat. Nos. 3,996,345 and 4,351,760. The target nucleic acid used in the present invention is not particularly limited,
DNACgDNA 또는 cDNA) 또는 RNA 분자를 모두 포함하며 , 보다 바람직하게는 RNA 분자이다. DNACgDNA or cDNA) or RNA molecules, more preferably RNA molecules.
타겟 핵산을 연장 프라이머 및 프로브에 어닐링 또는 흔성화 시키는 방법은 당업계에 공지된 흔성화 방법에 의해 실시할 수 있다. 본 발명에서, 적합한 흔성화 조건은 최적화 절차에 의하여 일련의 과정으로 결정될 수 있다. 이런 절차는 연구실에서 사용을 위한 프로토콜을 수립하기 위하여 당업자에 의하여 일련의 과정으로 실시된다. 예를 들어, 온도, 성분의 농도, 흔성화 및 반웅 시간, 완충액 성분 및 이들의 pH 및 이온세기 등의 조건은 올리고뉴클레오타이드의 길이 및 GC 양 및 타깃 뉴클레오타이드 서열 등의 다양한 인자에 의존한다. 흔성화를 위한 상세한 조건은 Joseph Sambrook, et al . , Molecular Cloning, A Laboratory Manual , Cold Spring Harbor Laboratory Press, Cold Spring Harbor , N.Y. (2001); 및 M.L.M. Anderson, Nucleic Acid Hybridization, Springer一 Verlag New York Inc. N.Y. (1999)에서 확인할 수 있다.  The method of annealing or hybridizing the target nucleic acid to the extension primers and probes can be carried out by the method of known in the art. In the present invention, suitable isomerization conditions can be determined in a series of procedures by an optimization procedure. This procedure is carried out by a person skilled in the art in order to establish a protocol for use in the laboratory. For example, conditions such as temperature, concentration of components, time to shake and reaction, buffer components and their pH and ionic strength depend on various factors such as the length and GC amount of the oligonucleotide and the target nucleotide sequence. Detailed conditions for the shake are described by Joseph Sambrook, et al. , Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2001); and M.L.M. Anderson, Nucleic Acid Hybridization, Springer I Verlag New York Inc. N.Y. (1999).
본 발명에 이용되는 주형-의존성 핵산 중합효소는 5' to 3' 뉴클레아제 활성을 가지는 효소이다. 본 발명에 이용되는 주형-의존성 핵산 중합효소는 바람직하게는 DNA 중합효소이다. 통상적으로 DNA 중합효소들은 5' to 3' 뉴클레아제 활성을 가지고 있다. 본 발명에 이용되는 주형-의존성 핵산 중합효소는 E. coli DNA 중합효소 I, 열안정성 DNA 중합효소 및 박테리오파아지 T7 DNA 중합효소를 포함한다. 바람직하게는, 주형-의존성 핵산 중합효소는 다양한 박테리아 종으로부터 얻을 수 있는 열안정성 DNA 중합효소이고, 이는 Thermus aguatjeusiTaq) , Thermus
Figure imgf000018_0001
, Thermus filiformis, Therm is flavus, Thermococcus literal is, Pyrococcus fur/osusiPfu) , Thermus antranikiani i , Thermus caldophi lus, Thermus chl iarophi lus, Thermus flavus, Thermus igniterrae, Thermus lacteus, Thermus oshimai , Thermus ruber, Thermus rubens, Thermus scotoductus , Thermus silvanus, Thermus species Z05, Thermus species sps 17, Thermus thermophi lus , Ther otoga maritima, Thermotoga neapol itana 및 Thermos ipho africanus 의 DNA 중합효소를 포함한다. 주형-의존성 핵산 중합효소에 의해 촉매되는 "주형-의존성 연장반응" 은 주형의 서열에 상보적인 뉴클레오타이드 서열을 합성하는 반웅을 의미한다 .
The template-dependent nucleic acid polymerase used in the present invention is an enzyme having 5 'to 3' nuclease activity. The template-dependent nucleic acid polymerase used in the present invention is preferably a DNA polymerase. DNA polymerases typically have 5 'to 3' nuclease activity. Template-dependent nucleic acid polymerases used in the present invention include E. coli DNA polymerase I, thermostable DNA polymerase and bacteriophage T7 DNA polymerase. Preferably, the template-dependent nucleic acid polymerase is a thermostable DNA polymerase obtained from various bacterial species, which is Thermus aguatjeusi Taq), Thermus
Figure imgf000018_0001
, Thermus filiformis, Therm is flavus, Thermococcus literal is, Pyrococcus fur / osusiPfu), Thermus antranikiani i, Thermus caldophi lus, Thermus chl iarophi lus, Thermus flavus, Thermus igniterrae, Thermus lacteus, Thermus rubenoshier, Thermus rubenoshier DNA polymerases of scotoductus, Thermus silvanus, Thermus species Z05, Thermus species sps 17, Thermus thermophi lus, Ther otoga maritima, Thermotoga neapol itana and Thermos ipho africanus. By “template-dependent extension reaction” catalyzed by a template-dependent nucleic acid polymerase is meant a reaction that synthesizes a nucleotide sequence complementary to the sequence of the template.
본 발명의 바람직한 구현예에 따르면, 본 발명의 실 -시간 PCR 은 택맨 프로브 방식으로 실시된다.  According to a preferred embodiment of the present invention, the real-time PCR of the present invention is carried out by Taqman probe method.
또한, KIT 단백질의 양의 변화는 당업계에 공지된 다양한 면역분석 방법을 통해 실시될 수 있다. 예를 들어, 과립형성 인자 단백질의 양의 변화는 면역염색, 방사능면역분석, 방사능면역침전, 웨스턴 블롯팅, 면역침전, ELISA(enzyme-linked immunosorbent assay) , 캡처 -ELISA, 억제 또는 경쟁 분석, 그리고 샌드위치 분석을 포함하지만, 이에 한정되는 것은 아니다.  In addition, the change in the amount of KIT protein can be carried out through various immunoassay methods known in the art. For example, changes in the amount of granulation factor protein may include immunostaining, radioimmunoassay, radioimmunoprecipitation, western blotting, immunoprecipitation, enzyme-linked immunosorbent assay, capture-ELISA, inhibition or competition assay, and Including but not limited to sandwich analysis.
상기 면역분석 또는 면역염색의 방법은 Enzyme Immunoassay, E. T. Maggio, ed. , CRC Press, Boca Raton, Florida, 1980; Gaastra, W. , Enzyme- 1 inked immunosorbent assay(ELISA) , in Methods in Molecular Biology, Vol. 1, Walker, J.M. ed. , Humana Press, NJ, 1984; 및 Ed Harlow and David Lane, Using Ant i bodies -Ά Laboratory Manual , Cold Spring Harbor Laboratory Press, 1999에 기재되어 있으며, 상기 문헌은 본 명세서에 참조로서 삽입된다.  The immunoassay or method of immunostaining is described in Enzyme Immunoassay, E. T. Maggio, ed. , CRC Press, Boca Raton, Florida, 1980; Gaastra, W., Enzyme-1 inked immunosorbent assay (ELISA), in Methods in Molecular Biology, Vol. 1, Walker, J.M. ed. , Humana Press, NJ, 1984; and Ed Harlow and David Lane, Using Ant i bodies-Ά Laboratory Manual, Cold Spring Harbor Laboratory Press, 1999, which is incorporated herein by reference.
예를 들어, 본 발명의 방법이 방사능면역분석 방법에 따라 실시되는 경우, 방사능동위원소 (예컨대, C14, I125, P32및 S35)로 레이블링된 항체가 본 발명의 마커 분자를 검출하는 데 이용될 수 있다. For example, when the method of the present invention is carried out according to a radioimmunoassay, an antibody labeled with a radioisotope (eg, C 14 , I 125 , P 32 and S 35 ) detects a marker molecule of the present invention. It can be used to.
본 발명의 방법이 ELISA 방식으로 실시되는 경우, 본 발명은 (i) 분석하고자 하는 미지의 세포 시료 분해물을 고체 기질의 표면에 코팅하는 단계; (Π) 일차항체로서의 타겟에 대한 항체와 상기 세포 분해물을 반웅시키는 단계; (iii) 상기 단계 (ii)의 결과물을 효소가 결합된 이차항체와 반웅시키는 단계 ; 및 (iv) 상기 효소의 활성을 측정하는 단계를 추가적으로 포함한다.  When the method of the present invention is carried out by ELISA, the present invention comprises the steps of: (i) coating an unknown cell sample lysate to be analyzed on the surface of a solid substrate; (Π) reacting the cell lysate with the antibody to the target as a primary antibody; (iii) reacting the resultant of step (ii) with the secondary antibody to which the enzyme is bound; And (iv) measuring the activity of the enzyme.
상기 고체 기질로 적합한 것은 탄화수소 폴리머 (예컨대, 폴리스틸렌 및 폴리프로필렌), 유리, 금속 또는 젤이며, 가장 바람직하게는 마이크로타이터 플레이트이다. 상기 이차항체에 결합된 효소는 발색반웅, 형광반웅, 발광반웅 또는 적외선 반웅을 촉매하는 효소를 포함하나, 이에 한정되지 않으며, 예를 들어, 루시퍼라아제, 알칼린 포스파타아제, β_갈락토시다아제, 호스 래디쉬 퍼옥시다아제 및 사이토크롬 ρ450을 포함한다. 상기 이차항체에 결합하는 효소로서 알칼린 포스파타아제가 이용되는 경우에는, 기질로서 브로모클로로인돌일 포스페이트 (BCIP), 니트로 블루 테트라졸리움 (ΝΒΤ), 나프를 -AS-B1-포스페이트 (naphthol— AS-Bl-phosphate) 및 ECF( enhanced chemi fluorescence)와 같은 발색반웅 기질이 이용되고, 호스 래디쉬 퍼옥시다아제가 이용되는 경우에는 클로로나프를, 아미노에틸카바졸, 디아미노벤지딘, D—루시페린, 루시게닌 (비스 -N-메틸아크리디늄 니트레이트) 레소루핀 벤질 에테르, 루미놀, 암플렉스 레드 시약 (10-아세틸 -3,7- 디하이드록시페녹사진), HYR ( -pheny 1 ened i am i ne~HC 1 and pyrocatechol ) , TMB(tetramethylbenzidine) , ABTS(2,2 '-Azine-di [3-ethylbenzthiazol ine sulfonate]), 페닐렌디아민 (0PD) 및 나프를 /파이로닌, 글루코스 옥시다아제와 t-NBT(nitroblue tetrazolium) 및 m— PMS(phenzaine methosulfate)과 같은 기질이 이용될 수 있다. Suitable as the solid substrate are hydrocarbon polymers (eg polystyrene and polypropylene), glass, metal or gel, most preferably microtiter plates. Enzymes bound to the secondary antibody include, but are not limited to, enzymes catalyzing color reaction, fluorescent reaction, luminescence reaction or infrared reaction, for example, luciferase, alkaline phosphatase, β_galacto Oxidase, horse radish peroxidase and cytochrome p 450 . When alkaline phosphatase is used as the enzyme binding to the secondary antibody, bromochloroindolyl phosphate (BCIP), nitro blue tetrazolium (ΝΒΤ), and naph are -AS-B1-phosphate (naphthol— When chromogenic reaction substrates such as AS-Bl-phosphate (ECF) and enhanced chemi fluorescence (ECF) are used, and when horse radish peroxidase is used, chloronaph, aminoethylcarbazole, diaminobenzidine, D—luciferin, lucifer Genine (bis-N-methylacridinium nitrate) Resorphin benzyl ether, luminol, Amplex Red reagent (10-acetyl-3,7-dihydroxyphenoxazine), HYR (-pheny 1 ened i am i ne ~ HC 1 and pyrocatechol), TMB (tetramethylbenzidine), ABTS (2,2'-Azine-di [3-ethylbenzthiazol ine sulfonate]), phenylenediamine (0PD) and naph / pyronine, glucose oxidase and t-NBT (nitroblue tetrazolium) and m— PMS (phenzai substrates such as ne methosulfate may be used.
본 발명의 방법이 캡처— ELISA 방식으로 실시되는 경우, 본 발명의 특정 실시예는 (0 포획항체 (capturing antibody)로서 본 발명의 타겟에 대한 항체를 고체 기질의 표면에 코팅하는 단계; (ii) 포획항체와 세포 시료를 반응시키는 단계; (iii) 상기 단계 (ii)의 결과물을 시그널을 발생시키는 레이블이 결합되어 있고, 과립형성 인자 단백질에 특이적으로 반웅하는 검출항체 (detecting antibody)와 반웅시키는 단계; 및 (iv) 상기 레이블로부터 발생하는 시그널을 측정하는 단계를 포함한다.  When the method of the invention is carried out in a capture—ELISA mode, certain embodiments of the invention comprise the steps of (coating an antibody against a target of the invention as a capturing antibody on the surface of a solid substrate; (ii) Reacting the capture antibody with the cell sample (iii) reacting the product of step (ii) with a detecting antibody that has a label that generates a signal and specifically reacts with the granulation factor protein And (iv) measuring the signal resulting from the label.
상기 검출 항체는 검출 가능한 시그널을 발생시키는 레이블을 가지고 있다. 상기 레이블은 화학물질 (예컨대, 바이오틴), 효소 (알칼린 포스파타아제ᅳ β-갈락토시다아제, 호스 래디쉬 퍼옥시다아제 및 사이토크름 Ρ450), 방사능물질 ((예컨대, C14, I125, Ρ32 및 S35), 형광물질 (예컨대, 플루오레신), 발광물질, 화학발광물질 ( chemi luminescent) 및 FRET( fluorescence resonance energy transfer)을 포함하나, 이에 한정되는 것은 아니다. 다양한 레이블 및 레이블링 방법은 Ed Harlow and David Lane, Using Ant i bodies: A Laboratory Manual , Cold Spring Harbor Laboratory Press, 1999 에 기재되어 있다. The detection antibody carries a label which generates a detectable signal. The label may include chemicals (eg biotin), enzymes (alkaline phosphatase 포스 β-galactosidase, horse radish peroxidase and cytochrome Ρ 450 ), radioactive substances (eg C 14 , I 125 , Ρ 32 and S 35 ), fluorescent materials (eg, fluorescein), luminescent materials, chemi luminescent, and fluorescence resonance energy transfer (FRET). Method: Ed Harlow and David Lane, Using Ant i bodies : A The Laboratory Manual, Cold Spring Harbor Laboratory Press, 1999.
상기 ELISA 방법 및 캡처— ELISA 방법에서 최종적인 효소의 활성 측정 또는 시그널의 측정은 당업계에 공지된 다양한 방법에 따라 실시될 수 있다. 이러한 시그널의 검출은 본 발명의 타겟의 정성적 또는 정량적 분석을 가능하게 한다. 만일, 레이블로서 바이오틴이 이용된 경우에는 스트렙타비딘으로, 루시퍼라아제가 이용된 경우에는 루시페린으로 시그널을 용이하게 검출할 수 있다. 본 발명의 특징 및 이점을 요약하면 다음과 같다:  The ELISA Methods and Capture—The measurement of the final enzyme activity or signal in the ELISA method can be carried out according to various methods known in the art. Detection of such signals allows for qualitative or quantitative analysis of the targets of the present invention. If biotin is used as a label, the signal can be easily detected with streptavidin and luciferin if luciferase is used. The features and advantages of the present invention are summarized as follows:
(a) 본 발명은 GIST 에서 KIT 의 음성적 조절인자로서 miR-494 의 신규한 기능에 관한 것이다.  (a) The present invention relates to a novel function of miR-494 as a negative regulator of KIT in GIST.
(b) 본 발명의 miR-494 는 KIT 3' -UTR 내에 두 개의 다른 핵심 서열 위치 (seed match sites/sequences)에 직접적으로 결합하여 KIT 를 하향- 조절하고, KIT 시그널링 전이 경로의 다운스트림 분자들 (예컨대, 포스포- AKT 및 포스포 -STAT3)의 발현을 감소시켰다.  (b) miR-494 of the present invention binds directly to two other key match sites / sequences within the KIT 3′-UTR to down-regulate KIT and downstream molecules of the KIT signaling transition pathway (Eg, phospho-AKT and phospho-STAT3).
(c) 또한, 본 발명의 miR-494 과다발현 유도는 종양세포, 바람직하게는 GIST 세포주의 성장을 억제시켰다.  (c) In addition, the induction of miR-494 overexpression of the present invention inhibited the growth of tumor cells, preferably GIST cell lines.
(d) 따라서, 본 발명의 miR-494 및 이의 발현을 촉진시키는 물질 또는 KIT 발현을 억제시키는 물질을 유효성분으로 포함하는 본 발명의 조성물 및 방법은 KIT-매개된 질환, 질병 또는 상태의 예방 또는 치료에 유용하게 적용될 수 있다.  (d) Therefore, the compositions and methods of the present invention comprising a miR-494 of the present invention and a substance that promotes its expression or a substance that inhibits KIT expression as an active ingredient can be used for the prevention or prevention of KIT-mediated diseases, diseases or conditions. It can be usefully applied to treatment.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1 은 KIT 단백질 발현 상에 다섯 개 후보 miRNA 들의 효과를 조사한 웨스턴 블롯 결과이다. 총 25 nM의 다섯 개 후보 miRNA들 (miR-9, miR-142-5p, miR-370, miR-494 및 miR-510)을 각각 KIT-과다발현 GIST882 세포주에 트랜스펙션시켰다. GAPDH 는 로딩 대조군으로 이용하였다. N.C.는 음성 대조군을 나타낸다.  1 is a Western blot result investigating the effects of five candidate miRNAs on KIT protein expression. Five candidate miRNAs (miR-9, miR-142-5p, miR-370, miR-494 and miR-510) in total 25 nM were transfected into KIT-overexpressing GIST882 cell lines, respectively. GAPDH was used as loading control. N.C. represents a negative control.
도 2 는 miR-494 에 의해 억제되는 KIT 발현을 조사한 결과이다. 2 shows the results of investigating KIT expression inhibited by miR-494.
GIST882 세포에 25 nM 의 비타겟팅 miRNA, miR-221, miR-494 또는 miR-494 억제제를 트랜스펙션시켰다. 3 일 후, 세포를 수득하여 웨스턴 블롯으로 분석하였다 (도 2a). miR-494 로 트랜스펙션된 세포에서의 KIT 발현은 비타겟팅 miRNA 로 트랜스펙션된 세포에서의 발현에 비해 약 57%까지 감소하였다. qRT-PCR분석 결과, KIT mRNA 레벨은 miR-494 및 miR-221로 트랜스펙션된 세포에서 감소하였다 (도 2b). N .는 음성 대조군을 나타낸다. 25 nM of nontargeting miRNA, miR-221, miR-494 or miR-494 in GIST882 cells Inhibitors were transfected. After 3 days, cells were obtained and analyzed by Western blot (FIG. 2A). KIT expression in cells transfected with miR-494 was reduced by about 57% compared to expression in cells transfected with non-targeted miRNAs. As a result of qRT-PCR analysis, KIT mRNA levels were decreased in cells transfected with miR-494 and miR-221 (FIG. 2B). N. Indicates a negative control.
도 3 은 31 명의 GIST 환자에서 측정된 KIT 단백질 (3a), miR-494 레벨 (3b) 및 이를 동시에 표현한 그래프 (3c) 결과이다. 케이스 1 부터 25 까지의 GIST 환자 조직은 KIT 돌연변이를 가지고, 케이스 26 부터 31 까지의 GIST 환자 조직은 KIT 돌연변이를 포함하지 않는다. 각 케이스는 동일한 조직으로부터 RNA 및 단백질 모두를 추출하였다. KIT 발현 레벨은 웨스턴 블롯 결과로부터 정량하였다. 성숙한 형태의 miR-494 양은 택맨 miRNA 어세이를 이용하여 측정하였다. miR-494 및 KIT 의 발현 레벨은 각각 U6 RNA 및 GAPDH 로 표준화하고 miR-494 및 KIT 발현 레벨의 표준화된 값은 비교를 위해 miR-494 및 KIT 의 평균값으로 나누었다. KIT 단백질과 miR-494 발현 간의 역상관관계가 명확하였다 (r; -0.490, P = .005).  FIG. 3 shows KIT protein (3a), miR-494 levels (3b) and graph (3c) simultaneously expressed in 31 GIST patients. GIST patient tissues from Cases 1 to 25 had KIT mutations, and GIST patient tissues from Cases 26 to 31 did not contain KIT mutations. Each case extracted both RNA and protein from the same tissue. KIT expression levels were quantified from Western blot results. The amount of mature miR-494 was measured using a Taqman miRNA assay. Expression levels of miR-494 and KIT were normalized to U6 RNA and GAPDH, respectively and normalized values of miR-494 and KIT expression levels were divided by the mean value of miR-494 and KIT for comparison. The reverse correlation between KIT protein and miR-494 expression was clear (r; -0.490, P = .005).
도 4 는 KIT 3' -UTR 부위 내에 존재하는 miR-494 결합 위치를 결정하기 위한 리포터 어세이 결과이다. 도 4a 는 리포터 어세이에서 이용된 백터 컨스트럭트들을 도식적으로 나타내는 도면이다. 원 백터 (N 백터)는 레닐라 루시퍼라제-인코딩 부위 및 GIST882 cDNA 로부터 얻은 KIT 의 3' -UTR 부위의 총 서열을 포함한다. M 컨스트럭트는 타겟 스캔 3.0 에 따라 예측된 miR-494 의 결합 핵심 염기서열 (binding seed sequence)로부터 4 개의 돌연변이된 뉴클레오타이드 서열 (GTTKXGG)을 포함한다. Ma, Mb 및 Mc 컨스트럭트는 발명자들에 의해 발견된 가능한 miR-494 의 결합 위치들을 M 컨스트럭트에서 4 개의 뉴클레오타이드 서열 (GTTTCCGG)로 대체하여 제조하였다. 0 백터는 모든 컨스트럭트가 이전에 KIT 의 3' -UTR 을 타겟팅한다고 보고된 miR-221 및 miR- 222(GTAGCAGA)를 이용하여 적합하게 기능한다는 것을 확인하는 데 이용하였다. 도 4b 는 HeLa 세포주에 miR-494 를 포함하는 M 컨스트럭트 또는 miR-221 을 포함하는 0 컨스트럭트를 트랜스펙션시켰다. 트랜스펙션 2 일 후, 세포를 수득하여 듀얼 루시퍼라제 어세이를 실시하였다. 예측된 miR-221 및 miR-222 결합 위치가 돌연변이된 경우, 루시퍼라제 활성은 회복되었다. miR-494 및 M 돌연변이 백터를 이용한 트랜스펙션은 단지 약간의 회복을 초래하였다 (도 4b, 위쪽 패널). 1760-1763 위치에 추가적으로 돌연변이된 뉴클레오타이드 서열 및 miR-494 를 포함하는 Mb 컨스트럭트가 트랜스펙션된 경우, M 컨스트럭트가 트랜스펙션된 시료에 비해 상대적으로 루시퍼라제 활성이 완전히 회복되었다 (도 4b, 아래쪽 패널). 4 is a reporter assay result for determining miR-494 binding sites present within the KIT 3′-UTR site. 4A is a diagrammatic representation of vector constructs used in a reporter assay. The original vector (N vector) comprises the total sequence of the Renilla luciferase-encoding site and the 3′-UTR site of KIT obtained from GIST882 cDNA. The M construct comprises four mutated nucleotide sequences (GTTKXGG) from the binding seed sequence of miR-494 predicted according to target scan 3.0. Ma, Mb and Mc constructs were prepared by replacing the possible miR-494 binding sites found by the inventors with four nucleotide sequences (GTTTCCGG) in the M construct. The 0 vector was used to confirm that all constructs function properly using miR-221 and miR-222 (GTAGCAGA), previously reported to target the 3'-UTR of the KIT. 4B transfected the He constructs containing M constructs containing miR-494 or zero constructs containing miR-221. Transfection After 2 days, cells were obtained and subjected to a dual luciferase assay. When the predicted miR-221 and miR-222 binding sites were mutated, luciferase activity was restored. Transfection with miR-494 and M mutant vectors resulted in only slight recovery (FIG. 4B, top panel). When the Mb construct comprising the nucleotide sequence and miR-494 additionally mutated at positions 1760-1763 was transfected, the luciferase activity was completely restored relative to the sample to which the M construct was transfected ( 4b, bottom panel).
도 4c 는 다른 암세포주에서 miR-494 의 발현 레벨을 조사한 택맨 (Tapan)-miRNA 어세이 결과이고 (위쪽 패널), 이로부터 HeLa, SNU216 및 GIST882 세포주를 향후 연구를 위해 선택하였다 (아래쪽 패널). HeLa 및 SNU216 세포들은 miR-494 의 높은 발현 레벨을 나타냈다. 상기 세포주에 50 nM miR-494 억제제를 포함하는 N 백터를 트랜스펙션한 경우, 비타겟팅 miRNA (음성 대조군)로 트랜스펙션된 세포와 비교하여 현저하게 증가된 루시퍼라제 활성을 나타냈다. GIST882 세포주는 miR-494 의 낮은 발현 레벨을 나타냈으며, 비타겟팅 miRNA (음성 대조군)로 트랜스펙션된 세포와 비교하여 루시퍼라제 활성에서 뚜렷한 변화를 나타내지 않았다 (아래쪽 패널). 상술한 결과들은 내인성 miR-494 가 직접적으로 KIT를 하향 -조절한다는 것을 나타낸다. N.C.는 음성 대조군을 나타낸다. miRNA* - 트랜스펙션된 miRNA; 백터 - 리포터 어세이에 이용된 트랜스펙션된 백터. 4C is the result of Tapan-miRNA assay (top panel) examining the expression level of miR-494 in different cancer cell lines (top panel) from which HeLa, SNU216 and GIST882 cell lines were selected for future study (bottom panel). HeLa and SNU216 cells exhibited high expression levels of miR-494. Transfection of the N vector with a 50 nM miR-494 inhibitor in the cell line showed significantly increased luciferase activity compared to cells transfected with non-targeting miRNA (negative control). The GIST882 cell line showed low expression levels of miR-494 and did not show any significant change in luciferase activity compared to cells transfected with non-targeted miRNA (negative control) (bottom panel). The above results indicate that endogenous miR-494 directly down-regulates KIT. NC represents negative control. miRNA * -transfected miRNA; Vector-Transfected vector used in the reporter assay.
도 5 는 miR-494 로 트랜스펙션된 세포주에서 p-AKT 및 p_STAT 의 발현을 측정한 웨스턴 블롯 결과이다. miR-494 의 GIST882 세포주로의 트랜스펙션은 AKT 및 STAT 시그널링 경로에서 현저한 변화를 야기하였다. GIST882세포주에 50 nM의 비타겟팅 miRNA, miR-221, miR-494또는 miR-494 억제제로 트랜스펙션시켰다. KIT, 포스포 -KIT, STAT3, 포스포 -STAT3, AKT 포스포 -AKT, ERK, 포스포 -ERK 및 GAPDH 에 대한 웨스턴 블롯을 각 항체에 대해서 동일한 블롯에서 반복적으로 실시하였다. KIT 및 포스포 -KIT 의 발현 레벨이 GIST882 에 miR-494 로 트랜스펙션시킴으로써 뚜렷하게 감소하였다. KIT 시그널링 경로의 다운스트림 분자들인 포스포 -AKT 및 포스포 -STAT3 가 모두 감소하였다. 다른 결과들은 대조군이 처리된 시료들과 miR-494 억제제가 처리된 시료들 간에 거의 차이가 없었다. N.C.는 음성 대조군을 나타낸다. 5 is a Western blot result of measuring the expression of p-AKT and p_STAT in cell lines transfected with miR-494. Transfection of miR-494 into the GIST882 cell line caused significant changes in the AKT and STAT signaling pathways. GIST882 cell lines were transfected with 50 nM of untargeted miRNA, miR-221, miR-494 or miR-494 inhibitors. Western blots for KIT, phospho-KIT, STAT3, phospho-STAT3, AKT phospho-AKT, ERK, phospho-ERK and GAPDH were repeated in the same blot for each antibody. Expression levels of KIT and phospho-KIT were markedly reduced by transfection of GIST882 with miR-494. Both downstream molecules of the KIT signaling pathway, phospho-AKT and phospho-STAT3, were reduced. Other results indicate that the control group There was little difference between the samples and the samples treated with the miR-494 inhibitor. NC represents negative control.
도 6은 GIST세포 증식이 miR-494에 의해 억제된다는 것을 보여주는 결과이다ᅳ 도 6a 는 트랜스펙션 후 12 일 째의 GIST882 형태를 보여주는 결과이다. 세포는 60-mm 세포배양 디쉬에서 배양하였으며, 사진은 세포 카운팅 전에 얻었다. miR-494로 트랜스펙션된 GIST882 세포주에서 빈약한 세포 클러스터 및 불규칙한 세포 형태가 12일 째에 나타났다 (오른쪽 패널). 도 6b 는 GIST882 세포를 2X106 세포 수로 60—隱 디쉬에 배양하여 각 디쉬에 분주하였다. 트랜스펙션 후 3 일, 6 일 및 12 일 째에 세포를 손수 두 번에 걸쳐서 카운팅하고 카운팅된 평균값을 이용하였다. 세포에 0 일 및 6 일 째에 두 번에 걸쳐서 트랜스펙션하였다. 비타겟팅 miRNA 로 처리된 GIST882세포 (음성 대조군) 및 miR-494로 처리된 GIST882세포 간의 세포 수의 차이는 3 일 째에 작았고 6 일 째에 더 커졌으며, 12 일 째에는 거의 세 배 가까이 증가하였다 (위쪽 패널)ᅳ 증식 어세이에서 모든 시료들에 대한 웨스턴 블롯팅을 실시한 결과, miR-494 로 처리된 GIST882 세포들이 감소된 레벨의 KIT를 나타냈다 (아래쪽 패널). 도 6c는 GIST882 세포에 비타겟팅 miRNA (위쪽 패널) 또는 miR-494(아래쪽 패널)로 4 일 째에 트랜스펙션시킨 후, 세포를 수득하여 프로피디움 이오다인으로 염색한 결과이다. 두 시료는 유세포분석법으로 분석하였다ᅳ miR-494 처리는 비타겟팅 miRNA 로 트랜스펙션된 세포와 비교하여 쒜 기의 세포가 상대적으로 5.6% 증가하였으며, S 기 세포가 상대적으로 5.7% 감소하였다. N.C.는 음성 대조군을 나타낸다. 6 shows that GIST cell proliferation is inhibited by miR-494. FIG. 6A shows the GIST882 morphology 12 days after transfection. Cells were cultured in 60-mm cell culture dishes and pictures were taken before cell counting. Poor cell clusters and irregular cell morphology appeared on day 12 in GIST882 cell line transfected with miR-494 (right panel). FIG. 6B shows GIST882 cells were cultured in 60-mm dish with 2 × 10 6 cells and dispensed into each dish. Cells were counted twice manually at 3, 6 and 12 days after transfection and counted average values were used. Cells were transfected twice on day 0 and day 6. The difference in cell numbers between GIST882 cells treated with non-targeting miRNA (negative control) and GIST882 cells treated with miR-494 was small at 3 days, larger at 6 days, and nearly tripled at 12 days. (Top panel) 웨스턴 Western blotting of all samples in the proliferation assay showed that GIST882 cells treated with miR-494 showed reduced levels of KIT (bottom panel). FIG. 6C shows the results of transfecting GIST882 cells with non-targeted miRNA (top panel) or miR-494 (bottom panel) on day 4, and then staining with propidium iodide. Both samples were analyzed by flow cytometry. MiR-494 treatment showed a 5.6% increase in stage III cells and a 5.7% decrease in S phase cells compared to cells transfected with non-targeted miRNAs. NC represents negative control.
【실시예] EXAMPLE
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. 실시예 실험재료 및 실험방법 Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it is to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. Will be self-evident. Example Experimental Materials and Methods
세포주 및 세포배양 Cell line and cell culture
활성화된 KIT 돌연변이 (액손 13, K642E7)를 가지는 GIST882 세포주는 하버드 대학교 (Cambridge, MA)의 조나단 플레처 박사로부터 친절하게도 선물받았다. SNU216, SNU638, SNU1, NCI-N-87 및 HeLa 세포주는 한국세포주은행 (Korean Cell Line Bank; Cancer Research Institute, Seoul Korea)으로부터 구입하였다. 세포배양 이미지는 IX71(01ympus, Tokyo, Japan)를 이용하여 얻었다. 환자 및 조직 사료  GIST882 cell lines with activated KIT mutations (Axon 13, K642E7) were kindly presented by Dr. Jonathan Fletcher of Harvard University (Cambridge, Mass.). SNU216, SNU638, SNU1, NCI-N-87 and HeLa cell lines were purchased from Korean Cell Line Bank; Cancer Research Institute, Seoul Korea. Cell culture images were obtained using IX71 (01ympus, Tokyo, Japan). Patient and tissue feed
본 연구에 포함된 31 명의 GIST 환자들은 분자 마커 연구를 위해 1997 년부터 2006 년 7 월 사이에 연세대학교 의과대학 병리학 교실에서 동정된 환자들이었다. 상기 조직들을 연구 목적으로 이용하기 위한 승인은 연세대학교 의과대학의 윤리심의위원회로부터 얻었다. 몇몇 신선한 표본들은 간암검체은행 (Liver Cancer Specimen Bank of the National Research Resource Bank Program of the Korea Science and Engineering Foundation of the Ministry of Science and Technology)으로부터 얻었다. 상기 GIST 환자들로부터 유래한 시료들 중 17 개의 시료는 이전에 miRNA 프로파일 및 프로테음 분석을 위해 사용하였다 [12ᅳ 13, 31, 32]. 분자 데이터의 확인 없이 해부학적 위치, 위험인자 (risk) 및 종양 크기 같은 종래의 병리학적 매개변수들을 조사하였다 (표 1).  The 31 GIST patients included in this study were identified from 1997 to July 2006 in the Department of Pathology, Yonsei University College of Medicine. Approval for use of these organizations for research purposes was obtained from the Ethics Review Board of Yonsei University College of Medicine. Some fresh samples were obtained from the Liver Cancer Specimen Bank of the National Research Resource Bank Program of the Korea Science and Engineering Foundation of the Ministry of Science and Technology. Seventeen of the samples from the GIST patients were previously used for miRNA profiles and proteome analysis [12 ′ 13, 31, 32]. Conventional pathological parameters such as anatomical location, risk and tumor size were examined without confirmation of molecular data (Table 1).
【표 1】 Table 1
31개의 GISTs의 임상병리학적 및 유전적 상태. Clinicopathological and genetic status of 31 GISTs.
Figure imgf000025_0001
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000026_0001
del del
Figure imgf000027_0001
Figure imgf000027_0001
1) +, KIT를 발현하는 종양세포; -, KIT를 발현하지 않는 종양세포.  1) +, tumor cells expressing KIT; Tumor cells that do not express KIT.
GIST환자들은 플레처 등 [33]의 기준에 따른 종양 위험도에 기반하여 4개의 군으로 분류하였다. GIST patients were divided into four groups based on tumor risk according to Fletcher et al. [33].
RNA제조 및 택맨 (Taqman) miRNA 어세이 RNA Manufacturing and Taqman miRNA Assays
총 RNA 를 TRIZ0L(Life Technology, Rockville, MD)을 이용하여 동결된 조직으로부터 추출하였다. 택맨 miRNA 어세이 (Applied Total RNA was extracted from frozen tissue using TRIZ0L (Life Technology, Rockville, MD). Taqman miRNA assay (Applied
Biosystems)에 의해 miRNA 의 발현 레벨을 정량하고 Applied Biosystems 7300 실 -시간 PCR 시스템 (Applied Biosystems)을 이용하여 분석하였다. 모든 어세이는 세 쌍으로 (triplicate) 실시하였다. 정량적 RT-PCR(qRT-PCR) Expression levels of miRNA were analyzed and analyzed using Applied Biosystems 7300 real-time PCR system (Applied Biosystems). All assays were performed in triplicates. Quantitative RT-PCR (qRT-PCR)
KITCPrimerBank ID; 4557695a2) 및 GAPDH(PrimerBank ID; 2282013a2)에 대한 qRT-PCR 프라이머 서열은 Primerbank 데이타베이스 ( ht t p: / /pga . mgh . harvard . edu/pr i merbank/ )로부터 얻었다. 반응은 제조자의 지시에 따라 Premix Ex Taq(TAKARA, Tokyo, Japan)을 포함하는 총 용량 20 ^로 실시하였다. 모든 반응은 ABI Prism 7300 실- 시간 PCR시스템에서 세 쌍으로 진행하였다. miRNA모방체 (mimics) 및 형질전환 KITCPrimerBank ID; 4557695a2) and the qRT-PCR primer sequences for GAPDH (PrimerBank ID; 2282013a2) were obtained from Primerbank database (ht tp: / /pga.mgh.harvard.edu/pr i merbank /). The reaction was carried out at a total dose of 20 ^ containing Premix Ex Taq (TAKARA, Tokyo, Japan) according to the manufacturer's instructions. All reactions were run in three pairs in an ABI Prism 7300 real-time PCR system. miRNA mimetics (mimics) and transformation
본 연구에서 이용된 miRNA모방체 (비타겟팅 miRNA, miR-221, miR-222 miR-494 및 miR-494 억제제)의 모든 성숙한 형태는 miRIDIAN miRNA 모방체 (Thermo Scientific, Waltham, MA, USA). 모든 형질전환 실험들은 리포펙타민 2000(Invitrogen, Carlsbad, CA, USA)을 이용하여 실시하였다. 형질전환 후 3 일 째, 모든 세포들을 수득하여 이후의 웨스턴 블롯 분석에 이용하였다. 웨스턴 블롯  All mature forms of the miRNA mimetics (nontargeting miRNA, miR-221, miR-222 miR-494 and miR-494 inhibitors) used in this study are miRIDIAN miRNA mimetics (Thermo Scientific, Waltham, MA, USA). All transformation experiments were performed using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). Three days after transformation, all cells were obtained and used for subsequent Western blot analysis. Western blot
시료로부터 총 용해물을 수동성 용해 완충액 (passive lysis buffer; Pr omega, Madison, WI, USA)을 얻었다. 본 발명에서 이용된 일차 항체는 GAPDHCTrevigen, Gaitherburg, MD, USA), c-KIT, STAT3, ERK, 포스포- ERK( Santa Cruz Biotechnology, Santa Cruz, CA, USA) , 포스포 c— KIT(Invitrogen), AKT, 포스포 -AKT 및 포스포 STAT3(Cel 1 Signaling, Danvers, MA USA)였다. 웨스턴 블롯 이미지는 LAS-4000 Mini (Fuj i f i lm, Tokyo, Japan)를 이용하여 분석하였다. 루시퍼라제 리포터 어세이  Total lysates from the samples were obtained with passive lysis buffer (Pr omega, Madison, Wis., USA). Primary antibodies used in the present invention are GAPDHCTrevigen, Gaitherburg, MD, USA), c-KIT, STAT3, ERK, phospho-ERK (Santa Cruz Biotechnology, Santa Cruz, CA, USA), phospho c—KIT (Invitrogen) , AKT, phospho-AKT and phospho STAT3 (Cel 1 Signaling, Danvers, MA USA). Western blot images were analyzed using the LAS-4000 Mini (Fuj i f i lm, Tokyo, Japan). Luciferase Reporter Assay
다른 컨스트럭트를 제조하기 위해 우선 N 백터를 제조하였다. PCR 증폭을 통해 GIST882 로부터 얻어진 총 3' -URT서열이 pRL3 백터 (Promega) 내의 SV40 인헨서 및 초기 프로모터-조절된 (dirven) 레닐라 루시퍼라제 카세트의 다운스트림에 클로닝되었다. 이후, N 백터는 miR-494, miR-221 또는 miR-222 결합 부위에 상보적인 핵심 염기서열 (seed sequences)의 돌연변이를 대체하기 위한 다섯 개의 돌연변이 컨스트럭트를 제조하기 위해 이용하였다. PGL3 루시퍼라제 리포터 백터는 듀얼 루시퍼라제 어세이 (Promega)를 위한 대조군 백터로 이용하였다. 백터 컨스트럭트를 위해 이용된 올리고뉴클레오타이드 서열은 표 2에 나열되어 있다. 【표 2】 To create another construct, first N vectors were prepared. Total 3′-URT sequences obtained from GIST882 via PCR amplification were cloned downstream of the SV40 enhancer and early promoter-regulated Renilla luciferase cassette in pRL3 vector (Promega). The N vector was then used to prepare five mutation constructs to replace mutations in the key sequences complementary to the miR-494, miR-221 or miR-222 binding sites. The PGL3 luciferase reporter vector was used as a control vector for the dual luciferase assay (Promega). Oligonucleotide sequences used for the vector constructs are listed in Table 2. Table 2
Figure imgf000029_0001
듀얼 루시퍼라제 어세이는 매번 N, M, 0, Ma, Mb 또는 Mc 백터와 함께 대조군 백터를 공동-트랜스펙션함으로써 실시하였다. 모든 miRNA 모방체는 5 nM 로 트랜스펙션시켰다. 트랜스펙션 2 일 후, 루시퍼라제 활성을 제조자의 지시에 따라 측정하였다. 세포 증식 어세이
Figure imgf000029_0001
Dual luciferase assays were performed each time by co-transfecting the control vector with N, M, 0, Ma, Mb or Mc vectors. All miRNA mimetics were transfected with 5 nM. After 2 days of transfection, luciferase activity was measured according to the manufacturer's instructions. Cell proliferation assay
GIST882 세포를 2X106 세포 수로 60-隱 디쉬에 분주한 후, 50 nM 의 비타겟팅 miRNA또는 miR-494로 트랜스펙션시켰다. 세포 수를 3 일, 6 일 및 12 일에 손수 카운팅하였다. 12 일 째 카운팅될 시료에 대해 6 일 째에 또 다른 트랜스펙션을 실시하였다. 세포 형태를 매일 확인하였다. 시료는 두 쌍으로 구성되었으며 평균값이 추가 분석에 이용되었다. 각 시료를 수득하여 웨스턴 블롯으로 분석함으로써 KIT 발현에 대한 지속적인 억제를 확인하였다. 세포주기 분석 GIST882 세포를 60- 디쉬에서 50 nM 의 비타겟팅 miRNA 또는 miR- 494로 트랜스펙션시켰다. 트랜스펙션 4 일 째에 , 각 시료의 세포들을 PBS 프로피디움 이오다인 (Abeam, Cambridge, MA, USA) 및 RNase A 로 구성된 용액으로 염색하였다. 모든 시료들을 FACS Calibur(BD Biosciences, San Jose, CA, USA)로 분석하였다. 통계 분석 GIST882 cells were aliquoted into 60-mm dishes with 2 × 10 6 cells and then transfected with 50 nM of untargeted miRNA or miR-494. Cell counts were manually counted on days 3, 6 and 12. Another transfection was performed on day 6 for the samples to be counted on day 12. Cell morphology was checked daily. Samples consisted of two pairs and mean values were used for further analysis. Each sample was obtained and analyzed by Western blot to confirm sustained inhibition on KIT expression. Cell cycle analysis GIST882 cells were transfected with 50 nM of untargeted miRNA or miR-494 in 60-dish. On day 4 of transfection, cells of each sample were stained with a solution consisting of PBS propidium iodide (Abeam, Cambridge, MA, USA) and RNase A. All samples were analyzed by FACS Calibur (BD Biosciences, San Jose, CA, USA). Statistical analysis
miR-494 발현 레벨과 KIT 발현 레벨 간의 상관관계는 miR-494 qRT- PCR 값 및 KIT 웨스턴 블롯의 밴드 강도를 조사하여 스피어만 상관계수 (Spearman correlat ion)를 분석함으로써 결정하였다. P 값(< 0.05)이 유의한 것으로 판단되었다. 통계 분석은 SPSS 소프트웨어 version 10.0(SPSS, Inc., Chicago, IL, USA)을 이용하여 실시하였다. 실험 결과  Correlation between miR-494 expression level and KIT expression level was determined by analyzing the Spearman correlat ion by examining the miR-494 qRT-PCR value and the band intensity of the KIT Western blot. P values (<0.05) were judged to be significant. Statistical analysis was performed using SPSS software version 10.0 (SPSS, Inc., Chicago, IL, USA). Experiment result
KIT의 음성 조절자로서의 miR-494의 동정 Identification of miR-494 as voice regulator of KIT
본 발명자들의 이전 마이크로어레이 데이터는 GIST 에서 KIT 발현과 통계적으로 유의한 상관관계를 가짐으로 인해 선택된 다섯 개의 후보 miRNA 들의 KIT 발현 상의 효과를 평가하는 데 이용되었다 [13]· 총 25 nM의 다섯 개 후보 miRNA들 (miR-9, miR-142-5p, miR-370, miR-494 및 miR- 510)을 각각 KIT-과다발현 GIST882 세포주에 트랜스펙션시켰다. 트랜스펙션된 시료들에 대한 웨스턴 블롯 분석 결과, miR-494 만이 KIT 단백질 발현을 지속적으로 감소시켰다 (도 1). 이후, 본 발명자들은 miR- 494 에 대한 추가적인 연구를 실시하였다. KIT 하향-조절을 유도하는 m iR-494의 능력은 25 nM의 비타겟팅 miRNA miR-494, miR-221 또는 miR-494 억제제를 GIST882 세포주에 트랜스펙션시킴으로써 확인되었다. 비타겟팅 miRNA 는 miR-494 와 비교하여 음성 대조군이고, miR-221 은 miR-494 와 비교하여 양성 대조군이었다. miR-221 및 miR-222 는 모두 KIT mRNA 의 3' -UTR 을 직접적으로 타겟팅하는 것으로 알려져 있다 [17]. 트랜스펙션 후 3 일 세포를 수득하여 정량적 RT-PCR(quantitative reverse transcription polymerase chain react ion, qRT-PCR) 및 웨스턴 블롯팅을 실시하였다. 세포에 miR-494 또는 miR— 221 을 트랜스펙션시킨 경우 (miR- 494 가 miR-221 보다 보다 더 우수한 효과를 나타냄 ), 웨스턴 블롯팅 분석을 통해 KIT 발현의 현저 한 하향-조절을 확인하였다 . KIT 하향 -조절 상에 miR-221 또는 miR-222 의 효과는 뚜렷한 차이를 나타내지 않았다 (결과를 보이지 않음) . miR-494 억제제로 트랜스펙션된 세포주는 음성 대조군 시료와 동일한 KIT 발현을 보였는데, 이는 GIST882 세포주에서 miR-494 가 매우 낮은 발현 레벨을 가지기 때문일 것이다 (도 2a) . miR-494 억 제제들로 트랜스펙션된 세포에서 KIT mRNA 의 다소 증가된 레벨을 나타내는 점을 제외하고는 웨스턴 블롯 분석과 마찬가지로 qRT-PCR 분석 에서도 동일한 패턴을 확인할 수 있었다 (도 2b) . 상술한 결과들은 KIT 발현이 miR-494 에 의해 조절된다는 것을 의미 한다 . Our previous microarray data were used to evaluate the effect on KIT expression of five candidate miRNAs selected [13] because of the statistically significant correlation with KIT expression in GIST [13]. miRNAs (miR-9, miR-142-5p, miR-370, miR-494 and miR-510) were transfected into KIT-overexpressing GIST882 cell lines, respectively. Western blot analysis of the transfected samples revealed that only miR-494 consistently reduced KIT protein expression (FIG. 1). The inventors then conducted further studies on miR-494. The ability of m iR-494 to induce KIT down-regulation was confirmed by transfecting 25 nM of nontargeting miRNA miR-494, miR-221 or miR-494 inhibitors to the GIST882 cell line. Untargeted miRNA was a negative control compared to miR-494, and miR-221 was a positive control compared to miR-494. miR-221 and miR-222 are both known to directly target the 3'-UTR of KIT mRNA [17]. Three days after transfection, cells were obtained and subjected to quantitative reverse transcription polymerase chain react ion (qRT-PCR) and western blotting. If cells have transfected miR-494 or miR— 221 (miR- 494 shows a better effect than miR-221), Western blotting analysis confirmed a significant down-regulation of KIT expression. The effect of miR-221 or miR-222 on KIT down-regulation did not show any significant difference (results not shown). Cell lines transfected with the miR-494 inhibitor showed the same KIT expression as the negative control sample, probably because miR-494 had very low expression levels in the GIST882 cell line (FIG. 2A). The same pattern was confirmed in qRT-PCR analysis as in Western blot analysis, except that it showed a somewhat increased level of KIT mRNA in cells transfected with miR-49.4 billion agents (FIG. 2B). The above results indicate that KIT expression is regulated by miR-494.
GIST 에서 miR-494 발현과 KIT 발현 간의 역상관관계 Inverse correlation between miR-494 and KIT expression in GIST
본 발명자들은 miR-494 의 발현 레벨을 분석하기 위한 miRNA qRT- PCR 을 실시하고 KIT 단백질의 발현 레벨을 분석하기 위 한 웨스턴 블롯을 실시하여 GIST 에서 KIT 발현과 miR-494 발현의 역상관관계 ( inverse correlat ion)를 확인하였다 . 상기 분석은 KIT 돌연변이를 포함하는 25 명의 GIST 환자 및 KIT 돌연변이를 포함하지 않는 6 명의 GIST 환자로 구성 된 GIST 환자의 신선하게-동결된 31 개 시료를 이용하였다 (표 1) . 택맨 miRNA 어세이를 이용하여 miR-494 레벨을 결정하고 각 케이스 마다 세 개의 독립적 인 실험들로부터 얻어진 평균값을 이용한 ABI 실 -시간 PCR 7300 으로 분석하였다 . 각 케이스로부터 KIT 및 miR-494 의 레벨은 각각의 발현 레벨과 비교하여 KIT 및 miR-494 의 평균값에 대한 상대적 인 증가 배수 ( fold change)로서 제시하였다 (도 3a-3c) . 상기 분석은 KIT 및 miR- 494 의 발현 간의 역상관관계를 나타냈다 (r = -0.490 및 P = .005) . 예상한 바와 같이, KIT 돌연변이를 포함한 케이스들이 KIT 돌연변이를 포함하지 않은 케이스들보다 더 높은 KIT 발현을 나타냈다 . 상술한 발견들은 KIT 과다발현이 KIT 돌연변이 상태와 밀접하게 연관되어 있을 지라도 KIT 발현량은 GIST 에서 miR-494 발현과 반대로 연관되어 있다는 것을 나타낸다 .  The inventors performed miRNA qRT-PCR to analyze the expression level of miR-494 and western blot to analyze the expression level of KIT protein, thereby inversely correlating KIT expression and miR-494 expression in GIST. correlat ion). The assay used 31 freshly-frozen samples of GIST patients consisting of 25 GIST patients with KIT mutations and 6 GIST patients without KIT mutations (Table 1). The miR-494 levels were determined using a Taqman miRNA assay and analyzed by ABI real-time PCR 7300 using mean values obtained from three independent experiments in each case. The levels of KIT and miR-494 from each case were presented as a relative fold change over the mean value of KIT and miR-494 compared to the respective expression levels (FIGS. 3A-3C). The analysis showed an inverse correlation between the expression of KIT and miR-494 (r = -0.490 and P = .005). As expected, cases with KIT mutations showed higher KIT expression than those without KIT mutations. The above findings indicate that although KIT overexpression is closely associated with KIT mutation status, KIT expression is inversely associated with miR-494 expression in GIST.
KIT 의 3' -UTR 내 두 개의 핵심 매치 위치 (seed match sites)의 동정 본 발명자들은 KIT mRNA의 3' -UTR에 대한 miR-494 의 결합 위치를 동정함으로써 KIT mRNA가 miR-494의 직접적인 타겟이라는 것을 확인하였다. KIT mRNA 의 3' -UTR 에 대한 miR-494 의 알고리즘-기반된 결합 위치를 발견하기 위한 타겟 스캔 3.0 데이터베이스 (Target scan 3.0 database; http: //www, target scan, org/)을 통해 1897-1903 에 위치한 하나의 결합 위치를 예상하였다 (도 4a). 본 발명자들은 레닐라 루시퍼라제 (Renilla luciferase) 및 GIST883 세포주의 cDNA로부터 얻어진 KIT mRNA 의 총 3' - UTR 서열에 대한 인코딩 서열을 포함하는 N 으로 명명된 백터 (N 백터)를 제조함으로써 리포터 어세이를 고안하였다. PCR 을 통해 KIT 3' -UTR 위치를 증폭하여 pRL3 백터 내 레닐라 루시퍼라제 인코딩 서열 뒤 오른쪽에 클로닝하였다. 본 발명자들의 N 백터 컨스트럭트가 적절하게 기능한다는 것을 확인하기 위한 모의 실험 (pilot experiment)으로, 비타겟팅 miRNA, miR-494, miR-221 또는 miR-222 를 포함하는 N 백터 (5 nM)를 HeLa 세포주에 트랜스펙션시켰다. 트랜스펙션하고 2 일 째에 세포를 수득하고 DLR(dual luciferase assay) 어세이 키트를 이용하여 듀얼 루시퍼라제 어세이를 실시하였다. N 백터 및 miR-494 로 처리된 시료들은 N 백터 및 비타겟팅 miRNA 로 트랜스펙션된 시료의 루시퍼라제 활성에 비해 거의 반 정도에 불과하였고, miR— 221 및 miR-222 로 처리된 시료보다도 더욱 현저한 감소를 나타냈다 (도 4b, 위쪽 패널). N 백터의 KIT mRNA 의 3' -UTR 의 위치- 지정된 돌연변이유발법 (site-directed mutagenesis)을 통해, 1899-1902 의 뉴클레오타이드 서열이 변화된 (GTTTCCGG) miR-494 에 대한 M 백터 및 1961- 1964 의 뉴클레오타이드 서열이 변화된 (GTAGCAGA) miR-221/miR-222 에 대한 0 백터를 제작하였다. N, M 또는 0 백터에 비타겟팅 miRNA, miR-494, miR-221 또는 miR-222 를 트랜스펙션시키고, 리포터 어세이를 실시하였다. miR-221 또는 miR-222 를 포함하는 0 백터로 트랜스펙션된 세포에서 루시퍼라제 활성은 음성 대조군 (비타켓팅 miRNA 를 포함하는 N 백터로 트랜스펙션된 세포)과 비교하여 완전하게 회복하였는데, 이는 miR-221 및 miR-222가 KIT mRNA를 직접적으로 타겟팅한다는 것을 의미한다. 하지만, M 백터 및 miR-494로 트랜스펙션된 시료들은 음성 대조군과 비교하여 아주 약간 회복된 루시퍼라제 활성을 나타냈다 (도 4b, 위쪽 패널). 상술한 결과는 miR-494 가 KIT mRNA 의 3' -UTR 을 직접적으로 타겟팅하거나 또는 추가적인 결합 위치가 존재할 수 있다는 것을 보여준다. Identification of two key match sites in KIT's 3'-UTR We have identified that KIT mRNA is a direct target of miR-494 by identifying the binding position of miR-494 to 3′-UTR of KIT mRNA. 1897-1903 via a target scan 3.0 database (http: // www, target scan, org /) to detect miR-494's algorithm-based binding site for the 3'-UTR of KIT mRNA One binding site located at was expected (FIG. 4A). We prepared a reporter assay by preparing a vector named N (N vector) comprising the encoding sequence for the total 3′-UTR sequence of Renilla luciferase and KIT mRNA obtained from cDNA of GIST883 cell line. Devised. The KIT 3′-UTR position was amplified by PCR and cloned to the right after the Renilla luciferase encoding sequence in the pRL3 vector. In a pilot experiment to confirm that our N vector constructs function properly, N vectors (5 nM) comprising non-targeting miRNA, miR-494, miR-221 or miR-222 were tested. HeLa cell line was transfected. Two days after transfection, cells were harvested and subjected to dual luciferase assay using a dual luciferase assay (DLR) assay kit. Samples treated with N vector and miR-494 were only about half the luciferase activity of samples transfected with N vector and non-targeted miRNA, more prominent than samples treated with miR—221 and miR-222. A decrease was shown (FIG. 4B, top panel). M vector for 1899-1902 nucleotide sequence changed (GTTTCCGG) miR-494 and nucleotide of 1961-1964 via site-directed mutagenesis of 3'-UTR of N vector KIT mRNA A zero vector was constructed for sequence changed (GTAGCAGA) miR-221 / miR-222. Non-targeting miRNA, miR-494, miR-221 or miR-222 was transfected into an N, M or 0 vector, and a reporter assay was performed. Luciferase activity in cells transfected with 0 vectors containing miR-221 or miR-222 was fully restored compared to the negative control (cells transfected with N vectors containing untargeted miRNAs). miR-221 and miR-222 directly target KIT mRNA. However, samples transfected with M vector and miR-494 showed very slightly restored luciferase activity compared to the negative control (FIG. 4B, top panel). Above The results show that miR-494 can directly target the 3'-UTR of KIT mRNA or there may be additional binding sites.
본 발명자들은 보다 강력한 miR-494 결합 위치들에 대해 백터 NTI 소프트웨어 (Invitrogen, Carlsbad, CA, USA)를 이용하여 손수 조사하였다 (도 4a). 그 결과, KIT mRNA 의 3' -UTR은 miR-494 에 대한 6- 7 개의 핵심 염기서열 (seed match sequences)를 포함하는 세 개의 잠재적인 miR-494 결합 위치를 가졌다. 검색된 잠재적인 miR-494 결합 위치는 다음과 같았다: 5' -TGTTTCT-3' (위치, 1222-1228), 5' -GTGTTTCT-3' (위치 1758-1765) 및 5' -ATGTTT-3' (위치, 1918-1923). 상술한 발견을 통해, 본 발명자들은 잠재적인 miR-494 결합 위치들의 추가적인 돌연변이 (GTTTCCGG)에 의해 M 백터로부터 유래된 세 개의 백터 (Ma, Mb 및 Mc 백터)를 제작하였다. 리포터 어세이는 miR-494를 포함하는 M, Ma, Mb, Mc 백터를 각각 HeLa 세포주에 트랜스펙션함으로써 실시하였다. Mb 및 miR-494 로 트랜스펙션된 세포만이 음성 대조군에 비하여 완전하게 회복된 루시퍼라제 활성을 나타냈다 (도 4b, 아래쪽 패널). 다음 5' -GTGTTTCT- 3' (위치, 1753-1760)의 G 염기가 워블 매치 (wobble match)에 의해 U 염기와 수소결합을 이를 수 있기 때문에, 상기 위치는 타겟 스캔 3.0 에 의해 제안된 고유의 결합 위치와 마찬가지로 거의 동일하게 기능하였다. 상술한 결과들을 종합해 보면, 두 개의 다른 위치들은 miR-494 가 KIT mRNA의 3' -UTR부위에 결합하는 데 중요하다는 것을 결론지을 수 있다. miR-494 억제 후 KIT발현의 회복  We manually examined the more potent miR-494 binding sites using Vector NTI software (Invitrogen, Carlsbad, Calif., USA) (FIG. 4A). As a result, the 3'-UTR of KIT mRNA had three potential miR-494 binding sites, including 6-7 seed match sequences for miR-494. The potential miR-494 binding sites detected were as follows: 5'-TGTTTCT-3 '(position, 1222-1228), 5' -GTGTTTCT-3 '(position 1758-1765) and 5' -ATGTTT-3 '( Location, 1918-1923). Through the above findings, we constructed three vectors (Ma, Mb and Mc vectors) derived from the M vector by an additional mutation of the potential miR-494 binding sites (GTTTCCGG). The reporter assay was performed by transfecting the HeLa cell lines with M, Ma, Mb and Mc vectors containing miR-494, respectively. Only cells transfected with Mb and miR-494 showed fully restored luciferase activity compared to the negative control (FIG. 4B, bottom panel). Since the G base of the next 5'-GTGTTTCT-3 '(position, 1753-1760) can hydrogen bond with the U base by a wobble match, the position is unique as suggested by the target scan 3.0 It functions almost the same as the binding position. Taken together, we can conclude that two different positions are important for binding miR-494 to the 3'-UTR site of KIT mRNA. Recovery of KIT Expression After Inhibition of miR-494
또한, 본 발명자들은 N 백터 및 miR-494 억제제들을 이용한 리포터 어세이를 통해 KIT mRNA 의 3' -UTR 부위에 결합할 수 있는 내인성 miR- 494 의 능력을 확인하였다. 상기 억제 어세이 전에, 본 발명자들은 여섯 개의 세포주에서 택맨 miRNA 어세이에 의해 miR-494 의 발현 레벨을 측정한 후, 다음 세 개의 세포주를 선택하였다: HeLa, GIST882 및 SNU216. HeLa 및 SNU216 세포주는 상대적으로 높은 발현 레벨의 miR-494 를 가지는 반면에, GIST882 세포주는 miR-494 발현이 거의 검출되지 않았다 (도 4c, 위쪽 패널). 상술한 세 개의 세포주들은 음성 대조군으로서 비타겟팅 miRNA를 포함하는 N 백터 또는 miR-494 억제제들을 포함하는 N 백터로 각각 트랜스펙션시켰다. 세포를 이를 후에 수거하여 DLR 어세이를 실시하였다. miR-494 억제제들로 트랜스펙션된 SNU216 및 HeLa 세포들의 루시퍼라제 활성은 음성 대조군의 활성보다 두 배 이상 증가하였으나, GIST882 세포들의 활성은 거의 변화가 없었다 (도 4c, 아래쪽 패널). 상술한 결과들은 KIT 발현이 HeLa 및 SNU216 같은 KIT 를 발현하지 않는 세포주 내에서 조차 내인성 miR-494에 의해 직접적으로 조절된다는 것을 나타낸다. miR-494 처리 후 교란된 시그널링We also confirmed the ability of endogenous miR-494 to bind to the 3′-UTR site of KIT mRNA through a reporter assay using N vector and miR-494 inhibitors. Prior to the inhibition assay, we measured the expression level of miR-494 by Taqman miRNA assay in six cell lines and then selected three cell lines: HeLa, GIST882 and SNU216. HeLa and SNU216 cell lines had relatively high expression levels of miR-494, while GIST882 cell lines had little detectable miR-494 expression (FIG. 4C, top panel). Each of the three cell lines described above is either a N vector containing non-targeting miRNA or an N vector containing miR-494 inhibitors as a negative control. Transfection. The cells were later harvested and subjected to a DLR assay. Luciferase activity of SNU216 and HeLa cells transfected with miR-494 inhibitors increased more than twice the activity of negative control, but the activity of GIST882 cells remained almost unchanged (FIG. 4C, bottom panel). The above results indicate that KIT expression is directly regulated by endogenous miR-494 even in cell lines that do not express KIT such as HeLa and SNU216. Disturbed Signaling After miR-494 Treatment
IT 다운스트림 분자 경로는 세포 증식, 분화 및 아팝토시스에 관계한다고 알려져 있다. 많은 연구들 [6]에 의해 제안된 바와 같이, KIT 발현의 조절은 AKT, ERK 및 JACK-STAT 경로를 포함하는 증요한 경로들에 영향을 미친다. 상기 경로들 상에 miR-494 의 효과는 miR-494 트랜스펙션 후 p-AKT, p-ERK, p-KIT 및 p-STAT3 의 상태를 분석함으로써 검증하였다. GIST882 세포주에 50 nM의 비타겟팅 miR A, miR-494, miR-221 또는 miR-494 억제제들을 트랜스펙션시켰다. miR-494 로 트랜스펙션된 세포들에서 KIT 발현이 현저하게 감소되었다. 또한, miR-221 로 트랜스펙션된 세포들에서 KIT 발현이 감소하였으나, miR-494 보다 덜 하였다. 하지만, miR-494 억제제들은 KIT 발현에 영향을 미치지 않았는데, 이는 아마도 GIST882 세포주 내 miR-494 의 발현 레벨이 매우 낮기 때문일 것이다. 포스포- 특이적 항체를 이용해 p-KIT(pY703)의 발현도 테스트하였는테, 발현 레벨이 현저하게 감소하였다. 또한, KIT 시그널링 경로의 세 개의 다운스트림 분자들 (AKT, ERK 및 STAT3)의 활성화 형태도 분석하였다. 포스포 -AKT 특이적 항체로 측정된 바와 같이, 포스포 -AKT 레벨이 miR-221 및 miR-494 처리 후 감소하였으며 (도 5), miR-221 처리보다 miR-494 처리 후 더 많은 정도로 포스포 -AKT 의 하향-조절이 일어났다. miR-494 억제제의 처리는 측정될 만한 변화를 야기하지 않았다. P-STAT3 의 변화 패턴은 p-STAT3 의 레벨이 miR— 221 및 miR-494 처리 후 감소하고 그 감소가 miR-494 처리 후에 더 크다는 점에서 포스포 -AKT 와 유사하였다. p-ERK 레벨의 변화는 관찰되지 않았다. 상술한 발견들은 KIT 가 KIT 활성화를 억제하는 이마티닙 또는 KIT shRNA에 의해 불활성화되는 경우에 p-AKT 및 p-STAT3 의 발현이 영향받는다는 이전 보고들 [4, 8, 9, 18]과 일치한다. 종합해 보면, 상술한 결과들은 miR-494 처리가 KIT 하향-조절을 유도하고 이마티닙 또는 KIT shRNA 같은 KIT-억제 분자들과 동일한 방식으로 다운스트림 분자들에 영향을 미친다는 것을 나타낸다. 유도된 miR-494과다발현에 의한 GIST세포 증식의 억제 IT downstream molecular pathways are known to be involved in cell proliferation, differentiation and apoptosis. As suggested by many studies [6], regulation of KIT expression affects critical pathways including the AKT, ERK and JACK-STAT pathways. The effect of miR-494 on these pathways was verified by analyzing the status of p-AKT, p-ERK, p-KIT and p-STAT3 after miR-494 transfection. GIST882 cell lines were transfected with 50 nM of untargeted miR A, miR-494, miR-221 or miR-494 inhibitors. KIT expression was significantly reduced in cells transfected with miR-494. In addition, KIT expression was reduced in cells transfected with m iR-221, but less than miR-494. However, miR-494 inhibitors did not affect KIT expression, probably because the expression level of miR-494 in the GIST882 cell line is very low. The expression of p-KIT (pY703) was also tested with phospho-specific antibodies, which significantly reduced expression levels. In addition, the activation forms of the three downstream molecules of the KIT signaling pathway (AKT, ERK and STAT3) were also analyzed. As measured with phospho-AKT specific antibodies, phospho-AKT levels decreased after miR-221 and miR-494 treatment (FIG. 5), and were more phospho after miR-494 treatment than miR-221 treatment. Down-regulation of AKT occurred. Treatment of the miR-494 inhibitor did not result in measurable changes. The pattern of change in P-STAT3 was similar to phospho-AKT in that the level of p-STAT3 decreased after miR-221 and miR-494 treatment and the decrease was greater after miR-494 treatment. No change in p-ERK levels was observed. The above findings are consistent with previous reports [4, 8, 9, 18] that expression of p-AKT and p-STAT3 is affected when KIT is inactivated by imatinib or KIT shRNA that inhibits KIT activation. In summary, The above results indicate that miR-494 treatment induces KIT down-regulation and affects downstream molecules in the same manner as KIT-inhibitory molecules such as imatinib or KIT shRNA. Inhibition of GIST Cell Proliferation by Induced MiR-494 Overexpression
GIST882 세포의 증식 상에 miR-494 의 효과는 GIST882 세포를 2X106 세포 수로 60-mm 디쉬에 분주하여 배양하는 세포 증식 어세이로 확인하였다. 정상적인 세포 형태로 정기적으로 확인하였으며, 계대 배양 3 일 째에 총 12 개의 디쉬에서 트랜스펙션을 실시하였다. 세포들은 50 nM 의 비타겟팅 miRNA 또는 miR-494 로 각각 첫 번째 날 및 여섯 번째 날에 트랜스펙션시키고, 최초 트랜스펙션 후 3 일, 6 일 및 12 일 째에 세포수를 카운팅하였다. 각 실험은 두 쌍으로 실시하여 얻은 평균값을 데이터 분석에 이용하였다. 3 일 후에는 뚜렷한 변화가 발생하지 않았다. miR- 494 로 트랜스펙션된 세포는 최초 트랜스펙션 후 6 일째에 세포 및 세포 클러스터의 수가 현저하게 감소하였으며, 이러한 변화는 어세이 12 일 째에 더욱 심화되었다. GIST882 세포의 경우, 정상 세포 형태가 핀-포인트, 말단 구조를 가지는 방추형이지만, miR-494 처리된 GIST882 세포들은 12 일 째에 변화된 세포 형태를 나타냈으며 (도 6a), 세포수도 대조군 세포수에 비해 거의 37¾까지 감소하였다 (도 6b, 위쪽 패널). KIT 의 지속된 하향- 조절은 증식 어세이에서 이용된 동일한 시료의 웨스턴 블롯팅에 의해 확인되었다 (도 6b, 아래쪽 패널). The effect of miR-494 on proliferation of GIST882 cells was confirmed by a cell proliferation assay in which GIST882 cells were cultured by dispensing GIST882 cells into 60-mm dishes with 2 × 10 6 cells. Normal cell morphology was checked regularly, and transfection was performed in a total of 12 dishes on the third day of subculture. Cells were transfected with 50 nM of untargeted miRNA or miR-494 on the first and sixth days, respectively, and counted the cell number on days 3, 6 and 12 after initial transfection. Each experiment was conducted in two pairs and used for the data analysis. After 3 days no distinct change occurred. Cells transfected with miR-494 significantly reduced the number of cells and cell clusters 6 days after initial transfection, and this change was aggravated on day 12 of assay. In the case of GIST882 cells, the normal cell morphology was pin-point and spindle-shaped, but miR-494 treated GIST882 cells showed a changed cell morphology on day 12 (FIG. 6A), and the number of cells was also higher than that of control cells. It decreased to nearly 37¾ (FIG. 6B, top panel). Sustained down-regulation of KIT was confirmed by western blotting of the same sample used in the proliferation assay (FIG. 6B, bottom panel).
유세포분석을 통해, miR-494 트랜스펙션 후 세포주기의 변화를 조사하였다. GIST882 세포에 50 nM 의 비타겟팅 miRNA 또는 miR-494 를 각각 트랜스펙션하였다. 트랜스펙션 4 일 째에 시료를 수득하여 프로피디움 이오다인으로 염색하여 유세포분석을 실시하였다. miR-494 로 처리된 세포주는 비타겟팅 miRNA 로 트랜스펙션된 세포와 비교하여 G0- Gi 기의 세포가 6 > 증가하였으며, S 기 세포가 5 ) 감소하였다. 상술한 발견들은 miR-494 가 세포주기를 조절함으로써 GIST882 세포 증식을 억제한다는 것을 의미한다. 추가논의사항 마이크로 RNA 는 타겟 유전자들 및 타겟 유전자 조절 경로의 구성성분을 전사 후 방식으로 조절하여 직접적으로 및 간접적으로 시그널 전달과정 (signal transduct ion)에 영향을 미칠 수 있다. 상기 발견들은 miRNA 들이 시그널 전달과정 및 종양형성 과정에서 주된 조절 기능을 할 수 있다는 것을 의미한다 [15, 16]. KIT 의 돌연변이 및 과다발현은 KIT- 유도된 종양형성 과정과 내적 연관성을 가지며 이상조절된 miRNA 는 KIT 과다발현 및 이후의 종양형성 과정을 설명할 수 있다 [12, 13]. miR-221 및 miR-222 는 KIT 를 타겟팅함으로써 적혈구계 세포 증식에 대한 음성 조절자로서 보고되었다 [17]. 하지만, KIT 를 타겟팅하여 GIST 종양형성 과정에 포함되는 miRNA들은 아직까지 보고된 적이 없다. 본 발명에서, 본 발명자들은 내인성 miR-494 가 KIT 하향-조절을 유도한다는 것을 증명함으로써 miR-494 가 KIT 를 직접적으로 타겟팅하고 miR-494 의 억제가 KIT 과다발현을 유도한다는 것을 제안한다. KIT 의 하향-조절은 KIT- 타겟팅 miRNA들로 이전에 보고된 miR-221 및 miR-222 보다 miR-494 에 의해 인 트^에서 더욱 더 강력하게 일어난다. 더 나아가, miR-221 및 miR- 222 의 발현 레벨은 GIST에서 KIT 발현과 관련이 없었다 [13]. 따라서, 본 발명자들은 miR-494 가 GIST 에서 KIT 발현을 조절하는 주요한 miRNA 라고 결론지을 수 있었다. 이제까지, miR-494 의 기능에 대한 보고는 miR- 494 가 화학적으로 형질전환된 세포주에서 PTEN 의 하향-조절을 유도하고 miRNA 프로파일 연구에 따라 miR-494 의 발현이 림프종 및 두경부편평세포암종에서 감소한다고 보고들 이외에는 없었다 [19-21]. 하지만, miR-494 의 직접적인 타겟에 대한 것은 아직까지 보고된 바 없다. 본 연구는 miR— 494 가 GIST 에서 KIT 의 직접적인 타겟이라는 것을 증명한 최초의 연구이다. Through flow cytometry, changes in cell cycle after miR-494 transfection were investigated. GIST882 cells were transfected with 50 nM of nontargeting miRNA or miR-494, respectively. Samples were obtained on day 4 of transfection and stained with propidium iodide for flow cytometry. the cell line treated with miR-494 to G 0 are compared to the transfected cells in a non-targeting miRNA-increased cell 6> group Gi, S phase cells was reduced 5). The above findings indicate that miR-494 inhibits GIST882 cell proliferation by regulating the cell cycle. Additional discussion MicroRNAs can directly and indirectly influence signal transduct ion by regulating target genes and components of target gene regulatory pathways in a post-transcription manner. These findings indicate that miRNAs can play a major regulatory role in signal transduction and tumorigenesis [15, 16]. Mutations and overexpression of KIT are internally associated with KIT-induced tumorigenic processes, and dysregulated miRNAs may explain KIT overexpression and subsequent tumorigenic processes [12, 13]. miR-221 and miR-222 have been reported as negative regulators of erythroid cell proliferation by targeting KIT [17]. However, miRNAs involved in GIST tumor formation by targeting KIT have not been reported yet. In the present invention, we propose that miR-494 directly targets KIT and that inhibition of miR-494 induces KIT overexpression by demonstrating that endogenous miR-494 induces KIT down-regulation. Down-regulation of KIT occurs more strongly at int by miR-494 than miR-221 and miR-222 previously reported with KIT-targeting miRNAs. Furthermore, expression levels of miR-221 and miR-222 were not associated with KIT expression in GIST [13]. Thus, we could conclude that miR-494 is the major miRNA that regulates KIT expression in GIST. To date, reports on the function of miR-494 have shown that miR-494 induces down-regulation of PTEN in chemically transformed cell lines and miR-494 expression is reduced in lymphoma and head and neck squamous cell carcinoma according to miRNA profile studies. There were no reports but [19-21]. However, no direct target has been reported on miR-494's direct targets. This is the first study to demonstrate that miR-494 is a direct target of KIT in GIST.
KIT 단백질은 RTK 패밀리에 속하는 높은 종양유발성 (oncogenic) 타이로신 키나제이며, PI3-키나제, Six 패밀리 키나제 및 Ras-Erk 의 주된 시그널 전달경로 및 JAK-STAT 의 마이너 시그널 전달경로에 포함된다 [6]. 막통과 도메인의 돌연변이는 지속적으로 KIT 수용체의 다이머화를 활성화시켜 다운스트림 시그널을 활성화시킨다 [22]· 기능획득 돌연변이는 KIT유전자의 엑손 9, 11, 13 및 17에서 종종 발견되고 이는 GIST종양형성 과정에 기여한다 [3, 23]. 본 연구는 miR-494 에 의해 유도된 KIT의 하향- 조절이 p-AKT 및 p-STAT3 의 레벨에 영향을 미친다는 것을 증명하였다. 상기 발견은 활성화된 KIT 를 가지는 GIST882 세포가 이마티닙 또는 KIT shRNA로 처리된 경우에 p— AKT 및 p-STAT3 발현이 감소하고 이로 인한 세포 증식의 차단 및 증가된 아팝토시스에 따라 세포 성장이 최종적으로 억제된다는 것을 보여준 이전 보고들과 일치한다 [4, 8, 9, 18]. 이마티닙은 ATP 결합 포켓을 통해 KIT 를 억제하고 이는 KIT 인산화에 영향을 미쳐 다운스트림 분자들을 활성화시킨다 [24-26]· 본 발명자들의 연구는 miR-494 처리가 시그널링 경로를 교란하고 세포 증식을 억제하는 이마티닙과 유사한 방식으로 GIST882 세포주에 영향을 미친다는 것을 보여준다. 상술한 발견들은 miR-494 가 GIST 를 치료하기 위한 또 다른 선택수단일 수 있다는 것을 의미한다. KIT의 3' -UTR에서 miR-494의 두 개의 서로 다른 핵심 염기서열 위치 (seed match sites)에 대한 본 발명자들의 동정은 miR-494 의 직접적인 타겟으로서의 KIT mRNA 에 대한 개념을 추가적으로 지지하며, KIT 활성화를 가지는 GIST 환자에 대한 보다 구체적인 치료 가능성을 도출한다. KIT proteins are high oncogenic tyrosine kinases belonging to the RTK family and are included in the major signal transduction pathways of PI3-kinase, Six family kinases and Ras-Erk, and the minor signal transduction pathways of JAK-STAT [6]. Mutations in transmembrane domains continue to activate downstream signals by activating dimerization of the KIT receptor [22] .Acquired mutations are often found in exons 9, 11, 13 and 17 of the KIT gene, which is a GIST tumor formation process. Contribute to [3, 23]. This study shows that down-regulation of KIT induced by miR-494 It has been demonstrated that regulation affects the levels of p-AKT and p-STAT3. The findings indicate that when GIST882 cells with activated KIT are treated with imatinib or KIT shRNA, p— AKT and p-STAT3 expression decreases, thereby blocking cell proliferation and ultimately cell growth following increased apoptosis. Consistent with previous reports showing suppression [4, 8, 9, 18]. Imatinib inhibits KIT through the ATP binding pocket, which affects KIT phosphorylation, activating downstream molecules [24-26]. Our study shows that miR-494 treatment disrupts signaling pathways and inhibits cell proliferation. It is shown that it affects the GIST882 cell line in a similar manner to imatinib. The above findings mean that miR-494 may be another option for treating GIST. Our identification of two different key match sites of miR-494 at 3'-UTR of KIT further supports the concept of KIT mRNA as a direct target of miR-494, and KIT activation Deriving more specific treatment possibilities for GIST patients with
종양단백질은 해독 후 방식으로 또는 전사 후 방식으로 억제될 수 있다 [27]. 이마티닙에 의한 KIT 의 억제는 KIT 의 ATP 결합 포겟에 대한 경쟁적인 결합을 통한 해독 후 억제의 예이다. 하지만, 이마티닙에 의한 KIT 억제는 처리 과정 동안 발생할 수 있는 아미노산 잔기의 잠재적인 돌연변이 변화를 통한 저항성이 일어날 수 있기 때문에 불완전하다. 그 결과, KIT 의 ATP 결합 포겟에 대한 이마티닙의 결합을 억제함으로써 이마티닙 저항성이 일어난다 [11]. 상기 가능한 돌연변이-유래된 저항성은 miR-494 를 포함하는 보다 강력한 치료수단을 시급히 요구하고 있다. KIT 를 불활성화시키기 위한 miR-494 의 치료적 용도는 종래의 RNA-기반된 치료법이 역설적으로 siRNA(small interfering RNAs)의 거대한 분자 크기와 함께 혈액 내에서 불안정하기 때문에 보완해야 할 점이 많을 것이다. 하지만, 상술한 많은 문제들은 ¾타머, 나노입자 및 리포좀 같은 신규한 운반 시스템에 의해 해결되고 있다 [28-30]. 상기 신규한 운반 시스템을 적용함으로써, miR-494 가 GIST 를 치료하기 위한 신규한 치료수단으로서 이용될 수 있을 것이다. 결론적으로, miR-494 는 GIST 에서 KIT 의 강력한 조절자이며, GIST 환자에게 miR-494 를 도입하는 것은 종양 진행을 억제하기 위한 신규한 방식일 수 있다. 이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명 의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다. 참고문헌 Tumor proteins can be inhibited in post-translational fashion or in post-transcriptional fashion [27]. Inhibition of KIT by imatinib is an example of post-translational inhibition via competitive binding of KIT to the ATP binding forge. However, inhibition of KIT by imatinib is incomplete because resistance through potential mutational changes of amino acid residues that may occur during processing may occur. As a result, imatinib resistance occurs by inhibiting the binding of imatinib to ATP binding forks of KIT [11]. Such possible mutation-derived resistance is urgently needed for more powerful therapeutic means including miR-494. Therapeutic use of miR-494 to inactivate KIT would have to be supplemented because conventional RNA-based therapies are paradoxically unstable in the blood with the enormous molecular size of small interfering RNAs. However, many of the problems described above are solved by novel delivery systems such as ¾ timer, nanoparticles and liposomes [28-30]. By applying the novel delivery system, miR-494 could be used as a novel therapeutic means for treating GIST. In conclusion, miR-494 is a potent regulator of KIT in GIST, and introducing miR-494 into GIST patients may be a novel way to suppress tumor progression. The specific parts of the present invention have been described in detail above, and it is apparent to those skilled in the art that these specific technologies are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. Accordingly, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof. references
1. Fletcher CD, Berman J J , Cor less C, et al . Diagnosis of gastrointestinal stromal tumors: A consensus approach. Hum Pathol 2002;33:459-65.  Fletcher CD, Berman J J, Cor less C, et al. Diagnosis of gastrointestinal stromal tumors: A consensus approach. Hum Pathol 2002; 33: 459-65.
2. Miett inen M, Lasota J. Gastrointestinal stromal tumorsᅳ definition, clinical, histological , immunohistochemical , and molecular genetic features and differential diagnosis . Vir chows Arch 2001:438: 1-12. 2. Miett inen M, Lasota J. Gastrointestinal stromal tumors ᅳ definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis. Vir chows Arch 2001: 438 1-12.
3. Miett inen M, Lasota J. Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med 2006;130:1466-78.  3. Miett inen M, Lasota J. Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med 2006; 130: 1466-78.
4. Duensing A, Medeiros F, McConarty B, et al . Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene 2004;23:3999-4006.  4. Duensing A, Medeiros F, McConarty B, et al. Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene 2004; 23: 3999-4006.
5. Heinrich MC, Corless CL, Duensing A, et al . PDGFRA activating mutations in gastrointestinal stromal tumors . Science 2003 ;299 :708—10. 5. Heinrich MC, Corless CL, Duensing A, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 2003; 299: 708—10.
6. Lennartsson J , Ronnstrand L. The stem cell factor receptor /c-Kit as a drug target in cancer . Curr Cancer Drug Targets 2006 ; 6 : 65ᅳ 75. 6. Lennartsson J, Ronnstrand L. The stem cell factor receptor / c-Kit as a drug target in cancer. Curr Cancer Drug Targets 2006; 6: 65 ᅳ 75.
7. Tuveson DA, Willis NA, Jacks T, et al. STI571 inactivation of the gastrointestinal stromal tumor c_KIT oncoprotein: biological and clinical implications. Oncogene 2001 ;20 :5054—8. 8. Gordon PM, Fisher DE. Role for the proapoptotic factor BIM in mediating imat inib-induced apoptosis in a c-KIT-dependent gastrointestinal stromal tumor cell line. J Biol Chem 2010 ;285: 14109- 14. 7. Tuveson DA, Willis NA, Jacks T, et al. STI571 inactivation of the gastrointestinal stromal tumor c_KIT oncoprotein: biological and clinical implications. Oncogene 2001; 20: 5054—8. 8. Gordon PM, Fisher DE. Role for the proapoptotic factor BIM in mediating imat inib-induced apoptosis in a c-KIT-dependent gastrointestinal stromal tumor cell line. J Biol Chem 2010; 285: 14109-14.
9. Bauer S, Duensing A, Demet r i GD, et al. KIT oncogenic signaling mechanisms in imat inib— resistant gastrointestinal stromal tumor: PI3- kinase/AKT is a crucial survival pathway. Oncogene 2007 ;26: 7560-8. 9. Bauer S, Duensing A, Demet r i GD, et al. KIT oncogenic signaling mechanisms in imat inib— resistant gastrointestinal stromal tumor: PI3-kinase / AKT is a crucial survival pathway. Oncogene 2007; 26: 7560-8.
10. Ma Y, Zeng S, Metcalfe DD, et al . The c-KIT mutat ion causing human mastocytosis is resistant to STI571 and other KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wi ld-type kinases and those with regulatory- type mutations. Blood 2002 ;99: 1741-4.  10. Ma Y, Zeng S, Metcalfe DD, et al. The c-KIT mutat ion causing human mastocytosis is resistant to STI571 and other KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wi ld-type kinases and those with regulatory- type mutations. Blood 2002; 99: 1741-4.
11. McLean SR, Gana-Weisz M, Hartzoulakis B, et al . Imatinib binding and cKIT inhibition is abrogated by the cKIT kinase domain I missense mutation Val654Ala. Mol Cancer Ther 2005;4:2008-15.  11. McLean SR, Gana-Weisz M, Hartzoulakis B, et al. Imatinib binding and cKIT inhibition is abrogated by the cKIT kinase domain I missense mutation Val654Ala. Mol Cancer Ther 2005; 4: 2008-15.
12. Kang HJ, Nam SW, Kim H, et al. Correlation of KIT and platelet- derived growth factor receptor al ha mutat ions with gene activation and expression profiles in gastrointestinal stromal tumors . Oncogene 2005;24:1066-74.  12. Kang HJ, Nam SW, Kim H, et al. Correlation of KIT and platelet-derived growth factor receptor al ha mutat ions with gene activation and expression profiles in gastrointestinal stromal tumors. Oncogene 2005; 24: 1066-74.
13. Choi HJ, Lee H, Kim H, et al . MicroRNA expression profile of gastrointestinal stromal tumors is distinguished by 14q loss and anatomic site. Int J Cancer 2009; 126: 1640-50. 13. Choi HJ, Lee H, Kim H, et al. MicroRNA expression profile of gastrointestinal stromal tumors is distinguished by 14q loss and anatomic site. Int J Cancer 2009; 126: 1640-50.
14. Quek R, George S. Gastrointestinal stromal tumor: a clinical overview. Hematol Oncol Clin North ½ 2009; 23: 69-78 , viii .  14. Quek R, George S. Gastrointestinal stromal tumor: a clinical overview. Hematol Oncol Clin North ½ 2009; 23: 69-78, viii.
15. Schickel R, Boyerinas B, Park SM, et al . MicroRNAs: key players in the immune system, differentiation, tumori genes is and cell death. Oncogene 2008; 27: 5959-74. 15. Schickel R, Boyerinas B, Park SM, et al. MicroRNAs: key players in the immune system, differentiation, tumori genes is and cell death. Oncogene 2008; 27: 5959-74.
16. Cal in GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006;6:857-66. 17. Felli N, Font ana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A 2005;102:18081-6. 16. Cal in GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857-66. 17. Felli N, Font ana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 2005; 102: 18081-6.
18. Ou WB, Zhu MJ, Demet r i GD, et al . Protein kinase C-theta regulates KIT expression and proliferation in gastrointestinal stromal tumors. 18. Ou WB, Zhu MJ, Demet r i GD, et al. Protein kinase C-theta regulates KIT expression and proliferation in gastrointestinal stromal tumors.
Oncogene 2008 ;27 :5624-34. Oncogene 2008; 27: 5624-34.
19. Liu L, Jiang Y, Zhang H, et al . Overexpressed miR-494 down- regulates PTEN gene expression in eel Is transformed by antiᅳ benzo ( a ) yr ene- 1 r ans-7 , 8-d i hydr od i o 1 -9 , 10-epox i de . Life Sci 2009;86:192-8.  19. Liu L, Jiang Y, Zhang H, et al. Overexpressed miR-494 down-regulates PTEN gene expression in eel Is transformed by anti ᅳ benzo (a) yr ene-1 r ans-7, 8-d i hydr od i o 1 -9, 10-epox i de. Life Sci 2009; 86: 192-8.
20. Chang SS, Jiang WW, Smith I, et al . MicroRNA alterations in head and neck squamous cell carcinoma. Int J Cancer 2008; 123:2791—7.  20. Chang SS, Jiang WW, Smith I, et al. MicroRNA alterations in head and neck squamous cell carcinoma. Int J Cancer 2008; 123: 2791—7.
21. Robert us JL, Kluiver J , Weggemans C, et al . MiRNA profiling in B non-Hodgkin lymphoma: a MYC一 related miRNA profile characterizes Burkitt lymphoma. Br J Haematol; 149:896-9.  21. Robert us JL, Kluiver J, Weggemans C, et al. MiRNA profiling in B non-Hodgkin lymphoma: a MYC 一 related miRNA profile characterizes Burkitt lymphoma. Br J Haematol; 149: 896-9.
22. Lux ML, Rubin BP, Biase TL, et al. KIT extracellular and kinase domain mutations in gastrointestinal stromal tumors . Am J Pathol 2000;156:791-5.  22. Lux ML, Rubin BP, Biase TL, et al. KIT extracellular and kinase domain mutations in gastrointestinal stromal tumors. Am J Pathol 2000; 156: 791-5.
23. Nakahara M, Isozaki K, Hirota S, et al . A novel gain—ofᅳ funct ion mutat ion of cᅳ kit gene in gastrointestinal stromal tumors . 23. Nakahara M, Isozaki K, Hirota S, et al. A novel gain—of ᅳ funct ion mutat ion of c ᅳ kit gene in gastrointestinal stromal tumors.
Gastroenterology 1998; 115: 1090-5. Gastroenterology 1998; 115: 1090-5.
24. Heinrich MC, Griffith DJ, Druker BJ, et al . Inhibition of c-kit receptor tyrosine kinase activity by ST I 571, a selective tyrosine kinase inhibitor. Blood 2000; 96: 925-32.  24. Heinrich MC, Griffith DJ, Druker BJ, et al. Inhibition of c-kit receptor tyrosine kinase activity by ST I 571 , a selective tyrosine kinase inhibitor. Blood 2000; 96: 925-32.
25. Joensuu H, Roberts PJ , Sar lomo-Rikala M, et al . Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 2001;344:1052-6. 25. Joensuu H, Roberts PJ, Sar lomo-Rikala M, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 2001; 344: 1052-6.
26. Demet ri GD. Structural reengineer ing of imat inib to decrease cardiac risk in cancer therapy. J CI in Invest 2007; 117 :365으 3. O Ji 26. Demet ri GD. Structural reengineer ing of imat inib to decrease cardiac risk in cancer therapy. J CI in Invest 2007; 117: 365 3. O Ji
pgpeot.t rrin In J Clin Exato;. Phlcno367241: pgpeot.t rr i n I n J C li n Exato ; . Ph lc no367241 :
pTO asw2sresn? Aiwlhaiztre½12inh r f a stadaciednriz-.-.-. pTO asw2sresn? A i w l ha i ztre½ 1 2 i nh r f a stadac i ednr i z -.-.-.
Figure imgf000041_0001
Figure imgf000041_0001

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
마이크로 RNA-494(miR-494) 또는 miR-494 과다발현을 유도하는 제제 (agents)를 유효성분으로 포함하는 KIT(v_kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog)—매개된 질환, 질병 또는 상태 (KIT-mediated diseases, disorders or conditions)의 예방 또는 치료용 약제학적 조성물.  V_kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) containing micro RNA-494 (miR-494) or miR-494 overexpression as an active ingredient—mediated disease, disease or condition ( A pharmaceutical composition for preventing or treating KIT-mediated diseases, disorders or conditions.
【청구항 2] [Claim 2]
제 1 항에 있어서, 상기 miR-494 또는 miR-494 과다발현을 유도하는 제제는 KIT 의 발현을 mRNA 또는 단백질 레벨에서 억제하는 것을 특징으로 하는 조성물.  The composition of claim 1, wherein the agent inducing miR-494 or miR-494 overexpression inhibits KIT expression at the mRNA or protein level.
【청구항 3] [Claim 3]
제 1 항에 있어서, 상기 miR-494 는 AKT 또는 STAT3 의 인산화를 억제시키는 것을 특징으로 하는 조성물.  The composition of claim 1, wherein miR-494 inhibits phosphorylation of AKT or STAT3.
【청구항 4】 [Claim 4]
제 1 항에 있어서, 상기 KIT-매개된 질환, 질병 또는 상태는 KIT 유전자 또는 단백질이 과다발현되거나 또는 돌연변이된 형태에 의해 유도되는 질환, 질병 또는 상태인 것을 특징으로 하는 조성물.  The composition of claim 1, wherein the KIT-mediated disease, disease or condition is a disease, disease or condition induced by a form in which the KIT gene or protein is overexpressed or mutated.
【청구항 5】 [Claim 5]
제 1 항에 있어서, 상기 KIT-매개된 질환, 질병 또는 상태는 종양성 질환 (neoplastic disorders), 염증성 질환, 자가면역질환, 암, 알러지 질환, 과민성 대장증후군 (IBS), 이식편대 숙주질환 (GVHD), 대사성 증훈군, CNS( central nervous system)-관계된 질환, 퇴행성 신경질환, 비만세포- 관련 질환 (mast— cell associated disease) , 고통, 물질—남용 질환, 프라이은 질환, 심장 질환, 섬유성 질환, 특발성 폐동맥고혈압 (ΙΡΑΗ), 일차성 폐고혈압 (ΡΡΗ), 신경교종 또는 심혈관 질환인 것을 특징으로 하는 조성물. 【청구항 6】 The method of claim 1, wherein the KIT-mediated disease, disease or condition is neoplastic disorders, inflammatory disease, autoimmune disease, cancer, allergic disease, irritable bowel syndrome (IBS), graft versus host disease (GVHD). ), Metabolic syndrome, central nervous system (CNS) -related diseases, neurodegenerative diseases, mast cell-related diseases, pain, substance-abuse disease, fryer disease, heart disease, fibrotic disease, A composition characterized in that it is idiopathic pulmonary hypertension (ΙΡΑΗ), primary pulmonary hypertension (ΡΡΗ), glioma or cardiovascular disease. [Claim 6]
제 5 항에 있어서, 상기 KIT-매개된 질환, 질병 또는 상태는 질환인 것을 특징으로 하는 조성물.  6. The composition of claim 5, wherein said KIT-mediated disease, disease or condition is a disease.
【청구항 7】 [Claim 7]
제 6 항에 있어서, 상기 종양성 질환은 위장관 간질종양 (gatrointestinal stromal tumors, GISTs), 소세포 폐암 (small cell lung cancer), 비-소세포성 폐암, 급성 골수성 백혈병 (acute myelocytic leukemia), 급성 림프구성 백혈병, 골수이형성증후군 (myelodyplastic syndrome), 만성 골수성 백혈병, 대장 암종, 위 암종, 고환암 (testicular cancer), 신경교종 (gl ioblastoma), 성상세포종 (astrocytoma) 또는 비만세포종 (mastocytosis)인 것을 특징으로 하는 조성물 .  The method of claim 6, wherein the tumorous disease is gastrointestinal stromal tumors (GISTs), small cell lung cancer, non-small cell lung cancer, acute myelocytic leukemia, acute lymphocytic leukemia , Myelodyplastic syndrome, chronic myeloid leukemia, colon carcinoma, gastric carcinoma, testicular cancer, glioblastoma, astrocytoma or mastocytosis.
【청구항 8] [Claim 8]
서열목록 제 2 서열의 뉴클레오타이드 서열 중 8 번째부터 15 번째 뉴클레오타이드 서열에 상보적인 서열을 가지는 안티센스 올리고뉴클레오타이드 서열을 포함하는 KIT-매개된 질환, 질병 또는 상태 예방 또는 치료용 20-100개의 연속 뉴클레오타이드 서열.  20-100 contiguous nucleotide sequences for the prophylaxis or treatment of a KIT-mediated disease, disease or condition comprising an antisense oligonucleotide sequence having a sequence complementary to the eighth to fifteenth nucleotide sequence of the nucleotide sequence of the second sequence.
【청구항 9】 [Claim 9]
서열목록 제 3 서열의 뉴클레오타이드 서열 중 8 번째부터 15 번째 뉴클레오타이드 서열에 상보적인 서열을 가지는 안티센스 올리고뉴클레오타이드 서열을 포함하는 KIT-매개된 질환, 질병 또는 상태 예방 또는 치료용 20-100개의 연속 뉴클레오타이드 서열.  20-100 contiguous nucleotide sequences for the prophylaxis or treatment of a KIT-mediated disease, disease or condition comprising an antisense oligonucleotide sequence having a sequence complementary to the eighth to fifteenth nucleotide sequence of the nucleotide sequence of the third sequence.
【청구항 10】 [Claim 10]
제 8 항 또는 제 9 항에 있어서, 상기 안티센 을리고뉴클레오타이드 서열은 miR-494 의 핵심 결합 서열 (seed mat sequences)에 상보적인 서열을 포함하는 것을 특징으로 하는 서열. 【청구항 111 Claim 8 or claim 9 wherein the anti hitting the sensor nucleotide sequence is SEQ ID NO: characterized in that it comprises a sequence complementary to the key combination of the miR-494 sequence (see d mat sequences). [Claim 111]
제 10 항에 있어서, 상기 miR— 494 의 핵심 결합 서열은 KIT 의 3' - UTR(untranslated region) 내에 존재하는 것을 특징으로 하는 서열.  The sequence of claim 10, wherein the key binding sequence of miR-494 is in a 3′-untranslated region (UTR) of KIT.
【청구항 12】 [Claim 12]
제 8 항 또는 제 9 항에 있어서, 상기 안티센스 을리고뉴클레오타이드는 DNA또는 RNA분자인 것을 특징으로 하는 서열. 【청구항 13】  10. The sequence of claim 8 or 9, wherein the antisense oligonucleotide is a DNA or RNA molecule. [Claim 13]
마이크로 RNA-494(miR-494) 또는 miR-494 과다발현을 유도하는 제제를 처리하는 단계를 포함하는 KIT-매개된 질환, 질병 또는 상태의 치료방법. 【청구항 14】  A method of treating a KIT-mediated disease, disorder or condition comprising the step of treating an agent that induces micro RNA-494 (miR-494) or miR-494 overexpression. [Claim 14]
제 13 항에 있어서 , 상기 miR-494 또는 miR-494 과다발현을 유도하는;. 제제는 KIT 의 발현을 mRNA 또는 단백질 레벨에서 억제하는 것을 특징으로 하는 방법ᅳ 【청구항 15】  The method of claim 13, wherein said inducing miR-494 or miR-494 overexpression; The agent is characterized in that the expression of KIT is inhibited at the mRNA or protein level.
제 13 항에 있어서, 상기 miR-494 는 AKT 또는 STAT3 의 인산화를 억제시키는 것을 특징으로 하는 방법.  The method of claim 13, wherein the miR-494 inhibits phosphorylation of AKT or STAT3.
[청구항 16】 [Claim 16]
제 13 항에 있어서, 상기 KIT-매개된 질환, 질병 또는 상태는 KIT 유전자 또는 단백질이 과다발현되거나 또는 돌연변이된 형태에 의해 유도되는 질환, 질병 또는 상태인 것을 특징으로 하는 방법.  The method of claim 13, wherein the KIT-mediated disease, disease or condition is a disease, disease or condition induced by a form in which the KIT gene or protein is overexpressed or mutated.
【청구항 17】 [Claim 17]
제 13 항에 있어서, 상기 KIT-매개된 질환, 질병 또는 상태는 종양성 질환, 염증성 질환, 자가면역질환, 암, 알러지 질환, 과민성 대장증후군, 이식편대 숙주질환, 대사성 증훈군, CNS-관계된 질환, 퇴행성 신경질환, 비만세포 -관련 질환, 고통, 물질 -남용 질환, 프라이온 질환, 심장 질환, 섬유성 질환, 특발성 폐동맥고혈압, 일차성 폐고혈압, 신경교종 또는 심혈관 질환인 것을 특징으로 하는 방법 . The method according to claim 13, wherein the KIT-mediated disease, disease or condition is neoplastic disease, inflammatory disease, autoimmune disease, cancer, allergic disease, irritable bowel syndrome, Graft versus host disease, metabolic syndrome, CNS-related disease, neurodegenerative disease, mast cell-related disease, pain, substance-abuse disease, prion disease, heart disease, fibrotic disease, idiopathic pulmonary hypertension, primary pulmonary hypertension , Glioma or cardiovascular disease.
【청구항 18] [Claim 18]
제 17 항에 있어서 , 상기 KIT-매개된 질환, 질병 또는 상태는 종양성 질환인 것을 특징으로 하는 방법. 【청구항 19】  18. The method of claim 17, wherein the KIT-mediated disease, disease or condition is a neoplastic disease. [Claim 19]
제 18 항에 있어서, 상기 종양성 질환은 위장관 간질종양, 소세포 폐암, 비-소세포성 폐암, 급성 골수성 백혈병, 급성 림프구성 백혈병, 골수이형성증후군, 만성 골수성 백혈병, 대장 암종, 위 암종, 고환암, 신경교종, 성상세포종 또는 비만세포종인 것을 특징으로 하는 방법 .  19. The method of claim 18, wherein the neoplastic disease is gastrointestinal stromal tumor, small cell lung cancer, non-small cell lung cancer, acute myeloid leukemia, acute lymphocytic leukemia, myelodysplastic syndrome, chronic myeloid leukemia, colorectal carcinoma, gastric carcinoma, testicular cancer, nerve A glioma, an astrocytoma or mast cell tumor.
【청구항 20] [Claim 20]
서열목록 제 2 서열의 뉴클레오타이드 서열 중 8 번째부터 15 번째 뉴클레오타이드 서열에 상보적인 서열을 가지는 안티센스 올리고뉴클레오타이드 서열을 포함하는 20-100 개의 연속 뉴클레오타이드 서열을 처리하는 단계를 포함하는 KIT-매개된 질환, 질병 또는 상태의 치료방법.  KIT-mediated disease, disease comprising processing 20-100 contiguous nucleotide sequences comprising an antisense oligonucleotide sequence having a complementary sequence to the eighth to fifteenth nucleotide sequence of the nucleotide sequence of SEQ ID NO: 2 Or method of treating the condition.
【청구항 21】 [Claim 21]
서열목록 제 3 서열의 뉴클레오타이드 서열 중 8 번째부터 15 번째 뉴클레오타이드 서열에 상보적인 서열을 가지는 안티센스 올리고뉴클레오타이드 서열을 포함하는 20-100 개의 연속 뉴클레오타이드 서열을 처리하는 단계를 포함하는 KIT—매개된 질환, 질병 또는 상태의 치료방법. 【청구항 22】 제 20 항 또는 제 21 항에 있어서, 상기 안티센스 을리고뉴클레오타이드 서열은 miR-494의 핵심 결합 서열에 상보적인 서열을 포함하는 것을 특징으로 하는 방법. 【청구항 23】 KIT—mediated disease, disease comprising processing 20-100 contiguous nucleotide sequences comprising an antisense oligonucleotide sequence having a complementary sequence to the eighth to fifteenth nucleotide sequence of the nucleotide sequence of SEQ ID NO: 3 Or method of treating the condition. [Claim 22] 22. The method of claim 20 or 21, wherein said antisense oligonucleotide sequence comprises a sequence complementary to the core binding sequence of miR-494. [Claim 23]
제 22 항에 있어서, 상기 miR-494 의 핵심 결합 서열은 KIT 의 3' - UTR 내에 존재하는 것을 특징으로 하는 방법 .  The method of claim 22, wherein the key binding sequence of miR-494 is in the 3′-UTR of KIT.
【청구항 24] [Claim 24]
제 20 항 또는 제 21 항에 있어서, 상기 안티센스 올리고뉴클레오타이드는 DNA또는 RNA 분자인 것을 특징으로 하는 방법 .  22. The method of claim 20 or 21, wherein said antisense oligonucleotide is a DNA or RNA molecule.
【청구항 25] [Claim 25]
(a) 마이크로 RNA-494(miR-494)-인코딩 뉴클레오타이드 서열을 포함하는 세포에 시험물질을 처리하는 단계; 및 (b) 상기 세포에서 miR- 494 의 발현을 분석하는 단계를 포함하는 종양성 질환 (neoplastic disorders) 치료제의 스크리닝 방법으로, 상기 시험물질이 miR-494 의 발현을 증가시키면 종양성 질환 치료제로 판단된다. 【청구항 26】  (a) treating a test substance to a cell comprising a micro RNA-494 (miR-494) -encoding nucleotide sequence; And (b) analyzing the expression of miR-494 in the cells. do. [Claim 26]
제 25 항에 있어서, 상기 miR-494 는 KIT 의 발현을 억제시키거나 또는 AKT또는 STAT3의 인산화를 억제시키는 것을 특징으로 하는 방법 .  The method of claim 25, wherein the miR-494 inhibits expression of KIT or inhibits phosphorylation of AKT or STAT3.
[청구항 27】 [Claim 27]
제 25 항에 있어서, 상기 종양성 질환은 위장관 간질종양, 소세포 폐암, 비-소세포성 폐암, 급성 골수성 백혈병, 급성 림프구성 백혈병, 골수이형성증후군, 만성 골수성 백혈병, 대장 암종, 위 암종, 고환암, 신경교종, 성상세포종 또는 비만세포종인 것을 특징으로 하는 방법.  26. The method of claim 25, wherein the tumorous disease is gastrointestinal stromal tumor, small cell lung cancer, non-small cell lung cancer, acute myeloid leukemia, acute lymphocytic leukemia, myelodysplastic syndrome, chronic myeloid leukemia, colorectal carcinoma, gastric carcinoma, testicular cancer, nerve Glioma, astrocytoma or mast cell tumor.
PCT/KR2011/001688 2010-12-30 2011-03-10 Composition for the prevention or treatment of neoplastic diseases, comprising mirna as an active ingredient WO2012091220A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100138549A KR101232119B1 (en) 2010-12-30 2010-12-30 Compositions for Preventing or Treating Neoplastic Disorders Comprising miRNA as an Active Ingredient
KR10-2010-0138549 2010-12-30

Publications (1)

Publication Number Publication Date
WO2012091220A1 true WO2012091220A1 (en) 2012-07-05

Family

ID=46383280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001688 WO2012091220A1 (en) 2010-12-30 2011-03-10 Composition for the prevention or treatment of neoplastic diseases, comprising mirna as an active ingredient

Country Status (2)

Country Link
KR (1) KR101232119B1 (en)
WO (1) WO2012091220A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112210554A (en) * 2019-07-11 2021-01-12 东北林业大学 CNBP-mediated microRNA derived from pilose antler and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101668518B1 (en) * 2014-05-23 2016-10-24 강원대학교산학협력단 Hypoxia-responsive microRNA-101 promotes angiogenesis via heme oxygenase-1/VEGF axis by targeting Cullin 3

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090186348A1 (en) * 2007-09-14 2009-07-23 Asuragen, Inc. Micrornas differentially expressed in cervical cancer and uses thereof
US20100144850A1 (en) * 2007-04-30 2010-06-10 The Ohio State University Research Foundation Methods for Differentiating Pancreatic Cancer from Normal Pancreatic Function and/or Chronic Pancreatitis
KR20100064516A (en) * 2008-12-05 2010-06-15 서울대학교산학협력단 Anticancer agent comprising microrna as an active ingredient and the preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100144850A1 (en) * 2007-04-30 2010-06-10 The Ohio State University Research Foundation Methods for Differentiating Pancreatic Cancer from Normal Pancreatic Function and/or Chronic Pancreatitis
US20090186348A1 (en) * 2007-09-14 2009-07-23 Asuragen, Inc. Micrornas differentially expressed in cervical cancer and uses thereof
KR20100064516A (en) * 2008-12-05 2010-06-15 서울대학교산학협력단 Anticancer agent comprising microrna as an active ingredient and the preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHOI, HJ. ET AL.: "MicroRNA expression profile of gastrointestinal stromal tumors is distinguished by 14q loss and anatomic site.", INT J CANCER, vol. 126, no. 7, 1 April 2010 (2010-04-01), pages 1640 - 1650 *
WANG, X. ET AL.: "MicroRNA-494 Targeting Both Proapoptotic and Antiapoptotic Proteins Protects Against Ischemia/Reperfusion-Induced Cardiac Injury", CIRCULATION, 28 September 2010 (2010-09-28) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112210554A (en) * 2019-07-11 2021-01-12 东北林业大学 CNBP-mediated microRNA derived from pilose antler and application thereof

Also Published As

Publication number Publication date
KR20120090110A (en) 2012-08-17
KR101232119B1 (en) 2013-02-12

Similar Documents

Publication Publication Date Title
Yeh et al. MicroRNA‐138 suppresses ovarian cancer cell invasion and metastasis by targeting SOX4 and HIF‐1α
Guo et al. miR-22 inhibits osteosarcoma cell proliferation and migration by targeting HMGB1 and inhibiting HMGB1-mediated autophagy
US20120027753A1 (en) MicroRNAs in Never-Smokers and Related Materials and Methods
Lian et al. Anti-miRNA-23a oligonucleotide suppresses glioma cells growth by targeting apoptotic protease activating factor-1
JP5931897B2 (en) Materials and methods associated with microRNA-21, mismatch repair and colorectal cancer
JP2009502112A (en) Methods for diagnosing and treating renal cell carcinoma
Xiao et al. MiR‐340 suppresses the metastasis by targeting EphA3 in cervical cancer
KR102547432B1 (en) Pharmaceutical Composition Comprising Modulator of TUT4/7 Expression
Chen et al. miR-548d-3p inhibits osteosarcoma by downregulating KRAS
US20120095030A1 (en) Methods and kits to predict therapeutic outcome of tyrosine kinase inhibitors
KR101232119B1 (en) Compositions for Preventing or Treating Neoplastic Disorders Comprising miRNA as an Active Ingredient
EP2262913A1 (en) Systems and methods of cancer staging and treatment
WO2010048317A2 (en) Micro-rnas as markers for tumor progression
US20120190729A1 (en) Mirna inhibition of six1 expression
WO2012051165A2 (en) Mir-211 expression and related pathways in human melanoma
US11352627B2 (en) Treatment of HER-2 dependent cancer using an agent that modulates the activity of a miRNA
KR101724186B1 (en) Use of microRNA-31 as a diagnostic marker and therapeutic agent of hepatocellular carcinoma
WO2010067307A2 (en) In vitro methods and compositions for the diagnosis and/or treatment of adenocarcinoma
KR20180075139A (en) Pharmaceutical composition inhibiting expression of CCND3 or PAK2 for prevention or treatment of cancer
Gillies Regulation of the cyclin dependent kinase inhibitor p27 in glioblastoma
Butler Telomere associated proteins and telomere maintenance in breast cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852500

Country of ref document: EP

Kind code of ref document: A1