WO2012090919A1 - Chip for light sensor, light sensor, measurement system, and measurement method using same - Google Patents

Chip for light sensor, light sensor, measurement system, and measurement method using same Download PDF

Info

Publication number
WO2012090919A1
WO2012090919A1 PCT/JP2011/080032 JP2011080032W WO2012090919A1 WO 2012090919 A1 WO2012090919 A1 WO 2012090919A1 JP 2011080032 W JP2011080032 W JP 2011080032W WO 2012090919 A1 WO2012090919 A1 WO 2012090919A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical sensor
enzyme
liquid
measurement
Prior art date
Application number
PCT/JP2011/080032
Other languages
French (fr)
Japanese (ja)
Inventor
健次 浜地
浩二 三林
寛之 工藤
Original Assignee
ローム株式会社
国立大学法人東京医科歯科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社, 国立大学法人東京医科歯科大学 filed Critical ローム株式会社
Publication of WO2012090919A1 publication Critical patent/WO2012090919A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • G01N2021/7706Reagent provision
    • G01N2021/772Tip coated light guide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • G01N2021/7706Reagent provision
    • G01N2021/7733Reservoir, liquid reagent

Definitions

  • the present invention relates to an optical sensor chip, an optical sensor, a measurement system, and a measurement method using the same.
  • a biosensor refers to a sensor that utilizes the molecular recognition ability of biological materials such as microorganisms, enzymes, and antibodies, and applies the biological materials as molecular identification elements.
  • the biosensor converts the reaction that occurs when the immobilized biological material recognizes the target substrate, the consumption of the enzyme due to the respiration of microorganisms, the enzymatic reaction, luminescence, etc. into an electrical signal or the like by the physicochemical device. To measure.
  • the electron acceptor produced by the reaction between the substrate and the enzyme contained in the sample liquid which is the specimen is reduced, and the reduction amount of the electron acceptor is reduced using a Clark-type oxygen electrode or the like. Quantitative analysis of specimens has been performed by electrochemical measurement.
  • optical fiber sensors optical sensors
  • an oxygen-sensitive optical fiber that measures the oxygen concentration by fixing the ruthenium complex to the tip of the optical fiber is used, which utilizes the phenomenon that the fluorescence reaction of the ruthenium complex is quenched by the surrounding oxygen concentration.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-250516 discloses an optical sensor (odor sensor) in which an enzyme-immobilized film is brought into close contact with the tip of an oxygen-sensitive optical fiber.
  • odor sensor odor sensor
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-250516 discloses an optical sensor (odor sensor) in which an enzyme-immobilized film is brought into close contact with the tip of an oxygen-sensitive optical fiber.
  • a buffer solution for washing the enzyme reaction product remaining on the enzyme-immobilized membrane is circulated around the optical fiber so that continuous measurement is possible. Yes.
  • the tip of the optical fiber is only covered with a dialysis membrane or the like on which an enzyme is immobilized, and environmental light may enter the optical fiber, there is a problem that it is susceptible to environmental light.
  • An object of the present invention has been made in view of the above problems, and provides a chip for an optical sensor having excellent sensor characteristics that enables sensor output to be stabilized and continuous measurement with good responsiveness. That is. Another object of the present invention is to provide an optical sensor chip that enables measurement without being affected by ambient light.
  • the present invention is an optical sensor chip used in connection with an optical fiber, A first gas permeable membrane covering the tip of the optical fiber; An optical sensor chip comprising a liquid chamber for supplying a liquid to a surface of the first gas permeable membrane opposite to the side connected to the optical fiber.
  • the first gas permeable membrane is preferably an enzyme-immobilized membrane on which an enzyme that catalyzes a chemical reaction of the target substance is immobilized.
  • the liquid chamber is a closed space not communicating with the outside of the optical sensor chip, or a space having a liquid inlet and an air hole.
  • the liquid chamber includes a second gas permeable membrane on a side opposite to the first gas permeable membrane, It is preferable to have a stopper mechanism for making the distance between the tip of the optical fiber and the second gas permeable membrane constant when the optical fiber is connected.
  • the enzyme is preferably an oxidoreductase, a dehydrogenase or a luminescent enzyme.
  • the oxidoreductase is preferably an enzyme that consumes or generates oxygen by reacting with a substrate.
  • the optical fiber is preferably an oxygen sensitive optical fiber, a pH sensitive optical fiber or a light emission sensitive optical fiber.
  • the optical fiber is an oxygen-sensitive optical fiber, and a ruthenium organic complex is fixed to the tip of the optical fiber.
  • the present invention also relates to an optical sensor formed by connecting the optical sensor chip and an optical fiber.
  • the present invention also relates to a measurement system including at least one optical sensor.
  • the measurement system preferably includes a mechanism for replacing the liquid in the liquid chamber of the optical sensor chip.
  • the measurement system is preferably for measuring odor. Furthermore, the present invention also relates to a method for measuring a target substance using the measurement system.
  • the liquid in the liquid chamber does not move and the liquid in the liquid chamber moves between each measurement.
  • the liquid in the liquid chamber moves during the measurement.
  • the first gas permeable membrane is an enzyme-immobilized membrane on which an enzyme that catalyzes a chemical reaction of a target substance is immobilized.
  • an enzyme an oxidoreductase that consumes or generates oxygen by reacting with a substrate is used.
  • the substrate is methyl mercaptan, dimethyl sulfide, hydrogen sulfide, ammonia, or trimethylamine; It is preferable to add ascorbic acid to the liquid.
  • the concentration of the ascorbic acid is preferably 10 mM or less.
  • the present invention it is possible to provide a chip for an optical sensor having excellent sensor characteristics that enables a sensor output to be stabilized and continuous measurement with good responsiveness.
  • FIG. 3 is a graph showing measurement results of Example 1. It is the elements on larger scale of the graph of FIG.
  • FIG. 8 is a further partial enlarged view of FIG. 7. It is a graph which shows the calibration curve produced from the inclination of the graph of FIG. 8, and the density
  • the optical sensor chip of the present invention is a member used in connection with an optical fiber, A first gas permeable membrane on which an enzyme that catalyzes a chemical reaction of a target substance is immobilized; A liquid chamber is provided for supplying a liquid to the surface of the first gas permeable membrane opposite to the side connected to the optical fiber.
  • optical fiber examples include an oxygen sensitive optical fiber, a pH sensitive optical fiber, and a light emission sensitive optical fiber.
  • Oxygen-sensitive optical fiber is an optical fiber that can detect oxygen concentration by utilizing the phenomenon that fluorescence reaction is quenched by ambient oxygen concentration.
  • PH-sensitive optical fiber and luminescence-sensitive optical fiber measure pH and luminescence, respectively.
  • an optical fiber in which the ruthenium organic complex is immobilized on the optical fiber can be suitably used by utilizing the phenomenon that the fluorescence reaction of the ruthenium organic complex is quenched by the surrounding oxygen concentration.
  • an optical fiber in which an organic complex such as platinum, osmium, iridium, rhodium, rhenium and chromium is immobilized can be used.
  • organic complexes include ruthenium and the like, 2,2′-bipyridine, 1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, 4,7-dimethyl-1,10-phenanthroline, 4,7- Disulfonated diphenyl-1,10-phenanthroline, 2,2′-bi-2-thiazoline, 2,2′-bithiazole, 5-bromo-1,10-phenanthroline, 5-chloro-1,10-phenanthroline and the like And the like.
  • tris (2,2′-bipyridyl) ruthenium dichloride represented by the following chemical formula (1) is preferably used.
  • the method for fixing the ruthenium complex or the like to the tip of the optical fiber is not particularly limited, but can be fixed by, for example, a sol-gel method.
  • Fluorescence reaction of ruthenium complex (excitation light: 470 nm, fluorescence: 600 nm) shows a quenching phenomenon depending on the oxygen and dissolved oxygen concentration in the gas phase and liquid phase in the presence of oxygen, so the measurement of oxygen concentration Is possible.
  • the oxygen-sensitive optical fiber a commercially available optical fiber can be used.
  • an optical fiber manufactured by Ocean Optisk Corporation can be used.
  • the diameter of the optical fiber to be used can be selected according to the application, and a diameter of about 1.5 mm is usually used.
  • the diameter of the optical fiber is not limited to this and is about 0.01 mm to 5.0 mm. Ranges can be used.
  • a silicone overcoat 12 may be formed on a ruthenium organic complex 11 as shown in FIG. This has the effect of blocking ambient light that becomes measurement noise. Even when a silicone overcoat or the like is not formed at the tip of the optical fiber, for example, the same light-shielding effect can be obtained by forming the main body of the optical sensor chip coupled to the tip of the optical fiber from a material that is not light-transmissive. be able to. Although the presence of the silicone overcoat can block ambient light, the diffusion of oxygen is suppressed and the responsiveness is delayed. Therefore, the responsiveness is much faster when there is no overcoat.
  • the first gas permeable film is a film made of a material that transmits at least gas, and is provided so as to cover the tip of the optical fiber. Moreover, it is preferable that it is a material which does not permeate
  • the first gas permeable membrane is preferably an enzyme-immobilized membrane on which an enzyme that catalyzes a chemical reaction of the target substance is immobilized.
  • the first gas permeable membrane does not necessarily have an enzyme immobilized thereon, and the target substance can be measured by using an enzyme solution to which the enzyme is added as a buffer solution supplied into the liquid chamber. Can do.
  • dialysis membrane As the base material of the first gas permeable membrane, dialysis membrane, hydrophilic polytetrafluoroethylene (H-PTFE) membrane, polycarbonate membrane, cellulose mixed ester membrane, cellulose acetate membrane, hydrophilic polyvinylidene fluoride (H-PVDF) ) Etc. are used.
  • H-PTFE hydrophilic polytetrafluoroethylene
  • PVDF hydrophilic polyvinylidene fluoride
  • UC 36-32-100 (Viscose Corporation Inc., molecular weight cut off 14000, pore size 5 nm) is used as a dialysis membrane
  • JGWP 14225 (Milipore Corporation, pore size 0.1 ⁇ m) is used as an H-PTFE membrane. Can be mentioned.
  • Examples of the enzyme that is immobilized when the first gas permeable membrane is an enzyme-immobilized membrane include oxidoreductase, dehydrogenase, and luminescent enzyme.
  • the oxidoreductase used in the biosensor of the present invention is an enzyme that consumes or generates oxygen by reacting with a substrate.
  • Such an oxidoreductase can be selected according to the target substance (substrate) to be measured. For example, alcohol oxidase is used to measure the concentration of ethanol, and flavin-containing monooxygenase is used to measure the concentrations of trimethylamine, methyl mercaptan and ammonia.
  • oxidoreductases examples include catalase, monoamine oxidase, glucose oxidase, uricase, invertase, mutarotase, phospholipase, choline oxidase, amino acid oxidase, ascorbate oxidase, creatine kinase, luciferase, lactate oxidase, cholesterol oxidase, methyl mercaptan oxidase Xanthine oxidase, tyrosinase, galactose oxidase and the like.
  • Examples of the method for preparing the enzyme-immobilized membrane include a comprehensive method using a photocrosslinkable resin, a crosslinking method, an adsorption method, and the like. Among them, a comprehensive method using a photocrosslinkable resin is generally used. Hereinafter, the inclusion method using a photocrosslinked resin will be described.
  • photocrosslinkable resin examples include polyethylene glycol, polyvinyl alcohol, and the like.
  • a paste of a mixture containing an enzyme and a photocrosslinkable resin is applied to and impregnated on a substrate such as a dialysis membrane, and then the photocrosslinkable resin is crosslinked so that the enzyme becomes a substrate.
  • a substrate such as a dialysis membrane
  • An enzyme-immobilized membrane immobilized on can be prepared.
  • the solvent used when producing the paste include a buffer solution, distilled water, and ion-exchanged water.
  • the optical sensor chip of the present invention includes a liquid chamber for supplying a liquid to the surface of the first gas permeable membrane opposite to the side connected to the optical fiber.
  • the liquid is not particularly limited as long as it is a liquid that can clean the first gas permeable membrane at the tip of the optical fiber, and examples thereof include a buffer solution.
  • the first gas permeable membrane is an enzyme-immobilized membrane
  • the buffer solution can contain additives necessary for the enzyme reaction of the enzyme immobilized on the enzyme-immobilized membrane.
  • the additive can be appropriately selected according to the type of enzyme used and the type of target substance (substrate), and examples thereof include a reducing agent.
  • a reducing agent For example, when measuring methyl mercaptan or the like using an oxidase such as monoamine oxidase, the amount of the enzyme reaction product is reduced by reducing the oxidized methyl mercaptan produced by the enzyme reaction with a reducing agent and subjecting it again to the enzyme reaction.
  • the sensitivity can be increased by increasing the sensitivity.
  • the reducing agent include ascorbic acid, dithiothreitol, NADH, and NADPH.
  • the liquid in the liquid chamber is preferably in a state where it can directly contact the first gas permeable membrane.
  • the target substance attached to the first gas permeable membrane can be quickly cleaned.
  • the responsiveness to the change in the concentration of the measurement object during continuous measurement is improved as compared with the conventional sensor as shown in FIG.
  • the optical sensor chip of the present invention preferably has at least one flow path that communicates the liquid chamber and the outside of the optical sensor chip.
  • the flow path is preferably connected to a mechanism for replacing the liquid in the liquid chamber.
  • the liquid chamber may be a closed space that does not communicate with the outside of the optical sensor chip, or a space having a liquid inlet and an air hole.
  • the airtightness of the closed space does not necessarily need to be airtight, and may be liquid tight.
  • the liquid chamber can be filled in advance with a liquid and used as a disposable optical sensor chip. By using such a chip, a system for supplying a liquid at the time of measurement becomes unnecessary, and it becomes possible to carry out measurement easily.
  • the oxide of the measurement target substance can be reduced using an optimal reducing agent, which can be recycled for measurement, and the sensor output can be amplified.
  • an optimal reducing agent which can be recycled for measurement
  • the sensor output can be amplified.
  • the present invention also relates to an optical sensor formed by connecting the optical sensor chip and the optical fiber. Specific combinations of enzymes and optical fibers used in the optical sensor of the present invention are exemplified below.
  • a combination of monoamine oxidase (MAOA) and an oxygen-sensitive optical fiber can be used.
  • MAOA representative reactions R—CH 2 —NH 2 + H 2 O + O 2 ⁇ R—CHO + NH 3 + H 2 O 2
  • the amount of oxygen consumed is measured by an oxygen-sensitive optical fiber.
  • the following reaction is caused by the reaction diversity of MAOA: 2CH 3 SH + O 2 ⁇ CH 3 SSCH 3 + H 2 O 2 Is considered to be performed.
  • glucose oxidase GOD
  • oxygen-sensitive optical fiber When measuring glucose in a solution, a combination of glucose oxidase (GOD) and an oxygen-sensitive optical fiber can be used. The amount of oxygen consumed by the oxidation reaction of glucose is measured with an oxygen-sensitive optical fiber.
  • a combination of alcohol dehydrogenase and pH-sensitive optical fiber can be used. Since hydrogen is desorbed from alcohol by alcohol dehydrogenase and the pH in the solution changes, the pH change is detected by a pH-sensitive optical fiber.
  • Luminescent luciferase measures hydrogen peroxide produced by the consumption of oxygen by alcohol oxidase based on the intensity of luminescence of the luminescent luciferase that consumes hydrogen peroxide to emit light.
  • a combination of an aldehyde dehydrogenase and a pH-sensitive optical fiber can be used. Since hydrogen is desorbed from the aldehyde by aldehyde dehydrogenase and the pH in the solution changes, the pH change is detected with a pH-sensitive optical fiber.
  • formaldehyde can be measured by using formaldehyde dehydrogenase.
  • the measurement system of the present invention includes at least one optical sensor.
  • One optical sensor may be provided, and when a plurality of optical sensors having different measurement targets are provided, a plurality of target substances can be detected simultaneously.
  • the measurement system preferably includes a mechanism for replacing the liquid in the liquid chamber of the optical sensor chip.
  • a mechanism for replacing the liquid for example, a pump capable of feeding the liquid into the liquid chamber may be used.
  • the measurement target of the measurement system is not particularly limited, but can be suitably used for measuring odor.
  • the present invention also relates to a measurement method using the measurement system.
  • the liquid in the liquid chamber does not move during the measurement, and the liquid in the liquid chamber moves between each measurement.
  • the liquid in the liquid chamber is stored during the measurement, and the enzyme reaction necessary for the measurement can be sufficiently advanced, so that the measurement sensitivity can be improved.
  • the measurement target substance is contained in the gas, the substance permeates and diffuses through the second gas permeable membrane, and the concentration in the stored liquid continues to increase. It is advantageous to make.
  • the concentration of the target substance based on the differential value, integral value, integrated value, or second-order differential value of the measured light output with time.
  • the measurement time can be shortened. It is desirable to construct a system that automatically performs such calculations using an analysis program.
  • “light output” is a concept including “intensity of light of a specific wavelength”, “shift amount of a specific wavelength”, and the like.
  • the liquid in the liquid chamber moves during the measurement. Used when you want to monitor the target substance continuously.
  • the target substance is methyl mercaptan, dimethyl sulfide, hydrogen sulfide, ammonia, or trimethylamine
  • an oxidoreductase that consumes or generates oxygen by reacting with the substrate is used as the enzyme. It is preferable to add ascorbic acid to the liquid. At this time, the concentration of ascorbic acid added is preferably 10 mM or less.
  • Sensors and Actuators B Chemical Volume 108, Issues 1-2, Pages 639-645 (July 22, 2005) have been released as related technologies for the effects of ascorbic acid concentration.
  • FIG. 1 shows an enlarged view of the tip portion of the photosensor according to Embodiment 1 of the present invention.
  • the optical sensor chip 2 includes a chip body 20 including a liquid chamber 21, an enzyme-immobilized film (first gas permeable film) 22, and a second gas permeable film 23.
  • an enzyme-immobilized film 22 is in close contact with the tip of the optical fiber 1, and is fixed by a chip body 20 of a chip for optical sensors.
  • the second gas permeable membrane 23 may be fixed to the tip of the chip body 20 with an O-ring or the like, or may be bonded and integrated.
  • the second gas permeable membrane 23 is a membrane made of at least a gas permeable material, and is preferably a material that does not allow liquid to pass through when measuring a target substance in the gas. Specific examples include dialysis membranes, H-PTFE membranes, H-PVDF membranes, and the like. Further, the same enzyme as the enzyme immobilized on the enzyme immobilization membrane 22 may be immobilized on the second gas permeable membrane 23. Thereby, the production
  • the introduction tube 211 and the discharge tube 212 are connected by a single liquid chamber 21 (flow path) that passes through the surface of the enzyme-immobilized membrane 22 on the side opposite to the optical fiber 1.
  • the liquid can circulate stably and smoothly on the surface of the enzyme-immobilized film 22.
  • the shape of the liquid chamber 21 is preferably a very simple one-way flow path or the like that suppresses the generation of swell and stagnation during liquid flow.
  • the chip body 20 By producing the chip body 20 using a material that is not light transmissive (for example, black acrylic resin), it is possible to eliminate the influence of ambient light that enters the optical fiber 1 and becomes measurement noise. Further, even when a non-light-transmitting material is not used, the same light shielding effect can be obtained by making the structure of the chip body 20 less susceptible to ambient light around the enzyme-immobilized film 22 at the tip of the optical fiber 1. Can do.
  • a material that is not light transmissive for example, black acrylic resin
  • the chip body 20 provided with the liquid chamber 21, the enzyme-immobilized film 22, and the second gas permeable film 23 are integrated into a single optical sensor chip 2, so that the entire chip is replaced for each measurement.
  • Such a usage method (disposable) becomes possible, and preparation for measurement can be easily performed.
  • the optical sensor chip 2 preferably has a stopper mechanism for making the distance between the tip of the optical fiber 1 and the second gas permeable film 23 constant when the optical fiber 1 is connected.
  • the distance between the tip of the optical fiber 1 and the second gas permeable membrane 23 is kept constant. This is because the width of the liquid chamber 21 provided on the front end side of the chip body 20 is slightly narrower than the diameter of the hole provided for inserting the optical fiber 1 on the rear end side. This is because the optical fiber 1 stops at the position of FIG. 1A when inserted (FIG. 1B, which is a cross-sectional view taken along the line AA ′ of FIG. 1A, and FIG. FIG. 1C is a cross-sectional view taken along the line BB ′ of FIG.
  • the distance between the tip of the optical fiber 1 and the second gas permeable membrane 23 is preferably 0.05 to 0.6 mm. If the distance is too short, the liquid flow tends to be disturbed. On the other hand, if the distance is longer than this, the distance until the target substance reaches the enzyme-immobilized membrane 22 becomes longer, and it takes time to reach the target substance, resulting in poor responsiveness. In addition, since the target substance is diluted before reaching the enzyme-immobilized membrane 22, the measurement sensitivity decreases when compared in the same measurement time.
  • FIG. 2 is an enlarged view of the tip portion of the photosensor according to Embodiment 2 of the present invention.
  • (A) is a longitudinal sectional view
  • (b) is an AA ′ sectional view of FIG. 1 (a).
  • the optical sensor of the present embodiment shown in FIG. 2 is different from the first embodiment in that the liquid chamber 21 (liquid reservoir) is a closed space that is not in communication with the outside. Since the other points are the same as those in the first embodiment, description thereof is omitted.
  • the liquid chamber 21 is provided so as to surround the periphery of the enzyme-immobilized membrane (first gas permeable membrane) 22.
  • the thickness of the liquid chamber 21 is not particularly limited, but is preferably about 2 mm or more.
  • the volume of the liquid chamber 21 is not particularly limited, but is preferably about 20 ⁇ L or more. This is because if the amount of the solution accumulated in the liquid chamber is too small, the solution is dried immediately.
  • the optical sensor having such a liquid reservoir structure can improve the measurement sensitivity by collecting the reaction product of the dissolved target substance (such as odor substance) in the liquid reservoir. It becomes.
  • the measurement may be performed after waiting until the concentration of the reaction product reaches a steady state in the reservoir, but the rate of change in light output when the reaction product due to the enzyme reaction accumulates in the reservoir.
  • monitoring differential value
  • measurement is possible even when the reaction product has a low concentration, and the measurement result can be obtained in a short time.
  • the chip body 20 including the liquid chamber 21 (liquid reservoir structure), the enzyme-immobilized film 22 and the second gas permeable film 23 are integrated into one chip.
  • a method of use (disposable) in which the entire chip is replaced for each measurement becomes possible, and preparation for measurement can be easily performed.
  • a liquid storage structure is provided, so that the liquid feeding system can be omitted and the measurement system can be greatly simplified.
  • the enzyme-immobilized membrane starts to dry immediately, so that a sufficient sensor output cannot be obtained and the output is not stable.
  • a buffer solution is supplied to the enzyme-immobilized membrane by the liquid delivery, and drying can be prevented, but a liquid delivery pump and piping are required, and the operation is not simple and downsized. ⁇ It was disadvantageous for price reduction.
  • the present embodiment relates to a measurement system and a measurement method for measuring a target substance (such as an odor substance) in a sample gas using the optical sensor of the first embodiment.
  • An outline of the measurement system of the present embodiment is shown in FIG.
  • the optical sensor chip 2 is attached to the tip of the optical fiber 1, and the excitation light emitted from the light source 31 reaches the rubidium organic complex or the like at the tip of the optical fiber 1, and the intensity according to the amount of oxygen bound to the complex Is excited.
  • the excited fluorescence is measured by the spectrometer 32 through the optical fiber 1 and the intensity thereof is analyzed by the computer 33. For example, when oxygen is consumed by the enzymatic reaction of the target substance (substrate), the concentration of the target substance can be measured based on the amount of increase in fluorescence intensity after measurement relative to the fluorescence intensity before measurement.
  • the sample gas containing the target substance is sent into the reservoir 5 and loaded on the tip of the optical sensor chip 2.
  • the sample gas may be continuously fed into the reservoir 5 at a constant speed, or may be stored in the reservoir 5 for a certain period of time after a certain amount of sample gas has been fed into the reservoir 5.
  • an optical sensor chip having a flow channel-like liquid chamber as described in the first embodiment with reference to FIG. 1 can be used.
  • a liquid such as a phosphate buffer is fed into the flow channel-shaped liquid chamber of the optical sensor chip 2 by the pump 41.
  • the liquid feeding amount is adjusted by the flow rate adjusting valve 42.
  • the liquid feeding may be continuous or intermittent, and the liquid feeding amount can be appropriately set according to the measurement purpose.
  • the present embodiment relates to a measurement system and a measurement method for dissolving a target substance in a sample gas in a liquid and measuring the target substance in the liquid.
  • An outline of the measurement system of the present embodiment is shown in FIG.
  • the optical sensor chip 2 is attached to the tip of the optical fiber 1, and the excitation light emitted from the light source 31 reaches the rubidium organic complex or the like at the tip of the optical fiber 1 to reach the complex. Intensity fluorescence corresponding to the amount of oxygen binding is excited. The excited fluorescence is measured by the spectrometer 32 through the optical fiber 1 and the intensity thereof is analyzed by the computer 33.
  • an optical sensor chip having a flow channel-like liquid chamber as described in the first embodiment with reference to FIG. 1 can be used.
  • the sample gas containing the target substance is sent into the liquid 6 such as a phosphate buffer solution through the air supply pipe 51, and the target substance is dissolved in the liquid 6.
  • the change in the concentration of the target substance in the sample gas to be blown in is quickly reflected in the dissolved amount of the target substance in the liquid 6.
  • the liquid 6 in which the target substance is dissolved is sent by the pump 41 to the flow channel liquid chamber of the optical sensor chip 2.
  • the liquid feeding amount is adjusted by the flow rate adjusting valve 42.
  • the liquid feeding may be continuous or intermittent, and the liquid feeding amount can be appropriately set according to the measurement purpose. By measuring the concentration of the target substance in the liquid, the concentration of the target substance in the sample gas can be obtained.
  • Example 1 (Production of enzyme-immobilized membrane and optical sensor) Alcohol oxidase (AOD: alcohol oxidase, EC 1.1.3.13 A2404, 10-40 units / mg, Sigma-Aldrich) 15 ⁇ L and PVA-SbQ (SPP-H-1 (Bio) as photocrosslinking resin, Toyo Gosei Kogyo Co., Ltd.) 50 ⁇ L of the mixed solution was used as a paste. This paste was uniformly applied to an H-PTFE membrane (JGWP14225, Millipore Corporation, pore size 200 nm) cut to 30 ⁇ 30 mm 2 . Next, after drying in a cool dark place at 4 ° C.
  • AOD alcohol oxidase, EC 1.1.3.13 A2404, 10-40 units / mg, Sigma-Aldrich
  • PVA-SbQ SPP-H-1 (Bio) as photocrosslinking resin, Toyo Gosei Kogyo Co., Ltd.
  • the mixture was allowed to stand for 2 hours under a fluorescent lamp, whereby alcohol oxidase was comprehensively immobilized by a photocrosslinking method to produce an enzyme-immobilized membrane.
  • the paste was applied so as to be imprinted, and any excess enzyme after drying was scraped off.
  • an optical sensor having a structure as shown in FIG. 1 was produced using the produced enzyme-immobilized film.
  • An H-PTFE membrane was used as the second gas permeable membrane.
  • the H-PTFE membrane was fixed to the tip of the chip body 20 using a silicon O-ring.
  • the enzyme-immobilized membrane was attached so as to be in contact with the sensitive portion at the tip of an oxygen-sensitive optical fiber (FOXY-R, od: 1.5 mm manufactured by Ocean Optics).
  • a standard gas generator (0.1 mol / L phosphate buffer, pH 8.0) was fed into a liquid chamber using a pump.
  • Permeater, TYPE PD-1B-2 (manufactured by Gastec Co., Ltd.) was used to generate ethanol gas of a predetermined concentration, and the generated ethanol gas was loaded at the tip of the sensor at a flow rate of 200 mL / min.
  • Spectrophotometer MODEL S4000-FL, manufactured by Ocean Optics
  • a / D conversion are used as the sensor output intensity, which is the amount of increase in fluorescence intensity due to the decrease in oxygen concentration due to the oxidation reaction of oxygen (oxygen consumption reaction) by ethanol.
  • Measured with a computer via a device DAQ Card-700, PCMCIA-type A / D card, manufactured by National Instruments.
  • the concentration of ethanol gas is 0 (air), 0.7, 1.1, 2.2, 4.4, 12.4, 22.5, 31.0, 49.6, 82.6, 124.
  • the above measurement was performed for each case of 0.0 ppm.
  • the flow rate of ethanol gas and the flow rate of buffer solution were controlled as follows. First, during the period from the start of the experiment to 2 minutes after the start, loading with air (air) with a flow rate of 0.2 L / min was performed, and the buffer solution was sent at 1.5 mL / min. Next, during the period of 2 to 14 minutes after the start of the experiment, ethanol gas of each concentration was loaded at 0.2 L / min, and the buffer solution feeding was stopped. Furthermore, for 14 to 20 minutes after the start of the experiment, loading with 0.2 L / min of air (air) was performed, and the buffer solution was sent at 1.5 mL / min.
  • FIG. 6 is a graph showing the relationship between the sensor output intensity and the ethanol gas concentration.
  • the horizontal axis indicates the elapsed time from the start of measurement
  • the vertical axis indicates the sensor output intensity.
  • the sensor output intensity starts to increase according to the concentration of each ethanol gas 2 minutes after the start of measurement when ethanol gas starts to be loaded on the tip of the sensor. It can be seen that when the ethanol gas load is stopped approximately 14 minutes after the start of the measurement and the buffer solution is resumed, the sensor output intensity rapidly decreases and quickly returns to the initial state.
  • FIG. 7 shows an enlarged view of 1 to 5 minutes after the start of measurement in the graph of Fig. 6.
  • FIG. 8 shows an enlarged view of 4 to 5 minutes after the start of measurement in which linearity is recognized in the graph in FIG. From the graph shown in FIG. 8, a relational expression between the time (x) from the start of measurement and the sensor output intensity (y) was determined for each concentration of ethanol gas. The results are shown in Table 1.
  • FIG. 9 shows a calibration curve prepared from this slope (coefficient of x in the above relational expression) and the concentration of each ethanol gas.
  • the slope and the concentration of ethanol gas have a good correlation, and it was shown that ethanol gas can be measured from this slope.
  • FIG. 10 in the case of a conventional semiconductor sensor, it reacts in addition to ethanol.
  • ethanol can be selectively measured.
  • the mixture was allowed to stand for 30 minutes under a fluorescent lamp, whereby monoamine oxidase was comprehensively immobilized by a photocrosslinking method to prepare an enzyme-immobilized membrane.
  • the paste was applied so as to be imprinted, and any excess enzyme after drying was scraped off.
  • FIG. 11 is a graph of sensor output (output value in which the amount of decrease in the electrical signal accompanying the decrease in dissolved oxygen is a positive value) measured using the electrochemical sensor when ascorbic acid of each concentration is added. Show. The horizontal axis of the graph indicates the elapsed time from the start of measurement, and methyl mercaptan was added 2 minutes after the start of measurement. An increase in sensor output was observed when sodium ascorbate was added to the phosphate buffer.
  • FIG. 12 is a graph plotting the relationship between the sodium ascorbate concentration in the phosphate buffer and the sensor output 30 minutes after the start of measurement. As shown in FIG. 12, it can be seen that the highest sensor output is exhibited when the sodium ascorbate concentration is 10 mM. When the ascorbic acid concentration is 15 mM and 20 mM, the sensor output is lower than that of 10 mM.
  • the concentration of ascorbic acid added to the buffer solution is 10 mM or less. It is considered to be preferable.

Abstract

The present invention is a chip (2) for a light sensor coupled to and used with an optical fiber (1), the chip for a light sensor characterized by comprising a first gas-permeable membrane (22) for covering a distal end of the optical fiber (1), and comprising a liquid chamber (21) for causing a liquid to flow to the surface of the first gas-permeable membrane (22) on the side opposite from the side that is coupled to the optical fiber (1).

Description

光センサ用チップ、光センサ、測定システムおよびそれを用いた測定方法Optical sensor chip, optical sensor, measurement system, and measurement method using the same
 本発明は、光センサ用チップ、光センサ、測定システムおよびそれを用いた測定方法に関するものである。 The present invention relates to an optical sensor chip, an optical sensor, a measurement system, and a measurement method using the same.
 これまでに、バイオセンサとしては、グルコース、乳酸、コレステロール等を測定するための酵素センサが開発され、医療や食品工業等の分野において利用されている。バイオセンサとは、微生物、酵素、抗体等の生物材料の分子認識能を利用し、生物材料を分子識別素子として応用したセンサのことをいう。言い換えれば、バイオセンサは、固定化された生物材料が、目的の基質を認識したときに起こる反応、微生物の呼吸による酵素の消費、酵素反応、発光等を物理化学デバイスにより電気信号等に変換して測定を行うものである。 So far, as biosensors, enzyme sensors for measuring glucose, lactic acid, cholesterol and the like have been developed and used in fields such as the medical and food industries. A biosensor refers to a sensor that utilizes the molecular recognition ability of biological materials such as microorganisms, enzymes, and antibodies, and applies the biological materials as molecular identification elements. In other words, the biosensor converts the reaction that occurs when the immobilized biological material recognizes the target substrate, the consumption of the enzyme due to the respiration of microorganisms, the enzymatic reaction, luminescence, etc. into an electrical signal or the like by the physicochemical device. To measure.
 従来の一般的な酵素センサでは、検体である試料液に含まれる基質と酵素との反応により生成される電子受容体を還元し、その電子受容体の還元量をクラーク型酸素電極などを用いて電気化学的に計測することにより、検体の定量分析が行われていた。 In the conventional general enzyme sensor, the electron acceptor produced by the reaction between the substrate and the enzyme contained in the sample liquid which is the specimen is reduced, and the reduction amount of the electron acceptor is reduced using a Clark-type oxygen electrode or the like. Quantitative analysis of specimens has been performed by electrochemical measurement.
 近年、このような電気化学方式の分析に代えて、光ファイバーセンサ(光センサ)を用いる分析方法の開発が進んでいる。光ファイバーセンサを用いた分析装置としては、ルテニウム錯体の蛍光反応が周囲の酸素濃度により消光する現象を利用し、ルテニウム錯体を光ファイバーの先端に固定することで酸素濃度を測定する、酸素感応型光ファイバーが開発されている。 In recent years, analysis methods using optical fiber sensors (optical sensors) have been developed in place of such electrochemical analysis. As an analysis device using an optical fiber sensor, an oxygen-sensitive optical fiber that measures the oxygen concentration by fixing the ruthenium complex to the tip of the optical fiber is used, which utilizes the phenomenon that the fluorescence reaction of the ruthenium complex is quenched by the surrounding oxygen concentration. Has been developed.
 特許文献1(特開2003-250516号公報)には、酸素感応型光ファイバーの先端に酵素固定化膜を密着させてなる光センサ(匂いセンサ)が開示されている。特許文献1に開示された光センサにおいては、連続的な測定が可能となるように、酵素固定化膜に残存する酵素反応生成物を洗浄するための緩衝液を、光ファイバーの周囲に循環させている。 Patent Document 1 (Japanese Patent Laid-Open No. 2003-250516) discloses an optical sensor (odor sensor) in which an enzyme-immobilized film is brought into close contact with the tip of an oxygen-sensitive optical fiber. In the optical sensor disclosed in Patent Document 1, a buffer solution for washing the enzyme reaction product remaining on the enzyme-immobilized membrane is circulated around the optical fiber so that continuous measurement is possible. Yes.
 しかしながら、図13に示す特許文献1の光センサにおいては、酵素膜周辺での緩衝液の流れにうずやよどみの発生が生じやすく、流れが乱れることで出力が不安定になる恐れがある。また、光ファイバーの先端に位置する酵素固定化膜の中心部分には、緩衝液が直接接触しないため、最も検出に影響する部分の洗浄が速やかに行われず、酵素膜外の環境中の物質量変化に対する応答性が悪くなってしまうという問題があった。 However, in the optical sensor disclosed in Patent Document 1 shown in FIG. 13, eddy and stagnation are likely to occur in the flow of the buffer solution around the enzyme membrane, and the output may become unstable due to the disturbance of the flow. In addition, since the buffer solution is not in direct contact with the central part of the enzyme-immobilized membrane located at the tip of the optical fiber, the most affected part of the detection is not washed quickly, and the amount of substances in the environment outside the enzyme membrane changes. There was a problem that the responsiveness to becomes worse.
 また、光ファイバーの先端が、酵素が固定化された透析膜等で覆われているだけであり、光ファイバー内に環境光が入り込む場合があるため、環境光の影響を受けやすいという問題もあった。 In addition, since the tip of the optical fiber is only covered with a dialysis membrane or the like on which an enzyme is immobilized, and environmental light may enter the optical fiber, there is a problem that it is susceptible to environmental light.
特開2003-250516号公報JP 2003-250516 A
 本発明の目的は、上記課題に鑑みてなされたものであり、センサ出力が安定化され、応答性よく連続測定を行うことを可能とする、優れたセンサ特性を有する光センサ用チップを提供することである。また、本発明の別の目的は、環境光の影響を受けない測定を可能とする光センサ用チップを提供することにある。 An object of the present invention has been made in view of the above problems, and provides a chip for an optical sensor having excellent sensor characteristics that enables sensor output to be stabilized and continuous measurement with good responsiveness. That is. Another object of the present invention is to provide an optical sensor chip that enables measurement without being affected by ambient light.
 本発明は、光ファイバーと連結して使用される光センサ用チップであって、
 上記光ファイバーの先端を覆う第1ガス透過性膜を備え、
 該第1ガス透過性膜の光ファイバーと連結される側とは反対側の表面に液体を供給するための液体チャンバを備えることを特徴とする、光センサ用チップである。
The present invention is an optical sensor chip used in connection with an optical fiber,
A first gas permeable membrane covering the tip of the optical fiber;
An optical sensor chip comprising a liquid chamber for supplying a liquid to a surface of the first gas permeable membrane opposite to the side connected to the optical fiber.
 上記第1ガス透過性膜は、対象物質の化学反応を触媒する酵素が固定化された酵素固定化膜であることが好ましい。 The first gas permeable membrane is preferably an enzyme-immobilized membrane on which an enzyme that catalyzes a chemical reaction of the target substance is immobilized.
 上記液体チャンバと上記光センサ用チップの外部とを連通する少なくとも1つの流路を有することが好ましい。 It is preferable to have at least one flow path that communicates the liquid chamber and the outside of the optical sensor chip.
 上記液体チャンバが上記光センサ用チップの外部と連通していない閉じた空間、もしくは液体の導入口と空気穴を有する空間であることが好ましい。 It is preferable that the liquid chamber is a closed space not communicating with the outside of the optical sensor chip, or a space having a liquid inlet and an air hole.
 上記液体チャンバは、上記第1ガス透過性膜とは反対側に第2ガス透過性膜を備え、
 上記光ファイバーが連結された際に、上記光ファイバーの先端と上記第2ガス透過性膜との距離を一定にするためのストッパー機構を有することが好ましい。
The liquid chamber includes a second gas permeable membrane on a side opposite to the first gas permeable membrane,
It is preferable to have a stopper mechanism for making the distance between the tip of the optical fiber and the second gas permeable membrane constant when the optical fiber is connected.
 上記酵素は、酸化還元酵素、脱水素酵素または発光酵素であることが好ましい。
 上記酸化還元酵素は、基質と反応して酸素を消費または発生する酵素であることが好ましい。
The enzyme is preferably an oxidoreductase, a dehydrogenase or a luminescent enzyme.
The oxidoreductase is preferably an enzyme that consumes or generates oxygen by reacting with a substrate.
 上記光ファイバーは、酸素感応型光ファイバー、pH感応型光ファイバーまたは発光感応型光ファイバーであることが好ましい。 The optical fiber is preferably an oxygen sensitive optical fiber, a pH sensitive optical fiber or a light emission sensitive optical fiber.
 上記光ファイバーが、酸素感応型光ファイバーであり、その先端部にルテニウム有機錯体が固定されたものであることが好ましい。 It is preferable that the optical fiber is an oxygen-sensitive optical fiber, and a ruthenium organic complex is fixed to the tip of the optical fiber.
 また、本発明は、上記光センサ用チップと、光ファイバーとを連結してなる光センサにも関する。 The present invention also relates to an optical sensor formed by connecting the optical sensor chip and an optical fiber.
 また、本発明は、上記光センサを少なくとも1つ備えた測定システムにも関する。
 上記測定システムは、上記光センサ用チップの上記液体チャンバ内の液体を入れ替えるための機構を備えていることが好ましい。
The present invention also relates to a measurement system including at least one optical sensor.
The measurement system preferably includes a mechanism for replacing the liquid in the liquid chamber of the optical sensor chip.
 上記測定システムは、匂いを測定するためのものであることが好ましい。
 さらに、本発明は、上記測定システムを用いる対象物質の測定方法にも関する。
The measurement system is preferably for measuring odor.
Furthermore, the present invention also relates to a method for measuring a target substance using the measurement system.
 測定中は、上記液体チャンバ内の液体が移動せず、各測定の合間に上記液体チャンバ内の液体が移動することが好ましい。 During the measurement, it is preferable that the liquid in the liquid chamber does not move and the liquid in the liquid chamber moves between each measurement.
 測定された光出力の時間変化の微分値、積分値、積算値または二階微分値に基づいて対象物質の濃度を算出することが好ましい。 It is preferable to calculate the concentration of the target substance based on the differential value, integral value, integrated value or second-order differential value of the measured light output over time.
 測定中に、上記液体チャンバ内の液体が移動することが好ましい。
 上記第1ガス透過性膜は、対象物質の化学反応を触媒する酵素が固定化された酵素固定化膜であり、
 上記酵素として、基質と反応して酸素を消費または発生する酸化還元酵素を用い、
 上記基質がメチルメルカプタン、ジメチルサルファイド、硫化水素、アンモニア、または、トリメチルアミンであり、
 上記液体にアスコルビン酸を添加することが好ましい。
It is preferred that the liquid in the liquid chamber moves during the measurement.
The first gas permeable membrane is an enzyme-immobilized membrane on which an enzyme that catalyzes a chemical reaction of a target substance is immobilized.
As the enzyme, an oxidoreductase that consumes or generates oxygen by reacting with a substrate is used.
The substrate is methyl mercaptan, dimethyl sulfide, hydrogen sulfide, ammonia, or trimethylamine;
It is preferable to add ascorbic acid to the liquid.
 上記アスコルビン酸の添加濃度は10mM以下であることが好ましい。 The concentration of the ascorbic acid is preferably 10 mM or less.
 本発明によれば、センサ出力が安定化され、応答性よく連続測定を行うことを可能とする、優れたセンサ特性を有する光センサ用チップを提供することができる。また、本発明によれば、環境光の影響を受けない測定を可能とする光センサ用チップを提供することができる。 According to the present invention, it is possible to provide a chip for an optical sensor having excellent sensor characteristics that enables a sensor output to be stabilized and continuous measurement with good responsiveness. In addition, according to the present invention, it is possible to provide an optical sensor chip that enables measurement without being affected by ambient light.
本発明の光センサの実施形態1の先端部分の拡大図である。(a)は縦断面図であり、(b)はA-A’面での断面図であり、(c)はB-B’断面図である。It is an enlarged view of the front-end | tip part of Embodiment 1 of the optical sensor of this invention. (A) is a longitudinal sectional view, (b) is a sectional view taken along the plane A-A ′, and (c) is a sectional view taken along the line B-B ′. 本発明の光センサの実施形態2の先端部分の拡大図である。(a)は縦断面図であり、(b)はA-A’面での断面図である。It is an enlarged view of the front-end | tip part of Embodiment 2 of the optical sensor of this invention. (A) is a longitudinal sectional view, and (b) is a sectional view along the A-A ′ plane. シリコーンオーバーコートが形成された光ファイバーの先端部分の拡大図である。It is an enlarged view of the front-end | tip part of the optical fiber in which the silicone overcoat was formed. 実施形態3の測定システムの概略図である。It is the schematic of the measurement system of Embodiment 3. 実施形態4の測定システムの概略図である。It is the schematic of the measurement system of Embodiment 4. 実施例1の測定結果を示すグラフである。3 is a graph showing measurement results of Example 1. 図6のグラフの部分拡大図である。It is the elements on larger scale of the graph of FIG. 図7のさらなる部分拡大図である。FIG. 8 is a further partial enlarged view of FIG. 7. 図8のグラフの傾きと各エタノールガスの濃度から作製した検量線を示すグラフである。It is a graph which shows the calibration curve produced from the inclination of the graph of FIG. 8, and the density | concentration of each ethanol gas. 本発明(実施例1)の光センサおよび従来のセミコンダクタセンサの測定結果の比較図である。It is a comparison figure of the measurement result of the optical sensor of this invention (Example 1), and the conventional semiconductor sensor. 参考例1の測定結果を示すグラフである。6 is a graph showing measurement results of Reference Example 1. 図11におけるアスコルビン酸ナトリウムの添加濃度と所定時間におけるセンサ出力との関係をプロットしたグラフである。It is the graph which plotted the relationship between the addition density | concentration of sodium ascorbate in FIG. 11, and the sensor output in predetermined time. 従来の光センサの模式断面図である。It is a schematic cross section of the conventional optical sensor.
 <光センサ用チップ>
 本発明の光センサ用チップは、光ファイバーと連結して使用される部材であり、
 対象物質の化学反応を触媒する酵素が固定化された第1ガス透過性膜を備え、
 該第1ガス透過性膜の光ファイバーと連結される側とは反対側の表面に液体を供給するための液体チャンバを備えることを特徴としている。
<Optical sensor chip>
The optical sensor chip of the present invention is a member used in connection with an optical fiber,
A first gas permeable membrane on which an enzyme that catalyzes a chemical reaction of a target substance is immobilized;
A liquid chamber is provided for supplying a liquid to the surface of the first gas permeable membrane opposite to the side connected to the optical fiber.
 (光ファイバー)
 光ファイバーとしては、例えば酸素感応型光ファイバー、pH感応型光ファイバーおよび発光感応型光ファイバーが挙げられる。酸素感応型光ファイバーは、蛍光反応が周囲の酸素濃度により消光する現象を利用して酸素濃度を検出することのできる光ファイバーであり、pH感応型光ファイバー、発光感応型光ファイバーは、それぞれpHおよび発光を測定することのできる光ファイバーである。
(Optical fiber)
Examples of the optical fiber include an oxygen sensitive optical fiber, a pH sensitive optical fiber, and a light emission sensitive optical fiber. Oxygen-sensitive optical fiber is an optical fiber that can detect oxygen concentration by utilizing the phenomenon that fluorescence reaction is quenched by ambient oxygen concentration. PH-sensitive optical fiber and luminescence-sensitive optical fiber measure pH and luminescence, respectively. An optical fiber that can be used.
 酸素感応型光ファイバーとしては、ルテニウム有機錯体の蛍光反応が周囲の酸素濃度により消光する現象を利用して、ルテニウム有機錯体を光ファイバーに固定化したものを好適に用いることができる。他の酸素感応型光ファイバーとしては、例えば、プラチナ、オスミウム、イリジウム、ロジウム、レニウムおよびクロム等の有機錯体を光ファイバーに固定化したものも使用可能である。 As the oxygen-sensitive optical fiber, an optical fiber in which the ruthenium organic complex is immobilized on the optical fiber can be suitably used by utilizing the phenomenon that the fluorescence reaction of the ruthenium organic complex is quenched by the surrounding oxygen concentration. As another oxygen-sensitive optical fiber, for example, an optical fiber in which an organic complex such as platinum, osmium, iridium, rhodium, rhenium and chromium is immobilized can be used.
 有機錯体としては、上記ルテニウム等と2,2’-ビピリジン、1,10-フェナントロリン、4,7-ジフェニル-1,10-フェナントロリン、4,7-ジメチル-1,10-フェナントロリン、4,7-ジスルホン化ジフェニル-1,10-フェナントロリン、2,2’-ビ-2-チアゾリン、2,2’-ビチアゾール、5-ブロモ-1,10-フェナントロリン、および5-クロロ-1,10-フェナントロリン等との錯体等が挙げられる。 Examples of organic complexes include ruthenium and the like, 2,2′-bipyridine, 1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, 4,7-dimethyl-1,10-phenanthroline, 4,7- Disulfonated diphenyl-1,10-phenanthroline, 2,2′-bi-2-thiazoline, 2,2′-bithiazole, 5-bromo-1,10-phenanthroline, 5-chloro-1,10-phenanthroline and the like And the like.
 これらの中でも、下記化学式(1)で表されるトリス(2,2’-ビピリジル)ルテニウムジクロリドが好適に用いられる。 Among these, tris (2,2′-bipyridyl) ruthenium dichloride represented by the following chemical formula (1) is preferably used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ルテニウム錯体等を光ファイバーの先端に固定する方法に特に制限はないが、例えば、ゾル・ゲル法により固定化することができる。ルテニウム錯体の蛍光反応(励起光:470nm、蛍光:600nm)が酸素存在下にて、気相系、液相において、それぞれ酸素や溶存酸素濃度に応じた消光現象を示すことから、酸素濃度の測定が可能となる。 The method for fixing the ruthenium complex or the like to the tip of the optical fiber is not particularly limited, but can be fixed by, for example, a sol-gel method. Fluorescence reaction of ruthenium complex (excitation light: 470 nm, fluorescence: 600 nm) shows a quenching phenomenon depending on the oxygen and dissolved oxygen concentration in the gas phase and liquid phase in the presence of oxygen, so the measurement of oxygen concentration Is possible.
 なお、酸素感応型光ファイバーとしては、市販されているものを用いることができ、例えば、オーシャン・オプティスク社製の光ファイバーを用いることができる。また、用いる光ファイバーの直径は、用途に応じて選択することができ、1.5mm程度のものが通常に用いられるが、光ファイバーの直径はこれに限定されず、0.01mm~5.0mm程度の範囲のものを用いることができる。 As the oxygen-sensitive optical fiber, a commercially available optical fiber can be used. For example, an optical fiber manufactured by Ocean Optisk Corporation can be used. The diameter of the optical fiber to be used can be selected according to the application, and a diameter of about 1.5 mm is usually used. However, the diameter of the optical fiber is not limited to this and is about 0.01 mm to 5.0 mm. Ranges can be used.
 光ファイバーの先端は、例えば、図3に示されるようにルテニウム有機錯体11の上にシリコーンオーバーコート12が形成されていてもよい。これにより、測定ノイズとなる環境光を遮断する効果がある。なお、光ファイバーの先端にシリコーンオーバーコート等が形成されていない場合でも、例えば、光ファイバーの先端に結合する光センサ用チップの本体を光透過性でない材料から構成することにより、同様の遮光効果を得ることができる。シリコーンオーバーコートがあることにより、環境光を遮断できる反面、酸素の拡散が抑制されて応答性が遅くなるため、オーバーコートがない場合の方が応答性は非常に速くなる。 At the tip of the optical fiber, for example, a silicone overcoat 12 may be formed on a ruthenium organic complex 11 as shown in FIG. This has the effect of blocking ambient light that becomes measurement noise. Even when a silicone overcoat or the like is not formed at the tip of the optical fiber, for example, the same light-shielding effect can be obtained by forming the main body of the optical sensor chip coupled to the tip of the optical fiber from a material that is not light-transmissive. be able to. Although the presence of the silicone overcoat can block ambient light, the diffusion of oxygen is suppressed and the responsiveness is delayed. Therefore, the responsiveness is much faster when there is no overcoat.
 (第1ガス透過性膜)
 第1ガス透過性膜は、少なくともガスを透過させる材料からなる膜であり、光ファイバーの先端を覆うようにして設けられる。また、液体は透過させない材料であることが好ましい。
(First gas permeable membrane)
The first gas permeable film is a film made of a material that transmits at least gas, and is provided so as to cover the tip of the optical fiber. Moreover, it is preferable that it is a material which does not permeate | transmit a liquid.
 第1ガス透過性膜は、対象物質の化学反応を触媒する酵素が固定化された酵素固定化膜であることが好ましい。ただし、第1ガス透過性膜には、必ずしも酵素が固定化されている必要はなく、液体チャンバ内に供給する緩衝液を酵素が添加された酵素溶液とすることにより、対象物質を測定することができる。 The first gas permeable membrane is preferably an enzyme-immobilized membrane on which an enzyme that catalyzes a chemical reaction of the target substance is immobilized. However, the first gas permeable membrane does not necessarily have an enzyme immobilized thereon, and the target substance can be measured by using an enzyme solution to which the enzyme is added as a buffer solution supplied into the liquid chamber. Can do.
 第1ガス透過性膜の基材としては、透析膜、親水性ポリテトラフルオロエチレン(H-PTFE)膜、ポリカーボネート膜、セルロース混合エステル膜、セルロースアセテート膜、親水性ポリビニリデンフロライド(H-PVDF)などが用いられる。透析膜、H-PTFE膜としては、通常に市販されているものが何ら制限なく用いられ、通常は膜厚が15μm程度のものが用いられるが、膜厚が15μm程度のものに限定されない。具体的には、例えば、透析膜として、UC 36-32-100(Viskase Corporation Inc.、分画分子量14000、孔径5nm)が、H-PTFE膜として、JGWP14225(Milipore Corporation、孔径0.1μm)が挙げられる。 As the base material of the first gas permeable membrane, dialysis membrane, hydrophilic polytetrafluoroethylene (H-PTFE) membrane, polycarbonate membrane, cellulose mixed ester membrane, cellulose acetate membrane, hydrophilic polyvinylidene fluoride (H-PVDF) ) Etc. are used. As the dialysis membrane and the H-PTFE membrane, commercially available ones are used without any limitation, and those having a film thickness of about 15 μm are usually used, but are not limited to those having a film thickness of about 15 μm. Specifically, for example, UC 36-32-100 (Viscose Corporation Inc., molecular weight cut off 14000, pore size 5 nm) is used as a dialysis membrane, and JGWP 14225 (Milipore Corporation, pore size 0.1 μm) is used as an H-PTFE membrane. Can be mentioned.
 第1ガス透過性膜が酵素固定化膜である場合に固定される酵素としては、酸化還元酵素、脱水素酵素または発光酵素が挙げられる。本発明のバイオセンサにおいて用いられる酸化還元酵素は、基質と反応して酸素を消費または発生する酵素である。このような酸化還元酵素は、測定対象とする対象物質(基質)に応じて選択することができる。例えば、エタノールの濃度を測定するにはアルコール酸化酵素が用いられ、トリメチルアミン、メチルメルカプタンやアンモニアの濃度を測定するにはフラビン含有モノオキシゲナーゼが用いられる。他の酸化還元酵素としては、例えば、カタラーゼ、モノアミンオキシダーゼ、グルコースオキシダーゼ、ウリカーゼ、インベルターゼ、ムタロターゼ、ホスホリパーゼ、コリンオキシダーゼ、アミノ酸オキシダーゼ、アスコルビン酸オキシダーゼ、クレアチンキナーゼ、ルシフェラーゼ、乳酸オキシダーゼ、コレステロールオキシダーゼ、メチルメルカプタンオキシダーゼ、キサンチンオキシダーゼ、チロシナーゼ、ガラクトースオキシダーゼ等が挙げられる。 Examples of the enzyme that is immobilized when the first gas permeable membrane is an enzyme-immobilized membrane include oxidoreductase, dehydrogenase, and luminescent enzyme. The oxidoreductase used in the biosensor of the present invention is an enzyme that consumes or generates oxygen by reacting with a substrate. Such an oxidoreductase can be selected according to the target substance (substrate) to be measured. For example, alcohol oxidase is used to measure the concentration of ethanol, and flavin-containing monooxygenase is used to measure the concentrations of trimethylamine, methyl mercaptan and ammonia. Examples of other oxidoreductases include catalase, monoamine oxidase, glucose oxidase, uricase, invertase, mutarotase, phospholipase, choline oxidase, amino acid oxidase, ascorbate oxidase, creatine kinase, luciferase, lactate oxidase, cholesterol oxidase, methyl mercaptan oxidase Xanthine oxidase, tyrosinase, galactose oxidase and the like.
 酵素固定化膜を作成する方法としては、例えば、光架橋性樹脂による包括法、架橋法、吸着法等が挙げられる。その中でも、光架橋性樹脂による包括法が一般的に用いられる。以下、光架橋製樹脂による包括法について説明する。 Examples of the method for preparing the enzyme-immobilized membrane include a comprehensive method using a photocrosslinkable resin, a crosslinking method, an adsorption method, and the like. Among them, a comprehensive method using a photocrosslinkable resin is generally used. Hereinafter, the inclusion method using a photocrosslinked resin will be described.
 光架橋性樹脂としては、例えば、ポリエチレングリコール、ポリビニルアルコール等が挙げられ、ポリビニルアルコールにSbQの光感応基を組合せた、東洋合成工業(株)製のPVA-SbQ、Biosurfine-SPHなどを用いることができる。 Examples of the photocrosslinkable resin include polyethylene glycol, polyvinyl alcohol, and the like. PVA-SbQ, Biosurfine-SPH, etc. manufactured by Toyo Gosei Kogyo Co., Ltd., in which polyvinyl alcohol is combined with a photosensitive group of SbQ, are used. Can do.
 かかる光架橋性樹脂を用いて、酵素および光架橋性樹脂を含む混合物のペーストを透析膜等の基材に塗布、含浸させた後、上記光架橋性樹脂を架橋させることにより、酵素が基材に固定化された酵素固定化膜を作製することができる。ペーストを製造する際に用いられる溶媒としては、緩衝液、蒸留水、イオン交換水等が挙げられる。 Using such a photocrosslinkable resin, a paste of a mixture containing an enzyme and a photocrosslinkable resin is applied to and impregnated on a substrate such as a dialysis membrane, and then the photocrosslinkable resin is crosslinked so that the enzyme becomes a substrate. An enzyme-immobilized membrane immobilized on can be prepared. Examples of the solvent used when producing the paste include a buffer solution, distilled water, and ion-exchanged water.
 (液体チャンバ)
 本発明の光センサ用チップは、第1ガス透過性膜の光ファイバーと連結される側とは反対側の表面に液体を供給するための液体チャンバを備えている。
(Liquid chamber)
The optical sensor chip of the present invention includes a liquid chamber for supplying a liquid to the surface of the first gas permeable membrane opposite to the side connected to the optical fiber.
 ここで液体とは、光ファイバーの先端の第1ガス透過性膜を洗浄できる液体であれば特に限定されないが、例えば緩衝液が挙げられる。第1ガス透過性膜が酵素固定化膜である場合、緩衝液としては、酵素固定化膜に固定された酵素の至適pH付近のpHの緩衝液を用いることが好ましいが、酵素を固定化することによりタンパクの動きが制限されるため、溶液中の酵素と比して、至適pHがシフトしやすくなるため必ずしもこの限りではない。この液体による洗浄効果により、光ファイバー先端の第1ガス透過性膜に、対象物質や酵素反応による生成物が残留することがなく、連続的または間欠的な繰り返し測定が可能となる。 Here, the liquid is not particularly limited as long as it is a liquid that can clean the first gas permeable membrane at the tip of the optical fiber, and examples thereof include a buffer solution. When the first gas permeable membrane is an enzyme-immobilized membrane, it is preferable to use a buffer solution having a pH near the optimum pH of the enzyme immobilized on the enzyme-immobilized membrane, but the enzyme is immobilized. This restricts the movement of the protein, so that the optimum pH is likely to shift as compared with the enzyme in the solution. Due to the cleaning effect of the liquid, the target substance and the product by the enzyme reaction do not remain in the first gas permeable membrane at the tip of the optical fiber, and continuous or intermittent repeated measurement is possible.
 また、第1ガス透過性膜が酵素固定化膜である場合、緩衝液には、酵素固定化膜に固定された酵素の酵素反応に必要な添加剤を含有させることができる。添加剤は、使用する酵素の種類や対象物質(基質)の種類に応じて適宜選択することができ、例えば、還元剤が挙げられる。例えば、メチルメルカプタンなどをモノアミンオキシダーゼなどの酸化酵素を用いて測定する場合、酵素反応によって生成した酸化型メチルメルカプタンを還元剤で還元し、再度酵素反応に供することにより、酵素反応生成物の量を増加させて感度を向上させることが可能である。還元剤としては、アスコルビン酸、ジチオスレイトール、NADH、NADPHなどが挙げられる。 Further, when the first gas permeable membrane is an enzyme-immobilized membrane, the buffer solution can contain additives necessary for the enzyme reaction of the enzyme immobilized on the enzyme-immobilized membrane. The additive can be appropriately selected according to the type of enzyme used and the type of target substance (substrate), and examples thereof include a reducing agent. For example, when measuring methyl mercaptan or the like using an oxidase such as monoamine oxidase, the amount of the enzyme reaction product is reduced by reducing the oxidized methyl mercaptan produced by the enzyme reaction with a reducing agent and subjecting it again to the enzyme reaction. The sensitivity can be increased by increasing the sensitivity. Examples of the reducing agent include ascorbic acid, dithiothreitol, NADH, and NADPH.
 液体チャンバ内の液体は、直接的に第1ガス透過性膜に接触できる状態にあることが好ましい。これにより、第1ガス透過性膜に付着した対象物質を迅速に洗浄することが可能となる。この場合、対象物質の第1ガス透過性膜への残存が抑えられるため、図13に示すような従来のセンサと比べて、連続測定時の被測定物の濃度変化に対する応答性が向上する。 The liquid in the liquid chamber is preferably in a state where it can directly contact the first gas permeable membrane. As a result, the target substance attached to the first gas permeable membrane can be quickly cleaned. In this case, since the remaining of the target substance on the first gas permeable film is suppressed, the responsiveness to the change in the concentration of the measurement object during continuous measurement is improved as compared with the conventional sensor as shown in FIG.
 本発明の光センサ用チップは、上記液体チャンバと上記光センサ用チップの外部とを連通する少なくとも1つの流路を有することが好ましい。この場合、該流路は、液体チャンバ内の液体を入れ替えるための機構に接続されていることが好ましい。 The optical sensor chip of the present invention preferably has at least one flow path that communicates the liquid chamber and the outside of the optical sensor chip. In this case, the flow path is preferably connected to a mechanism for replacing the liquid in the liquid chamber.
 また、液体チャンバが上記光センサ用チップの外部と連通していない閉じた空間、もしくは液体の導入口と空気穴を有する空間であってもよい。なお、閉じた空間の密閉性は、必ずしも気密性である必要はなく、液密であればよい。この場合、液体チャンバ内にあらかじめ液体を充填しておき、使い捨てタイプの光センサ用チップとして使用することができる。かかるチップを用いることにより、測定時に液体を供給するシステムが不要となり、簡便に測定を実施することが可能となる。 Alternatively, the liquid chamber may be a closed space that does not communicate with the outside of the optical sensor chip, or a space having a liquid inlet and an air hole. In addition, the airtightness of the closed space does not necessarily need to be airtight, and may be liquid tight. In this case, the liquid chamber can be filled in advance with a liquid and used as a disposable optical sensor chip. By using such a chip, a system for supplying a liquid at the time of measurement becomes unnecessary, and it becomes possible to carry out measurement easily.
 特に、メチルメルカプタン等の酸化還元酵素を利用できる反応系では、測定対象物質の酸化物を最適な還元剤を用いて還元することで、再度測定に供すリサイクリングが可能であり、センサ出力の増幅が可能である。そのため、一定時間、液体チャンバ内にアスコルビン酸等を含む液体を貯留して出力を増幅させることが好ましく、液体チャンバが閉じた空間、もしくは液体の導入口と空気穴を有する空間である場合に、好適に用いることができる。 In particular, in a reaction system that can use oxidoreductases such as methyl mercaptan, the oxide of the measurement target substance can be reduced using an optimal reducing agent, which can be recycled for measurement, and the sensor output can be amplified. Is possible. Therefore, it is preferable to amplify the output by storing a liquid containing ascorbic acid or the like in the liquid chamber for a certain time, and when the liquid chamber is a closed space or a space having a liquid inlet and an air hole, It can be used suitably.
 <光センサ>
 本発明は、上記光センサ用チップと、上記光ファイバーとを連結してなる光センサにも関する。本発明の光センサにおいて使用される具体的な酵素と光ファイバーとの組合せを以下に例示する。
<Optical sensor>
The present invention also relates to an optical sensor formed by connecting the optical sensor chip and the optical fiber. Specific combinations of enzymes and optical fibers used in the optical sensor of the present invention are exemplified below.
 メチルメルカプタンを測定する場合は、モノアミンオキシダーゼ(MAOA)と酸素感応型光ファイバーとの組合せを用いることができる。以下のMAOAの代表的な反応:
  R-CH2-NH2+H2O+O2→R-CHO+NH3+H22
により消費される酸素の減少量を、酸素感応型光ファイバーで測定する。なお、メチルメルカプタン計測の場合は、MAOAの反応多様性により、以下の反応:
  2CH3SH+O2→CH3SSCH3+H22
が行われるものと考えられる。
When measuring methyl mercaptan, a combination of monoamine oxidase (MAOA) and an oxygen-sensitive optical fiber can be used. The following MAOA representative reactions:
R—CH 2 —NH 2 + H 2 O + O 2 → R—CHO + NH 3 + H 2 O 2
The amount of oxygen consumed is measured by an oxygen-sensitive optical fiber. In the case of measurement of methyl mercaptan, the following reaction is caused by the reaction diversity of MAOA:
2CH 3 SH + O 2 → CH 3 SSCH 3 + H 2 O 2
Is considered to be performed.
 溶液中のグルコースを測定する場合は、グルコースオキシダーゼ(GOD)と酸素感応型光ファイバーとの組合せを用いることができる。グルコースの酸化反応により消費される酸素の減少量を、酸素感応型光ファイバーで測定する。 When measuring glucose in a solution, a combination of glucose oxidase (GOD) and an oxygen-sensitive optical fiber can be used. The amount of oxygen consumed by the oxidation reaction of glucose is measured with an oxygen-sensitive optical fiber.
 溶液中のアルコールを測定する場合は、アルコール脱水素酵素とpH感応型光ファイバーとの組合せを用いることができる。アルコール脱水素酵素によってアルコールから水素が脱離し、溶液中のpHが変化するため、そのpH変化をpH感応型光ファイバーにより検出する。 When measuring alcohol in the solution, a combination of alcohol dehydrogenase and pH-sensitive optical fiber can be used. Since hydrogen is desorbed from alcohol by alcohol dehydrogenase and the pH in the solution changes, the pH change is detected by a pH-sensitive optical fiber.
 溶液中のアルコールを測定するための別の組合せとしては、アルコール酸化酵素、発光ルシフェラーゼおよび発光検出型光ファイバーの組合せを用いることができる。発光ルシフェラーゼは、アルコール酸化酵素によって酸素が消費されることにより生成される過酸化水素を、発光するために過酸化水素を消費する発光ルシフェラーゼの発光の強度に基づいて測定する。 As another combination for measuring the alcohol in the solution, a combination of alcohol oxidase, luminescent luciferase, and luminescence detection type optical fiber can be used. Luminescent luciferase measures hydrogen peroxide produced by the consumption of oxygen by alcohol oxidase based on the intensity of luminescence of the luminescent luciferase that consumes hydrogen peroxide to emit light.
 溶液中のアセトアルデヒド等のアルデヒドを測定する場合は、アルデヒド脱水素酵素とpH感応型光ファイバーとの組合せを用いることができる。アルデヒド脱水素酵素によってアルデヒドから水素が脱離し、溶液中のpHが変化するため、そのpH変化をpH感応型光ファイバーで検出する。また、ホルムアルデヒド脱水素酵素を用いれば、ホルムアルデヒドの計測が可能である。 When measuring an aldehyde such as acetaldehyde in a solution, a combination of an aldehyde dehydrogenase and a pH-sensitive optical fiber can be used. Since hydrogen is desorbed from the aldehyde by aldehyde dehydrogenase and the pH in the solution changes, the pH change is detected with a pH-sensitive optical fiber. In addition, formaldehyde can be measured by using formaldehyde dehydrogenase.
 <測定システム>
 本発明の測定システムは、少なくとも1つの上記光センサを備えている。光センサは1つであってもよく、測定対象の異なる光センサを複数備える場合は、同時の複数の対象物質を検出することができる。
<Measurement system>
The measurement system of the present invention includes at least one optical sensor. One optical sensor may be provided, and when a plurality of optical sensors having different measurement targets are provided, a plurality of target substances can be detected simultaneously.
 測定システムは、光センサ用チップの液体チャンバ内の液体を入れ替えるための機構を備えていることが好ましい。液体を入れ替える機構としては、例えば、液体チャンバ内に液体を送り込むことのできるポンプが挙げられる。 The measurement system preferably includes a mechanism for replacing the liquid in the liquid chamber of the optical sensor chip. As a mechanism for replacing the liquid, for example, a pump capable of feeding the liquid into the liquid chamber may be used.
 測定システムの測定対象は、特に限定されないが、匂いを測定するために好適に用いることができる。 The measurement target of the measurement system is not particularly limited, but can be suitably used for measuring odor.
 <測定方法>
 本発明は、上記測定システムを用いる測定方法にも関する。
<Measurement method>
The present invention also relates to a measurement method using the measurement system.
 本発明の測定方法の一実施形態として、測定中は、液体チャンバ内の液体が移動せず、各測定の合間に液体チャンバ内の液体が移動する方法が挙げられる。この方法では、測定中は液体チャンバ内の液体が貯留された状態であり、測定に必要な酵素反応等を十分に進行させることができるため、測定感度を向上させることが可能である。また、測定対象物質がガス中に含まれる場合は、その物質が第2ガス透過性膜を浸透拡散し、貯留された液体中での濃度が増加し続けるため、この点においてもセンサの高感度化に有利である。 As an embodiment of the measurement method of the present invention, there is a method in which the liquid in the liquid chamber does not move during the measurement, and the liquid in the liquid chamber moves between each measurement. In this method, the liquid in the liquid chamber is stored during the measurement, and the enzyme reaction necessary for the measurement can be sufficiently advanced, so that the measurement sensitivity can be improved. In addition, when the measurement target substance is contained in the gas, the substance permeates and diffuses through the second gas permeable membrane, and the concentration in the stored liquid continues to increase. It is advantageous to make.
 この場合、測定された光出力の時間変化の微分値、積分値、積算値または二階微分値などに基づいて対象物質の濃度を算出することが好ましい。これにより、測定時間を短縮することが可能となる。なお、解析用のプログラムを用いて、このような計算を自動的に行うシステムを構築しておくことが望ましい。ここで、「光出力」とは、「特定波長の光の強度」や、「特定波長のシフト量」などを含む概念である。 In this case, it is preferable to calculate the concentration of the target substance based on the differential value, integral value, integrated value, or second-order differential value of the measured light output with time. As a result, the measurement time can be shortened. It is desirable to construct a system that automatically performs such calculations using an analysis program. Here, “light output” is a concept including “intensity of light of a specific wavelength”, “shift amount of a specific wavelength”, and the like.
 本発明の測定方法の別の実施形態として、測定中に、液体チャンバ内の液体が移動する方法が挙げられる。対象物質を連続的にモニタリングしたいような場合に用いられる。 As another embodiment of the measurement method of the present invention, there is a method in which the liquid in the liquid chamber moves during the measurement. Used when you want to monitor the target substance continuously.
 本発明の測定方法において、対象物質(基質)がメチルメルカプタン、ジメチルサルファイド、硫化水素、アンモニア、または、トリメチルアミンであり、酵素として、基質と反応して酸素を消費または発生する酸化還元酵素を用いる場合は、上記液体中にアスコルビン酸を添加することが好ましい。このときのアスコルビン酸の添加濃度は、10mM以下であることが好ましい。なお、アスコルビン酸の濃度による効果の関連技術としては、Sensors and Actuators B: Chemical Volume 108, Issues 1-2, Pages 639-645 (2005年7月22日)が公開されている。 In the measurement method of the present invention, when the target substance (substrate) is methyl mercaptan, dimethyl sulfide, hydrogen sulfide, ammonia, or trimethylamine, an oxidoreductase that consumes or generates oxygen by reacting with the substrate is used as the enzyme. It is preferable to add ascorbic acid to the liquid. At this time, the concentration of ascorbic acid added is preferably 10 mM or less. Sensors and Actuators B: Chemical Volume 108, Issues 1-2, Pages 639-645 (July 22, 2005) have been released as related technologies for the effects of ascorbic acid concentration.
 (実施形態1)
 本発明の実施形態1の光センサの先端部分の拡大図を図1に示す。図1において、光センサ用チップ2は、液体チャンバ21を備えたチップ本体20と、酵素固定化膜(第1ガス透過性膜)22と、第2ガス透過性膜23とから構成される。図1に示すように、光ファイバー1の先端には、酵素固定化膜22が密着されており、光センサ用チップのチップ本体20により固定されている。第2ガス透過性膜23は、チップ本体20の先端にO-リングなどで固定されてもよく、接着され一体化されていてもよい。
(Embodiment 1)
FIG. 1 shows an enlarged view of the tip portion of the photosensor according to Embodiment 1 of the present invention. In FIG. 1, the optical sensor chip 2 includes a chip body 20 including a liquid chamber 21, an enzyme-immobilized film (first gas permeable film) 22, and a second gas permeable film 23. As shown in FIG. 1, an enzyme-immobilized film 22 is in close contact with the tip of the optical fiber 1, and is fixed by a chip body 20 of a chip for optical sensors. The second gas permeable membrane 23 may be fixed to the tip of the chip body 20 with an O-ring or the like, or may be bonded and integrated.
 酵素固定化膜22としては、上述の酵素固定化膜と同様のものを使用できる。
 第2ガス透過性膜23は、少なくともガスを透過させる材料からなる膜であり、気体中の対象物質を測定する場合は液体は透過させない材料であることが好ましい。具体的には、例えば、透析膜、H-PTFE膜、H-PVDF膜などがあげられる。また、第2ガス透過性膜23には、酵素固定化膜22に固定された酵素と同様の酵素を固定化してもよい。これにより、より多くの酵素反応生成物の生成および酵素反応に係る物質消費が促進され、検出感度を向上することが可能となる。
As the enzyme-immobilized membrane 22, the same enzyme-immobilized membrane as described above can be used.
The second gas permeable membrane 23 is a membrane made of at least a gas permeable material, and is preferably a material that does not allow liquid to pass through when measuring a target substance in the gas. Specific examples include dialysis membranes, H-PTFE membranes, H-PVDF membranes, and the like. Further, the same enzyme as the enzyme immobilized on the enzyme immobilization membrane 22 may be immobilized on the second gas permeable membrane 23. Thereby, the production | generation of more enzyme reaction products and the substance consumption concerning an enzyme reaction are accelerated | stimulated, and it becomes possible to improve detection sensitivity.
 本実施形態においては、導入管211と排出管212とが、酵素固定化膜22の光ファイバー1と反対側の表面を通る一本の液体チャンバ21(流路)で結ばれている。このことにより、液体が酵素固定化膜22の表面を安定・円滑に流通することが可能である。液体チャンバ21の形状は、液流通時にうずやよどみの発生を抑制するような、非常にシンプルな一方向流路等の形状であることが好ましい。 In this embodiment, the introduction tube 211 and the discharge tube 212 are connected by a single liquid chamber 21 (flow path) that passes through the surface of the enzyme-immobilized membrane 22 on the side opposite to the optical fiber 1. As a result, the liquid can circulate stably and smoothly on the surface of the enzyme-immobilized film 22. The shape of the liquid chamber 21 is preferably a very simple one-way flow path or the like that suppresses the generation of swell and stagnation during liquid flow.
 酵素固定化膜22の表面が液体チャンバ21内の液体に接するようにすることで、酵素反応による反応生成物等を効率良く迅速に取り除く(交換する)ことが可能となる。このように酵素固定化膜22と第2ガス透過性膜23との間に流路(液体チャンバ)を設ける構造は、これまで知られていなかった。 By making the surface of the enzyme immobilization film 22 in contact with the liquid in the liquid chamber 21, it is possible to efficiently remove (replace) reaction products and the like due to the enzyme reaction. Thus, a structure in which a flow path (liquid chamber) is provided between the enzyme-immobilized membrane 22 and the second gas permeable membrane 23 has not been known so far.
 光透過性でない材料(例えば、黒色のアクリル樹脂)を用いてチップ本体20を作製することで、光ファーバー1内に侵入して測定ノイズとなる環境光の影響を除くことができる。また、光透過性でない材料を使用しない場合でも、チップ本体20の構造を、光ファイバー1先端の酵素固定化膜22の周辺に環境光が当たりにくい構造とすることによって、同様の遮光効果を得ることができる。 By producing the chip body 20 using a material that is not light transmissive (for example, black acrylic resin), it is possible to eliminate the influence of ambient light that enters the optical fiber 1 and becomes measurement noise. Further, even when a non-light-transmitting material is not used, the same light shielding effect can be obtained by making the structure of the chip body 20 less susceptible to ambient light around the enzyme-immobilized film 22 at the tip of the optical fiber 1. Can do.
 液体チャンバ21を備えたチップ本体20と、酵素固定化膜22と、第2ガス透過性膜23とを一体化して、一つの光センサ用チップ2とすることで、計測毎にチップを丸ごと交換するような使用方法(使い捨て)が可能となり、測定の準備を簡便に行うことができる。 The chip body 20 provided with the liquid chamber 21, the enzyme-immobilized film 22, and the second gas permeable film 23 are integrated into a single optical sensor chip 2, so that the entire chip is replaced for each measurement. Such a usage method (disposable) becomes possible, and preparation for measurement can be easily performed.
 光センサ用チップ2は、光ファイバー1が連結された際に、光ファイバー1の先端と第2ガス透過性膜23との距離を一定にするためのストッパー機構を有することが好ましい。図1(a)では、光ファイバー1の先端は第2ガス透過性膜23との距離が一定に保たれている。これは、チップ本体20の先端側に設けられた液体チャンバ21の幅が、後端側の光ファイバー1を差し込むために設けられた孔の径より若干細いため、光ファイバー1を光センサ用チップ2に差し込んだときに、光ファイバー1が図1(a)の位置で止まるようになっているためである(図1(a)のA-A’断面図である図1(b)、および、図1(a)のB-B’断面図である図1(c)を参照)。 The optical sensor chip 2 preferably has a stopper mechanism for making the distance between the tip of the optical fiber 1 and the second gas permeable film 23 constant when the optical fiber 1 is connected. In FIG. 1A, the distance between the tip of the optical fiber 1 and the second gas permeable membrane 23 is kept constant. This is because the width of the liquid chamber 21 provided on the front end side of the chip body 20 is slightly narrower than the diameter of the hole provided for inserting the optical fiber 1 on the rear end side. This is because the optical fiber 1 stops at the position of FIG. 1A when inserted (FIG. 1B, which is a cross-sectional view taken along the line AA ′ of FIG. 1A, and FIG. FIG. 1C is a cross-sectional view taken along the line BB ′ of FIG.
 光ファイバー1の先端と第2ガス透過性膜23との距離は、好ましくは0.05~0.6mmである。距離がこれよりも近すぎると液体の流れが乱れ易くなる。一方、距離がこれよりも遠くなると、対象物質が酵素固定化膜22に到達するまでの距離が長くなり、到達までに時間を要し、応答性が悪くなる。また、対象物質が酵素固定化膜22に到達するまでに希釈されてしまうため、同じ計測時間で比較したときに測定感度が落ちてしまう。 The distance between the tip of the optical fiber 1 and the second gas permeable membrane 23 is preferably 0.05 to 0.6 mm. If the distance is too short, the liquid flow tends to be disturbed. On the other hand, if the distance is longer than this, the distance until the target substance reaches the enzyme-immobilized membrane 22 becomes longer, and it takes time to reach the target substance, resulting in poor responsiveness. In addition, since the target substance is diluted before reaching the enzyme-immobilized membrane 22, the measurement sensitivity decreases when compared in the same measurement time.
 (実施形態2)
 本発明の実施形態2の光センサについて図2を参照して説明する。図2は、本発明の実施形態2の光センサの先端部の拡大図である。(a)は縦断面図、(b)は図1(a)のA-A’断面図である。図2に示す本実施形態の光センサは、主に、液体チャンバ21(液溜め)が外部と連通していない閉じた空間となっている点で、実施形態1とは異なるものである。その他の点については、実施形態1と同様であるため説明は省略する。
(Embodiment 2)
An optical sensor according to a second embodiment of the present invention will be described with reference to FIG. FIG. 2 is an enlarged view of the tip portion of the photosensor according to Embodiment 2 of the present invention. (A) is a longitudinal sectional view, and (b) is an AA ′ sectional view of FIG. 1 (a). The optical sensor of the present embodiment shown in FIG. 2 is different from the first embodiment in that the liquid chamber 21 (liquid reservoir) is a closed space that is not in communication with the outside. Since the other points are the same as those in the first embodiment, description thereof is omitted.
 図2に示すように、液体チャンバ21は酵素固定化膜(第1ガス透過性膜)22の周囲を取り囲むように設けられている。液体チャンバ21の厚みは特に限定されないが、2mm程度以上であることが好ましい。また、液体チャンバ21の容積も特に限定されないが、20μL程度以上であることが好ましい。液体チャンバに溜まる溶液の量が少なすぎると、すぐに乾燥してしまうためである。 As shown in FIG. 2, the liquid chamber 21 is provided so as to surround the periphery of the enzyme-immobilized membrane (first gas permeable membrane) 22. The thickness of the liquid chamber 21 is not particularly limited, but is preferably about 2 mm or more. The volume of the liquid chamber 21 is not particularly limited, but is preferably about 20 μL or more. This is because if the amount of the solution accumulated in the liquid chamber is too small, the solution is dried immediately.
 このような液溜め構造(液体チャンバ21)を有する光センサは、溶け込んだ対象物質(匂い物質など)の酵素反応による反応生成物が液溜め内に溜まることで、測定感度を向上させることが可能となる。 The optical sensor having such a liquid reservoir structure (liquid chamber 21) can improve the measurement sensitivity by collecting the reaction product of the dissolved target substance (such as odor substance) in the liquid reservoir. It becomes.
 この場合、反応生成物の濃度が液溜め内で定常状態になるまで待ってから測定を行ってもよいが、酵素反応による反応生成物が液溜め内に溜っていく際の光出力の変化率(微分値)をモニタすることで、反応生成物が低濃度である時点でも測定が可能であり、短時間で測定結果を得ることができる。 In this case, the measurement may be performed after waiting until the concentration of the reaction product reaches a steady state in the reservoir, but the rate of change in light output when the reaction product due to the enzyme reaction accumulates in the reservoir. By monitoring (differential value), measurement is possible even when the reaction product has a low concentration, and the measurement result can be obtained in a short time.
 また、実施形態1と同様に、液体チャンバ21(液溜め構造)を備えたチップ本体20と、酵素固定化膜22と、第2ガス透過性膜23とを一体化して一つのチップとすることで、計測毎にチップを丸ごと交換するような使用方法(使い捨て)が可能となり、測定の準備を簡便に行うことができる。 Similarly to the first embodiment, the chip body 20 including the liquid chamber 21 (liquid reservoir structure), the enzyme-immobilized film 22 and the second gas permeable film 23 are integrated into one chip. Thus, a method of use (disposable) in which the entire chip is replaced for each measurement becomes possible, and preparation for measurement can be easily performed.
 また、液体チャンバ21を実施形態1のような流路とする代わりに、液溜め構造とすることで、送液システムを省き、計測システムを大幅に簡略化できる。従来法において、送液システムがなく、液溜め構造がない場合は、酵素固定化膜がすぐに乾燥し始めるため、十分なセンサ出力が得られず、出力が安定しなかった。また、送液システムがある場合では、送液により酵素固定化膜に緩衝液が供給され乾きを防ぐことができるものの、送液用ポンプや配管等が必要で、操作も簡便でなく、小型化・低価格化に不利であった。 Further, instead of using the liquid chamber 21 as a flow path as in the first embodiment, a liquid storage structure is provided, so that the liquid feeding system can be omitted and the measurement system can be greatly simplified. In the conventional method, when there is no liquid feeding system and there is no liquid reservoir structure, the enzyme-immobilized membrane starts to dry immediately, so that a sufficient sensor output cannot be obtained and the output is not stable. In addition, when there is a liquid delivery system, a buffer solution is supplied to the enzyme-immobilized membrane by the liquid delivery, and drying can be prevented, but a liquid delivery pump and piping are required, and the operation is not simple and downsized.・ It was disadvantageous for price reduction.
 (実施形態3)
 本実施形態は、実施形態1の光センサを用いて試料ガス中の対象物質(匂い物質など)を測定するための、測定システムおよび測定方法に関する。本実施形態の測定システムの概略を図4に示す。
(Embodiment 3)
The present embodiment relates to a measurement system and a measurement method for measuring a target substance (such as an odor substance) in a sample gas using the optical sensor of the first embodiment. An outline of the measurement system of the present embodiment is shown in FIG.
 光ファイバー1の先端には光センサ用チップ2が装着されており、光源31から照射された励起光が光ファイバー1の先端にあるルビジウム有機錯体などに到達し、錯体へ酸素の結合量に応じた強度の蛍光が励起される。励起された蛍光を、光ファイバー1を通して分光計32で測定し、その強度をコンピュータ33で分析する。例えば、対象物質(基質)の酵素反応により酸素が消費される場合は、測定前の蛍光強度に対する測定後の蛍光強度の増加量に基づいて、対象物質の濃度を測定することができる。 The optical sensor chip 2 is attached to the tip of the optical fiber 1, and the excitation light emitted from the light source 31 reaches the rubidium organic complex or the like at the tip of the optical fiber 1, and the intensity according to the amount of oxygen bound to the complex Is excited. The excited fluorescence is measured by the spectrometer 32 through the optical fiber 1 and the intensity thereof is analyzed by the computer 33. For example, when oxygen is consumed by the enzymatic reaction of the target substance (substrate), the concentration of the target substance can be measured based on the amount of increase in fluorescence intensity after measurement relative to the fluorescence intensity before measurement.
 対象物質を含む試料ガスは、リザーバ5内に送り込まれ、光センサ用チップ2の先端に負荷される。試料ガスは、一定の速度で連続的にリザーバ5内に送り込まれてもよく、一定量の試料ガスがリザーバ5内に送り込まれた後にリザーバ5内で一定時間貯留されるようにしてもよい。 The sample gas containing the target substance is sent into the reservoir 5 and loaded on the tip of the optical sensor chip 2. The sample gas may be continuously fed into the reservoir 5 at a constant speed, or may be stored in the reservoir 5 for a certain period of time after a certain amount of sample gas has been fed into the reservoir 5.
 光センサ用チップ2としては、実施形態1で図1を用いて説明したような流路状の液体チャンバを備えた光センサ用チップが使用できる。光センサ用チップ2の流路状の液体チャンバには、ポンプ41によってリン酸緩衝液等の液体が送り込まれる。このとき、送液量は流量調節弁42で調節される。送液は連続的でも間欠的でもよく、送液量も測定目的に応じて適宜設定することができる。 As the optical sensor chip 2, an optical sensor chip having a flow channel-like liquid chamber as described in the first embodiment with reference to FIG. 1 can be used. A liquid such as a phosphate buffer is fed into the flow channel-shaped liquid chamber of the optical sensor chip 2 by the pump 41. At this time, the liquid feeding amount is adjusted by the flow rate adjusting valve 42. The liquid feeding may be continuous or intermittent, and the liquid feeding amount can be appropriately set according to the measurement purpose.
 (実施形態4)
 本実施形態は、試料ガス中の対象物質を液体中に溶存させ、その液体中の対象物質を測定するための測定システムおよび測定方法に関する。本実施形態の測定システムの概略を図5に示す。
(Embodiment 4)
The present embodiment relates to a measurement system and a measurement method for dissolving a target substance in a sample gas in a liquid and measuring the target substance in the liquid. An outline of the measurement system of the present embodiment is shown in FIG.
 実施形態3と同様に、光ファイバー1の先端には光センサ用チップ2が装着されており、光源31から照射された励起光が光ファイバー1の先端にあるルビジウム有機錯体などに到達し、錯体への酸素結合量に応じた強度の蛍光が励起される。励起された蛍光を、光ファイバー1を通して分光計32で測定し、その強度をコンピュータ33で分析する。 As in the third embodiment, the optical sensor chip 2 is attached to the tip of the optical fiber 1, and the excitation light emitted from the light source 31 reaches the rubidium organic complex or the like at the tip of the optical fiber 1 to reach the complex. Intensity fluorescence corresponding to the amount of oxygen binding is excited. The excited fluorescence is measured by the spectrometer 32 through the optical fiber 1 and the intensity thereof is analyzed by the computer 33.
 光センサ用チップ2としては、実施形態1で図1を用いて説明したような流路状の液体チャンバを備えた光センサ用チップが使用できる。対象物質を含む試料ガスは、送気管51を通してリン酸緩衝液等の液体6中に送り込まれ、対象物質が液体6中に溶存した状態となる。このとき、スターラー61で液体6を連続的に撹拌することで、吹込まれる試料ガス中の対象物質の濃度変化は、液体6中の対象物質の溶存量に迅速に反映される。この対象物質が溶存した液体6が、ポンプ41によって、光センサ用チップ2の流路状の液体チャンバに送り込まれる。このとき、送液量は流量調節弁42で調節される。送液は連続的でも間欠的でもよく、送液量も測定目的に応じて適宜設定することができる。この液体中の対象物質の濃度を測定することで、試料ガス中の対象物質の濃度を求めることができる。 As the optical sensor chip 2, an optical sensor chip having a flow channel-like liquid chamber as described in the first embodiment with reference to FIG. 1 can be used. The sample gas containing the target substance is sent into the liquid 6 such as a phosphate buffer solution through the air supply pipe 51, and the target substance is dissolved in the liquid 6. At this time, by continuously stirring the liquid 6 with the stirrer 61, the change in the concentration of the target substance in the sample gas to be blown in is quickly reflected in the dissolved amount of the target substance in the liquid 6. The liquid 6 in which the target substance is dissolved is sent by the pump 41 to the flow channel liquid chamber of the optical sensor chip 2. At this time, the liquid feeding amount is adjusted by the flow rate adjusting valve 42. The liquid feeding may be continuous or intermittent, and the liquid feeding amount can be appropriately set according to the measurement purpose. By measuring the concentration of the target substance in the liquid, the concentration of the target substance in the sample gas can be obtained.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 <実施例1>
 (酵素固定化膜および光センサの作製)
 アルコール酸化酵素(AOD:アルコールオキシダーゼ、EC 1.1.3.13 A2404、10-40 units/mg、シグマ-アルドリッチ社製)15μLと、光架橋製樹脂としてのPVA-SbQ(SPP-H-1(Bio)、東洋合成工業(株)製)50μLの混合液をペーストとした。このペーストを、30×30mm2に切り出したH-PTFE膜(JGWP14225、Millipore Corporation、孔径200nm)に均一に塗布した。次に、4℃の冷暗所にて6時間乾燥させた後、蛍光灯下にて2時間静置することで、光架橋法によりアルコールオキシダーゼを包括固定化し、酵素固定化膜を作製した。なお、酵素固定化膜作製時、上記ペーストを刷り込むようにして塗布し、乾燥後の余分な酵素は全てこそげ落とした。
<Example 1>
(Production of enzyme-immobilized membrane and optical sensor)
Alcohol oxidase (AOD: alcohol oxidase, EC 1.1.3.13 A2404, 10-40 units / mg, Sigma-Aldrich) 15 μL and PVA-SbQ (SPP-H-1 (Bio) as photocrosslinking resin, Toyo Gosei Kogyo Co., Ltd.) 50 μL of the mixed solution was used as a paste. This paste was uniformly applied to an H-PTFE membrane (JGWP14225, Millipore Corporation, pore size 200 nm) cut to 30 × 30 mm 2 . Next, after drying in a cool dark place at 4 ° C. for 6 hours, the mixture was allowed to stand for 2 hours under a fluorescent lamp, whereby alcohol oxidase was comprehensively immobilized by a photocrosslinking method to produce an enzyme-immobilized membrane. When preparing the enzyme-immobilized film, the paste was applied so as to be imprinted, and any excess enzyme after drying was scraped off.
 次に、作製した酵素固定化膜を用いて、図1に示すような構造の光センサを作製した。第2ガス透過性膜としては、H-PTFE膜を使用した。H-PTFE膜をチップ本体20の先端にシリコンO-リングを用いて固定した。酵素固定化膜は、酸素感応型光ファイバー(オーシャン・オプティクス社製のFOXY-R、o.d.:1.5mm)の先端の感応部に接するように装着した。 Next, an optical sensor having a structure as shown in FIG. 1 was produced using the produced enzyme-immobilized film. An H-PTFE membrane was used as the second gas permeable membrane. The H-PTFE membrane was fixed to the tip of the chip body 20 using a silicon O-ring. The enzyme-immobilized membrane was attached so as to be in contact with the sensitive portion at the tip of an oxygen-sensitive optical fiber (FOXY-R, od: 1.5 mm manufactured by Ocean Optics).
 (実験方法)
 上記のようにして作製された光センサを用いて、ポンプを用いて液体チャンバ中に緩衝液(0.1mol/Lリン酸緩衝液、pH8.0)を送液しながら、標準ガス発生器(Permeater、TYPE PD-1B-2、(株)ガステック製)を用いて所定濃度のエタノールガスを発生させ、発生したエタノールガスを200mL/分の流量でセンサの先端部に負荷した。
(experimental method)
Using the optical sensor produced as described above, a standard gas generator (0.1 mol / L phosphate buffer, pH 8.0) was fed into a liquid chamber using a pump. Permeater, TYPE PD-1B-2 (manufactured by Gastec Co., Ltd.) was used to generate ethanol gas of a predetermined concentration, and the generated ethanol gas was loaded at the tip of the sensor at a flow rate of 200 mL / min.
 アルコール酸化酵素によるエタノールの酸化反応(酸素消費反応)による酸素濃度の減少に伴う蛍光強度の増加量を、センサ出力強度として、分光器(MODEL S4000-FL、オーシャンオプティクス社製)およびA/D変換器(DAQ Card-700、PCMCIA-type A/D card、ナショナルインスルメンツ社製)を介してコンピュータにて計測した。 Spectrophotometer (MODEL S4000-FL, manufactured by Ocean Optics) and A / D conversion are used as the sensor output intensity, which is the amount of increase in fluorescence intensity due to the decrease in oxygen concentration due to the oxidation reaction of oxygen (oxygen consumption reaction) by ethanol. Measured with a computer via a device (DAQ Card-700, PCMCIA-type A / D card, manufactured by National Instruments).
 なお、エタノールガスの濃度を、0(空気),0.7,1.1,2.2,4.4,12.4,22.5,31.0,49.6,82.6,124.0ppmとした各々の場合について、上記の測定を行った。 The concentration of ethanol gas is 0 (air), 0.7, 1.1, 2.2, 4.4, 12.4, 22.5, 31.0, 49.6, 82.6, 124. The above measurement was performed for each case of 0.0 ppm.
 また、エタノールガスの流速および緩衝液の流速は、次のように制御した。まず、実験開始時から開始後2分までの間は、流速0.2L/minのエアー(空気)での負荷を行い、緩衝液は1.5mL/minで送液した。次に、実験開始後2~14分の間は、上記各濃度のエタノールガスを0.2L/minで負荷し、緩衝液の送液は停止した。さらに、実験開始後14~20分の間は、0.2L/minのエアー(空気)での負荷を行い、緩衝液は1.5mL/minで送液した。 Further, the flow rate of ethanol gas and the flow rate of buffer solution were controlled as follows. First, during the period from the start of the experiment to 2 minutes after the start, loading with air (air) with a flow rate of 0.2 L / min was performed, and the buffer solution was sent at 1.5 mL / min. Next, during the period of 2 to 14 minutes after the start of the experiment, ethanol gas of each concentration was loaded at 0.2 L / min, and the buffer solution feeding was stopped. Furthermore, for 14 to 20 minutes after the start of the experiment, loading with 0.2 L / min of air (air) was performed, and the buffer solution was sent at 1.5 mL / min.
 実験結果を図6に示す。図6は、エタノールガスの濃度に対するセンサ出力強度との関係を示すグラフである。図6において、横軸は測定開始時からの経過時間を示し、縦軸はセンサ出力強度を示す。センサの先端にエタノールガスを負荷し始めた測定開始2分後から各エタノールガスの濃度に応じてセンサ出力強度が上昇し始めている。測定開始後、約14分でエタノールガスの負荷を停止し、緩衝液の送液を再開するとセンサ出力強度は急激に低下し、速やかに初期状態に戻っていることがわかる。 The experimental results are shown in FIG. FIG. 6 is a graph showing the relationship between the sensor output intensity and the ethanol gas concentration. In FIG. 6, the horizontal axis indicates the elapsed time from the start of measurement, and the vertical axis indicates the sensor output intensity. The sensor output intensity starts to increase according to the concentration of each ethanol gas 2 minutes after the start of measurement when ethanol gas starts to be loaded on the tip of the sensor. It can be seen that when the ethanol gas load is stopped approximately 14 minutes after the start of the measurement and the buffer solution is resumed, the sensor output intensity rapidly decreases and quickly returns to the initial state.
 図6のグラフにおける測定開始後1~5分の間の拡大図を図7に示す。さらに、図7においてグラフに直線性が認められる測定開始後4~5分の間の拡大図を図8に示す。図8に示すグラフから、測定開始からの時間(x)とセンサ出力強度(y)との関係式を、各濃度のエタノールガスについて求めた。結果を表1に示す。 Fig. 7 shows an enlarged view of 1 to 5 minutes after the start of measurement in the graph of Fig. 6. Further, FIG. 8 shows an enlarged view of 4 to 5 minutes after the start of measurement in which linearity is recognized in the graph in FIG. From the graph shown in FIG. 8, a relational expression between the time (x) from the start of measurement and the sensor output intensity (y) was determined for each concentration of ethanol gas. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この傾き(上記関係式中のxの係数)と各エタノールガスの濃度から作製した検量線を図9に示す。図9に示されるように上記傾きとエタノールガスの濃度は良好な相関性を有し、この傾きからエタノールガスの測定が可能であることが示された。また、図10に示されるように、従来のセミコンダクタセンサの場合にはエタノール以外にも反応してしまうが、本発明の光センサによればエタノールを選択的に測定することができる。 FIG. 9 shows a calibration curve prepared from this slope (coefficient of x in the above relational expression) and the concentration of each ethanol gas. As shown in FIG. 9, the slope and the concentration of ethanol gas have a good correlation, and it was shown that ethanol gas can be measured from this slope. Further, as shown in FIG. 10, in the case of a conventional semiconductor sensor, it reacts in addition to ethanol. However, according to the optical sensor of the present invention, ethanol can be selectively measured.
 (参考例1)
 <酵素固定化膜および電気化学センサの作製>
 MAO-A(Monoamine Oxidase type A、日本BD社製)25μLと、PVA-SbQ(SPP-H-1(Bio)、東洋合成工業(株)製)80μLとの混合液をペーストとした。このペーストを、40×50mm2に切り出した透析膜(UC 36-32-100、Viskase Corporation Inc.、分画分子量14000、孔径5nm)に均一に塗布した。次に、4℃の冷暗所にて60分間乾燥させた後、蛍光灯下にて30分間静置することで、光架橋法によりモノアミンオキシダーゼを包括固定化し、酵素固定化膜を作製した。なお、酵素固定化膜作製時、上記ペーストを刷り込むようにして塗布し、乾燥後の余分な酵素は全てこそげ落とした。
(Reference Example 1)
<Production of enzyme-immobilized membrane and electrochemical sensor>
A mixed solution of 25 μL of MAO-A (Monoamine Oxidase type A, manufactured by Japan BD) and 80 μL of PVA-SbQ (SPP-H-1 (Bio), manufactured by Toyo Gosei Co., Ltd.) was used as a paste. This paste was uniformly applied to a dialysis membrane (UC 36-32-100, Viscose Corporation Inc., molecular weight cut off 14000, pore diameter 5 nm) cut into 40 × 50 mm 2 . Next, after drying for 60 minutes in a cool dark place at 4 ° C., the mixture was allowed to stand for 30 minutes under a fluorescent lamp, whereby monoamine oxidase was comprehensively immobilized by a photocrosslinking method to prepare an enzyme-immobilized membrane. When preparing the enzyme-immobilized film, the paste was applied so as to be imprinted, and any excess enzyme after drying was scraped off.
 次に、作製した酵素固定化膜を用いて、酵素を直接塗布していない面が、クラーク型酸素電極(BO-P、エイブル株式会社)の感応部に接するように、ナイロンネットとシリコンO-リングを用いて固定し、電気化学センサを作製した。 Next, using the prepared enzyme-immobilized membrane, nylon net and silicon O— are used so that the surface on which the enzyme is not directly applied is in contact with the sensitive part of the Clark oxygen electrode (BO-P, Able Co., Ltd.). An electrochemical sensor was fabricated by fixing with a ring.
 <実験方法>
 図5において送気管51を設けないような測定システムを用いて、溶液中のメチルメルカプタン濃度を計測する実験を行った。まず、0,1,3,5,10,15または20mMのアスコルビン酸(L(+)-アスコルビン酸ナトリウム、和光純薬株式会社)を添加したリン酸緩衝液(0.1M、pH8.5)50mLに、センサの感応部を浸した。メチルメルカプタン溶液を、リン酸緩衝液中の最終濃度が1mMとなるように滴下し、メチルメルカプタン溶液の滴下に伴なうMAO-Aの酵素反応(酸素消費反応)による溶存酸素の減少量を酸素電極にて検出した。
<Experiment method>
In FIG. 5, an experiment for measuring the methyl mercaptan concentration in the solution was performed using a measurement system in which the air supply pipe 51 was not provided. First, phosphate buffer (0.1 M, pH 8.5) to which 0, 1, 3, 5, 10, 15 or 20 mM ascorbic acid (L (+)-sodium ascorbate, Wako Pure Chemical Industries, Ltd.) was added The sensitive part of the sensor was immersed in 50 mL. Methyl mercaptan solution is added dropwise so that the final concentration in the phosphate buffer is 1 mM, and the amount of dissolved oxygen reduced by the MAO-A enzyme reaction (oxygen consumption reaction) accompanying the addition of the methyl mercaptan solution is reduced to oxygen. Detected with electrodes.
 <実験結果>
 図11に、各濃度のアスコルビン酸を添加した場合について、上記電気化学センサを用いて測定したセンサ出力(溶存酸素の減少に伴う電気信号の減少量を正の値とした出力値)のグラフを示す。グラフの横軸は、測定開始時からの経過時間を示し、メチルメルカプタンの添加は測定開始から2分後に行った。アスコルビン酸ナトリウムをリン酸緩衝液に添加した場合にセンサ出力の増加が観察された。
<Experimental result>
FIG. 11 is a graph of sensor output (output value in which the amount of decrease in the electrical signal accompanying the decrease in dissolved oxygen is a positive value) measured using the electrochemical sensor when ascorbic acid of each concentration is added. Show. The horizontal axis of the graph indicates the elapsed time from the start of measurement, and methyl mercaptan was added 2 minutes after the start of measurement. An increase in sensor output was observed when sodium ascorbate was added to the phosphate buffer.
 また、リン酸緩衝液中のアスコルビン酸ナトリウム濃度と測定開始から30分後のセンサ出力との関係をプロットしたグラフを図12に示す。図12に示されるように、アスコルビン酸ナトリウム濃度が10mMの場合において、最も高いセンサ出力を示すことがわかる。アスコルビン酸濃度が15mMおよび20mMの場合は、10mMの場合よりもセンサ出力が低くなってしまう。 FIG. 12 is a graph plotting the relationship between the sodium ascorbate concentration in the phosphate buffer and the sensor output 30 minutes after the start of measurement. As shown in FIG. 12, it can be seen that the highest sensor output is exhibited when the sodium ascorbate concentration is 10 mM. When the ascorbic acid concentration is 15 mM and 20 mM, the sensor output is lower than that of 10 mM.
 本実験は電気化学センサを用いて行った実験であるが、この結果から、本発明の測定方法においても、メチルメルカプタン等を測定する場合は、緩衝液中に添加するアスコルビン酸の濃度を10mM以下とすることが好ましいと考えられる。 Although this experiment is an experiment conducted using an electrochemical sensor, from this result, even in the measurement method of the present invention, when measuring methyl mercaptan or the like, the concentration of ascorbic acid added to the buffer solution is 10 mM or less. It is considered to be preferable.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 光ファイバー、11 ルテニウム有機錯体、12 シリコーンオーバーコート、2光センサ用チップ、20 チップ本体、21 液体チャンバ、211 導入管、212 排出管、22 酵素固定化膜(第1ガス透過性膜)、23 第2ガス透過性膜、31 光源、32 分光計、33 コンピュータ、41 ポンプ、42 流量調節弁、5 リザーバ、51 送気管、6 液体、61 スターラー。 1 optical fiber, 11 ruthenium organic complex, 12 silicone overcoat, 2 optical sensor chip, 20 chip body, 21 liquid chamber, 211 introduction tube, 212 discharge tube, 22 enzyme-immobilized membrane (first gas permeable membrane), 23 Second gas permeable membrane, 31 light source, 32 spectrometer, 33 computer, 41 pump, 42 flow control valve, 5 reservoir, 51 air supply pipe, 6 liquid, 61 stirrer.

Claims (19)

  1.  光ファイバー(1)と連結して使用される光センサ用チップ(2)であって、
     前記光ファイバー(1)の先端を覆う第1ガス透過性膜(22)を備え、
     該第1ガス透過性膜(22)の光ファイバー(1)と連結される側とは反対側の表面に液体を供給するための液体チャンバ(21)を備えることを特徴とする、光センサ用チップ。
    An optical sensor chip (2) used in connection with an optical fiber (1),
    A first gas permeable membrane (22) covering the tip of the optical fiber (1);
    An optical sensor chip comprising a liquid chamber (21) for supplying a liquid to the surface of the first gas permeable membrane (22) opposite to the side connected to the optical fiber (1). .
  2.  前記第1ガス透過性膜(22)は、対象物質の化学反応を触媒する酵素が固定化された酵素固定化膜(22)である、請求項1に記載の光センサ用チップ。 The optical sensor chip according to claim 1, wherein the first gas-permeable membrane (22) is an enzyme-immobilized membrane (22) on which an enzyme that catalyzes a chemical reaction of a target substance is immobilized.
  3.  前記液体チャンバ(21)と前記光センサ用チップ(2)の外部とを連通する少なくとも1つの流路を有する、請求項1に記載の光センサ用チップ。 2. The optical sensor chip according to claim 1, further comprising at least one flow path communicating between the liquid chamber (21) and the outside of the optical sensor chip (2).
  4.  前記液体チャンバ(21)が前記光センサ用チップ(2)の外部と連通していない閉じた空間、もしくは液体の導入口と空気穴を有する空間である、請求項1に記載の光センサ用チップ。 The optical sensor chip according to claim 1, wherein the liquid chamber (21) is a closed space not communicating with the outside of the optical sensor chip (2), or a space having a liquid inlet and an air hole. .
  5.  前記液体チャンバ(21)は、前記第1ガス透過性膜(22)とは反対側に第2ガス透過性膜(23)を備え、
     前記光ファイバー(1)が連結された際に、前記光ファイバー(1)の先端と前記第2ガス透過性膜(23)との距離を一定にするためのストッパー機構を有する、請求項1に記載の光センサ用チップ。
    The liquid chamber (21) includes a second gas permeable membrane (23) on the opposite side of the first gas permeable membrane (22),
    The said optical fiber (1) has a stopper mechanism for making the distance of the front-end | tip of the said optical fiber (1), and the said 2nd gas permeable film (23) constant, when connected. Chip for optical sensor.
  6.  前記酵素が、酸化還元酵素、脱水素酵素または発光酵素である、請求項2に記載の光センサ用チップ。 The optical sensor chip according to claim 2, wherein the enzyme is an oxidoreductase, a dehydrogenase or a luminescent enzyme.
  7.  前記酸化還元酵素が、基質と反応して酸素を消費または発生する酵素である、請求項6に記載の光センサ用チップ。 The optical sensor chip according to claim 6, wherein the oxidoreductase is an enzyme that consumes or generates oxygen by reacting with a substrate.
  8.  前記光ファイバー(1)が、酸素感応型光ファイバー(1)、pH感応型光ファイバー(1)または発光感応型光ファイバー(1)である、請求項1に記載の光センサ用チップ。 The optical sensor chip according to claim 1, wherein the optical fiber (1) is an oxygen-sensitive optical fiber (1), a pH-sensitive optical fiber (1), or a light-emitting sensitive optical fiber (1).
  9.  前記光ファイバー(1)が、酸素感応型光ファイバー(1)であり、その先端部にルテニウム有機錯体が固定されたものである、請求項1に記載の光センサ用チップ。 The optical sensor chip according to claim 1, wherein the optical fiber (1) is an oxygen-sensitive optical fiber (1), and a ruthenium organic complex is fixed to a tip portion thereof.
  10.  請求項1に記載の光センサ用チップ(2)と、光ファイバー(1)とを連結してなる光センサ。 An optical sensor formed by connecting the optical sensor chip (2) according to claim 1 and an optical fiber (1).
  11.  請求項10に記載の光センサを少なくとも1つ備えた測定システム。 A measurement system comprising at least one optical sensor according to claim 10.
  12.  前記光センサ用チップ(2)の前記液体チャンバ(21)内の液体を入れ替えるための機構を備えた、請求項11に記載の測定システム。 The measurement system according to claim 11, comprising a mechanism for replacing the liquid in the liquid chamber (21) of the optical sensor chip (2).
  13.  匂いを測定するためのものである、請求項11に記載の測定システム。 The measurement system according to claim 11, which is for measuring odor.
  14.  請求項11に記載の測定システムを用いる、対象物質の測定方法。 A method for measuring a target substance using the measurement system according to claim 11.
  15.  測定中は、前記液体チャンバ(21)内の液体が移動せず、各測定の合間に前記液体チャンバ(21)内の液体が移動する、請求項14に記載の測定方法。 The measurement method according to claim 14, wherein the liquid in the liquid chamber (21) does not move during measurement, and the liquid in the liquid chamber (21) moves between measurements.
  16.  測定された光出力の時間変化の微分値、積分値、積算値または二階微分値に基づいて対象物質の濃度を算出する、請求項14に記載の測定方法。 15. The measurement method according to claim 14, wherein the concentration of the target substance is calculated based on a differential value, an integral value, an integrated value, or a second-order differential value of the measured light output with time.
  17.  測定中に、前記液体チャンバ(21)内の液体が移動する、請求項14に記載の測定方法。 The measurement method according to claim 14, wherein the liquid in the liquid chamber (21) moves during the measurement.
  18.  前記第1ガス透過性膜(22)は、対象物質の化学反応を触媒する酵素が固定化された酵素固定化膜(22)であり、
     前記酵素として、基質と反応して酸素を消費または発生する酸化還元酵素を用い、
     前記基質がメチルメルカプタン、ジメチルサルファイド、硫化水素、アンモニア、または、トリメチルアミンであり、前記液体にアスコルビン酸を添加する、請求項14に記載の測定方法。
    The first gas permeable membrane (22) is an enzyme-immobilized membrane (22) on which an enzyme that catalyzes a chemical reaction of a target substance is immobilized.
    As the enzyme, an oxidoreductase that consumes or generates oxygen by reacting with a substrate is used,
    The measurement method according to claim 14, wherein the substrate is methyl mercaptan, dimethyl sulfide, hydrogen sulfide, ammonia, or trimethylamine, and ascorbic acid is added to the liquid.
  19.  前記アスコルビン酸の添加濃度が10mM以下である、請求項18に記載の測定方法。 The measurement method according to claim 18, wherein the concentration of ascorbic acid added is 10 mM or less.
PCT/JP2011/080032 2010-12-27 2011-12-26 Chip for light sensor, light sensor, measurement system, and measurement method using same WO2012090919A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010290932 2010-12-27
JP2010-290932 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012090919A1 true WO2012090919A1 (en) 2012-07-05

Family

ID=46383022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080032 WO2012090919A1 (en) 2010-12-27 2011-12-26 Chip for light sensor, light sensor, measurement system, and measurement method using same

Country Status (1)

Country Link
WO (1) WO2012090919A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019081676A1 (en) * 2017-10-25 2019-05-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Apparatus for the measurement of chemical activity coefficients of gas phase species in thermodynamic equilibrium with liquid phase
CN111220606A (en) * 2020-01-15 2020-06-02 中国科学院新疆理化技术研究所 Preparation method and application of layered Steiner network structure fiber membrane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247646A (en) * 1987-04-03 1988-10-14 Tdk Corp Optical fiber sensor
JPH02190748A (en) * 1989-01-19 1990-07-26 Terumo Corp Implement for measuring oxygen concentration
JP2003250516A (en) * 2002-03-04 2003-09-09 Rikei:Kk Biosensor and method for producing the same
WO2006090596A1 (en) * 2005-02-24 2006-08-31 Tokyo University Of Marine Science And Technology Biosensor and method of fabricating the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247646A (en) * 1987-04-03 1988-10-14 Tdk Corp Optical fiber sensor
JPH02190748A (en) * 1989-01-19 1990-07-26 Terumo Corp Implement for measuring oxygen concentration
JP2003250516A (en) * 2002-03-04 2003-09-09 Rikei:Kk Biosensor and method for producing the same
WO2006090596A1 (en) * 2005-02-24 2006-08-31 Tokyo University Of Marine Science And Technology Biosensor and method of fabricating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019081676A1 (en) * 2017-10-25 2019-05-02 Commissariat A L'energie Atomique Et Aux Energies Alternatives Apparatus for the measurement of chemical activity coefficients of gas phase species in thermodynamic equilibrium with liquid phase
CN111220606A (en) * 2020-01-15 2020-06-02 中国科学院新疆理化技术研究所 Preparation method and application of layered Steiner network structure fiber membrane

Similar Documents

Publication Publication Date Title
JP3733408B2 (en) Biosensor and manufacturing method thereof
US5340722A (en) Method for the determination of the concentration of an enzyme substrate and a sensor for carrying out the method
US7341830B2 (en) Method and reagent system having a non-regenerative enzyme-coenzyme complex
JP6059244B2 (en) Analytical apparatus for detecting at least one analyte in a sample
Lehner et al. LUMOS-A sensitive and reliable optode system for measuring dissolved oxygen in the nanomolar range
Zargoosh et al. Highly sensitive glucose biosensor based on the effective immobilization of glucose oxidase/carbon-nanotube and gold nanoparticle in nafion film and peroxyoxalate chemiluminescence reaction of a new fluorophore
Trettnak et al. A fiberoptic cholesterol biosensor with an oxygen optrode as the transducer
JP6868774B2 (en) Biosensor system using UV-LED light source
Li et al. Chemiluminescence flow-through biosensor for glucose with eggshell membrane as enzyme immobilization platform
US20150232913A1 (en) Biosensing systems and methods for assessing analyte concentrations
US4621059A (en) Apparatus for measuring velocity of enzyme reaction
Kudo et al. Fiber-optic biochemical gas sensor (bio-sniffer) for sub-ppb monitoring of formaldehyde vapor
Arakawa et al. Biosensor for L-phenylalanine based on the optical detection of NADH using a UV light emitting diode
JP7186211B2 (en) Devices and methods for detecting specific analytes in liquid samples, and uses of said devices
Koshida et al. Fluorescence biosensing system with a UV-LED excitation for l-leucine detection
Sun et al. Enhancing the Long‐Term Stability of a Polymer Dot Glucose Transducer by Using an Enzymatic Cascade Reaction System
US20110053192A1 (en) Method Of Rapid Detection Of An Analyte In Bodily Fluids Using A Fluorescent Dry Test Strip Biosensor
Kudo et al. A NADH-dependent fiber-optic biosensor for ethanol determination with a UV-LED excitation system
Arnold Fluorophore-and chromophore-based fiberoptic biosensors
US20060228804A1 (en) Modified ruthenium complex luminescence dye for oxygen sensing
WO2012090919A1 (en) Chip for light sensor, light sensor, measurement system, and measurement method using same
RU2149182C1 (en) Biosensor for detection of nitrate or nitrite ions and methods of detection of nitrate or/and nitrate ions
KR20120042668A (en) Measurement method using oxidase
Blum et al. Design of luminescence photobiosensors
JP5380888B2 (en) Method for quantitative determination of glucose and quantitative composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP