WO2012090767A1 - Curable resin composition for thermoforming films and thermoforming film comprising a laminate of said resin composition - Google Patents

Curable resin composition for thermoforming films and thermoforming film comprising a laminate of said resin composition Download PDF

Info

Publication number
WO2012090767A1
WO2012090767A1 PCT/JP2011/079405 JP2011079405W WO2012090767A1 WO 2012090767 A1 WO2012090767 A1 WO 2012090767A1 JP 2011079405 W JP2011079405 W JP 2011079405W WO 2012090767 A1 WO2012090767 A1 WO 2012090767A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
thermoforming
curable resin
resin composition
vinyl
Prior art date
Application number
PCT/JP2011/079405
Other languages
French (fr)
Japanese (ja)
Inventor
博志 神山
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2012550848A priority Critical patent/JPWO2012090767A1/en
Publication of WO2012090767A1 publication Critical patent/WO2012090767A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/002Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion

Definitions

  • the present invention relates to a curable resin composition for a thermoforming film, a thermoforming film formed by coating the composition, and a use thereof.
  • thermoforming methods such as an insert molding method, an in-mold molding method, and a three-dimensional covering molding (TOM molding) as a method for imparting design properties to a molded product at a low cost.
  • a film or sheet of polyester resin, polycarbonate resin, acrylic resin or the like that has been decorated by printing or the like is previously formed into a three-dimensional shape by vacuum forming or the like, and an unnecessary film or sheet portion is removed. Then, it is transferred into an injection mold, and a molded product integrated by injection molding of a resin as a base material is obtained.
  • the in-mold molding method is a method in which a film or sheet of polyester resin, polycarbonate resin, acrylic resin or the like that has been decorated for printing or the like is placed in an injection mold, subjected to vacuum molding, and then in the same mold. In this way, an integrated molded product is obtained by injection molding a resin as a base material.
  • TOM molding is a vacuum / pneumatic molding method, and uses a thermoformed film with an adhesive layer on the back side, so that the reverse taper part and the end winding part are coated and formed without any vacuum holes, regardless of the material of the product. is there.
  • Rubber-containing weight having a specific composition as a molded product using an acrylic resin film having excellent surface hardness and heat resistance (hereinafter referred to as an acrylic resin film molded product) that can be used for insert molding, in-mold molding or TOM molding
  • an acrylic resin film molded product obtained by mixing a coalescence and a thermoplastic polymer having a specific composition at a specific ratio has been proposed (for example, see Patent Documents 1 and 2).
  • Such an acrylic resin film molded product not only imparts decorativeness to the molded product, but also has a function as an alternative material for clear coating.
  • thermosetting resin composition when three-dimensional crosslinking is formed, the thermoplasticity is lost, and there is a problem that the thermosetting resin composition breaks during thermoforming (see Patent Document 4).
  • thermoplastic resin using a special monomer when a thermoplastic resin using a special monomer is laminated, there is a problem in chemical resistance in the thin film portion because three-dimensional crosslinking is not formed (see Patent Documents 5 and 6).
  • JP-A-8-323934 Japanese Patent Laid-Open No. 11-147237 Japanese Patent Laid-Open No. 2005-163003 JP 2008-265062 A JP 2009-196151 A JP 2009-248362 A
  • the present invention has chemical resistance, for example, a lotion used to prevent sunburn, and the surface of the acrylic resin film does not become rough even if it is exposed to a high temperature for a long time with the hand cream attached, and it is molded into a deep-drawn molded product. It is an object of the present invention to provide a thermoforming film having no surface cracks and having excellent coating workability (pot life) and having a surface hardness, and a laminate molded product thereof. To do.
  • A vinyl polymer
  • B polyisocyanate compound
  • a curable resin composition for a thermoforming film comprising a vinyl polymer (A) having a hydroxyl group and a carboxylic anhydride group and a polyisocyanate compound (B), wherein the vinyl polymer (A ) Contains 2 to 50% by weight of a vinyl monomer having a carboxylic acid anhydride group with respect to 100 parts by weight of the vinyl monomer, and the content of the polyisocyanate compound (B) is the vinyl polymer (A
  • the curable resin composition has a solid content hydroxyl value of 2 to 80 mg KOH / g. 2.
  • thermoforming resin film having a curable resin composition layer according to “1” or “2” having a thickness of 1 to 20 ⁇ m as an outermost layer on one surface of the thermoforming film.
  • “7” The thermoforming film according to any one of “3” to “6”, wherein the thermoforming film is in-mold molding, insert molding, or TOM molding.
  • 8. The method for producing a thermoforming film according to any one of “3” to “7”, wherein the curable resin layer is formed by a printing method or a coating method.
  • the thermoforming film according to any one of “3” to “7” is laminated on a substrate by in-mold molding, insert molding or TOM molding so that the surface opposite to the curable resin layer is in contact with the film.
  • thermoforming film When the curable resin composition of the present invention is laminated on a thermoforming film, the thermoforming film having excellent chemical resistance, thermoformability, surface hardness, and coating workability (pot life), and laminate molding thereof Goods can be obtained. If the film for thermoforming of the present invention and the laminate molded product thereof are used for an automobile interior member, it can be used for in-mold molding, insert molding or TOM molding with excellent chemical resistance and surface hardness in an existing process.
  • the curable resin composition it is preferable from the viewpoint of chemical resistance and thermoformability to use a thermosetting resin that has a small curing shrinkage and can be uniformly crosslinked.
  • a non-uniform cured film the weakest part is attacked by chemicals, and stress is concentrated in the non-uniform part even in thermoforming during heating and breaks.
  • chemical resistance and thermoformability are in a trade-off relationship. If the curable resin is cured, chemical resistance is improved by increasing the crosslinking density, but thermoplasticity is lost and thermoformability is reduced. For this reason, it is desirable to form a cured film that is cross-linked at a maximum temperature of about 80 ° C. in a car and is thermoplastic at a temperature of about 150 ° C.
  • a vinyl polymer (A) having a glass transition temperature of 70 to 140 ° C. and a polyisocyanate compound (B) having 2 to 50% by weight of a monomer having a carboxylic acid anhydride group with respect to 100 parts by weight of the monomer Is a curable resin composition characterized by having a solid content hydroxyl value of 2 to 80 mg KOH / g of the vinyl polymer (A).
  • coating workability (pot life) was realized.
  • Examples of the resin containing a carboxylic acid anhydride group and a hydroxyl group include vinyl polymers.
  • an acrylic resin the following polymerizable vinyl monomer containing a carboxylic acid anhydride group and a hydroxyl group is used as a base. As mentioned above, it can be obtained by copolymerizing other copolymerizable polymerizable vinyl monomers.
  • These resins may be used alone or in combination of two or more.
  • the vinyl monomer having a carboxylic anhydride group is not particularly limited as long as it is a monomer having a carboxylic anhydride group and a vinyl group.
  • maleic anhydride is preferable from the viewpoint of availability and polymerization reactivity.
  • the monomer having a carboxylic anhydride group is preferably 2 to 50% by weight, more preferably 5 to 40% by weight, still more preferably 10 to 30% by weight based on 100 parts by weight of the vinyl monomer.
  • the monomer having a carboxylic acid anhydride group of the resin is less than 2% by weight, the resulting cured film has insufficient chemical resistance and thermoformability.
  • the monomer exceeds 50% by weight the resin viscosity is low. It becomes large and difficult to handle.
  • the solid content hydroxyl value is preferably 2 mg KOH / g resin or more, but is not limited to this, and the solid content hydroxyl value involved in crosslinking is important.
  • the upper limit of the solid content hydroxyl value is preferably 190 mgKOH / g resin or less, but is not limited thereto.
  • the solid content hydroxyl value is a numerical value calculated from the formula shown below.
  • Solid content hydroxyl value KOH mg / total amount of resin not containing KOH mg: mol number of hydroxyl group-containing vinyl monomer and / or derivative thereof ⁇ 56100 ⁇ N (N: hydroxyl group-containing vinyl monomer and / or derivative thereof Number of hydroxyl groups
  • the hydroxyl value of the resin can also be determined by the measuring method described in JIS K1557-1.
  • Examples of the polymerizable vinyl monomer containing a hydroxyl group include hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate, 1,4-butanediol monomethacrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, 1 , 4-butanediol monoacrylate and the like.
  • the alkyl alcohol having 1 to 18 carbon atoms forming the acrylic ester may be any alcohol having a linear, branched or cyclic alkyl group. These may be used alone or in combination of two or more.
  • copolymerizable polymerizable vinyl monomers include, for example, methyl methacrylate, ethyl methacrylate, methacrylic acid-n-propyl, isopropyl methacrylate, methacrylic acid-n-butyl, isobutyl methacrylate, methacrylic acid- t-butyl, pentyl methacrylate, hexyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, adamantyl methacrylate, dodecyl methacrylate, isobornyl methacrylate, methyl acrylate, ethyl acrylate, n-propyl acrylate, Isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, cyclohex
  • copolymerizable vinyl monomers are not essential components, and are appropriately selected and used as necessary according to the base material, purpose of use, etc. in designing a cured film.
  • the method for polymerizing or copolymerizing the polymerizable vinyl monomer or the like is not particularly limited, and a known method such as solution polymerization in an organic solvent can be used.
  • the polymerization method is not particularly limited, and for example, any of radical polymerization, cationic polymerization, and anionic polymerization can be used. Among these, radical polymerization is preferable from an industrial viewpoint.
  • Examples of the polymerization initiator used in radical polymerization include t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxyneodecanate, t-butyl peroxypivalate, t-hexyl peroxy-2- Organic peroxides such as ethyl hexanoate and methyl ethyl ketone peroxide, or 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2-methylpropionitrile) (AIBN), Preferred examples include azo initiators such as 2,2′-azobis (2-methylbutyronitrile). Of course, it is not limited to these. These radical polymerization initiators may be used alone or in combination of two or more.
  • the reaction temperature during radical polymerization is generally preferably 60 to 150 ° C. If this temperature is less than 60 ° C., the radical polymerization initiator is difficult to decompose and the reaction does not proceed easily. If it exceeds 150 ° C., even if the radical polymerization initiator is decomposed by heat to generate radicals, The lifetime is short and the growth reaction is difficult to proceed effectively.
  • the polymerization time depends on the polymerization temperature and other conditions, and cannot be determined in general, but about 2 to 6 hours is generally sufficient.
  • Examples of the hydroxyl group-containing resin include those modified by addition reaction of a compound capable of addition reaction with a hydroxyl group.
  • Examples of the compound capable of undergoing an addition reaction with a hydroxyl group include lactone compounds and alkylene oxides, with lactone compounds being preferred.
  • Examples of the lactone compound include ⁇ -methyl- ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -Nonanoic lactone, ⁇ -dodecanolactone and the like.
  • Examples of the alkylene oxide include ethylene oxide, propylene oxide, butylene oxide, and the like. These compounds capable of undergoing an addition reaction with a hydroxyl group may be used singly or in combination of two or more.
  • the glass transition temperature of a resin having a hydroxyl group and a specific amount of a carboxylic acid anhydride group is preferably 70 to 140 ° C., more preferably a resin having a glass transition temperature of 80 to 120 ° C.
  • the glass transition point of the resin is less than 70 ° C., the resulting cured film has insufficient chemical resistance at high temperatures, and when it exceeds 140 ° C., the softening point of the cured film becomes high, and thermoformability. Decreases.
  • the glass transition temperature is a value described in “Polymer Hand Book (J. Brandrup, Interscience, 1989)” (MMA: 105 ° C., BA: ⁇ 54 ° C., ST: 100 ° C., HEMA: 55 ° C. , MAA; 130 ° C., BMA; 20 ° C., maleic anhydride; 130 ° C. (using maleic acid value)) was calculated using the Fox formula, but not including the initiator.
  • the mass average molecular weight is preferably 2000 to 30000, particularly preferably 3000 to 20000.
  • a mass average molecular weight of less than 2000 is not preferable because the entanglement of the resin is small, and a mass average molecular weight of 30000 or more is not preferable because of high viscosity.
  • the polyisocyanate compound (B) is characterized in that it is contained in such a ratio that it reacts with the solid content hydroxyl value of 2 to 80 mgKOH / g of the vinyl polymer (A).
  • the reaction here means that the hydroxyl group of the resin and the isocyanate group of the polyisocyanate compound (B) are reacted and crosslinked in an equivalent amount.
  • the solid hydroxyl value involved in this crosslinking is preferably 2 to 80 mg KOH / g resin, and more preferably the polyisocyanate compound (B) is blended at a solid content hydroxyl value of 10 to 70 mg KOH / g.
  • the content of the polyisocyanate compound (B) is less than the amount that reacts with the solid content hydroxyl value of 2 mgKOH / g, the resulting cured film tends to have insufficient chemical resistance. On the other hand, if the content exceeds the amount that reacts with 80 mgKOH / g, the cross-linking of the cured film becomes too dense and the thermoformability deteriorates.
  • the amount of isocyanate group contained in the polyisocyanate compound (B) varies depending on the product and cannot be expressed generally in parts by weight.
  • the polyisocyanate compound can be expressed in 100 parts by weight of the vinyl polymer (A).
  • (B) is preferably used in an amount of 5 to 60 parts by weight, more preferably 10 to 40 parts by weight.
  • polyisocyanate compounds include aliphatic and aromatic compounds.
  • Specific examples of the aliphatic polyfunctional isocyanate include hexamethylene diisocyanate, dicyclohexylmethane 4,4'-isocyanate, 2,2,4-trimethyl-1,6-diisocyanate, and isophorone diisocyanate.
  • Aromatic polyfunctional isocyanates include 2,4-tolylene diisocyanate, 2,6 tolylene diisocyanate, difinylmethane-4,4'-diisocyanate, xylene diisocyanate, polymethylene-polyphenylel-polyisocyanate.
  • Preferred compounds include hexamethylene diisocyanate and xylene diisocyanate.
  • Structuring includes monomer, burette type, adduct type, and isocyanurate type. Among these, a burette type and an adduct type are preferable.
  • an isocyanate group is 0.1 equivalent or more and 2 equivalent or less with respect to the hydroxyl group of the said (A) component. If it is less than 0.1 times, the remaining hydroxyl groups are excessive, which is not preferable. If it exceeds 2 times, there is an isocyanate group which remains partially unreacted, which is not preferable.
  • a reaction catalyst can be used in the curable resin composition of the present invention.
  • the reaction catalyst include a tin compound and a zinc compound.
  • tin compounds include tin halides such as tin chloride and tin bromide, and organic tin compounds such as dibutyltin diacetate and dibutyltin dilaurate.
  • zinc compounds include zinc chloride and zinc bromide.
  • zinc salts of organic acids such as zinc halide, zinc octylate, and zinc laurate.
  • One kind of tin compound or zinc compound as a curing reaction catalyst may be used, or two or more kinds may be used in combination, or may be used in combination with another curing reaction catalyst.
  • the reaction catalyst is preferably used in an amount of 0 to 5 parts by weight based on 100 parts by weight of the vinyl polymer (A).
  • a catalyst for ring opening of a carboxylic acid anhydride group can be used, and quasi-crosslinking can be used in which ionic crosslinking or carboxylic acid generation causes crosslinking at about 80 ° C. and crosslinking at about 150 ° C. of the thermoforming temperature.
  • the amount of the ring-opening catalyst is preferably 0 to 5 parts by weight based on 100 parts by weight of the vinyl polymer (A).
  • the curable resin layer is obtained by curing a curable resin.
  • the thickness of the curable resin layer laminated on one surface of the thermoforming film is preferably 1 to 20 ⁇ m. When the thickness of the curable resin layer is 1 ⁇ m or more, chemical resistance when a laminated body is obtained can be exhibited. Since the chemical resistance of the part stretched by 200% or more may be required by thermoforming, it is more preferably 3 ⁇ m or more. If the thickness of the curable resin layer is 20 ⁇ m or less, insert molding or in-mold molding can be performed, and thermoforming into a deep drawing shape is possible, but from the viewpoint of cost, it is more preferably 15 ⁇ m or less.
  • the thickness of the curable resin layer was calculated from the difference in thickness with and without coating, and the film thickness was measured according to JIS B 7503.
  • thermoforming coating film of the present invention it is preferable that the curable resin layer is formed on the thermoformed film with a thickness of 1 to 20 ⁇ m, and the pencil hardness (measured based on JIS K5400) is HB or more. . If the pencil hardness is high, the scratch resistance is improved, so that it can be suitably used for various vehicle members such as a door waist garnish, a front control panel, a power window switch panel, and an airbag cover. It is very useful industrially from the viewpoint of expanding applications.
  • the curable resin layer on the thermoforming film has a thickness of 15 ⁇ m and the elongation under a tensile condition of 150 ° C. and 500 mm / min is 100% or more. If the tensile elongation is 100% or more, deep drawing thermoforming can be performed. As tensile conditions, a 10 ⁇ 100 mm sample is visually checked for elongation until cracks occur in the film at a chuck interval of 50 mm, a tensile speed of 500 mm / min, and a tensile constant temperature layer temperature of 150 ° C.
  • the film for thermoforming is preferably 100% or more in elongation until a 10 ⁇ 100 mm sample which is the above-mentioned tensile condition is 50 mm between chucks, a pulling speed is 500 mm / min, and a constant temperature isothermal layer temperature is 150 ° C.
  • a thermoplastic resin film of a polymethacrylate resin, a polycarbonate resin, or a polyethylene terephthalate resin can be mentioned, and a methacrylate resin is particularly preferable.
  • the thickness of the thermoforming film is preferably 20 to 300 ⁇ m. By setting the thickness of the thermoforming film to 300 ⁇ m or less, the film can be wound around a paper tube or the like, and continuous production is facilitated.
  • the thickness of the thermoforming film is more preferably 30 ⁇ m or more, and particularly preferably 50 ⁇ m or more.
  • the upper limit is more preferably 200 ⁇ m or less, and particularly preferably 150 ⁇ m or less.
  • the curable resin composition of the present invention may contain an organic solvent, a color pigment, and / or various additives as necessary, for example, an ultraviolet absorber, a light stabilizer, an antioxidant, a surfactant, a leveling agent, A foaming agent, rheology adjusting agents such as polyethylene wax, polyamide wax, and internally crosslinked resin fine particles can be blended.
  • the organic solvent of the curable resin composition of the present invention is not particularly limited as long as each component can be dissolved, but is preferably selected so that the organic solvent does not remain after baking.
  • aliphatic hydrocarbons such as n-hexane, n-heptane and n-octane, aromatic hydrocarbons such as benzene, toluene and xylene, halogenated hydrocarbons such as chloroform and carbon tetrachloride, methanol, ethanol Alcohols such as n-propyl alcohol, isopropyl alcohol and n-butyl alcohol, ethers such as dibutyl ether, tetrahydrofuran and 1,4-dioxane, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ethyl acetate and n acetate And esters such as -propyl and n-butyl acetate.
  • a solvent obtained by adding a soluble amount of water to these organic solvents and mixing them may be used as the solvent.
  • These solvents may be used alone or in combination of two or more. It is desirable to adjust the blending number of the organic solvent to an appropriate coating viscosity. For example, in the case of a gravure coat, the number of blended parts of the solvent that gives a viscosity of 20 to 300 mPa ⁇ s and in the case of a die coat is preferably 100 to 3000 mPa ⁇ s.
  • the laminate of the present invention is a coating process on a film, so that the coating efficiency is good and the line speed is fast, and in-mold molding, insert molding or TOM molding has the same equipment size as injection molding. Therefore, it is highly industrially useful in terms of productivity and small space.
  • the coating layer is preferably formed by a printing method or a coating method.
  • the curable resin layer is prepared by dissolving or dispersing the raw material to be the coating layer in a solvent to prepare a paint, applying it to one side of the thermoformed film, and performing heat drying for removing the solvent. Is formed.
  • This method is preferable because the adhesion between the curable resin layer and the thermoformed film is improved.
  • printing methods include known printing methods such as gravure printing, screen printing, and offset printing.
  • Coating methods include flow coating, spray coating, bar coating, gravure coating, gravure reverse coating, kiss reverse coating, micro gravure coating, roll coating, blade coating, rod coating, and roll doctor.
  • Known coating methods such as a coating method, an air knife coating method, a comma roll coating method, a reverse roll coating method, a transfer roll coating method, a kiss roll coating method, a curtain coating method, a die coating method, and a dipping coating method may be mentioned.
  • Particularly preferred is a vacuum die coater.
  • the vacuum die coater can reduce the coating liquid retention and increase the air gap.
  • a two-component mixed supply system that mixes immediately before coating is preferable to a system that stores and supplies a coating solution in which two liquids of a main agent and a curing agent are mixed in advance in a tank.
  • the pot life of the two liquids can be improved, and further, the gel generation in the film coating can be improved by combining with a die coater with less retention.
  • a pattern layer may be formed in order to impart design properties to various substrates.
  • the pattern layer is preferably formed by a printing method or a vapor deposition method.
  • the printed layer becomes a pattern or a character on the surface of the laminate obtained by insert molding, in-mold molding, or TOM molding.
  • the print pattern include a pattern made of wood grain, stone grain, cloth grain, sand grain, geometric pattern, characters, full face, and the like.
  • polyvinyl resins such as vinyl chloride / vinyl acetate copolymers, polyamide resins, polyester resins, polyacrylic resins, polyurethane resins, polyvinyl acetal resins, polyester urethane resins, cellulose
  • the resin include ester resins, alkyd resins, and chlorinated polyolefin resins.
  • Examples of the method for forming the printing layer include known printing methods such as offset printing, gravure rotary printing, and screen printing; known coating methods such as roll coating and spray coating; and flexographic printing.
  • the thickness of the printing layer may be appropriately determined as necessary, and is usually about 0.5 to 30 ⁇ m.
  • the number of missing prints in the print layer is preferably 10 pieces / m 2 or less from the viewpoints of design properties and decorating properties. By the number of missing print ten / m 2 or less, the appearance of the laminate using an acrylic resin film for thermoforming becomes better.
  • the number of missing prints in the print layer is more preferably 5 pieces / m 2 or less, and particularly preferably 1 piece / m 2 or less.
  • the vapor deposition layer is formed of at least one metal selected from the group consisting of aluminum, nickel, gold, platinum, chromium, iron, copper, indium, tin, silver, titanium, lead, zinc, etc., or an alloy or compound thereof.
  • the Examples of the method for forming the vapor deposition layer include vacuum vapor deposition, sputtering, ion plating, and plating.
  • the acrylic resin film for thermoforming of the present invention may be provided with an adhesive layer as necessary.
  • the adhesive layer is preferably formed on the surface opposite to the surface on which the curable resin layer is provided.
  • thermoplastic resin layer The direction in which the thermoforming film is laminated on the thermoplastic resin layer is preferably laminated so that the surface opposite to the surface on which the curable resin layer is provided is in contact with the thermoplastic resin layer.
  • the thermoplastic resin layer is preferably made of a material having compatibility with the base material for the purpose of improving the adhesion with the base material. More preferably, the thermoplastic resin layer is made of the same material as the base material.
  • a known thermoplastic resin film or sheet can be used as the thermoplastic resin layer.
  • acrylic resin acrylic resin
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • AS resin acrylonitrile-styrene copolymer
  • Vinyl resin Polyolefin resin such as polyethylene, polypropylene, polybutene, polymethylpentene
  • Polyolefin copolymer such as ethylene-vinyl acetate copolymer or saponified product thereof, ethylene- (meth) acrylate copolymer
  • polyethylene Polyester resins such as terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyarylate, polycarbonate
  • polyamide resins such as 6-nylon, 6,6-nylon, 6,10-nylon, 12-nylon
  • Resin Fibrin derivatives such as cellulose acetate and nitrocellulose
  • Fluororesin such as polyvinyl fluoride, polyvinylidene fluoride, polytetrafluoroethylene, ethylene-tetrafluor
  • the thermoplastic resin layer may contain general compounding agents such as stabilizers, antioxidants, lubricants, processing aids, plasticizers, impact agents, foaming agents, fillers, antibacterial agents, and antifungal agents.
  • general compounding agents such as stabilizers, antioxidants, lubricants, processing aids, plasticizers, impact agents, foaming agents, fillers, antibacterial agents, and antifungal agents.
  • An agent, a release agent, an antistatic agent, a colorant, an ultraviolet absorber, a light stabilizer, a heat stabilizer, a flame retardant, and the like may be blended.
  • Examples of a method for obtaining a laminated film or sheet include known methods such as thermal lamination, dry lamination, wet lamination, and hot melt lamination.
  • the acrylic resin film for thermoforming and the thermoplastic resin layer can be laminated by extrusion lamination.
  • thermoforming film the surface of the thermoplastic resin layer of the laminated film or sheet
  • the surface treatment may be performed. These treatments improve adhesion between the thermoforming film and the curable resin layer or pattern layer, between the thermoplastic resin layer and the pattern layer, between the thermoforming film and the thermoplastic resin layer, etc.
  • the laminate of the present invention is obtained by laminating a thermoforming film, the laminated film or a sheet on a substrate. At this time, it is preferable to laminate
  • the material of the base material include: resin; wood board such as wood veneer, wood plywood, particle board, medium density fiber board (MDF); water quality board such as wood fiber board; metal such as iron and aluminum.
  • the resin is not particularly limited.
  • polyolefin resins such as polyethylene, polypropylene, polybutene, polymethylpentene, ethylene-propylene copolymer, ethylene-propylene-butene copolymer, olefin thermoplastic elastomer; polystyrene resin, ABS resin (acrylonitrile-butadiene-styrene) Copolymer), AS resin (acrylonitrile-styrene copolymer), acrylic resin, urethane resin, unsaturated polyester resin, epoxy resin, and other general-purpose thermoplastic or thermosetting resins; polyphenylene oxide / polystyrene resin, polycarbonate General-purpose engineering resins such as resin, polyacetal, polycarbonate-modified polyphenylene ether, polyethylene terephthalate; polysulfone, polyphenylene sulfide, polyphenylene Super engineering resins such as oxides, polyetherimides, polyimides, liquid crystalline polyesters,
  • the material for the base material is preferably a film for thermoforming, a laminated film or a sheet that can be melt bonded.
  • ABS resin AS resin, polystyrene resin, polycarbonate resin, vinyl chloride resin, acrylic resin, polyester resin, or a resin containing these as main components can be given.
  • an ABS resin, an AS resin, a polycarbonate resin, a vinyl chloride resin, or a resin containing these as a main component is preferable, and an ABS resin, a polycarbonate resin, or a resin containing these as a main component is more preferable.
  • a known method such as thermal lamination can be used in the case of a two-dimensional laminate and when the substrate can be thermally fused.
  • wood substrates such as wood veneer, wood plywood, particle board, medium density fiber board (MDF), water quality boards such as wood fiber board, metals such as iron and aluminum, etc. It is possible to bond them through an adhesive layer.
  • MDF medium density fiber board
  • a known method such as an insert molding method, an in-mold molding method, or a TOM molding can be used.
  • the in-mold molding method is a method of heating an acrylic resin film for thermoforming, or a laminated film or sheet thereof, and then vacuum-forming in a mold having a vacuuming function, and then a resin to be a base material in the same mold Is a method of obtaining a laminate in which an acrylic resin film for thermoforming, or a laminated film or sheet thereof and a substrate are integrated.
  • the in-mold molding method is preferable from the viewpoints of workability and economy because the film molding and injection molding can be performed in one step.
  • the heating temperature during in-mold molding is preferably equal to or higher than the temperature at which the acrylic resin film or sheet for thermoforming softens. Specifically, it may be appropriately set depending on the thermal properties of the film or the shape of the laminate, and is usually 70 ° C. or higher. On the other hand, if the temperature is too high, the surface appearance tends to deteriorate or the releasability tends to deteriorate. This may be set as appropriate depending on the thermal properties of the film or the shape of the laminate, and is usually 170 ° C. or lower. Furthermore, from the viewpoint of energy efficiency, it is preferable that the preheating temperature during vacuum forming is low.
  • the curable resin composition for a thermoforming film of the present invention and the thermoforming film obtained by laminating this composition are rich in elongation at high temperatures, Very advantageous.
  • Examples of the laminate obtained by the present invention include automotive parts (for example, parts such as bodies, bumpers, spoilers, mirrors, wheels, interior materials, etc., and various materials), motorcycle parts, road materials. (For example, traffic signs, soundproof walls, etc.), tunnel materials (for example, side walls, etc.), railway vehicles, furniture, musical instruments, home appliances, building materials, containers, office supplies, sports equipment, toys and the like.
  • automotive parts for example, parts such as bodies, bumpers, spoilers, mirrors, wheels, interior materials, etc., and various materials
  • motorcycle parts for example, road materials.
  • road materials for example, traffic signs, soundproof walls, etc.
  • tunnel materials for example, side walls, etc.
  • railway vehicles for example, musical instruments, home appliances, building materials, containers, office supplies, sports equipment, toys and the like.
  • part or “%” represents “part by weight” and “% by weight”, respectively, unless otherwise specified.
  • MMA 105 ° C., BA; ⁇ 54 ° C., ST; 100 ° C., maleic anhydride 130 ° C. (using maleic acid value), 2-hydroxyethyl methacrylate: 55 ° C., methacrylic acid; 130 ° C., isobornyl methacrylate; 180 ° C., lauryl methacrylate; ⁇ 65 ° C.) using the Fox formula
  • Graft rate 1 g of the dry resin powder of the acrylic polymer (D) is dispersed and dissolved in 50 ml of methyl ethyl ketone (MEK), and the insoluble and soluble components are separated with a centrifuge (30,000 rpm ⁇ 2 Hrs). The insoluble matter was sufficiently dried by vacuum drying, and the weight was measured as the rubber / graft content.
  • Graft rate (%) ((Weight of rubber / graft-weight of crosslinked acrylic polymer (D-1)) / weight of crosslinked acrylic polymer (D-1)) ⁇ 100 (5) Weight average particle diameter of acrylic polymer (D) Temperature of 23 ° C.
  • the weight average particle diameter was determined from the light transmittance at a wavelength of 546 nm using a spectrophotometer (manufactured by HITACHI, Spectrophotometer U-2000) at 50% ⁇ 5%.
  • Solid content of resin It was calculated from the following formula from the monomer composition of the hydroxyl value resin.
  • Solid content hydroxyl value KOH mg / total amount of resin not containing KOH mg: mol number of hydroxyl group-containing vinyl monomer and / or derivative thereof ⁇ 56100 ⁇ N (N: hydroxyl group-containing vinyl monomer and / or derivative thereof Number of hydroxyl groups (8)
  • Mass average molecular weight of resin HLC8220GPC manufactured by Tosoh Corporation
  • TPCgel Super H5000, H4000, H3000 manufactured by Tosoh Corporation connected as GPC columns, and THF (with stabilizer) as a solvent
  • Other conditions are measurement temperature: INLET OVEN 40 ° C., sample amount: 10 ⁇ l, liquid amount: 0.6 ml / min, detector: RI.
  • Pencil hardness According to JIS K5400, the pencil hardness of the surface of the curable resin layer was measured.
  • Vacuum moldability was performed using a thermoforming film in which a curable resin layer was laminated. Specifically, vacuum forming was performed with a Y-101 type vacuum forming machine (trade name, manufactured by Sanwa Kogyo Co., Ltd.) having a vacuum drawing function.
  • the shape of the mold is a switch base mold (MAZDA GENUINE PARTS PANEL S BBM4-68-5L6B02) for the passenger seat, the perspective size is about 100 mm long x 250 mm wide x 15 mm high, and the switch part is about It is 22 mm long x 45 mm wide x 15 mm deep.
  • MAZDA GENUINE PARTS PANEL S BBM4-68-5L6B02 for the passenger seat
  • the perspective size is about 100 mm long x 250 mm wide x 15 mm high
  • the switch part is about It is 22 mm long x 45 mm wide x 15 mm deep.
  • Vacuum forming of a thermoforming film laminated with a curable resin layer is performed under the conditions of a heater set temperature of about 340 ° C., a heating time of 9 seconds, a distance between the heater and the film of 10 mm, and a mold temperature of 60 ° C. The vacuum forming was performed in a direction that did not contact the mold.
  • the polymerization conversion rate is set to 98% or more
  • the internal temperature is set to 60 ° C.
  • the mixture (d-2-1) shown in Table 1 is continuously added at a rate of 16.7 parts by weight / hour.
  • the polymerization was further continued for 1.0 hour, and then the polymerization conversion rate was set to 98% or more to terminate the polymerization to obtain an acrylic polymer (D) latex.
  • the obtained latex was salted out with calcium chloride, washed with water and dried to obtain a dry powder (P-1) of acrylic polymerization (D).
  • Table 1 Each abbreviation in Table 1 represents the following substance.
  • OSA Dioctyl sodium sulfosuccinate BA; Butyl acrylate MMA; Methyl methacrylate ST; Styrene CHP; Cumene hydroperoxide AMA; Allyl methacrylate tDM; Tertiary decyl mercaptan.
  • thermoplastic film After blending the dry powder of P-1 obtained as an acrylic polymer (D) and a methacrylic resin (trade name: Sumipex EX-A manufactured by Sumitomo Chemical Co., Ltd.) at a ratio of 40 parts by weight / 60 parts by weight, , 1 part of UV absorber: TINUVIN234 (manufactured by Ciba Specialty Chemicals Co., Ltd.) and 0.4 part of antioxidant: AO60 (manufactured by ADEKA Co., Ltd.) with respect to 100 parts by weight of the total of P-1 and methacrylic resin. After blending at a blending ratio of parts, extrusion was carried out at a 240 ° C. setting of a vented extruder, pelletizing, and further, a T-die extruder was used to form an extruder at 230 ° C. and a die at 240 ° C. (thickness 125 ⁇ m).
  • a methacrylic resin trade name: Sumi
  • thermoplastic acrylic film is used as a thermoforming film, and the coating agent having a concentration of 35% is prepared by blending the components (A), (B) and (C) of Table 3 on one side. Coating was performed using a bar coater according to the conditions. No. 8 ⁇ m thick with 8 bar coater. No. 16 bar coater, 8 ⁇ m thick. The thickness was 15 ⁇ m with a 24 bar coater.
  • a film for thermoforming having a hydroxyl group and a cured resin layer containing a vinyl polymer (A) containing a specific amount of maleic anhydride and a polyisocyanate compound (B) in a specific ratio is vacuum-formable, Excellent pencil hardness, 150 ° C. tensile elongation and coating workability (pot life), and excellent chemical resistance in thin film performance.
  • the pencil hardness and chemical resistance of the cured resin layer were low.
  • Comparative Example 2 since the three-dimensional crosslinking by the polyisocyanate compound (B) became dense, the chemical resistance was excellent, but the vacuum moldability and tensile elongation of the cured resin layer were low.
  • Comparative Example 3 was an experiment using a polymer (A-11) using methacrylic acid instead of maleic anhydride, and the chemical resistance of the cured resin layer and the pot life of the curable composition were lowered.
  • Comparative Example 4 was an experiment using a polymer (A-12) containing no maleic anhydride, and the chemical resistance of the curable composition was low.
  • Examples of uses of the laminate having a cured resin layer obtained from the curable resin composition of the present invention include automotive parts (for example, parts such as bodies, bumpers, spoilers, mirrors, wheels, interior materials, Various materials), motorcycle parts, road materials (eg traffic signs, noise barriers, etc.), tunnel materials (eg side walls, etc.), railway vehicles, furniture, musical instruments, household appliances, building materials, containers, Office supplies, sports equipment, toys, etc. are listed.
  • automotive parts for example, parts such as bodies, bumpers, spoilers, mirrors, wheels, interior materials, Various materials
  • road materials eg traffic signs, noise barriers, etc.
  • tunnel materials eg side walls, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Disclosed is a thermoforming film with excellent chemical resistance, coatability (pot life), and surface hardness. As an example of chemical resistance, the acrylic resin film is such that even with a sunscreen lotion or hand cream remaining on the acrylic resin film surface, said surface does not roughen even when exposed to high temperatures over a long period of time, and cracks do not form in the film surface when molded into a molded product with a deep drawing shape. Also disclosed is a laminate molded product of said thermoforming film. The curable resin composition of the thermoforming film is characterized by the following: 2-50 mass% of every 100 parts by weight of vinyl monomers having a hydroxyl group are vinyl monomers having a carboxylic acid anhydride group; the resin composition contains (A) a vinyl polymer with a glass transition temperature of 70-140°C and (B) a polyisocyanate compound; and the amount contained of the polyisocyanate compound (B) is an amount that reacts with a solid portion hydroxyl value of 2-80mgKOH/g of the vinyl polymer (A). The disclosed thermoforming resin film is obtained by laminating on one side of a thermoforming film the aforementioned curable resin composition as a 1-20μm thick outermost layer.

Description

熱成形用フィルム向け硬化性樹脂組成物とこの樹脂組成物を積層した熱成形用フィルムCurable resin composition for thermoforming film and thermoforming film in which this resin composition is laminated
 本発明は、熱成形用フィルム向け硬化性樹脂組成物、それをコーティングしてなる熱成型用フィルムおよびその用途に関する。 The present invention relates to a curable resin composition for a thermoforming film, a thermoforming film formed by coating the composition, and a use thereof.
 低コストで成形品に意匠性を付与する方法として、インサート成形法、インモールド成形法及び3次元被覆成形(TOM成形)といった熱成形方法がある。インサート成形法は、印刷等により加飾を施したポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂などのフィルム又はシートを、予め真空成形等によって三次元形状に成形し、不要なフィルム又はシート部分を除去した後、射出成形金型内に移し、基材となる樹脂を射出成形することにより一体化させた成形品を得るものである。一方、インモールド成形法は、印刷等の加飾を施したポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂などのフィルム又はシートを射出成形金型内に設置し、真空成形を施した後、同じ金型内で基材となる樹脂を射出成形することにより一体化させた成形品を得るものである。TOM成形は真空・圧空成形工法であり、裏面に接着剤層を有する熱成形フィルムを用いるため、製品の材質を問わず、真空孔無で、逆テーパ部、末端巻き込み部を被覆成形するものである。 There are thermoforming methods such as an insert molding method, an in-mold molding method, and a three-dimensional covering molding (TOM molding) as a method for imparting design properties to a molded product at a low cost. In the insert molding method, a film or sheet of polyester resin, polycarbonate resin, acrylic resin or the like that has been decorated by printing or the like is previously formed into a three-dimensional shape by vacuum forming or the like, and an unnecessary film or sheet portion is removed. Then, it is transferred into an injection mold, and a molded product integrated by injection molding of a resin as a base material is obtained. On the other hand, the in-mold molding method is a method in which a film or sheet of polyester resin, polycarbonate resin, acrylic resin or the like that has been decorated for printing or the like is placed in an injection mold, subjected to vacuum molding, and then in the same mold. In this way, an integrated molded product is obtained by injection molding a resin as a base material. TOM molding is a vacuum / pneumatic molding method, and uses a thermoformed film with an adhesive layer on the back side, so that the reverse taper part and the end winding part are coated and formed without any vacuum holes, regardless of the material of the product. is there.
 インサート成形、インモールド成形又はTOM成形に用いることができる表面硬度、耐熱性に優れたアクリル樹脂フィルムを用いた成形品(以下、アクリル樹脂フィルム成形品という)として、特定の組成からなるゴム含有重合体と、特定の組成からなる熱可塑性重合体とを特定の割合で混合してなるアクリル樹脂フィルム成形品が提案されている(例えば、特許文献1、2参照)。このようなアクリル樹脂フィルム成形品は、成形品に加飾性を付与するばかりでなく、クリア塗装の代替材料としての機能を有する。 Rubber-containing weight having a specific composition as a molded product using an acrylic resin film having excellent surface hardness and heat resistance (hereinafter referred to as an acrylic resin film molded product) that can be used for insert molding, in-mold molding or TOM molding An acrylic resin film molded article obtained by mixing a coalescence and a thermoplastic polymer having a specific composition at a specific ratio has been proposed (for example, see Patent Documents 1 and 2). Such an acrylic resin film molded product not only imparts decorativeness to the molded product, but also has a function as an alternative material for clear coating.
 これらのアクリル樹脂フィルム成形品は、車輌内装用の表皮材として、優れた特性を有しているものの、液剤、例えば、日焼け止め用ローションに対する耐性が低いという問題があったため、硬化性樹脂組成物あるいは特殊モノマーを用いた熱可塑性樹脂を積層することを提案している(例えば、特許文献3、4、5、6参照)。しかし、光硬化性樹脂組成物では熱成形時の加工性を確保するため、光照射による硬化を熱成形後に行わなければならないため新たな工程が発生し、また、三次元成型品の均一光照射といった課題が存在する(特許文献3参照)。熱硬化性樹脂組成物では3次元架橋が形成されると熱可塑性が失われ、熱成形時に割れるといった課題がある(特許文献4参照)。また、特殊モノマーを用いた熱可塑性樹脂を積層した場合は3次元架橋が形成されていないため、薄膜部での耐薬品性に課題がある(特許文献5、6参照)。 These acrylic resin film molded articles have excellent characteristics as a skin material for vehicle interiors, but have a problem of low resistance to liquid agents, for example, sunscreen lotions. Alternatively, it has been proposed to laminate a thermoplastic resin using a special monomer (see, for example, Patent Documents 3, 4, 5, and 6). However, in the photocurable resin composition, in order to ensure processability at the time of thermoforming, a new process occurs because curing by light irradiation must be performed after thermoforming, and uniform light irradiation of a three-dimensional molded product There exists such a subject (refer patent document 3). In the thermosetting resin composition, when three-dimensional crosslinking is formed, the thermoplasticity is lost, and there is a problem that the thermosetting resin composition breaks during thermoforming (see Patent Document 4). In addition, when a thermoplastic resin using a special monomer is laminated, there is a problem in chemical resistance in the thin film portion because three-dimensional crosslinking is not formed (see Patent Documents 5 and 6).
特開平8-323934号公報JP-A-8-323934 特開平11-147237号公報Japanese Patent Laid-Open No. 11-147237 特開2005-163003号公報Japanese Patent Laid-Open No. 2005-163003 特開2008-265062号公報JP 2008-265062 A 特開2009-196151号公報JP 2009-196151 A 特開2009-248362号公報JP 2009-248362 A
 本発明は、耐薬品性、例えば、日焼け防止に用いるローション、ハンドクリームが付着したまま高温下で長時間曝されてもアクリル樹脂フィルム表面が荒れることなく、また、深絞り形状の成形品に成形した場合フィルム表面に割れが発生することがなく、且つ、優れた塗工作業性(ポットライフ)を有し、表面硬度を備えた熱成形用フィルム及びその積層成形品を提供することを目的とする。 The present invention has chemical resistance, for example, a lotion used to prevent sunburn, and the surface of the acrylic resin film does not become rough even if it is exposed to a high temperature for a long time with the hand cream attached, and it is molded into a deep-drawn molded product. It is an object of the present invention to provide a thermoforming film having no surface cracks and having excellent coating workability (pot life) and having a surface hardness, and a laminate molded product thereof. To do.
 本発明者らは、鋭意検討を重ねた結果、水酸基を有し、特定量のカルボン酸無水物基を含有するビニル系重合体(A)と特定比率のポリイソシアネート化合物(B)の硬化性樹脂組成物を熱成形用フィルムに積層すると、耐薬品性に優れる上、優れた熱成形性、表面硬度および塗工作業性(ポットライフ)も奏する積層フィルムを成形できることを見出し、本発明を完成するに至った。すなわち、上記目的は、以下の本発明により達成される。
「1」水酸基およびカルボン酸無水物基を有するビニル系重合体(A)と、ポリイソシアネート化合物(B)を含有する熱成形用フィルム向け硬化性樹脂組成物であって、ビニル系重合体(A)はビニル系単量体100重量部に対してカルボン酸無水物基を有するビニル系単量体を2~50重量%含有し、ポリイソシアネート化合物(B)の含有量はビニル系重合体(A)の固形分水酸基価2~80mgKOH/gと反応する含有量であることを特徴とする硬化性樹脂組成物。
「2」ビニル系重合体(A)のガラス転移温度が70~140℃である請求項1記載の熱成形用フィルム向け硬化性樹脂組成物。
「3」熱成形用フィルムの片面に最外層として厚さ1~20μmの「1」または「2」記載の硬化性樹脂組成物層を有する熱成形用樹脂フィルム。
「4」前記熱成形用フィルムの硬化性樹脂層の鉛筆硬度(JIS K5400に基づく測定)がHB以上である「3」記載の熱成形用フィルム。
「5」最外層15μmの前記熱成形性フィルムの150℃ 500mm/min引張条件での伸びが100%以上である「3」または「4」記載の熱成形用フィルム。
「6」前記硬化性樹脂組成物層とは反対側の面上に絵柄層を有する「3」~「5」のいずれかに記載の熱成形用フィルム。
「7」 前記熱成形用フィルムがインモールド成形用、インサート成形用またはTOM成形である「3」~「6」のいずれかに記載の熱成形用フィルム。
前記熱成形用フィルムの製造方法であって、硬化性樹脂層を印刷法又はコート法により形成する「3」~「7」のいずれかに記載の熱成形用フィルムの製造方法。
前記「3」~「7」のいずれかに記載の熱成形用フィルムをその硬化性樹脂組成物層とは反対側の面が接するように基材上に積層して成る積層体。
前記「3」~「7」のいずれかに記載の熱成形用フィルムを硬化性樹脂層とは反対側の面が接するようにインモールド成形用、インサート成形用またはTOM成形により基材上に積層して成る積層体。
As a result of intensive studies, the present inventors have found that a curable resin of a vinyl polymer (A) having a hydroxyl group and containing a specific amount of a carboxylic acid anhydride group and a specific ratio of a polyisocyanate compound (B). When the composition is laminated on a film for thermoforming, it is found that a laminated film having excellent chemical resistance, excellent thermoformability, surface hardness and coating workability (pot life) can be formed, and the present invention is completed. It came to. That is, the above object is achieved by the following present invention.
[1] A curable resin composition for a thermoforming film comprising a vinyl polymer (A) having a hydroxyl group and a carboxylic anhydride group and a polyisocyanate compound (B), wherein the vinyl polymer (A ) Contains 2 to 50% by weight of a vinyl monomer having a carboxylic acid anhydride group with respect to 100 parts by weight of the vinyl monomer, and the content of the polyisocyanate compound (B) is the vinyl polymer (A The curable resin composition has a solid content hydroxyl value of 2 to 80 mg KOH / g.
2. The curable resin composition for thermoforming film according to claim 1, wherein the glass transition temperature of the vinyl polymer (A) is 70 to 140 ° C.
“3” A thermoforming resin film having a curable resin composition layer according to “1” or “2” having a thickness of 1 to 20 μm as an outermost layer on one surface of the thermoforming film.
[4] The thermoforming film according to [3], wherein the curable resin layer of the thermoforming film has a pencil hardness (measured based on JIS K5400) of HB or higher.
“5” The film for thermoforming as described in “3” or “4”, wherein the elongation of the thermoformable film having an outermost layer of 15 μm under a tensile condition of 150 ° C. and 500 mm / min is 100% or more.
“6” The thermoforming film according to any one of “3” to “5”, which has a pattern layer on a surface opposite to the curable resin composition layer.
“7” The thermoforming film according to any one of “3” to “6”, wherein the thermoforming film is in-mold molding, insert molding, or TOM molding.
8. The method for producing a thermoforming film according to any one of “3” to “7”, wherein the curable resin layer is formed by a printing method or a coating method.
A laminate obtained by laminating the thermoforming film according to any one of the above “3” to “7” on a base material so that a surface opposite to the curable resin composition layer is in contact therewith.
The thermoforming film according to any one of “3” to “7” is laminated on a substrate by in-mold molding, insert molding or TOM molding so that the surface opposite to the curable resin layer is in contact with the film. A laminated body made of
 本発明の硬化性樹脂組成物を熱成形用フィルムに積層すれば、耐薬品性、熱成形性、表面硬度、且つ、塗工作業性(ポットライフ)に優れた熱成形用フィルム及びその積層成形品を得ることができる。本発明の熱成形用フィルム及びその積層成形品を自動車内装部材に使用すれば、既存工程で耐薬品性、表面硬度に優れたインモールド成形用、インサート成形用またはTOM成形用が可能である。 When the curable resin composition of the present invention is laminated on a thermoforming film, the thermoforming film having excellent chemical resistance, thermoformability, surface hardness, and coating workability (pot life), and laminate molding thereof Goods can be obtained. If the film for thermoforming of the present invention and the laminate molded product thereof are used for an automobile interior member, it can be used for in-mold molding, insert molding or TOM molding with excellent chemical resistance and surface hardness in an existing process.
 硬化性樹脂組成物としては、硬化収縮が小さく、均一な架橋が可能な熱硬化性樹脂を用いることが耐薬品性、熱成形性の観点から好ましい。不均一な硬化膜は、最も弱い箇所が薬品に侵され、加熱時の熱成形でも不均一な箇所に応力が集中し破断する。また、耐薬品性と熱成形性はトレードオフの関係にあり、硬化性樹脂が硬化すれば架橋密度アップにより耐薬品性は良くなるが、熱可塑性が失われるため熱成形性が低下する。そのため、自動車車内の最高温度80℃付近では架橋であり、熱成形温度の150℃付近では熱可塑性となる硬化膜にすることが望ましい。本発明では、カルボン酸無水物基による凝集力がこのような特性を発現することを見出し、カルボン酸無水物基量と架橋に関する固形分水酸基価の最適値により、水酸基を有し、ビニル系単量体100重量部に対してカルボン酸無水物基を有する単量体が2~50重量%であるガラス転移温度が70~140℃であるビニル系重合体(A)とポリイソシアネート化合物(B)をビニル系重合体(A)の固形分水酸基価2~80mgKOH/gと反応する比率で含有してなることを特徴とする硬化性樹脂組成物が優れた耐薬品性、熱成形性、表面硬度及び塗工作業性(ポットライフ)を実現した。 As the curable resin composition, it is preferable from the viewpoint of chemical resistance and thermoformability to use a thermosetting resin that has a small curing shrinkage and can be uniformly crosslinked. In a non-uniform cured film, the weakest part is attacked by chemicals, and stress is concentrated in the non-uniform part even in thermoforming during heating and breaks. In addition, chemical resistance and thermoformability are in a trade-off relationship. If the curable resin is cured, chemical resistance is improved by increasing the crosslinking density, but thermoplasticity is lost and thermoformability is reduced. For this reason, it is desirable to form a cured film that is cross-linked at a maximum temperature of about 80 ° C. in a car and is thermoplastic at a temperature of about 150 ° C. of the thermoforming temperature. In the present invention, it has been found that the cohesive force due to the carboxylic acid anhydride group expresses such characteristics, and it has a hydroxyl group based on the optimum value of the solid content hydroxyl value related to the amount of carboxylic acid anhydride group and crosslinking. A vinyl polymer (A) having a glass transition temperature of 70 to 140 ° C. and a polyisocyanate compound (B) having 2 to 50% by weight of a monomer having a carboxylic acid anhydride group with respect to 100 parts by weight of the monomer Is a curable resin composition characterized by having a solid content hydroxyl value of 2 to 80 mg KOH / g of the vinyl polymer (A). In addition, coating workability (pot life) was realized.
 カルボン酸無水物基と水酸基を含有する樹脂としては、ビニル系重合体等が挙げられ、アクリル系の場合は、下記、カルボン酸無水物基及び水酸基を含有する重合性ビニル系単量体をベースとして、その他の共重合可能な重合性ビニル系単量体を共重合することにより得られる。これらの樹脂は1種用いてもよいし、2種以上を組み合わせても良い。 Examples of the resin containing a carboxylic acid anhydride group and a hydroxyl group include vinyl polymers. In the case of an acrylic resin, the following polymerizable vinyl monomer containing a carboxylic acid anhydride group and a hydroxyl group is used as a base. As mentioned above, it can be obtained by copolymerizing other copolymerizable polymerizable vinyl monomers. These resins may be used alone or in combination of two or more.
 カルボン酸無水物基を有するビニル系単量体としては、カルボン酸無水物基とビニル基を有する単量体であれば特に限定されず、例えば、無水マレイン酸、2-ブロモマレイン酸無水物、2-クロロマレイン酸無水物、2,3-ジメチルマレイン酸無水物等のハロゲン化無水マレイン酸;2-アリルコハク酸無水物等のビニル基を有するコハク酸;イタコン酸無水物、1,2,3,6-テトラヒドロフタル酸無水物、シトラコン酸無水物、グルタコン酸無水物等が挙げられる。これらの中では、入手性および重合反応性の観点から無水マレイン酸が好ましい。 The vinyl monomer having a carboxylic anhydride group is not particularly limited as long as it is a monomer having a carboxylic anhydride group and a vinyl group. For example, maleic anhydride, 2-bromomaleic anhydride, Halogenated maleic anhydride such as 2-chloromaleic anhydride, 2,3-dimethylmaleic anhydride; succinic acid having a vinyl group such as 2-allyl succinic anhydride; itaconic anhydride, 1,2,3 , 6-tetrahydrophthalic anhydride, citraconic anhydride, glutaconic anhydride and the like. Among these, maleic anhydride is preferable from the viewpoint of availability and polymerization reactivity.
 カルボン酸無水物基を有する単量体はビニル系単量体100重量部に対して2~50重量%が好ましく、より好ましくは5~40重量%、さらに好ましくは10~30重量%が望ましい。該樹脂のカルボン酸無水物基を有する単量体が2重量%未満であると、得られる硬化膜は耐薬品性、熱成形性が不十分であり、50重量%を超えると、樹脂粘度が大きくなり、取り扱いが困難となる。 The monomer having a carboxylic anhydride group is preferably 2 to 50% by weight, more preferably 5 to 40% by weight, still more preferably 10 to 30% by weight based on 100 parts by weight of the vinyl monomer. When the monomer having a carboxylic acid anhydride group of the resin is less than 2% by weight, the resulting cured film has insufficient chemical resistance and thermoformability. When the monomer exceeds 50% by weight, the resin viscosity is low. It becomes large and difficult to handle.
 固形分水酸基価は2mgKOH/g樹脂以上が好ましいが、これに限定するものでなく、架橋に関与する固形分水酸基価が重要である。固形分水酸基価の上限は190mgKOH/g樹脂以下が好ましいが、これに限定するものではない。 The solid content hydroxyl value is preferably 2 mg KOH / g resin or more, but is not limited to this, and the solid content hydroxyl value involved in crosslinking is important. The upper limit of the solid content hydroxyl value is preferably 190 mgKOH / g resin or less, but is not limited thereto.
 ここで、固形分水酸基価とは下記で示した式から計算させた数値である。
固形分水酸基価=KOHmg/溶剤を含まない樹脂全量
KOHmg:水酸基含有ビニル系単量体および/またはその誘導体モル数×56100×N(N:水酸基含有ビニル系単量体および/またはその誘導体中の水酸基の個数)
 また、該樹脂の水酸基価はJIS K 1557-1に記載の測定方法よって求めることもできる。
Here, the solid content hydroxyl value is a numerical value calculated from the formula shown below.
Solid content hydroxyl value = KOH mg / total amount of resin not containing KOH mg: mol number of hydroxyl group-containing vinyl monomer and / or derivative thereof × 56100 × N (N: hydroxyl group-containing vinyl monomer and / or derivative thereof Number of hydroxyl groups
The hydroxyl value of the resin can also be determined by the measuring method described in JIS K1557-1.
 水酸基を含有する重合性ビニル系単量体としては、例えば、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルメタクリレート、1,4-ブタンジオールモノメタクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、ヒドロキシブチルアクリレート、1,4-ブタンジオールモノアクリレート等が挙げられる。また、アクリル系エステルを形成する炭素数1~18のアルキルアルコールは、直鎖状、分岐鎖状、環状のアルキル基を有するアルコールのいずれであってもよい。これらは1種用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the polymerizable vinyl monomer containing a hydroxyl group include hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate, 1,4-butanediol monomethacrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, 1 , 4-butanediol monoacrylate and the like. Further, the alkyl alcohol having 1 to 18 carbon atoms forming the acrylic ester may be any alcohol having a linear, branched or cyclic alkyl group. These may be used alone or in combination of two or more.
 その他共重合可能な重合性ビニル系単量体としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸-n-プロピル、メタクリル酸イソプロピル、メタクリル酸-n-ブチル、メタクリル酸イソブチル、メタクリル酸-t-ブチル、メタクリル酸ペンチル、メタクリル酸ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸-2-エチルヘキシル、メタクリル酸アダマンチル、メタクリル酸ドデシル、メタクリル酸イソボルニル、アクリル酸メチル、アクリル酸エチル、アクリル酸-n-プロピル、アクリル酸イソプロピル、アクリル酸-n-ブチル、アクリル酸イソブチル、アクリル酸-t-ブチル、アクリル酸ペンチル、アクリル酸ヘキシル、アクリル酸シクロヘキシル、アクリル酸-2-エチルヘキシル、アクリル酸アダマンチル、アクリル酸ドデシル、アクリル酸イソボルニル、メタクリル酸グリシジル、アクリル酸グリシジル、メタクリル酸アリル、アクリル酸アリル、3,4-エポキシシクロヘキシルメチルメタクリレート、3,4-エポキシシクロヘキシルメチルアクリレート、メタクリル酸フェニル、アクリル酸フェニル、α-メチルスチレン、p-ビニルトルエン、メタクリルアミド、アクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジメチルアクリルアミド、アクリル酸-2,2,6,6-テトラメチル-4-ピペリジル、エチルビニルエーテル、イソプロピルビニルエーテル、n-プロピルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、2-エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル等の脂肪族ビニルエーテル化合物、さらには2,3-ジヒドロフラン、3,4-ジヒドロ-2H-ピラン、トリメトキシシリルプロピルメタクリレート、マレイン酸エステル類、フマル酸エステル類、スチレン、アクリロニトリル、メタクリロニトリル、クロトン酸2-ヒドロキシエチル、クロトン酸2-ヒドロキシプロピル、クロトン酸3-ヒドロキシプロピル、クロトン酸3-ヒドロキシブチル、クロトン酸4-ヒドロキシブチル、クロトン酸5-ヒドロキシペンチル、クロトン酸6-ヒドロキシヘキシル、アリルアルコール、アリルグリシジルエーテル等のアリル基含有化合物、クロトン酸メチル、クロトン酸エチル、クロトン酸プロピル等のクロトン酸アルキルエステル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の脂肪族カルボン酸ビニルエステル、シクロヘキサンカルボン酸ビニルのような脂環式カルボン酸ビニルエステル、安息香酸ビニル、桂皮酸ビニル、p-t-ブチル安息香酸ビニルのような芳香族カルボン酸ビニルエステル等が挙げられる。これらは1種用いてもよいし、2種以上を組み合わせて用いてもよい。 Other copolymerizable polymerizable vinyl monomers include, for example, methyl methacrylate, ethyl methacrylate, methacrylic acid-n-propyl, isopropyl methacrylate, methacrylic acid-n-butyl, isobutyl methacrylate, methacrylic acid- t-butyl, pentyl methacrylate, hexyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, adamantyl methacrylate, dodecyl methacrylate, isobornyl methacrylate, methyl acrylate, ethyl acrylate, n-propyl acrylate, Isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, pentyl acrylate, hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, acrylic Adamantyl oxalate, dodecyl acrylate, isobornyl acrylate, glycidyl methacrylate, glycidyl acrylate, allyl methacrylate, allyl acrylate, 3,4-epoxycyclohexylmethyl methacrylate, 3,4-epoxycyclohexylmethyl acrylate, phenyl methacrylate, Phenyl acrylate, α-methylstyrene, p-vinyltoluene, methacrylamide, acrylamide, N, N-dimethylmethacrylamide, N, N-dimethylacrylamide, acrylic acid-2,2,6,6-tetramethyl-4- Piperidyl, ethyl vinyl ether, isopropyl vinyl ether, n-propyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, 2-ethylhexyl vinyl ether, cyclohexyl Aliphatic vinyl ether compounds such as vinyl ether, 2,3-dihydrofuran, 3,4-dihydro-2H-pyran, trimethoxysilylpropyl methacrylate, maleic acid esters, fumaric acid esters, styrene, acrylonitrile, methacrylonitrile 2-hydroxyethyl crotonate, 2-hydroxypropyl crotonate, 3-hydroxypropyl crotonate, 3-hydroxybutyl crotonate, 4-hydroxybutyl crotonate, 5-hydroxypentyl crotonate, 6-hydroxyhexyl crotonate, Allyl group-containing compounds such as allyl alcohol and allyl glycidyl ether, alkyl crotonates such as methyl crotonate, ethyl crotonate, and propyl crotonate, vinyl acetate, vinyl propionate, vinyl butyrate , Vinyl pivalate, vinyl caproate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl stearate, etc., alicyclic carboxylic acid vinyl esters such as cyclohexanecarboxylate vinyl, benzoic acid And aromatic carboxylic acid vinyl esters such as vinyl, vinyl cinnamate, and pt-butyl vinyl benzoate. These may be used alone or in combination of two or more.
 その他の共重合性ビニル系単量体は、必須成分ではなく、硬化膜を設計する上で、基材や使用目的等に応じて必要に応じて、適宜選び用いられる。 Other copolymerizable vinyl monomers are not essential components, and are appropriately selected and used as necessary according to the base material, purpose of use, etc. in designing a cured film.
 重合性ビニル系単量体等を重合又は共重合させる方法については特に制限はなく、公知の方法、例えば、有機溶剤中における溶液重合等を用いることができる。また、その重合方式についても特に制限はなく、例えば、ラジカル重合、カチオン重合、アニオン重合のいずれも用いることができるが、これらの中で、工業的な面からラジカル重合が好適である。ラジカル重合において用いられる重合開始剤としては、例えば、t-ブチルハイドロパーオキシド、クメンハイドロパーオキシド、t-ブチルパーオキシネオデカネート、t-ブチルパーオキシピバレート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、メチルエチルケトンパーオキシド等の有機過酸化物、あるいは2,2'-アゾビス(2,4-ジメチルバレロニトリル)、2,2'-アゾビス(2-メチルプロピオニトリル)(AIBN)、2,2'-アゾビス(2-メチルブチロニトリル)等のアゾ系開始剤を好ましく挙げることができる。もちろん、これらに限定されるものではない。これらのラジカル重合開始剤は1種用いてもよいし、2種以上を組み合わせて用いてもよい。 The method for polymerizing or copolymerizing the polymerizable vinyl monomer or the like is not particularly limited, and a known method such as solution polymerization in an organic solvent can be used. The polymerization method is not particularly limited, and for example, any of radical polymerization, cationic polymerization, and anionic polymerization can be used. Among these, radical polymerization is preferable from an industrial viewpoint. Examples of the polymerization initiator used in radical polymerization include t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxyneodecanate, t-butyl peroxypivalate, t-hexyl peroxy-2- Organic peroxides such as ethyl hexanoate and methyl ethyl ketone peroxide, or 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2-methylpropionitrile) (AIBN), Preferred examples include azo initiators such as 2,2′-azobis (2-methylbutyronitrile). Of course, it is not limited to these. These radical polymerization initiators may be used alone or in combination of two or more.
 ラジカル重合時の反応温度は、一般的に60~150℃が好ましい。この温度が60℃未満であると、ラジカル重合開始剤が分解しにくく、反応が進行しにくいし、150℃を超えると、ラジカル重合開始剤が熱により分解してラジカルを生成しても、その寿命が短く、効果的に生長反応が進行しにくい。重合時間は、重合温度やその他の条件に左右され、一概に定めることはできないが、一般に2~6時間程度で十分である。 The reaction temperature during radical polymerization is generally preferably 60 to 150 ° C. If this temperature is less than 60 ° C., the radical polymerization initiator is difficult to decompose and the reaction does not proceed easily. If it exceeds 150 ° C., even if the radical polymerization initiator is decomposed by heat to generate radicals, The lifetime is short and the growth reaction is difficult to proceed effectively. The polymerization time depends on the polymerization temperature and other conditions, and cannot be determined in general, but about 2 to 6 hours is generally sufficient.
 水酸基含有樹脂は、水酸基に付加反応が可能な化合物を付加反応させて変性させたものも挙げられる。水酸基に付加反応が可能な化合物としては、例えば、ラクトン化合物、アルキレンオキシドなどが挙げられ、好ましくはラクトン化合物である。該ラクトン化合物としては、例えば、β-メチル-δ-バレロラクトン、γ-バレロラクトン、δ-バレロラクトン、δ-カプロラクトン、γ-カプロラクトン、ε-カプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、γ-ノナノイックラクトン、δ-ドデカノラクトンなどが挙げられる。アルキレンオキシドとしては、エチレンオキシド、プロピレンオキシド、ブチレンオキシドなどが挙げられる。これらの水酸基に付加反応が可能な化合物は1種用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the hydroxyl group-containing resin include those modified by addition reaction of a compound capable of addition reaction with a hydroxyl group. Examples of the compound capable of undergoing an addition reaction with a hydroxyl group include lactone compounds and alkylene oxides, with lactone compounds being preferred. Examples of the lactone compound include β-methyl-δ-valerolactone, γ-valerolactone, δ-valerolactone, δ-caprolactone, γ-caprolactone, ε-caprolactone, β-propiolactone, γ-butyrolactone, γ -Nonanoic lactone, δ-dodecanolactone and the like. Examples of the alkylene oxide include ethylene oxide, propylene oxide, butylene oxide, and the like. These compounds capable of undergoing an addition reaction with a hydroxyl group may be used singly or in combination of two or more.
 水酸基を有し、特定量のカルボン酸無水物基を含有する樹脂のガラス転移温度は70~140℃が好ましく、より好ましくはガラス転移温度が80~120℃を有する樹脂が望ましい。該樹脂のガラス転移点が70℃未満であると、得られる硬化膜は高温下での耐薬品性が不十分であり、140℃を超えると、硬化膜の軟化点が高くなり、熱成形性が低下する。 The glass transition temperature of a resin having a hydroxyl group and a specific amount of a carboxylic acid anhydride group is preferably 70 to 140 ° C., more preferably a resin having a glass transition temperature of 80 to 120 ° C. When the glass transition point of the resin is less than 70 ° C., the resulting cured film has insufficient chemical resistance at high temperatures, and when it exceeds 140 ° C., the softening point of the cured film becomes high, and thermoformability. Decreases.
 ガラス転移温度は、「ポリマー・ハンドブック〔Polymer Hand Book(J.Brandrup,Interscience,1989〕」に記載されている値(MMA;105℃、BA;-54℃、ST;100℃、HEMA;55℃、MAA;130℃、BMA;20℃、無水マレイン酸;130℃(マレイン酸値を使用))をフオックス(Fox)の式を用いて算出した。但し、開始剤等は含めずに算出した。 The glass transition temperature is a value described in “Polymer Hand Book (J. Brandrup, Interscience, 1989)” (MMA: 105 ° C., BA: −54 ° C., ST: 100 ° C., HEMA: 55 ° C. , MAA; 130 ° C., BMA; 20 ° C., maleic anhydride; 130 ° C. (using maleic acid value)) was calculated using the Fox formula, but not including the initiator.
 質量平均分子量は、2000~30000が好ましく、3000~20000が特に好ましい。質量平均分子量が2000未満であると樹脂の絡み合いが小さくなるため好ましくなく、30000以上である場合は、高粘度となるため好ましくない。 The mass average molecular weight is preferably 2000 to 30000, particularly preferably 3000 to 20000. A mass average molecular weight of less than 2000 is not preferable because the entanglement of the resin is small, and a mass average molecular weight of 30000 or more is not preferable because of high viscosity.
 (ポリイソシアネート化合物(B))
 ポリイソシアネート化合物(B)は、ビニル系重合体(A)の固形分水酸基価2~80mgKOH/gと反応する比率で含有してなることを特徴とする。ここでの反応とは、樹脂の水酸基とポリイソシアネート化合物(B)のイソシアネート基が当量で反応、架橋することを意味する。この架橋に関与する該固形水酸基価は2~80mgKOH/g樹脂が好ましく、より好ましくは固形分水酸基価が10~70mgKOH/g比率でポリイソシアネート化合物(B)を配合することが好ましい。
(Polyisocyanate compound (B))
The polyisocyanate compound (B) is characterized in that it is contained in such a ratio that it reacts with the solid content hydroxyl value of 2 to 80 mgKOH / g of the vinyl polymer (A). The reaction here means that the hydroxyl group of the resin and the isocyanate group of the polyisocyanate compound (B) are reacted and crosslinked in an equivalent amount. The solid hydroxyl value involved in this crosslinking is preferably 2 to 80 mg KOH / g resin, and more preferably the polyisocyanate compound (B) is blended at a solid content hydroxyl value of 10 to 70 mg KOH / g.
 該ポリイソシアネート化合物(B)の含有量が、固形分水酸基価2mgKOH/gと反応する量未満である場合には、得られる硬化膜は耐薬品性が不十分になる傾向がある。一方、含有量が80mgKOH/gと反応する量を超えると、硬化膜の架橋が緻密になり過ぎて、熱成形性が低下する。 When the content of the polyisocyanate compound (B) is less than the amount that reacts with the solid content hydroxyl value of 2 mgKOH / g, the resulting cured film tends to have insufficient chemical resistance. On the other hand, if the content exceeds the amount that reacts with 80 mgKOH / g, the cross-linking of the cured film becomes too dense and the thermoformability deteriorates.
 ポリイソシアナート化合物(B)が有するイソシアナート基量は製品によって差があり、重量部で一概に表現することはできないが、ビニル系重合体(A)100重量部に対して、ポリイソシアナート化合物(B)を5~60重量部用いることが好ましく、10~40重量部用いることがより好ましい。 The amount of isocyanate group contained in the polyisocyanate compound (B) varies depending on the product and cannot be expressed generally in parts by weight. However, the polyisocyanate compound can be expressed in 100 parts by weight of the vinyl polymer (A). (B) is preferably used in an amount of 5 to 60 parts by weight, more preferably 10 to 40 parts by weight.
 ポリイソシアネート化合物としては、脂肪族系もしくは芳香族系のものが挙げられる。脂肪族系多官能性イソシアネートの具体的例として、ヘキサメチレンジイソシアネート、ジシクロへキシルメタン4,4’―イソシアネート、2,2,4-トリメチル-1,6-ジイソシアネート、イソフォロンジイソシアネートがある。芳香族多官能性イソシアネートとしては、2,4-トリレンジイソシアネート、2,6トリレンジイソシアネート、ジフィニルメタン-4,4’-ジイソシアネート、キシレンジイソシアネート、ポリメチレン-ポリフェニレル-ポリイソシアネートがある。好ましい化合物としては、ヘキサメチレンジイソシアネート、キシレンジイソシアネートが挙げられる。 Examples of polyisocyanate compounds include aliphatic and aromatic compounds. Specific examples of the aliphatic polyfunctional isocyanate include hexamethylene diisocyanate, dicyclohexylmethane 4,4'-isocyanate, 2,2,4-trimethyl-1,6-diisocyanate, and isophorone diisocyanate. Aromatic polyfunctional isocyanates include 2,4-tolylene diisocyanate, 2,6 tolylene diisocyanate, difinylmethane-4,4'-diisocyanate, xylene diisocyanate, polymethylene-polyphenylel-polyisocyanate. Preferred compounds include hexamethylene diisocyanate and xylene diisocyanate.
 構造としてはともに単量体、ビュレット型、アダクト型、イソシアヌレート型がある。これらの中では、ビュレット型、アダクト型が好ましい。 Structuring includes monomer, burette type, adduct type, and isocyanurate type. Among these, a burette type and an adduct type are preferable.
 ポリイソシアネート化合物(B)の使用量としては、イソシアネート基が前記(A)成分の水酸基に対して0.1当量以上2当量以下であることが好ましい。0.1倍未満では、残存する水酸基が過剰に存在するため、好ましくない。2倍を超えると、一部未反応で残存するイソシアネート基が存在するため、好ましくない。 As the usage-amount of a polyisocyanate compound (B), it is preferable that an isocyanate group is 0.1 equivalent or more and 2 equivalent or less with respect to the hydroxyl group of the said (A) component. If it is less than 0.1 times, the remaining hydroxyl groups are excessive, which is not preferable. If it exceeds 2 times, there is an isocyanate group which remains partially unreacted, which is not preferable.
 (触媒)
 本発明の硬化性樹脂組成物には、反応触媒を用いることができる。
反応触媒としては、例えば、スズ化合物や亜鉛化合物が挙げられる。スズ化合物としては、例えば、塩化スズ、臭化スズ等のハロゲン化スズ、ジブチルスズジアセテート、ジブチルスズジラウレート等の有機スズ化合物等が挙げられ、亜鉛化合物としては、例えば、塩化亜鉛、臭化亜鉛等のハロゲン化亜鉛、オクチル酸亜鉛、ラウリン酸亜鉛等の有機酸の亜鉛塩等が挙げられる。硬化反応触媒としてのスズ化合物や亜鉛化合物は1種用いてもよいし、2種以上を組み合わせて用いてもよく、また他の硬化反応触媒と併用してもよい。反応触媒の配合部数は、ビニル系重合体(A)100重量部に対して、触媒を0~5重量部用いることが好ましい。
(catalyst)
A reaction catalyst can be used in the curable resin composition of the present invention.
Examples of the reaction catalyst include a tin compound and a zinc compound. Examples of tin compounds include tin halides such as tin chloride and tin bromide, and organic tin compounds such as dibutyltin diacetate and dibutyltin dilaurate. Examples of zinc compounds include zinc chloride and zinc bromide. Examples include zinc salts of organic acids such as zinc halide, zinc octylate, and zinc laurate. One kind of tin compound or zinc compound as a curing reaction catalyst may be used, or two or more kinds may be used in combination, or may be used in combination with another curing reaction catalyst. The reaction catalyst is preferably used in an amount of 0 to 5 parts by weight based on 100 parts by weight of the vinyl polymer (A).
 また、カルボン酸無水物基が開環する触媒も使用でき、イオン架橋あるいはカルボン酸の発生によって、80℃付近では架橋、熱成形温度の150℃付近では架橋が切断するような疑似架橋が利用できる。開環触媒の配合部数はビニル系重合体(A)100重量部に対して、触媒を0~5重量部用いることが好ましい。 In addition, a catalyst for ring opening of a carboxylic acid anhydride group can be used, and quasi-crosslinking can be used in which ionic crosslinking or carboxylic acid generation causes crosslinking at about 80 ° C. and crosslinking at about 150 ° C. of the thermoforming temperature. . The amount of the ring-opening catalyst is preferably 0 to 5 parts by weight based on 100 parts by weight of the vinyl polymer (A).
 (硬化性樹脂層)
 硬化性樹脂層は硬化樹脂を硬化したものである。
熱成形用フィルムの一方の面上に積層させた硬化性樹脂層の厚さは、1~20μmであることが好ましい。硬化性樹脂層の厚さが1μm以上であれば、積層体となった場合の耐薬品性を発現することができる。熱成形により、200%以上延伸された箇所の耐薬品性が求められる場合があるため、より好ましくは3μm以上である。硬化性樹脂層の厚さが20μm以下であれば、インサート成形又はインモールド成形を施し、深絞り形状に熱成形することが可能であるが、コスト面より、より好ましくは15μm以下である。なお、硬化性樹脂層の厚さはコーティング有無の厚み差より算出し、膜厚はJIS B 7503に準じて測定した。
(Curable resin layer)
The curable resin layer is obtained by curing a curable resin.
The thickness of the curable resin layer laminated on one surface of the thermoforming film is preferably 1 to 20 μm. When the thickness of the curable resin layer is 1 μm or more, chemical resistance when a laminated body is obtained can be exhibited. Since the chemical resistance of the part stretched by 200% or more may be required by thermoforming, it is more preferably 3 μm or more. If the thickness of the curable resin layer is 20 μm or less, insert molding or in-mold molding can be performed, and thermoforming into a deep drawing shape is possible, but from the viewpoint of cost, it is more preferably 15 μm or less. The thickness of the curable resin layer was calculated from the difference in thickness with and without coating, and the film thickness was measured according to JIS B 7503.
 (熱成形用コーティングフィルム)
 本発明の熱成形用コーティングフィルムは、熱成形フィルム上に、硬化性樹脂層が1~20μmの厚さで形成され、且つ、鉛筆硬度(JIS K5400に基づく測定)がHB以上であることが好ましい。鉛筆硬度が高ければ、耐擦り傷性が向上するため、ドアウエストガーニッシュ、フロントコントロールパネル、パワーウィンドウスイッチパネル、エアバッグカバー等、各種車輌用部材に好適に使用することができる。用途拡大の観点から工業上非常に有用である。
(Coating film for thermoforming)
In the thermoforming coating film of the present invention, it is preferable that the curable resin layer is formed on the thermoformed film with a thickness of 1 to 20 μm, and the pencil hardness (measured based on JIS K5400) is HB or more. . If the pencil hardness is high, the scratch resistance is improved, so that it can be suitably used for various vehicle members such as a door waist garnish, a front control panel, a power window switch panel, and an airbag cover. It is very useful industrially from the viewpoint of expanding applications.
 熱成形用フィルム上の硬化性樹脂層が15μm厚で、150℃ 500mm/min引張条件での伸びが100%以上であることが好ましい。引張伸びが100%以上であれば、深絞りの熱成形加工が可能となる。引張条件としては、10×100mmサンプルをチャック間50mm、引っ張り速度500mm/min、引張恒温層温度150℃で、フィルムにクラックが発生するまでの伸びを目視で確認する。熱成形用フィルムとは、上記引張条件である10×100mmサンプルをチャック間50mm、引っ張り速度500mm/min、引張恒温層温度150℃でフィルムにクラックが発生するまでの伸びは100%以上が好ましい。例えば、ポリメタクリレート樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂の熱可塑性樹脂フィルムが挙げられるが、メタクリレート樹脂が特に好ましい。熱成形用フィルムの厚さは、20~300μmが好ましい。熱成形用フィルムの厚さを300μm以下とすることにより、紙管等に巻くことが可能となり、連続生産し易くなる。熱成形用フィルムの厚みを20μm以上とすることにより、フィルムの保護性とともに、得られる積層体に深み感をより十分に付与することができる。熱成形用フィルムの厚みは、30μm以上がより好ましく、50μm以上が特に好ましい。また、その上限は、200μm以下がより好ましく、150μm以下が特に好ましい。 It is preferable that the curable resin layer on the thermoforming film has a thickness of 15 μm and the elongation under a tensile condition of 150 ° C. and 500 mm / min is 100% or more. If the tensile elongation is 100% or more, deep drawing thermoforming can be performed. As tensile conditions, a 10 × 100 mm sample is visually checked for elongation until cracks occur in the film at a chuck interval of 50 mm, a tensile speed of 500 mm / min, and a tensile constant temperature layer temperature of 150 ° C. The film for thermoforming is preferably 100% or more in elongation until a 10 × 100 mm sample which is the above-mentioned tensile condition is 50 mm between chucks, a pulling speed is 500 mm / min, and a constant temperature isothermal layer temperature is 150 ° C. For example, a thermoplastic resin film of a polymethacrylate resin, a polycarbonate resin, or a polyethylene terephthalate resin can be mentioned, and a methacrylate resin is particularly preferable. The thickness of the thermoforming film is preferably 20 to 300 μm. By setting the thickness of the thermoforming film to 300 μm or less, the film can be wound around a paper tube or the like, and continuous production is facilitated. By making the thickness of the film for thermoforming 20 μm or more, a sense of depth can be more sufficiently imparted to the resulting laminate along with the protective properties of the film. The thickness of the thermoforming film is more preferably 30 μm or more, and particularly preferably 50 μm or more. The upper limit is more preferably 200 μm or less, and particularly preferably 150 μm or less.
 本発明の硬化性樹脂組成物は、必要に応じて有機溶剤、着色顔料、及び/又は、各種添加剤、例えば、紫外線吸収剤、光安定剤、酸化防止剤、界面活性剤、レベリング剤、抗発泡剤、さらにはポリエチレンワックス、ポリアマイドワックス、内部架橋型樹脂微粒子等のレオロジー調整剤等を配合することができる。 The curable resin composition of the present invention may contain an organic solvent, a color pigment, and / or various additives as necessary, for example, an ultraviolet absorber, a light stabilizer, an antioxidant, a surfactant, a leveling agent, A foaming agent, rheology adjusting agents such as polyethylene wax, polyamide wax, and internally crosslinked resin fine particles can be blended.
 本発明の硬化性樹脂組成物の有機溶剤としては、各成分を溶解することができるものであれば、特に限定されるものではないが、焼付後に有機溶剤が残存しないように選定することが好ましい。例えば、n-ヘキサン、n-ヘプタン、n-オクタン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール等のアルコール類、ジブチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル等のエステル類等が挙げられる。また、これらの有機溶剤に可溶量の水を添加して混合したものを溶剤として用いてもよい。これらの溶剤は1種用いてもよいし、2種以上を組み合わせて用いてもよい。有機溶剤の配合部数は、適性なコーティング粘度に調整することが望ましい。例えば、グラビアコートであれば、20~300mPa・s、ダイコートであれば、100~3000mPa・sの粘度になる溶剤の配合部数が好ましい。 The organic solvent of the curable resin composition of the present invention is not particularly limited as long as each component can be dissolved, but is preferably selected so that the organic solvent does not remain after baking. . For example, aliphatic hydrocarbons such as n-hexane, n-heptane and n-octane, aromatic hydrocarbons such as benzene, toluene and xylene, halogenated hydrocarbons such as chloroform and carbon tetrachloride, methanol, ethanol Alcohols such as n-propyl alcohol, isopropyl alcohol and n-butyl alcohol, ethers such as dibutyl ether, tetrahydrofuran and 1,4-dioxane, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, ethyl acetate and n acetate And esters such as -propyl and n-butyl acetate. Further, a solvent obtained by adding a soluble amount of water to these organic solvents and mixing them may be used as the solvent. These solvents may be used alone or in combination of two or more. It is desirable to adjust the blending number of the organic solvent to an appropriate coating viscosity. For example, in the case of a gravure coat, the number of blended parts of the solvent that gives a viscosity of 20 to 300 mPa · s and in the case of a die coat is preferably 100 to 3000 mPa · s.
 コーティング後、硬化性樹脂層の架橋密度を十分なものとするために、30~80℃の雰囲気下で、数時間から数日間静置することが好ましい。通常、成形品にスプレー塗装する場合は、大掛かりな塗装ブースが必要であり、また、塗着効率が悪いため生産性が悪い。それに対して、本発明の積層体は、フィルムに対するコーティング工程であるため塗着効率が良く、ライン速度も速く、また、インモールド成形、インサート成形あるいはTOM成形は射出成形と同レベルの設備サイズであるから、生産性、小スペースの点で工業的利用価値が高い。 After coating, it is preferable to stand for several hours to several days in an atmosphere of 30 to 80 ° C. in order to make the crosslinking density of the curable resin layer sufficient. Usually, when spray coating is performed on a molded product, a large-scale coating booth is required, and productivity is poor due to poor coating efficiency. On the other hand, the laminate of the present invention is a coating process on a film, so that the coating efficiency is good and the line speed is fast, and in-mold molding, insert molding or TOM molding has the same equipment size as injection molding. Therefore, it is highly industrially useful in terms of productivity and small space.
 (硬化性樹脂層の形成方法)
印刷法又はコート法によりコーティング層を形成することが好ましい。この場合、コーティング層となる原料を溶剤に溶解又は分散して塗料を調製し、これを熱成形フィルムの一方の面に塗布し、溶剤除去のための加熱乾燥を行うことによって、硬化性樹脂層が形成される。この方法は、硬化性樹脂層と熱成形フィルムとの密着性が良好となるため好ましい。
(Method for forming curable resin layer)
The coating layer is preferably formed by a printing method or a coating method. In this case, the curable resin layer is prepared by dissolving or dispersing the raw material to be the coating layer in a solvent to prepare a paint, applying it to one side of the thermoformed film, and performing heat drying for removing the solvent. Is formed. This method is preferable because the adhesion between the curable resin layer and the thermoformed film is improved.
 印刷法としては、グラビア印刷法、スクリーン印刷法、オフセット印刷法等の公知の印刷方法が挙げられる。 Examples of printing methods include known printing methods such as gravure printing, screen printing, and offset printing.
 コート法としては、フローコート法、スプレーコート法、バーコート法、グラビアコート法、グラビアリバースコート法、キスリバースコート法、マイクログラビアコート法、ロールコート法、ブレードコート法、ロッドコート法、ロールドクターコート法、エアナイフコート法、コンマロールコート法、リバースロールコート法、トランスファーロールコート法、キスロールコート法、カーテンコート法、ダイコート法、ディッピングコート法等の公知のコート方法が挙げられる。特に好ましくは、バキューム式ダイコーターである。バキューム式ダイコーターは、塗液滞留の少なく、エアギャップを大きくすることが可能である。 Coating methods include flow coating, spray coating, bar coating, gravure coating, gravure reverse coating, kiss reverse coating, micro gravure coating, roll coating, blade coating, rod coating, and roll doctor. Known coating methods such as a coating method, an air knife coating method, a comma roll coating method, a reverse roll coating method, a transfer roll coating method, a kiss roll coating method, a curtain coating method, a die coating method, and a dipping coating method may be mentioned. Particularly preferred is a vacuum die coater. The vacuum die coater can reduce the coating liquid retention and increase the air gap.
 (2液混合供給システム)
 主剤と硬化剤の2液を予め混合した塗工液をタンクに貯蔵し供給するシステムより、塗工直前に混合する2液混合供給システムが好ましい。塗工直前に2液を混合することにより、2液のポットライフが改善でき、さらに、滞留の少ないダイコーターと組み合わせることにより、フィルムコーティングにおけるゲル発生を改善することが可能となる。
(Two-component mixed supply system)
A two-component mixed supply system that mixes immediately before coating is preferable to a system that stores and supplies a coating solution in which two liquids of a main agent and a curing agent are mixed in advance in a tank. By mixing the two liquids immediately before coating, the pot life of the two liquids can be improved, and further, the gel generation in the film coating can be improved by combining with a die coater with less retention.
 <絵柄層>
 本発明の熱成形用フィルムには、各種基材に意匠性を付与するために絵柄層を形成してもよい。この場合、硬化性樹脂層が設けられた面とは反対側の熱成形用フィルムの面上に絵柄層を形成することが好ましい。また、積層体の製造時には、絵柄層を基材との接着面に配することが加飾面の保護および高級感の付与の点から好ましい。絵柄層は印刷法或いは蒸着法で形成されたものが好ましい。
<Pattern layer>
In the thermoforming film of the present invention, a pattern layer may be formed in order to impart design properties to various substrates. In this case, it is preferable to form the pattern layer on the surface of the thermoforming film opposite to the surface on which the curable resin layer is provided. Moreover, at the time of manufacture of a laminated body, it is preferable from the point of protection of a decorating surface and provision of a high-class feeling to arrange | position a pattern layer to the adhesive surface with a base material. The pattern layer is preferably formed by a printing method or a vapor deposition method.
 (印刷層)
印刷層は、インサート成形、インモールド成形又はTOM成形によって得られた積層体表面で模様又は文字等となる。印刷柄としては、例えば、木目、石目、布目、砂目、幾何学模様、文字、全面ベタ等からなる絵柄が挙げられる。
(Print layer)
The printed layer becomes a pattern or a character on the surface of the laminate obtained by insert molding, in-mold molding, or TOM molding. Examples of the print pattern include a pattern made of wood grain, stone grain, cloth grain, sand grain, geometric pattern, characters, full face, and the like.
 印刷層のバインダーとしては、塩化ビニル/酢酸ビニル系共重合体等のポリビニル系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリアクリル系樹脂、ポリウレタン系樹脂、ポリビニルアセタール系樹脂、ポリエステルウレタン系樹脂、セルロースエステル系樹脂、アルキッド樹脂、塩素化ポリオレフィン系樹脂等の樹脂が挙げられる。 As binders for the printing layer, polyvinyl resins such as vinyl chloride / vinyl acetate copolymers, polyamide resins, polyester resins, polyacrylic resins, polyurethane resins, polyvinyl acetal resins, polyester urethane resins, cellulose Examples of the resin include ester resins, alkyd resins, and chlorinated polyolefin resins.
 印刷層の形成方法としては、オフセット印刷法、グラビア輪転印刷法、スクリーン印刷法等の公知の印刷法;ロールコート法、スプレーコート法等の公知のコート法;フレキソグラフ印刷法等が挙げられる。印刷層の厚さは、必要に応じて適宜決めればよく、通常、0.5~30μm程度である。 Examples of the method for forming the printing layer include known printing methods such as offset printing, gravure rotary printing, and screen printing; known coating methods such as roll coating and spray coating; and flexographic printing. The thickness of the printing layer may be appropriately determined as necessary, and is usually about 0.5 to 30 μm.
 印刷層における印刷抜けの個数は、意匠性、加飾性の観点から、10個/m2 以下が好ましい。印刷抜けの個数を10個/m2以下とすることにより、熱成形用アクリル樹脂フィルムを用いた積層体の外観がより良好となる。印刷層における印刷抜けの個数は、5個/m2以下がより好ましく、1個/m2以下が特に好ましい。 The number of missing prints in the print layer is preferably 10 pieces / m 2 or less from the viewpoints of design properties and decorating properties. By the number of missing print ten / m 2 or less, the appearance of the laminate using an acrylic resin film for thermoforming becomes better. The number of missing prints in the print layer is more preferably 5 pieces / m 2 or less, and particularly preferably 1 piece / m 2 or less.
 (蒸着層)
 蒸着層は、アルミニウム、ニッケル、金、白金、クロム、鉄、銅、インジウム、スズ、銀、チタニウム、鉛、亜鉛等からなる群から選ばれる少なくとも一つの金属、又はこれらの合金、化合物で形成される。蒸着層の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等の方法が挙げられる。
(Deposition layer)
The vapor deposition layer is formed of at least one metal selected from the group consisting of aluminum, nickel, gold, platinum, chromium, iron, copper, indium, tin, silver, titanium, lead, zinc, etc., or an alloy or compound thereof. The Examples of the method for forming the vapor deposition layer include vacuum vapor deposition, sputtering, ion plating, and plating.
 <他の層>
 (接着層)
本発明の熱成形用アクリル樹脂フィルムには、必要に応じて接着層を設けてもよい。接着層は、硬化性樹脂層が設けられた面とは反対側の表面に形成することが好ましい。
<Other layers>
(Adhesive layer)
The acrylic resin film for thermoforming of the present invention may be provided with an adhesive layer as necessary. The adhesive layer is preferably formed on the surface opposite to the surface on which the curable resin layer is provided.
 (熱可塑性樹脂層)
 熱成形用フィルムを熱可塑性樹脂層に積層する向きとしては、硬化性樹脂層が設けられた面とは反対側の表面が熱可塑性樹脂層に接するように積層することが好ましい。熱可塑性樹脂層は、基材との密着性を高める目的から、基材との相溶性を有する材料からなるものが好ましい。熱可塑性樹脂層は、基材と同じ材料からなるものがより好ましい。熱可塑性樹脂層としては、公知の熱可塑性樹脂フィルム又はシート用いることができ、例えば、アクリル樹脂;ABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合体);AS樹脂(アクリロニトリル-スチレン共重合体);塩化ビニル樹脂;ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン等のポリオレフィン系樹脂;エチレン-酢酸ビニル共重合体またはその鹸化物、エチレン-(メタ)アクリル酸エステル共重合体等のポリオレフィン系共重合体;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート、ポリカーボネート等のポリエステル系樹脂;6-ナイロン、6,6-ナイロン、6,10-ナイロン、12-ナイロン等のポリアミド系樹脂;ポリスチレン樹脂;セルロースアセテート、ニトロセルロース等の繊維素誘導体;ポリフッ化ビニル、ポリフッ化ビニリデン、ポリテトラフロロエチレン、エチレン-テトラフロロエチレン共重合体等のフッ素系樹脂等;またはこれらから選ばれる2種又は3種以上の共重合体または混合物、複合体、積層体等が挙げられる。
(Thermoplastic resin layer)
The direction in which the thermoforming film is laminated on the thermoplastic resin layer is preferably laminated so that the surface opposite to the surface on which the curable resin layer is provided is in contact with the thermoplastic resin layer. The thermoplastic resin layer is preferably made of a material having compatibility with the base material for the purpose of improving the adhesion with the base material. More preferably, the thermoplastic resin layer is made of the same material as the base material. As the thermoplastic resin layer, a known thermoplastic resin film or sheet can be used. For example, acrylic resin; ABS resin (acrylonitrile-butadiene-styrene copolymer); AS resin (acrylonitrile-styrene copolymer); Vinyl resin; Polyolefin resin such as polyethylene, polypropylene, polybutene, polymethylpentene; Polyolefin copolymer such as ethylene-vinyl acetate copolymer or saponified product thereof, ethylene- (meth) acrylate copolymer; polyethylene Polyester resins such as terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyarylate, polycarbonate; polyamide resins such as 6-nylon, 6,6-nylon, 6,10-nylon, 12-nylon; Resin; Fibrin derivatives such as cellulose acetate and nitrocellulose; Fluororesin such as polyvinyl fluoride, polyvinylidene fluoride, polytetrafluoroethylene, ethylene-tetrafluoroethylene copolymer; or two selected from these Three or more kinds of copolymers or mixtures, composites, laminates and the like can be mentioned.
 熱可塑性樹脂層には、必要に応じて、一般の配合剤、例えば、安定剤、酸化防止剤、滑剤、加工助剤、可塑剤、耐衝撃剤、発泡剤、充填剤、抗菌剤、防カビ剤、離型剤、帯電防止剤、着色剤、紫外線吸収剤、光安定剤、熱安定剤、難燃剤等を配合してもよい。 If necessary, the thermoplastic resin layer may contain general compounding agents such as stabilizers, antioxidants, lubricants, processing aids, plasticizers, impact agents, foaming agents, fillers, antibacterial agents, and antifungal agents. An agent, a release agent, an antistatic agent, a colorant, an ultraviolet absorber, a light stabilizer, a heat stabilizer, a flame retardant, and the like may be blended.
 積層フィルム又はシートを得る方法としては、熱ラミネーション、ドライラミネーション、ウェットラミネーション、ホットメルトラミネーション等の公知の方法が挙げられる。また、押出しラミネーションにより熱成形用アクリル樹脂フィルムと熱可塑性樹脂層とを積層することもできる。 Examples of a method for obtaining a laminated film or sheet include known methods such as thermal lamination, dry lamination, wet lamination, and hot melt lamination. Moreover, the acrylic resin film for thermoforming and the thermoplastic resin layer can be laminated by extrusion lamination.
 熱成形用フィルムの片面、積層フィルム又はシートの熱可塑性樹脂層の表面には、必要に応じて、例えばコロナ処理、オゾン処理、プラズマ処理、電離放射線処理、重クロム酸処理、アンカー、プライマー処理等の表面処理を施してもよい。これらの処理は、熱成形用フィルムと硬化性樹脂層又は絵柄層との間、熱可塑性樹脂層と絵柄層との間、熱成形用フィルムと熱可塑性樹脂層との間等の密着性を向上させる。 If necessary, for example, corona treatment, ozone treatment, plasma treatment, ionizing radiation treatment, dichromate treatment, anchor, primer treatment, etc. on one surface of the thermoforming film, the surface of the thermoplastic resin layer of the laminated film or sheet The surface treatment may be performed. These treatments improve adhesion between the thermoforming film and the curable resin layer or pattern layer, between the thermoplastic resin layer and the pattern layer, between the thermoforming film and the thermoplastic resin layer, etc. Let
 <積層体>
 本発明の積層体は、熱成形用フィルム、その積層フィルム又はシートを、基材に積層したものである。このとき、硬化性樹脂層が設けられている面とは反対側の面が基材に接するように積層して積層体とすることが好ましい。基材の材質としては、樹脂;木材単板、木材合板、パーティクルボード、中密度繊維板(MDF)等の木材板;木質繊維板等の水質板;鉄、アルミニウム等の金属等が挙げられる。
<Laminated body>
The laminate of the present invention is obtained by laminating a thermoforming film, the laminated film or a sheet on a substrate. At this time, it is preferable to laminate | stack so that the surface on the opposite side to the surface in which the curable resin layer is provided may contact | connect a base material. Examples of the material of the base material include: resin; wood board such as wood veneer, wood plywood, particle board, medium density fiber board (MDF); water quality board such as wood fiber board; metal such as iron and aluminum.
 樹脂としては、特に種類を問わない。例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン、エチレン-プロピレン共重合体、エチレン-プロピレン-ブテン共重合体、オレフィン系熱可塑性エラストマー等のポリオレフィン系樹脂;ポリスチレン樹脂、ABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合体)、AS樹脂(アクリロニトリル-スチレン共重合体)、アクリル樹脂、ウレタン系樹脂、不飽和ポリエステル樹脂、エポキシ樹脂等の汎用の熱可塑性または熱硬化性樹脂;ポリフェニレンオキシド・ポリスチレン系樹脂、ポリカーボネート樹脂、ポリアセタール、ポリカーボネート変性ポリフェニレンエーテル、ポリエチレンテレフタレート等の汎用エンジニアリング樹脂;ポリスルホン、ポリフェニレンサルファイド、ポリフェニレンオキシド、ポリエーテルイミド、ポリイミド、液晶ポリエステル、ポリアリル系耐熱樹脂等のスーパーエンジニアリング樹脂等;ガラス繊維または無機フィラー(タルク、炭酸カルシウム、シリカ、マイカ等)等の補強材、ゴム成分等の改質剤を添加した複合樹脂又は各種変性樹脂等が挙げられる。 The resin is not particularly limited. For example, polyolefin resins such as polyethylene, polypropylene, polybutene, polymethylpentene, ethylene-propylene copolymer, ethylene-propylene-butene copolymer, olefin thermoplastic elastomer; polystyrene resin, ABS resin (acrylonitrile-butadiene-styrene) Copolymer), AS resin (acrylonitrile-styrene copolymer), acrylic resin, urethane resin, unsaturated polyester resin, epoxy resin, and other general-purpose thermoplastic or thermosetting resins; polyphenylene oxide / polystyrene resin, polycarbonate General-purpose engineering resins such as resin, polyacetal, polycarbonate-modified polyphenylene ether, polyethylene terephthalate; polysulfone, polyphenylene sulfide, polyphenylene Super engineering resins such as oxides, polyetherimides, polyimides, liquid crystalline polyesters, polyallyl heat-resistant resins, etc .; reinforcing materials such as glass fibers or inorganic fillers (talc, calcium carbonate, silica, mica, etc.), modifiers such as rubber components A composite resin to which is added or various modified resins.
 これらのうち、基材の材料としては、熱成形用フィルム、その積層フィルム又はシートと溶融接着可能なものが好ましい。例えば、ABS樹脂、AS樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、アクリル樹脂、ポリエステル樹脂又はこれらを主成分とする樹脂が挙げられる。接着性の点でABS樹脂、AS樹脂、ポリカーボネート樹脂、塩化ビニル樹脂又はこれらを主成分とする樹脂が好ましく、特にABS樹脂、ポリカーボネート樹脂又はこれらを主成分とする樹脂がより好ましい。ポリオレフィン系樹脂等の熱融着しない樹脂であっても、接着層を設けることで、熱成形用フィルム、その積層フィルム又はシートからなる群より選ばれる1つと基材とを成形時に接着させることは可能である。 Of these, the material for the base material is preferably a film for thermoforming, a laminated film or a sheet that can be melt bonded. For example, ABS resin, AS resin, polystyrene resin, polycarbonate resin, vinyl chloride resin, acrylic resin, polyester resin, or a resin containing these as main components can be given. In terms of adhesiveness, an ABS resin, an AS resin, a polycarbonate resin, a vinyl chloride resin, or a resin containing these as a main component is preferable, and an ABS resin, a polycarbonate resin, or a resin containing these as a main component is more preferable. Even if it is a resin that is not heat-sealed, such as a polyolefin-based resin, by providing an adhesive layer, it is possible to bond one selected from the group consisting of a film for thermoforming, a laminated film or a sheet thereof and a base material at the time of molding. Is possible.
 本発明の積層体の製造方法としては、二次元形状の積層体の場合で、且つ、基材が熱融着できるものの場合は、熱ラミネーション等の公知の方法を用いることができる。例えば、木材単板、木材合板、パーティクルボード、中密度繊維板(MDF)等の木材板、木質繊維板等の水質板、鉄、アルミニウム等の金属等、熱融着しない基材に対しては、接着層を介して貼り合わせることが可能である。 As the method for producing the laminate of the present invention, a known method such as thermal lamination can be used in the case of a two-dimensional laminate and when the substrate can be thermally fused. For example, for wood substrates such as wood veneer, wood plywood, particle board, medium density fiber board (MDF), water quality boards such as wood fiber board, metals such as iron and aluminum, etc. It is possible to bond them through an adhesive layer.
 また、三次元形状の積層体の場合は、インサート成形法、インモールド成形法、TOM成形等の公知の方法を用いることができる。 Further, in the case of a three-dimensional laminate, a known method such as an insert molding method, an in-mold molding method, or a TOM molding can be used.
 インモールド成形法は、熱成形用アクリル樹脂フィルム、またはその積層フィルムまたはシートを加熱した後、真空引き機能を持つ金型内で真空成形を行い、ついで、同じ金型内において基材となる樹脂を射出成形することにより、熱成形用アクリル樹脂フィルム、又はその積層フィルム又はシートと基材とを一体化させた積層体を得る方法である。インモールド成形法は、フィルムの成形と射出成形を一工程で行えるため、作業性、経済性の点から好ましい。 The in-mold molding method is a method of heating an acrylic resin film for thermoforming, or a laminated film or sheet thereof, and then vacuum-forming in a mold having a vacuuming function, and then a resin to be a base material in the same mold Is a method of obtaining a laminate in which an acrylic resin film for thermoforming, or a laminated film or sheet thereof and a substrate are integrated. The in-mold molding method is preferable from the viewpoints of workability and economy because the film molding and injection molding can be performed in one step.
 インモールド成形時の加熱温度は、熱成形用アクリル樹フィルム又はシートが軟化する温度以上が好ましい。具体的には、フィルムの熱的性質又は積層体の形状によって適宜設定すればよく、通常70℃以上である。また、あまり温度が高いと、表面外観が悪化したり、離型性が悪くなる傾向がある。これもフィルムの熱的性質又は積層体の形状によって適宜設定すればよく、通常は170℃以下である。さらに、エネルギー効率の観点からは、真空成形時の予備加熱温度は低い方が好ましい。 The heating temperature during in-mold molding is preferably equal to or higher than the temperature at which the acrylic resin film or sheet for thermoforming softens. Specifically, it may be appropriately set depending on the thermal properties of the film or the shape of the laminate, and is usually 70 ° C. or higher. On the other hand, if the temperature is too high, the surface appearance tends to deteriorate or the releasability tends to deteriorate. This may be set as appropriate depending on the thermal properties of the film or the shape of the laminate, and is usually 170 ° C. or lower. Furthermore, from the viewpoint of energy efficiency, it is preferable that the preheating temperature during vacuum forming is low.
 真空成形によりフィルムに三次元形状を付与する場合、本発明の熱成形用フィルム向け硬化性樹脂組成物と、この組成物を積層した熱成形用フィルムは、高温時の伸度に富んでおり、非常に有利である。 When a three-dimensional shape is imparted to the film by vacuum forming, the curable resin composition for a thermoforming film of the present invention and the thermoforming film obtained by laminating this composition are rich in elongation at high temperatures, Very advantageous.
 本発明により得られる積層体としては、例えば、自動車用部品(例えば、ボディー、バンパー、スポイラー、ミラー、ホイール、内装材等の部品であって、各種材質のもの)、二輪車用部品、道路用資材(例えば、交通標識、防音壁等)、トンネル用資材(例えば、側壁板等)、鉄道車両、家具、楽器、家電製品、建築材料、容器、事務用品、スポーツ用品、玩具等が挙げられる。 Examples of the laminate obtained by the present invention include automotive parts (for example, parts such as bodies, bumpers, spoilers, mirrors, wheels, interior materials, etc., and various materials), motorcycle parts, road materials. (For example, traffic signs, soundproof walls, etc.), tunnel materials (for example, side walls, etc.), railway vehicles, furniture, musical instruments, home appliances, building materials, containers, office supplies, sports equipment, toys and the like.
 以下、実施例及び比較例を示し、本発明を更に具体的に説明するが、これらは本発明を何ら限定するものではない。尚、以下の記載において、「部」又は「%」は、特に断らない限り、それぞれ「重量部」、「重量%」を表す。 Hereinafter, although an example and a comparative example are shown and the present invention is explained still more concretely, these do not limit the present invention at all. In the following description, “part” or “%” represents “part by weight” and “% by weight”, respectively, unless otherwise specified.
 実施例及び比較例中の測定、評価は次の条件および方法を用いて行った。
(1)重合転化率
 得られたアクリル系重合体(D)ラテックスを、熱風乾燥機内にて120℃で1時間乾燥して固形成分量を求め、100×固形成分量/仕込み単量体により重合転化率(%)を算出した。
Measurement and evaluation in Examples and Comparative Examples were performed using the following conditions and methods.
(1) Polymerization conversion rate The obtained acrylic polymer (D) latex was dried in a hot air dryer at 120 ° C. for 1 hour to determine the amount of solid components, and polymerized by 100 × solid component amount / charged monomer. Conversion (%) was calculated.
 (2)アクリル系重合体のゲル含有率
アクリル系重合体(D)のゲル含有率は、アクリル系重合体(D)の乾燥樹脂粉末を100メッシュ金網上に所定量採取し、メチルエチルケトンに48時間浸漬し、減圧乾燥してメチルエチルケトンを除去した後、恒量になった重量を読み取り、次式(1)により算出した。
アクリル系重合体(D)のゲル含有率(%)
=(再乾燥後の重量/採取サンプルの重量)×100 (1)
 (3)ガラス転移温度
 「ポリマー・ハンドブック〔Polymer Hand Book(J.Brandrup,Interscience,1989〕」に記載されている値(MMA;105℃、BA;-54℃、ST;100℃、無水マレイン酸;130℃(マレイン酸値を使用)、2-ヒドロキシエチルメタクリレート:55℃、メタクリル酸;130℃、イソボルニルメタクリレート;180℃、ラウリルメタクリレート;-65℃)をフオックス(Fox)の式を用いて算出した。但し、多官能性単量体、開始剤、界面活性剤は含めずに算出した。
(2) Gel content of acrylic polymer The gel content of the acrylic polymer (D) was determined by collecting a predetermined amount of the acrylic resin (D) dry resin powder on a 100-mesh wire net and adding 48 hours to methyl ethyl ketone. After immersing and drying under reduced pressure to remove methyl ethyl ketone, the weight which became constant weight was read and calculated by the following formula (1).
Gel content (%) of acrylic polymer (D)
= (Weight after re-drying / weight of sample collected) × 100 (1)
(3) Glass transition temperature Values described in “Polymer Hand Book (J. Brandrup, Interscience, 1989)” (MMA; 105 ° C., BA; −54 ° C., ST; 100 ° C., maleic anhydride 130 ° C. (using maleic acid value), 2-hydroxyethyl methacrylate: 55 ° C., methacrylic acid; 130 ° C., isobornyl methacrylate; 180 ° C., lauryl methacrylate; −65 ° C.) using the Fox formula However, it was calculated without including the polyfunctional monomer, initiator, and surfactant.
 (4)グラフト率
 アクリル系重合体(D)の乾燥樹脂粉末1gをメチルエチルケトン(MEK)50mlに分散溶解させ、遠心分離器(30,000rpm×2Hrs)で不溶分と可溶分とを分離し、不溶分を真空乾燥により充分に乾燥させたものをゴム・グラフト分として重量を測定し、次式により算出した。
グラフト率(%)
=((ゴム・グラフト分の重量-架橋アクリル系重合体(D-1)の重量)/架橋アクリル系重合体(D-1)の重量)×100
 (5)アクリル系重合体(D)の重量平均粒子径
 得られたアクリル系重合体(D)ラテックスを固形分濃度0.02%に希釈したものを試料として、温度23℃±2℃、湿度50%±5%にて、分光光度計(HITACHI製、Spectrophotometer U-2000)を用いて546nmの波長での光線透過率より、重量平均粒子径を求めた。
(4) Graft rate 1 g of the dry resin powder of the acrylic polymer (D) is dispersed and dissolved in 50 ml of methyl ethyl ketone (MEK), and the insoluble and soluble components are separated with a centrifuge (30,000 rpm × 2 Hrs). The insoluble matter was sufficiently dried by vacuum drying, and the weight was measured as the rubber / graft content.
Graft rate (%)
= ((Weight of rubber / graft-weight of crosslinked acrylic polymer (D-1)) / weight of crosslinked acrylic polymer (D-1)) × 100
(5) Weight average particle diameter of acrylic polymer (D) Temperature of 23 ° C. ± 2 ° C., humidity obtained by diluting the obtained acrylic polymer (D) latex to a solid content concentration of 0.02% The weight average particle diameter was determined from the light transmittance at a wavelength of 546 nm using a spectrophotometer (manufactured by HITACHI, Spectrophotometer U-2000) at 50% ± 5%.
 (6)還元粘度
 メチルエチルケトン(MEK)可溶分を0.3%N,N'-ジメチルホルムアミド溶液を30℃で測定した。単位はdl/gである。
(6) Reduced Viscosity Methyl ethyl ketone (MEK) soluble content was measured with a 0.3% N, N′-dimethylformamide solution at 30 ° C. The unit is dl / g.
 (7)樹脂の固形分水酸基価
樹脂の単量体組成から、下記式により算出した。
固形分水酸基価=KOHmg/溶剤を含まない樹脂全量
KOHmg:水酸基含有ビニル系単量体および/またはその誘導体モル数×56100×N(N:水酸基含有ビニル系単量体および/またはその誘導体中の水酸基の個数)
 (8)樹脂の質量平均分子量
HLC8220GPC(東ソー株式会社製)を用い、GPCカラムとしてTSKgel Super H5000、H4000、H3000(東ソー株式会社製)を3本連結したものを用い、溶媒としてTHF(安定剤入り)を用いて、ポリスチレン換算で測定した。その他の条件は、測定温度:INLET OVEN 40℃、サンプル量:10μl、液量:0.6ml/min、検出器:RI である。
(7) Solid content of resin It was calculated from the following formula from the monomer composition of the hydroxyl value resin.
Solid content hydroxyl value = KOH mg / total amount of resin not containing KOH mg: mol number of hydroxyl group-containing vinyl monomer and / or derivative thereof × 56100 × N (N: hydroxyl group-containing vinyl monomer and / or derivative thereof Number of hydroxyl groups
(8) Mass average molecular weight of resin HLC8220GPC (manufactured by Tosoh Corporation), TPCgel Super H5000, H4000, H3000 (manufactured by Tosoh Corporation) connected as GPC columns, and THF (with stabilizer) as a solvent ) And measured in terms of polystyrene. Other conditions are measurement temperature: INLET OVEN 40 ° C., sample amount: 10 μl, liquid amount: 0.6 ml / min, detector: RI.
 (9)引張伸び%
オートグラフAGS10KNG((株)島津製作所製)、TERMOSTATIC CHAMBERはModel:TCRI-200SP((株)島津製作所製)を用いて、サンプルサイズが10×100mmで、チャック間50mm、引っ張り速度500mm/min、引張恒温層温度150℃の条件で引張試験を行い、フィルムにクラックが発生するまでの伸びを測定した。
(9) Tensile elongation%
Autograph AGS10KNG (manufactured by Shimadzu Corporation), TERMOSTATIC CHAMBER is Model: TCRI-200SP (manufactured by Shimadzu Corporation), sample size is 10 × 100 mm, chuck is 50 mm, pulling speed is 500 mm / min, A tensile test was performed under the condition of a tension thermostatic temperature of 150 ° C., and the elongation until cracks occurred in the film was measured.
 (10)耐薬品性
各膜厚の硬化性樹脂層に下記の各薬品を滴下し、80℃乾燥機に1時間放置した後に、表面の薬品をふき取り評価した。
評価
○:リフティング発生せず、光沢維持
×:リフティング発生し、光沢無
各薬品
(i)VW液:Octyl Methoxycinnamate/Octocrylene/Homosalate/DEETを等量混合溶剤
(ii)コパトーン:コパトーンSPF50
(iii)二べア:ニベアSPF47
 (11)硬化樹脂層の厚さ
硬化性樹脂層の厚さはコーティング有無の厚み差より算出し、膜厚はJIS B 7503に準じて測定した。
(10) Chemical resistance Each of the following chemicals was dropped onto the curable resin layer of each film thickness, and after standing for 1 hour in an 80 ° C. dryer, the chemicals on the surface were wiped off and evaluated.
Evaluation ○: Lifting does not occur, gloss maintenance is maintained x: Lifting occurs, glossless chemicals (i) VW liquid: Octyl Methoxycinnamate / Octocryrene / Homosalate / DEET mixed solvent (ii) Copatone: Copatone SPF50
(Iii) Nibea: Nivea SPF47
(11) Thickness of cured resin layer The thickness of the curable resin layer was calculated from the difference in thickness with and without coating, and the film thickness was measured according to JIS B 7503.
 (12)鉛筆硬度
 JIS K5400に従って、硬化性樹脂層の表面の鉛筆硬度を測定した。
(12) Pencil hardness According to JIS K5400, the pencil hardness of the surface of the curable resin layer was measured.
 (13)真空成形性
 硬化性樹脂層を積層した熱成形用フィルムを用いて真空成形を行った。
具体的には、真空引き機能を有したY-101型真空成形機((株)三和興業株式会社製、商品名)により、真空成形を行った。
(13) Vacuum moldability Vacuum molding was performed using a thermoforming film in which a curable resin layer was laminated.
Specifically, vacuum forming was performed with a Y-101 type vacuum forming machine (trade name, manufactured by Sanwa Kogyo Co., Ltd.) having a vacuum drawing function.
 金型の形状は、助手席用のスイッチベース金型(MAZDA GENUINE PARTS PANEL S BBM4-68-5L6B 02)を使用し、パースサイズは約 縦100mm×横250mm×高さ15mmで、スイッチ部は約 縦22mm×横45mm×深さ15mmである。 The shape of the mold is a switch base mold (MAZDA GENUINE PARTS PANEL S BBM4-68-5L6B02) for the passenger seat, the perspective size is about 100 mm long x 250 mm wide x 15 mm high, and the switch part is about It is 22 mm long x 45 mm wide x 15 mm deep.
 硬化性樹脂層を積層した熱成形用フィルムの真空成形は、ヒーター設定温度約340℃、加熱時間9秒、ヒーターとフィルムとの距離10mm、金型温度60℃の条件で行い、硬化性樹脂層が金型と接しない向きに真空成形を実施した。   Vacuum forming of a thermoforming film laminated with a curable resin layer is performed under the conditions of a heater set temperature of about 340 ° C., a heating time of 9 seconds, a distance between the heater and the film of 10 mm, and a mold temperature of 60 ° C. The vacuum forming was performed in a direction that did not contact the mold.
 得られた真空成形体のR部の側面部分、またはエッジ部のコーナー付近の状態を観察し、以下のように評価した。
(評価)
○:割れなし
×:割れ発生。
The state of the side portion of the R portion of the obtained vacuum formed body or the vicinity of the corner of the edge portion was observed and evaluated as follows.
(Evaluation)
○: No cracking ×: Cracking occurred.
 (14)ポットライフ
 重合体(A)とポリイソシアネート化合物(B)を表3の比率で混合し、さらに希釈溶剤(C)を加えて100mPa・s粘度に調整し、ガラス瓶で密閉した状態で、23℃恒温室での粘度変化を測定した。各時間での粘度測定はB型粘度計を使用し、粘度が200mPa・sを超えた時間をポットライフ値とした。
(14) Pot life The polymer (A) and the polyisocyanate compound (B) are mixed in the ratio shown in Table 3, and further diluted solvent (C) is added to adjust the viscosity to 100 mPa · s, and the glass bottle is sealed, The viscosity change in a 23 ° C. constant temperature room was measured. The viscosity at each time was measured using a B-type viscometer, and the time when the viscosity exceeded 200 mPa · s was defined as the pot life value.
 (架橋アクリル系重合体(D)の製造方法:P-1)
 攪拌器、温度計、窒素ガス導入管、モノマー供給管、還流冷却器を備えた8リットル重合器に水 200重量部およびOSAを表1に示す配合量で仕込み、器内を窒素ガスで充分に置換して実質的に酸素のない状態とした後、内温を40℃にし、表1に示す混合物(d-1-1)を5重量部一括添加し、10分間攪拌後に、以下の物質
ナトリウムホルムアルデヒドスルホキシレート  0.11重量部
硫酸第一鉄・2水塩              0.004重量部
エチレンジアミン四酢酸-2-ナトリウム    0.001重量部
を仕込み、表1に示す混合物(d-1-2)を10重量部/時間の割合で連続的に添加し、重合させた後、更に0.5時間重合を継続し、表1に示す混合物(d-1-3)を12.7重量部/時間の割合で連続的に添加し、重合させた後、更に1.0時間重合を継続後に重合転化率を98%以上にし、内温を60℃にし、表1に示す混合物(d-2-1)を16.7重量部/時間の割合で連続的に添加し重合させた後、更に1.0時間重合を継続後に重合転化率を98%以上にして重合を終了させ、アクリル系重合体(D)のラテックスを得た。得られたラテックスを塩化カルシウムで塩析し、水洗、乾燥を行い、アクリル系重合(D)の乾燥粉末(P-1)を得た。
(Production method of crosslinked acrylic polymer (D): P-1)
200 parts by weight of water and OSA were added in the amounts shown in Table 1 into an 8 liter polymerization vessel equipped with a stirrer, thermometer, nitrogen gas inlet tube, monomer supply tube, and reflux condenser, and the inside of the vessel was sufficiently filled with nitrogen gas. After substituting to make it substantially free of oxygen, the internal temperature was brought to 40 ° C., 5 parts by weight of the mixture (d-1-1) shown in Table 1 was added all at once, and after stirring for 10 minutes, the following substance sodium Formaldehyde sulfoxylate 0.11 part by weight Ferrous sulfate dihydrate 0.004 part by weight Ethylenediaminetetraacetic acid-2-sodium 0.001 part by weight was charged with the mixture (d-1-2) shown in Table 1 After continuously adding and polymerizing at a rate of 10 parts by weight / hour, the polymerization was continued for another 0.5 hours, and the mixture (d-1-3) shown in Table 1 was added at 12.7 parts by weight / hour. Added continuously in proportion and polymerized Further, after continuing the polymerization for 1.0 hour, the polymerization conversion rate is set to 98% or more, the internal temperature is set to 60 ° C., and the mixture (d-2-1) shown in Table 1 is continuously added at a rate of 16.7 parts by weight / hour. Then, the polymerization was further continued for 1.0 hour, and then the polymerization conversion rate was set to 98% or more to terminate the polymerization to obtain an acrylic polymer (D) latex. The obtained latex was salted out with calcium chloride, washed with water and dried to obtain a dry powder (P-1) of acrylic polymerization (D).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1中の各略号は、それぞれ下記の物質を示す。
OSA;ジオクチルスルホコハク酸ナトリウム
BA;アクリル酸ブチル
MMA;メタクリル酸メチル
ST;スチレン
CHP;クメンハイドロパーオキサイド
AMA;メタクリル酸アリル
tDM;ターシャリードデシルメルカプタン。
Each abbreviation in Table 1 represents the following substance.
OSA; Dioctyl sodium sulfosuccinate BA; Butyl acrylate MMA; Methyl methacrylate ST; Styrene CHP; Cumene hydroperoxide AMA; Allyl methacrylate tDM; Tertiary decyl mercaptan.
 (熱可塑性フィルムの製造方法)
 アクリル系重合体(D)として得られたP-1の乾燥粉末とメタクリル系樹脂(商品名:住友化学社製スミペックスEX-A)を40重量部/60重量部の比率でブレンドした後に、さらに、P-1とメタクリル系樹脂の総和100重量部に対して紫外線吸収剤:TINUVIN234(チバ・スペシャリティ・ケミカルズ株式会社製)を1部、酸化防止剤:AO60(株式会社ADEKA製)を0.4部の配合割合でブレンドした後に、ベント式押出機の240℃設定で押し出し、ペレット化し、更に、Tダイ押出成形機で押出し機230℃、ダイス240℃設定でフィルム化(厚さ 125μm)した。
(Method for producing thermoplastic film)
After blending the dry powder of P-1 obtained as an acrylic polymer (D) and a methacrylic resin (trade name: Sumipex EX-A manufactured by Sumitomo Chemical Co., Ltd.) at a ratio of 40 parts by weight / 60 parts by weight, , 1 part of UV absorber: TINUVIN234 (manufactured by Ciba Specialty Chemicals Co., Ltd.) and 0.4 part of antioxidant: AO60 (manufactured by ADEKA Co., Ltd.) with respect to 100 parts by weight of the total of P-1 and methacrylic resin. After blending at a blending ratio of parts, extrusion was carried out at a 240 ° C. setting of a vented extruder, pelletizing, and further, a T-die extruder was used to form an extruder at 230 ° C. and a die at 240 ° C. (thickness 125 μm).
 (重合体(A)成分の製造方法:A-1~A-12)
攪拌機、温度計、還流冷却器、窒素ガス導入管及び滴下ロートを備えた反応器に表2の(イ)成分を仕込み、窒素ガスを導入しつつ105℃に昇温した後、表2の(ア)成分の混合物を滴下ロートから5時間かけて等速滴下した。次に、(ウ)成分の混合溶液を1時間かけて等速滴下した。その後、引き続き、105℃で2時間攪拌した後に、50℃まで冷却した。冷却後に表2の(エ)成分を加えて攪拌し、重合体(A)を合成した。得られた重合体(A-1~15)の固形分濃度、GPCで測定した数平均分子量、計算により求めたガラス転移温度、及び計算により求めた固形分水酸基価を表2に示した。
(Production method of polymer (A) component: A-1 to A-12)
In a reactor equipped with a stirrer, a thermometer, a reflux condenser, a nitrogen gas introduction pipe and a dropping funnel, the components (a) in Table 2 were charged, and the temperature was raised to 105 ° C. while introducing nitrogen gas. The mixture of components a) was dropped from the dropping funnel at a constant rate over 5 hours. Next, the mixed solution of the component (c) was dropped at a constant rate over 1 hour. Then, after stirring at 105 degreeC for 2 hours continuously, it cooled to 50 degreeC. After cooling, component (D) in Table 2 was added and stirred to synthesize polymer (A). Table 2 shows the solid content concentration of the obtained polymers (A-1 to 15), the number average molecular weight measured by GPC, the glass transition temperature obtained by calculation, and the solid value hydroxyl value obtained by calculation.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(表中、(ア)~(エ)成分の量は重量部) (In the table, the amount of components (A) to (D) is by weight)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
タケネートD-110N
(三井化学株式会社製ポリイソシアネート NCO%=11.5% 固形分%=75%、NCO 0.00274モル/g)
 (実施例1~9及び比較例1~7)
 得られた熱可塑性アクリルフィルムを熱成形用フィルムとし、その片面に表3の(A)成分、(B)成分、(C)成分を配合し、35%濃度になったコーティング剤を各膜厚に応じたバーコーターを用いて塗工した。No.8バーコーターで4μm厚、No.16バーコーターで8μm厚、No.24バーコーターで15μm厚であった。塗工後、室温で2分間セッティングした後、80℃乾燥機で5分間乾燥し、50℃乾燥機で7日間養生した。その後、硬化性樹脂層側で鉛筆硬度、耐薬品性の評価を行い、硬化性樹脂層を最表面として真空成形性を評価し、10×100mm短冊に切断して引張試験を行った。ポットライフは表3の比率で(A)成分、(B)成分を混合し、100mPa・sなるように(C)成分で希釈し、粘度が200mPa・sを超える時間を測定した。その結果を表3に示した。
Takenate D-110N
(Mitsui Chemicals Co., Ltd. polyisocyanate NCO% = 11.5% solids content = 75%, NCO 0.00274 mol / g)
(Examples 1 to 9 and Comparative Examples 1 to 7)
The obtained thermoplastic acrylic film is used as a thermoforming film, and the coating agent having a concentration of 35% is prepared by blending the components (A), (B) and (C) of Table 3 on one side. Coating was performed using a bar coater according to the conditions. No. 8 μm thick with 8 bar coater. No. 16 bar coater, 8 μm thick. The thickness was 15 μm with a 24 bar coater. After coating, after setting at room temperature for 2 minutes, it was dried with an 80 ° C. dryer for 5 minutes and then cured with a 50 ° C. dryer for 7 days. Thereafter, pencil hardness and chemical resistance were evaluated on the curable resin layer side, vacuum moldability was evaluated using the curable resin layer as the outermost surface, and a tensile test was performed by cutting into 10 × 100 mm strips. In the pot life, the components (A) and (B) were mixed at the ratio shown in Table 3, diluted with the component (C) so as to be 100 mPa · s, and the time when the viscosity exceeded 200 mPa · s was measured. The results are shown in Table 3.
 水酸基を有し、特定量の無水マレイン酸を含有するビニル系重合体(A)と特定比率のポリイソシアネート化合物(B)を含有した硬化樹脂層を積層した熱成形用フィルムは、真空成形性、鉛筆硬度、150℃引張伸びおよび塗工作業性(ポットライフ)に優れ、耐薬品性においては薄膜での性能に優れる。
比較例1では、ポリイソシアナート化合物(B)による3次元架橋がないため、硬化樹脂層の鉛筆硬度と耐薬品性が低くなった。
比較例2では、ポリイソシアナート化合物(B)による3次元架橋が密になったため、耐薬品性は優れるが硬化樹脂層の真空成形性および引張伸びが低くなった。
比較例3では、無水マレイン酸の代わりにメタクリル酸をもちいた重合体(A-11)を用いた実験であり、硬化樹脂層の耐薬品性および硬化性組成物のポットライフが低くなった。
比較例4では、無水マレイン酸を含有しない重合体(A-12)を用いた実験であり、硬化性組成物の耐薬品性が低くなった。
比較例5では、無水マレイン酸の代わりに嵩高い構造のイソボルニルメタクリレートを含有した重合体(A-13)を用い重合体のガラス転移温度を上げた実験であり、硬化性組成物の耐薬品性が低くなった。
比較例6では、無水マレイン酸の代わりにラウリルメタクリレートを含有した重合体(A-14)を用いた実験であり、硬化性組成物の耐薬品性が低くなった。
比較例7では、無水マレイン酸を含有しない重合体(A-15)で用いた配合比率NCO/OH=0.33の実験であり、硬化性組成物の耐薬品性が低くなった。
A film for thermoforming having a hydroxyl group and a cured resin layer containing a vinyl polymer (A) containing a specific amount of maleic anhydride and a polyisocyanate compound (B) in a specific ratio is vacuum-formable, Excellent pencil hardness, 150 ° C. tensile elongation and coating workability (pot life), and excellent chemical resistance in thin film performance.
In Comparative Example 1, since there was no three-dimensional crosslinking by the polyisocyanate compound (B), the pencil hardness and chemical resistance of the cured resin layer were low.
In Comparative Example 2, since the three-dimensional crosslinking by the polyisocyanate compound (B) became dense, the chemical resistance was excellent, but the vacuum moldability and tensile elongation of the cured resin layer were low.
Comparative Example 3 was an experiment using a polymer (A-11) using methacrylic acid instead of maleic anhydride, and the chemical resistance of the cured resin layer and the pot life of the curable composition were lowered.
Comparative Example 4 was an experiment using a polymer (A-12) containing no maleic anhydride, and the chemical resistance of the curable composition was low.
Comparative Example 5 is an experiment in which a polymer (A-13) containing isobornyl methacrylate having a bulky structure instead of maleic anhydride was used to raise the glass transition temperature of the polymer. Chemical properties are low.
Comparative Example 6 was an experiment using a polymer (A-14) containing lauryl methacrylate instead of maleic anhydride, and the chemical resistance of the curable composition was low.
Comparative Example 7 was an experiment with a blending ratio NCO / OH = 0.33 used for the polymer (A-15) containing no maleic anhydride, and the chemical resistance of the curable composition was low.
 耐薬品性を上げる一般的な方法として、架橋を密にする、重合体のガラス転移温度を上げるなどの方法が知られているが、どちらの方法でも真空成形性を維持したまま耐薬品性を向上させることはできなかった(比較例2、比較例5参照)。 As a general method for increasing chemical resistance, there are known methods such as close cross-linking and raising the glass transition temperature of the polymer. In either method, chemical resistance is maintained while maintaining vacuum formability. It was not possible to improve (see Comparative Examples 2 and 5).
本発明の硬化性樹脂組成物から得られる硬化樹脂層を有する積層体の用途としては、例えば、自動車用部品(例えば、ボディー、バンパー、スポイラー、ミラー、ホイール、内装材等の部品であって、各種材質のもの)、二輪車用部品、道路用資材(例えば、交通標識、防音壁等)、トンネル用資材(例えば、側壁板等)、鉄道車両、家具、楽器、家電製品、建築材料、容器、事務用品、スポーツ用品、玩具等が挙げられる。 Examples of uses of the laminate having a cured resin layer obtained from the curable resin composition of the present invention include automotive parts (for example, parts such as bodies, bumpers, spoilers, mirrors, wheels, interior materials, Various materials), motorcycle parts, road materials (eg traffic signs, noise barriers, etc.), tunnel materials (eg side walls, etc.), railway vehicles, furniture, musical instruments, household appliances, building materials, containers, Office supplies, sports equipment, toys, etc. are listed.

Claims (10)

  1. 水酸基およびカルボン酸無水物基を有するビニル系重合体(A)と、ポリイソシアネート化合物(B)を含有する熱成形用フィルム向け硬化性樹脂組成物であって、ビニル系重合体(A)はビニル系単量体100重量部に対してカルボン酸無水物基を有するビニル系単量体を2~50重量%含有し、ポリイソシアネート化合物(B)の含有量はビニル系重合体(A)の固形分水酸基価2~80mgKOH/gと反応する含有量であることを特徴とする硬化性樹脂組成物。 A curable resin composition for a thermoforming film containing a vinyl polymer (A) having a hydroxyl group and a carboxylic acid anhydride group and a polyisocyanate compound (B), wherein the vinyl polymer (A) is vinyl. The vinyl monomer having a carboxylic acid anhydride group is contained in an amount of 2 to 50% by weight based on 100 parts by weight of the monomer and the content of the polyisocyanate compound (B) is a solid content of the vinyl polymer (A). A curable resin composition having a hydroxyl group value of 2 to 80 mg KOH / g.
  2. ビニル系重合体(A)のガラス転移温度が70~140℃である請求項1記載の熱成形用フィルム向け硬化性樹脂組成物。 The curable resin composition for thermoforming film according to claim 1, wherein the glass transition temperature of the vinyl polymer (A) is 70 to 140 ° C.
  3. 熱成形用フィルムの片面に厚さ1~20μmの請求項1または2記載の硬化性樹脂層を有する熱成形用樹脂フィルム。 3. A thermoforming resin film having the curable resin layer according to claim 1 or 2 having a thickness of 1 to 20 μm on one surface of the thermoforming film.
  4.  前記熱成形用フィルムの硬化性樹脂層の鉛筆硬度(JIS K5400に基づく測定)がHB以上である請求項3に記載の熱成形用フィルム。 The thermoforming film according to claim 3, wherein the curable resin layer of the thermoforming film has a pencil hardness (measured based on JIS K5400) of HB or higher.
  5.  最外層15μmの前記熱成形性フィルムの150℃ 500mm/min引張条件での伸びが100%以上である請求項3または4に記載の熱成形用フィルム。 The film for thermoforming according to claim 3 or 4, wherein an elongation of the thermoformable film having an outermost layer of 15 µm under a tensile condition of 150 ° C and 500 mm / min is 100% or more.
  6.  前記硬化性樹脂層とは反対側の面上に絵柄層を有する請求項3~5のいずれかに記載の熱成形用フィルム。 The thermoforming film according to any one of claims 3 to 5, which has a pattern layer on a surface opposite to the curable resin layer.
  7.  前記熱成形用フィルムがインモールド成形用、インサート成形用またはTOM成形用である、請求項3~6のいずれかに記載の熱成形用フィルム。 The thermoforming film according to any one of claims 3 to 6, wherein the thermoforming film is for in-mold molding, insert molding or TOM molding.
  8.  前記熱成形用フィルムの製造方法であって、硬化性樹脂層を印刷法又はコート法により形成する請求項3~7のいずれかに記載の熱成形用フィルムの製造方法。 The method for producing a thermoforming film according to any one of claims 3 to 7, wherein the thermosetting film is formed by a printing method or a coating method.
  9.  前記請求項3~7のいずれかに記載の熱成形用フィルムをその硬化性樹脂層とは反対側の面が接するように基材上に積層して成る積層体。 A laminate obtained by laminating the thermoforming film according to any one of claims 3 to 7 on a substrate such that a surface opposite to the curable resin layer is in contact therewith.
  10.  前記請求項3~7のいずれかに記載の熱成形用フィルムを硬化性樹脂層とは反対側の面が接するようにインモールド成形法、インサート成形法又はTOM成形法により基材上に積層して成る積層体。 The thermoforming film according to any one of claims 3 to 7 is laminated on a substrate by an in-mold molding method, an insert molding method or a TOM molding method so that a surface opposite to the curable resin layer is in contact with the film. A laminate composed of
PCT/JP2011/079405 2010-12-28 2011-12-19 Curable resin composition for thermoforming films and thermoforming film comprising a laminate of said resin composition WO2012090767A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012550848A JPWO2012090767A1 (en) 2010-12-28 2011-12-19 Curable resin composition for thermoforming film and thermoforming film in which this resin composition is laminated

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-291904 2010-12-28
JP2010291904 2010-12-28
JP2011055870 2011-03-14
JP2011-055870 2011-03-14

Publications (1)

Publication Number Publication Date
WO2012090767A1 true WO2012090767A1 (en) 2012-07-05

Family

ID=46382878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079405 WO2012090767A1 (en) 2010-12-28 2011-12-19 Curable resin composition for thermoforming films and thermoforming film comprising a laminate of said resin composition

Country Status (2)

Country Link
JP (1) JPWO2012090767A1 (en)
WO (1) WO2012090767A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109025A (en) * 2012-12-04 2014-06-12 Dainippon Toryo Co Ltd Coated body
WO2014087698A1 (en) * 2012-12-04 2014-06-12 大日本塗料株式会社 Coated article and resin composition used in same
JP5564592B1 (en) * 2013-03-19 2014-07-30 大日本塗料株式会社 Resin composition and coated body using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298576A (en) * 1990-08-30 1992-10-22 Bayer Ag Powdery coating composition
JPH09263666A (en) * 1996-03-29 1997-10-07 Kuraray Co Ltd Resin composition, multilayer film for thermoforming and thermoformed vessel
JPH11293222A (en) * 1998-04-14 1999-10-26 Saiden Chem Ind Co Ltd Pressure-sensitive adhesive composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298576A (en) * 1990-08-30 1992-10-22 Bayer Ag Powdery coating composition
JPH09263666A (en) * 1996-03-29 1997-10-07 Kuraray Co Ltd Resin composition, multilayer film for thermoforming and thermoformed vessel
JPH11293222A (en) * 1998-04-14 1999-10-26 Saiden Chem Ind Co Ltd Pressure-sensitive adhesive composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109025A (en) * 2012-12-04 2014-06-12 Dainippon Toryo Co Ltd Coated body
WO2014087698A1 (en) * 2012-12-04 2014-06-12 大日本塗料株式会社 Coated article and resin composition used in same
JP5564592B1 (en) * 2013-03-19 2014-07-30 大日本塗料株式会社 Resin composition and coated body using the same

Also Published As

Publication number Publication date
JPWO2012090767A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP6015877B1 (en) Decorative film, method for producing the same, and decorative molded body
US5804287A (en) Acrylic film-laminated molded article and acrylic film
JP5158852B2 (en) Acrylic resin composition, acrylic resin film, matte acrylic resin film for thermoforming, photocurable acrylic resin film, and laminate obtained by laminating these
JP2013151133A (en) Hard coat film for thermoforming
JP5790498B2 (en) Fluorine matte film, fluorine matte laminate film, fluorine matte decorative laminate film, laminate sheet, laminate molded product obtained by laminating these, and method for producing the same
EP3006208B1 (en) Acrylic resin laminate film, manufacturing method therefor, and melamine decorative board
JP6657950B2 (en) Laminated film, laminated molded product and method for producing the same
JP6599654B2 (en) 3D molded product decorative laminated film for vacuum forming, 3D molded product decoration method and decorative molded body
JP2005163003A (en) Multilayered structural polymer and resin composition containing the same, acrylic resin film-like article, acrylic resin lamination film, optically thermosetting resin film or sheet, lamination film or sheet, and laminated formed product by laminating them
EP3130637A1 (en) Acrylic resin composition, acrylic resin film, and molded body
WO2012086737A1 (en) Composition
JP2012097248A (en) Curable resin composition for thermoforming film, and thermoforming film made by laminating the resin composition
JP6880647B2 (en) Acrylic resin composition, acrylic film, decorative film and decorative molded body
JP4979221B2 (en) Matte acrylic resin film for thermoforming, method for producing the same, and laminate
JP2688129B2 (en) Injection-molded article manufacturing method and coating sheet
WO2012090767A1 (en) Curable resin composition for thermoforming films and thermoforming film comprising a laminate of said resin composition
JP2013086279A (en) Curable resin composition for thermoforming film, and thermoforming film made by laminating resin composition
JP2006327173A (en) Matt acrylic resin film, manufacturing method thereof and laminated body
JP2013087136A (en) Curable resin composition for thermoforming film, and thermoforming film with lamination of the resin composition
KR101945136B1 (en) Laminate film, method for manufacturing same, and melamine decorative panel
JP2008296539A (en) Thermoforming hard coat acrylic resin film and its manufacturing method, and molded product including the same
JP2007262337A (en) Decorative sheet and laminate using the same
JP2008265062A (en) Acrylic resin film for thermoforming, its manufacturing method, and laminate containing the film
CN109422952B (en) Resin composition and surface protective film
JP2007062194A (en) Frosted acrylic resin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853110

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550848

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853110

Country of ref document: EP

Kind code of ref document: A1