WO2012090968A1 - Uniaxial eccentric screw pump - Google Patents

Uniaxial eccentric screw pump Download PDF

Info

Publication number
WO2012090968A1
WO2012090968A1 PCT/JP2011/080135 JP2011080135W WO2012090968A1 WO 2012090968 A1 WO2012090968 A1 WO 2012090968A1 JP 2011080135 W JP2011080135 W JP 2011080135W WO 2012090968 A1 WO2012090968 A1 WO 2012090968A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer cylinder
liner
stator
liner portion
eccentric screw
Prior art date
Application number
PCT/JP2011/080135
Other languages
French (fr)
Japanese (ja)
Inventor
隆 橋間
雅樹 小川
Original Assignee
兵神装備株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兵神装備株式会社 filed Critical 兵神装備株式会社
Priority to EP11853739.8A priority Critical patent/EP2660471A4/en
Priority to CN201180063149.9A priority patent/CN103282664B/en
Priority to KR1020137019897A priority patent/KR101890001B1/en
Publication of WO2012090968A1 publication Critical patent/WO2012090968A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • F04C2/1071Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type
    • F04C2/1073Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth the inner and outer member having a different number of threads and one of the two being made of elastic materials, e.g. Moineau type where one member is stationary while the other member rotates and orbits
    • F04C2/1075Construction of the stationary member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/107Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with helical teeth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods

Definitions

  • This invention relates to the uniaxial eccentric screw pump provided with the stator which can be divided
  • a pump called a uniaxial eccentric screw pump having a structure in which a rotor formed in a male screw shape is inserted into a stator having an inner peripheral surface formed in a female screw shape.
  • Most of the stators employed in this pump have a structure in which a lining member made of rubber or resin is inserted into a metal outer cylinder.
  • the outer cylinder and the lining member are fixed by bonding or the like, thereby preventing the positional deviation between the two and the lining member.
  • the stator of the prior art has a structure in which the outer cylinder and the lining member are integrated by bonding, when replacing the stator, it is necessary to replace not only the worn lining member but also the outer cylinder. is there. Therefore, from the viewpoint of environmental issues, running costs, etc., the outer cylinder and the lining member constituting the stator can be easily separated and collected, and contact between the rotor and the stator can be achieved by replacing the worn lining member. It is desirable for the structure to be able to restore pressure and tightening allowance.
  • a single-shaft eccentric screw pump it is desired that the tightening allowance can be appropriately adjusted according to the temperature change of the fluid to be transferred, the application, and the like.
  • a single-shaft eccentric screw pump there is a demand for cleaning members such as a rotor and a stator by transferring hot water after transferring a fluid such as food.
  • the outer diameter of the rotor and the inner diameter of the stator are set so that the tightening allowance is not excessive when transferring hot water or the like because the tightening allowance cannot be adjusted unless the rotor or stator is replaced. Has been. Therefore, in the conventional single-shaft eccentric screw pump, it is very difficult to set the tightening allowance when transferring a low-temperature fluid to an appropriate state.
  • the stator can be easily separated into the outer cylinder and the lining member, and the contact pressure between the outer surface of the rotor and the inner surface of the stator and the tightening allowance can be adjusted easily and accurately.
  • the purpose was to provide a simple uniaxial eccentric screw pump.
  • the uniaxial eccentric screw pump of the present invention provided to solve the above-described problem has a male screw type rotor and a stator through which the rotor can be inserted, and the stator has a female screw type inner peripheral surface.
  • adjusting means that can be offset in the radial direction of the liner portion in the region to be used.
  • the contact pressure between the outer surface of the rotor and the inner surface of the stator and the tightening allowance can be adjusted by offsetting the region corresponding to at least a part of the outer cylinder portion in the radial direction by the adjusting means.
  • the adjusting means Is possible. Accordingly, it is possible to appropriately adjust the tightening allowance according to the wear of the lining member, the temperature change of the fluid to be transferred, the use, and the like without replacing the stator or the rotor. Moreover, it is possible to further suppress the replacement frequency and running cost of the lining member.
  • the uniaxial eccentric screw pump of the present invention when the operation for adjusting the contact pressure and the tightening allowance is performed by using the adjustment member, it is not necessary to perform the operation of matching the lining member and the central axis of the rotor, It is possible to easily and accurately adjust the tightening margin.
  • the uniaxial eccentric screw pump of the present invention it is possible to obtain an appropriate operating state according to the temperature, application, etc. of the fluid to be transferred by adjusting the tightening margin using the adjusting means. Therefore, according to the uniaxial eccentric screw pump of the present invention, it is possible to prevent damage to the stator due to excessive tightening allowance and deterioration of fluid transfer performance due to excessive tightening allowance.
  • the uniaxial eccentric screw pump of the present invention provided based on the same knowledge has a male screw type rotor and a stator through which the rotor can be inserted, and the stator has a female screw type inner peripheral surface.
  • adjusting means capable of being enlarged and / or reduced.
  • the adjustment unit causes the liner portion mounting region formed inside the outer cylinder portion to radially expand and / or contract in the radial direction in a part of the circumferential direction of the liner portion.
  • the contact pressure between the outer surface of the stator and the inner surface of the stator and the tightening allowance can be adjusted. As a result, it is possible to adjust the tightening margin as appropriate without replacing the stator or the rotor.
  • the uniaxial eccentric screw pump of the present invention there is no need to replace the lining member except when the lining member is excessively worn, and even when the temperature change, usage, etc. of the fluid to be transferred change. There is no need to replace the lining member and rotor. Thereby, it is possible to minimize the replacement frequency of the lining member, and to minimize labor and running costs required for maintenance.
  • the outer surface of the rotor and the inner surface of the liner portion can be reduced even when only the region corresponding to a part of the circumferential direction is enlarged or reduced on the inner peripheral surface of the outer cylinder portion. It was found that the contact pressure and the tightening allowance became substantially uniform regardless of the site. For this reason, the uniaxial eccentric screw pump of the present invention does not cause uneven wear of the lining member even when operated in a state where the liner portion mounting area is enlarged or reduced by the adjusting means. Therefore, according to the present invention, it is possible to minimize the replacement frequency and running cost of the liner portion.
  • the single-shaft eccentric screw pump of the present invention can perform adjustment work such as a tightening margin very easily.
  • the uniaxial eccentric screw pump of the present invention it is possible to obtain an appropriate operating state according to the temperature, application, etc. of the fluid to be transferred by adjusting the tightening margin using the adjusting means. Therefore, according to the uniaxial eccentric screw pump of the present invention, it is possible to prevent damage to the stator due to excessive tightening allowance and deterioration of fluid transfer performance due to excessive tightening allowance.
  • the uniaxial eccentric screw pump of the present invention provided based on the same knowledge has a male screw type rotor and a stator through which the rotor can be inserted, and the stator has a female screw type inner peripheral surface.
  • a liner portion, an outer cylinder portion forming a liner portion mounting region in which the liner portion is accommodated in a non-adhered state, and a radial direction from the outer cylinder portion side to at least a partial region in the circumferential direction of the liner portion
  • Adjustment means capable of expanding and / or reducing the liner portion mounting region in the radial direction of the liner portion at least in a circumferential direction of the liner portion by adjusting a pressing force acting on the liner portion. It is characterized by.
  • the adjusting means by using the adjusting means, the pressing force acting on at least a partial region in the circumferential direction of the liner portion is adjusted from the outer tube portion side, thereby the radial direction of the liner portion mounting region.
  • the contact pressure between the outer surface of the rotor and the inner surface of the stator and the tightening allowance can be adjusted. As a result, it is possible to adjust the tightening margin as appropriate without replacing the stator or the rotor.
  • the uniaxial eccentric screw pump of the present invention except when the lining member is excessively worn, when the tightening margin is lowered due to wear of the lining member, when the temperature of the fluid to be transferred is changed, when the use is changed, etc. Even so, it is possible to optimize the tightening margin only by adjusting using the adjusting means. Therefore, according to the uniaxial eccentric screw pump of the present invention, it is possible to suppress the replacement frequency of the lining member to a minimum, and to reduce the labor and running cost required for maintenance.
  • the single-shaft eccentric screw pump of the present invention can perform adjustment work such as a tightening margin very easily.
  • the tightening margin is adjusted according to the temperature, application, etc. of the fluid to be transferred by adjusting the pressing force acting on at least a partial region in the circumferential direction of the liner portion using the adjusting means. Etc. can be easily adjusted to appropriate values. Therefore, according to the uniaxial eccentric screw pump of the present invention, it is possible to prevent damage to the stator due to excessive tightening allowance and deterioration of fluid transfer performance due to excessive tightening allowance.
  • the adjusting means is constituted by a shim that can be interposed and / or detached between the liner portion and the outer cylinder portion.
  • the outer cylinder portion can be divided into a plurality of outer cylinder constituent members in the circumferential direction, and the outer cylinder constituent members have flange portions extending in the axial direction at both ends in the circumferential direction.
  • the adjusting means is configured by a connecting body that connects the flange portions of the outer cylinder constituent members adjacent in the circumferential direction, and the interval between the flange portions can be adjusted. It is desirable.
  • the contact pressure between the outer surface of the rotor and the inner surface of the stator and the tightening allowance can be adjusted to an optimum state by adjusting the interval between the flange portions by the adjusting means.
  • the connecting body may be constituted by a clamping member that clamps the flange portion.
  • the uniaxial eccentric screw pump of the present invention provided based on the same knowledge has a male screw type rotor and a stator through which the rotor can be inserted, and the stator has a female screw type inner peripheral surface.
  • a liner portion and an outer cylinder portion that is disposed so as to surround the outer periphery of the liner portion and is attached to the liner portion in a non-adhered state, and is at least a part of the liner portion in the circumferential direction.
  • a shim can be interposed and / or detached between the liner portion and the outer cylinder portion.
  • an area corresponding to at least a part of the inner circumferential surface of the outer cylinder portion is arranged on the liner portion. It is possible to offset in the radial direction. In other words, a region (liner portion mounting region) for mounting the liner portion formed inside the outer cylinder portion is enlarged and / or reduced in the radial direction of the liner portion in a part of the liner portion in the circumferential direction. It is possible.
  • the contact pressure and tightening allowance between the outer surface of the rotor and the inner surface of the stator are adjusted by interposing and / or removing the shim between the liner portion and the outer cylinder portion. Is possible. Therefore, the single-shaft eccentric screw pump of the present invention can adjust the tightening margin appropriately according to the wear of the lining member, the temperature change of the fluid to be transferred, the application, etc. without replacing the stator or the rotor. is there. Moreover, it is possible to further suppress the replacement frequency and running cost of the lining member.
  • the uniaxial eccentric screw pump of the present invention is substantially free from uneven wear even when the fluid is transferred with the shim inserted and / or detached between the outer cylinder and the lining member. Wear evenly.
  • the uniaxial eccentric screw pump of the present invention it is possible to minimize the replacement frequency and running cost of the liner portion due to uneven wear. Further, since uneven wear of the liner portion does not occur, when the shim is interposed and / or detached between the liner portion and the outer cylinder portion, it is not necessary to perform an operation of matching the center axis of the lining member and the rotor. . Therefore, the uniaxial eccentric screw pump of the present invention can perform adjustment work such as tightening margin very easily.
  • the single-shaft eccentric screw pump of the present invention it is possible to obtain an appropriate operating state according to the temperature, application, etc. of the fluid to be transferred by adjusting the tightening margin using a shim. Therefore, according to the uniaxial eccentric screw pump of the present invention, it is possible to prevent damage to the stator due to excessive tightening allowance and deterioration of fluid transfer performance due to excessive tightening allowance.
  • the uniaxial eccentric screw pump of the present invention provided based on the same knowledge has a male screw type rotor and a stator through which the rotor can be inserted, and the stator has a female screw type inner peripheral surface.
  • an outer cylinder portion that is arranged so as to surround the outer periphery of the liner portion and is attached to the liner portion in a non-adhesive state, and the outer cylinder portion has a plurality of circumferential directions. It can be divided into outer cylinder constituent members, and the outer cylinder constituent members have flange portions extending in the axial direction at both ends in the circumferential direction, and connect the flange portions of the outer cylinder constituent members adjacent to each other in the circumferential direction.
  • the outer cylinder part can be formed by connecting with a body, and the connection body can adjust the interval between the flange parts.
  • the interval between the flange portions of the outer cylinder constituent member constituting the outer cylinder portion by using the coupling body corresponds to at least a part of the inner circumferential surface of the outer cylinder portion in the circumferential direction.
  • the region can be offset in the radial direction of the liner portion.
  • a region (liner portion mounting region) for mounting the liner portion formed inside the outer cylinder portion is enlarged and / or reduced in the radial direction of the liner portion in a part of the liner portion in the circumferential direction. It is possible.
  • the pressing force acting on the liner portion can be changed in at least a partial region in the circumferential direction of the liner portion.
  • the contact pressure and the tightening allowance between the outer surface of the rotor and the inner surface of the stator are adjusted by adjusting the interval between the flange portions of the outer cylinder constituent member using the connecting body. There is no need to replace the stator or rotor. Moreover, it is possible to further suppress the replacement frequency and running cost of the lining member.
  • the uniaxial eccentric screw pump of the present invention is substantially uniform without uneven wear even when the fluid is transferred in a state where the interval between the flange portions of the outer cylinder constituent member is adjusted using the connecting body. Wear. Therefore, in the uniaxial eccentric screw pump of the present invention, it is possible to minimize the replacement frequency and running cost of the liner portion due to uneven wear. Further, since uneven wear of the liner portion does not occur, when the shim is interposed and / or detached between the liner portion and the outer cylinder portion, it is not necessary to perform an operation of matching the center axis of the lining member and the rotor. . Therefore, the uniaxial eccentric screw pump of the present invention can very easily perform adjustment work such as tightening allowance. *
  • the coupling body is constituted by a clamping member that clamps the flange portion.
  • a hook-like part protruding toward the radially outer side is provided at both ends of the liner part, and the outer cylinder part is arranged between the hook-like parts, It is preferable that an end portion of the outer cylinder portion is in contact with the flange portion.
  • the outer cylinder portion is disposed between the flange portions provided at both ends of the liner portion, and the end portion of the outer cylinder portion is further abutted against the flange portion.
  • the structure is in contact.
  • the outer cylinder portion plays a role as a support for preventing the liner portion from contracting in the axial direction, and the inner diameter of the liner portion can be maintained substantially uniform. Thereby, it is possible to avoid uneven wear of the liner portion and to stabilize the discharge amount.
  • the uniaxial eccentric screw pump of the present invention has an end stud to which one end of the stator is connected, a pump casing to which the other end of the stator is connected, and a stay bolt that connects the end stud and the pump casing.
  • the end stud and / or the pump casing is provided with a nut portion that can be screwed with the stay bolt, and the end stud and the pump are rotated by relatively rotating the stay bolt and the nut portion. It is desirable to be able to change the spacing of the casings.
  • the uniaxial eccentric screw pump of the present invention can change the interval between the end stud and the pump casing by relatively rotating the stay bolt and the nut portion. Adjustment can be easily performed.
  • the outer shape of the liner portion may be a polygonal shape.
  • the outer cylinder portion is bent in a shape along the outer shape of the liner portion.
  • the stator can be easily separated into the outer cylinder and the lining member, and the contact pressure between the outer surface of the rotor and the inner surface of the stator and the tightening allowance can be adjusted easily and accurately. It is possible to provide a simple uniaxial eccentric screw pump.
  • FIG. 2A is an enlarged view of a portion ⁇ in FIG. 1, and FIG. It is a disassembled perspective view of a stator. It is a figure which shows the stator employ
  • the uniaxial eccentric screw pump 10 is a so-called rotary displacement pump, and includes a stator 20, a rotor 50, a power transmission mechanism 70, and the like as shown in FIG. Further, the uniaxial eccentric screw pump 10 includes a metal-made cylindrical pump casing 12 and an end stud 13, and has a structure in which both are connected and integrated. Specifically, in the uniaxial eccentric screw pump 10, swivel nuts 12x and 13x are provided in the pump casing 12 and the end stud 13, respectively.
  • the pump casing 12 and the end stud 13 are connected and integrated through stay bolts 18 connected to the swivel nuts 12x and 13x. Accordingly, the uniaxial eccentric screw pump 10 can expand and contract the interval between the pump casing 12 and the end stud 13 by rotating the swivel nuts 12x and 13x.
  • the uniaxial eccentric screw pump 10 has a first opening 14 a in the end stud 13 and a second opening 14 b in the outer peripheral portion of the pump casing 12.
  • the first opening 14 a is a through hole penetrating in the axial direction of the uniaxial eccentric screw pump 10.
  • the second opening 14 b communicates with the internal space of the pump casing 12 at an intermediate portion 12 a located at the intermediate portion in the longitudinal direction of the pump casing 12.
  • the first and second openings 14a and 14b are portions that function as a suction port and a discharge port of the uniaxial eccentric screw pump 10, respectively. More specifically, in the uniaxial eccentric screw pump 10 of the present embodiment, the first opening 14a functions as a discharge port and the second opening 14b functions as a suction port by rotating the rotor 50 in the forward direction. It is possible to pump fluid into On the other hand, the uniaxial eccentric screw pump 10 rotates the rotor 50 in the reverse direction so that the first opening 14a functions as a suction port and the second opening 14b functions as a discharge port. It is possible to pump.
  • the pump casing 12 is formed in a portion (end portion 12 b) facing the end stud 13 side in the assembled state of the uniaxial eccentric screw pump 10 so that the cross-sectional shape is stepped. It has a fitting portion 12c.
  • the end stud 13 also has a fitting portion 13b formed so that the cross-sectional shape is stepped at a portion (end portion 13a) facing the pump casing 12 side in the assembled state of the uniaxial eccentric screw pump 10.
  • the fitting portions 12c and 13b are portions provided for fitting a flange portion 26 of the stator 20, which will be described in detail later.
  • the widths h1 (length in the axial direction) of the fitting portions 12c and 13b are substantially the same as the thickness (length in the axial direction) of the flange portion 26, and the opening diameter at the portion where the fitting portions 12c and 13b are provided.
  • h ⁇ b> 2 is substantially the same as the outer diameter of the flange portion 26.
  • the uniaxial eccentric screw pump 10 has a stator attachment portion 15 for attaching the stator 20 between the pump casing 12 and the end stud 13.
  • the uniaxial eccentric screw pump 10 is connected to the pump casing 12 and the end stud 13 via the stator 20 by mounting the stay bolt 18 in a state where the stator 20 is disposed on the stator mounting portion 15.
  • a series of flow paths connecting the two openings 14a and 14b are formed.
  • the stator 20 is the most characteristic part of the uniaxial eccentric screw pump 10, and is roughly divided into a liner portion 22, an outer cylindrical portion 24, and a shim 25 as shown in FIGS.
  • the liner portion 22 is integrally formed of an elastic body typified by rubber or resin.
  • the material of the liner portion 22 can be appropriately selected according to the type and properties of the fluid that is the object to be transferred using the uniaxial eccentric screw pump 10, but can be selected from fluoro rubber, fluorosilicone rubber, or silicone. Rubber can be preferably used.
  • a small test piece is compressed under a condition in which a compression ratio is 25% by using a measuring method described in JIS K6262, and the temperature is kept at 100 ° C.
  • the liner portion 22 is preferably in the range of 60 to 80 as measured by a type A durometer described in JIS K6253 in a temperature atmosphere of 23 ⁇ 1 ° C.
  • the liner portion 22 has flange portions 26 and 26 (saddle-shaped portions) projecting outward in the radial direction at both end portions in the axial direction, and an outer portion for mounting the outer cylinder portion 24 between the flange portions 26 and 26.
  • This is a cylinder including a cylinder mounting portion 28.
  • the liner portion 22 is formed by integrally forming flange portions 26 and 26 and an outer cylinder mounting portion 28, and has a step 30 at a boundary portion between the flange portions 26 and 26 and the outer cylinder mounting portion 28.
  • the flange portions 26 and 26 have a substantially circular outer shape (cross-sectional shape), and the outer cylinder mounting portion 28 has a polygonal shape (substantially regular decagonal shape in this embodiment). .
  • the thickness of the flange portions 26, 26 is the same as or greater than the width h1 of the fitting portions 12c, 13b provided in the end portions 12b, 13a of the pump casing 12 and the end stud 13. ing.
  • the thickness of the flange portions 26, 26 is desirably 5% to 15% thicker than the width h1.
  • the outer diameters of the flange portions 26 and 26 are substantially the same as the opening diameters h2 of the fitting portions 12c and 13b provided at the end portions 12b and 13a of the pump casing 12 and the end stud 13, respectively.
  • the inner peripheral surface 32 of the liner portion 22 has a single-stage or multi-stage female thread shape with n strips.
  • the inner peripheral surface 32 of the liner portion 22 has a multistage female screw shape. More specifically, an internal thread-shaped through hole 34 that extends along the longitudinal direction of the liner portion 22 and is twisted at a predetermined pitch is provided inside the liner portion 22.
  • the through hole 34 is formed so that its cross-sectional shape (opening shape) is substantially oval even when viewed in cross section at any position in the longitudinal direction of the liner portion 22.
  • the outer cylinder portion 24 covers the outer periphery of the liner portion 22 in the outer cylinder mounting portion 28 of the liner portion 22 described above, and is mounted in a non-adhered state. Specifically, the outer cylinder portion 24 is attached to the outer periphery of the liner portion 22 in a pressed state, and is integrated with the liner portion 22 without using an adhesive, both in the circumferential direction and in the axial direction. It will be positioned.
  • the outer cylinder portion 24 includes a plurality (two in the present embodiment) of outer cylinder components 36 and 36 and clamps 38 and 38. Can be formed.
  • the outer cylinder components 36, 36 are metal members that cover substantially half of the region in the circumferential direction in the outer cylinder mounting portion 28 of the liner portion 22, and are curved so as to have a shape along the outer cylinder mounting portion 28. (Bent). Therefore, the outer cylinder constituting body 36 is attached to the liner portion 22 so that the outer cylinder attaching section 28 is accommodated in the liner portion attaching area 27, so that the outer cylinder constituting body 36 is prevented from rotating in the circumferential direction. Become. Further, as shown in FIG.
  • the thickness of the outer cylinder constituting body 36 is larger than the step 30 formed in the liner portion 22 between the flange portion 26 and the outer cylinder mounting portion 28. Therefore, when the outer cylinder component 36 is mounted on the outer cylinder mounting portion 28, the outer cylinder component 36 protrudes outward in the radial direction of the liner portion 22 from the flange portion 26 as shown in FIGS. 1 and 4. It becomes a state.
  • the length of the outer cylinder constituting body 36 is substantially the same as the length of the outer cylinder mounting portion 28. Therefore, when the outer cylinder constituting body 36 is attached to the outer cylinder attaching portion 28, both end portions of the outer cylinder constituting body 36 are located at the portion where the step 30 of the liner portion 22 is formed as shown in FIGS. 1, 2, and 4. It will be in the state contact
  • the gripping portions 40 and 40 are formed at both circumferential ends of the outer cylinder mounting portion 28 so as to extend in the longitudinal direction.
  • Pin insertion holes 42 and 42 are provided on one end side of the grip portions 40 and 40, and engagement grooves 44 and 44 are formed on the other end side.
  • the pin insertion holes 42 and 42 and the engaging grooves 44 and 44 are used for mounting clamps 38 and 38, respectively, which will be described in detail later.
  • the engaging groove 44 is formed so as to extend obliquely rearward (on the other end side) from the edge of the grip portion 40.
  • the clamp 38 includes a sandwiching piece 46 having a substantially “U” -shaped cross section and a pin 48.
  • the sandwiching piece 46 is mounted so as to sandwich the gripping portions 40, 40 that are in an overlapped state when the outer cylinder component 36 is mounted on the outer cylinder mounting portion 28.
  • the sandwiching piece 46 has substantially the same length as the gripping portion 40, a pin insertion hole 46 a is provided on one end side in the longitudinal direction, and a protrusion 46 b is provided on the other end side. 6, the protrusion 46b is slid along the engagement groove 44 formed so as to extend obliquely in the grip portion 40 as indicated by an arrow X in FIG. 6, and the protrusion 46b is an end portion of the engagement groove 44.
  • the pin insertion hole 46a can be brought into communication with the pin insertion holes 42 and 42 on the gripping portions 40 and 40 side by rotating around the protrusion 46b as indicated by the arrow Y in the state of being in contact with It is. In this state, by inserting the pin 48 over the pin insertion holes 46a, 42, 42, the grip portions 40, 40 can be clamped and fixed by the clamp 38 (clamped state). It is.
  • the shim 25 (adjusting means, pressing force adjusting means) is formed of a thin plate made of metal or resin, and is interposed between the liner portion 22 and the outer cylinder portion 24 described above. It is a member.
  • the thickness of the shim 25 is preferably about 1/30 to 1/100 of the diameter of the rotor 50. In the present embodiment, the thickness of the shim 25 is about 0.1 mm to 0.4 mm.
  • the lateral width of the shim 25 is the length corresponding to the length in the axial direction of the outer cylinder mounting portion 28 in the liner portion 22 described above, in other words, the length of the liner portion mounting area 27 of the outer cylinder portion 24.
  • the vertical width of the shim 25 is a length corresponding to a part of the outer circumference of the outer cylinder mounting portion 28 in the liner portion 22. Specifically, the vertical width of the shim 25 is about 1/12 to 1/8 of the length of the outer periphery of the outer cylinder mounting portion 28. In other words, the vertical width of the shim 25 is a length corresponding to a length of 30 degrees to a length of 45 degrees in the circumferential direction of the outer cylinder mounting portion 28.
  • the shim 25 is mounted over substantially the entire width of the outer cylinder mounting portion 28 in the liner portion 22. Further, as shown in FIGS. 3, 4 and 7A, the shim 25 has a partial area in the circumferential direction of the outer cylinder mounting portion 28 (in this embodiment, 1/12 to 1/8 of the outer circumference). Is mounted over a certain area). Further, the shim 25 can be mounted in a state where a plurality of shims 25 are mounted in a stacked state, if necessary, in addition to a single sheet. Furthermore, when the shim 25 is already mounted in a stacked state, a part of the shim 25 can be detached as necessary.
  • the shim 25 can be arranged on the outer cylinder mounting portion 28 as it is, but the shim 25 is prevented from falling off from the outer cylinder mounting portion 28, and the displacement due to the influence of vibration or the like accompanying the operation of the uniaxial eccentric screw pump 10 is prevented. In consideration of prevention and the like, it is also possible to mount the outer cylinder mounting portion 28 using an adhesive material or the like.
  • the stator 20 inserts or removes the shim 25 between the liner portion 22 and the outer cylinder portion 24 to thereby remove a portion corresponding to a part of the outer cylinder portion 24 in the circumferential direction, that is, the outer cylinder structure 36. 22 can be offset in the radial direction.
  • the entire inner peripheral surface of the outer cylinder portion 24 is substantially in close contact with the outer cylinder mounting portion 28 of the liner portion 22 as shown in FIG. It is in the state.
  • the outer cylinder constituting body 36 on the side where the shim 25 is inserted becomes the diameter of the liner portion 22 as shown in FIG.
  • the state is offset toward the outside in the direction.
  • the entire inner peripheral surface of the outer cylinder part 24 comes into close contact with the outer cylinder mounting part 28 of the liner part 22.
  • the outer cylinder constituting body 36 is offset toward the radially inner side of the liner portion 22 by the thickness of the detached shim 25.
  • a part of the outer cylinder portion 24 can be offset toward the radial direction of the liner portion 22.
  • the stator 20 has a diameter of the liner portion 22 at least at a part in the circumferential direction of the liner portion 22 by inserting or removing the shim 25 between the liner portion 22 and the outer cylinder portion 24. It is possible to enlarge and / or reduce in the direction. Further, by inserting or removing the shim 25, it is possible to adjust the pressing force acting in the radial direction from the outer tube portion 24 side on a partial region in the circumferential direction of the liner portion 22. Specifically, when the shim 25 is inserted and removed between the liner portion 22 and the outer cylinder portion 24, the liner portion mounting region 27 has a diameter corresponding to the thickness of the shim 25 in the region where the shim 25 is inserted and removed.
  • the number of shims 25 inserted between the liner portion 22 and the outer cylinder portion 24 is not necessarily single, and may be inserted in a state where a plurality of shims are stacked.
  • the number of shims 25 to be overlapped is adjusted to adjust the offset amount of the outer cylinder constituting body 36, the degree of expansion / contraction of the liner portion mounting region 27, and the liner portion 22. It is possible to further finely adjust the balance of the pressing force acting on the.
  • the stator 20 is used in such a state that the outer cylinder constituting bodies 36 and 36 are covered with the liner portion 22 and the gripping portions 40 and 40 are coupled by the clamps 38 and 38.
  • the stator 20 is incorporated in the stator attachment portion 12b in the pump casing 12 at a position adjacent to the first opening 14a.
  • the stator 20 is configured such that flange portions 26 and 26 provided at both ends of the liner portion 22 are inserted into fitting portions 12 c and 13 b provided in the pump casing 12 and the end stud 13, and the end stud 13 and the intermediate portion are inserted.
  • 12a (stator mounting portion 12b) and is fixed by attaching and tightening a stay bolt 18 across the end stud 13 and the main body portion of the pump casing 12.
  • stator 20 When the stator 20 is attached as described above, one flange portion 26 is sandwiched between the end stud 13 and the outer cylinder portion 24 on one end side of the liner portion 22 as shown in FIG. It becomes a state. Further, as shown in FIG. 2B, the other flange portion 26 is sandwiched between the intermediate portion 12 a and the outer cylinder portion 24 on the other end side. Further, the outer cylinder portion 24 is in contact with the flange portion 26 and the end stud 13 on one end side and in contact with the flange portion 26 and the end portion of the pump casing 12 on the other end side. Therefore, the stator 20 does not cause a positional shift or the like in the stator mounting portion 12b of the pump casing 12 in both the liner portion 22 and the outer cylinder portion 24.
  • the rotor 50 is a metal shaft, and has a single-stage or multi-stage female screw shape with n-1 strips.
  • the rotor 50 has a single-threaded multi-stage eccentric male screw shape.
  • the rotor 50 is formed so that the cross-sectional shape thereof is almost a perfect circle when viewed in cross section at any position in the longitudinal direction.
  • the rotor 50 is inserted through the through hole 34 formed in the stator 20 described above, and can be freely eccentrically rotated inside the through hole 34.
  • the fluid conveyance path 60 extends in a spiral shape in the longitudinal direction of the stator 20 and the rotor 50. Further, when the rotor 50 is rotated in the through hole 34 of the stator 20, the fluid conveyance path 60 advances in the longitudinal direction of the stator 20 while rotating in the stator 20. Therefore, when the rotor 50 is rotated, the fluid is sucked into the fluid conveyance path 60 from one end side of the stator 20 and transferred toward the other end side of the stator 20 in a state of being confined in the fluid conveyance path 60. It is possible to discharge at the other end side of the stator 20.
  • the fluid sucked from the second opening 14b can be pumped and discharged from the first opening 14a. Further, when the rotor 50 is rotated in the reverse direction, the fluid sucked from the first opening 14a can be discharged from the second opening 14b.
  • the power transmission mechanism 70 is provided to transmit power from the power source (not shown) such as a motor provided outside the pump casing 12 to the rotor 50 described above.
  • the power transmission mechanism 70 includes a power connection portion 72 and an eccentric rotation portion 74.
  • the power connection portion 72 is one end side in the longitudinal direction of the pump casing 12, more specifically, the side opposite to the end stud 13 and the stator mounting portion 12b described above (hereinafter also simply referred to as “base end side”). ) Is provided in the shaft accommodating portion 12c.
  • the eccentric rotation part 74 is provided in the intermediate part 12a formed between the shaft accommodating part 12c and the stator attachment part 12b.
  • the power connection 72 has a drive shaft 76 that is supported by two bearings 78a and 78b so as to be freely rotatable.
  • the drive shaft 76 is taken out from the closed portion on the proximal end side of the pump casing 12 and connected to a power source. Therefore, the drive shaft 76 can be rotated by operating the power source.
  • a shaft sealing device 80 made of, for example, a mechanical seal or a gland packing is provided, whereby the shaft accommodating portion is accommodated from the intermediate portion 12a side.
  • the fluid that is the object to be conveyed does not leak to the portion 12c side.
  • the eccentric rotating part 74 is a part that connects the drive shaft 76 and the rotor 50 described above so that power can be transmitted.
  • the eccentric rotating part 74 has a connecting shaft 82 and two connecting bodies 84 and 86.
  • the connecting shaft 82 is configured by a conventionally known coupling rod, screw rod, or the like.
  • the connecting body 84 connects the connecting shaft 82 and the rotor 50, and the connecting body 86 connects the connecting shaft 82 and the drive shaft 76.
  • Each of the coupling bodies 84 and 86 is configured by a conventionally known universal joint or the like, and can transmit the rotational power transmitted through the drive shaft 76 to the rotor 50 to rotate the rotor 50 eccentrically. is there.
  • the uniaxial eccentric screw pump 10 has a shim 25 interposed or detached between the liner portion 22 and the outer cylinder portion 24 in the stator 20, and the offset amount of the outer cylinder portion 24 (outer cylinder structure 36), the liner portion mounting region.
  • the contact pressure between the outer peripheral surface 52 of the rotor 50 and the inner peripheral surface 32 of the liner portion 22 and the tightening allowance can be adjusted by adjusting the enlargement / reduction of 27 and the balance of the pressing force acting on the liner portion 22. Is possible.
  • the outer cylinder portion 24 is A part or all of the outer cylinder constituting body 36 is removed from the liner portion 22, and the shim 25 is disposed on the outer peripheral surface of the liner portion 22. If the shim 25 has already been arranged, the shim 25 is further overlapped. The shim 25 is mounted over the entire width (the entire axial direction) in a partial region in the circumferential direction of the outer tube mounting portion 28 of the liner portion 22.
  • the outer cylinder structure 36 is offset radially outward in the region where the shim 25 is mounted. Further, in the region where the shim 25 is mounted, the liner portion mounting region 27 is reduced in the radial direction, and the pressing force acting on the liner portion 22 is locally increased. As a result, the contact pressure between the outer peripheral surface 52 of the rotor 50 and the inner peripheral surface 32 of the liner portion 22 and the tightening allowance are increased.
  • the outer cylinder portion 24 is formed. A part or all of the outer cylinder constituting body 36 is removed from the liner portion 22, and the shim 25 disposed on the outer peripheral surface of the liner portion 22 is removed.
  • a plurality of shims 25 are arranged in a stacked state, it is possible to remove some shims 25 in addition to removing all the shims 25.
  • the outer cylinder constituting body 36 is attached, so that the outer cylinder constituting body 36 is offset radially inward by the amount of the shim 25 being removed. Moreover, in the area
  • the contact pressure between the outer peripheral surface 52 of the rotor 50 and the inner peripheral surface 32 of the liner portion 22 and the tightening allowance are adjusted by attaching and detaching the shim 25. it can. Further, the shim 25 can be detached by detaching a part or all of the outer cylinder constituting body 36 constituting the outer cylinder portion 24, and it is not necessary to remove and disassemble all of the stator 20 and the rotor 50. Further, in the uniaxial eccentric screw pump 10, the interval between the pump casing 12 and the end stud 13, that is, the stator mounting portion 15, can be expanded and contracted by rotating the swivel nuts 12x and 13x. There is no need for trouble in the 36 desorption work. Therefore, the uniaxial eccentric screw pump 10 can easily adjust the tightening allowance by the shim 25, and is excellent in maintainability.
  • the uniaxial eccentric screw pump 10 In the uniaxial eccentric screw pump 10, the contact pressure between the rotor 50 and the liner portion 22, and the tightening allowance, even when operated with the shim 25 attached or detached as described above, It becomes almost uniform regardless of the part. Therefore, in the uniaxial eccentric screw pump 10, the liner portion 22 is worn substantially uniformly without uneven wear. Further, even if the shim 25 is inserted between the liner portion 22 and the outer cylinder portion, it is not necessary to perform an operation for matching the center axes of the liner portion 22 and the rotor 50. Accordingly, the uniaxial eccentric screw pump 10 can minimize the frequency of replacement of the liner portion 22 and the work required for maintenance.
  • the single-shaft eccentric screw pump 10 can be operated with a tightening margin or the like in an appropriate state by attaching or removing the shim 25 according to the operating conditions such as the temperature and application of the fluid to be transferred. It is. Therefore, according to the uniaxial eccentric screw pump 10, it is possible to prevent damage to the stator 20 due to excessive tightening allowance and deterioration of fluid transfer performance due to excessive tightening allowance.
  • the thickness, vertical width, and horizontal width of the shim 25 described above are not limited to those described above, and can be appropriately adjusted.
  • the outer cylinder is mounted by measures such as arranging a plurality of shims 25 side by side in the axial direction of the outer cylinder mounting portion 28.
  • the shim 25 is inserted or removed between the liner portion 22 and the outer cylinder portion 24 to remove the offset amount of the outer cylinder portion 24 (outer cylinder structure 36), and the liner portion mounting region 27.
  • the clamps 38 provided for holding the holding portions 40, 40 provided at both ends in the circumferential direction of the outer cylinder constituting body 36 may be configured to be used as the adjusting member described above.
  • gripping pieces 46x and 46y having different intervals between two opposing clamping surfaces 46p and 46q are prepared, and the gripping pieces 46x and 46y are selectively used according to the tightening margin or the like. Also good.
  • the liner portion mounting region 27 is expanded as shown in FIG. 8C.
  • the pressing force acting on the liner portion 22 becomes gentle.
  • a part of the outer cylinder part 24 surrounding the liner part 22, that is, the outer cylinder constituting body 36 is offset toward the radially outer side of the liner part 22.
  • the shim 25 can be used in combination when the gripping pieces 46x and 46y having different intervals are properly used according to the tightening allowance or the like.
  • the gripping pieces 46x, 46y and the shim 25 in combination, the offset amount of the outer cylinder constituting body 36 which is a part of the outer cylinder portion 24, the enlargement / reduction of the liner portion mounting region 27, and the pressing force acting on the liner portion 22 are reduced. It is possible to perform the balance adjustment more finely.
  • the uniaxial eccentric screw pump 10 is constituted by bolts or the like at a plurality of positions in the longitudinal direction of the grip portion 40 of the outer cylinder constituting body 36 instead of using the clamps 38 having different intervals between the holding surfaces 46p and 46q as shown in FIG. It is good also as a structure fixed using the fixing tool 47 which can adjust the clamping force made.
  • the fixing tool 47 by adjusting the clamping force acting on the gripping portion 40 by the fixing tool 47, the offset amount of the outer cylinder constituting body 36, the enlargement / reduction of the liner portion mounting region 27, and the liner portion 22 are affected. It is possible to optimize the tightening allowance by adjusting the pressing force.
  • the stator 20 of the uniaxial eccentric screw pump 10 of the present embodiment has the outer cylinder portion 24 attached to the integrally formed liner portion 22 in an unbonded state. Specifically, due to the influence of the clamping force generated by attaching the clamps 38 to the gripping portions 40, 40 of the outer cylinder constituting bodies 36, 26, the radially inner direction of the liner portion 22 with respect to the outer cylinder portion 24. The pressing force is applied. The outer cylinder portion 24 is attached to the outer periphery of the liner portion 22 by this pressing force in a pressed state, and is positioned in the axial direction and the circumferential direction of the liner portion 22. Therefore, the uniaxial eccentric screw pump 10 can be easily separated into the liner part 22 and the outer cylinder part 24 by removing the outer cylinder components 36, 36 and the clamps 38, 38, and this is an environmental problem. It is possible to pay sufficient attention to
  • the outer cylinder mounting portion 28 existing between the flange portions 26 provided at both ends of the liner portion 22 is covered by the outer cylinder portion 24, and the end portion of the outer cylinder portion 24 is a flange.
  • the structure abuts against the portion 26 and can prevent the liner portion 22 from contracting in the axial direction. That is, the outer cylinder part 24 plays the role of a column for preventing the liner part 22 from contracting in the axial direction.
  • the configuration in which the flange portions 26 are provided at both ends of the liner portion 22 is exemplified from the viewpoint of preventing the liner portion 22 from contracting in the axial direction, but the present invention is not limited thereto. In addition, either one or both of the flange portions 26 may be omitted.
  • the outer cylinder portion 24 can be divided into a plurality of outer cylinder constituent bodies 36 in the circumferential direction, the detachment operation of the outer cylinder portion 24 with respect to the liner portion 22 can be easily performed. . Further, the above-described outer cylinder portion 24 is formed by integrating the outer cylinder constituent bodies 36 with each other by using a clamp 38 (clamp connection), and the holding piece 46 and the pin 48 with respect to the gripping portions 40 and 40. It is possible to attach and detach the outer cylinder part 24 only by attaching and detaching the.
  • the outer cylinder portion 24 is configured by the two outer cylinder components 36 is illustrated, but the present invention is not limited to this, and is configured by a larger number of outer cylinder components 36. It may be done.
  • this invention is not limited to this,
  • the outer cylinder structural bodies 36 It is also possible to have a structure in which one circumferential end of 36 is connected by a hinge or the like and the other end is connected by a clamp 38 or other methods.
  • bond the outer cylinder structural bodies 36 and 36 was illustrated, but this invention is not limited to this. As long as the outer cylinder components 36 and 36 can be fixed so as not to be displaced, the outer cylinder components 36 and 36 may be coupled by any other method.
  • an end stud 13 is disposed on one end side of a stator 20, and the stator 20 is integrated with the pump casing 12 together with the end stud 13 using a fastening force generated by a stay bolt 18. It is connected.
  • the stator 20 is in a state in which the outer cylinder portion 24 is in contact with the end stud 13 and the end portions 12 b and 13 a of the pump casing 12. Therefore, in the state where the stator 20 is assembled, the fastening force by the stay bolt 18 preferentially acts on the outer cylinder portion 24 rather than the liner portion 22, and a large compressive force acts on the liner portion 22 in the axial direction. This can prevent the liner portion 22 from being compressed and deformed. Thereby, it is possible to prevent uneven wear of the liner portion 22 and stabilize the discharge amount.
  • fitting portions 12c and 13b into which the flange portion 26 can be fitted are provided at the end portion 12b of the pump casing 12 and the end portion 13a of the end stud 13, respectively.
  • the flange portion 26 of the fitted liner portion 22 is sandwiched between the outer cylinder portion 24, the end stud 13 and the pump casing 12.
  • the outer cylinder mounting portion 28 of the liner portion 22 has a polygonal shape (substantially decagonal in this embodiment). Further, the outer cylinder constituting bodies 36 and 36 are both bent in a shape along the outer cylinder mounting portion 28, and the gripper 40 is gripped by the clamp 38 and coupled to each other so as to have substantially the same shape as the outer cylinder mounting portion 28 ( In the present embodiment, a cylindrical outer cylinder portion 24 having a substantially regular decagon) is formed. Accordingly, even when a load in the circumferential direction is applied to the liner portion 22, only the liner portion 22 is prevented from being displaced in the circumferential direction, and the operation state of the uniaxial eccentric screw pump 10 is stabilized. Is possible.
  • the shim 25 can be easily placed at a desired position and region. Further, since the outer cylinder constituting body 36 is formed in a shape along the outer shape of the liner portion 22, even when the shim 25 is arranged across a plurality of surfaces beyond the corner formed on the outer periphery of the liner portion 22. The shim 25 can be securely bent in a shape along the surface of the liner portion 22 so as not to be displaced.
  • the outer cylinder mounting part 28 and the outer cylinder part 24 are each formed in a polygonal shape for the purpose of preventing the positional deviation of the liner part 22 with respect to the outer cylinder part 24 and facilitating the arrangement of the shim 25.
  • the outer cylinder mounting portion 28 and the outer cylinder portion 24 have substantially the same cross-sectional shape, but for example, the outer cylinder mounting portion 28 is a substantially regular decagon and the outer cylinder portion 24 is substantially correct.
  • the cross-sectional shapes of the two may be different.
  • a projection is provided on the inner peripheral side of the outer cylinder portion 24, and the outer cylinder portion 24 is mounted on the outer cylinder mounting portion 28 so that the above-described projection is pressed against the outer peripheral surface of the liner portion 22. It is good also as a structure which does. According to such a configuration, the protrusion is caught by the outer peripheral surface of the liner portion 22 and the shim 25, and it is possible to prevent the displacement of the liner portion 22 in the circumferential direction and the axial direction, the shim 25 falling off, and the like.
  • the configuration in which the protrusions are provided in this way is not only when the outer cylinder mounting portion 28 and the outer cylinder portion 24 are polygonal as in this embodiment, but also when the outer shape of the liner portion 22 is cylindrical. This is also effective when there is a concern about the displacement of the liner portion 22 or the shim 25 falling off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

[Problem] The purpose is to provide a uniaxial eccentric screw pump allowing for easy separation of a stator into an outer tube and a lining member, and for easy adjustment of the tightening margin. [Solution] The stator (20) has an outer tube (24) and a tubular liner (22) integrally formed so that the inner circumferential surface thereof has an internal thread. Flanges (26, 26) extending diametrically outward are provided at both ends of the liner (22), and an outer-tube mounting unit (28) is provided between the flanges. The outer tube (24) is mounted in a non-bonded state in the outer-tube mounting unit (28), and both ends thereof abut against the flanges (26, 26). The tightening tolerance can be adjusted by inserting or removing a shim (25) between the liner (22) and the outer tube (24).

Description

一軸偏心ねじポンプUniaxial eccentric screw pump
 本発明は、外筒部とライニング部とに分割可能なステータを備えた一軸偏心ねじポンプに関する。 This invention relates to the uniaxial eccentric screw pump provided with the stator which can be divided | segmented into an outer cylinder part and a lining part.
 従来、下記特許文献1に開示されているように、内周面を雌ねじ形状に形成したステータの内部に、雄ねじ形状に形成したロータを挿入した構造の一軸偏心ねじポンプと称されるポンプが提供されている。このポンプにおいて採用されているステータの多くは、金属製の外筒内にゴムや樹脂などによって形成されたライニング部材を挿入した構造とされている。従来技術において採用されているステータは、外筒とライニング部材とを接着などによって固定することにより、両者の位置ずれやライニング部材の位置ずれが防止されている。 Conventionally, as disclosed in the following Patent Document 1, there is provided a pump called a uniaxial eccentric screw pump having a structure in which a rotor formed in a male screw shape is inserted into a stator having an inner peripheral surface formed in a female screw shape. Has been. Most of the stators employed in this pump have a structure in which a lining member made of rubber or resin is inserted into a metal outer cylinder. In the stator employed in the prior art, the outer cylinder and the lining member are fixed by bonding or the like, thereby preventing the positional deviation between the two and the lining member.
特開2005-344587号公報JP-A-2005-344587
 従来技術の一軸偏心ねじポンプにおいては、ステータの経年的劣化に伴いロータの外面とステータの内面との接触圧、及び締め代(ロータの外面とステータの内面との重なり)が低下して十分な性能を発揮できなくなると、ステータを交換することによる対応、あるいはロータを径の大きなものに交換することによる対応がとられている。締め代等の調整のためにロータを径の大きなものに交換する方策を採用した場合は、一軸偏心ねじポンプの分解作業が必要となり、その分だけ作業効率が低下してしまうという問題がある。 In a conventional single-shaft eccentric screw pump, the contact pressure between the outer surface of the rotor and the inner surface of the stator and the tightening allowance (overlap between the outer surface of the rotor and the inner surface of the stator) are reduced as the stator deteriorates over time. When performance cannot be exhibited, countermeasures are taken by exchanging the stator or by exchanging the rotor with a larger diameter. In the case of adopting a method of replacing the rotor with a larger diameter for adjustment of the tightening allowance or the like, there is a problem that the work of disassembling the single-shaft eccentric screw pump is required, and the work efficiency is reduced accordingly.
 また、従来技術のステータが外筒とライニング部材とを接着により一体化した構造とされていることから、ステータの交換により対応する場合は、摩耗したライニング部材だけでなく外筒まで交換する必要がある。従って、環境問題への配慮、ランニングコスト等の観点からすると、ステータを構成する外筒とライニング部材とを容易に分別回収可能とし、摩耗したライニング部材を交換すること等によりロータとステータとの接触圧、及び締め代を回復させることが可能な構造であることが望ましい。 In addition, since the stator of the prior art has a structure in which the outer cylinder and the lining member are integrated by bonding, when replacing the stator, it is necessary to replace not only the worn lining member but also the outer cylinder. is there. Therefore, from the viewpoint of environmental issues, running costs, etc., the outer cylinder and the lining member constituting the stator can be easily separated and collected, and contact between the rotor and the stator can be achieved by replacing the worn lining member. It is desirable for the structure to be able to restore pressure and tightening allowance.
 ライニング部材等の交換作業を行うことにより対応する場合は、一軸偏心ねじポンプの分解作業、組み立て作業を行わねばならない。また、従来技術の一軸偏心ねじポンプにおいては、組み立て作業時にライニング部材及びステータの中心軸を正確に合致させる作業も必要となる。従って、ライニング部材の交換頻度、及びライニング部材等の交換に伴うランニングコストをより一層抑制するためには、ライニング部材が極度に摩耗した場合を除き、ライニング部材の交換を行わなくても容易かつ精度良く締め代等を回復させることが可能であり、締め代等を回復させる作業を行う際にライニング部材及びステータの中心軸を合致させる必要がない構成であることが望ましい。 場合 When responding by replacing the lining members, etc., disassembly and assembly of the single-shaft eccentric screw pump must be performed. Further, in the conventional single-shaft eccentric screw pump, it is necessary to accurately match the lining member and the central axis of the stator during assembly work. Therefore, in order to further suppress the replacement frequency of the lining member and the running cost associated with the replacement of the lining member, etc., it is easy and accurate even if the lining member is not replaced unless the lining member is extremely worn. It is desirable that the tightening allowance can be recovered well and that the lining member and the center axis of the stator do not need to coincide when performing the operation of recovering the tightening allowance.
 更に、一軸偏心ねじポンプにおいては、移送する流動物の温度変化、用途等に応じて締め代を適宜調整可能とすることが望まれている。具体的には、一軸偏心ねじポンプにおいては、食品等の流動物を移送した後、熱水等を移送することによりロータ、ステータ等の部材の洗浄を実施したいという要望がある。しかしながら、従来技術においては、ロータあるいはステータを交換せねば締め代等の調整が行えないため、熱水等を移送する際に締め代が過大とならないようにロータの外径及びステータの内径が設定されている。従って、従来技術の一軸偏心ねじポンプにおいては、低温の流動物を移送する際の締め代等を適切な状態とすることが非常に困難であった。 Furthermore, in a single-shaft eccentric screw pump, it is desired that the tightening allowance can be appropriately adjusted according to the temperature change of the fluid to be transferred, the application, and the like. Specifically, in a single-shaft eccentric screw pump, there is a demand for cleaning members such as a rotor and a stator by transferring hot water after transferring a fluid such as food. However, in the prior art, the outer diameter of the rotor and the inner diameter of the stator are set so that the tightening allowance is not excessive when transferring hot water or the like because the tightening allowance cannot be adjusted unless the rotor or stator is replaced. Has been. Therefore, in the conventional single-shaft eccentric screw pump, it is very difficult to set the tightening allowance when transferring a low-temperature fluid to an appropriate state.
 そこで、本発明は、ステータを外筒とライニング部材とに容易に分別することが可能であり、ロータの外面とステータの内面との接触圧、及び締め代を容易かつ精度良く調整することが可能な一軸偏心ねじポンプの提供を目的とした。 Therefore, according to the present invention, the stator can be easily separated into the outer cylinder and the lining member, and the contact pressure between the outer surface of the rotor and the inner surface of the stator and the tightening allowance can be adjusted easily and accurately. The purpose was to provide a simple uniaxial eccentric screw pump.
 上述した課題を解決すべく提供される本発明の一軸偏心ねじポンプは、雄ねじ型のロータと、前記ロータを挿通可能なステータとを有し、前記ステータが、雌ねじ型の内周面を有する筒状のライナー部と、前記ライナー部の外周を包囲するように配され、前記ライナー部に対して非接着状態で装着された外筒部と、前記外筒部を、少なくとも周方向一部に相当する領域において前記ライナー部の径方向にオフセットさせることが可能な調整手段とを有することを特徴とするものである。 The uniaxial eccentric screw pump of the present invention provided to solve the above-described problem has a male screw type rotor and a stator through which the rotor can be inserted, and the stator has a female screw type inner peripheral surface. A cylindrical liner part, an outer cylinder part which is arranged so as to surround the outer periphery of the liner part, and is attached in an unbonded state to the liner part, and the outer cylinder part corresponds to at least a part in the circumferential direction And adjusting means that can be offset in the radial direction of the liner portion in the region to be used.
 かかる構成とした場合、外筒部の少なくとも周方向一部に相当する領域を調整手段によって径方向にオフセットさせることにより、ロータの外面とステータの内面との接触圧及び締め代を調整することが可能である。これにより、ステータあるいはロータの交換等を行うことなく、ライニング部材の摩耗、移送する流動物の温度変化、用途等に応じて締め代を適宜調整することが可能となる。また、これにより、ライニング部材の交換頻度及びランニングコストをより一層抑制することが可能である。 In such a configuration, the contact pressure between the outer surface of the rotor and the inner surface of the stator and the tightening allowance can be adjusted by offsetting the region corresponding to at least a part of the outer cylinder portion in the radial direction by the adjusting means. Is possible. Accordingly, it is possible to appropriately adjust the tightening allowance according to the wear of the lining member, the temperature change of the fluid to be transferred, the use, and the like without replacing the stator or the rotor. Moreover, it is possible to further suppress the replacement frequency and running cost of the lining member.
 また、本発明者らが鋭意検討したところ、上述したように外筒部の周方向一部に相当する領域のみをオフセットさせた場合であっても、ロータの外面とライナー部の内面との接触圧、及び締め代が部位によらず略均一になり、ライニング部材が偏摩耗せず略均一に摩耗することが判明した。従って、本発明の一軸偏心ねじポンプにおいては、ライナー部の交換頻度及びランニングコストを最小限に抑制することが可能である。また、本発明の一軸偏心ねじポンプにおいては、調整部材を用いることにより接触圧及び締め代を調整する作業を行ったときに、ライニング部材及びロータの中心軸を合致させる作業を行う必要がなく、締め代等の調整を容易かつ精度良く行うことが可能である。 Further, as a result of intensive studies by the present inventors, contact between the outer surface of the rotor and the inner surface of the liner portion is possible even when only the region corresponding to a part in the circumferential direction of the outer cylinder portion is offset as described above. It has been found that the pressure and the tightening allowance are substantially uniform regardless of the portion, and the lining member is worn substantially uniformly without uneven wear. Therefore, in the uniaxial eccentric screw pump of the present invention, it is possible to minimize the replacement frequency and running cost of the liner portion. Further, in the uniaxial eccentric screw pump of the present invention, when the operation for adjusting the contact pressure and the tightening allowance is performed by using the adjustment member, it is not necessary to perform the operation of matching the lining member and the central axis of the rotor, It is possible to easily and accurately adjust the tightening margin.
 本発明の一軸偏心ねじポンプにおいては、調整手段を用いて締め代等を調整することにより、移送する流動物の温度、用途等に応じて適切な作動状態とすることが可能である。従って、本発明の一軸偏心ねじポンプによれば、締め代が過大となることによるステータの破損、及び締め代が過小となることによる流動物の移送性能の低下を防止することが可能である。 In the uniaxial eccentric screw pump of the present invention, it is possible to obtain an appropriate operating state according to the temperature, application, etc. of the fluid to be transferred by adjusting the tightening margin using the adjusting means. Therefore, according to the uniaxial eccentric screw pump of the present invention, it is possible to prevent damage to the stator due to excessive tightening allowance and deterioration of fluid transfer performance due to excessive tightening allowance.
 同様の知見に基づいて提供される本発明の一軸偏心ねじポンプは、雄ねじ型のロータと、前記ロータを挿通可能なステータとを有し、前記ステータが、雌ねじ型の内周面を有する筒状のライナー部と、前記ライナー部が非接着状態で収容されるライナー部装着領域を形成する外筒部と、前記ライナー部装着領域を前記ライナー部の少なくとも周方向一部において前記ライナー部の径方向に拡大及び/又は縮小させることが可能な調整手段とを有することを特徴とするものである。 The uniaxial eccentric screw pump of the present invention provided based on the same knowledge has a male screw type rotor and a stator through which the rotor can be inserted, and the stator has a female screw type inner peripheral surface. The liner portion, an outer cylinder portion that forms a liner portion mounting region in which the liner portion is accommodated in a non-adhered state, and the liner portion mounting region at least partially in the circumferential direction of the liner portion in the radial direction of the liner portion And adjusting means capable of being enlarged and / or reduced.
 本発明の一軸偏心ねじポンプにおいては、調整手段により、外筒部の内側に形成されるライナー部装着領域をライナー部の周方向の一部において径方向に拡大及び/又は縮小させることにより、ロータの外面とステータの内面との接触圧、及び締め代を調整することが可能である。これにより、ステータあるいはロータの交換等を行うことなく適宜締め代を調整することが可能となる。 In the uniaxial eccentric screw pump of the present invention, the adjustment unit causes the liner portion mounting region formed inside the outer cylinder portion to radially expand and / or contract in the radial direction in a part of the circumferential direction of the liner portion. The contact pressure between the outer surface of the stator and the inner surface of the stator and the tightening allowance can be adjusted. As a result, it is possible to adjust the tightening margin as appropriate without replacing the stator or the rotor.
 また、本発明の一軸偏心ねじポンプにおいては、ライニング部材が過度に摩耗した場合を除いてライニング部材の交換の必要がなく、移送する流動物の温度変化、用途等が変化した場合であってもライニング部材及びロータの交換の必要がない。これにより、ライニング部材の交換頻度を最小限に抑制し、メンテナンスに要する手間、ランニングコスト等を最小限に抑制することが可能である。 Further, in the uniaxial eccentric screw pump of the present invention, there is no need to replace the lining member except when the lining member is excessively worn, and even when the temperature change, usage, etc. of the fluid to be transferred change. There is no need to replace the lining member and rotor. Thereby, it is possible to minimize the replacement frequency of the lining member, and to minimize labor and running costs required for maintenance.
 また、本発明者らが鋭意検討したところ、外筒部の内周面において周方向一部に相当する領域のみを拡大、縮小させた場合であっても、ロータの外面とライナー部の内面との接触圧、及び締め代が部位によらず略均一になることが判明した。このため、本発明の一軸偏心ねじポンプにおいては、調整手段によってライナー部装着領域を拡大、縮小した状態において作動させた場合であってもライニング部材の偏摩耗が発生しない。従って、本発明によれば、ライナー部の交換頻度及びランニングコストを最小限に抑制することが可能である。 Further, as a result of intensive studies by the present inventors, the outer surface of the rotor and the inner surface of the liner portion can be reduced even when only the region corresponding to a part of the circumferential direction is enlarged or reduced on the inner peripheral surface of the outer cylinder portion. It was found that the contact pressure and the tightening allowance became substantially uniform regardless of the site. For this reason, the uniaxial eccentric screw pump of the present invention does not cause uneven wear of the lining member even when operated in a state where the liner portion mounting area is enlarged or reduced by the adjusting means. Therefore, according to the present invention, it is possible to minimize the replacement frequency and running cost of the liner portion.
 また、ライニング部材の偏摩耗が発生しないため、調整部材を用いて接触圧及び締め代を調整する作業を行った際に、ライニング部材及びロータの中心軸を合致させる作業を行う必要がない。従って、本発明の一軸偏心ねじポンプは、締め代等の調整作業を極めて容易に実施することが可能である。 Also, since uneven wear of the lining member does not occur, it is not necessary to match the central axis of the lining member and the rotor when adjusting the contact pressure and the tightening allowance using the adjusting member. Therefore, the single-shaft eccentric screw pump of the present invention can perform adjustment work such as a tightening margin very easily.
 本発明の一軸偏心ねじポンプにおいては、調整手段を用いて締め代等を調整することにより、移送する流動物の温度、用途等に応じて適切な作動状態とすることが可能である。従って、本発明の一軸偏心ねじポンプによれば、締め代が過大となることによるステータの破損、及び締め代が過小となることによる流動物の移送性能の低下を防止することが可能である。 In the uniaxial eccentric screw pump of the present invention, it is possible to obtain an appropriate operating state according to the temperature, application, etc. of the fluid to be transferred by adjusting the tightening margin using the adjusting means. Therefore, according to the uniaxial eccentric screw pump of the present invention, it is possible to prevent damage to the stator due to excessive tightening allowance and deterioration of fluid transfer performance due to excessive tightening allowance.
 同様の知見に基づいて提供される本発明の一軸偏心ねじポンプは、雄ねじ型のロータと、前記ロータを挿通可能なステータとを有し、前記ステータが、雌ねじ型の内周面を有する筒状のライナー部と、前記ライナー部が非接着状態で収容されるライナー部装着領域を形成する外筒部と、前記ライナー部の少なくとも周方向一部の領域に対して前記外筒部側から径方向に作用する押圧力を調整することにより、前記ライナー部装着領域を前記ライナー部の少なくとも周方向一部において前記ライナー部の径方向に拡大及び/又は縮小させることが可能な調整手段とを有することを特徴とするものである。 The uniaxial eccentric screw pump of the present invention provided based on the same knowledge has a male screw type rotor and a stator through which the rotor can be inserted, and the stator has a female screw type inner peripheral surface. A liner portion, an outer cylinder portion forming a liner portion mounting region in which the liner portion is accommodated in a non-adhered state, and a radial direction from the outer cylinder portion side to at least a partial region in the circumferential direction of the liner portion Adjustment means capable of expanding and / or reducing the liner portion mounting region in the radial direction of the liner portion at least in a circumferential direction of the liner portion by adjusting a pressing force acting on the liner portion. It is characterized by.
 本発明の一軸偏心ねじポンプにおいては、調整手段を用いることにより、外筒部側からライナー部の少なくとも周方向一部の領域に作用する押圧力を調整することにより、ライナー部装着領域を径方向に拡大及び/又は縮小させ、ロータの外面とステータの内面との接触圧、及び締め代を調整することが可能である。これにより、ステータあるいはロータの交換等を行うことなく適宜締め代を調整することが可能となる。 In the uniaxial eccentric screw pump of the present invention, by using the adjusting means, the pressing force acting on at least a partial region in the circumferential direction of the liner portion is adjusted from the outer tube portion side, thereby the radial direction of the liner portion mounting region. The contact pressure between the outer surface of the rotor and the inner surface of the stator and the tightening allowance can be adjusted. As a result, it is possible to adjust the tightening margin as appropriate without replacing the stator or the rotor.
 本発明の一軸偏心ねじポンプにおいては、ライニング部材が過度に摩耗した場合を除き、ライニング部材の摩耗により締め代が低下した場合、移送する流動物の温度が変化した場合、用途が変化した場合等であっても、調整手段を用いて調整するだけで締め代を適正化することが可能である。従って、本発明の一軸偏心ねじポンプによれば、ライニング部材の交換頻度を最小限に抑制し、メンテナンスに要する手間、ランニングコスト等を最小限に抑制することが可能である。 In the uniaxial eccentric screw pump of the present invention, except when the lining member is excessively worn, when the tightening margin is lowered due to wear of the lining member, when the temperature of the fluid to be transferred is changed, when the use is changed, etc. Even so, it is possible to optimize the tightening margin only by adjusting using the adjusting means. Therefore, according to the uniaxial eccentric screw pump of the present invention, it is possible to suppress the replacement frequency of the lining member to a minimum, and to reduce the labor and running cost required for maintenance.
 また、本発明者らが鋭意検討したところ、調整手段を用いてライナー部の周方向一部の領域に対して外筒部側から径方向に作用する押圧力を調整した場合であっても、ロータの外面とライナー部の内面との接触圧、及び締め代が部位によらず略均一になることが判明した。このため、本発明の一軸偏心ねじポンプにおいては、調整手段を用いて締め代等を調整した場合であっても、ライニング部材の偏摩耗が発生しない。従って、本発明によれば、ライナー部の交換頻度及びランニングコストを最小限に抑制することが可能である。 In addition, when the present inventors diligently studied, even when adjusting the pressing force acting in the radial direction from the outer tube portion side to the circumferential portion of the region of the liner portion using the adjusting means, It has been found that the contact pressure between the outer surface of the rotor and the inner surface of the liner portion and the tightening allowance are substantially uniform regardless of the site. For this reason, in the uniaxial eccentric screw pump of the present invention, even when the tightening margin is adjusted using the adjusting means, the lining member does not wear unevenly. Therefore, according to the present invention, it is possible to minimize the replacement frequency and running cost of the liner portion.
 また、ライニング部材の偏摩耗が発生しないため、調整部材を用いて接触圧及び締め代を調整する作業を行った際に、ライニング部材及びロータの中心軸を合致させる作業を行う必要がない。従って、本発明の一軸偏心ねじポンプは、締め代等の調整作業を極めて容易に実施することが可能である。 Also, since uneven wear of the lining member does not occur, it is not necessary to match the central axis of the lining member and the rotor when adjusting the contact pressure and the tightening allowance using the adjusting member. Therefore, the single-shaft eccentric screw pump of the present invention can perform adjustment work such as a tightening margin very easily.
 本発明の一軸偏心ねじポンプにおいては、調整手段を用いてライナー部の少なくとも周方向一部の領域に作用する押圧力を調整することにより、移送する流動物の温度、用途等に応じて締め代等を容易に適正なものに調整することが可能となる。従って、本発明の一軸偏心ねじポンプによれば、締め代が過大となることによるステータの破損、及び締め代が過小となることによる流動物の移送性能の低下を防止することが可能である。 In the uniaxial eccentric screw pump of the present invention, the tightening margin is adjusted according to the temperature, application, etc. of the fluid to be transferred by adjusting the pressing force acting on at least a partial region in the circumferential direction of the liner portion using the adjusting means. Etc. can be easily adjusted to appropriate values. Therefore, according to the uniaxial eccentric screw pump of the present invention, it is possible to prevent damage to the stator due to excessive tightening allowance and deterioration of fluid transfer performance due to excessive tightening allowance.
 本発明の一軸偏心ねじポンプにおいては、前記調整手段が、前記ライナー部と前記外筒部との間に介在及び/又は脱離させることが可能なシムによって構成されていることが好ましい。 In the uniaxial eccentric screw pump of the present invention, it is preferable that the adjusting means is constituted by a shim that can be interposed and / or detached between the liner portion and the outer cylinder portion.
 かかる構成によれば、シムの抜き差し、シムの厚みの調整、及びシムの枚数の調整等によりロータの外面とステータの内面との接触圧、及び締め代を最適な状態に調整することが可能である。 According to this configuration, it is possible to adjust the contact pressure between the outer surface of the rotor and the inner surface of the stator and the tightening allowance to an optimum state by inserting and removing the shim, adjusting the thickness of the shim, adjusting the number of shims, and the like. is there.
 本発明の一軸偏心ねじポンプにおいては、前記外筒部が、周方向に複数の外筒構成部材に分割可能なものであり、前記外筒構成部材が、軸線方向に延びるフランジ部を周方向両端部に有するものであり、前記調整手段が、周方向に隣接する前記外筒構成部材のフランジ部同士を連結する連結体によって構成されており、前記フランジ部同士の間隔を調整可能なものであることが望ましい。 In the uniaxial eccentric screw pump of the present invention, the outer cylinder portion can be divided into a plurality of outer cylinder constituent members in the circumferential direction, and the outer cylinder constituent members have flange portions extending in the axial direction at both ends in the circumferential direction. The adjusting means is configured by a connecting body that connects the flange portions of the outer cylinder constituent members adjacent in the circumferential direction, and the interval between the flange portions can be adjusted. It is desirable.
 かかる構成によれば、調整手段によってフランジ部同士の間隔を調整することにより、ロータの外面とステータの内面との接触圧、及び締め代を最適な状態に調整することが可能となる。 According to such a configuration, the contact pressure between the outer surface of the rotor and the inner surface of the stator and the tightening allowance can be adjusted to an optimum state by adjusting the interval between the flange portions by the adjusting means.
 また、本発明の一軸偏心ねじポンプにおいては、前記連結体が、前記フランジ部を挟持する挟持部材によって構成されていてもよい。 In the uniaxial eccentric screw pump of the present invention, the connecting body may be constituted by a clamping member that clamps the flange portion.
 かかる構成によれば、挟持部材によりフランジ部に作用する挟持力を調整することによりフランジ部同士の間隔を容易に調整し、締め代等を精度良く調整することが可能となる。 According to such a configuration, by adjusting the clamping force acting on the flange portion by the clamping member, it is possible to easily adjust the interval between the flange portions and to adjust the tightening allowance with high accuracy.
 同様の知見に基づいて提供される本発明の一軸偏心ねじポンプは、雄ねじ型のロータと、前記ロータを挿通可能なステータとを有し、前記ステータが、雌ねじ型の内周面を有する筒状のライナー部と、前記ライナー部の外周を包囲するように配され、前記ライナー部に対して非接着状態で装着された外筒部とを有し、前記ライナー部の少なくとも周方向一部であって、前記ライナー部の軸線方向に延びる領域において、前記ライナー部と前記外筒部との間にシムを介在及び/又は脱離させることが可能であることを特徴とするものである。 The uniaxial eccentric screw pump of the present invention provided based on the same knowledge has a male screw type rotor and a stator through which the rotor can be inserted, and the stator has a female screw type inner peripheral surface. A liner portion and an outer cylinder portion that is disposed so as to surround the outer periphery of the liner portion and is attached to the liner portion in a non-adhered state, and is at least a part of the liner portion in the circumferential direction. In the region extending in the axial direction of the liner portion, a shim can be interposed and / or detached between the liner portion and the outer cylinder portion.
 かかる構成とした場合、ライナー部と外筒部との間にシムを介在及び/又は脱離させることにより、外筒部の内周面のうち少なくとも周方向一部に相当する領域をライナー部の径方向にオフセットさせることが可能となる。言い換えれば、外筒部の内側に形成されるライナー部を装着するための領域(ライナー部装着領域)を、ライナー部の周方向の一部において、ライナー部の径方向に拡大及び/又は縮小させることが可能である。よって、本発明の一軸偏心ねじポンプにおいては、シムをライナー部と外筒部との間に介在及び/又は脱離させることにより、ロータの外面とステータの内面との接触圧及び締め代を調整することが可能である。従って、本発明の一軸偏心ねじポンプは、ステータあるいはロータの交換等を行うことなく、ライニング部材の摩耗、移送する流動物の温度変化、用途等に応じて締め代を適宜調整することが可能である。また、これにより、ライニング部材の交換頻度及びランニングコストをより一層抑制することが可能である。 In such a configuration, by interposing and / or detaching a shim between the liner portion and the outer cylinder portion, an area corresponding to at least a part of the inner circumferential surface of the outer cylinder portion is arranged on the liner portion. It is possible to offset in the radial direction. In other words, a region (liner portion mounting region) for mounting the liner portion formed inside the outer cylinder portion is enlarged and / or reduced in the radial direction of the liner portion in a part of the liner portion in the circumferential direction. It is possible. Therefore, in the uniaxial eccentric screw pump of the present invention, the contact pressure and tightening allowance between the outer surface of the rotor and the inner surface of the stator are adjusted by interposing and / or removing the shim between the liner portion and the outer cylinder portion. Is possible. Therefore, the single-shaft eccentric screw pump of the present invention can adjust the tightening margin appropriately according to the wear of the lining member, the temperature change of the fluid to be transferred, the application, etc. without replacing the stator or the rotor. is there. Moreover, it is possible to further suppress the replacement frequency and running cost of the lining member.
 また、上述したように、本発明者らが鋭意検討した結果、外筒部の内周面において周方向一部に相当する領域のみをオフセットさせた場合、又はライナー部装着領域を、ライナー部の周方向の一部において、ライナー部の径方向に拡大及び/又は縮小させた場合であっても、ロータの外面とライナー部の内面との接触圧、及び締め代が部位によらず略均一になることが判明した。よって、本発明の一軸偏心ねじポンプは、外筒とライニング部材との間にシムを介挿及び/又は脱離させた状態において流動物の移送を行っても、ライニング部材が偏摩耗せず略均一に摩耗する。従って、本発明の一軸偏心ねじポンプにおいては、偏摩耗によるライナー部の交換頻度、及びランニングコストを最小限に抑制することが可能である。また、ライナー部の偏摩耗が生じないため、シムをライナー部と外筒部との間に介在及び/又は脱離させる際にライニング部材及びロータの中心軸を合致させる作業を行わなくてもよい。従って、本発明の一軸偏心ねじポンプは、締め代等の調整作業を極めて簡便に実施できる。 Further, as described above, as a result of intensive studies by the present inventors, when only the region corresponding to a part of the circumferential direction is offset on the inner peripheral surface of the outer cylinder portion, or the liner portion mounting region is Even in the case of expanding and / or contracting in the radial direction of the liner portion in a part of the circumferential direction, the contact pressure between the outer surface of the rotor and the inner surface of the liner portion, and the tightening allowance are substantially uniform regardless of the part. Turned out to be. Therefore, the uniaxial eccentric screw pump of the present invention is substantially free from uneven wear even when the fluid is transferred with the shim inserted and / or detached between the outer cylinder and the lining member. Wear evenly. Therefore, in the uniaxial eccentric screw pump of the present invention, it is possible to minimize the replacement frequency and running cost of the liner portion due to uneven wear. Further, since uneven wear of the liner portion does not occur, when the shim is interposed and / or detached between the liner portion and the outer cylinder portion, it is not necessary to perform an operation of matching the center axis of the lining member and the rotor. . Therefore, the uniaxial eccentric screw pump of the present invention can perform adjustment work such as tightening margin very easily.
 本発明の一軸偏心ねじポンプにおいては、シムを用いて締め代等を調整することにより、移送する流動物の温度、用途等に応じて適切な作動状態とすることが可能である。従って、本発明の一軸偏心ねじポンプによれば、締め代が過大となることによるステータの破損、及び締め代が過小となることによる流動物の移送性能の低下を防止することが可能である。 In the single-shaft eccentric screw pump of the present invention, it is possible to obtain an appropriate operating state according to the temperature, application, etc. of the fluid to be transferred by adjusting the tightening margin using a shim. Therefore, according to the uniaxial eccentric screw pump of the present invention, it is possible to prevent damage to the stator due to excessive tightening allowance and deterioration of fluid transfer performance due to excessive tightening allowance.
 同様の知見に基づいて提供される本発明の一軸偏心ねじポンプは、雄ねじ型のロータと、前記ロータを挿通可能なステータとを有し、前記ステータが、雌ねじ型の内周面を有する筒状のライナー部と、前記ライナー部の外周を包囲するように配され、前記ライナー部に対して非接着状態で装着された外筒部とを有し、前記外筒部が、周方向に複数の外筒構成部材に分割可能なものであり、前記外筒構成部材が、軸線方向に延びるフランジ部を周方向両端部に有し、周方向に隣接する前記外筒構成部材のフランジ部同士を連結体によって連結することにより前記外筒部を形成可能なものであり、前記連結体が、前記フランジ部同士の間隔を調整可能なものであることを特徴とするものである。 The uniaxial eccentric screw pump of the present invention provided based on the same knowledge has a male screw type rotor and a stator through which the rotor can be inserted, and the stator has a female screw type inner peripheral surface. And an outer cylinder portion that is arranged so as to surround the outer periphery of the liner portion and is attached to the liner portion in a non-adhesive state, and the outer cylinder portion has a plurality of circumferential directions. It can be divided into outer cylinder constituent members, and the outer cylinder constituent members have flange portions extending in the axial direction at both ends in the circumferential direction, and connect the flange portions of the outer cylinder constituent members adjacent to each other in the circumferential direction. The outer cylinder part can be formed by connecting with a body, and the connection body can adjust the interval between the flange parts.
 かかる構成とした場合、外筒部を構成する外筒構成部材のフランジ部同士の間隔を連結体を用いて調整することにより、外筒部の内周面のうち少なくとも周方向一部に相当する領域をライナー部の径方向にオフセットさせることが可能となる。言い換えれば、外筒部の内側に形成されるライナー部を装着するための領域(ライナー部装着領域)を、ライナー部の周方向の一部において、ライナー部の径方向に拡大及び/又は縮小させることが可能である。また、ライナー部に対して作用する押圧力を、ライナー部の少なくとも周方向一部の領域において変化させることが可能である。よって、本発明の一軸偏心ねじポンプにおいては、連結体を用いて外筒構成部材のフランジ部同士の間隔を調整することにより、ロータの外面とステータの内面との接触圧及び締め代を調整することができ、ステータあるいはロータの交換等を行う必要がない。また、これにより、ライニング部材の交換頻度及びランニングコストをより一層抑制することが可能である。 In the case of such a configuration, by adjusting the interval between the flange portions of the outer cylinder constituent member constituting the outer cylinder portion by using the coupling body, it corresponds to at least a part of the inner circumferential surface of the outer cylinder portion in the circumferential direction. The region can be offset in the radial direction of the liner portion. In other words, a region (liner portion mounting region) for mounting the liner portion formed inside the outer cylinder portion is enlarged and / or reduced in the radial direction of the liner portion in a part of the liner portion in the circumferential direction. It is possible. In addition, the pressing force acting on the liner portion can be changed in at least a partial region in the circumferential direction of the liner portion. Therefore, in the uniaxial eccentric screw pump of the present invention, the contact pressure and the tightening allowance between the outer surface of the rotor and the inner surface of the stator are adjusted by adjusting the interval between the flange portions of the outer cylinder constituent member using the connecting body. There is no need to replace the stator or rotor. Moreover, it is possible to further suppress the replacement frequency and running cost of the lining member.
 上述したように、本発明者らが鋭意検討した結果によれば、外筒部の内周面において周方向一部に相当する領域のみをオフセットさせた場合、ライナー部の周方向の一部においてライナー部装着領域をライナー部の径方向に拡大及び/又は縮小させた場合、ライナー部に対して作用する押圧力を、ライナー部の少なくとも周方向一部の領域において変化させた場合のいずれの場合においても、ロータの外面とライナー部の内面との接触圧、及び締め代が部位によらず略均一になる。よって、本発明の一軸偏心ねじポンプは、連結体を用いて外筒構成部材のフランジ部同士の間隔を調整した状態において流動物の移送を行っても、ライニング部材が偏摩耗せず略均一に摩耗する。従って、本発明の一軸偏心ねじポンプにおいては、偏摩耗によるライナー部の交換頻度、及びランニングコストを最小限に抑制することが可能である。また、ライナー部の偏摩耗が生じないため、シムをライナー部と外筒部との間に介在及び/又は脱離させる際にライニング部材及びロータの中心軸を合致させる作業を行わなくてもよい。従って、本発明の一軸偏心ねじポンプは、締め代等の調整作業を極めて容易に実施できる。  As described above, according to the results of the intensive studies by the present inventors, when only the region corresponding to a part in the circumferential direction is offset on the inner peripheral surface of the outer cylinder part, in the part in the circumferential direction of the liner part. When the liner part mounting area is expanded and / or contracted in the radial direction of the liner part, and the pressing force acting on the liner part is changed in at least a part of the circumferential direction of the liner part In this case, the contact pressure between the outer surface of the rotor and the inner surface of the liner portion and the tightening allowance are substantially uniform regardless of the portion. Therefore, the uniaxial eccentric screw pump of the present invention is substantially uniform without uneven wear even when the fluid is transferred in a state where the interval between the flange portions of the outer cylinder constituent member is adjusted using the connecting body. Wear. Therefore, in the uniaxial eccentric screw pump of the present invention, it is possible to minimize the replacement frequency and running cost of the liner portion due to uneven wear. Further, since uneven wear of the liner portion does not occur, when the shim is interposed and / or detached between the liner portion and the outer cylinder portion, it is not necessary to perform an operation of matching the center axis of the lining member and the rotor. . Therefore, the uniaxial eccentric screw pump of the present invention can very easily perform adjustment work such as tightening allowance. *
 本発明の一軸偏心ねじポンプにおいては、連結体が、フランジ部を挟持する挟持部材によって構成されていることが好ましい。 In the uniaxial eccentric screw pump of the present invention, it is preferable that the coupling body is constituted by a clamping member that clamps the flange portion.
 かかる構成によれば、挟持部材によりフランジ部に作用する連結力を容易に調整することが可能となる。これにより、締め代等を精度良く調整することが可能となる。 According to such a configuration, it is possible to easily adjust the coupling force acting on the flange portion by the clamping member. Thereby, it is possible to adjust the tightening margin and the like with high accuracy.
 本発明の一軸偏心ねじポンプにおいては、前記ライナー部の両端部に、径方向外側に向けて突出した鍔状部が設けられており、前記鍔状部の間に前記外筒部が配され、前記鍔状部に対して前記外筒部の端部が当接していることが好ましい。 In the uniaxial eccentric screw pump of the present invention, a hook-like part protruding toward the radially outer side is provided at both ends of the liner part, and the outer cylinder part is arranged between the hook-like parts, It is preferable that an end portion of the outer cylinder portion is in contact with the flange portion.
 本発明の一軸偏心ねじポンプにおいては、ライナー部の両端部に設けられた鍔状部同士の間に外筒部が配されており、更に外筒部の端部を鍔状部に対して当接させた構造とされている。そのため、外筒部がライナー部の軸方向への収縮を防止するための支柱的な役割を果たし、ライナー部の内径を略均一に維持させうる。これにより、ライナー部の偏摩耗を回避し、吐出量を安定化させることが可能となる。 In the uniaxial eccentric screw pump of the present invention, the outer cylinder portion is disposed between the flange portions provided at both ends of the liner portion, and the end portion of the outer cylinder portion is further abutted against the flange portion. The structure is in contact. For this reason, the outer cylinder portion plays a role as a support for preventing the liner portion from contracting in the axial direction, and the inner diameter of the liner portion can be maintained substantially uniform. Thereby, it is possible to avoid uneven wear of the liner portion and to stabilize the discharge amount.
 本発明の一軸偏心ねじポンプにおいては、前記ステータの一端側が接続されるエンドスタッドと、前記ステータの他端側が接続されるポンプケーシングと、前記エンドスタッド及び前記ポンプケーシングを連結するステーボルトとを有し、前記エンドスタッド及び/又はポンプケーシングに、前記ステーボルトと螺合可能なナット部が設けられており、前記ステーボルトと前記ナット部とを相対的に回動させることにより、エンドスタッド及びポンプケーシングの間隔を変化させることが可能であることが望ましい。 The uniaxial eccentric screw pump of the present invention has an end stud to which one end of the stator is connected, a pump casing to which the other end of the stator is connected, and a stay bolt that connects the end stud and the pump casing. The end stud and / or the pump casing is provided with a nut portion that can be screwed with the stay bolt, and the end stud and the pump are rotated by relatively rotating the stay bolt and the nut portion. It is desirable to be able to change the spacing of the casings.
 本発明の一軸偏心ねじポンプは、ステーボルトとナット部とを相対的に回動させることにより、エンドスタッド及びポンプケーシングの間隔を変化させることが可能であるため、上述した調整手段等による締め代調整を容易に実施することが可能である。 The uniaxial eccentric screw pump of the present invention can change the interval between the end stud and the pump casing by relatively rotating the stay bolt and the nut portion. Adjustment can be easily performed.
 本発明の一軸偏心ねじポンプは、前記ライナー部の外観形状が多角形状のものであってもよい。 In the uniaxial eccentric screw pump of the present invention, the outer shape of the liner portion may be a polygonal shape.
 かかる構成とすることにより、ライナー部の周方向への位置ずれを防止し、一軸偏心ねじポンプの稼働状態を一層安定化させることが可能となる。 By adopting such a configuration, it is possible to prevent the displacement of the liner portion in the circumferential direction and further stabilize the operating state of the uniaxial eccentric screw pump.
 また、本発明の一軸偏心ねじポンプは、前記外筒部が前記ライナー部の外形に沿う形状に屈曲しているものであることが好ましい。 Further, in the uniaxial eccentric screw pump of the present invention, it is preferable that the outer cylinder portion is bent in a shape along the outer shape of the liner portion.
 かかる構成とすることにより、ライナー部の周方向への位置ずれをより一層確実に防止可能となり、一軸偏心ねじポンプの稼働状態をさらに安定化させうる。 By adopting such a configuration, it is possible to more reliably prevent the liner portion from being displaced in the circumferential direction, and the operating state of the uniaxial eccentric screw pump can be further stabilized.
 本発明によれば、ステータを外筒とライニング部材とに容易に分別することが可能であり、ロータの外面とステータの内面との接触圧、及び締め代を容易かつ精度良く調整することが可能な一軸偏心ねじポンプを提供することが可能である。 According to the present invention, the stator can be easily separated into the outer cylinder and the lining member, and the contact pressure between the outer surface of the rotor and the inner surface of the stator and the tightening allowance can be adjusted easily and accurately. It is possible to provide a simple uniaxial eccentric screw pump.
本発明の一実施形態にかかる一軸偏心ねじポンプを示す断面図である。It is sectional drawing which shows the uniaxial eccentric screw pump concerning one Embodiment of this invention. (a)は図1のα部拡大図、(b)は図1のβ部拡大図である。FIG. 2A is an enlarged view of a portion α in FIG. 1, and FIG. ステータの分解斜視図である。It is a disassembled perspective view of a stator. 図1の一軸偏心ねじポンプにおいて採用されているステータを示す図であり、(a)は正面図、(b)は側面図、(c)は(d)のB-B断面図、(d)は(a)のA-A断面図である。It is a figure which shows the stator employ | adopted in the uniaxial eccentric screw pump of FIG. 1, (a) is a front view, (b) is a side view, (c) is BB sectional drawing of (d), (d) FIG. 2A is a cross-sectional view taken along the line AA in FIG. 図3のステータに採用されているライナー部を示す図であり、(a)は正面図、(b)は側面図、(c)は(b)のD-D断面図、(d)は(a)のC-C断面図である。It is a figure which shows the liner part employ | adopted as the stator of FIG. 3, (a) is a front view, (b) is a side view, (c) is DD sectional drawing of (b), (d) is ( It is CC sectional drawing of a). 外筒構成体をクランプ結合する際の把持部に対する挟持片の取り付け方法を説明する説明図である。It is explanatory drawing explaining the attachment method of the clamping piece with respect to the holding part at the time of clamp coupling | bonding an outer cylinder structural body. (a)はシムを装着した状態におけるステータの断面図、(b)はシムを脱離させた状態におけるステータの断面図である。(A) is sectional drawing of the stator in the state which mounted | wore the shim, (b) is sectional drawing of the stator in the state which removed the shim. (a),(b)は挟持片の側面図、(c)は(a)に示す挟持片を装着した状態におけるステータの断面図である。(A), (b) is a side view of a clamping piece, (c) is sectional drawing of the stator in the state which mounted | wore with the clamping piece shown to (a).
 続いて、本発明の一実施形態に係る一軸偏心ねじポンプ10について、図面を参照しつつ詳細に説明する。一軸偏心ねじポンプ10は、いわゆる回転容積型のポンプであり、図1に示すように、ステータ20や、ロータ50、動力伝達機構70などを備えた構成とされている。また、一軸偏心ねじポンプ10は、金属製で筒状のポンプケーシング12とエンドスタッド13とを備え、両者を接続して一体化した構造とされている。具体的には、一軸偏心ねじポンプ10においては、ポンプケーシング12及びエンドスタッド13のそれぞれにスイベルナット12x,13xが設けられている。ポンプケーシング12及びエンドスタッド13は、スイベルナット12x,13xに対して接続されたステーボルト18を介して接続され、一体化されている。従って、一軸偏心ねじポンプ10は、スイベルナット12x,13xを回動させることにより、ポンプケーシング12及びエンドスタッド13の間隔を拡大及び縮小させることが可能である。 Subsequently, a uniaxial eccentric screw pump 10 according to an embodiment of the present invention will be described in detail with reference to the drawings. The uniaxial eccentric screw pump 10 is a so-called rotary displacement pump, and includes a stator 20, a rotor 50, a power transmission mechanism 70, and the like as shown in FIG. Further, the uniaxial eccentric screw pump 10 includes a metal-made cylindrical pump casing 12 and an end stud 13, and has a structure in which both are connected and integrated. Specifically, in the uniaxial eccentric screw pump 10, swivel nuts 12x and 13x are provided in the pump casing 12 and the end stud 13, respectively. The pump casing 12 and the end stud 13 are connected and integrated through stay bolts 18 connected to the swivel nuts 12x and 13x. Accordingly, the uniaxial eccentric screw pump 10 can expand and contract the interval between the pump casing 12 and the end stud 13 by rotating the swivel nuts 12x and 13x.
 一軸偏心ねじポンプ10は、エンドスタッド13に第1開口14aを有し、ポンプケーシング12の外周部分に第2開口14bを有する。第一開口14aは、一軸偏心ねじポンプ10の軸方向に貫通した貫通孔とされている。第2開口14bは、ポンプケーシング12の長手方向中間部分に位置する中間部12aにおいてポンプケーシング12の内部空間に連通している。 The uniaxial eccentric screw pump 10 has a first opening 14 a in the end stud 13 and a second opening 14 b in the outer peripheral portion of the pump casing 12. The first opening 14 a is a through hole penetrating in the axial direction of the uniaxial eccentric screw pump 10. The second opening 14 b communicates with the internal space of the pump casing 12 at an intermediate portion 12 a located at the intermediate portion in the longitudinal direction of the pump casing 12.
 第1,2開口14a,14bは、それぞれ一軸偏心ねじポンプ10の吸込口および吐出口として機能する部分である。さらに詳細に説明すると、本実施形態の一軸偏心ねじポンプ10は、ロータ50を正方向に回転させることにより、第1開口14aが吐出口として機能し、第2開口14bが吸込口として機能するように流体を圧送することが可能である。またこれとは逆に、一軸偏心ねじポンプ10は、ロータ50を逆方向に回転させることにより、第1開口14aが吸込口として機能し、第2開口14bが吐出口として機能するように流体を圧送させることが可能である。 The first and second openings 14a and 14b are portions that function as a suction port and a discharge port of the uniaxial eccentric screw pump 10, respectively. More specifically, in the uniaxial eccentric screw pump 10 of the present embodiment, the first opening 14a functions as a discharge port and the second opening 14b functions as a suction port by rotating the rotor 50 in the forward direction. It is possible to pump fluid into On the other hand, the uniaxial eccentric screw pump 10 rotates the rotor 50 in the reverse direction so that the first opening 14a functions as a suction port and the second opening 14b functions as a discharge port. It is possible to pump.
 図1及び図2に示すように、ポンプケーシング12は、一軸偏心ねじポンプ10の組み立て状態においてエンドスタッド13側を向く部分(端部12b)に、断面形状が段状になるように形成された嵌込部12cを有する。また、エンドスタッド13についても、一軸偏心ねじポンプ10の組み立て状態においてポンプケーシング12側を向く部分(端部13a)に、断面形状が段状になるように形成された嵌込部13bを有する。嵌込部12c,13bは、それぞれ後に詳述するステータ20のフランジ部26を嵌め込むために設けられた部分である。嵌込部12c,13bの幅h1(軸方向の長さ)は、フランジ部26の厚み(軸方向の長さ)と略同一であり、嵌込部12c,13bが設けられた部分における開口径h2は、フランジ部26の外径と略同一である。 As shown in FIGS. 1 and 2, the pump casing 12 is formed in a portion (end portion 12 b) facing the end stud 13 side in the assembled state of the uniaxial eccentric screw pump 10 so that the cross-sectional shape is stepped. It has a fitting portion 12c. The end stud 13 also has a fitting portion 13b formed so that the cross-sectional shape is stepped at a portion (end portion 13a) facing the pump casing 12 side in the assembled state of the uniaxial eccentric screw pump 10. The fitting portions 12c and 13b are portions provided for fitting a flange portion 26 of the stator 20, which will be described in detail later. The widths h1 (length in the axial direction) of the fitting portions 12c and 13b are substantially the same as the thickness (length in the axial direction) of the flange portion 26, and the opening diameter at the portion where the fitting portions 12c and 13b are provided. h <b> 2 is substantially the same as the outer diameter of the flange portion 26.
 一軸偏心ねじポンプ10は、ポンプケーシング12とエンドスタッド13との間に、ステータ20を取り付けるためのステータ取付部15を有する。一軸偏心ねじポンプ10は、ステータ取付部15にステータ20を配した状態でステーボルト18を装着することにより、ポンプケーシング12とエンドスタッド13とがステータ20を介して連結され、上述した第1,2開口14a,14b間を繋ぐ一連の流路が形成された状態になる。 The uniaxial eccentric screw pump 10 has a stator attachment portion 15 for attaching the stator 20 between the pump casing 12 and the end stud 13. The uniaxial eccentric screw pump 10 is connected to the pump casing 12 and the end stud 13 via the stator 20 by mounting the stay bolt 18 in a state where the stator 20 is disposed on the stator mounting portion 15. A series of flow paths connecting the two openings 14a and 14b are formed.
 ステータ20は、一軸偏心ねじポンプ10において最も特徴的な部分であり、図1、図3及び図4に示すように、ライナー部22と外筒部24とシム25とに大別される。ライナー部22は、ゴムに代表される弾性体や樹脂などにより、一体的に形成されたものである。ライナー部22の材質は、一軸偏心ねじポンプ10を用いて移送する被搬送物である流体の種類や性状などにあわせて適宜選択することが可能であるが、フッ素ゴム、フロロシリコーンゴム、あるいはシリコーンゴムを好適に使用することが可能である。また、ライナー部22の特性としては、JIS K6262に記載されている測定方法を用い、小形試験片を圧縮割合を25%とした条件下で圧縮し、100℃の温度雰囲気下に72時間に亘ってさらした際の圧縮永久歪みが20%以下であるゴム素材により形成されていることが好ましい。また、ライナー部22の硬度は、JIS K6253に記載されいているタイプAデュロメータによる23±1℃の温度雰囲気下における測定により、60~80の範囲内であることが好ましい。 The stator 20 is the most characteristic part of the uniaxial eccentric screw pump 10, and is roughly divided into a liner portion 22, an outer cylindrical portion 24, and a shim 25 as shown in FIGS. The liner portion 22 is integrally formed of an elastic body typified by rubber or resin. The material of the liner portion 22 can be appropriately selected according to the type and properties of the fluid that is the object to be transferred using the uniaxial eccentric screw pump 10, but can be selected from fluoro rubber, fluorosilicone rubber, or silicone. Rubber can be preferably used. Further, as a characteristic of the liner part 22, a small test piece is compressed under a condition in which a compression ratio is 25% by using a measuring method described in JIS K6262, and the temperature is kept at 100 ° C. for 72 hours. It is preferably formed of a rubber material having a compression set of 20% or less when exposed. The hardness of the liner portion 22 is preferably in the range of 60 to 80 as measured by a type A durometer described in JIS K6253 in a temperature atmosphere of 23 ± 1 ° C.
 ライナー部22は、径方向外側に向けて突出したフランジ部26,26(鍔状部)を軸方向の両端部に有し、フランジ部26,26間に外筒部24を装着するための外筒装着部28を備えた筒体である。ライナー部22は、フランジ部26,26及び外筒装着部28を一体的に形成したものであり、フランジ部26,26と外筒装着部28との境界部分には段差30を有する。フランジ部26,26は外観形状(断面形状)が略円形とされており、外筒装着部28は外観形状(断面形状)が多角形状(本実施形態では略正十角形状)とされている。また、上述したようにフランジ部26,26の厚みは、ポンプケーシング12及びエンドスタッド13の端部12b,13aに設けられている嵌込部12c,13bの幅h1と同一あるいは幅h1以上とされている。フランジ部26,26の厚みは、幅h1に対して5%~15%厚いことが望ましい。これにより、フランジ部26,26がポンプケーシング12及びエンドスタッド13の間において強固に圧着固定され、シールされた状態になる。また、フランジ部26,26の外径は、それぞれポンプケーシング12及びエンドスタッド13の端部12b,13aに設けられている嵌込部12c,13bの開口径h2と略同一とされている。 The liner portion 22 has flange portions 26 and 26 (saddle-shaped portions) projecting outward in the radial direction at both end portions in the axial direction, and an outer portion for mounting the outer cylinder portion 24 between the flange portions 26 and 26. This is a cylinder including a cylinder mounting portion 28. The liner portion 22 is formed by integrally forming flange portions 26 and 26 and an outer cylinder mounting portion 28, and has a step 30 at a boundary portion between the flange portions 26 and 26 and the outer cylinder mounting portion 28. The flange portions 26 and 26 have a substantially circular outer shape (cross-sectional shape), and the outer cylinder mounting portion 28 has a polygonal shape (substantially regular decagonal shape in this embodiment). . Further, as described above, the thickness of the flange portions 26, 26 is the same as or greater than the width h1 of the fitting portions 12c, 13b provided in the end portions 12b, 13a of the pump casing 12 and the end stud 13. ing. The thickness of the flange portions 26, 26 is desirably 5% to 15% thicker than the width h1. As a result, the flange portions 26 and 26 are firmly pressed and fixed between the pump casing 12 and the end stud 13 to be in a sealed state. The outer diameters of the flange portions 26 and 26 are substantially the same as the opening diameters h2 of the fitting portions 12c and 13b provided at the end portions 12b and 13a of the pump casing 12 and the end stud 13, respectively.
 ライナー部22の内周面32は、n条で単段あるいは多段の雌ネジ形状とされている。本実施形態においては、ライナー部22の内周面32は、多段の雌ねじ形状とされている。さらに具体的には、ライナー部22の内部には、ライナー部22の長手方向に沿って伸び、所定のピッチでねじれた雌ねじ形状の貫通孔34が設けられている。貫通孔34は、ライナー部22の長手方向のいずれの位置において断面視しても、その断面形状(開口形状)がほぼ長円形となるように形成されている。 The inner peripheral surface 32 of the liner portion 22 has a single-stage or multi-stage female thread shape with n strips. In the present embodiment, the inner peripheral surface 32 of the liner portion 22 has a multistage female screw shape. More specifically, an internal thread-shaped through hole 34 that extends along the longitudinal direction of the liner portion 22 and is twisted at a predetermined pitch is provided inside the liner portion 22. The through hole 34 is formed so that its cross-sectional shape (opening shape) is substantially oval even when viewed in cross section at any position in the longitudinal direction of the liner portion 22.
 図3及び図4に示すように、外筒部24は、上述したライナー部22の外筒装着部28においてライナー部22の外周を覆い、非接着状態で装着されるものである。具体的には、外筒部24は、ライナー部22の外周に押圧状態で装着されるものであり、接着剤を用いなくてもライナー部22と一体化され、周方向及び軸方向の双方に位置決めされた状態になる。 As shown in FIGS. 3 and 4, the outer cylinder portion 24 covers the outer periphery of the liner portion 22 in the outer cylinder mounting portion 28 of the liner portion 22 described above, and is mounted in a non-adhered state. Specifically, the outer cylinder portion 24 is attached to the outer periphery of the liner portion 22 in a pressed state, and is integrated with the liner portion 22 without using an adhesive, both in the circumferential direction and in the axial direction. It will be positioned.
 図3に示すように、外筒部24は、複数(本実施形態では2つ)の外筒構成体36,36と、クランプ38,38とによって構成されており、内側にライナー部装着領域27を形成することができる。外筒構成体36,36は、それぞれライナー部22の外筒装着部28において周方向に略半分の領域に覆い被さる金属製の部材であり、外筒装着部28に沿う形状となるように湾曲(屈曲)している。そのため、ライナー部装着領域27内に外筒装着部28が収まるように外筒構成体36をライナー部22に対して装着することにより、外筒構成体36が周方向に回り止めされた状態になる。また、図4(c)に示すように、外筒構成体36の厚みは、ライナー部22においてフランジ部26と外筒装着部28との間に形成された段差30よりも大きい。そのため、外筒装着部28に外筒構成体36を装着すると、図1及び図4に示すように、外筒構成体36がフランジ部26よりもライナー部22の径方向外側に向けて張り出した状態になる。 As shown in FIG. 3, the outer cylinder portion 24 includes a plurality (two in the present embodiment) of outer cylinder components 36 and 36 and clamps 38 and 38. Can be formed. The outer cylinder components 36, 36 are metal members that cover substantially half of the region in the circumferential direction in the outer cylinder mounting portion 28 of the liner portion 22, and are curved so as to have a shape along the outer cylinder mounting portion 28. (Bent). Therefore, the outer cylinder constituting body 36 is attached to the liner portion 22 so that the outer cylinder attaching section 28 is accommodated in the liner portion attaching area 27, so that the outer cylinder constituting body 36 is prevented from rotating in the circumferential direction. Become. Further, as shown in FIG. 4C, the thickness of the outer cylinder constituting body 36 is larger than the step 30 formed in the liner portion 22 between the flange portion 26 and the outer cylinder mounting portion 28. Therefore, when the outer cylinder component 36 is mounted on the outer cylinder mounting portion 28, the outer cylinder component 36 protrudes outward in the radial direction of the liner portion 22 from the flange portion 26 as shown in FIGS. 1 and 4. It becomes a state.
 また、外筒構成体36の長さは、外筒装着部28の長さと略同一である。そのため、外筒装着部28に外筒構成体36を装着すると、図1、図2及び図4に示すようにライナー部22の段差30が形成された部分において外筒構成体36の両端部がフランジ部26,26に対して当接した状態になる。そのため、外筒部24は、ライナー部22に対して外筒構成体36を装着した状態において軸方向(長手方向)に向けて圧縮応力が作用した場合に、この応力を外筒構成体36によって受け止め、ライナー部22の圧縮変形や、ライナー部22内に形成された貫通孔34の変形を防止することが可能である。 Further, the length of the outer cylinder constituting body 36 is substantially the same as the length of the outer cylinder mounting portion 28. Therefore, when the outer cylinder constituting body 36 is attached to the outer cylinder attaching portion 28, both end portions of the outer cylinder constituting body 36 are located at the portion where the step 30 of the liner portion 22 is formed as shown in FIGS. 1, 2, and 4. It will be in the state contact | abutted with respect to the flange parts 26 and 26. FIG. Therefore, when a compressive stress acts in the axial direction (longitudinal direction) in a state where the outer cylinder component 36 is attached to the liner portion 22, the outer cylinder portion 24 applies this stress to the outer cylinder component 36. It is possible to prevent receiving, compressive deformation of the liner portion 22, and deformation of the through hole 34 formed in the liner portion 22.
 外筒装着部28の周方向両端部には、把持部40,40(フランジ部)が長手方向に向けて延びるように形成されている。把持部40,40の一端側には、ピン挿通孔42,42が設けられており、他端側には係合溝44,44が形成されている。ピン挿通孔42,42及び係合溝44,44は、それぞれ後に詳述するクランプ38,38を装着するために使用するものである。係合溝44は、把持部40の縁から斜め後方(前記他端側)に向けて延びるように形成されている。 The gripping portions 40 and 40 (flange portions) are formed at both circumferential ends of the outer cylinder mounting portion 28 so as to extend in the longitudinal direction. Pin insertion holes 42 and 42 are provided on one end side of the grip portions 40 and 40, and engagement grooves 44 and 44 are formed on the other end side. The pin insertion holes 42 and 42 and the engaging grooves 44 and 44 are used for mounting clamps 38 and 38, respectively, which will be described in detail later. The engaging groove 44 is formed so as to extend obliquely rearward (on the other end side) from the edge of the grip portion 40.
 クランプ38は、断面形状が略「コ」字型の挟持片46と、ピン48とを備えている。挟持片46は、外筒装着部28に外筒構成体36を装着する際に、重ね合わせた状態になっている把持部40,40を挟み込むようにして装着されるものである。挟持片46は、把持部40と略同一の長さを有し、その長手方向一端側にはピン挿通孔46aが設けられ、他端側には突起46bが設けられている。挟持片46は、図6において矢印Xによって示すように突起46bを把持部40において斜め方向に延びるように形成された係合溝44に沿ってスライドさせ、突起46bが係合溝44の端部に突き当たった状態において、矢印Yによって示すように突起46bを中心として回動させることにより、ピン挿通孔46aを把持部40,40側のピン挿通孔42,42と連通した状態とすることが可能である。この状態においてピン48をピン挿通孔46a,42,42に亘って挿通することにより、クランプ38によって把持部40,40が挟持され、固定された状態(クランプ結合された状態)とすることが可能である。 The clamp 38 includes a sandwiching piece 46 having a substantially “U” -shaped cross section and a pin 48. The sandwiching piece 46 is mounted so as to sandwich the gripping portions 40, 40 that are in an overlapped state when the outer cylinder component 36 is mounted on the outer cylinder mounting portion 28. The sandwiching piece 46 has substantially the same length as the gripping portion 40, a pin insertion hole 46 a is provided on one end side in the longitudinal direction, and a protrusion 46 b is provided on the other end side. 6, the protrusion 46b is slid along the engagement groove 44 formed so as to extend obliquely in the grip portion 40 as indicated by an arrow X in FIG. 6, and the protrusion 46b is an end portion of the engagement groove 44. The pin insertion hole 46a can be brought into communication with the pin insertion holes 42 and 42 on the gripping portions 40 and 40 side by rotating around the protrusion 46b as indicated by the arrow Y in the state of being in contact with It is. In this state, by inserting the pin 48 over the pin insertion holes 46a, 42, 42, the grip portions 40, 40 can be clamped and fixed by the clamp 38 (clamped state). It is.
 図3に示すように、シム25(調整手段,押圧力調整手段)は、金属製あるいは樹脂製の薄板によって構成されており、上述したライナー部22と外筒部24との間に介挿される部材である。シム25の厚みは、ロータ50の径の1/30~1/100程度であることが好ましい。本実施形態においては、シム25の厚みが0.1mm~0.4mm程度とされている。また、シム25の横幅は、上述したライナー部22における外筒装着部28の軸線方向の長さ、言い換えれば外筒部24のライナー部装着領域27の長さに相当する長さとされている。また、シム25の縦幅は、ライナー部22における外筒装着部28の外周の長さの一部に相当する長さとされている。具体的には、シム25の縦幅は、外筒装着部28の外周の長さの1/12~1/8程度の長さとされている。言い換えれば、シム25の縦幅は、外筒装着部28の周方向に30度分の長さから45度分の長さに相当する長さとされている。 As shown in FIG. 3, the shim 25 (adjusting means, pressing force adjusting means) is formed of a thin plate made of metal or resin, and is interposed between the liner portion 22 and the outer cylinder portion 24 described above. It is a member. The thickness of the shim 25 is preferably about 1/30 to 1/100 of the diameter of the rotor 50. In the present embodiment, the thickness of the shim 25 is about 0.1 mm to 0.4 mm. The lateral width of the shim 25 is the length corresponding to the length in the axial direction of the outer cylinder mounting portion 28 in the liner portion 22 described above, in other words, the length of the liner portion mounting area 27 of the outer cylinder portion 24. The vertical width of the shim 25 is a length corresponding to a part of the outer circumference of the outer cylinder mounting portion 28 in the liner portion 22. Specifically, the vertical width of the shim 25 is about 1/12 to 1/8 of the length of the outer periphery of the outer cylinder mounting portion 28. In other words, the vertical width of the shim 25 is a length corresponding to a length of 30 degrees to a length of 45 degrees in the circumferential direction of the outer cylinder mounting portion 28.
 図3に示すように、シム25は、ライナー部22における外筒装着部28の略全幅に亘って装着される。また、図3、図4及び図7(a)に示すように、シム25は、外筒装着部28の周方向に一部の領域(本実施形態では、外周の1/12~1/8程度の領域)に亘って装着される。また、シム25は、一枚のみで装着する他、必要に応じて複数枚重ねた状態で装着することが可能である。さらに、既にシム25が重ねた状態で装着されている場合に、そのうちの一部を必要に応じて脱離させることが可能である。シム25は、外筒装着部28上にそのまま配置することも可能であるが、外筒装着部28から脱落を防止すること、一軸偏心ねじポンプ10の作動に伴う振動等の影響による位置ずれを防止すること等を考慮し、粘着材等を用いて外筒装着部28に装着することも可能である。 As shown in FIG. 3, the shim 25 is mounted over substantially the entire width of the outer cylinder mounting portion 28 in the liner portion 22. Further, as shown in FIGS. 3, 4 and 7A, the shim 25 has a partial area in the circumferential direction of the outer cylinder mounting portion 28 (in this embodiment, 1/12 to 1/8 of the outer circumference). Is mounted over a certain area). Further, the shim 25 can be mounted in a state where a plurality of shims 25 are mounted in a stacked state, if necessary, in addition to a single sheet. Furthermore, when the shim 25 is already mounted in a stacked state, a part of the shim 25 can be detached as necessary. The shim 25 can be arranged on the outer cylinder mounting portion 28 as it is, but the shim 25 is prevented from falling off from the outer cylinder mounting portion 28, and the displacement due to the influence of vibration or the like accompanying the operation of the uniaxial eccentric screw pump 10 is prevented. In consideration of prevention and the like, it is also possible to mount the outer cylinder mounting portion 28 using an adhesive material or the like.
 ステータ20は、ライナー部22と外筒部24との間にシム25を挿入あるいは脱離させることにより、外筒部24の周方向一部に相当する部分、すなわち外筒構成体36をライナー部22の径方向にオフセットさせることが可能である。 The stator 20 inserts or removes the shim 25 between the liner portion 22 and the outer cylinder portion 24 to thereby remove a portion corresponding to a part of the outer cylinder portion 24 in the circumferential direction, that is, the outer cylinder structure 36. 22 can be offset in the radial direction.
 具体的には、シム25が介挿されていない状況においては、図7(b)に示すように外筒部24の内周面全体がライナー部22の外筒装着部28に対して略密接した状態である。この状況において、ライナー部22と外筒部24との間にシム25を介挿させると、図7に示すようにシム25が介挿された側の外筒構成体36がライナー部22の径方向外側に向けてオフセットされた状態になる。また、ライナー部22及び外筒部24の間からシム25を脱離させると、外筒部24の内周面全体がライナー部22の外筒装着部28に密着した状態になる。これにより、脱離させたシム25の厚み分だけ外筒構成体36がライナー部22の径方向内側に向けてオフセットされた状態になる。このように、シム25をライナー部22及び外筒部24の間に挿入あるいは脱離させることにより、外筒部24の一部をライナー部22の径方向に向けてオフセットさせることができる。 Specifically, in a situation where the shim 25 is not inserted, the entire inner peripheral surface of the outer cylinder portion 24 is substantially in close contact with the outer cylinder mounting portion 28 of the liner portion 22 as shown in FIG. It is in the state. In this situation, when the shim 25 is inserted between the liner portion 22 and the outer cylinder portion 24, the outer cylinder constituting body 36 on the side where the shim 25 is inserted becomes the diameter of the liner portion 22 as shown in FIG. The state is offset toward the outside in the direction. Further, when the shim 25 is detached from between the liner part 22 and the outer cylinder part 24, the entire inner peripheral surface of the outer cylinder part 24 comes into close contact with the outer cylinder mounting part 28 of the liner part 22. As a result, the outer cylinder constituting body 36 is offset toward the radially inner side of the liner portion 22 by the thickness of the detached shim 25. In this way, by inserting or removing the shim 25 between the liner portion 22 and the outer cylinder portion 24, a part of the outer cylinder portion 24 can be offset toward the radial direction of the liner portion 22.
 また、ステータ20は、ライナー部22と外筒部24との間にシム25を挿入あるいは脱離させることにより、ライナー部装着領域27をライナー部22の少なくとも周方向一部においてライナー部22の径方向に拡大及び/又は縮小させることが可能である。さらに、シム25を挿入あるいは脱離させることにより、ライナー部22の周方向一部の領域に対して外筒部24側から径方向に作用する押圧力を調整することが可能である。具体的には、シム25をライナー部22と外筒部24との間に挿入、脱離すると、シム25が挿入、脱離された領域においてシム25の厚み分だけライナー部装着領域27が径方向に拡大あるいは縮小される。また、外筒部24がライナー部22に対して押圧状態となるように装着されるため、シム25をライナー部22と外筒部24との間に挿入すると、シム25が挿入された領域においてライナー部22に作用する押圧力が局所的に上昇する。これとは逆に、シム25を脱離させると、その分だけライナー部に作用する押圧力が局所的に低下する。 Further, the stator 20 has a diameter of the liner portion 22 at least at a part in the circumferential direction of the liner portion 22 by inserting or removing the shim 25 between the liner portion 22 and the outer cylinder portion 24. It is possible to enlarge and / or reduce in the direction. Further, by inserting or removing the shim 25, it is possible to adjust the pressing force acting in the radial direction from the outer tube portion 24 side on a partial region in the circumferential direction of the liner portion 22. Specifically, when the shim 25 is inserted and removed between the liner portion 22 and the outer cylinder portion 24, the liner portion mounting region 27 has a diameter corresponding to the thickness of the shim 25 in the region where the shim 25 is inserted and removed. Scaled in or out. Moreover, since the outer cylinder part 24 is mounted so as to be pressed against the liner part 22, when the shim 25 is inserted between the liner part 22 and the outer cylinder part 24, in the region where the shim 25 is inserted. The pressing force acting on the liner portion 22 locally increases. On the contrary, when the shim 25 is detached, the pressing force acting on the liner portion is locally reduced by that amount.
 また、ライナー部22と外筒部24との間にシ介挿されるシム25の枚数は必ずしも単一である必要はなく、複数枚重ねた状態で介挿されてもよい。シム25を複数枚重ねた状態で介挿させる場合は、重ね合わせるシム25の枚数を調整することにより外筒構成体36のオフセット量、ライナー部装着領域27の拡大縮小の程度、及びライナー部22に作用する押圧力のバランスを更に細かく調整することが可能である。 Further, the number of shims 25 inserted between the liner portion 22 and the outer cylinder portion 24 is not necessarily single, and may be inserted in a state where a plurality of shims are stacked. When inserting a plurality of shims 25 in an overlapped state, the number of shims 25 to be overlapped is adjusted to adjust the offset amount of the outer cylinder constituting body 36, the degree of expansion / contraction of the liner portion mounting region 27, and the liner portion 22. It is possible to further finely adjust the balance of the pressing force acting on the.
 ステータ20は、ライナー部22に対して外筒構成体36,36を被せ、把持部40,40をクランプ38,38によって結合した状態とされて使用される。ステータ20は、ポンプケーシング12において第1開口14aに隣接する位置にあるステータ取付部12b内に組み込まれる。具体的には、ステータ20は、ポンプケーシング12及びエンドスタッド13に設けられた嵌込部12c,13bにライナー部22の両端に設けられたフランジ部26,26を差し込み、エンドスタッド13と中間部12aとの間(ステータ取付部12b)に挟み込むとともに、エンドスタッド13とポンプケーシング12の本体部分とに亘ってステーボルト18を取り付けて締め付けることにより固定されている。 The stator 20 is used in such a state that the outer cylinder constituting bodies 36 and 36 are covered with the liner portion 22 and the gripping portions 40 and 40 are coupled by the clamps 38 and 38. The stator 20 is incorporated in the stator attachment portion 12b in the pump casing 12 at a position adjacent to the first opening 14a. Specifically, the stator 20 is configured such that flange portions 26 and 26 provided at both ends of the liner portion 22 are inserted into fitting portions 12 c and 13 b provided in the pump casing 12 and the end stud 13, and the end stud 13 and the intermediate portion are inserted. 12a (stator mounting portion 12b) and is fixed by attaching and tightening a stay bolt 18 across the end stud 13 and the main body portion of the pump casing 12.
 上述したようにしてステータ20が取り付けられると、図2(a)に示すように、ライナー部22の一端側において一方のフランジ部26がエンドスタッド13と外筒部24との間に挟み込まれた状態になる。また、図2(b)に示すように、他端側においては、他方のフランジ部26が中間部12aと外筒部24との間に挟み込まれた状態になる。さらに、外筒部24については、一端側においてフランジ部26及びエンドスタッド13の端部に当接し、他端側においてフランジ部26及びポンプケーシング12の端部に当接した状態になる。そのため、ステータ20は、ライナー部22及び外筒部24の双方ともポンプケーシング12のステータ取付部12b内において位置ずれ等を起こさない。 When the stator 20 is attached as described above, one flange portion 26 is sandwiched between the end stud 13 and the outer cylinder portion 24 on one end side of the liner portion 22 as shown in FIG. It becomes a state. Further, as shown in FIG. 2B, the other flange portion 26 is sandwiched between the intermediate portion 12 a and the outer cylinder portion 24 on the other end side. Further, the outer cylinder portion 24 is in contact with the flange portion 26 and the end stud 13 on one end side and in contact with the flange portion 26 and the end portion of the pump casing 12 on the other end side. Therefore, the stator 20 does not cause a positional shift or the like in the stator mounting portion 12b of the pump casing 12 in both the liner portion 22 and the outer cylinder portion 24.
 図1に示すように、ロータ50は、金属製の軸体であり、n-1条で単段あるいは多段の雌ネジ形状とされている。本実施形態においては、ロータ50は、1条で多段の偏心した雄ねじ形状とされている。ロータ50は、長手方向のいずれの位置で断面視しても、その断面形状がほぼ真円形となるように形成されている。ロータ50は、上述したステータ20に形成された貫通孔34に挿通され、貫通孔34の内部において自由に偏心回転可能とされている。 As shown in FIG. 1, the rotor 50 is a metal shaft, and has a single-stage or multi-stage female screw shape with n-1 strips. In the present embodiment, the rotor 50 has a single-threaded multi-stage eccentric male screw shape. The rotor 50 is formed so that the cross-sectional shape thereof is almost a perfect circle when viewed in cross section at any position in the longitudinal direction. The rotor 50 is inserted through the through hole 34 formed in the stator 20 described above, and can be freely eccentrically rotated inside the through hole 34.
 ロータ50をステータ20のライナー部22に形成された貫通孔34内に挿通すると、ロータ50の外周面52とステータ20の内周面32とが両者の接線にわたって当接した状態になる。また、この状態において、ステータ20の内周面32と、ロータ50の外周面との間には、流体搬送路60が形成される。 When the rotor 50 is inserted into the through-hole 34 formed in the liner portion 22 of the stator 20, the outer peripheral surface 52 of the rotor 50 and the inner peripheral surface 32 of the stator 20 are in contact with each other over the tangent line therebetween. In this state, a fluid conveyance path 60 is formed between the inner peripheral surface 32 of the stator 20 and the outer peripheral surface of the rotor 50.
 流体搬送路60は、ステータ20やロータ50の長手方向に向けて螺旋状に延びている。また、流体搬送路60は、ロータ50をステータ20の貫通孔34内において回転させると、ステータ20内を回転しながらステータ20の長手方向に進む。そのため、ロータ50を回転させると、ステータ20の一端側から流体搬送路60内に流体を吸い込むと共に、この流体を流体搬送路60内に閉じこめた状態でステータ20の他端側に向けて移送し、ステータ20の他端側において吐出させることが可能である。すなわち、ロータ50を正方向に回転させると、第2開口14bから吸い込んだ流体を圧送し、第1開口14aから吐出することが可能である。また、ロータ50を逆方向に回転させると、第1開口14aから吸い込んだ流体を第2開口14bから吐出することが可能である。 The fluid conveyance path 60 extends in a spiral shape in the longitudinal direction of the stator 20 and the rotor 50. Further, when the rotor 50 is rotated in the through hole 34 of the stator 20, the fluid conveyance path 60 advances in the longitudinal direction of the stator 20 while rotating in the stator 20. Therefore, when the rotor 50 is rotated, the fluid is sucked into the fluid conveyance path 60 from one end side of the stator 20 and transferred toward the other end side of the stator 20 in a state of being confined in the fluid conveyance path 60. It is possible to discharge at the other end side of the stator 20. That is, when the rotor 50 is rotated in the forward direction, the fluid sucked from the second opening 14b can be pumped and discharged from the first opening 14a. Further, when the rotor 50 is rotated in the reverse direction, the fluid sucked from the first opening 14a can be discharged from the second opening 14b.
 動力伝達機構70は、ポンプケーシング12の外部に設けられたモータなどの動力源(図示せず)から上述したロータ50に対して動力を伝達するために設けられている。動力伝達機構70は、動力接続部72と偏心回転部74とを有する。動力接続部72は、ポンプケーシング12の長手方向の一端側、さらに詳細には上述したエンドスタッド13やステータ取付部12bが設けられたのとは反対側(以下、単に「基端側」とも称す)に設けられた軸収容部12c内に設けられている。また、偏心回転部74は、軸収容部12cとステータ取付部12bとの間に形成された中間部12aに設けられている。 The power transmission mechanism 70 is provided to transmit power from the power source (not shown) such as a motor provided outside the pump casing 12 to the rotor 50 described above. The power transmission mechanism 70 includes a power connection portion 72 and an eccentric rotation portion 74. The power connection portion 72 is one end side in the longitudinal direction of the pump casing 12, more specifically, the side opposite to the end stud 13 and the stator mounting portion 12b described above (hereinafter also simply referred to as “base end side”). ) Is provided in the shaft accommodating portion 12c. Moreover, the eccentric rotation part 74 is provided in the intermediate part 12a formed between the shaft accommodating part 12c and the stator attachment part 12b.
 動力接続部72は、ドライブシャフト76を有し、これが2つの軸受78a,78bによって自由に回転可能なように支持されている。ドライブシャフト76は、ポンプケーシング12の基端側の閉塞部分から外部に取り出されており、動力源に接続されている。そのため、動力源を作動させることにより、ドライブシャフト76を回転させることが可能である。動力接続部72が設けられた軸収容部12cと中間部12aとの間には、例えばメカニカルシールやグランドパッキンなどからなる軸封装置80が設けられており、これにより中間部12a側から軸収容部12c側に被搬送物たる流体が漏れ出さない構造とされている。 The power connection 72 has a drive shaft 76 that is supported by two bearings 78a and 78b so as to be freely rotatable. The drive shaft 76 is taken out from the closed portion on the proximal end side of the pump casing 12 and connected to a power source. Therefore, the drive shaft 76 can be rotated by operating the power source. Between the shaft accommodating portion 12c provided with the power connection portion 72 and the intermediate portion 12a, a shaft sealing device 80 made of, for example, a mechanical seal or a gland packing is provided, whereby the shaft accommodating portion is accommodated from the intermediate portion 12a side. The fluid that is the object to be conveyed does not leak to the portion 12c side.
 偏心回転部74は、上述したドライブシャフト76とロータ50とを動力伝達可能なように接続する部分である。偏心回転部74は、連結軸82と、2つの連結体84,86とを有する。連結軸82は、従来公知のカップリングロッドや、スクリューロッドなどによって構成されいる。連結体84は連結軸82とロータ50とを連結するものであり、連結体86は連結軸82とドライブシャフト76とを連結するものである。連結体84,86は、いずれも従来公知のユニバーサルジョイントなどによって構成されており、ドライブシャフト76を介して伝達されてきた回転動力をロータ50に伝達し、ロータ50を偏心回転させることが可能である。 The eccentric rotating part 74 is a part that connects the drive shaft 76 and the rotor 50 described above so that power can be transmitted. The eccentric rotating part 74 has a connecting shaft 82 and two connecting bodies 84 and 86. The connecting shaft 82 is configured by a conventionally known coupling rod, screw rod, or the like. The connecting body 84 connects the connecting shaft 82 and the rotor 50, and the connecting body 86 connects the connecting shaft 82 and the drive shaft 76. Each of the coupling bodies 84 and 86 is configured by a conventionally known universal joint or the like, and can transmit the rotational power transmitted through the drive shaft 76 to the rotor 50 to rotate the rotor 50 eccentrically. is there.
 一軸偏心ねじポンプ10は、ステータ20においてライナー部22と外筒部24との間にシム25を介在あるいは脱離させ、外筒部24(外筒構成体36)のオフセット量、ライナー部装着領域27の拡大縮小、及びライナー部22に作用する押圧力のバランスを調整することにより、ロータ50の外周面52とライナー部22の内周面32との接触圧、及び締め代を調整することが可能である。 The uniaxial eccentric screw pump 10 has a shim 25 interposed or detached between the liner portion 22 and the outer cylinder portion 24 in the stator 20, and the offset amount of the outer cylinder portion 24 (outer cylinder structure 36), the liner portion mounting region. The contact pressure between the outer peripheral surface 52 of the rotor 50 and the inner peripheral surface 32 of the liner portion 22 and the tightening allowance can be adjusted by adjusting the enlargement / reduction of 27 and the balance of the pressing force acting on the liner portion 22. Is possible.
 具体的には、ライナー部22の摩耗等に伴いロータ50の外周面52とライナー部22の内周面32との接触圧及び締め代を向上させる必要がある場合には、外筒部24をなす一部又は全部の外筒構成体36をライナー部22から取り外し、ライナー部22の外周面にシム25を配置する。シム25が既に配置されている場合には、シム25を更に重ねて配置する。シム25は、ライナー部22の外筒装着部28の周方向一部の領域において、全幅(軸線方向全体)に亘って装着された状態になる。この状態において取り外した外筒構成体36を装着することにより、シム25が装着された領域において外筒構成体36が径方向外側に向けてオフセットされた状態になる。また、シム25が装着された領域においては、ライナー部装着領域27が径方向に縮小し、ライナー部22に作用する押圧力が局所的に高くなる。これにより、ロータ50の外周面52及びライナー部22の内周面32との接触圧、及び締め代が高くなる。 Specifically, when it is necessary to improve the contact pressure between the outer peripheral surface 52 of the rotor 50 and the inner peripheral surface 32 of the liner portion 22 due to wear of the liner portion 22 or the like, the outer cylinder portion 24 is A part or all of the outer cylinder constituting body 36 is removed from the liner portion 22, and the shim 25 is disposed on the outer peripheral surface of the liner portion 22. If the shim 25 has already been arranged, the shim 25 is further overlapped. The shim 25 is mounted over the entire width (the entire axial direction) in a partial region in the circumferential direction of the outer tube mounting portion 28 of the liner portion 22. By mounting the removed outer cylinder structure 36 in this state, the outer cylinder structure 36 is offset radially outward in the region where the shim 25 is mounted. Further, in the region where the shim 25 is mounted, the liner portion mounting region 27 is reduced in the radial direction, and the pressing force acting on the liner portion 22 is locally increased. As a result, the contact pressure between the outer peripheral surface 52 of the rotor 50 and the inner peripheral surface 32 of the liner portion 22 and the tightening allowance are increased.
 一方、流動物の温度が高い等の理由によりロータ50の外周面52とライナー部22の内周面32との接触圧及び締め代を低下させる必要がある場合には、外筒部24をなす一部又は全部の外筒構成体36をライナー部22から取り外し、ライナー部22の外周面に配置されているシム25を取り除く。シム25が複数重ねた状態で配置されている場合には、全てのシム25を取り除く他、一部のシム25を取り除くことが可能である。このようにしてシム25を取り除いた後、外筒構成体36を装着することにより、シム25が取り除かれた分だけ外筒構成体36が径方向内側に向けてオフセットされた状態になる。また、シム25が取り除かれた領域においては、ライナー部装着領域27が径方向に拡大し、ライナー部22に作用する押圧力が低くなる。これにより、ロータ50の外周面52及びライナー部22の内周面32との接触圧、及び締め代が低くなる。 On the other hand, when the contact pressure between the outer peripheral surface 52 of the rotor 50 and the inner peripheral surface 32 of the liner portion 22 and the tightening allowance need to be reduced due to the high temperature of the fluid, the outer cylinder portion 24 is formed. A part or all of the outer cylinder constituting body 36 is removed from the liner portion 22, and the shim 25 disposed on the outer peripheral surface of the liner portion 22 is removed. When a plurality of shims 25 are arranged in a stacked state, it is possible to remove some shims 25 in addition to removing all the shims 25. After the shim 25 is removed in this manner, the outer cylinder constituting body 36 is attached, so that the outer cylinder constituting body 36 is offset radially inward by the amount of the shim 25 being removed. Moreover, in the area | region where the shim 25 was removed, the liner part mounting area | region 27 expands to radial direction, and the pressing force which acts on the liner part 22 becomes low. Thereby, the contact pressure with the outer peripheral surface 52 of the rotor 50 and the inner peripheral surface 32 of the liner portion 22 and the tightening allowance are reduced.
 上述したように、本実施形態の一軸偏心ねじポンプ10においては、シム25の脱着を行うことによりロータ50の外周面52及びライナー部22の内周面32との接触圧、及び締め代を調整できる。また、外筒部24をなす一部又は全部の外筒構成体36を脱着することによりシム25の脱着を行うことが可能であり、ステータ20及びロータ50を全て取り外して分解する必要がない。更に、一軸偏心ねじポンプ10においては、スイベルナット12x,13xを回動させることにより、ポンプケーシング12及びエンドスタッド13の間隔、すなわちステータ取付部15を拡張及び縮小することができ、外筒構成体36の脱着作業に手間を要しない。従って、一軸偏心ねじポンプ10は、シム25による締め代等の調整が容易に実施可能であり、メンテナンス性に優れている。 As described above, in the uniaxial eccentric screw pump 10 of this embodiment, the contact pressure between the outer peripheral surface 52 of the rotor 50 and the inner peripheral surface 32 of the liner portion 22 and the tightening allowance are adjusted by attaching and detaching the shim 25. it can. Further, the shim 25 can be detached by detaching a part or all of the outer cylinder constituting body 36 constituting the outer cylinder portion 24, and it is not necessary to remove and disassemble all of the stator 20 and the rotor 50. Further, in the uniaxial eccentric screw pump 10, the interval between the pump casing 12 and the end stud 13, that is, the stator mounting portion 15, can be expanded and contracted by rotating the swivel nuts 12x and 13x. There is no need for trouble in the 36 desorption work. Therefore, the uniaxial eccentric screw pump 10 can easily adjust the tightening allowance by the shim 25, and is excellent in maintainability.
 一軸偏心ねじポンプ10においては、上述したようにしてシム25を装着した状態及び脱離させた状態のいずれの状態において作動させても、ロータ50とライナー部22との接触圧、及び締め代が部位によらず略均一になる。従って、一軸偏心ねじポンプ10において、ライナー部22は、偏摩耗することなく略均一に摩耗する。また、ライナー部22及び外筒部の間にシム25を介挿させたとしても、ライナー部22及びロータ50の中心軸を合致させる作業を行う必要がない。従って、一軸偏心ねじポンプ10は、ライナー部22の交換頻度、及びメンテナンスに要する作業を最小限に抑制することが可能である。 In the uniaxial eccentric screw pump 10, the contact pressure between the rotor 50 and the liner portion 22, and the tightening allowance, even when operated with the shim 25 attached or detached as described above, It becomes almost uniform regardless of the part. Therefore, in the uniaxial eccentric screw pump 10, the liner portion 22 is worn substantially uniformly without uneven wear. Further, even if the shim 25 is inserted between the liner portion 22 and the outer cylinder portion, it is not necessary to perform an operation for matching the center axes of the liner portion 22 and the rotor 50. Accordingly, the uniaxial eccentric screw pump 10 can minimize the frequency of replacement of the liner portion 22 and the work required for maintenance.
 一軸偏心ねじポンプ10は、移送する流動物の温度、用途等の作動条件に応じてシム25を装着あるいは脱離させることにより、締め代等を作動条件に適切な状態にして作動させることが可能である。従って、一軸偏心ねじポンプ10によれば、締め代が過大となることによるステータ20の破損、及び締め代が過小となることによる流動物の移送性能の低下を防止することが可能である。 The single-shaft eccentric screw pump 10 can be operated with a tightening margin or the like in an appropriate state by attaching or removing the shim 25 according to the operating conditions such as the temperature and application of the fluid to be transferred. It is. Therefore, according to the uniaxial eccentric screw pump 10, it is possible to prevent damage to the stator 20 due to excessive tightening allowance and deterioration of fluid transfer performance due to excessive tightening allowance.
 上述したシム25の厚み、縦幅、横幅は、いずれも上述したものに限定される訳ではなく、適宜調整することが可能である。なお、シム25の横幅を外筒装着部28の軸線方向の長さよりも短くする場合には、複数のシム25を外筒装着部28の軸線方向に並べて配置する等の方策により、外筒装着部28の軸線方向略全体に亘ってシム25が装着された状態となるようにすることにより、上述した本実施形態のシム25を用いた場合と同様の作用効果が得られる。 The thickness, vertical width, and horizontal width of the shim 25 described above are not limited to those described above, and can be appropriately adjusted. When the width of the shim 25 is made shorter than the length of the outer cylinder mounting portion 28 in the axial direction, the outer cylinder is mounted by measures such as arranging a plurality of shims 25 side by side in the axial direction of the outer cylinder mounting portion 28. By having the shim 25 mounted over substantially the entire axial direction of the portion 28, the same effect as that obtained when the shim 25 of the present embodiment described above is used can be obtained.
 本実施形態では、シム25をライナー部22及び外筒部24の間に介挿させる、あるいは脱離させることにより外筒部24(外筒構成体36)のオフセット量、ライナー部装着領域27の拡大縮小、及びライナー部22に作用する押圧力のバランスを調整するための調整部材として用いた例を示したが、本発明はこれに限定される訳ではない。具体的には、外筒構成体36の周方向両端部に設けられた把持部40,40を把持するために設けられたクランプ38を前述した調整部材として用いることが可能な構成としてもよい。具体的には、図8に示すように、対向する2面の挟持面46p,46qの間隔が異なる把持片46x,46yを用意し、締め代等に応じて把持片46x,46yを使い分けることとしても良い。 In the present embodiment, the shim 25 is inserted or removed between the liner portion 22 and the outer cylinder portion 24 to remove the offset amount of the outer cylinder portion 24 (outer cylinder structure 36), and the liner portion mounting region 27. Although the example used as an adjustment member for adjusting the balance of the pressing force acting on the enlargement / reduction and the liner portion 22 is shown, the present invention is not limited to this. Specifically, the clamps 38 provided for holding the holding portions 40, 40 provided at both ends in the circumferential direction of the outer cylinder constituting body 36 may be configured to be used as the adjusting member described above. Specifically, as shown in FIG. 8, gripping pieces 46x and 46y having different intervals between two opposing clamping surfaces 46p and 46q are prepared, and the gripping pieces 46x and 46y are selectively used according to the tightening margin or the like. Also good.
 具体的には、図8(a)に示す間隔がd1の把持片46xを用いて外筒構成体36,36を連結した場合、図8(c)に示すようにライナー部装着領域27が拡大し、ライナー部22に作用する押圧力が緩やかになる。また、ライナー部22を包囲している外筒部24の一部、すなわち外筒構成体36が、ライナー部22の径方向外側に向けてオフセットされた状態になる。これにより、ロータ50の外周面52及びライナー部22の内周面32との接触圧、及び締め代を低くなる。 Specifically, when the outer cylinder constituting bodies 36 and 36 are connected using the gripping piece 46x having the interval d1 shown in FIG. 8A, the liner portion mounting region 27 is expanded as shown in FIG. 8C. In addition, the pressing force acting on the liner portion 22 becomes gentle. Further, a part of the outer cylinder part 24 surrounding the liner part 22, that is, the outer cylinder constituting body 36 is offset toward the radially outer side of the liner part 22. Thereby, the contact pressure with the outer peripheral surface 52 of the rotor 50 and the inner peripheral surface 32 of the liner portion 22 and the tightening allowance are reduced.
 逆に、図8(b)に示す間隔がd1よりも小さなd2である把持片46yを用いて外筒装着部28を連結した場合は、図7(b)に示すように外筒部24の内周面全体がライナー部22の外筒装着部28に対して略密接した状態になる。この状態においては、把持片46xを用いた場合に比べてライナー部装着領域27が縮小し、ライナー部22に作用する押圧力が高くなる。また、ライナー部22を包囲している外筒部24の一部、すなわち外筒構成体36が、把持片46xを用いた場合よりもライナー部22の径方向内側に向けてオフセットされた状態になる。これにより、ロータ50の外周面52及びライナー部22の内周面32との接触圧、及び締め代が高くなる。 On the contrary, when the outer cylinder mounting portion 28 is connected using the gripping piece 46y whose interval shown in FIG. 8B is d2 smaller than d1, the outer cylinder portion 24 of the outer cylinder portion 24 is connected as shown in FIG. 7B. The entire inner peripheral surface is in close contact with the outer cylinder mounting portion 28 of the liner portion 22. In this state, the liner portion mounting region 27 is reduced as compared with the case where the gripping piece 46x is used, and the pressing force acting on the liner portion 22 is increased. Further, a part of the outer cylinder part 24 surrounding the liner part 22, that is, the outer cylinder component 36 is offset toward the radially inner side of the liner part 22 as compared with the case where the gripping piece 46 x is used. Become. As a result, the contact pressure between the outer peripheral surface 52 of the rotor 50 and the inner peripheral surface 32 of the liner portion 22 and the tightening allowance are increased.
 上述したように、締め代等に応じて間隔の異なる把持片46x,46yを使い分ける場合についても、シム25を併用することが可能である。把持片46x,46y及びシム25を併用することにより、外筒部24の一部たる外筒構成体36のオフセット量、ライナー部装着領域27の拡大縮小、及びライナー部22に作用する押圧力のバランス調整をより一層精細に行うことが可能である。 As described above, the shim 25 can be used in combination when the gripping pieces 46x and 46y having different intervals are properly used according to the tightening allowance or the like. By using the gripping pieces 46x, 46y and the shim 25 in combination, the offset amount of the outer cylinder constituting body 36 which is a part of the outer cylinder portion 24, the enlargement / reduction of the liner portion mounting region 27, and the pressing force acting on the liner portion 22 are reduced. It is possible to perform the balance adjustment more finely.
 また、一軸偏心ねじポンプ10は、図8に示すような挟持面46p,46qの間隔が異なるクランプ38を用いる代わりに、外筒構成体36の把持部40の長手方向複数箇所においてボルト等によって構成された挟持力を調整可能な固定具47を用いて固定する構成としても良い。このような構成とした場合は、固定具47により把持部40に作用する挟持力を調整することにより外筒構成体36のオフセット量、ライナー部装着領域27の拡大縮小、及びライナー部22に作用する押圧力を調整し、締め代等の適正化を図ることが可能である。なお、固定具47を用いる場合についても、上述したシム25を併用することにより、締め代等をより一層精細に調整することが可能となる。 Further, the uniaxial eccentric screw pump 10 is constituted by bolts or the like at a plurality of positions in the longitudinal direction of the grip portion 40 of the outer cylinder constituting body 36 instead of using the clamps 38 having different intervals between the holding surfaces 46p and 46q as shown in FIG. It is good also as a structure fixed using the fixing tool 47 which can adjust the clamping force made. In the case of such a configuration, by adjusting the clamping force acting on the gripping portion 40 by the fixing tool 47, the offset amount of the outer cylinder constituting body 36, the enlargement / reduction of the liner portion mounting region 27, and the liner portion 22 are affected. It is possible to optimize the tightening allowance by adjusting the pressing force. In addition, also when using the fixing tool 47, it becomes possible to adjust a fastening allowance etc. further finely by using the shim 25 mentioned above together.
 上述したように、本実施形態の一軸偏心ねじポンプ10のステータ20は、一体形成されたライナー部22に対して外筒部24が非接着状態で装着されている。具体的には、外筒構成体36,26の把持部40,40にクランプ38を装着することによって発生する挟持力の影響により、外筒部24に対してライナー部22の径方向内側方向への押圧力が作用する。外筒部24は、この押圧力によってライナー部22の外周に押圧状態で装着されており、ライナー部22の軸方向及び周方向に位置決めされた状態になっている。従って、一軸偏心ねじポンプ10は、外筒構成体36,36及びクランプ38,38を取り外すことによりライナー部22と外筒部24とに容易に分別し、回収することが可能であり、環境問題に対して十分な配慮を払うことが可能となる。 As described above, the stator 20 of the uniaxial eccentric screw pump 10 of the present embodiment has the outer cylinder portion 24 attached to the integrally formed liner portion 22 in an unbonded state. Specifically, due to the influence of the clamping force generated by attaching the clamps 38 to the gripping portions 40, 40 of the outer cylinder constituting bodies 36, 26, the radially inner direction of the liner portion 22 with respect to the outer cylinder portion 24. The pressing force is applied. The outer cylinder portion 24 is attached to the outer periphery of the liner portion 22 by this pressing force in a pressed state, and is positioned in the axial direction and the circumferential direction of the liner portion 22. Therefore, the uniaxial eccentric screw pump 10 can be easily separated into the liner part 22 and the outer cylinder part 24 by removing the outer cylinder components 36, 36 and the clamps 38, 38, and this is an environmental problem. It is possible to pay sufficient attention to
 また、一軸偏心ねじポンプ10は、ライナー部22の両端部に設けられたフランジ部26の間に存在する外筒装着部28が外筒部24によって覆われ、外筒部24の端部がフランジ部26に対して当接した構造とされており、ライナー部22が軸方向に収縮するのを防止しうる。すなわち、外筒部24が、ライナー部22の軸方向への収縮を防止するための支柱的役割を果たす。これにより、吐出圧の影響などによりステータ20に対して軸方向への圧縮力が作用したとしてもライナー部22の内径を部位によらず略均一に維持することが可能となり、ライナー部22の偏摩耗を回避し、吐出量の安定化を図ることが可能となる。なお、本実施形態では、ライナー部22の軸方向への収縮防止等の観点からライナー部22の両端にフランジ部26を設けた構成を例示したが、本発明はこれに限定されるものではなく、フランジ部26のいずれか一方、又は双方を設けない構成としてもよい。 Further, in the uniaxial eccentric screw pump 10, the outer cylinder mounting portion 28 existing between the flange portions 26 provided at both ends of the liner portion 22 is covered by the outer cylinder portion 24, and the end portion of the outer cylinder portion 24 is a flange. The structure abuts against the portion 26 and can prevent the liner portion 22 from contracting in the axial direction. That is, the outer cylinder part 24 plays the role of a column for preventing the liner part 22 from contracting in the axial direction. As a result, even if a compressive force in the axial direction acts on the stator 20 due to the influence of the discharge pressure or the like, the inner diameter of the liner portion 22 can be maintained substantially uniform regardless of the portion. It is possible to avoid wear and stabilize the discharge amount. In the present embodiment, the configuration in which the flange portions 26 are provided at both ends of the liner portion 22 is exemplified from the viewpoint of preventing the liner portion 22 from contracting in the axial direction, but the present invention is not limited thereto. In addition, either one or both of the flange portions 26 may be omitted.
 一軸偏心ねじポンプ10は、外筒部24が、周方向に複数の外筒構成体36に分割可能なものであるため、ライナー部22に対する外筒部24の脱着作業を容易に実施可能である。また、上述した外筒部24は、外筒構成体36同士をクランプ38を用いて結合(クランプ結合)させて一体化したものであり、把持部40,40に対して挟持片46及びピン48を着脱するだけで外筒部24を着脱することが可能である。 In the uniaxial eccentric screw pump 10, since the outer cylinder portion 24 can be divided into a plurality of outer cylinder constituent bodies 36 in the circumferential direction, the detachment operation of the outer cylinder portion 24 with respect to the liner portion 22 can be easily performed. . Further, the above-described outer cylinder portion 24 is formed by integrating the outer cylinder constituent bodies 36 with each other by using a clamp 38 (clamp connection), and the holding piece 46 and the pin 48 with respect to the gripping portions 40 and 40. It is possible to attach and detach the outer cylinder part 24 only by attaching and detaching the.
 なお、本実施形態では、外筒部24を2つの外筒構成体36によって構成した例を例示したが、本発明はこれに限定されるものではなく、さらに多数の外筒構成体36によって構成されるものであってもよい。また、本実施形態では、外筒構成体36,36を周方向2カ所においてクランプ38によって結合した例を例示したが、本発明はこれに限定されるものではなく、例えば外筒構成体36,36の周方向一端側を蝶番などによって連結し、他端側をクランプ38や他の手法によって連結した構造とすることも可能である。さらに、本実施形態では、挟持片46及びピン48によって構成されたクランプ38を外筒構成体36,36を結合するために用いた例を例示したが、本発明はこれに限定されるものではなく、外筒構成体36,36を位置ずれしないように固定可能なものであれば、他のいかなる手法によって外筒構成体36,36を結合することとしてもよい。 In the present embodiment, the example in which the outer cylinder portion 24 is configured by the two outer cylinder components 36 is illustrated, but the present invention is not limited to this, and is configured by a larger number of outer cylinder components 36. It may be done. Moreover, in this embodiment, although the example which couple | bonded the outer cylinder structural bodies 36 and 36 with the clamp 38 in the circumferential direction two places was illustrated, this invention is not limited to this, For example, the outer cylinder structural bodies 36, It is also possible to have a structure in which one circumferential end of 36 is connected by a hinge or the like and the other end is connected by a clamp 38 or other methods. Furthermore, in this embodiment, the example which used the clamp 38 comprised by the clamping piece 46 and the pin 48 in order to couple | bond the outer cylinder structural bodies 36 and 36 was illustrated, but this invention is not limited to this. As long as the outer cylinder components 36 and 36 can be fixed so as not to be displaced, the outer cylinder components 36 and 36 may be coupled by any other method.
 本実施形態の一軸偏心ねじポンプ10は、ステータ20の一端側にエンドスタッド13が配置されており、ステータ20がステーボルト18によって発生する締結力を用いてエンドスタッド13とともにポンプケーシング12に一体に連結されている。また、ステータ20は、外筒部24がエンドスタッド13及びポンプケーシング12の端部12b,13aに当接した状態となっている。従って、ステータ20を組み付けた状態において、ステーボルト18による締結力がライナー部22よりも外筒部24に優先的に作用することになり、ライナー部22に対して軸方向に大きな圧縮力が作用することや、ライナー部22が圧縮変形することを防止できる。またこれにより、ライナー部22の偏摩耗を防止し、吐出量を安定化することが可能となる。 In the uniaxial eccentric screw pump 10 of this embodiment, an end stud 13 is disposed on one end side of a stator 20, and the stator 20 is integrated with the pump casing 12 together with the end stud 13 using a fastening force generated by a stay bolt 18. It is connected. In addition, the stator 20 is in a state in which the outer cylinder portion 24 is in contact with the end stud 13 and the end portions 12 b and 13 a of the pump casing 12. Therefore, in the state where the stator 20 is assembled, the fastening force by the stay bolt 18 preferentially acts on the outer cylinder portion 24 rather than the liner portion 22, and a large compressive force acts on the liner portion 22 in the axial direction. This can prevent the liner portion 22 from being compressed and deformed. Thereby, it is possible to prevent uneven wear of the liner portion 22 and stabilize the discharge amount.
 本実施形態の一軸偏心ねじポンプ10は、ポンプケーシング12の端部12b及びエンドスタッド13の端部13aに、フランジ部26を嵌込可能な嵌込部12c,13bが設けられており、これらに嵌め込まれたライナー部22のフランジ部26が、外筒部24と、エンドスタッド13及びポンプケーシング12との間に挟み込まれている。これにより、ライナー部22の軸方向への位置ずれを確実に防止することが可能であり、一軸偏心ねじポンプ10の稼働状態をより一層安定化させることが可能である。 In the uniaxial eccentric screw pump 10 of the present embodiment, fitting portions 12c and 13b into which the flange portion 26 can be fitted are provided at the end portion 12b of the pump casing 12 and the end portion 13a of the end stud 13, respectively. The flange portion 26 of the fitted liner portion 22 is sandwiched between the outer cylinder portion 24, the end stud 13 and the pump casing 12. Thereby, it is possible to reliably prevent the position shift of the liner portion 22 in the axial direction, and it is possible to further stabilize the operating state of the uniaxial eccentric screw pump 10.
 上述したように、ライナー部22の外筒装着部28は、外観形状が多角形状(本実施形態では略十角形)とされている。さらに、外筒構成体36,36は、ともに外筒装着部28に沿う形状に屈曲しており、クランプ38によって把持部40を把持し、結合することにより外筒装着部28と略同一形状(本実施形態では略正十角形)で筒状の外筒部24が形成される。これにより、ライナー部22に対して周方向への荷重が作用してもライナー部22のみが周方向に位置ずれを起こすのを防止し、一軸偏心ねじポンプ10の稼働状態の安定化を図ることが可能となる。 As described above, the outer cylinder mounting portion 28 of the liner portion 22 has a polygonal shape (substantially decagonal in this embodiment). Further, the outer cylinder constituting bodies 36 and 36 are both bent in a shape along the outer cylinder mounting portion 28, and the gripper 40 is gripped by the clamp 38 and coupled to each other so as to have substantially the same shape as the outer cylinder mounting portion 28 ( In the present embodiment, a cylindrical outer cylinder portion 24 having a substantially regular decagon) is formed. Accordingly, even when a load in the circumferential direction is applied to the liner portion 22, only the liner portion 22 is prevented from being displaced in the circumferential direction, and the operation state of the uniaxial eccentric screw pump 10 is stabilized. Is possible.
 また、ライナー部22が多角形状に形成されているため、シム25を所望の位置及び領域に配置しやすい。さらに、外筒構成体36がライナー部22の外形に沿う形状に形成されているため、ライナー部22の外周に形成された角を越えて複数の面に亘ってシム25を配置した場合においても、シム25を確実にライナー部22の表面に沿う形状に屈曲させ、位置ずれ等しないように挟み込むことが可能である。 Further, since the liner portion 22 is formed in a polygonal shape, the shim 25 can be easily placed at a desired position and region. Further, since the outer cylinder constituting body 36 is formed in a shape along the outer shape of the liner portion 22, even when the shim 25 is arranged across a plurality of surfaces beyond the corner formed on the outer periphery of the liner portion 22. The shim 25 can be securely bent in a shape along the surface of the liner portion 22 so as not to be displaced.
 なお、本実施形態では、外筒部24に対するライナー部22の位置ずれ防止、シム25の配置の容易化等を目的として、外筒装着部28及び外筒部24をそれぞれ多角形状に形成した例を例示したが、周方向への位置ずれ等を防止可能な他の構成を採用した場合や、周方向への位置ずれ等まで考慮しなくても良い場合などは、上述したものとは相違する構成としてもよい。具体的には、外筒装着部28及び外筒部24は、それぞれ略同一の断面形状を有するものであったが、例えば外筒装着部28を略正十角形とし外筒部24を略正十二角形とするなど、ライナー部22の回り止めとして機能する範疇において両者の断面形状が相違していてもよい。 In the present embodiment, the outer cylinder mounting part 28 and the outer cylinder part 24 are each formed in a polygonal shape for the purpose of preventing the positional deviation of the liner part 22 with respect to the outer cylinder part 24 and facilitating the arrangement of the shim 25. However, it is different from the case described above when another configuration capable of preventing the positional deviation in the circumferential direction, etc., or when it is not necessary to consider the positional deviation in the circumferential direction, etc. It is good also as a structure. Specifically, the outer cylinder mounting portion 28 and the outer cylinder portion 24 have substantially the same cross-sectional shape, but for example, the outer cylinder mounting portion 28 is a substantially regular decagon and the outer cylinder portion 24 is substantially correct. In a category that functions as a detent for the liner portion 22 such as a dodecagon, the cross-sectional shapes of the two may be different.
 また、外筒部24の内周側に突起を設けた構成とし、外筒装着部28に外筒部24を装着することにより前述した突起がライナー部22の外周面に押圧された状態で接触するような構成としてもよい。かかる構成によれば、ライナー部22の外周面及びシム25に対して突起が引っかかり、ライナー部22の周方向及び軸方向への位置ずれ、シム25の脱落等を防止することが可能である。このように突起を設ける構成は、本実施形態のように外筒装着部28や外筒部24を多角形状とした場合だけでなく、ライナー部22の外観形状が円筒状である場合のようにライナー部22の位置ずれ、シム25の脱落等が懸念される場合にも有効である。 Further, a projection is provided on the inner peripheral side of the outer cylinder portion 24, and the outer cylinder portion 24 is mounted on the outer cylinder mounting portion 28 so that the above-described projection is pressed against the outer peripheral surface of the liner portion 22. It is good also as a structure which does. According to such a configuration, the protrusion is caught by the outer peripheral surface of the liner portion 22 and the shim 25, and it is possible to prevent the displacement of the liner portion 22 in the circumferential direction and the axial direction, the shim 25 falling off, and the like. The configuration in which the protrusions are provided in this way is not only when the outer cylinder mounting portion 28 and the outer cylinder portion 24 are polygonal as in this embodiment, but also when the outer shape of the liner portion 22 is cylindrical. This is also effective when there is a concern about the displacement of the liner portion 22 or the shim 25 falling off.
 10   一軸偏心ねじポンプ
 12   ポンプケーシング
 12b  端部
 12c  嵌込部
 13   エンドスタッド
 13b  嵌込部
 15   ステータ取付部
 20   ステータ
 22   ライナー部
 24   外筒部
 25   シム(調整手段)
 26   フランジ部(鍔状部)
 27   ライナー部装着領域
 28   外筒装着部
 36   外筒構成体
 46   挟持片
 50   ロータ
 
DESCRIPTION OF SYMBOLS 10 Uniaxial eccentric screw pump 12 Pump casing 12b End part 12c Insertion part 13 End stud 13b Insertion part 15 Stator attachment part 20 Stator 22 Liner part 24 Outer cylinder part 25 Shim (Adjustment means)
26 Flange part (saddle-shaped part)
27 Liner part mounting area 28 Outer cylinder mounting part 36 Outer cylinder component 46 Clamping piece 50 Rotor

Claims (13)

  1.  雄ねじ型のロータと、
     前記ロータを挿通可能なステータとを有し、
     前記ステータが、
     雌ねじ型の内周面を有する筒状のライナー部と、
     前記ライナー部の外周を包囲するように配され、前記ライナー部に対して非接着状態で装着された外筒部と、
     前記外筒部を、少なくとも周方向一部に相当する領域において前記ライナー部の径方向にオフセットさせることが可能な調整手段とを有することを特徴とする一軸偏心ねじポンプ。
    A male threaded rotor,
    A stator through which the rotor can be inserted,
    The stator is
    A cylindrical liner portion having an inner peripheral surface of a female screw type;
    An outer cylinder portion arranged so as to surround the outer periphery of the liner portion and mounted in a non-adhered state on the liner portion;
    An uniaxial eccentric screw pump, comprising: an adjusting unit capable of offsetting the outer cylinder portion in a radial direction of the liner portion at least in a region corresponding to a part in a circumferential direction.
  2.  雄ねじ型のロータと、
     前記ロータを挿通可能なステータとを有し、
     前記ステータが、
     雌ねじ型の内周面を有する筒状のライナー部と、
     前記ライナー部が非接着状態で収容されるライナー部装着領域を形成する外筒部と、
     前記ライナー部装着領域を前記ライナー部の少なくとも周方向一部において前記ライナー部の径方向に拡大及び/又は縮小させることが可能な調整手段とを有することを特徴とする一軸偏心ねじポンプ。
    A male threaded rotor,
    A stator through which the rotor can be inserted,
    The stator is
    A cylindrical liner portion having an inner peripheral surface of a female screw type;
    An outer cylinder part forming a liner part mounting region in which the liner part is accommodated in a non-adhered state;
    An uniaxial eccentric screw pump characterized by comprising adjustment means capable of expanding and / or reducing the liner portion mounting region in the radial direction of the liner portion at least in a circumferential direction of the liner portion.
  3.  雄ねじ型のロータと、
     前記ロータを挿通可能なステータとを有し、
     前記ステータが、
     雌ねじ型の内周面を有する筒状のライナー部と、
     前記ライナー部が非接着状態で収容されるライナー部装着領域を形成する外筒部と、
     前記ライナー部の少なくとも周方向一部の領域に対して前記外筒部側から径方向に作用する押圧力を調整することにより、前記ライナー部装着領域を前記ライナー部の少なくとも周方向一部において前記ライナー部の径方向に拡大及び/又は縮小させることが可能な調整手段とを有することを特徴とする一軸偏心ねじポンプ。
    A male threaded rotor,
    A stator through which the rotor can be inserted,
    The stator is
    A cylindrical liner portion having an inner peripheral surface of a female screw type;
    An outer cylinder part forming a liner part mounting region in which the liner part is accommodated in a non-adhered state;
    By adjusting the pressing force acting in the radial direction from the outer tube part side on at least a part of the liner part in the circumferential direction, the liner part mounting region is at least partly in the circumferential direction of the liner part. A single-shaft eccentric screw pump, characterized by comprising adjusting means capable of being enlarged and / or reduced in the radial direction of the liner portion.
  4.  前記調整手段が、前記ライナー部と前記外筒部との間に介在及び/又は脱離させることが可能なシムによって構成されている請求項1~3のいずれかに記載の一軸偏心ねじポンプ。 The uniaxial eccentric screw pump according to any one of claims 1 to 3, wherein the adjusting means is configured by a shim that can be interposed and / or detached between the liner portion and the outer cylinder portion.
  5.  前記外筒部が、周方向に複数の外筒構成部材に分割可能なものであり、
     前記外筒構成部材が、軸線方向に延びるフランジ部を周方向両端部に有するものであり、
     前記調整手段が、周方向に隣接する前記外筒構成部材のフランジ部同士を連結する連結体によって構成されており、前記フランジ部同士の間隔を調整可能なものであることを特徴とする請求項1~4のいずれかに記載の一軸偏心ねじポンプ。
    The outer cylinder part can be divided into a plurality of outer cylinder constituent members in the circumferential direction,
    The outer cylinder constituent member has flange portions extending in the axial direction at both circumferential ends,
    The said adjustment means is comprised by the coupling body which connects the flange parts of the said outer cylinder structural member adjacent to the circumferential direction, and can adjust the space | interval of the said flange parts. 5. A uniaxial eccentric screw pump according to any one of 1 to 4.
  6.  前記連結体が、前記フランジ部を挟持する挟持部材によって構成されていることを特徴とする請求項5に記載の一軸偏心ねじポンプ。 The uniaxial eccentric screw pump according to claim 5, wherein the coupling body is constituted by a clamping member that clamps the flange portion.
  7.  雄ねじ型のロータと、
     前記ロータを挿通可能なステータとを有し、
     前記ステータが、
     雌ねじ型の内周面を有する筒状のライナー部と、
     前記ライナー部の外周を包囲するように配され、前記ライナー部に対して非接着状態で装着された外筒部とを有し、
     前記ライナー部の少なくとも周方向一部であって、前記ライナー部の軸線方向に延びる領域において、前記ライナー部と前記外筒部との間にシムを介在及び/又は脱離させることが可能であることを特徴とする一軸偏心ねじポンプ。
    A male threaded rotor,
    A stator through which the rotor can be inserted,
    The stator is
    A cylindrical liner portion having an inner peripheral surface of a female screw type;
    An outer cylinder portion that is arranged so as to surround the outer periphery of the liner portion, and is attached to the liner portion in a non-adhesive state;
    A shim can be interposed and / or detached between the liner part and the outer cylinder part in at least a part of the liner part in the circumferential direction and extending in the axial direction of the liner part. A uniaxial eccentric screw pump characterized by that.
  8.  雄ねじ型のロータと、
     前記ロータを挿通可能なステータとを有し、
     前記ステータが、
     雌ねじ型の内周面を有する筒状のライナー部と、
     前記ライナー部の外周を包囲するように配され、前記ライナー部に対して非接着状態で装着された外筒部とを有し、
     前記外筒部が、周方向に複数の外筒構成部材に分割可能なものであり、
     前記外筒構成部材が、
     軸線方向に延びるフランジ部を周方向両端部に有し、
     周方向に隣接する前記外筒構成部材のフランジ部同士を連結体によって連結することにより前記外筒部を形成可能なものであり、
     前記連結体が、前記フランジ部同士の間隔を調整可能なものであることを特徴とする一軸偏心ねじポンプ。
    A male threaded rotor,
    A stator through which the rotor can be inserted,
    The stator is
    A cylindrical liner portion having an inner peripheral surface of a female screw type;
    An outer cylinder portion that is arranged so as to surround the outer periphery of the liner portion, and is attached to the liner portion in a non-adhesive state;
    The outer cylinder part can be divided into a plurality of outer cylinder constituent members in the circumferential direction,
    The outer cylinder constituent member is
    Has flanges extending in the axial direction at both circumferential ends,
    The outer cylinder part can be formed by connecting flange parts of the outer cylinder constituent members adjacent to each other in the circumferential direction by a connecting body,
    The uniaxial eccentric screw pump, wherein the connecting body is capable of adjusting a distance between the flange portions.
  9.  連結体が、フランジ部を挟持する挟持部材によって構成されていることを特徴とする請求項8に記載の一軸偏心ねじポンプ。 The uniaxial eccentric screw pump according to claim 8, wherein the coupling body is constituted by a clamping member that clamps the flange portion.
  10.  前記ライナー部の両端部に、径方向外側に向けて突出した鍔状部が設けられており、
     前記鍔状部の間に前記外筒部が配され、前記鍔状部に対して前記外筒部の端部が当接していることを特徴とする請求項1~9のいずれかに記載の一軸偏心ねじポンプ。
    At both ends of the liner portion, a hook-like portion protruding outward in the radial direction is provided,
    10. The outer cylinder portion is disposed between the flange portions, and an end portion of the outer cylinder portion is in contact with the flange portions. Uniaxial eccentric screw pump.
  11.  前記ステータの一端側が接続されるエンドスタッドと、
     前記ステータの他端側が接続されるポンプケーシングと、
     前記エンドスタッド及び前記ポンプケーシングを連結するステーボルトとを有し、
     前記エンドスタッド及び/又はポンプケーシングに、前記ステーボルトと螺合可能なナット部が設けられており、
     前記ステーボルトと前記ナット部とを相対的に回動させることにより、エンドスタッド及びポンプケーシングの間隔を変化させることが可能であることを特徴とする請求項1~10のいずれかに記載の一軸偏心ねじポンプ。
    An end stud to which one end of the stator is connected;
    A pump casing to which the other end of the stator is connected;
    A stay bolt for connecting the end stud and the pump casing;
    The end stud and / or the pump casing is provided with a nut portion that can be screwed with the stay bolt,
    The uniaxial shaft according to any one of claims 1 to 10, wherein an interval between the end stud and the pump casing can be changed by relatively rotating the stay bolt and the nut portion. Eccentric screw pump.
  12.  前記ライナー部の外形が多角形状であることを特徴とする請求項1~11のいずれかに記載の一軸偏心ねじポンプ。 The uniaxial eccentric screw pump according to any one of claims 1 to 11, wherein an outer shape of the liner portion is a polygonal shape.
  13.  前記外筒部が前記ライナー部の外形に沿う形状に屈曲していることを特徴とする請求項12に記載の一軸偏心ねじポンプ。
     
    The uniaxial eccentric screw pump according to claim 12, wherein the outer cylinder portion is bent into a shape along the outer shape of the liner portion.
PCT/JP2011/080135 2010-12-27 2011-12-26 Uniaxial eccentric screw pump WO2012090968A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11853739.8A EP2660471A4 (en) 2010-12-27 2011-12-26 Uniaxial eccentric screw pump
CN201180063149.9A CN103282664B (en) 2010-12-27 2011-12-26 uniaxial eccentric screw pump
KR1020137019897A KR101890001B1 (en) 2010-12-27 2011-12-26 Uniaxial eccentric screw pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010290366A JP5821058B2 (en) 2010-12-27 2010-12-27 Uniaxial eccentric screw pump
JP2010-290366 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012090968A1 true WO2012090968A1 (en) 2012-07-05

Family

ID=46383068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080135 WO2012090968A1 (en) 2010-12-27 2011-12-26 Uniaxial eccentric screw pump

Country Status (5)

Country Link
EP (1) EP2660471A4 (en)
JP (1) JP5821058B2 (en)
KR (1) KR101890001B1 (en)
CN (1) CN103282664B (en)
WO (1) WO2012090968A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107709779A (en) * 2015-12-25 2018-02-16 兵神装备株式会社 Uniaxial eccentric screw pump
US11486390B2 (en) * 2020-04-21 2022-11-01 Roper Pump Company, Llc Stator with modular interior

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY186832A (en) * 2013-10-29 2021-08-24 Heishin Ltd Uniaxial eccentric screw pump
JP6349565B2 (en) * 2014-01-28 2018-07-04 兵神装備株式会社 Uniaxial eccentric screw pump
CN105370563B (en) * 2014-08-19 2018-08-21 中联重科股份有限公司 A kind of screw pump
US20170246602A1 (en) * 2014-10-07 2017-08-31 Access Business Group International Llc Personal formulation device
DE102015112248A1 (en) * 2015-01-29 2016-08-04 Netzsch Pumpen & Systeme Gmbh Eccentric screw pump and method for adjusting the operating state of an eccentric screw pump
DE102015104300B4 (en) * 2015-03-23 2016-12-01 Pumpenfabrik Wangen Gmbh Eccentric screw pump and method for removing a stator from such an eccentric screw pump
DE102015007521B4 (en) * 2015-06-12 2017-01-12 Netzsch Pumpen & Systeme Gmbh Pump housing for an eccentric screw pump and eccentric screw pump equipped therewith
DE102017126002B3 (en) * 2017-11-07 2019-02-14 Seepex Gmbh Cavity Pump
EP3767105B1 (en) * 2019-07-16 2021-12-29 Arnold Jäger Holding GmbH Stator for a helical gear pump
JP6824537B1 (en) * 2019-09-24 2021-02-03 兵神装備株式会社 Uniaxial eccentric screw pump

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022310A (en) * 1973-06-19 1975-03-10
JPS58122384A (en) * 1982-01-14 1983-07-21 ユ−ジン・エフ・コペツキ− Variable-pressure pushing pump
JPH0287988U (en) * 1988-12-26 1990-07-12
JPH04104185U (en) * 1991-02-13 1992-09-08 株式会社イワキ screw pump
JP2005344587A (en) 2004-06-02 2005-12-15 Heishin Engineering & Equipment Co Ltd Uniaxial eccentric screw pump
JP2009536703A (en) * 2006-05-11 2009-10-15 ネッチュ−モーノプンペン ゲーエムベーハー Stator casing for eccentric worm pump

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2796029A (en) * 1955-08-15 1957-06-18 Robbins & Myers Helical gear pump with adjustable stator compression
US2874643A (en) * 1957-10-15 1959-02-24 Robbins & Myers Helical gear pump with stator compression
DE2027993C3 (en) * 1970-06-06 1978-11-30 Allweiler Ag, 7760 Radolfzell Drive joint for an eccentric screw pump
FR2415216A1 (en) * 1976-11-25 1979-08-17 Potard Germain Screw pump with flexible stator - has curved pressure plates adjusted by screws to compress stator when worn
US4313717A (en) * 1979-10-04 1982-02-02 Kopecky Eugene F Adjustable pressure extrusion pump
HU204116B (en) * 1989-01-23 1991-11-28 Hidromechanika Szivattyu Es An Arrangement for the standing part of eccentric worm pump
GB9303507D0 (en) * 1993-02-22 1993-04-07 Mono Pumps Ltd Progressive cavity pump or motors
DE19811889A1 (en) * 1998-03-18 1999-09-30 Usd Formteiltechnik Gmbh Clamp
DE102005042559A1 (en) * 2005-09-08 2007-03-15 Netzsch-Mohnopumpen Gmbh stator
JP2007303412A (en) * 2006-05-12 2007-11-22 Heishin Engineering & Equipment Co Ltd Uniaxial eccentric screw-pump
JP5267153B2 (en) * 2009-01-22 2013-08-21 兵神装備株式会社 Coated stator for uniaxial eccentric screw pump and uniaxial eccentric screw pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022310A (en) * 1973-06-19 1975-03-10
JPS58122384A (en) * 1982-01-14 1983-07-21 ユ−ジン・エフ・コペツキ− Variable-pressure pushing pump
JPH0287988U (en) * 1988-12-26 1990-07-12
JPH04104185U (en) * 1991-02-13 1992-09-08 株式会社イワキ screw pump
JP2005344587A (en) 2004-06-02 2005-12-15 Heishin Engineering & Equipment Co Ltd Uniaxial eccentric screw pump
JP2009536703A (en) * 2006-05-11 2009-10-15 ネッチュ−モーノプンペン ゲーエムベーハー Stator casing for eccentric worm pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2660471A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107709779A (en) * 2015-12-25 2018-02-16 兵神装备株式会社 Uniaxial eccentric screw pump
CN107709779B (en) * 2015-12-25 2019-12-17 兵神装备株式会社 Single-shaft eccentric screw pump
US11486390B2 (en) * 2020-04-21 2022-11-01 Roper Pump Company, Llc Stator with modular interior

Also Published As

Publication number Publication date
KR20130131421A (en) 2013-12-03
CN103282664B (en) 2017-02-15
JP2012137038A (en) 2012-07-19
CN103282664A (en) 2013-09-04
JP5821058B2 (en) 2015-11-24
EP2660471A4 (en) 2015-01-21
EP2660471A1 (en) 2013-11-06
KR101890001B1 (en) 2018-08-20

Similar Documents

Publication Publication Date Title
JP5821058B2 (en) Uniaxial eccentric screw pump
JP6327758B2 (en) Fittings for joining pipe elements
EP2273164B1 (en) Split mechanical seal
JP4686088B2 (en) Split mechanical seal
JPH04231775A (en) Divided mechanical end-face seal
EP2743510A1 (en) Jig used in rotary machine and method for transporting rotary machine
JP5605776B2 (en) Uniaxial eccentric screw pump
EP1526311A1 (en) Mechanical seal
CN105980708B (en) The method of the end fitting of pipe for being accommodated by cavity and in the cavity installing pipe
WO2017086345A1 (en) Shaft coupling and pump device
EP3473856B1 (en) Dismounting device for progressive cavity pumps
US20160201670A1 (en) Angular Synchronization of Stationary and Orbiting Plate Scroll Blades in a Scroll Pump Using a Metallic Bellows
KR20230133200A (en) Uniaxial eccentric screw pump
CN116733741A (en) Single-shaft eccentric screw pump
CN115388002A (en) Magnetic induction impeller gear pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011853739

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137019897

Country of ref document: KR

Kind code of ref document: A