WO2012090960A1 - Sample detection chip, sensor using same, and sample detection method - Google Patents

Sample detection chip, sensor using same, and sample detection method Download PDF

Info

Publication number
WO2012090960A1
WO2012090960A1 PCT/JP2011/080121 JP2011080121W WO2012090960A1 WO 2012090960 A1 WO2012090960 A1 WO 2012090960A1 JP 2011080121 W JP2011080121 W JP 2011080121W WO 2012090960 A1 WO2012090960 A1 WO 2012090960A1
Authority
WO
WIPO (PCT)
Prior art keywords
droplet
electrode
detection
specimen
sample
Prior art date
Application number
PCT/JP2011/080121
Other languages
French (fr)
Japanese (ja)
Inventor
恭子 瀬尾
スンジン チョ
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012090960A1 publication Critical patent/WO2012090960A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays

Definitions

  • the present invention relates to a sample detection sensor for separating and detecting only a specific trace substance contained in a liquid, and more particularly to a sample detection sensor using droplets.
  • Micro-TAS Micro-Total Analysis Systems
  • Lab-on-a-Chip Lab-on-a-Chip
  • Patent Document 1 discloses a microchannel device including a substrate portion, a photocurable resin channel, and a light-transmitting cover substrate. An uncured resin is provided between the substrate portion and the cover substrate. There has been proposed a microchannel device in which microchannels are integrally formed by forming a channel pattern by photocuring reaction after filling. Further, Patent Document 2 proposes an enzyme immunoassay chip in which an enzyme immunoassay system for measuring a change in color by coloring a substrate solution using an enzyme as a label is integrated in a microchip. .
  • a transport device using droplets that do not diffuse has advantages such as a small amount of a test reagent and a shortened reaction time. If the application is limited to a reaction or detection that is not immobilized, and the ligand is immobilized, there is a risk of impeding the transport of the droplet.
  • FIG. 13 is a diagram showing a contact angle between a droplet, a substrate, a gas, or a liquid that does not mix with the droplet.
  • the droplet 90 includes an interfacial tension 93 between the droplet 90 and the substrate 91, an interfacial tension 94 between the droplet 90 and the liquid 92 that does not mix with the gas or the droplet, a substrate 91, and the gas or the droplet.
  • the three forces of interfacial tension 95 between the liquid 92 and the unmixed liquid 92 are balanced and formed.
  • the fixing unit and the detection unit constituting the specimen detection device are not in a surface state suitable for transporting the droplet.
  • the surface state depends on each material. In the case where the contact angle of the fixed part or the detection part is lower than the other flow path surfaces, that is, in a surface state in which the liquid droplets easily get wet with respect to the substrate, the liquid droplet 90 tends to stay in place and is difficult to transport.
  • the present invention has been made in view of each of the above-mentioned problems, and its purpose is to immobilize while suppressing a decrease in sensitivity while preventing diffusion between sequentially transported solutions (droplets).
  • An object of the present invention is to provide a sample detection chip capable of detecting a sample contained in a droplet, a sensor using the same, and a sample detection method, while preventing the transport stability from being hindered by the formed ligand. .
  • a sample detection chip for detecting a sample suspended in a solvent, and a transport electrode for transporting a droplet of the solvent
  • a transfer substrate having a surface, a counter substrate facing the transfer substrate, a flow path formed between the transfer substrate and the counter substrate through which the droplets pass, and a part of the flow path And a fixing part on which a ligand is fixed, and the specimen is detected by the liquid droplets staying in the fixing part.
  • the specimen detection method of the present invention is provided in a part of the flow path, in which a droplet of the solvent in which the specimen is suspended is electrically controlled and conveyed in the flow path.
  • a sample detection method comprising: a step of causing the droplet to stay in a fixed part on which a ligand is fixed and reacting the sample with the ligand; and a step of detecting the sample,
  • the flow path is formed between a transport substrate having a transport electrode for transporting the droplets of the solvent and a counter substrate facing the transport substrate, and the droplets are transferred to the transport substrate.
  • the droplets are transported such that the area in contact with the fixed portion is larger than the area where the fixed portion faces the flow path.
  • the stability of transport is prevented from being hindered by the immobilized ligand while suppressing the decrease in sensitivity. Meanwhile, the specimen contained in the droplet can be detected.
  • the decrease in sensitivity is suppressed while the diffusion of the solution at the interface between different solutions (droplets) that are sequentially fed is prevented, and the conveyance is stabilized by the immobilized ligand. Therefore, it is possible to realize a sensor that can prevent the inhibition of the sex and can detect the specimen contained in the droplet.
  • FIG. 1 is a cross-sectional view of a specimen detection sensor according to Embodiment 1.
  • FIG. 3 is a cross-sectional view of the specimen detection sensor when a droplet is sent to the specimen detection sensor according to the first embodiment.
  • FIG. 3 is a perspective view of the sample detection sensor when a droplet is sent to the sample detection sensor according to the first embodiment.
  • FIG. 3 is a plan view of the specimen detection sensor when a droplet is sent to the specimen detection sensor according to the first embodiment. It is the figure which showed the relationship between a droplet, the electrode for conveyance, a fixing
  • FIG. 10 is a cross-sectional view of a sample detection sensor when a droplet is sent to the sample detection sensor according to the second embodiment.
  • FIG. 10 is a cross-sectional view of a sample detection sensor when a droplet is sent to the sample detection sensor according to the second embodiment.
  • FIG. 9 is a cross-sectional view of a sample detection sensor when a droplet is sent to the sample detection sensor according to a third embodiment.
  • FIG. 10 is a cross-sectional view of a sample detection sensor when a droplet is sent to the sample detection sensor according to a fourth embodiment. It is a schematic plan view of IDT. It is a figure explaining the contact angle of a droplet, a board
  • the specific protein is measured by immunoassay.
  • adiponectin involved in the development of metabolic syndrome was used as the specific protein, and the concentration of the specific protein was measured by an electrochemical measurement method.
  • the present invention is not limited to these configurations.
  • FIG. 1 is a cross-sectional view of a sample detection sensor 1 according to the present embodiment.
  • electrowetting is used as a method for transporting droplets.
  • the sample detection sensor 1 includes a transport substrate 11, a transport electrode 12, a dielectric film 13, a hydrophobic film 14 a, a hydrophobic film 14 b, a substrate 15 without a transport electrode, a detection electrode 16, and a fixing unit 17. Composed.
  • “droplet” means a liquid separated by gas or liquids having different polarities.
  • the volume of each droplet is not particularly limited.
  • the volume of each droplet may be 1 to 1000 pL, 1 to 1000 nL, 1 to 1000 mL, or more.
  • a glass substrate or a Si substrate can be used as the transfer substrate 11 and the substrate 15 having no transfer electrode.
  • a plurality of transfer electrodes 12 are arranged on the transfer substrate 11, and a voltage is applied to the transfer electrodes 12 to transfer the droplets.
  • a dielectric film 13 is formed on the transfer electrode 12.
  • the dielectric film 13 is made of silicon nitride, silicon oxide, tantalum oxide, titanium oxide, barium titanate, or the like, and has dielectric properties.
  • a hydrophobic film 14a is formed on the dielectric film 13, and a hydrophobic film 14b is formed so as to face the hydrophobic film 14a.
  • a space between the hydrophobic film 14a and the hydrophobic film 14b is a space for transporting droplets.
  • the hydrophobic film 14a and the hydrophobic film 14b are made of, for example, a fluorine-based resin and have a low affinity for water, and the hydrophobic film 14a and the hydrophobic film 14b are made of the same material even if they are the same material. Nearly different materials may be used.
  • a substrate 15 having no transfer electrode is formed on the hydrophobic film 14b.
  • a fixed portion 17 and a detection electrode 16 are arranged on a substrate 15 that does not have a transfer electrode.
  • the detection electrode 16 is generally composed of two electrodes, three electrodes, or a plurality of electrodes having different shapes, and the plurality of electrodes collectively function as one detection electrode 16.
  • the detection electrode 16 can detect, for example, that a specimen is bound to a ligand described later.
  • As the electrode material gold, platinum or the like is mainly used.
  • the detection electrode 16 is directly formed on the substrate 15 that does not have a transport electrode, because it is necessary to apply a resist once before the detection electrode 16 is formed.
  • the detection electrode 16 is formed on the substrate 15 having no transfer electrode, and thereafter, only the portion of the detection electrode 16 is removed from the hydrophobic film 14b. In this way it is formed.
  • a fixing part 17 is disposed on at least a part of the detection electrode 16, and a ligand that reacts with the specimen is fixed to the fixing part 17.
  • FIG. 2 shows a state in which the droplet 2 is fed to the specimen detection sensor 1 as a sample.
  • the periphery of the droplet 2 is filled with a gas or liquid that does not mix with the droplet 2.
  • a nonpolar solvent for the liquid around the droplet 2 so as not to mix with this.
  • a hydrocarbon-based material such as dodecane, silicone oil, a fluorine-based material, or the like can be used.
  • water, alcohol (for example, ethanol, methanol), etc. can be used.
  • a nonpolar solvent as the droplet 2 and a polar solvent as the liquid around the droplet 2 that does not mix with the droplet 2.
  • a solvent may be appropriately selected according to the property of the specimen to be detected.
  • inert gas with low reactivity with a substance, such as nitrogen and argon can be used, for example. Alternatively, air may be used.
  • FIG. 3 is a perspective view of the sample detection sensor 1 of the present embodiment
  • FIG. 4 is a plan view of the sample detection sensor 1 of the present embodiment.
  • the substrate 15 having no transfer electrode is omitted.
  • the transport electrodes 12 are connected to the switches SW1, SW2, and SW3, respectively, and the voltage application state to the individual transport electrodes 12 can be controlled by turning the switches on and off. Then, the droplet 2 can be moved by controlling the voltage application state to the individual transport electrodes 12.
  • the number of switches is not particularly limited, and a necessary number can be provided.
  • the switch SW2 is in a connected state.
  • the switch SW2 is opened and the switch SW3 is connected.
  • the voltage is applied until the movement of the droplet 2 is observed, and when the threshold voltage is exceeded, the droplet 2 moves to the next transport electrode. By repeating this, the droplet 2 is moved to the target location.
  • the voltage application method is not limited to such a direct current method, and can also be performed by an alternating current method.
  • the droplet 2 can be transported not only by the above-described potential application method but also by the potential change.
  • FIG. 5A and 5B are diagrams showing the relationship between the droplet 2 and the transport electrode 12.
  • the shape of the transfer electrode 12 may be a shape as shown in FIG. 5B, or any other shape.
  • FIG. 5A the surface 2a where the droplet 2 is in contact with the hydrophobic film 14a or the hydrophobic film 14b, the detection electrode 16 and the fixing portion 17 is shown in FIG.
  • FIG. 5B When viewed from the direction of the arrow, that is, almost from the top, as shown in FIG. 5B, a plurality of transport electrodes 12 are always applied along the traveling direction of the droplet 2.
  • the surface 2a is on the transfer electrodes 12a, 12a ', 12b, 12b'.
  • the transport electrode 12 is formed of a plurality of electrodes like the transport electrodes 12a and 12a ', these are regarded as one transport electrode. Therefore, as viewed from above (b) of FIG. 5, the surface 2 a covers the two electrodes. As in this embodiment, by setting the transport electrode 12 and the droplet 2 in this way, the droplet 2 is transported.
  • a droplet control means (not shown) may be provided to control the transport amount of the droplet 2.
  • the specific configuration of the droplet control unit is not particularly limited as long as it can control the transport amount of the droplet 2.
  • the droplet control means may introduce a predetermined amount of the droplet 2 into the flow path between the hydrophobic film 14a and the hydrophobic film 14b.
  • the droplet control means may include a droplet preparation unit for forming a droplet having a predetermined volume and a pump for introducing the droplet having a predetermined volume into the flow path. It is not limited to the configuration.
  • the volume of each droplet can be set as appropriate based on the size of the transfer electrode 12 and the arrangement interval of the transfer electrodes 12.
  • the above-described droplet control means can be manufactured by combining known configurations.
  • it can be set by determining the space (height) in which the droplets 2 are transported by adjusting the arrangement of the transport substrate 11 and the substrate 15 having no transport electrodes. In this case, in order to make the contact area of the droplet 2 constant, it is preferable to keep the distance between the transfer substrate 11 and the substrate 15 having no transfer electrode in the flow path constant.
  • the detection electrode 16 and the fixing portion 17 are manufactured on the substrate 15 side having no transfer electrode, but may be manufactured on the transfer substrate 11 side. Moreover, one detection electrode 16 and the fixing
  • the detection electrode 16 and the fixed part 17 are used to smoothly transport the droplet 2. Is preferably smaller than the transfer electrode 12. Further, the detection electrode 16 and the fixing portion 17 are preferably provided smaller than the surface 2a where the droplet 2 shown in FIG. 5A is in contact with the hydrophobic film 14a or the hydrophobic film 14b. . Thereby, for example, the ligand and the specimen can be reacted efficiently.
  • Electrochemical measurement methods include a two-electrode method and a three-electrode method.
  • a three-electrode system is desirable for accurate potential measurement.
  • FIG. 6 shows the detection electrode 16 and the fixing portion 17 in the case of the three-electrode system.
  • the detection electrode 16 includes a counter electrode 161, a working electrode 162, and a reference electrode 163, which are electrochemical measurement electrodes.
  • the counter electrode 161 needs to emit (or receive) electrons at the same rate as the working electrode 162 receives (or emits) electrons.
  • the reference electrode 163 measures and controls the potential of the working electrode 162, and for example, an Ag / AgCl electrode can be used.
  • the fixing portion 17 is formed by physically adsorbing a ligand on the working electrode 162 and fixing it.
  • FIG. 6 (b) is a plan view of the three-electrode detection electrode 16 and the fixing portion 17 as viewed from the direction of the arrow in FIG. 5 (a).
  • FIG. 6C is an enlarged plan view of the detection electrode 16 and the fixing portion 17.
  • the counter electrode 161, the working electrode 162, the reference electrode 163, A region obtained by combining the surface 164 and the surface 165 can be defined as a detection electrode region 16a.
  • the detection electrode region 16a including the surface sandwiched between the respective electrodes is used as the droplet 2 in the hydrophobic film 14a or the hydrophobic film 14b. It is preferable to be provided smaller than the surface 2a in contact with the surface. By doing so, for example, the specimen almost covers the ligand, and the specimen and the ligand can be reacted efficiently. Similarly, the detection electrode region 16a is preferably provided smaller than the transfer electrode 12.
  • FIG. 7 is a flowchart showing an example of a procedure for detecting a specimen using the ELISA method. “S” represents each step in the flowchart.
  • a ligand that is a primary antibody is immobilized in advance on the immobilization unit 17 (S71).
  • a primary antibody solution MAB 10651 manufactured by R & D System
  • MAB 10651 manufactured by R & D System
  • the ligand is immobilized on the working electrode 162, but the present invention is not limited to this.
  • the fixing part 17 be close to the working electrode 162 in order to cause the electrochemical substance generated by the reaction in the fixing part 17 to undergo a redox reaction at the working electrode.
  • the detection electrode 16 a general one can be used.
  • the detection method uses electrochemical measurement here, an enzyme and a substrate that generate an electrochemical substance in an enzyme substrate reaction performed in a later step are selected, and the enzyme is pre-labeled with a secondary antibody. deep.
  • the enzyme is not particularly limited, and a desired enzyme can be appropriately used.
  • ALP Alkaline Phosphatase
  • glucose oxidase or the like
  • pAPP p-aminophenyl phosphate
  • potassium ferricyanide or the like
  • electrochemically active substance produced by the enzyme substrate reaction include pAP (paraaminophenol), potassium ferrocyanide, ferrocene, and ferrocene derivatives, or pAP, potassium ferrocyanide, ferrocene, and ferrocene derivatives.
  • ALP was used as an example of an enzyme
  • pAPP was used as a substrate.
  • a liquid 2 (a liquid droplet obtained by reacting an enzyme-labeled secondary antibody with an antigen) in which an adiponectin (R & D System 1065AP) solution and an enzyme-labeled secondary antibody are mixed in advance is used as a sample.
  • the droplet is conveyed to the fixing unit 17 and the primary antibody and the antigen are sufficiently reacted with each other by antigen-antibody reaction, and then the droplet 2 is removed (S74).
  • the specimen is detected by retaining the droplets in the fixing unit 17.
  • the residence time is not particularly limited as long as the residence time is long enough for the specimen and the ligand to react (for example, bind).
  • the antigen and the secondary antibody are mixed in advance, but these may be sequentially conveyed as separate liquids. In either case, it is possible to detect the analyte in the subsequent process, but the process can be simplified by using a droplet that has been mixed with an antigen-labeled secondary antibody in advance and then reacted. Can be
  • a Tris buffer solution is transported to the fixing part 17 as a washing solution to remove unbound proteins and the like (S75).
  • the solution used for washing is not limited to the Tris buffer, and any solution may be used as long as it does not interfere with the detection of the specimen.
  • the substrate solution containing pAPP is conveyed to the fixing unit 17 to cause an enzyme substrate reaction (S76).
  • the generated electrochemical substance pAP (p-Aminophenol) is detected by the detection electrode 16, and the dependence of the peak current value on the adiponectin concentration is measured (S77).
  • a method for measuring the sample amount for example, a method in which a calibration curve is prepared in advance and the sample amount is calculated based on the standard curve is generally used.
  • the desired specimen can be detected from the complex substance contained in the sample by the procedure as described above.
  • the immobilization of a ligand and a ligand is not limited to those listed here, and known ones can be used.
  • the ligand can be used as long as it is a substance capable of reacting with (for example, binding to) the sample.
  • a peptide, DNA, aptamer, MIP (Molecular Imprinted Polymer), etc. can be used. is there.
  • a chemical bond for example, a covalent bond, a hydrophobic bond, an ionic bond, a hydrogen bond
  • a comprehensive method, or the like can be used to immobilize the ligand.
  • a known method such as a DNA assay using DNA hybridization can be used as a detection method for detecting the specimen, and various signals used in these methods can be used.
  • Detection means can be used. For example, electrochemical detection method, colorimetric detection method, fluorescence detection method and the like. When an optical detection method is used for detection, it is necessary to select a transparent substrate for the substrate 15 that does not have a transport electrode. Next, detection using a fluorescence method will be described.
  • the specimen detection sensor itself does not have a detection electrode, and the specimen is detected using an external detection device or the like, or the detection section is separated from the fixed section. Different.
  • FIG. 8 is a cross-sectional view when the sample droplet 2 is fed to the specimen detection sensor 1a according to the present embodiment.
  • electrowetting is used as a method of transporting the droplet 2.
  • a plurality of transfer electrodes 12 are arranged on the transfer substrate 11, a dielectric film 13 and a hydrophobic film 14 a are sequentially formed thereon, and a ligand is fixed as a fixing portion 17 on the hydrophobic film 14 a. .
  • a hydrophobic film 14b is formed on the flow path side of the substrate 15 having no transfer electrode.
  • a droplet 2 is disposed between the transfer substrate 11 and the substrate 15 having no transfer electrode. The relationship between the droplet 2 and the transport electrode 12 is the same as that described in the first embodiment.
  • the fixing portion 17 is preferably provided smaller than the transport electrode 12.
  • the fixing portion 17 is preferably provided smaller than the surface 2a where the droplet 2 shown in FIG. 5A is in contact with the hydrophobic film 14a or the hydrophobic film 14b. This is for efficiently reacting the ligand with the specimen.
  • the fixing portion 17 is manufactured on the side of the transfer substrate 11, but may be manufactured on the side of the substrate 15 that does not have the transfer electrode.
  • the detection device 26 for example, general fluorescence detection can be used. In this case, it is possible to detect only a desired substance by entering the excitation light 31 into the droplet 2 and detecting the fluorescence 32 emitted from the droplet 2. Note that the detection device 26 is not limited to the above configuration, and a configuration based on an electrochemical detection method, a colorimetric detection method, a fluorescence detection method, or the like can be used as appropriate.
  • the immobilization part 17 is formed by immobilizing a ligand (for example, an antibody) by physical adsorption. Specifically, detection can be performed as follows using the procedure shown in FIG. 7 using an antibody as a ligand and an antigen as a specimen.
  • a ligand for example, an antibody
  • a ligand that is a primary antibody is immobilized in advance on the immobilization unit 17 (S71).
  • blocking is performed to prevent non-specific adsorption (S72). This is because not all of the fixing part 17 is covered with the ligand without a gap, and there is a gap, so that it is necessary to prevent nonspecific adsorption to the gap.
  • a blocking agent BSA, casein, etc. are used, for example.
  • the detection method uses fluorescence measurement
  • an enzyme and a substrate that generate a fluorescent substance are selected in an enzyme substrate reaction performed in a later step, and the enzyme is labeled in advance with a secondary antibody.
  • HRP horseradish peroxidase
  • ADHP 10-acetyl-3,7-dihydroxyphenoxyzine
  • QuantaBlu registered trademark
  • peroxidase or the like can be used as the enzyme
  • Amplex manufactured by Invitrogen
  • Invitrogen or the like can be used as the substrate.
  • a droplet 2 (a droplet obtained by reacting an enzyme-labeled secondary antibody with an antigen) in which a sample solution containing an antigen as a specimen and an enzyme-labeled secondary antibody are mixed in advance is conveyed to the fixing unit 17. To do. After the primary antibody and the antigen are sufficiently reacted with each other, the droplet is removed (S74).
  • the substrate solution is conveyed to the fixing unit 17 to cause an enzyme substrate reaction. If necessary, the enzyme substrate reaction may be stopped at this time by using an enzyme substrate reaction stop agent (S76).
  • S76 enzyme substrate reaction stop agent
  • the amount of specimen is measured by irradiating the fluorescent material generated by the enzyme substrate reaction with the excitation light 31 and detecting the resulting fluorescence 32 (S77).
  • the configuration is such that the excitation light 31 is emitted from the upper part of the fixed portion 17 and the fluorescence 32 is detected.
  • the configuration of FIG. 8 is a configuration based on fluorescence analysis, but a configuration based on general colorimetric analysis is also possible.
  • the chromogenic substrate OPD o-phenylenediamine
  • TMB 3,3 ′, 5,5′-tetramethyl-benzidine
  • the HRP enzyme can be used for the HRP enzyme to know the sample amount from the absorbance. it can.
  • a chromogenic substrate TMB, OPD, ABTS (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) can be used as an enzyme for peroxidase.
  • the sample detection sensor 1a has been described as having a configuration that does not include a detection unit.
  • the detection unit 16 ' may be provided separately from the fixing unit 17, as shown in FIG.
  • the detection means 16 ′ may be provided outside the flow path, for example, adjacent to the substrate 15 having no transfer electrode.
  • This embodiment is different from the first and second embodiments in that the transport electrodes are arranged on both upper and lower sides with the droplet 2 interposed therebetween.
  • the transport electrodes are arranged on both upper and lower sides with the droplet 2 interposed therebetween.
  • FIG. 10 is a cross-sectional view of the sample droplet 2 fed to the specimen detection sensor 1c according to the present embodiment.
  • electrowetting is used as a method of transporting the droplet 2.
  • a plurality of transfer electrodes 12 are arranged on the transfer substrate 11, a dielectric film 13 and a hydrophobic film 14 a are sequentially formed thereon, and a ligand is fixed as a fixing portion 17 on the hydrophobic film 14 a.
  • an upper electrode 120 and a hydrophobic film 14b are sequentially formed on the upper substrate 18 toward the flow path.
  • a droplet 2 is disposed between the transfer substrate 11 and the upper substrate 18.
  • the relationship between the droplet 2 and the transport electrode 12 is the same as that described in the first embodiment.
  • the fixing portion 17 is preferably provided smaller than the transfer electrode 12.
  • the fixing portion 17 is preferably provided smaller than the surface 2a where the droplet 2 shown in FIG. 5A is in contact with the hydrophobic film 14a or the hydrophobic film 14b. This is for efficiently reacting the ligand with the specimen.
  • the detection electrode 16 ′ is provided separately from the fixing portion 17 and can be provided outside the flow path, for example, along with the upper substrate 18.
  • the fixing portion 17 is manufactured on the transfer substrate 11 side, but may be manufactured on the upper substrate 18 side.
  • the voltage is applied between the transfer electrode 12 formed on the transfer substrate 11 and the upper electrode 120 formed on the upper substrate 18.
  • the upper electrode 120 is set to the ground potential, and a voltage is applied to the transfer electrode adjacent in the direction to be transferred.
  • the upper electrode 120 may be formed as one electrode or a plurality of electrodes.
  • the switch SW2 is in a connected state.
  • the switch SW2 is opened and the switch SW3 is connected.
  • the voltage is applied until the movement of the droplet 2 is observed, and when the threshold voltage is exceeded, the droplet 2 moves to the next transport electrode. By repeating this, the droplet 2 is moved to the target location.
  • the voltage application method is not limited to the direct current method, and can be performed by the alternating current method. Further, since the wettability changes according to the potential change on the substrate electrode, the droplet 2 can be transported not only by the above-described potential application method but also by applying the potential change.
  • the configuration described above includes the configuration in which the fixing portion 17 and the detection electrode 16 as shown in the first embodiment are provided at the same place, and the detection means 16 ′ described in the second embodiment is the present configuration. It is applicable to the structure detected by the detection apparatus 26, without including.
  • This embodiment is different from Embodiments 1 to 3 described above in that a droplet is transported using a surface acoustic wave (Surface Acoustic Wave).
  • a surface wave Surface Acoustic Wave
  • FIG. 11 is a cross-sectional view when the sample droplet 2 is fed to the specimen detection sensor 1d according to the present embodiment.
  • a piezoelectric film 19 and a transport electrode IDT (InterDigital Transducer) 20 are formed on the transport substrate 11 to excite surface waves.
  • the piezoelectric film 19 is made of, for example, LiNbO 3 and has a function of deforming when an electric field is applied.
  • the piezoelectric film 19 is not hydrophobic, it is desirable to provide a hydrophobic film on the piezoelectric film 19.
  • FIG. 12 is a plan view of the transfer electrode IDT20 as seen from the direction of the arrow in FIG.
  • the transfer electrode IDT 20 is a comb-shaped electrode as shown in FIG. 12, and a large electrode 202 is connected to the comb-shaped small electrode 201 so that a voltage can be applied collectively.
  • a voltage is applied from the large electrode 202 to the small electrode 201, a surface wave is excited by the small electrode 201.
  • a high frequency signal is applied to the transfer electrode IDT 20 formed on the piezoelectric film 19, an electric field is generated between the electrodes, a surface acoustic wave is excited, and the surface acoustic wave propagates on the piezoelectric film 19. .
  • the stability of the liquid feeding is prevented from being hindered by the influence of the immobilized ligand.
  • a sensor for detecting the specimen contained in the droplet could be realized.
  • the present invention can be configured as follows.
  • the transport electrode is a transport electrode that changes the wettability of the droplet, and the droplet is transported by changing the wettability of the droplet. Is preferred.
  • the transport electrode is a transport electrode for generating a surface wave, and the droplet is transported by the surface wave.
  • each area of the transport electrodes is larger than an area of the fixed portion.
  • the sample detection chip of the present invention it is preferable that at least a part of the flow path is covered with a hydrophobic film, and the fixing portion is not covered with the hydrophobic film.
  • the sample detection chip further includes droplet control means for controlling the amount of the droplets, and the droplet control means has an area where the droplets are in contact with the transport substrate.
  • the amount of the droplets is controlled to be larger than the area of the fixed portion.
  • the sample detection sensor of the present invention preferably includes the sample detection chip of the present invention and detection means for optically detecting the sample.
  • the sample detection sensor of the present invention preferably includes the sample detection chip of the present invention and at least one detection electrode for electrically detecting the sample.
  • the specimen detection sensor of the present invention it is preferable that at least a part of the flow path is covered with a hydrophobic film, and the fixing portion and the detection electrode are not covered with a hydrophobic film.
  • each area of the transport electrodes is larger than the areas of the detection electrodes and the fixing portion.
  • the sample detection sensor of the present invention includes the sample detection chip of the present invention, and the droplet control means disposed on the sample detection chip has an area where the droplet is in contact with the transfer substrate. It is preferable that the amount of the droplet is controlled so as to be larger than the area of the electrode and the fixed portion.
  • the specimen detection method of the present invention preferably includes a step of controlling the amount of the droplet.
  • the timing for performing the step of controlling the amount of droplets is not particularly limited, but can be performed, for example, before the step of transporting the inside of the flow path. More specifically, the step of controlling the amount of droplets may be a step of controlling the amount of droplets introduced into the flow path. This step can be performed by, for example, a pump for introducing a desired amount of droplets into the flow path.
  • the droplet is transported by changing the wettability of the droplet.
  • the droplet is transported by a surface wave in the transporting step.
  • the specimen is electrically detected using a detection electrode so that the area where the droplet contacts the transport substrate is larger than the areas of the fixed portion and the detection electrode.
  • the droplets are conveyed.
  • the detection electrode is preferably formed of at least a working electrode and a reference electrode.
  • the working electrode and the reference electrode are arranged so as to be in contact with the droplet simultaneously.
  • the working electrode and the reference electrode are provided at an interval that allows contact with the droplet at the same time.
  • the working electrode and the reference electrode can be provided such that there is a space between them so that they do not contact each other.
  • the width of the space and the distance between the working electrode and the reference electrode are not particularly limited as long as the working electrode and the reference electrode can be in contact with the droplet simultaneously.
  • the simultaneous contact means that there is a time for the droplets to contact the working electrode and the reference electrode at the same time in the process in which the droplets are transported in the flow path.
  • the detection electrode is preferably formed of a working electrode, a reference electrode, and a counter electrode.
  • the working electrode, the reference electrode, and the counter electrode are arranged so as to be in contact with the droplet simultaneously.
  • the working electrode, the reference electrode, and the counter electrode are provided at intervals such that they can be contacted simultaneously with the droplet. That is, the working electrode, the reference electrode, and the counter electrode can be provided such that a space is provided between them so that they do not contact each other.
  • the width of the space and the distance between the electrodes are not particularly limited as long as the working electrode, the reference electrode, and the counter electrode can be in contact with the droplet at the same time.
  • the simultaneous contact means that there is a time during which the droplet contacts the working electrode, the reference electrode, and the counter electrode at the same time in the process of transporting the droplet in the flow path. To do.
  • the present invention can be used in an analyzer for detecting a desired specimen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

In order to provide a sensor that detects a sample contained in a liquid droplet while suppressing a decrease in sensitivity and preventing diffusion between solutions (liquid droplets) that are conveyed in succession, a sample detection chip is used that detects a sample by means of a liquid droplet being retained at an immobilization section, and that is provided with: a conveyance substrate having a conveyance electrode; a facing substrate that faces the conveyance substrate; a duct that is formed between the conveyance substrate and the facing substrate; and an immobilization section that is provided to a portion of the duct and at which a ligand is immobilized.

Description

検体検出用チップ、それを用いたセンサ、及び検体検出方法Sample detection chip, sensor using the same, and sample detection method
 本発明は、液体中に含まれる特定の微量物質のみを分離、検出するための検体検出用センサに関し、特に、液滴を利用する検体検出用センサに関する。 The present invention relates to a sample detection sensor for separating and detecting only a specific trace substance contained in a liquid, and more particularly to a sample detection sensor using droplets.
 従来、環境や医療分野にて、サンプル中に含まれる複合物質から特定の物質(以下、検体と記す)を検出するために、さまざまな方法が用いられてきた。近年では、Micro-TAS(Micro-Total Analysis Systems)やラボチップ(Lab-on-a-Chip)と呼ばれる分析装置が開発されている。 Conventionally, in the environment and medical fields, various methods have been used to detect a specific substance (hereinafter referred to as a specimen) from a complex substance contained in a sample. In recent years, analyzers called Micro-TAS (Micro-Total Analysis Systems) and lab chips (Lab-on-a-Chip) have been developed.
 特許文献1には、基板部、光硬化性樹脂製流路、光透過性のあるカバー基板より構成されたマイクロ流路デバイスであって、基板部とカバー基板との間に未硬化性樹脂を充填した後に、光硬化反応によって流路パターンを形成することにより、マイクロ流路を一体に構成するマイクロ流路デバイスが提案されている。また、特許文献2には、酵素を標識として用いて基質溶液を呈色させて、当該色の変化を測定する酵素免疫分析システムをマイクロチップ内に集積化する酵素免疫分析チップが提案されている。 Patent Document 1 discloses a microchannel device including a substrate portion, a photocurable resin channel, and a light-transmitting cover substrate. An uncured resin is provided between the substrate portion and the cover substrate. There has been proposed a microchannel device in which microchannels are integrally formed by forming a channel pattern by photocuring reaction after filling. Further, Patent Document 2 proposes an enzyme immunoassay chip in which an enzyme immunoassay system for measuring a change in color by coloring a substrate solution using an enzyme as a label is integrated in a microchip. .
 これらのデバイスでは、デバイス内に設けられた反応部や検出部へ、サンプルや反応溶液を順次送液する必要があるため、ポンプや、流路内で液体を制御するためのバルブ、毛管力などを利用した送液手段が用いられる。 In these devices, it is necessary to sequentially feed the sample and reaction solution to the reaction unit and detection unit provided in the device, so a pump, a valve for controlling the liquid in the flow path, capillary force, etc. The liquid feeding means using is used.
 さらに、非常に少量の液体または液滴を運ぶ方法として、圧電体膜に高周波信号を印加して、表面波(Surface Acoustic Wave)を励振することを利用する方法、液滴と基板との間に電位差を与えて、液滴の基板に対する見掛けの濡れ性を変化させることを利用するエレクトロウェッティング(Electro Wetting、Electro Wetting On Dielectric)、静電場によって電場の強い部分もしくは弱い部分へ液滴を移動させる誘電泳動(Dielectrophoresis)などの方法を用いたデバイスも提案されている(特許文献3、4参照)。 Furthermore, as a method of carrying a very small amount of liquid or droplet, a method using excitation of a surface wave (Surface Acoustic Wave) by applying a high-frequency signal to the piezoelectric film, between the droplet and the substrate. Electrowetting (Electro Wetting, Electro Wetting On Dielectric) that uses the potential difference to change the apparent wettability of the droplet with respect to the substrate, and the droplet is moved to a strong or weak electric field by an electrostatic field. Devices using a method such as dielectrophoresis have also been proposed (see Patent Documents 3 and 4).
WO2003-062823号公報(2003年7月31日公開)WO2003-062823 Publication (released July 31, 2003) 日本国公開特許公報「特開2003-285298号公報」(2003年10月7日公開)Japanese Patent Publication “JP 2003-285298 A” (published on October 7, 2003) 日本国公開特許公報「特開2005-130851号公報」(2005年5月26日公開)Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2005-130851” (published on May 26, 2005) 日本国公開特許公報「特開2008-134152号公報」(2008年6月12日公開)Japanese Published Patent Publication “JP 2008-134152 A” (published on June 12, 2008)
 しかしながら、上記特許文献1及び特許文献2に示されたデバイスを用いて、サンプル中に含まれる様々な物質(以下、複合物質と記す)から検体のみを検出する場合、たとえば、先に流したサンプル溶液と、次に流した反応溶液との界面(液/液界面)で各々の溶液の拡散が起き、界面において溶液の濃度が変化し、正確に検体を検出できないという問題が生じる。また、デバイス内に設けられた反応部及び検出部へ溶液を順次送液するためのポンプなどが必要となるため、装置自体が大掛かりになる。 However, when only the specimen is detected from various substances (hereinafter referred to as complex substances) contained in the sample using the devices shown in Patent Document 1 and Patent Document 2, for example, the sample flowed first The diffusion of each solution occurs at the interface between the solution and the next flowed reaction solution (liquid / liquid interface), causing a problem that the concentration of the solution changes at the interface and the analyte cannot be detected accurately. Further, since a pump for sequentially feeding the solution to the reaction unit and the detection unit provided in the device is necessary, the apparatus itself becomes large.
 一方、上記特許文献3及び特許文献4に示されるような、拡散しない液滴を用いた搬送デバイスは、検査試薬が少量ですむ、反応時間が短縮される、などのメリットはあるものの、リガンドを固定化しない反応または検出に用途が限られ、リガンドを固定化した場合は、液滴の搬送を阻害する虞がある。 On the other hand, as shown in Patent Document 3 and Patent Document 4 described above, a transport device using droplets that do not diffuse has advantages such as a small amount of a test reagent and a shortened reaction time. If the application is limited to a reaction or detection that is not immobilized, and the ligand is immobilized, there is a risk of impeding the transport of the droplet.
 図13は、液滴、基板、気体あるいは液滴と交じり合わない液体との間の接触角について示した図である。液滴90は、液滴90と基板91との間の界面張力93、液滴90と、気体あるいは液滴と混じり合わない液体92との間の界面張力94、基板91と、気体あるいは液滴と混じり合わない液体92との間の界面張力95の3つの力が釣り合って形作られる。 FIG. 13 is a diagram showing a contact angle between a droplet, a substrate, a gas, or a liquid that does not mix with the droplet. The droplet 90 includes an interfacial tension 93 between the droplet 90 and the substrate 91, an interfacial tension 94 between the droplet 90 and the liquid 92 that does not mix with the gas or the droplet, a substrate 91, and the gas or the droplet. The three forces of interfacial tension 95 between the liquid 92 and the unmixed liquid 92 are balanced and formed.
 液滴90を搬送する場合、電気的制御を行っていない時の接触角は高いことが望ましいが、検体検出用デバイスを構成する固定部や検出部は液滴の搬送に適した表面状態ではなく、それぞれの材料に依存した表面状態になっている。固定部や検出部の接触角がその他の流路面よりも低い、つまり基板に対して液滴が濡れやすい表面状態の場合、液滴90はその場に留まりやすく、搬送することが困難になる。 When transporting the droplet 90, it is desirable that the contact angle is high when electrical control is not performed. However, the fixing unit and the detection unit constituting the specimen detection device are not in a surface state suitable for transporting the droplet. The surface state depends on each material. In the case where the contact angle of the fixed part or the detection part is lower than the other flow path surfaces, that is, in a surface state in which the liquid droplets easily get wet with respect to the substrate, the liquid droplet 90 tends to stay in place and is difficult to transport.
 そこで、液滴90の搬送を容易にするために、流路の表面を疎水性に保つ必要があるが、リガンドが固定化された部分(固定部)は、サンプルと反応させる必要があるため、その表面を疎水性にすることができない。このため、流路に面した固定部の状態が疎水性である他の部分と異なってしまうため、液滴90の搬送が円滑に行えず、また、流路の表面の疎水性が低下することによって、電圧印加時の流路表面の状態の変化が小さくなったり、流路表面の摩擦が大きくなったりするために、液滴90の搬送が困難になる。このような事情から、サンプルとして液滴90を用いて、リガンドを固定化し、サンプル中の複合物質から所望の検体を検出する有効なデバイスは、いまだ実用化されていない。 Therefore, in order to facilitate the transport of the droplet 90, it is necessary to keep the surface of the flow path hydrophobic, but the portion where the ligand is immobilized (fixed portion) needs to react with the sample. Its surface cannot be made hydrophobic. For this reason, since the state of the fixing part facing the flow path is different from other parts that are hydrophobic, the droplet 90 cannot be smoothly transported, and the hydrophobicity of the surface of the flow path is reduced. As a result, the change in the state of the channel surface during voltage application is reduced, and the friction on the channel surface is increased, making it difficult to transport the droplet 90. Under such circumstances, an effective device that uses a droplet 90 as a sample to immobilize a ligand and detect a desired analyte from a complex substance in the sample has not been put into practical use.
 本発明は、上記の各問題点に鑑みてなされたものであり、その目的は、順次搬送される溶液(液滴)間の拡散を防いだ状態で、感度の低下を抑制しながら、固定化されたリガンドによって搬送の安定性が阻害されることを防止しつつ、液滴中に含まれる検体を検出可能な検体検出用チップ、それを用いたセンサ、及び検体検出方法を提供することにある。 The present invention has been made in view of each of the above-mentioned problems, and its purpose is to immobilize while suppressing a decrease in sensitivity while preventing diffusion between sequentially transported solutions (droplets). An object of the present invention is to provide a sample detection chip capable of detecting a sample contained in a droplet, a sensor using the same, and a sample detection method, while preventing the transport stability from being hindered by the formed ligand. .
 上記課題を解決するために、本発明の検体検出用チップは、溶媒中に懸濁した検体を検出するための検体検出用チップであって、前記溶媒の液滴を搬送するための搬送用電極を有する搬送用基板と、前記搬送用基板に対向する対向基板と、前記液滴が通過する、前記搬送用基板と前記対向基板との間に形成された流路と、前記流路の一部に設けられた、リガンドが固定化された固定部と、を備え、前記固定部に前記液滴が滞留することによって検体の検出を行うことを特徴としている。 In order to solve the above-described problems, a sample detection chip according to the present invention is a sample detection chip for detecting a sample suspended in a solvent, and a transport electrode for transporting a droplet of the solvent A transfer substrate having a surface, a counter substrate facing the transfer substrate, a flow path formed between the transfer substrate and the counter substrate through which the droplets pass, and a part of the flow path And a fixing part on which a ligand is fixed, and the specimen is detected by the liquid droplets staying in the fixing part.
 上記課題を解決するために、本発明の検体検出方法は、検体が懸濁した溶媒の液滴を電気的に制御して流路内を搬送する工程と、前記流路の一部に設けられた、リガンドが固定化された固定部に、前記液滴を滞留させて、前記検体と前記リガンドとを反応させる工程と、前記検体を検出する工程と、を含む検体検出方法であって、前記流路は、前記溶媒の液滴を搬送するための搬送用電極を有する搬送用基板と、前記搬送用基板に対向する対向基板との間に形成されており、前記液滴が前記搬送用基板と接する面積が、前記固定部が流路に面する面積よりも大きくなるように、前記液滴が搬送されることを特徴としている。 In order to solve the above-described problems, the specimen detection method of the present invention is provided in a part of the flow path, in which a droplet of the solvent in which the specimen is suspended is electrically controlled and conveyed in the flow path. A sample detection method comprising: a step of causing the droplet to stay in a fixed part on which a ligand is fixed and reacting the sample with the ligand; and a step of detecting the sample, The flow path is formed between a transport substrate having a transport electrode for transporting the droplets of the solvent and a counter substrate facing the transport substrate, and the droplets are transferred to the transport substrate. The droplets are transported such that the area in contact with the fixed portion is larger than the area where the fixed portion faces the flow path.
 上記構成によれば、順次搬送される溶液(液滴)間の拡散を防いだ状態で、感度の低下を抑制しながら、固定化されたリガンドによって搬送の安定性が阻害されることを防止しつつ、液滴中に含まれる検体を検出することができる。 According to the above configuration, while preventing the diffusion between sequentially transported solutions (droplets), the stability of transport is prevented from being hindered by the immobilized ligand while suppressing the decrease in sensitivity. Meanwhile, the specimen contained in the droplet can be detected.
 本発明の検体検出用センサによれば、順次送液される異なる溶液(液滴)の界面における溶液の拡散を防いだ状態で、感度の低下を抑制し、固定化されたリガンドによって搬送の安定性が阻害されることを防止し、かつ、液滴中に含まれる検体を検出することができるセンサを実現することができる。 According to the specimen detection sensor of the present invention, the decrease in sensitivity is suppressed while the diffusion of the solution at the interface between different solutions (droplets) that are sequentially fed is prevented, and the conveyance is stabilized by the immobilized ligand. Therefore, it is possible to realize a sensor that can prevent the inhibition of the sex and can detect the specimen contained in the droplet.
実施形態1にかかる検体検出用センサの断面図である。1 is a cross-sectional view of a specimen detection sensor according to Embodiment 1. FIG. 実施形態1にかかる検体検出用センサに液滴を送液したときの、検体検出用センサの断面図である。FIG. 3 is a cross-sectional view of the specimen detection sensor when a droplet is sent to the specimen detection sensor according to the first embodiment. 実施形態1にかかる検体検出用センサに液滴を送液したときの、検体検出用センサの斜視図である。FIG. 3 is a perspective view of the sample detection sensor when a droplet is sent to the sample detection sensor according to the first embodiment. 実施形態1にかかる検体検出用センサに液滴を送液したときの、検体検出用センサの平面図である。FIG. 3 is a plan view of the specimen detection sensor when a droplet is sent to the specimen detection sensor according to the first embodiment. 液滴、搬送用電極、固定部、及び検出電極の関係を示した図である。It is the figure which showed the relationship between a droplet, the electrode for conveyance, a fixing | fixed part, and a detection electrode. 3電極方式の検出電極と固定部とを示した図である。It is the figure which showed the detection electrode and fixing | fixed part of a 3 electrode system. ELISA法を用いて検体を検出する手順を示したフローチャートである。It is the flowchart which showed the procedure which detects a test substance using ELISA method. 実施形態2にかかる検体検出用センサに液滴を送液したときの、検体検出用センサの断面図である。FIG. 10 is a cross-sectional view of a sample detection sensor when a droplet is sent to the sample detection sensor according to the second embodiment. 実施形態2にかかる検体検出用センサに液滴を送液したときの、検体検出用センサの断面図である。FIG. 10 is a cross-sectional view of a sample detection sensor when a droplet is sent to the sample detection sensor according to the second embodiment. 実施形態3にかかる検体検出用センサに液滴を送液したときの、検体検出用センサの断面図である。FIG. 9 is a cross-sectional view of a sample detection sensor when a droplet is sent to the sample detection sensor according to a third embodiment. 実施形態4にかかる検体検出用センサに液滴を送液したときの、検体検出用センサの断面図である。FIG. 10 is a cross-sectional view of a sample detection sensor when a droplet is sent to the sample detection sensor according to a fourth embodiment. IDTの概略平面図である。It is a schematic plan view of IDT. 液滴、基板、及び気体の接触角を説明した図である。It is a figure explaining the contact angle of a droplet, a board | substrate, and gas.
 以下、本発明の実施の形態について説明する。なお、本発明の図面において、同一の参照符号は、同一の部分または相当する部分を表わすものとする。 Hereinafter, embodiments of the present invention will be described. In the drawings of the present invention, the same reference numerals denote the same or corresponding parts.
 <実施形態1>
 本実施形態では、免疫分析法により特定蛋白質の測定を行う。ここでは、特定蛋白質としては、メタボリックシンドロームの発症にかかわるアディポネクチンを用い、当該特定蛋白質の濃度の測定を電気化学測定法により行った。しかしながら、本発明は、これらの構成に限定されない。
<Embodiment 1>
In this embodiment, the specific protein is measured by immunoassay. Here, adiponectin involved in the development of metabolic syndrome was used as the specific protein, and the concentration of the specific protein was measured by an electrochemical measurement method. However, the present invention is not limited to these configurations.
 (センサの構成)
 図1は、本実施形態に係る検体検出用センサ1の断面図である。本実施形態では、液滴を搬送する方法としてエレクトロウェッティングを用いている。検体検出用センサ1は、搬送用基板11、搬送用電極12、誘電体膜13、疎水性膜14a、疎水性膜14b、搬送用電極を持たない基板15、検出電極16、及び固定部17より構成される。なお、本発明において「液滴」とは、気体または極性が異なる液体などによって分離されている液体を意図する。なお、個々の液滴の体積は、特に限定されない。例えば、個々の液滴の体積は、1~1000pLであってもよく、1~1000nLであってもよく、1~1000mLであってもよく、それ以上であってもよい。
(Sensor configuration)
FIG. 1 is a cross-sectional view of a sample detection sensor 1 according to the present embodiment. In this embodiment, electrowetting is used as a method for transporting droplets. The sample detection sensor 1 includes a transport substrate 11, a transport electrode 12, a dielectric film 13, a hydrophobic film 14 a, a hydrophobic film 14 b, a substrate 15 without a transport electrode, a detection electrode 16, and a fixing unit 17. Composed. In the present invention, “droplet” means a liquid separated by gas or liquids having different polarities. The volume of each droplet is not particularly limited. For example, the volume of each droplet may be 1 to 1000 pL, 1 to 1000 nL, 1 to 1000 mL, or more.
 搬送用基板11、及び搬送用電極を持たない基板15としては、例えば、ガラス基板やSi基板などを用いることができる。搬送用基板11上には、搬送用電極12が複数配置され、この搬送用電極12に電圧を印加することで、液滴を搬送する。 For example, a glass substrate or a Si substrate can be used as the transfer substrate 11 and the substrate 15 having no transfer electrode. A plurality of transfer electrodes 12 are arranged on the transfer substrate 11, and a voltage is applied to the transfer electrodes 12 to transfer the droplets.
 搬送用電極12上には、誘電体膜13が形成される。誘電体膜13は、窒化シリコン、酸化シリコン、酸化タンタル、酸化チタン、またはチタン酸バリウムなどから成り、誘電性を持つものである。 A dielectric film 13 is formed on the transfer electrode 12. The dielectric film 13 is made of silicon nitride, silicon oxide, tantalum oxide, titanium oxide, barium titanate, or the like, and has dielectric properties.
 誘電体膜13上には、疎水性膜14aが形成され、当該疎水性膜14aと向かい合うように疎水性膜14bが形成されている。そして、疎水性膜14aと疎水性膜14bとの間が、液滴が搬送される空間となる。疎水性膜14a及び疎水性膜14bは、例えばフッ素系樹脂などから成り、水に対する親和性が低い性質を持ち、疎水性膜14aと疎水性膜14bとは、同一の材料であっても材質が近い異なる材料であっても良い。 A hydrophobic film 14a is formed on the dielectric film 13, and a hydrophobic film 14b is formed so as to face the hydrophobic film 14a. A space between the hydrophobic film 14a and the hydrophobic film 14b is a space for transporting droplets. The hydrophobic film 14a and the hydrophobic film 14b are made of, for example, a fluorine-based resin and have a low affinity for water, and the hydrophobic film 14a and the hydrophobic film 14b are made of the same material even if they are the same material. Nearly different materials may be used.
 疎水性膜14bの上には、搬送用電極を持たない基板15が形成される。搬送用電極を持たない基板15には、固定部17、及び検出電極16が配置されている。検出電極16は、通常2つの電極あるいは3つの電極、または複数の異なる形状の電極から構成され、これらの複数の電極は、まとめて一つの検出電極16としての働きをする。当該検出電極16によって、例えば、後述するリガンドに検体が結合したことを検知することができる。電極の材料としては主に金、白金などが用いられる。図1において、検出電極16は、搬送用電極を持たない基板15上に直接形成されているが、これは検出電極16を形成する前に一旦レジストを塗布する必要があるためである。すなわち、下地が疎水性膜14bの場合、レジストをはじく可能性があるので、搬送用電極を持たない基板15に検出電極16を形成し、その後、疎水性膜14bを検出電極16の部分のみ除くようにして形成している。検出電極16の少なくとも一部には固定部17が配置され、固定部17には検体と反応するリガンドが固定されている。 A substrate 15 having no transfer electrode is formed on the hydrophobic film 14b. A fixed portion 17 and a detection electrode 16 are arranged on a substrate 15 that does not have a transfer electrode. The detection electrode 16 is generally composed of two electrodes, three electrodes, or a plurality of electrodes having different shapes, and the plurality of electrodes collectively function as one detection electrode 16. The detection electrode 16 can detect, for example, that a specimen is bound to a ligand described later. As the electrode material, gold, platinum or the like is mainly used. In FIG. 1, the detection electrode 16 is directly formed on the substrate 15 that does not have a transport electrode, because it is necessary to apply a resist once before the detection electrode 16 is formed. That is, when the underlying layer is the hydrophobic film 14b, the resist may be repelled. Therefore, the detection electrode 16 is formed on the substrate 15 having no transfer electrode, and thereafter, only the portion of the detection electrode 16 is removed from the hydrophobic film 14b. In this way it is formed. A fixing part 17 is disposed on at least a part of the detection electrode 16, and a ligand that reacts with the specimen is fixed to the fixing part 17.
 次に、搬送用電極12の働きについて説明する。図2は、検体検出用センサ1にサンプルとして液滴2を送液した状態を示している。液滴2の周囲は液滴2と混じりあわない気体あるいは液体で満たされている。 Next, the function of the transfer electrode 12 will be described. FIG. 2 shows a state in which the droplet 2 is fed to the specimen detection sensor 1 as a sample. The periphery of the droplet 2 is filled with a gas or liquid that does not mix with the droplet 2.
 本発明のセンサでは、検出のための反応溶液としての液滴2には極性溶媒を用いるため、これと混じりあわないように液滴2の周囲の液体には無極性溶媒を用いることが好ましい。例えば、上記無極性溶媒としては、ドデカンなどの炭化水素系の材料、シリコーンオイル、フッ素系材料などを用いることができる。上記極性溶媒としては特に限定されないが、水、アルコール(例えば、エタノール、メタノール)などを用いることが可能である。勿論、液滴2として無極性溶媒を用い、液滴2と混じりあわない液滴2の周囲の液体として、極性溶媒を用いることも可能である。検出する検体の性質に応じて、適宜、溶媒を選択すれば良い。また、液滴2の周囲に気体を用いる場合には、例えば、窒素、アルゴンなど、物質との反応性が低い不活性気体を用いることができる。あるいは、空気でも良い。 In the sensor of the present invention, since a polar solvent is used for the droplet 2 as a reaction solution for detection, it is preferable to use a nonpolar solvent for the liquid around the droplet 2 so as not to mix with this. For example, as the nonpolar solvent, a hydrocarbon-based material such as dodecane, silicone oil, a fluorine-based material, or the like can be used. Although it does not specifically limit as said polar solvent, Water, alcohol (for example, ethanol, methanol), etc. can be used. Of course, it is also possible to use a nonpolar solvent as the droplet 2 and a polar solvent as the liquid around the droplet 2 that does not mix with the droplet 2. A solvent may be appropriately selected according to the property of the specimen to be detected. Moreover, when using gas around the droplet 2, inert gas with low reactivity with a substance, such as nitrogen and argon, can be used, for example. Alternatively, air may be used.
 図3は、本実施形態の検体検出用センサ1の斜視図であり、図4は、本実施形態の検体検出用センサ1の平面図である。ここでは、わかりやすいように搬送用電極を持たない基板15を省略している。 FIG. 3 is a perspective view of the sample detection sensor 1 of the present embodiment, and FIG. 4 is a plan view of the sample detection sensor 1 of the present embodiment. Here, for the sake of easy understanding, the substrate 15 having no transfer electrode is omitted.
 搬送用電極12は、それぞれスイッチSW1、SW2、SW3に接続されており、スイッチのON/OFFにより、個々の搬送用電極12に対する電圧の印加状態を制御することができる。そして、個々の搬送用電極12に対する電圧の印加状態を制御することによって、液滴2を移動させることができる。なお、スイッチの数は特に限定されず、必要な数だけ設けることが可能である。 The transport electrodes 12 are connected to the switches SW1, SW2, and SW3, respectively, and the voltage application state to the individual transport electrodes 12 can be controlled by turning the switches on and off. Then, the droplet 2 can be moved by controlling the voltage application state to the individual transport electrodes 12. Note that the number of switches is not particularly limited, and a necessary number can be provided.
 図3及び4においては、スイッチSW2が接続状態となっている。ここで、矢印の方向に液滴を移動させたい場合は、スイッチSW2を開放するとともにスイッチSW3を接続する。スイッチが接続されると、電圧は液滴2の移動が観察されるまで印加され、閾値電圧を越えると液滴2は次の搬送用電極に移動する。これを繰り返すことで、液滴2を目的の場所へと移動させる。電圧の印加方法はこのような直流法に限られず、交流法で行うこともできる。また、基板電極上の電位変化に応じてぬれ性が変化することから、上記電位の印加方法に限らず、電位変化を与えれば液滴2は搬送することができる。 3 and 4, the switch SW2 is in a connected state. Here, when it is desired to move the droplet in the direction of the arrow, the switch SW2 is opened and the switch SW3 is connected. When the switch is connected, the voltage is applied until the movement of the droplet 2 is observed, and when the threshold voltage is exceeded, the droplet 2 moves to the next transport electrode. By repeating this, the droplet 2 is moved to the target location. The voltage application method is not limited to such a direct current method, and can also be performed by an alternating current method. In addition, since the wettability changes according to the potential change on the substrate electrode, the droplet 2 can be transported not only by the above-described potential application method but also by the potential change.
 図5の(a)及び(b)は、液滴2と搬送用電極12との関係を示した図である。搬送用電極12の形状は、図5の(b)に示したような形であってもよいし、その他のどのような形状でも構わない。図5の(a)において、液滴2が、疎水性膜14aと、あるいは、疎水性膜14b、検出電極16及び固定部17と接触している面2aは、図5の(a)に示す矢印方向、つまりほぼ真上から見たときに、図5の(b)に示すように、液滴2の進行方向に沿って直下の搬送用電極12に必ず複数かかるようにする。 5A and 5B are diagrams showing the relationship between the droplet 2 and the transport electrode 12. FIG. The shape of the transfer electrode 12 may be a shape as shown in FIG. 5B, or any other shape. In FIG. 5A, the surface 2a where the droplet 2 is in contact with the hydrophobic film 14a or the hydrophobic film 14b, the detection electrode 16 and the fixing portion 17 is shown in FIG. When viewed from the direction of the arrow, that is, almost from the top, as shown in FIG. 5B, a plurality of transport electrodes 12 are always applied along the traveling direction of the droplet 2.
 図5の(a)及び(b)において、面2aは、搬送用電極12a、12a’、12b、12b’にかかっている。なお、搬送用電極12a及び12a’のように複数の電極で搬送用電極12を形成している場合は、これらを一つの搬送用電極とみなす。よって、図5の(b)の上から見たように、面2aは、2つの電極にかかっている。本実施形態のように、搬送用電極12と液滴2とをこのよう設定することにより、液滴2の搬送が行われる。 5 (a) and 5 (b), the surface 2a is on the transfer electrodes 12a, 12a ', 12b, 12b'. When the transport electrode 12 is formed of a plurality of electrodes like the transport electrodes 12a and 12a ', these are regarded as one transport electrode. Therefore, as viewed from above (b) of FIG. 5, the surface 2 a covers the two electrodes. As in this embodiment, by setting the transport electrode 12 and the droplet 2 in this way, the droplet 2 is transported.
 具体的な設定方法としては、たとえば、サンプルの液滴2の量、搬送用電極12の大きさ、搬送用電極12の配置間隔を調整するなどの方法がある。液滴2の搬送量を制御するために液滴制御手段(図示せず)を設けても良い。当該液滴制御手段は、液滴2の搬送量を制御することができるものであれば、その具体的な構成は特に限定されない。例えば、当該液滴制御手段は、所定の量の液滴2を疎水性膜14aと疎水性膜14bとの間の流路に導入するものであってもよい。この場合、液滴制御手段は、所定の体積を有する液滴を形成するための液滴作製部と、所定の体積を有する液滴を流路へ導入するためのポンプとを備え得るが、当該構成に限定されない。なお、個々の液滴の体積は、搬送用電極12の大きさ、及び搬送用電極12の配置間隔などに基づいて、適宜設定することが可能である。上述した液滴制御手段は、周知の構成を組み合わせて作製することが可能である。 As a specific setting method, for example, there is a method of adjusting the amount of the droplet 2 of the sample, the size of the transfer electrode 12, and the arrangement interval of the transfer electrodes 12. A droplet control means (not shown) may be provided to control the transport amount of the droplet 2. The specific configuration of the droplet control unit is not particularly limited as long as it can control the transport amount of the droplet 2. For example, the droplet control means may introduce a predetermined amount of the droplet 2 into the flow path between the hydrophobic film 14a and the hydrophobic film 14b. In this case, the droplet control means may include a droplet preparation unit for forming a droplet having a predetermined volume and a pump for introducing the droplet having a predetermined volume into the flow path. It is not limited to the configuration. The volume of each droplet can be set as appropriate based on the size of the transfer electrode 12 and the arrangement interval of the transfer electrodes 12. The above-described droplet control means can be manufactured by combining known configurations.
 あるいは、搬送用基板11と搬送用電極を持たない基板15との配置を調整して、液滴2の搬送される空間(高さ)を決定することで設定できる。この場合、液滴2の接触面積を一定にするため、流路における搬送用基板11と搬送用電極を持たない基板15との間隔を一定に保つようにすることが好ましい。 Alternatively, it can be set by determining the space (height) in which the droplets 2 are transported by adjusting the arrangement of the transport substrate 11 and the substrate 15 having no transport electrodes. In this case, in order to make the contact area of the droplet 2 constant, it is preferable to keep the distance between the transfer substrate 11 and the substrate 15 having no transfer electrode in the flow path constant.
 次に検出電極16と固定部17とについて詳細に説明する。 Next, the detection electrode 16 and the fixing part 17 will be described in detail.
 図1では、検出電極16及び固定部17は搬送用電極を持たない基板15側に作製されているが、搬送用基板11側に作製しても構わない。また、検出電極16及び固定部17は、1つの流路に対して、1つ作製されても良いし、複数作製されてもよい。検出用電極16および固定部17を複数作製する場合には、検出用電極16および固定部17は、搬送用電極を持たない基板15側と搬送用基板11側との両方に作製されても良いし、どちらか一方のみに作製されてもよい。また、複数設けられる検出用電極16および固定部17は、同じ構成であっても良いし、異なる構成であっても良い。 In FIG. 1, the detection electrode 16 and the fixing portion 17 are manufactured on the substrate 15 side having no transfer electrode, but may be manufactured on the transfer substrate 11 side. Moreover, one detection electrode 16 and the fixing | fixed part 17 may be produced with respect to one flow path, and multiple may be produced. When a plurality of detection electrodes 16 and fixing portions 17 are produced, the detection electrodes 16 and the fixing portions 17 may be produced on both the substrate 15 side and the conveyance substrate 11 side that do not have the conveyance electrodes. However, it may be produced only in either one. In addition, the plurality of detection electrodes 16 and the fixing portions 17 that are provided may have the same configuration or different configurations.
 検出電極16、及び固定部17の表面(流路に面した表面)は疎水性膜14bで覆われていないため、液滴2を円滑に搬送するためには、検出電極16、及び固定部17を搬送用電極12よりも小さく設けることが望ましい。さらに、検出電極16、及び固定部17は、図5の(a)で示した液滴2が疎水性膜14a、あるいは疎水性膜14bと接触している面2aよりも、小さく設けることが好ましい。これによって、例えば、リガンドと検体とを効率よく反応させることができる。 Since the surface of the detection electrode 16 and the fixed part 17 (the surface facing the flow path) is not covered with the hydrophobic film 14b, the detection electrode 16 and the fixed part 17 are used to smoothly transport the droplet 2. Is preferably smaller than the transfer electrode 12. Further, the detection electrode 16 and the fixing portion 17 are preferably provided smaller than the surface 2a where the droplet 2 shown in FIG. 5A is in contact with the hydrophobic film 14a or the hydrophobic film 14b. . Thereby, for example, the ligand and the specimen can be reacted efficiently.
 固定部17のリガンドに反応した検体を検出する方法として、ここでは、一般的な電気化学測定法を用いることが可能であるが、本発明は、これに限定されるものではない。電気化学測定法には、2電極方式と3電極方式とがある。正確な電位の測定には、3電極方式が望ましい。 Here, a general electrochemical measurement method can be used as a method for detecting the specimen that has reacted with the ligand of the fixing unit 17, but the present invention is not limited to this. Electrochemical measurement methods include a two-electrode method and a three-electrode method. A three-electrode system is desirable for accurate potential measurement.
 図6の(a)は3電極方式の場合の検出電極16と固定部17とを示している。検出電極16は、電気化学測定用電極の対向電極161、作用電極162、及び参照電極163から構成される。 (A) of FIG. 6 shows the detection electrode 16 and the fixing portion 17 in the case of the three-electrode system. The detection electrode 16 includes a counter electrode 161, a working electrode 162, and a reference electrode 163, which are electrochemical measurement electrodes.
 対向電極161は、作用電極162が電子を受け取る(または、放出する)のと同じ速さで、電子を放出する(または、受け取る)必要がある。参照電極163は、作用電極162の電位を測定及び制御し、例えば、Ag/AgCl電極などを使用することが可能である。固定部17は、作用電極162上にリガンドを物理吸着させて固定化することで形成される。 The counter electrode 161 needs to emit (or receive) electrons at the same rate as the working electrode 162 receives (or emits) electrons. The reference electrode 163 measures and controls the potential of the working electrode 162, and for example, an Ag / AgCl electrode can be used. The fixing portion 17 is formed by physically adsorbing a ligand on the working electrode 162 and fixing it.
 図6の(b)は、3電極方式の検出電極16及び固定部17を図5の(a)における矢印方向から見た平面図である。図6の(c)は、検出電極16及び固定部17を拡大した平面図である。ここで、図6の(c)において、対向電極161、作用電極162、参照電極163のそれぞれの間を占める面を面164、面165とすると、対向電極161、作用電極162、参照電極163、面164、面165を合わせた領域を検出電極領域16aと規定することができる。ここで示したような3電極方式あるいは2電極方式を用いる場合には、それぞれの電極で挟まれた面を含んだ検出電極領域16aが、液滴2が疎水性膜14a、あるいは疎水性膜14bと接触している面2aよりも、小さく設けられることが好ましい。このようにすることで、例えば、検体がリガンドをほぼ覆うことになり、検体とリガンドを効率よく反応させることができる。また、検出電極領域16aは、同様に搬送用電極12よりも小さく設けられることが好ましい。 6 (b) is a plan view of the three-electrode detection electrode 16 and the fixing portion 17 as viewed from the direction of the arrow in FIG. 5 (a). FIG. 6C is an enlarged plan view of the detection electrode 16 and the fixing portion 17. Here, in FIG. 6C, when the surfaces occupying each of the counter electrode 161, the working electrode 162, and the reference electrode 163 are a surface 164 and a surface 165, the counter electrode 161, the working electrode 162, the reference electrode 163, A region obtained by combining the surface 164 and the surface 165 can be defined as a detection electrode region 16a. In the case of using the three-electrode method or the two-electrode method as shown here, the detection electrode region 16a including the surface sandwiched between the respective electrodes is used as the droplet 2 in the hydrophobic film 14a or the hydrophobic film 14b. It is preferable to be provided smaller than the surface 2a in contact with the surface. By doing so, for example, the specimen almost covers the ligand, and the specimen and the ligand can be reacted efficiently. Similarly, the detection electrode region 16a is preferably provided smaller than the transfer electrode 12.
 (検出手順)
 次に、リガンドとして抗体を、検体として抗原を用い、イムノアッセイのうちのELISA法(サンドイッチ法)を用いて検出する手順を以下に説明する。
(Detection procedure)
Next, a procedure for detection using an ELISA method (sandwich method) in an immunoassay using an antibody as a ligand and an antigen as a specimen will be described below.
 図7は、ELISA法を用いて検体を検出する手順の一例を示したフローチャートである。「S」はフローチャートにおける各ステップを表す。 FIG. 7 is a flowchart showing an example of a procedure for detecting a specimen using the ELISA method. “S” represents each step in the flowchart.
 まず、一次抗体であるリガンドを、予め固定部17に固定化する(S71)。ここでは、リガンドとして一次抗体溶液(R&D System社製 MAB10651)を検出電極16上にスポッティング後、37℃で60分間インキュベーションし、物理吸着固定した。なお、図6では、作用電極162上にリガンドを固定化しているが、これに限られるものではない。ただし、固定部17での反応で生成された電気化学物質を作用電極で酸化還元反応させるため、固定部17は作用電極162に近いことが望ましい。なお、検出電極16としては、一般的なものを用いることができる。 First, a ligand that is a primary antibody is immobilized in advance on the immobilization unit 17 (S71). Here, a primary antibody solution (MAB 10651 manufactured by R & D System) as a ligand was spotted on the detection electrode 16 and then incubated at 37 ° C. for 60 minutes for physical adsorption fixation. In FIG. 6, the ligand is immobilized on the working electrode 162, but the present invention is not limited to this. However, it is desirable that the fixing part 17 be close to the working electrode 162 in order to cause the electrochemical substance generated by the reaction in the fixing part 17 to undergo a redox reaction at the working electrode. As the detection electrode 16, a general one can be used.
 次に、電気化学測定用電極全体に、非特異的な吸着を防ぐためのブロッキングを行う(S72)。これは、固定部17の表面全てがリガンドで隙間なく覆われているわけではなく、隙間があるため、当該隙間に対する非特異的な吸着を防ぐ必要があるためである。ここでは、ブロッキング液として1%のBSA溶液を用い、当該BSA溶液を検出電極16近傍にスポッティング後、室温にて60分間インキュベーションした。なお、ブロッキング剤としては、BSA溶液以外に、例えば、カゼインなどが用いられ得るが、これらに限定されない。 Next, blocking to prevent non-specific adsorption is performed on the entire electrochemical measurement electrode (S72). This is because the entire surface of the fixing portion 17 is not covered with the ligand without any gap, and there is a gap, so that it is necessary to prevent nonspecific adsorption to the gap. Here, a 1% BSA solution was used as a blocking solution, and the BSA solution was spotted in the vicinity of the detection electrode 16 and then incubated at room temperature for 60 minutes. In addition to the BSA solution, for example, casein can be used as the blocking agent, but is not limited thereto.
 ブロッキング後、余分なブロッキング剤をトリス緩衝液で洗浄し、洗い流した(S73)。なお、洗浄に用いる溶液はトリス緩衝液に限定されず、検体の検出を妨げない溶液であれば如何なる溶液を用いてもよい。 After blocking, excess blocking agent was washed with Tris buffer and washed away (S73). The solution used for washing is not limited to the Tris buffer, and any solution may be used as long as it does not interfere with the detection of the specimen.
 次に、検出方法はここでは電気化学測定を用いるため、後の工程で行われる酵素基質反応で電気化学物質を生成する酵素と基質とを選択し、酵素は二次抗体にて予め標識しておく。ここで酵素としては特に限定されず、適宜、所望の酵素を用いることが可能である。 Next, since the detection method uses electrochemical measurement here, an enzyme and a substrate that generate an electrochemical substance in an enzyme substrate reaction performed in a later step are selected, and the enzyme is pre-labeled with a secondary antibody. deep. Here, the enzyme is not particularly limited, and a desired enzyme can be appropriately used.
 例えば、上記酵素としては、ALP(Alkaline Phosphatase)、グルコースオキシダーゼなどを用いることが可能であって、基質としては、各々の酵素に対してpAPP(p-Aminophenyl phosphate)、フェリシアン化カリウムなどを用いることが可能である。酵素基質反応によって生成される電気化学活性物質としては、pAP(パラアミノフェノール)、フェロシアン化カリウム、フェロセン、およびフェロセン誘導体を含むものか、もしくはpAP、フェロシアン化カリウム、フェロセン、またはフェロセン誘導体などがある。 For example, ALP (Alkaline Phosphatase), glucose oxidase, or the like can be used as the above enzyme, and pAPP (p-aminophenyl phosphate), potassium ferricyanide, or the like can be used as the substrate for each enzyme. Is possible. Examples of the electrochemically active substance produced by the enzyme substrate reaction include pAP (paraaminophenol), potassium ferrocyanide, ferrocene, and ferrocene derivatives, or pAP, potassium ferrocyanide, ferrocene, and ferrocene derivatives.
 本実施の形態では、酵素の一例としてALP、基質としてはpAPPを用いた。次に、サンプルとしてアディポネクチン(R&D System社製 1065AP)溶液と酵素標識された二次抗体とを予め混合した液滴2(抗原に酵素標識二次抗体を反応させた液滴)を用い、当該液滴を固定部17へと搬送し、一次抗体と抗原とを十分に抗原抗体反応させてから液滴2を除く(S74)。 In this embodiment, ALP was used as an example of an enzyme, and pAPP was used as a substrate. Next, a liquid 2 (a liquid droplet obtained by reacting an enzyme-labeled secondary antibody with an antigen) in which an adiponectin (R & D System 1065AP) solution and an enzyme-labeled secondary antibody are mixed in advance is used as a sample. The droplet is conveyed to the fixing unit 17 and the primary antibody and the antigen are sufficiently reacted with each other by antigen-antibody reaction, and then the droplet 2 is removed (S74).
 本実施形態では、固定部17に液滴を滞留させることによって検体の検出が行われる。当該滞留時間は特に限定されず、検体とリガンドとが反応(例えば、結合)できる程度の時間、滞留すればよい。 In this embodiment, the specimen is detected by retaining the droplets in the fixing unit 17. The residence time is not particularly limited as long as the residence time is long enough for the specimen and the ligand to react (for example, bind).
 なお、本実施形態では抗原と二次抗体とをあらかじめ混合しているが、これらを別々の液体として順次搬送しても構わない。いずれの場合も、後の工程で行われる検体検出が可能であるが、前者のようにあらかじめ抗原に酵素標識された二次抗体を混合し、反応させた液滴を用いることで、工程を簡略化することができる。 In this embodiment, the antigen and the secondary antibody are mixed in advance, but these may be sequentially conveyed as separate liquids. In either case, it is possible to detect the analyte in the subsequent process, but the process can be simplified by using a droplet that has been mixed with an antigen-labeled secondary antibody in advance and then reacted. Can be
 次に、固定部17を洗浄するため、洗浄液としてトリス緩衝液を固定部17へ搬送し、未結合のタンパク質などを除く(S75)。なお、洗浄に用いる溶液はトリス緩衝液に限定されず、検体の検出を妨げない溶液であれば如何なる溶液を用いてもよい。 Next, in order to wash the fixing part 17, a Tris buffer solution is transported to the fixing part 17 as a washing solution to remove unbound proteins and the like (S75). The solution used for washing is not limited to the Tris buffer, and any solution may be used as long as it does not interfere with the detection of the specimen.
 次に、pAPPを含有する基質溶液を固定部17へと搬送し酵素基質反応を生じさせる(S76)。 Next, the substrate solution containing pAPP is conveyed to the fixing unit 17 to cause an enzyme substrate reaction (S76).
 最後に生成された電気化学物質pAP(p-Aminophenol)を検出電極16で検出し、ピーク電流値のアディポネクチン濃度依存性を測定する(S77)。検体量の測定方法としては、例えば、あらかじめ検量線を作成しておき、それに基づき検体量を算出する方法などが一般的である。 Finally, the generated electrochemical substance pAP (p-Aminophenol) is detected by the detection electrode 16, and the dependence of the peak current value on the adiponectin concentration is measured (S77). As a method for measuring the sample amount, for example, a method in which a calibration curve is prepared in advance and the sample amount is calculated based on the standard curve is generally used.
 上記のような手順で、サンプルに含まれた複合物質から所望の検体を検出することができる。なお、リガンド及びリガンドの固定化は、ここに挙げられたものに限らず、公知のものを利用できる。リガンドは、検体と反応(例えば、結合)できる物質であれば利用することができ、例えば、上記で用いた抗体以外に、ペプチド、DNA、アプタマー、MIP(Molecular Imprinted Polymer)、などが利用可能である。 The desired specimen can be detected from the complex substance contained in the sample by the procedure as described above. In addition, the immobilization of a ligand and a ligand is not limited to those listed here, and known ones can be used. The ligand can be used as long as it is a substance capable of reacting with (for example, binding to) the sample. For example, in addition to the antibody used above, a peptide, DNA, aptamer, MIP (Molecular Imprinted Polymer), etc. can be used. is there.
 また、リガンドの固定化には、上記で用いた物理吸着以外に、化学結合(例えば、共有結合、疎水結合、イオン結合、水素結合)、包括法などを用いることができる。さらに、検体を検出する検出方法には、上記で用いた抗原抗体反応を利用するイムノアッセイ以外に、DNAハイブリダイゼーションを利用するDNAアッセイなど公知の方法が利用でき、また、これらで用いられる様々なシグナル検出手段を用いることができる。例えば、電気化学的検出法、比色検出法、蛍光検出法などである。なお、検出の際に光学的検出方法を用いる場合は、搬送用電極を持たない基板15には透明の基板を選択する必要がある。次に、蛍光法を用いた検出について説明する。 In addition to the physical adsorption used above, a chemical bond (for example, a covalent bond, a hydrophobic bond, an ionic bond, a hydrogen bond), a comprehensive method, or the like can be used to immobilize the ligand. In addition to the immunoassay using the antigen-antibody reaction used above, a known method such as a DNA assay using DNA hybridization can be used as a detection method for detecting the specimen, and various signals used in these methods can be used. Detection means can be used. For example, electrochemical detection method, colorimetric detection method, fluorescence detection method and the like. When an optical detection method is used for detection, it is necessary to select a transparent substrate for the substrate 15 that does not have a transport electrode. Next, detection using a fluorescence method will be described.
 <実施形態2>
 次に、本発明における実施形態2について説明する。
<Embodiment 2>
Next, Embodiment 2 in the present invention will be described.
 本実施形態では、検体検出用センサ自体は検出電極を持たず、外部の検出装置等を用いて検体を検出する、あるいは、検出部が固定部と離れている点で、上記実施形態1とは異なる。 In the present embodiment, the specimen detection sensor itself does not have a detection electrode, and the specimen is detected using an external detection device or the like, or the detection section is separated from the fixed section. Different.
 図8は、本実施形態に係る検体検出用センサ1aにサンプルの液滴2を送液したときの断面図である。 FIG. 8 is a cross-sectional view when the sample droplet 2 is fed to the specimen detection sensor 1a according to the present embodiment.
 本実施形態では、液滴2を搬送する方法としてエレクトロウェッティングを用いている。搬送用基板11には、搬送用電極12が複数配置され、その上部に誘電体膜13、疎水性膜14aが順に形成され、疎水性膜14a上に固定部17としてリガンドが固定化されている。また、搬送用電極をもたない基板15には、流路側に疎水性膜14bが形成されている。搬送用基板11と搬送用電極をもたない基板15の間には液滴2が配置されている。液滴2と搬送用電極12との関係は、実施形態1で説明した内容と同様である。また、固定部17の部分は疎水性膜14aがないため、固定部17を搬送用電極12よりも小さく設けることが好ましい。さらに、固定部17は、図5の(a)で示した液滴2が疎水性膜14a、あるいは疎水性膜14bと接触している面2aよりも、小さく設けることが好ましい。これは、リガンドと検体とを効率よく反応させるためである。なお、図8では固定部17は搬送用基板11側に作製されているが、搬送用電極をもたない基板15側に作製されても良い。 In this embodiment, electrowetting is used as a method of transporting the droplet 2. A plurality of transfer electrodes 12 are arranged on the transfer substrate 11, a dielectric film 13 and a hydrophobic film 14 a are sequentially formed thereon, and a ligand is fixed as a fixing portion 17 on the hydrophobic film 14 a. . In addition, a hydrophobic film 14b is formed on the flow path side of the substrate 15 having no transfer electrode. A droplet 2 is disposed between the transfer substrate 11 and the substrate 15 having no transfer electrode. The relationship between the droplet 2 and the transport electrode 12 is the same as that described in the first embodiment. In addition, since the portion of the fixing portion 17 does not have the hydrophobic film 14a, the fixing portion 17 is preferably provided smaller than the transport electrode 12. Furthermore, the fixing portion 17 is preferably provided smaller than the surface 2a where the droplet 2 shown in FIG. 5A is in contact with the hydrophobic film 14a or the hydrophobic film 14b. This is for efficiently reacting the ligand with the specimen. In FIG. 8, the fixing portion 17 is manufactured on the side of the transfer substrate 11, but may be manufactured on the side of the substrate 15 that does not have the transfer electrode.
 検出装置26における検出方法としては、例えば、一般的な蛍光検出を用いることができる。この場合、液滴2へ励起光31を入れて、当該液滴2から発せられる蛍光32を検出することで所望の物質のみを検出することができる。なお、検出装置26は上記構成に限定されず、電気化学的検出法、比色検出法、蛍光検出法などに基づいた構成を、適宜、使用することが可能である。 As a detection method in the detection device 26, for example, general fluorescence detection can be used. In this case, it is possible to detect only a desired substance by entering the excitation light 31 into the droplet 2 and detecting the fluorescence 32 emitted from the droplet 2. Note that the detection device 26 is not limited to the above configuration, and a configuration based on an electrochemical detection method, a colorimetric detection method, a fluorescence detection method, or the like can be used as appropriate.
 固定部17は、リガンド(例えば、抗体)を物理吸着によって固定化することで形成される。リガンドとして抗体、検体として抗原を用い、図7に示した手順により、具体的には次のように検出を行うことができる。 The immobilization part 17 is formed by immobilizing a ligand (for example, an antibody) by physical adsorption. Specifically, detection can be performed as follows using the procedure shown in FIG. 7 using an antibody as a ligand and an antigen as a specimen.
 まず、一次抗体であるリガンドを、予め固定部17に固定化する(S71)。 First, a ligand that is a primary antibody is immobilized in advance on the immobilization unit 17 (S71).
 次に、非特異的な吸着を防ぐためのブロッキングを行う(S72)。これは、固定部17の全てがリガンドで隙間なく覆われているわけではなく、隙間があるため、当該隙間に対する非特異的な吸着を防ぐ必要があるためである。なお、ブロッキング剤としては、例えば、BSA、カゼインなどが用いられる。 Next, blocking is performed to prevent non-specific adsorption (S72). This is because not all of the fixing part 17 is covered with the ligand without a gap, and there is a gap, so that it is necessary to prevent nonspecific adsorption to the gap. In addition, as a blocking agent, BSA, casein, etc. are used, for example.
 ブロッキング後、余分なブロッキング剤を洗浄によって洗い流す(S73)。 After blocking, wash off excess blocking agent by washing (S73).
 ここで、検出方法は蛍光測定を用いるため、後の工程で行われる酵素基質反応で蛍光物質を生成する酵素と基質とを選択し、酵素は二次抗体によって予め標識しておく。ここで酵素としては、例えば、HRP(horseradish peroxidase)、基質としてはADHP(10-Acetyl-3,7-dihydroxyphenoxazine)、QuantaBlu(登録商標)などが用いられるが、これらに限定されない。 Here, since the detection method uses fluorescence measurement, an enzyme and a substrate that generate a fluorescent substance are selected in an enzyme substrate reaction performed in a later step, and the enzyme is labeled in advance with a secondary antibody. Here, for example, HRP (horseradish peroxidase) is used as the enzyme, and ADHP (10-acetyl-3,7-dihydroxyphenoxyzine), QuantaBlu (registered trademark), or the like is used, but not limited thereto.
 例えば、上記酵素としては、ペルオキシダーゼ(POD)などを用いることが可能であって、基質としては、Amplex(invitrogen社製)などを用いることが可能である。 For example, peroxidase (POD) or the like can be used as the enzyme, and Amplex (manufactured by Invitrogen) or the like can be used as the substrate.
 次に、検体である抗原を含んだサンプル液と酵素標識された二次抗体とを予め混合した液滴2(抗原に酵素標識二次抗体を反応させた液滴)を固定部17へと搬送する。一次抗体と抗原とを十分に抗原抗体反応させてから液滴を除く(S74)。 Next, a droplet 2 (a droplet obtained by reacting an enzyme-labeled secondary antibody with an antigen) in which a sample solution containing an antigen as a specimen and an enzyme-labeled secondary antibody are mixed in advance is conveyed to the fixing unit 17. To do. After the primary antibody and the antigen are sufficiently reacted with each other, the droplet is removed (S74).
 次に、固定部17を洗浄するため、洗浄液を固定部17へ搬送し、未結合のタンパク質などを除く(S75)。 Next, in order to wash the fixing part 17, the cleaning liquid is transported to the fixing part 17, and unbound proteins are removed (S75).
 次に、基質液を固定部17へと搬送し酵素基質反応を生じさせる。必要であればこのとき、酵素基質反応の停止剤を用いて、酵素基質反応を停止させてもよい(S76)。 Next, the substrate solution is conveyed to the fixing unit 17 to cause an enzyme substrate reaction. If necessary, the enzyme substrate reaction may be stopped at this time by using an enzyme substrate reaction stop agent (S76).
 最後に、酵素基質反応によって生成された蛍光物質に対して励起光31を照射して、その結果生じる蛍光32を検出することで、検体量を測定する(S77)。 Finally, the amount of specimen is measured by irradiating the fluorescent material generated by the enzyme substrate reaction with the excitation light 31 and detecting the resulting fluorescence 32 (S77).
 なお、図8では励起光31を固定部17の上部から照射し、蛍光32を検出する構成になっているが、上部以外から照射、検出することももちろん可能である。また、図8の構成は蛍光分析に基づく構成であるが、一般的な比色分析に基づく構成にすることも可能である。比色分析の場合、例えば、HRP酵素に対して発色基質OPD(o-phenylendiamine)、TMB(3,3’,5,5’-tetramethyl-benzidene)などを用い、吸光度から検体量を知ることができる。 In FIG. 8, the configuration is such that the excitation light 31 is emitted from the upper part of the fixed portion 17 and the fluorescence 32 is detected. Further, the configuration of FIG. 8 is a configuration based on fluorescence analysis, but a configuration based on general colorimetric analysis is also possible. In the case of colorimetric analysis, for example, the chromogenic substrate OPD (o-phenylenediamine), TMB (3,3 ′, 5,5′-tetramethyl-benzidine) or the like can be used for the HRP enzyme to know the sample amount from the absorbance. it can.
 あるいは、酵素としてペルオキシダーゼに対して、発色基質TMB、OPD、ABTS(2,2’-アジノ-ビス(3-エチルベンゾチアゾリン-6-スルホン酸)二アンモニウム塩)を用いることが可能である。 Alternatively, a chromogenic substrate TMB, OPD, ABTS (2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) can be used as an enzyme for peroxidase.
 また、本実施形態では、検体検出用センサ1aは、検出部を備えない構成として説明したが、図9に示すように検出手段16’が、固定部17とは別に設けられてもよい。検出手段16’は、流路外、例えば、搬送用電極をもたない基板15に併設して設けられても構わない。 In the present embodiment, the sample detection sensor 1a has been described as having a configuration that does not include a detection unit. However, the detection unit 16 'may be provided separately from the fixing unit 17, as shown in FIG. The detection means 16 ′ may be provided outside the flow path, for example, adjacent to the substrate 15 having no transfer electrode.
 <実施形態3>
 次に、本発明における実施形態3について説明する。
<Embodiment 3>
Next, Embodiment 3 in the present invention will be described.
 本実施形態では、搬送用電極が液滴2を挟んで上下両側に配置されている点で、上記実施形態1、実施形態2とは異なる。このように、2つの搬送用電極を用いることによって、電極のプラス極とマイナス極とを1枚の基板内に作製する必要がなくなるので、基板の作製が容易になるとともに、搬送用電極の制御が容易になる。 This embodiment is different from the first and second embodiments in that the transport electrodes are arranged on both upper and lower sides with the droplet 2 interposed therebetween. As described above, by using two transfer electrodes, it is not necessary to manufacture the positive electrode and the negative electrode of the electrode in one substrate, so that the substrate can be easily manufactured and the transfer electrode is controlled. Becomes easier.
 図10は、本実施形態に係る検体検出用センサ1cにサンプルの液滴2を送液したときの断面図である。 FIG. 10 is a cross-sectional view of the sample droplet 2 fed to the specimen detection sensor 1c according to the present embodiment.
 本実施形態では、液滴2を搬送する方法としてエレクトロウェッティングを用いている。搬送用基板11には、搬送用電極12が複数配置され、その上部に誘電体膜13、疎水性膜14aが順に形成され、疎水性膜14a上に固定部17としてリガンドが固定化されている。また、上部基板18には、上部電極120、疎水性膜14bが流路に向かって順に形成されている。 In this embodiment, electrowetting is used as a method of transporting the droplet 2. A plurality of transfer electrodes 12 are arranged on the transfer substrate 11, a dielectric film 13 and a hydrophobic film 14 a are sequentially formed thereon, and a ligand is fixed as a fixing portion 17 on the hydrophobic film 14 a. . Further, an upper electrode 120 and a hydrophobic film 14b are sequentially formed on the upper substrate 18 toward the flow path.
 搬送用基板11と上部基板18との間には液滴2が配置されている。液滴2と搬送用電極12との関係は、実施形態1で説明した内容と同様である。また、固定部17の表面(流路側)には疎水性膜14aがないため、固定部17を搬送用電極12よりも小さく設けることが好ましい。さらに、固定部17は、図5の(a)で示した液滴2が疎水性膜14a、あるいは疎水性膜14bと接触している面2aよりも、小さく設けることが好ましい。これは、リガンドと検体とを効率よく反応させるためである。検出電極16’は、固定部17とは別に設けられ、流路外、例えば、上部基板18に併設して設けることができる。なお、図10では、固定部17は搬送用基板11側に作製されているが、上部基板18側に作製されても良い。 A droplet 2 is disposed between the transfer substrate 11 and the upper substrate 18. The relationship between the droplet 2 and the transport electrode 12 is the same as that described in the first embodiment. Further, since there is no hydrophobic film 14 a on the surface (flow channel side) of the fixing portion 17, it is preferable to provide the fixing portion 17 smaller than the transfer electrode 12. Furthermore, the fixing portion 17 is preferably provided smaller than the surface 2a where the droplet 2 shown in FIG. 5A is in contact with the hydrophobic film 14a or the hydrophobic film 14b. This is for efficiently reacting the ligand with the specimen. The detection electrode 16 ′ is provided separately from the fixing portion 17 and can be provided outside the flow path, for example, along with the upper substrate 18. In FIG. 10, the fixing portion 17 is manufactured on the transfer substrate 11 side, but may be manufactured on the upper substrate 18 side.
 電圧は搬送用基板11に形成されている搬送用電極12と上部基板18に形成されている上部電極120との間に印加される。上部電極120を接地電位とし、搬送させたい方向に隣接する搬送用電極に電圧を印加する。なお、上部電極120は、1つの電極として形成されてもよく、複数の電極として形成されてもよい。 The voltage is applied between the transfer electrode 12 formed on the transfer substrate 11 and the upper electrode 120 formed on the upper substrate 18. The upper electrode 120 is set to the ground potential, and a voltage is applied to the transfer electrode adjacent in the direction to be transferred. The upper electrode 120 may be formed as one electrode or a plurality of electrodes.
 図10においては、スイッチSW2が接続状態となっている。ここで、矢印の方向に液滴2を移動させたい場合は、スイッチSW2を開放するとともにスイッチSW3を接続する。スイッチが接続されると、電圧は液滴2の移動が観察されるまで印加され、閾値電圧を越えると液滴2は次の搬送用電極に移動する。これを繰り返すことで、液滴2を目的の場所へと移動させる。 In FIG. 10, the switch SW2 is in a connected state. Here, to move the droplet 2 in the direction of the arrow, the switch SW2 is opened and the switch SW3 is connected. When the switch is connected, the voltage is applied until the movement of the droplet 2 is observed, and when the threshold voltage is exceeded, the droplet 2 moves to the next transport electrode. By repeating this, the droplet 2 is moved to the target location.
 電圧の印加方法はこのような直流法に限られず、交流法で行うこともできる。また、基板電極上の電位変化に応じてぬれ性が変化することから、上記電位の印加方法に限らず、電位変化を与えれば液滴2を搬送することができる。 The voltage application method is not limited to the direct current method, and can be performed by the alternating current method. Further, since the wettability changes according to the potential change on the substrate electrode, the droplet 2 can be transported not only by the above-described potential application method but also by applying the potential change.
 なお、上記で示した構成は、上記実施形態1で示したような固定部17と検出電極16とが同じ場所に設けられている構成や、実施形態2で説明した検出手段16’を本構成に含めず、検出装置26にて検出する構成にも適用可能である。 The configuration described above includes the configuration in which the fixing portion 17 and the detection electrode 16 as shown in the first embodiment are provided at the same place, and the detection means 16 ′ described in the second embodiment is the present configuration. It is applicable to the structure detected by the detection apparatus 26, without including.
 <実施形態4>
 次に、本発明における実施形態4について説明する。
<Embodiment 4>
Next, a fourth embodiment of the present invention will be described.
 本実施形態では、表面波(Surface Acoustic Wave)を用いて液滴を搬送する点で、上記実施形態1~3とは異なる。このように、表面波を用いることによって、流路の全体に複数の電極を設ける必要がなくなるので、コストを削減することができる。なお、液滴のぬれ性を変化させる搬送用電極と、表面波を発生させる搬送用電極とを併用することも可能である。 This embodiment is different from Embodiments 1 to 3 described above in that a droplet is transported using a surface acoustic wave (Surface Acoustic Wave). As described above, by using the surface wave, it is not necessary to provide a plurality of electrodes in the entire flow path, so that the cost can be reduced. It is also possible to use a transport electrode that changes the wettability of the droplet and a transport electrode that generates surface waves.
 図11は、本実施形態に係る検体検出用センサ1dにサンプルの液滴2を送液したときの断面図である。 FIG. 11 is a cross-sectional view when the sample droplet 2 is fed to the specimen detection sensor 1d according to the present embodiment.
 搬送用基板11には、圧電体膜19、搬送用電極IDT(InterDigital Transducer)20が形成され、表面波を励振する。圧電体膜19は、例えばLiNbOなどから構成され、電界を印加すると変形するという働きがある。なお、圧電体膜19が疎水性ではない場合は、圧電体膜19上に疎水性膜を備えることが望ましい。 A piezoelectric film 19 and a transport electrode IDT (InterDigital Transducer) 20 are formed on the transport substrate 11 to excite surface waves. The piezoelectric film 19 is made of, for example, LiNbO 3 and has a function of deforming when an electric field is applied. When the piezoelectric film 19 is not hydrophobic, it is desirable to provide a hydrophobic film on the piezoelectric film 19.
 図12は、搬送用電極IDT20を図11における矢印方向から見た平面図である。搬送用電極IDT20は、図12に示すような櫛型状の電極となっており、この櫛型の小電極201にまとめて電圧をかけられるように大電極202が接続されている。大電極202から小電極201に電圧がかけられると、小電極201で表面波を励振する。圧電体膜19上に形成された搬送用電極IDT20に高周波信号を印加すると、電極間に電界が発生し、弾性表面波が励振され、当該弾性表面波が圧電体膜19上を伝搬していく。この伝搬面上に液滴2があると、液滴中に縦波が放射され、液滴2の搬送が可能となる。また、圧電体膜19には、固定部17、検出電極16が形成され、検出電極16の少なくとも一部には固定部17としてリガンドが固定化されている。表面波が液滴2に放射されることによって、液滴2は固定部17及び検出電極16へと搬送される。この場合の検出方法も上記実施形態と同様に実施できる。 FIG. 12 is a plan view of the transfer electrode IDT20 as seen from the direction of the arrow in FIG. The transfer electrode IDT 20 is a comb-shaped electrode as shown in FIG. 12, and a large electrode 202 is connected to the comb-shaped small electrode 201 so that a voltage can be applied collectively. When a voltage is applied from the large electrode 202 to the small electrode 201, a surface wave is excited by the small electrode 201. When a high frequency signal is applied to the transfer electrode IDT 20 formed on the piezoelectric film 19, an electric field is generated between the electrodes, a surface acoustic wave is excited, and the surface acoustic wave propagates on the piezoelectric film 19. . When there is a droplet 2 on this propagation surface, a longitudinal wave is radiated in the droplet, and the droplet 2 can be conveyed. The piezoelectric film 19 is formed with a fixing portion 17 and a detection electrode 16, and a ligand is fixed as at least a part of the detection electrode 16 as the fixing portion 17. When the surface wave is emitted to the droplet 2, the droplet 2 is conveyed to the fixed portion 17 and the detection electrode 16. The detection method in this case can also be implemented in the same manner as in the above embodiment.
 以上、各実施形態で示した方法により、リガンドを固定化し、液滴を用いて検体検出を行う際に、固定化したリガンドの影響により、送液の安定性が阻害されることを防止しつつ、液滴中に含まれる検体を検出するセンサを実現することができた。 As described above, when the ligand is immobilized by the method shown in each embodiment and the specimen detection is performed using the droplet, the stability of the liquid feeding is prevented from being hindered by the influence of the immobilized ligand. Thus, a sensor for detecting the specimen contained in the droplet could be realized.
 また、本願発明は、以下のように構成することも可能である。 Also, the present invention can be configured as follows.
 本発明の検体検出用チップでは、前記搬送用電極は、前記液滴のぬれ性を変化させる搬送用電極であって、前記液滴のぬれ性を変化させることにより前記液滴が搬送されることが好ましい。 In the sample detection chip of the present invention, the transport electrode is a transport electrode that changes the wettability of the droplet, and the droplet is transported by changing the wettability of the droplet. Is preferred.
 本発明の検体検出用チップでは、前記搬送用電極は、表面波を発生させる搬送用電極であって、前記液滴が前記表面波によって搬送されることが好ましい。 In the sample detection chip of the present invention, it is preferable that the transport electrode is a transport electrode for generating a surface wave, and the droplet is transported by the surface wave.
 本発明の検体検出用チップでは、前記搬送用電極は、複数設けられており、前記搬送用電極の各面積は、前記固定部の面積よりも大きいことが好ましい。 In the sample detection chip of the present invention, it is preferable that a plurality of the transport electrodes are provided, and each area of the transport electrodes is larger than an area of the fixed portion.
 本発明の検体検出用チップでは、前記流路は、少なくとも一部が疎水性膜で覆われており、前記固定部は、前記疎水性膜で覆われていないことが好ましい。 In the sample detection chip of the present invention, it is preferable that at least a part of the flow path is covered with a hydrophobic film, and the fixing portion is not covered with the hydrophobic film.
 本発明の検体検出用チップでは、前記検体検出用チップは、前記液滴の量を制御する液滴制御手段を更に備え、前記液滴制御手段は、前記液滴が前記搬送用基板と接する面積が、前記固定部の面積よりも大きくなるように前記液滴の量を制御するものであることが好ましい。 In the sample detection chip of the present invention, the sample detection chip further includes droplet control means for controlling the amount of the droplets, and the droplet control means has an area where the droplets are in contact with the transport substrate. However, it is preferable that the amount of the droplets is controlled to be larger than the area of the fixed portion.
 本発明の検体検出用センサは、本発明の検体検出用チップと、検体を光学的に検出する検出手段と、を備えることが好ましい。 The sample detection sensor of the present invention preferably includes the sample detection chip of the present invention and detection means for optically detecting the sample.
 本発明の検体検出用センサは、本発明の検体検出用チップと、検体を電気的に検出する少なくとも1つの検出電極と、を備えることが好ましい。 The sample detection sensor of the present invention preferably includes the sample detection chip of the present invention and at least one detection electrode for electrically detecting the sample.
 本発明の検体検出用センサでは、前記流路は、少なくとも一部が疎水性膜で覆われており、前記固定部及び前記検出電極は、疎水性膜で覆われていないことが好ましい。 In the specimen detection sensor of the present invention, it is preferable that at least a part of the flow path is covered with a hydrophobic film, and the fixing portion and the detection electrode are not covered with a hydrophobic film.
 本発明の検体検出用センサでは、前記搬送用電極は、複数設けられており、前記搬送用電極の各面積は、前記検出電極及び前記固定部の面積よりも大きいことが好ましい。 In the sample detection sensor of the present invention, it is preferable that a plurality of the transport electrodes are provided, and each area of the transport electrodes is larger than the areas of the detection electrodes and the fixing portion.
 本発明の検体検出用センサでは、本発明の検体検出用チップを備え、前記検体検出用チップに配置された前記液滴制御手段は、前記液滴が前記搬送用基板と接する面積が、前記検出電極及び前記固定部の面積よりも大きくなるように前記液滴の量を制御するものであることが好ましい。 The sample detection sensor of the present invention includes the sample detection chip of the present invention, and the droplet control means disposed on the sample detection chip has an area where the droplet is in contact with the transfer substrate. It is preferable that the amount of the droplet is controlled so as to be larger than the area of the electrode and the fixed portion.
 本発明の検体検出方法は、前記液滴の量を制御する工程を含むことが好ましい。なお、液滴の量を制御する工程を行うタイミングは特に限定されないが、例えば、前記流路内を搬送する工程よりも前に行うことが可能である。更に具体的には、液滴の量を制御する工程は、流路内に導入する液滴の量を制御する工程であってもよい。当該工程は、例えば、所望の量の液滴を流路内へ導入するためのポンプによって行うことが可能である。 The specimen detection method of the present invention preferably includes a step of controlling the amount of the droplet. The timing for performing the step of controlling the amount of droplets is not particularly limited, but can be performed, for example, before the step of transporting the inside of the flow path. More specifically, the step of controlling the amount of droplets may be a step of controlling the amount of droplets introduced into the flow path. This step can be performed by, for example, a pump for introducing a desired amount of droplets into the flow path.
 本発明の検体検出方法では、前記搬送する工程では、前記液滴のぬれ性を変化させることによって前記液滴が搬送されることが好ましい。 In the specimen detection method of the present invention, it is preferable that in the transporting step, the droplet is transported by changing the wettability of the droplet.
 本発明の検体検出方法では、前記搬送する工程では、表面波によって前記液滴が搬送されることが好ましい。 In the specimen detection method of the present invention, it is preferable that the droplet is transported by a surface wave in the transporting step.
 本発明の検体検出方法では、前記検体は、検出電極を用いて電気的に検出され、前記液滴が前記搬送用基板と接する面積が、前記固定部および前記検出電極の面積よりも大きくなるように、前記液滴が搬送されることが好ましい。 In the specimen detection method of the present invention, the specimen is electrically detected using a detection electrode so that the area where the droplet contacts the transport substrate is larger than the areas of the fixed portion and the detection electrode. In addition, it is preferable that the droplets are conveyed.
 本発明の検体検出方法では、前記検出電極は、少なくとも作用電極、及び参照電極によって形成されていることが好ましい。 In the specimen detection method of the present invention, the detection electrode is preferably formed of at least a working electrode and a reference electrode.
 本発明の検体検出方法では、前記作用電極及び参照電極は、前記液滴と同時に接触できるように配置されていることが好ましい。例えば、前記作用電極及び参照電極は、前記液滴と同時に接触できるような間隔にて設けられていることが好ましい。つまり、作用電極と参照電極とは、互いが接することがないように互いの間にスペースが空くように設けられ得る。当該スペースの広さ、および、作用電極と参照電極との間の距離は特に限定されず、作用電極及び参照電極が液滴と同時に接触できる程度のものであればよい。なお、ここでいう同時に接触とは、流路内を液滴が搬送される過程において、液滴が作用電極及び参照電極に同時に接触する時間が存在することを意味する。 In the specimen detection method of the present invention, it is preferable that the working electrode and the reference electrode are arranged so as to be in contact with the droplet simultaneously. For example, it is preferable that the working electrode and the reference electrode are provided at an interval that allows contact with the droplet at the same time. In other words, the working electrode and the reference electrode can be provided such that there is a space between them so that they do not contact each other. The width of the space and the distance between the working electrode and the reference electrode are not particularly limited as long as the working electrode and the reference electrode can be in contact with the droplet simultaneously. Here, the simultaneous contact means that there is a time for the droplets to contact the working electrode and the reference electrode at the same time in the process in which the droplets are transported in the flow path.
 本発明の検体検出方法では、前記検出電極は、作用電極、参照電極、及び対向電極によって形成されていることが好ましい。 In the specimen detection method of the present invention, the detection electrode is preferably formed of a working electrode, a reference electrode, and a counter electrode.
 本発明の検体検出方法では、前記作用電極、参照電極、及び対向電極は、前記液滴と同時に接触できるように配置されていることが好ましい。例えば、前記作用電極、参照電極及び対向電極は、前記液滴と同時に接触できるような間隔にて設けられていることが好ましい。つまり、作用電極、参照電極、及び対向電極は、互いが接することがないように互いの間にスペースが空くように設けられ得る。当該スペースの広さ、および、各電極間の距離は特に限定されず、作用電極、参照電極、及び対向電極が液滴と同時に接触できる程度のものであればよい。なお、ここでいう同時に接触とは、流路内を液滴が搬送される過程において、液滴が作用電極、参照電極及び対向電極の3つの電極に、同時に接触する時間が存在することを意味する。 In the specimen detection method of the present invention, it is preferable that the working electrode, the reference electrode, and the counter electrode are arranged so as to be in contact with the droplet simultaneously. For example, it is preferable that the working electrode, the reference electrode, and the counter electrode are provided at intervals such that they can be contacted simultaneously with the droplet. That is, the working electrode, the reference electrode, and the counter electrode can be provided such that a space is provided between them so that they do not contact each other. The width of the space and the distance between the electrodes are not particularly limited as long as the working electrode, the reference electrode, and the counter electrode can be in contact with the droplet at the same time. Here, the simultaneous contact means that there is a time during which the droplet contacts the working electrode, the reference electrode, and the counter electrode at the same time in the process of transporting the droplet in the flow path. To do.
 なお、本発明は、以上説示した各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 Note that the present invention is not limited to the configurations described above, and various modifications are possible within the scope of the claims, and technical means disclosed in different embodiments are appropriately combined. Embodiments obtained in this manner are also included in the technical scope of the present invention.
 本発明は、所望の検体を検出するための分析装置に利用することができる。 The present invention can be used in an analyzer for detecting a desired specimen.
 1、1a、1b、1c、1d  検体検出用センサ
 11  搬送用基板
 12、12a、12a’、12b、12b’  搬送用電極
 120  上部電極
 13  誘電体膜
 14a、14b  疎水性膜
 15  搬送用電極をもたない基板
 16  検出電極
 16’ 検出手段
 17  固定部
 18  上部基板
 19  圧電体膜
 20  IDT
 26  検出装置
 31  励起光
 32  蛍光
 161  対向電極
 162  作用電極
 163  参照電極
 201  小電極
 202  大電極
 SW1、SW2、SW3  スイッチ
1, 1a, 1b, 1c, 1d Specimen detection sensor 11 Transport substrate 12, 12a, 12a ′, 12b, 12b ′ Transport electrode 120 Upper electrode 13 Dielectric film 14a, 14b Hydrophobic film 15 With transport electrode Substrate 16 Detection electrode 16 'Detection means 17 Fixed portion 18 Upper substrate 19 Piezoelectric film 20 IDT
26 Detection Device 31 Excitation Light 32 Fluorescence 161 Counter Electrode 162 Working Electrode 163 Reference Electrode 201 Small Electrode 202 Large Electrode SW1, SW2, SW3 Switch

Claims (20)

  1.  溶媒中に懸濁した検体を検出するための検体検出用チップであって、
     前記溶媒の液滴を搬送するための搬送用電極を有する搬送用基板と、
     前記搬送用基板に対向する対向基板と、
     前記液滴が通過する、前記搬送用基板と前記対向基板との間に形成された流路と、
     前記流路の一部に設けられた、リガンドが固定化された固定部と、を備え、
     前記固定部に前記液滴が滞留することによって検体の検出を行うことを特徴とする検体検出用チップ。
    A sample detection chip for detecting a sample suspended in a solvent,
    A transport substrate having transport electrodes for transporting the solvent droplets;
    A counter substrate facing the transfer substrate;
    A flow path formed between the transfer substrate and the counter substrate through which the droplets pass;
    A fixing portion provided with a part of the flow path, to which a ligand is fixed,
    A sample detection chip, wherein the sample is detected by the liquid droplets staying in the fixed part.
  2.  前記搬送用電極は、前記液滴のぬれ性を変化させる搬送用電極であって、前記液滴のぬれ性を変化させることにより前記液滴が搬送されることを特徴とする請求項1記載の検体検出用チップ。 The transporting electrode is a transporting electrode that changes the wettability of the droplet, and the droplet is transported by changing the wettability of the droplet. Sample detection chip.
  3.  前記搬送用電極は、表面波を発生させる搬送用電極であって、前記液滴が前記表面波によって搬送されることを特徴とする請求項1記載の検体検出用チップ。 2. The specimen detection chip according to claim 1, wherein the transport electrode is a transport electrode for generating a surface wave, and the droplet is transported by the surface wave.
  4.  前記搬送用電極は、複数設けられており、
     前記搬送用電極の各面積は、前記固定部の面積よりも大きいことを特徴とする請求項1または2に記載の検体検出用チップ。
    A plurality of the transport electrodes are provided,
    3. The sample detection chip according to claim 1, wherein each area of the transfer electrode is larger than an area of the fixed portion.
  5.  前記流路は、少なくとも一部が疎水性膜で覆われており、
     前記固定部は、前記疎水性膜で覆われていないことを特徴とする請求項1~4の何れか1項に記載の検体検出用チップ。
    The flow path is at least partially covered with a hydrophobic membrane,
    5. The specimen detection chip according to claim 1, wherein the fixing part is not covered with the hydrophobic film.
  6.  前記検体検出用チップは、前記液滴の量を制御する液滴制御手段を更に備え、
     前記液滴制御手段は、前記液滴が前記搬送用基板と接する面積が、前記固定部の面積よりも大きくなるように前記液滴の量を制御するものであることを特徴とする請求項1~5の何れか1項に記載の検体検出用チップ。
    The sample detection chip further includes a droplet control means for controlling the amount of the droplet,
    2. The droplet control unit controls the amount of the droplet so that an area where the droplet contacts the transfer substrate is larger than an area of the fixed portion. 6. The specimen detection chip according to any one of 1 to 5.
  7.  請求項1~6の何れか1項に記載の検体検出用チップと、検体を光学的に検出する検出手段と、を備えることを特徴とする検体検出用センサ。 A sample detection sensor comprising: the sample detection chip according to any one of claims 1 to 6; and a detection means for optically detecting the sample.
  8.  請求項1~6の何れか1項に記載の検体検出用チップと、検体を電気的に検出する少なくとも1つの検出電極と、を備えることを特徴とする検体検出用センサ。 A sample detection sensor comprising: the sample detection chip according to any one of claims 1 to 6; and at least one detection electrode for electrically detecting the sample.
  9.  前記流路は、少なくとも一部が疎水性膜で覆われており、
     前記固定部及び前記検出電極は、疎水性膜で覆われていないことを特徴とする請求項8記載の検体検出用センサ。
    The flow path is at least partially covered with a hydrophobic membrane,
    9. The specimen detection sensor according to claim 8, wherein the fixed portion and the detection electrode are not covered with a hydrophobic film.
  10.  前記搬送用電極は、複数設けられており、
     前記搬送用電極の各面積は、前記検出電極及び前記固定部の面積よりも大きいことを特徴とする請求項8または9に記載の検体検出用センサ。
    A plurality of the transport electrodes are provided,
    10. The sample detection sensor according to claim 8, wherein each area of the transport electrode is larger than areas of the detection electrode and the fixing portion. 11.
  11.  請求項6に記載の検体検出用チップを備え、
     前記検体検出用チップに配置された前記液滴制御手段は、前記液滴が前記搬送用基板と接する面積が、前記検出電極及び前記固定部の面積よりも大きくなるように前記液滴の量を制御するものであることを特徴とする請求項8に記載の検体検出用センサ。
    The sample detection chip according to claim 6,
    The droplet control means arranged on the sample detection chip adjusts the amount of the droplet so that an area where the droplet contacts the transport substrate is larger than an area of the detection electrode and the fixed portion. 9. The specimen detection sensor according to claim 8, wherein the specimen detection sensor is controlled.
  12.  検体が懸濁した溶媒の液滴を電気的に制御して流路内を搬送する工程と、
     前記流路の一部に設けられた、リガンドが固定化された固定部に、前記液滴を滞留させて、前記検体と前記リガンドとを反応させる工程と、
     前記検体を検出する工程と、を含む検体検出方法であって、
     前記流路は、前記溶媒の液滴を搬送するための搬送用電極を有する搬送用基板と、前記搬送用基板に対向する対向基板との間に形成されており、
     前記液滴が前記搬送用基板と接する面積が、前記固定部が流路に面する面積よりも大きくなるように、前記液滴が搬送されることを特徴とする検体検出方法。
    A step of electrically controlling a droplet of a solvent in which a specimen is suspended and transporting it in a flow path;
    A step of causing the liquid droplet to stay in a fixing portion provided in a part of the flow path, where the ligand is fixed, and reacting the specimen and the ligand;
    Detecting the specimen, and a method for detecting the specimen comprising the steps of:
    The flow path is formed between a transport substrate having a transport electrode for transporting the droplets of the solvent, and a counter substrate facing the transport substrate,
    The specimen detection method, wherein the droplet is transported such that an area where the droplet contacts the transport substrate is larger than an area where the fixed portion faces the flow path.
  13.  前記液滴の量を制御する工程を含む請求項12に記載の検体検出方法。 13. The specimen detection method according to claim 12, further comprising a step of controlling an amount of the droplets.
  14.  前記搬送する工程では、前記液滴のぬれ性を変化させることによって前記液滴が搬送されることを特徴とする請求項12に記載の検体検出方法。 13. The specimen detection method according to claim 12, wherein in the transporting step, the droplet is transported by changing wettability of the droplet.
  15.  前記搬送する工程では、表面波によって前記液滴が搬送されることを特徴とする請求項12に記載の検体検出方法。 13. The specimen detection method according to claim 12, wherein in the transporting step, the droplet is transported by a surface wave.
  16.  前記検体は、検出電極を用いて電気的に検出され、
     前記液滴が前記搬送用基板と接する面積が、前記固定部および前記検出電極の面積よりも大きくなるように、前記液滴が搬送されることを特徴とする請求項12~15の何れか1項に記載の検体検出方法。
    The specimen is electrically detected using a detection electrode,
    The liquid droplet is transported so that an area where the liquid droplet contacts the transport substrate is larger than an area of the fixed portion and the detection electrode. The specimen detection method according to Item.
  17.  前記検出電極は、少なくとも作用電極、及び参照電極によって形成されていることを特徴とする請求項16に記載の検体検出方法。 The specimen detection method according to claim 16, wherein the detection electrode is formed of at least a working electrode and a reference electrode.
  18.  前記作用電極及び参照電極は、前記液滴と同時に接触できるように配置されていることを特徴とする請求項17に記載の検体検出方法。 The specimen detection method according to claim 17, wherein the working electrode and the reference electrode are arranged so as to be in contact with the droplet simultaneously.
  19.  前記検出電極は、作用電極、参照電極、及び対向電極によって形成されていることを特徴とする請求項16に記載の検体検出方法。 The specimen detection method according to claim 16, wherein the detection electrode is formed of a working electrode, a reference electrode, and a counter electrode.
  20.  前記作用電極、参照電極、及び対向電極は、前記液滴と同時に接触できるように配置されていることを特徴とする請求項19に記載の検体検出方法。 The specimen detection method according to claim 19, wherein the working electrode, the reference electrode, and the counter electrode are arranged so as to be in contact with the droplet simultaneously.
PCT/JP2011/080121 2010-12-28 2011-12-26 Sample detection chip, sensor using same, and sample detection method WO2012090960A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010291433 2010-12-28
JP2010-291433 2010-12-28
JP2011264288A JP2012150098A (en) 2010-12-28 2011-12-02 Chip for detecting specimen, sensor using the same, and method for detecting specimen
JP2011-264288 2011-12-02

Publications (1)

Publication Number Publication Date
WO2012090960A1 true WO2012090960A1 (en) 2012-07-05

Family

ID=46383060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080121 WO2012090960A1 (en) 2010-12-28 2011-12-26 Sample detection chip, sensor using same, and sample detection method

Country Status (2)

Country Link
JP (1) JP2012150098A (en)
WO (1) WO2012090960A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112444547A (en) * 2019-08-30 2021-03-05 希森美康株式会社 Pretreatment method and in vivo component measuring apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9458543B2 (en) * 2012-12-04 2016-10-04 Sharp Kabushiki Kaisha Active matrix electrowetting-on-dielectric device
GB2533951A (en) 2015-01-08 2016-07-13 Sharp Kk Active matrix device and method of driving
JP6654951B2 (en) * 2016-03-31 2020-02-26 株式会社エンプラス Fluid handling device
CN112969536B (en) * 2018-11-09 2023-04-11 深圳华大智造科技股份有限公司 Multi-layer electrical connection of digital microfluidics on a substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199231A (en) * 2004-01-19 2005-07-28 Tsukuba Technology Seed Kk Liquid sending apparatus and driving method therefor
JP2005257407A (en) * 2004-03-10 2005-09-22 Olympus Corp Minute amount liquid control unit
JP2006317299A (en) * 2005-05-13 2006-11-24 Hitachi High-Technologies Corp Liquid conveyance device and analysis system
JP2007132749A (en) * 2005-11-09 2007-05-31 Hitachi Ltd Liquid feed device
JP2008502882A (en) * 2004-06-04 2008-01-31 ユニベールシテ・デ・スジャンス・エ・テクノロジー・ドゥ・リル Apparatus for handling droplets for biochemical analysis, method for manufacturing said apparatus and microfluidic analysis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199231A (en) * 2004-01-19 2005-07-28 Tsukuba Technology Seed Kk Liquid sending apparatus and driving method therefor
JP2005257407A (en) * 2004-03-10 2005-09-22 Olympus Corp Minute amount liquid control unit
JP2008502882A (en) * 2004-06-04 2008-01-31 ユニベールシテ・デ・スジャンス・エ・テクノロジー・ドゥ・リル Apparatus for handling droplets for biochemical analysis, method for manufacturing said apparatus and microfluidic analysis
JP2006317299A (en) * 2005-05-13 2006-11-24 Hitachi High-Technologies Corp Liquid conveyance device and analysis system
JP2007132749A (en) * 2005-11-09 2007-05-31 Hitachi Ltd Liquid feed device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112444547A (en) * 2019-08-30 2021-03-05 希森美康株式会社 Pretreatment method and in vivo component measuring apparatus

Also Published As

Publication number Publication date
JP2012150098A (en) 2012-08-09

Similar Documents

Publication Publication Date Title
US11369963B2 (en) Devices and methods for sample analysis
Ikami et al. Immuno-pillar chip: a new platform for rapid and easy-to-use immunoassay
Liu et al. Ring-oven washing technique integrated paper-based immunodevice for sensitive detection of cancer biomarker
Bange et al. Microfluidic immunosensor systems
US20060141469A1 (en) Multi-layered electrochemical microfluidic sensor comprising reagent on porous layer
WO2012090960A1 (en) Sample detection chip, sensor using same, and sample detection method
KR20060064807A (en) Lab-on-a-chip for an on-the-spot analysis and signal detector for the same
JP4972295B2 (en) Immunoassay method and biochip
EP3735319B1 (en) Single-channel multianalyte biosensor
Yanagisawa et al. Enhancement in the sensitivity of microfluidic enzyme-linked immunosorbent assays through analyte preconcentration
US7863051B2 (en) Detecting element and detection method
Parween et al. Image-based ELISA on an activated polypropylene microtest plate—A spectrophotometer-free low cost assay technique
JP4253695B2 (en) Substance determination method and substance determination device
Oliveira et al. Laser-printing of toner-based 96-microzone plates for immunoassays
González-López et al. Micropipette tip-based immunoassay with electrochemical detection of antitissue transglutaminase to diagnose celiac disease using staples and a paper-based platform
Chandra et al. Magnetoplasmons for ultrasensitive label-free biosensing
JP2005024483A (en) Biosensor
JP6857347B2 (en) Solution component analysis kit, solution component analysis method, and solution component analyzer
JP4722977B2 (en) Detection instrument, analyzer, detection method, and control method of detection instrument
Matson ELISA-based biosensors
JP2012505417A (en) Body fluid test strip and method
Viguier et al. Trends and perspectives in immunosensors
JP2012194015A (en) Electrophoretic chip and analysis method
Isa Highly sensitive coulometric detection of proteins based on metallization
Muhsin et al. A Microfluidic Biosensor For Rapid Detection of Endemic Chronic Wasting Disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852484

Country of ref document: EP

Kind code of ref document: A1