WO2012090711A1 - Work tool - Google Patents

Work tool Download PDF

Info

Publication number
WO2012090711A1
WO2012090711A1 PCT/JP2011/078961 JP2011078961W WO2012090711A1 WO 2012090711 A1 WO2012090711 A1 WO 2012090711A1 JP 2011078961 W JP2011078961 W JP 2011078961W WO 2012090711 A1 WO2012090711 A1 WO 2012090711A1
Authority
WO
WIPO (PCT)
Prior art keywords
side member
conductor
driven
magnet
drive
Prior art date
Application number
PCT/JP2011/078961
Other languages
French (fr)
Japanese (ja)
Inventor
洋規 生田
祐太 松浦
順平 紙元
洋介 西尾
Original Assignee
株式会社マキタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マキタ filed Critical 株式会社マキタ
Publication of WO2012090711A1 publication Critical patent/WO2012090711A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/001Gearings, speed selectors, clutches or the like specially adapted for rotary tools
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • H02K7/145Hand-held machine tool
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/11Structural association with clutches, brakes, gears, pulleys or mechanical starters with dynamo-electric clutches

Definitions

  • the present invention relates to a work tool having a power transmission mechanism for transmitting power of a drive motor to a tip tool.
  • JP-A-5-253854 discloses a screw tightening machine (screw driver) used for screw tightening work.
  • the power transmission mechanism of the screw tightener is configured such that a driving side member that is rotationally driven by a driving motor and a driven side member that is connected to a tip tool are engaged by a meshing clutch so that the power of the driving motor is It is configured to transmit to the tool.
  • the screw tightening machine disclosed in the above publication employs a power transmission mechanism that generates torque transmission when the driving side member and the driven side member come into contact with each other. There is concern about the problem of Therefore, when designing this type of work tool such as a screw tightener, a technique effective for preventing wear of the power transmission portion between the drive motor and the tip tool is required.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a work tool having a power transmission mechanism effective for preventing wear related to power transmission.
  • the working tool is a working tool that performs a predetermined machining operation on a workpiece through a tip tool, and has at least a drive motor and a power transmission mechanism as its constituent elements.
  • the tip tool may be a component of the work tool or may be a separate component from the work tool.
  • the drive motor is configured as an electric or air-driven motor.
  • the power transmission mechanism is configured as a mechanism for transmitting the power of the drive motor to the tip tool.
  • the power transmission mechanism further includes a driving side member, a driven side member, a magnet, and a conductor.
  • the drive side member is configured as a member that is rotationally driven by a drive motor.
  • the driven member is configured as a member that holds the tip tool, is disposed away from the drive side member in the long axis direction of the tip tool, and is allowed to rotate relative to the drive side member.
  • the magnet is provided on one of the driving side member and the driven side member.
  • the conductor is provided on the other of the driving side member and the driven side member, and is disposed at a predetermined distance from the magnet. That is, a mode in which the magnet is provided on the driving side member and the conductor is provided on the driven side member, and a mode in which the magnet is provided on the driven side member and the conductor is provided on the driving side member are included.
  • the conductor is preferably configured as a non-magnetic material.
  • the driving side member and the driven side member are configured to be relatively movable in the long axis direction of the tip tool and biased in a direction away from each other. According to such a configuration, since the conductor is a non-magnetic material, the attracting action of the conductor and the magnet does not affect the operation in which the driven member approaches the driving member. In addition, it becomes possible to easily set the driving side member and the driven side member at a position where power transmission from the driving side member to the driven side member is released.
  • the work tool according to a further aspect of the present invention is preferably configured as a screw tightening machine that is used for screw tightening work.
  • the power transmission mechanism further includes a support mechanism and an urging mechanism.
  • the support mechanism functions to support the driven member so that the driven member can move in the long axis direction of the tip tool with respect to the driving member.
  • the urging mechanism performs a function of generating an urging force such that the driving side member and the driven side member are separated from each other.
  • the driven-side member is pushed away from the driving-side member together with the tip tool against the biasing force of the biasing mechanism during the screw tightening operation, so that the magnet and the conductor are arranged at a predetermined distance. A state is formed.
  • a power transmission mechanism suitable for a screw tightening machine used for screw tightening work among various work tools is realized.
  • the drive side member is directly connected to the motor shaft of the drive motor
  • the driven side member constitutes an output shaft directly connected to the tip tool
  • the motor shaft It is preferable that the output shaft be arranged coaxially.
  • the driven side member is configured to be spaced apart from the driving side member so that a state in which the magnet and the conductor are arranged at a predetermined distance is always formed.
  • FIG. 3 is a view showing a cross-sectional structure taken along line BB in FIG. 2. It is the elements on larger scale of A area
  • FIG. 3 is a view showing a cross-sectional structure taken along line BB in FIG. 2. It is the elements on larger scale of A area
  • FIG. 1 shows the overall configuration of an electric screwdriver 101 (also referred to as a “screw tightener”) according to the present embodiment
  • FIG. 2 shows a partially enlarged view of region A in FIG. Has been.
  • the electric screw driver 101 is mainly configured by a main body 103, a hand grip 109, and a driver bit 119 when viewed generally.
  • the main body 103 constitutes a work tool main body of the electric screw driver 101.
  • the handgrip 109 is connected to the opposite side of the driver bit 119 across the main body 103 and is configured as a handle portion that is gripped by an operator.
  • the driver bit 119 is configured as a long tool (tip tool) that is detachably attached to the tip region (right side in FIG. 1) of the main body 103 via a spindle 117.
  • the driver bit 119 may be a component of the electric screw driver 101 or may be a component separate from the electric screw driver 101.
  • the driver bit 119 here corresponds to the “tip tool” in the present invention.
  • the driver bit 119 side of the electric screwdriver 101 is defined as the “front side” or “front side” of the work tool or the components of the work tool, and the handgrip 109 side is defined.
  • the driver bit 119 side of the electric screwdriver 101 is defined as the “front side” or “front side” of the work tool or the components of the work tool
  • the handgrip 109 side is defined.
  • Are defined as “rear side” or “rear side” of the work tool or components of the work tool. 1 is defined as the major axis direction of the driver bit 119.
  • the main body 103 is mainly composed of a motor housing 105 and a gear housing 107.
  • the motor housing 105 is configured as a housing (housing body) that houses at least a drive motor (also referred to as “electric motor”) 111.
  • the drive motor 111 is driven by an operation of the trigger 109 a provided on the hand grip 109 by the operator. Specifically, when the trigger 109a is pulled, the drive motor 111 is driven by energization control, and when the pull operation is released, the drive motor 111 is stopped driving.
  • the drive motor 111 here corresponds to a “drive motor” in the present invention.
  • the gear housing 107 is configured as a housing (accommodating body) that accommodates at least the power transmission mechanism 131.
  • a locator 123 that defines the screwing depth by the driver bit 119 is provided at the front end of the main body 103.
  • the spindle 117 is relatively movable in the major axis direction of the driver bit 119 via a bearing 121 that receives a radial load in the radial direction, and is rotatable around the major axis of the driver bit 119.
  • the bearing 121 has at least a function of supporting the spindle 117 so that the spindle 117 constituting the driven member can move in the major axis direction of the driver bit 119. Therefore, the bearing 121 here constitutes the “support mechanism” in the present invention.
  • the front end portion 117a on the front side of the spindle 117 is provided with a bit insertion hole 117b into which the driver bit 119 is inserted.
  • the driver bit 119 inserted into the bit insertion hole 117b includes a small diameter portion 119a whose outer diameter is relatively reduced.
  • a steel ball 118 (steel ball) urged in a radial direction toward the bit insertion hole 117b by a ring-shaped leaf spring (not shown) is disposed at the front end portion 117a of the spindle 117. Is engaged with the small diameter portion 119a of the driver bit 119 in the radial direction, thereby holding the driver bit 119.
  • the spindle 117 here has a function of holding the driver bit 119 and constitutes a “driven member” in the present invention.
  • the power transmission mechanism 131 functions to transmit the rotational output of the drive motor 111 to the spindle 117 and the driver bit 119 and to function as a clutch that blocks the transmission.
  • the power transmission mechanism 131 is composed mainly of a drive gear 133, a magnet 134, a drive shaft 135, a spindle 117, a conductor 137, and a coil spring 139.
  • the power transmission mechanism 131 here corresponds to the “power transmission mechanism” in the present invention.
  • the drive gear 133 is opposed to the rear end portion 117c on the rear side of the spindle 117, and is integrally formed with the long drive shaft 135 in the rotational direction, and meshes with the motor shaft 115 of the drive motor 111. , And is driven to rotate around the drive shaft 135.
  • the spindle 117 is disposed away from the drive gear 133 with respect to the major axis direction of the driver bit 119, and relative rotation with the drive gear 133 is allowed.
  • the drive gear 133 and the drive shaft 135 here are drive side members that are rotationally driven by the drive motor 111, and constitute the “drive side member” in the present invention.
  • the drive gear 133 is pivotally supported via front and rear bearings 141 and 142 that receive a thrust load in the major axis direction of the driver bit 119 (also defined as the major axis direction of the drive shaft 135).
  • the drive gear 133 has a facing surface 133a that faces the rear end portion 117c of the spindle 117, and a plurality of magnets (also referred to as “permanent magnets”) 134 are embedded in the facing surface 133a.
  • Each magnet 134 is arranged so that the front end surface thereof is flush with the facing surface 133 a of the drive gear 133.
  • the magnet 134 here corresponds to a “magnet” in the present invention.
  • the drive shaft 135 is configured to extend on the same axis as the driver bit 119.
  • the rear end portion 117c on the rear side of the spindle 117 is formed with a spring accommodating hole 117d having a circular cross section that is open at the rear.
  • the front end portion 135a on the front side of the drive shaft 135 is inserted into the spring accommodating hole 117d, and is rotatably supported via a bearing 143 that receives a radial radial load.
  • the shaft 135b is rotatably supported by a bearing 144 that receives a radial radial load.
  • the conductor 137 is integrally attached around the rear end portion 117c of the spindle 117. In the present embodiment, the conductor 137 is disposed away from the magnet 134.
  • the conductor 137 is typically configured as a nonmagnetic material containing aluminum or copper, and has a facing surface 137a facing the facing surface 133a of the drive gear 133. By configuring the conductor 137 as a non-magnetic material, the attracting action of the conductor 137 and the magnet 134 has an influence on the operation in which the spindle 117 approaches the drive gear 133 in accordance with the pushing operation during the screw tightening operation. There is nothing.
  • the conductor 137 here corresponds to the “conductor” in the present invention.
  • the coil spring 139 is disposed around the front end portion 135a of the drive shaft 135, and is housed together with the front end portion 135a of the drive shaft 135 in the spring housing hole 117d of the spindle 117.
  • the coil spring 139 functions as a compression coil spring that generates an urging force (elastic urging force) such that the spindle 117 and the drive gear 133 are separated from each other in the longitudinal direction of the driver bit 119. Therefore, the front end 139a on the front side of the coil spring 139 is attached to the spindle 117 side, and the rear end 139b on the rear side is attached to a stopper 145 disposed on the opposite side of the drive gear 133 with the bearing 142 interposed therebetween. It is attached.
  • the coil spring 139 here constitutes an “urging mechanism” in the present invention.
  • the coil spring 139 has a position where the spindle 117 is close to the drive gear 133 (also referred to as “push-in position”) and a position where the spindle 117 is separated from the drive gear 133 (“push-in release position” or “initial state before push-in operation”). (Also referred to as “position”). That is, during the pushing operation of the driver bit 119, the spindle 117 is pushed in the direction close to the drive gear 133 together with the driver bit 119 against the elastic biasing force of the coil spring 139, and the rear end portion 117c is on the drive gear 133 side. It comes into contact with a stopper 145 that is a stop portion of the.
  • the minimum separation distance d1 (separation distance at the pushing position) between the facing surface 133a of the drive gear 133, that is, the end surface of the magnet 134, and the facing surface 137a of the conductor 137 is defined.
  • the minimum separation distance d1 here corresponds to the “predetermined distance” in the present invention.
  • the maximum separation distance d2 (separation distance at the push-in release position) between the facing surface 133a of the drive gear 133, that is, the end surface of the magnet 134, and the facing surface 137a of the conductor 137 is defined.
  • FIG. 3 showing a cross-sectional structure with respect to the line BB in FIG.
  • a plurality of (12 in the form shown in FIG. 3) magnets 134 are embedded at equal intervals in the circumferential direction of the facing surface 133 a on the circular facing surface 133 a of the drive gear 133.
  • the opposing surface 133a side is indicated by an N-pole magnet 134 (a magnet indicated by “N” in FIG. 3) and the opposing surface 133a side is indicated by an S-pole magnet 134 (indicated by “S” in FIG. 3). Magnets) are alternately arranged.
  • the number and arrangement of the magnets 134 can be appropriately changed as necessary.
  • a configuration in which 1 to 11 magnets 134 having N or S poles on the facing surface 133a side or 13 or more magnets 134 are provided in the drive gear 133 may be employed.
  • the state shown in FIG. 2 is an initial state where the screw tightening operation is not performed.
  • the spindle 117 is moved forward by the elastic biasing force of the coil spring 139.
  • the rotation output of the drive gear 133 is not transmitted to the spindle 117.
  • the drive gear 133 is rotationally driven through the motor shaft 115 of the drive motor 111, but the opposing surface 137a of the conductor 137 is on the drive gear 133 side.
  • the electric screwdriver 101 Since the magnet 134 is separated from the magnet 134 by the above-described maximum separation distance d2, a load sufficient to rotate the conductor 137 due to the magnetic flux of the magnet 134 is not generated, and the spindle 117 is not rotationally driven.
  • the electric screwdriver 101 is in an idling state.
  • the main body 103 is moved forward (to the workpiece side) to actually perform the screw tightening operation, and the screw (not shown) attached to the driver bit 119 is pressed by the operator by the pressing force.
  • the spindle 117 is pushed together with the driver bit 119 together with the driver bit 119 against the elastic biasing force of the coil spring 139. That is, the spindle 117 retreats relatively to the left side in FIG. 2 with respect to the main body 103 and the drive gear 133, and moves to a predetermined pushing position.
  • FIG. 4 is a partially enlarged view of region A in FIG. 1 and shows a state during the screw tightening operation.
  • This state shown in FIG. 4 is a state in which the spindle 117 comes close to the drive gear 133 in accordance with the pushing operation of the driver bit 119 and is set to the pushing position described above.
  • the rear end portion 117c of the spindle 117 is in contact with the stopper 145 on the drive gear 133 side, so that the spindle 117 is prevented from further approaching the drive gear 133.
  • the opposing surface 137a of the conductor 137 is separated from the magnet 134 on the drive gear 133 side by the aforementioned minimum separation distance d1.
  • the minimum separation distance d1 is preferably set as appropriate according to the number and type of magnets 134, the material of the conductor 137, and the like so as to achieve a desired form of power transmission in the power transmission mechanism 131.
  • the magnetic flux moves on the conductor 137 by the rotation of the magnet 134, and the magnetic flux penetrates the conductor 137.
  • an induced electromotive force due to the magnetic flux is generated in the conductor 137 based on Fleming's right-hand rule, and an eddy current flows in the conductor 137.
  • an eddy current flows through the conductor 137
  • an electromagnetic force is generated that pulls the conductor 137 in the tangential direction between the eddy current and the magnetic flux of the magnet 134 according to Fleming's left-hand rule.
  • the spindle 117 moves together with the driver bit 119 in a direction away from the drive gear 133 according to the elastic biasing force of the coil spring 139. Move in one piece. That is, the spindle 117 moves forward relative to the right side in FIG. 2 with respect to the main body 103, moves to a predetermined push release position, and returns to the state shown in FIG. In this return state shown in FIG. 2, the conductor 137 abuts against the stopper 108 on the gear housing 107 side, thereby preventing the spindle 117 from being further separated from the drive gear 133.
  • the drive gear 133 and the spindle 117 can be easily set to a position where the power transmission from the drive gear 133 to the spindle 117 is released. It becomes possible. Further, the driving operation of the driving motor 111 is stopped by releasing the pulling operation of the trigger 109a.
  • the power transmission mechanism 131 configured as described above, when power is transmitted from the drive gear 133 constituting the drive side member to the spindle 117 constituting the driven side member, the drive side member and the driven side member are separated from each other. Therefore, no contact is made (because it is a non-contact state), so that it is possible to reliably prevent the occurrence of wear related to power transmission. Further, since the drive gear 133 that constitutes the drive side member and the spindle 117 that constitutes the driven side member are in a non-contact state, the misalignment between the drive side member and the driven side member can be avoided. There is an advantage that a high degree of dimensional accuracy as required for a work tool for directly connecting members on the same axis is not required. Moreover, the power transmission mechanism suitable for the screwing machine especially used for screwing work among various work tools can be realized.
  • FIGS. 5 to 7 show an example of a working tool according to another embodiment.
  • FIG. 5 shows an example of a working tool according to another embodiment, which is an electric grinder 201 (““ grinder work ”) used to perform a grinding work, a grinding work, a cutting work, or the like (also referred to as“ grinding work ”).
  • FIG. 6 shows a partially enlarged view of a region C in FIG. 5.
  • FIG. 7 shows a cross-sectional structure taken along line DD in FIG.
  • the electric die grinder 201 is composed mainly of a main body 203 and a grindstone 219 when viewed generally.
  • the main body 203 constitutes a work tool main body of the electric die grinder 201.
  • the grindstone 219 is configured as a long tool (tip tool) that is detachably attached to the tip region (right side in FIG. 5) of the main body 203 via a spindle 217.
  • the grindstone 219 may be a component of the electric die grinder 201 or may be a component separate from the electric die grinder 201.
  • the grindstone 219 here corresponds to the “tip tool” in the present invention.
  • the main body 203 is mainly composed of a motor housing 205 and a gear housing 207.
  • the motor housing 205 is configured as a housing (housing body) that houses at least a drive motor (also referred to as “electric motor”) 211.
  • the motor housing 205 also has a function as a grip part whose outer surface is gripped by an operator.
  • the gear housing 207 is configured as a housing (accommodating body) that accommodates at least the power transmission mechanism 231.
  • the drive motor 211 here corresponds to the “drive motor” in the present invention.
  • the spindle 217 is attached to the gear housing 207 so as to be rotatable around the long axis of the grindstone 219.
  • the spindle 217 is provided with a fixing member 218 that fastens and fixes the grindstone 219 on the front side thereof.
  • the spindle 217 has a function of holding the grindstone 219 and constitutes an output shaft directly connected to the grindstone 219.
  • the spindle 217 is arranged coaxially with the motor shaft 215 of the drive motor 211. Therefore, the spindle 217 here corresponds to the “driven member” and the “output shaft” in the present invention.
  • the power transmission mechanism 231 functions to transmit the rotational output of the drive motor 211 to the spindle 217 and the grindstone 219. As shown in FIG. 6, the power transmission mechanism 231 is mainly composed of a drive body 233, a magnet 234, a spindle 217, and a conductor 237. The power transmission mechanism 231 here corresponds to the “power transmission mechanism” in the present invention.
  • the driving body 233 is disposed on the rear side of the spindle 217 and is separated from the spindle 217.
  • the drive body 233 is directly connected to the motor shaft 215 and is driven to rotate around the motor shaft 215.
  • the drive body 233 is pivotally supported so as to be relatively rotatable via a bearing 241 that receives a radial load in the radial direction.
  • a facing surface 233a facing the conductor 237 is formed, and a plurality of magnets 234 similar to the above-described magnet 134 are embedded in the facing surface 233a.
  • Each magnet 234 is configured such that the front end surface thereof is flush with the facing surface 233a of the driving body 233.
  • the conductor 237 is provided integrally with the rear end 217b on the rear side of the spindle 217. Similar to the conductor 137, the conductor 237 is typically configured as a nonmagnetic material containing aluminum or copper, and has a facing surface 237a facing the facing surface 233a of the driver 233. The conductor 237 here corresponds to the “conductor” in the present invention.
  • the spindle 217 in which the conductor 237 is integrated with the rear end 217b has a front end 217a on the front side via a bearing 242 that receives a radial radial load, and the rear end 217b has a radial radial.
  • the spindle 217 is disposed away from the driving body 233 so that the state in which the magnet 234 and the conductor 237 are always disposed at a predetermined distance similar to the aforementioned minimum separation distance d1 is formed. Will be.
  • a plurality of circular opposing surfaces 233a of the driving body 233 are arranged at equal intervals in the circumferential direction of the opposing surface 233a.
  • Magnets 234 (eight in the form shown in FIG. 7) are embedded.
  • the opposing surface 233a side is indicated by an N-pole magnet 234 (a magnet indicated by “N” in FIG. 7) and the opposing surface 233a side is indicated by an S-pole magnet 234 (“S” in FIG. 7). Magnets) are alternately arranged.
  • the number and arrangement of the magnets 234 can be appropriately changed as necessary.
  • a configuration in which 1 to 7 magnets 234 having N or S poles on the facing surface 233a side and nine or more magnets 234 are provided in the driving body 233 may be employed.
  • FIG. 6 is referred to for the operation of the electric die grinder 201 configured as described above.
  • the opposing surface 237a of the conductor 237 and the opposing surface 233a of the driving body 233 (end surface of the magnet 234) are always arranged with a predetermined separation distance therebetween.
  • a state in which the power of the driving body 233 can be transmitted to the spindle 217 is formed. Therefore, when the drive motor 211 is driven by an operation on an operation member (not shown) to actually perform the grinder work, power transmission is performed in which the power of the drive body 233 in the rotational drive state is transmitted to the spindle 217.
  • the This power transmission is generated by rotating the magnet 234 on the drive body 233 side along the facing surface 237a of the conductor 237 and rotating the conductor 237 in the rotation direction of the magnet 234.
  • the magnetic flux moves on the conductor 237 by the rotation of the magnet 234, and the magnetic flux penetrates the conductor 237. Therefore, as the first step, the conductor 237 is subjected to the right-hand rule of Fleming. An induced electromotive force due to the magnetic flux is generated, and an eddy current flows through the conductor 237. When an eddy current flows through the conductor 237, as a second stage, an electromagnetic force is generated that pulls the conductor 237 in the tangential direction between the eddy current and the magnetic flux of the magnet 234 according to Fleming's left-hand rule. It is pulled by the magnet 134 and rotates together with the spindle 117 in the moving direction of the magnet 234.
  • the rotational speeds of the conductor 237 and the spindle 217 around the drive shaft 235 are as follows. It becomes slower than the rotational speed of the magnet 234 and the driving body 233.
  • the rotational output of the drive motor 211 is transmitted to the spindle 217 and the grindstone 219 via the power transmission mechanism 231 and the actual grinder work is performed by the grindstone 219 that is rotationally driven.
  • the power transmission mechanism 231 having the above configuration, when power is transmitted from the drive body 233 constituting the drive side member to the spindle 217 constituting the driven side member, the drive side member and the driven side member are separated from each other. Therefore, it is possible to reliably prevent the occurrence of wear associated with power transmission. Further, since the driving body 233 constituting the driving side member and the spindle 217 constituting the driven side member are not in contact with each other, the misalignment between the driving side member and the driven side member is caused by the driving side member and the driven side. There is an advantage that a high degree of dimensional accuracy as required for a work tool for directly connecting members on the same axis is not required. Moreover, it is possible to realize a power transmission mechanism suitable for a die grinder that performs a grinding work, a grinding work, a cutting work, or the like of a workpiece among various work tools.
  • the case where the magnet is arranged on the driving side member and the conductor is arranged on the driven side member has been described.
  • the conductor is arranged on the driving side member.
  • a configuration in which a magnet is arranged on the driven member can also be adopted.
  • the conductors 137 and 237 are configured as nonmagnetic materials.
  • the conductors can also be configured as magnetic materials as necessary.
  • the present invention can also be applied to a work tool having a power transmission mechanism.
  • the drive motor may be configured as an air-driven motor other than the electric motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)
  • Portable Power Tools In General (AREA)

Abstract

[Problem] To provide an effective technology for preventing wear and tear related to power transmission in a work tool having a power transmission mechanism for transmitting drive-motor power to the tip of the tool. [Solution] This work tool is an electric screwdriver (101) that has a drive motor (111) and a power transmission mechanism (131) for transmitting the power of the drive motor (111) to a driver bit (119), and that tightens screws on a material being processed via the driver bit (119). The power transmission mechanism (131) comprises: a drive gear (133) that is rotated and driven by the drive motor (111); a spindle (117) that holds the driver bit (119) and is disposed spaced apart from the drive gear (133) in the longitudinal axis direction of the driver bit (119), and to which relative rotation between itself and the drive gear (133) is allowed; a magnet (134) provided in the drive gear (133); and a conductor (137) provided to the spindle (117) and disposed at a prescribed distance from the magnet (134). In a state where the magnet (134) and the conductor (137) are disposed with a prescribed distance therebetween, when the drive gear (133) rotates relative to the drive gear (133), an eddy current produced by the magnetic flux of the magnet (134) flows through the conductor (137) and as a result power is transmitted from the drive gear (133) to the spindle (117).

Description

作業工具Work tools
 本発明は、先端工具に駆動モータの動力を伝達するための動力伝達機構を有する作業工具に関する。 The present invention relates to a work tool having a power transmission mechanism for transmitting power of a drive motor to a tip tool.
 特開平5-253854号公報は、ネジ締め作業に用いるネジ締め機(スクリュドライバ)を開示している。このネジ締め機の動力伝達機構は、駆動モータによって回転駆動される駆動側部材と、先端工具に連結された被動側部材とが、噛み合い式のクラッチによって係合することで駆動モータの動力を先端工具に伝達するように構成されている。 JP-A-5-253854 discloses a screw tightening machine (screw driver) used for screw tightening work. The power transmission mechanism of the screw tightener is configured such that a driving side member that is rotationally driven by a driving motor and a driven side member that is connected to a tip tool are engaged by a meshing clutch so that the power of the driving motor is It is configured to transmit to the tool.
 上記公報に開示のネジ締め機は、駆動側部材と被動側部材とが互いに接触することによってトルク伝達が生じる動力伝達機構を採用しているため、クラッチの入り切りによる半クラッチ状態によってクラッチプレートの磨耗が生じるという問題が懸念される。
 そこで、ネジ締め機をはじめとしたこの種の作業工具の設計に際しては、駆動モータと先端工具との間の動力伝達部分の磨耗を防止するのに有効な技術が要請される。
The screw tightening machine disclosed in the above publication employs a power transmission mechanism that generates torque transmission when the driving side member and the driven side member come into contact with each other. There is concern about the problem of
Therefore, when designing this type of work tool such as a screw tightener, a technique effective for preventing wear of the power transmission portion between the drive motor and the tip tool is required.
 本発明は、上記の点に鑑みてなされたものであり、動力伝達に係る磨耗の防止を図るのに有効な動力伝達機構を有する作業工具を提供することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a work tool having a power transmission mechanism effective for preventing wear related to power transmission.
 上記課題を解決するため、請求項にかかる本発明の作業工具が構成される。 In order to solve the above problems, the working tool according to the present invention according to the claims is configured.
 本発明の好ましい形態の作業工具は、先端工具を介して被加工材に対し所定の加工作業を行う作業工具であって、その構成要素として、少なくとも駆動モータと動力伝達機構を有する。先端工具は、当該作業工具の一構成要素とされてもよいし、或いは当該作業工具とは別個の構成要素とされてもよい。駆動モータは、電動式或いはエア駆動式のモータとして構成される。動力伝達機構は、駆動モータの動力を先端工具に伝達するための機構として構成される。この動力伝達機構は、更に駆動側部材、被動側部材、磁石及び導体を含む。駆動側部材は、駆動モータによって回転駆動される部材として構成される。被動側部材は、先端工具を保持し、先端工具の長軸方向に関し駆動側部材から離間して配置され、且つ駆動側部材との間で相対回転が許容された部材として構成される。磁石は、駆動側部材と被動側部材のうちのいずれか一方に設けられる。導体は、駆動側部材と被動側部材のうちの他方に設けられ、磁石から所定距離を隔てて配置される。即ち、磁石が駆動側部材に設けられ、且つ導体が被動側部材に設けられる態様や、磁石が被動側部材に設けられ、且つ導体が駆動側部材に設けられる態様が包含される。 The working tool according to a preferred embodiment of the present invention is a working tool that performs a predetermined machining operation on a workpiece through a tip tool, and has at least a drive motor and a power transmission mechanism as its constituent elements. The tip tool may be a component of the work tool or may be a separate component from the work tool. The drive motor is configured as an electric or air-driven motor. The power transmission mechanism is configured as a mechanism for transmitting the power of the drive motor to the tip tool. The power transmission mechanism further includes a driving side member, a driven side member, a magnet, and a conductor. The drive side member is configured as a member that is rotationally driven by a drive motor. The driven member is configured as a member that holds the tip tool, is disposed away from the drive side member in the long axis direction of the tip tool, and is allowed to rotate relative to the drive side member. The magnet is provided on one of the driving side member and the driven side member. The conductor is provided on the other of the driving side member and the driven side member, and is disposed at a predetermined distance from the magnet. That is, a mode in which the magnet is provided on the driving side member and the conductor is provided on the driven side member, and a mode in which the magnet is provided on the driven side member and the conductor is provided on the driving side member are included.
 そして、磁石及び導体が所定距離を隔てて配置された状態において、被動側部材に対する駆動側部材の相対回転動作の際、磁石の磁束に起因して導体に渦電流が流れることで、駆動側部材から被動側部材に動力が伝達される。このような構成によれば、駆動側部材から被動側部材に動力が伝達される際に、これら駆動側部材と被動側部材は互いに離間状態とされて接触を伴わないため(非接触状態であるため)、動力伝達に係る磨耗の発生を確実に防止することができる。また、駆動側部材と被動側部材とが非接触状態であるため、駆動側部材と被動側部材との間の芯ずれについて、駆動側部材及び被動側部材を同軸上に直に連結する作業工具に要求されるような高度な寸法精度が必要ないという利点を有する。 Then, in a state where the magnet and the conductor are arranged at a predetermined distance, an eddy current flows through the conductor due to the magnetic flux of the magnet during the relative rotation operation of the driving side member with respect to the driven side member. Power is transmitted from the driven member to the driven member. According to such a configuration, when power is transmitted from the driving side member to the driven side member, the driving side member and the driven side member are separated from each other and do not come into contact with each other (a non-contact state). Therefore, it is possible to reliably prevent the occurrence of wear related to power transmission. In addition, since the drive side member and the driven side member are not in contact with each other, a work tool that directly connects the drive side member and the driven side member coaxially with respect to misalignment between the drive side member and the driven side member. Therefore, there is an advantage that a high degree of dimensional accuracy is not required.
 本発明の更なる形態の作業工具では、導体が非磁性体として構成されるのが好ましい。また、駆動側部材及び被動側部材は、先端工具の長軸方向に相対移動可能とされ、且つ互いに離間する方向に付勢される構成であるのが好ましい。このような構成によれば、導体が非磁性体であるため、被動側部材が駆動側部材に近接する動作に対して、導体と磁石との吸引作用が影響を及ぼすことがない。また、駆動側部材及び被動側部材を、駆動側部材から被動側部材への動力伝達が解除された位置に容易に設定することが可能となる。 In the work tool according to a further aspect of the present invention, the conductor is preferably configured as a non-magnetic material. Further, it is preferable that the driving side member and the driven side member are configured to be relatively movable in the long axis direction of the tip tool and biased in a direction away from each other. According to such a configuration, since the conductor is a non-magnetic material, the attracting action of the conductor and the magnet does not affect the operation in which the driven member approaches the driving member. In addition, it becomes possible to easily set the driving side member and the driven side member at a position where power transmission from the driving side member to the driven side member is released.
 本発明の更なる形態の作業工具は、当該作業工具がネジ締め作業に用いるネジ締め機として構成されるのが好ましい。動力伝達機構は、更に支持機構及び付勢機構を備える構成であるのが好ましい。支持機構は、被動側部材が駆動側部材に対して先端工具の長軸方向に移動可能となるように被動側部材を支持する機能を果たす。付勢機構は、駆動側部材と被動側部材とが互いに離間するような付勢力を生じる機能を果たす。本構成において、被動側部材は、ネジ締め作業時に付勢機構の付勢力に抗して先端工具とともに駆動側部材に近接する方向に押し込まれることによって、磁石及び導体が所定距離を隔てて配置された状態が形成される。これにより、各種の作業工具のうち、特にネジ締め作業に用いるネジ締め機に好適な動力伝達機構が実現される。 The work tool according to a further aspect of the present invention is preferably configured as a screw tightening machine that is used for screw tightening work. It is preferable that the power transmission mechanism further includes a support mechanism and an urging mechanism. The support mechanism functions to support the driven member so that the driven member can move in the long axis direction of the tip tool with respect to the driving member. The urging mechanism performs a function of generating an urging force such that the driving side member and the driven side member are separated from each other. In this configuration, the driven-side member is pushed away from the driving-side member together with the tip tool against the biasing force of the biasing mechanism during the screw tightening operation, so that the magnet and the conductor are arranged at a predetermined distance. A state is formed. Thereby, a power transmission mechanism suitable for a screw tightening machine used for screw tightening work among various work tools is realized.
 本発明の更なる形態の作業工具では、駆動側部材は、駆動モータのモータ軸に直に連結され、被動側部材は、先端工具に直に連結された出力軸を構成し、またモータ軸と出力軸とが同軸上に配置された構成であるのが好ましい。また、被動側部材は、磁石及び導体が所定距離を隔てて配置された状態が常時に形成されるように、駆動側部材から離間して配置された構成であるのが好ましい。これにより、各種の作業工具のうち、特に被加工材の研削作業や研磨作業或いは切断作業等を行うダイグラインダに好適な動力伝達機構が実現される。 In the work tool according to a further aspect of the present invention, the drive side member is directly connected to the motor shaft of the drive motor, the driven side member constitutes an output shaft directly connected to the tip tool, and the motor shaft It is preferable that the output shaft be arranged coaxially. Moreover, it is preferable that the driven side member is configured to be spaced apart from the driving side member so that a state in which the magnet and the conductor are arranged at a predetermined distance is always formed. Thereby, a power transmission mechanism suitable for a die grinder that performs a grinding work, a polishing work, a cutting work or the like of a workpiece among various work tools is realized.
 本発明によれば、先端工具に駆動モータの動力を伝達するための動力伝達機構を有する作業工具において、動力伝達に係る磨耗を防止することが可能となった。本発明の他の特質、作用及び効果については、本明細書、特許請求の範囲、添付図面を参照することで直ちに理解可能である。 According to the present invention, it is possible to prevent wear associated with power transmission in a work tool having a power transmission mechanism for transmitting the power of the drive motor to the tip tool. Other characteristics, operations, and effects of the present invention can be readily understood with reference to the present specification, claims, and accompanying drawings.
本実施の形態の電動スクリュドライバ101の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the electric screwdriver 101 of this Embodiment. 図1中のA領域の部分拡大図であって、ネジ締め作業を行っていない初期状態を示している。It is the elements on larger scale of the A area | region in FIG. 1, Comprising: The initial state which is not performing the screw fastening operation | work is shown. 図2中のB-B線に関する断面構造を示す図である。FIG. 3 is a view showing a cross-sectional structure taken along line BB in FIG. 2. 図1中のA領域の部分拡大図であって、ネジ締め作業時の状態を示している。It is the elements on larger scale of A area | region in FIG. 1, Comprising: The state at the time of screw fastening operation | work is shown. 別実施の形態の電動ダイグラインダ201の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the electric die grinder 201 of another embodiment. 図5中のC領域の部分拡大図である。It is the elements on larger scale of C area | region in FIG. 図6中のD-D線に関する断面構造を示す図である。It is a figure which shows the cross-section regarding the DD line | wire in FIG.
 以上及び以下の記載に係る構成ないし方法は、本発明に係る「作業工具」の製造及び使用、当該「作業工具」の構成要素の使用を実現せしめるべく、他の構成ないし方法と別に、あるいはこれらと組み合わせて用いることができる。本発明の代表的実施形態は、これらの組み合わせも包含し、添付図面を参照しつつ詳細に説明される。以下の詳細な説明は、本発明の好ましい適用例を実施するための詳細情報を当業者に教示するに留まり、本発明の技術的範囲は、当該詳細な説明によって制限されず、特許請求の範囲の記載に基づいて定められる。このため、以下の詳細な説明における構成や方法ステップの組み合わせは、広義の意味において、本発明を実施するのに全て必須であるというものではなく、添付図面の参照番号とともに記載された詳細な説明において、本発明の代表的形態を開示するに留まるものである。 The configurations and methods according to the above and the following description are separately or separately from other configurations and methods in order to realize the manufacture and use of the “work tool” according to the present invention and the use of the components of the “work tool”. Can be used in combination. Exemplary embodiments of the present invention include these combinations and will be described in detail with reference to the accompanying drawings. The following detailed description is only to teach those skilled in the art with detailed information to implement preferred embodiments of the invention, and the scope of the invention is not limited by the detailed description, but is limited by the scope of the claims. It is determined based on the description. For this reason, combinations of configurations and method steps in the following detailed description are not all essential to implement the present invention in a broad sense, but are described in detail with reference numerals in the accompanying drawings. However, only representative embodiments of the present invention are disclosed.
 以下、本発明にかかる作業工具の実施形態につき、図面を参照しつつ詳細に説明する。本実施形態は、作業工具の一例として、ネジ締め作業を行うのに使用する電動式のスクリュドライバについて説明する。図1には、本実施の形態の電動スクリュドライバ101(「ネジ締め機」ともいう)の全体構成が示されており、また図2には、図1中のA領域の部分拡大図が示されている。 Hereinafter, an embodiment of a work tool according to the present invention will be described in detail with reference to the drawings. In the present embodiment, as an example of a work tool, an electric screwdriver used to perform a screw tightening operation will be described. FIG. 1 shows the overall configuration of an electric screwdriver 101 (also referred to as a “screw tightener”) according to the present embodiment, and FIG. 2 shows a partially enlarged view of region A in FIG. Has been.
 図1に示すように、電動スクリュドライバ101は、概括的に見て、本体部103、ハンドグリップ109、ドライバビット119を主体として構成される。本体部103は、電動スクリュドライバ101の作業工具本体を構成している。ハンドグリップ109は、本体部103を挟んでドライバビット119の反対側に連接され、作業者が把持するハンドル部分として構成される。ドライバビット119は、本体部103の先端領域(図1中の右側)にスピンドル117を介して着脱自在に取り付けされる長尺状の工具(先端工具)として構成される。このドライバビット119は、電動スクリュドライバ101の一構成要素とされてもよいし、或いは電動スクリュドライバ101とは別個の構成要素とされてもよい。ここでいうドライバビット119が、本発明における「先端工具」に相当する。 As shown in FIG. 1, the electric screw driver 101 is mainly configured by a main body 103, a hand grip 109, and a driver bit 119 when viewed generally. The main body 103 constitutes a work tool main body of the electric screw driver 101. The handgrip 109 is connected to the opposite side of the driver bit 119 across the main body 103 and is configured as a handle portion that is gripped by an operator. The driver bit 119 is configured as a long tool (tip tool) that is detachably attached to the tip region (right side in FIG. 1) of the main body 103 via a spindle 117. The driver bit 119 may be a component of the electric screw driver 101 or may be a component separate from the electric screw driver 101. The driver bit 119 here corresponds to the “tip tool” in the present invention.
 なお、本実施の形態では、便宜上、電動スクリュドライバ101のうちのドライバビット119側を、作業工具或いは当該作業工具の構成要素の「前側」ないし「前方側」として規定し、ハンドグリップ109側を、作業工具或いは当該作業工具の構成要素の「後側」ないし「後方側」として規定する。また、図1中の左右方向をドライバビット119の長軸方向として規定する。 In the present embodiment, for convenience, the driver bit 119 side of the electric screwdriver 101 is defined as the “front side” or “front side” of the work tool or the components of the work tool, and the handgrip 109 side is defined. Are defined as “rear side” or “rear side” of the work tool or components of the work tool. 1 is defined as the major axis direction of the driver bit 119.
 本体部103は、モータハウジング105及びギアハウジング107を主体として構成される。モータハウジング105は、少なくとも駆動モータ(「電動モータ」ともいう)111を収容するハウジング(収容体)として構成される。駆動モータ111は、ハンドグリップ109に設けられたトリガ109aの作業者による操作によって駆動される。具体的には、トリガ109aが引き操作されると駆動モータ111が通電制御によって駆動され、当該引き操作が解除されることによって駆動モータ111が駆動停止される。ここでいう駆動モータ111が、本発明における「駆動モータ」に相当する。ギアハウジング107は、少なくとも動力伝達機構131を収容するハウジング(収容体)として構成される。また、本体部103の前方側の端部には、ドライバビット119によるネジ込み深さを規定するロケータ123が設けられている。 The main body 103 is mainly composed of a motor housing 105 and a gear housing 107. The motor housing 105 is configured as a housing (housing body) that houses at least a drive motor (also referred to as “electric motor”) 111. The drive motor 111 is driven by an operation of the trigger 109 a provided on the hand grip 109 by the operator. Specifically, when the trigger 109a is pulled, the drive motor 111 is driven by energization control, and when the pull operation is released, the drive motor 111 is stopped driving. The drive motor 111 here corresponds to a “drive motor” in the present invention. The gear housing 107 is configured as a housing (accommodating body) that accommodates at least the power transmission mechanism 131. A locator 123 that defines the screwing depth by the driver bit 119 is provided at the front end of the main body 103.
 図2に示すように、スピンドル117は、径方向についてのラジアル荷重を受ける軸受121を介して、ドライバビット119の長軸方向に相対移動可能に、且つ、ドライバビット119の長軸周りに回転自在にギアハウジング107に取り付けられている。即ち、軸受121は、被動側部材を構成するスピンドル117がドライバビット119の長軸方向に移動可能となるようにスピンドル117を支持する機能を少なくとも果たす。従って、ここでいう軸受121が本発明における「支持機構」を構成する。 As shown in FIG. 2, the spindle 117 is relatively movable in the major axis direction of the driver bit 119 via a bearing 121 that receives a radial load in the radial direction, and is rotatable around the major axis of the driver bit 119. Is attached to the gear housing 107. That is, the bearing 121 has at least a function of supporting the spindle 117 so that the spindle 117 constituting the driven member can move in the major axis direction of the driver bit 119. Therefore, the bearing 121 here constitutes the “support mechanism” in the present invention.
 スピンドル117の前方側の前端部117aには、ドライバビット119が挿入されるビット挿入孔117bが設けられている。このビット挿入孔117bに挿入されたドライバビット119は、その外径が相対的に縮径された細径部119aを備える。また、スピンドル117の前端部117aには、リング状のリーフスプリング(図示省略)でビット挿入孔117bに向けて径方向に付勢された鋼球(スチールボール)118が配置され、この鋼球118がドライバビット119の細径部119aに対し径方向について係合することによって、当該ドライバビット119を保持する。ここでいうスピンドル117は、ドライバビット119を保持する機能を有し、本発明における「被動側部材」を構成する。 The front end portion 117a on the front side of the spindle 117 is provided with a bit insertion hole 117b into which the driver bit 119 is inserted. The driver bit 119 inserted into the bit insertion hole 117b includes a small diameter portion 119a whose outer diameter is relatively reduced. Further, a steel ball 118 (steel ball) urged in a radial direction toward the bit insertion hole 117b by a ring-shaped leaf spring (not shown) is disposed at the front end portion 117a of the spindle 117. Is engaged with the small diameter portion 119a of the driver bit 119 in the radial direction, thereby holding the driver bit 119. The spindle 117 here has a function of holding the driver bit 119 and constitutes a “driven member” in the present invention.
 動力伝達機構131は、駆動モータ111の回転出力をスピンドル117及びドライバビット119に伝達する機能と、当該伝達を遮断するクラッチとしての機能を果たす。この動力伝達機構131は、図2に示すように、駆動ギア133、磁石134、駆動軸135、スピンドル117、導体137及びコイルバネ139を主体として構成されている。ここでいう動力伝達機構131が、本発明における「動力伝達機構」に相当する。 The power transmission mechanism 131 functions to transmit the rotational output of the drive motor 111 to the spindle 117 and the driver bit 119 and to function as a clutch that blocks the transmission. As shown in FIG. 2, the power transmission mechanism 131 is composed mainly of a drive gear 133, a magnet 134, a drive shaft 135, a spindle 117, a conductor 137, and a coil spring 139. The power transmission mechanism 131 here corresponds to the “power transmission mechanism” in the present invention.
 駆動ギア133は、スピンドル117の後方側の後端部117cに対向するとともに、長尺状の駆動軸135と回転方向に一体状に構成されており、駆動モータ111のモータ軸115に噛み合うことによって、駆動軸135周りに回転駆動される。この駆動ギア133に対しては、スピンドル117は、ドライバビット119の長軸方向に関し駆動ギア133から離間して配置され、且つ駆動ギア133との間で相対回転が許容されている。ここでいう駆動ギア133及び駆動軸135は、駆動モータ111によって回転駆動される駆動側部材であり、本発明における「駆動側部材」を構成する。 The drive gear 133 is opposed to the rear end portion 117c on the rear side of the spindle 117, and is integrally formed with the long drive shaft 135 in the rotational direction, and meshes with the motor shaft 115 of the drive motor 111. , And is driven to rotate around the drive shaft 135. With respect to the drive gear 133, the spindle 117 is disposed away from the drive gear 133 with respect to the major axis direction of the driver bit 119, and relative rotation with the drive gear 133 is allowed. The drive gear 133 and the drive shaft 135 here are drive side members that are rotationally driven by the drive motor 111, and constitute the “drive side member” in the present invention.
 駆動ギア133は、ドライバビット119の長軸方向(駆動軸135の長軸方向としても規定される)についてのスラスト荷重を受ける前後の軸受141,142を介して相対回転自在に軸支されている。また、この駆動ギア133は、スピンドル117の後端部117cと対向する対向面133aを有し、この対向面133aに複数の磁石(「永久磁石」ともいう)134が埋設されている。各磁石134は、その前方側の端面が駆動ギア133の対向面133aと面一状となるように配設されている。ここでいう磁石134が、本発明における「磁石」に相当する。 The drive gear 133 is pivotally supported via front and rear bearings 141 and 142 that receive a thrust load in the major axis direction of the driver bit 119 (also defined as the major axis direction of the drive shaft 135). . The drive gear 133 has a facing surface 133a that faces the rear end portion 117c of the spindle 117, and a plurality of magnets (also referred to as “permanent magnets”) 134 are embedded in the facing surface 133a. Each magnet 134 is arranged so that the front end surface thereof is flush with the facing surface 133 a of the drive gear 133. The magnet 134 here corresponds to a “magnet” in the present invention.
 駆動軸135は、ドライバビット119と同一軸上に延在する構成とされる。スピンドル117の後方側の後端部117cには、後方が開口された断面円形のバネ収容孔117dが形成されている。駆動軸135の前方側の前端部135aは、バネ収容孔117d内に挿入されるとともに、径方向のラジアル荷重を受ける軸受143を介して相対回転自在に軸支され、また後方側の後端部135bは、径方向のラジアル荷重を受ける軸受144を介して相対回転自在に軸支されている。 The drive shaft 135 is configured to extend on the same axis as the driver bit 119. The rear end portion 117c on the rear side of the spindle 117 is formed with a spring accommodating hole 117d having a circular cross section that is open at the rear. The front end portion 135a on the front side of the drive shaft 135 is inserted into the spring accommodating hole 117d, and is rotatably supported via a bearing 143 that receives a radial radial load. The rear end portion on the rear side The shaft 135b is rotatably supported by a bearing 144 that receives a radial radial load.
 導体137は、スピンドル117の後端部117cの周りに一体状に取り付けられている。本実施の形態では、この導体137が磁石134から離間して配置される。この導体137は、典型的には、アルミニウムや銅を含む非磁性体として構成され、駆動ギア133の対向面133aに向かい合う対向面137aを有する。導体137を非磁性体として構成することで、スピンドル117がネジ締め作業に際しての押し込み動作に伴って駆動ギア133に近接する動作に対して、当該導体137と磁石134との吸引作用が影響を及ぼすことがない。ここでいう導体137が、本発明における「導体」に相当する。 The conductor 137 is integrally attached around the rear end portion 117c of the spindle 117. In the present embodiment, the conductor 137 is disposed away from the magnet 134. The conductor 137 is typically configured as a nonmagnetic material containing aluminum or copper, and has a facing surface 137a facing the facing surface 133a of the drive gear 133. By configuring the conductor 137 as a non-magnetic material, the attracting action of the conductor 137 and the magnet 134 has an influence on the operation in which the spindle 117 approaches the drive gear 133 in accordance with the pushing operation during the screw tightening operation. There is nothing. The conductor 137 here corresponds to the “conductor” in the present invention.
 コイルバネ139は、駆動軸135の前端部135a周りに配設され、スピンドル117のバネ収容孔117d内に駆動軸135の前端部135aと共に収容されている。このコイルバネ139は、ドライバビット119の長軸方向に関しスピンドル117と駆動ギア133とが互いに離間するような付勢力(弾性付勢力)を生じる圧縮コイルバネとしての機能を果たす。このため、コイルバネ139のうち前方側の前端部139aはスピンドル117側に取り付けられ、後方側の後端部139bは、軸受142を挟んで駆動ギア133とは反対側に配設されたストッパ145に取り付けられている。ここでいうコイルバネ139が、本発明における「付勢機構」を構成する。 The coil spring 139 is disposed around the front end portion 135a of the drive shaft 135, and is housed together with the front end portion 135a of the drive shaft 135 in the spring housing hole 117d of the spindle 117. The coil spring 139 functions as a compression coil spring that generates an urging force (elastic urging force) such that the spindle 117 and the drive gear 133 are separated from each other in the longitudinal direction of the driver bit 119. Therefore, the front end 139a on the front side of the coil spring 139 is attached to the spindle 117 side, and the rear end 139b on the rear side is attached to a stopper 145 disposed on the opposite side of the drive gear 133 with the bearing 142 interposed therebetween. It is attached. The coil spring 139 here constitutes an “urging mechanism” in the present invention.
 また、このコイルバネ139は、スピンドル117が駆動ギア133に近接した位置(「押し込み位置」ともいう)と、スピンドル117が駆動ギア133から離間した位置(「押し込み解除位置」ないし「押し込み動作前の初期位置」ともいう)との間で伸縮動作される。即ち、スピンドル117は、ドライバビット119の押し込み動作時においては、コイルバネ139の弾性付勢力に抗してドライバビット119とともに駆動ギア133に近接する方向に押し込まれ、その後端部117cが駆動ギア133側の停止部分であるストッパ145に当接する。これにより、駆動ギア133の対向面133a、即ち磁石134の端面と導体137の対向面137aとの間の最小離間距離d1(押し込み位置での離間距離)が規定される。ここでいう最小離間距離d1が、本発明における「所定距離」に相当する。一方、スピンドル117は、ドライバビット119の押し込み解除動作時においては、その後端部117cまわりに設けられている導体137がギアハウジング107側の停止部分であるストッパ108に当接する。これにより、駆動ギア133の対向面133a、即ち磁石134の端面と導体137の対向面137aとの間の最大離間距離d2(押し込み解除位置での離間距離)が規定される。 The coil spring 139 has a position where the spindle 117 is close to the drive gear 133 (also referred to as “push-in position”) and a position where the spindle 117 is separated from the drive gear 133 (“push-in release position” or “initial state before push-in operation”). (Also referred to as “position”). That is, during the pushing operation of the driver bit 119, the spindle 117 is pushed in the direction close to the drive gear 133 together with the driver bit 119 against the elastic biasing force of the coil spring 139, and the rear end portion 117c is on the drive gear 133 side. It comes into contact with a stopper 145 that is a stop portion of the. Thus, the minimum separation distance d1 (separation distance at the pushing position) between the facing surface 133a of the drive gear 133, that is, the end surface of the magnet 134, and the facing surface 137a of the conductor 137 is defined. The minimum separation distance d1 here corresponds to the “predetermined distance” in the present invention. On the other hand, in the spindle 117, when the driver bit 119 is pushed out, the conductor 137 provided around the rear end portion 117 c comes into contact with the stopper 108 which is a stop portion on the gear housing 107 side. Thereby, the maximum separation distance d2 (separation distance at the push-in release position) between the facing surface 133a of the drive gear 133, that is, the end surface of the magnet 134, and the facing surface 137a of the conductor 137 is defined.
 上記構成の駆動ギア133における磁石134の数及び配置態様については、図2中のB-B線に関する断面構造を示す図3が参照される。図3に示すように、駆動ギア133の円形状の対向面133aには、当該対向面133aの周方向に等間隔で複数(図3に示す形態では12個)の磁石134が埋設されている。本実施の形態では特に、対向面133a側がN極の磁石134(図3中の「N」で示される磁石)と対向面133a側がS極の磁石134(図3中の「S」で示される磁石)とが交互に配置されている。このような構成によれば、駆動ギア133に対する導体137の回転動作の円滑化を図ることが可能となる。なお、磁石134の数や配置態様に関しては、必要に応じて適宜の変更が可能である。例えば、対向面133a側がN極或いはS極の1~11個の磁石134や、13個以上の磁石134を駆動ギア133に設ける構成を採用することもできる。 For the number and arrangement of the magnets 134 in the drive gear 133 configured as described above, reference is made to FIG. 3 showing a cross-sectional structure with respect to the line BB in FIG. As shown in FIG. 3, a plurality of (12 in the form shown in FIG. 3) magnets 134 are embedded at equal intervals in the circumferential direction of the facing surface 133 a on the circular facing surface 133 a of the drive gear 133. . Particularly in the present embodiment, the opposing surface 133a side is indicated by an N-pole magnet 134 (a magnet indicated by “N” in FIG. 3) and the opposing surface 133a side is indicated by an S-pole magnet 134 (indicated by “S” in FIG. 3). Magnets) are alternately arranged. According to such a configuration, it is possible to smooth the rotation operation of the conductor 137 with respect to the drive gear 133. Note that the number and arrangement of the magnets 134 can be appropriately changed as necessary. For example, a configuration in which 1 to 11 magnets 134 having N or S poles on the facing surface 133a side or 13 or more magnets 134 are provided in the drive gear 133 may be employed.
 上記構成の電動スクリュドライバ101の動作については、図2及び図4が参照される。図2に示す状態は、ネジ締め作業を行っていない初期状態とされる。この初期状態では、スピンドル117がコイルバネ139の弾性付勢力によって前方側へと移動している。この場合には、駆動ギア133の回転出力はスピンドル117に伝達されない。その後、トリガ109aの引き操作によって駆動モータ111が駆動された際には、駆動モータ111のモータ軸115を介して駆動ギア133が回転駆動されるものの、導体137の対向面137aが駆動ギア133側の磁石134から前述の最大離間距離d2で離間しているため、磁石134の磁束に起因して導体137を回転駆動させるだけの荷重は発生しておらず、スピンドル117は回転駆動されない状態、即ち電動スクリュドライバ101のアイドリング状態となる。 2 and 4 are referred to for the operation of the electric screw driver 101 having the above-described configuration. The state shown in FIG. 2 is an initial state where the screw tightening operation is not performed. In this initial state, the spindle 117 is moved forward by the elastic biasing force of the coil spring 139. In this case, the rotation output of the drive gear 133 is not transmitted to the spindle 117. Thereafter, when the drive motor 111 is driven by the pulling operation of the trigger 109a, the drive gear 133 is rotationally driven through the motor shaft 115 of the drive motor 111, but the opposing surface 137a of the conductor 137 is on the drive gear 133 side. Since the magnet 134 is separated from the magnet 134 by the above-described maximum separation distance d2, a load sufficient to rotate the conductor 137 due to the magnetic flux of the magnet 134 is not generated, and the spindle 117 is not rotationally driven. The electric screwdriver 101 is in an idling state.
 このアイドリング状態において、実際にネジ締め作業を行うべく本体部103を前方(被加工材側)へと移動させ、作業者による押圧力によってドライバビット119に装着したネジ(図示省略)を被加工材に押し付けると、スピンドル117は、コイルバネ139の弾性付勢力に抗して駆動ギア133側へとドライバビット119とともに一体状に押し込まれる。即ち、スピンドル117は、本体部103及び駆動ギア133に対して図2中の左側へと相対的に後退動作し、所定の押し込み位置まで移動する。 In this idling state, the main body 103 is moved forward (to the workpiece side) to actually perform the screw tightening operation, and the screw (not shown) attached to the driver bit 119 is pressed by the operator by the pressing force. The spindle 117 is pushed together with the driver bit 119 together with the driver bit 119 against the elastic biasing force of the coil spring 139. That is, the spindle 117 retreats relatively to the left side in FIG. 2 with respect to the main body 103 and the drive gear 133, and moves to a predetermined pushing position.
 図4には、図1中のA領域の部分拡大図であって、ネジ締め作業時の状態を示している。図4に示すこの状態は、スピンドル117がドライバビット119の押し込み動作に伴って駆動ギア133に近接し、前述の押し込み位置に設定された状態とされる。この状態では、スピンドル117の後端部117cが駆動ギア133側のストッパ145に当接することによって、駆動ギア133に対するスピンドル117のそれ以上の近接動作が阻止される。このとき、導体137の対向面137aは、駆動ギア133側の磁石134から前述の最小離間距離d1で離間する。この最小離間距離d1は、動力伝達機構131での所望の形態の動力伝達を達成するべく、磁石134の数や種類、導体137の材質等に応じて適宜に設定されるのが好ましい。 FIG. 4 is a partially enlarged view of region A in FIG. 1 and shows a state during the screw tightening operation. This state shown in FIG. 4 is a state in which the spindle 117 comes close to the drive gear 133 in accordance with the pushing operation of the driver bit 119 and is set to the pushing position described above. In this state, the rear end portion 117c of the spindle 117 is in contact with the stopper 145 on the drive gear 133 side, so that the spindle 117 is prevented from further approaching the drive gear 133. At this time, the opposing surface 137a of the conductor 137 is separated from the magnet 134 on the drive gear 133 side by the aforementioned minimum separation distance d1. The minimum separation distance d1 is preferably set as appropriate according to the number and type of magnets 134, the material of the conductor 137, and the like so as to achieve a desired form of power transmission in the power transmission mechanism 131.
 このスピンドル117が押し込み位置に設定された状態或いは押し込み位置まで移動する過程においては、磁石134の磁束に起因して導体137に渦電流が流れることに伴い当該導体137を回転駆動させるだけの荷重が発生し、回転駆動状態の駆動ギア133の動力がスピンドル117へと伝達される動力伝達がなされる。この動力伝達は、駆動ギア133側の磁石134を導体137の対向面137aに沿って回転させて、導体137を磁石134の回転方向に回転させることによって生じるものであり、いわゆる「アラゴの円盤」の原理を用いたものである。 In the state where the spindle 117 is set to the indented position or in the process of moving to the indented position, a load sufficient to rotationally drive the conductor 137 due to the eddy current flowing through the conductor 137 due to the magnetic flux of the magnet 134. The generated power is transmitted to the spindle 117 so that the power of the drive gear 133 in the rotationally driven state is transmitted. This power transmission is caused by rotating the magnet 134 on the drive gear 133 side along the opposing surface 137a of the conductor 137 and rotating the conductor 137 in the rotation direction of the magnet 134, so-called "Arago disk". The principle is used.
 具体的には、磁石134及び導体137が最小離間距離d1を隔てて配置された状態において、磁石134の回転によって導体137上を磁束が移動して、当該磁束が導体137を貫くことになるので、第1段階として、導体137にはフレミングの右手の法則に基づいて当該磁束に起因した誘導起電力が発生し、導体137に渦電流が流れる。導体137に渦電流が流れると、第2段階として、フレミングの左手の法則で渦電流と磁石134の磁束との間に導体137をその接線方向に引っ張る電磁力が発生し、これにより導体137は磁石134に引っ張られて、スピンドル117とともに磁石134の移動方向に回転することになる。なお、この際、前記の誘導起電力は導体137上を磁束が移動して当該磁束が導体137を貫く場合に発生するので、駆動軸135を中心とした導体137及びスピンドル117の回転速度は、磁石134及び駆動ギア133の回転速度よりも遅くなる。かくして、駆動モータ111の回転出力が、動力伝達機構131を介してスピンドル117及びドライバビット119に伝達され、回転駆動されたドライバビット119によって実際のネジ締め作業が遂行されることとなる。 Specifically, in a state where the magnet 134 and the conductor 137 are arranged with a minimum separation distance d1, the magnetic flux moves on the conductor 137 by the rotation of the magnet 134, and the magnetic flux penetrates the conductor 137. As a first step, an induced electromotive force due to the magnetic flux is generated in the conductor 137 based on Fleming's right-hand rule, and an eddy current flows in the conductor 137. When an eddy current flows through the conductor 137, as a second step, an electromagnetic force is generated that pulls the conductor 137 in the tangential direction between the eddy current and the magnetic flux of the magnet 134 according to Fleming's left-hand rule. It is pulled by the magnet 134 and rotates together with the spindle 117 in the moving direction of the magnet 134. At this time, since the induced electromotive force is generated when the magnetic flux moves on the conductor 137 and the magnetic flux penetrates the conductor 137, the rotational speeds of the conductor 137 and the spindle 117 around the drive shaft 135 are: It becomes slower than the rotational speed of the magnet 134 and the drive gear 133. Thus, the rotational output of the drive motor 111 is transmitted to the spindle 117 and the driver bit 119 via the power transmission mechanism 131, and the actual screw tightening operation is performed by the rotationally driven driver bit 119.
 一方で、ネジ締め作業が終了して、ドライバビット119によるネジの押し付け動作が解除されると、スピンドル117は、コイルバネ139の弾性付勢力にしたがって駆動ギア133から離間する方向へとドライバビット119とともに一体状に移動する。即ち、スピンドル117は、本体部103に対して図2中の右側へと相対的に前進動作し、所定の押し込み解除位置まで移動し、再び図2に示す状態に復帰する。図2に示すこの復帰状態では、導体137がギアハウジング107側のストッパ108に当接することによって、駆動ギア133に対するスピンドル117のそれ以上の離間動作が阻止される。 On the other hand, when the screw tightening operation is finished and the screw pressing operation by the driver bit 119 is released, the spindle 117 moves together with the driver bit 119 in a direction away from the drive gear 133 according to the elastic biasing force of the coil spring 139. Move in one piece. That is, the spindle 117 moves forward relative to the right side in FIG. 2 with respect to the main body 103, moves to a predetermined push release position, and returns to the state shown in FIG. In this return state shown in FIG. 2, the conductor 137 abuts against the stopper 108 on the gear housing 107 side, thereby preventing the spindle 117 from being further separated from the drive gear 133.
 スピンドル117が押し込み解除位置まで移動する過程においては、回転駆動状態の駆動ギア133の動力がスピンドル117へと伝達される動力伝達の解除がなされる。この動力伝達の解除は、スピンドル117が駆動ギア133から離間するにつれて導体137に対する磁石134の磁束の影響が弱まることによって生じる。かくして、駆動モータ111の回転出力が、動力伝達機構131を介してスピンドル117及びドライバビット119に伝達される動作が解除されて、前述の電動スクリュドライバ101のアイドリング状態となる。このように、本実施形態では、コイルバネ139の弾性付勢力を用いることによって、駆動ギア133及びスピンドル117を、駆動ギア133からスピンドル117への動力伝達が解除された位置に容易に設定することが可能となる。更に、トリガ109aの引き操作が解除されることによって駆動モータ111が駆動停止される。 In the process in which the spindle 117 moves to the push-in release position, the power transmission in which the power of the drive gear 133 in the rotational drive state is transmitted to the spindle 117 is released. This release of power transmission is caused by the influence of the magnetic flux of the magnet 134 on the conductor 137 weakening as the spindle 117 moves away from the drive gear 133. Thus, the operation in which the rotational output of the drive motor 111 is transmitted to the spindle 117 and the driver bit 119 via the power transmission mechanism 131 is released, and the above-described electric screw driver 101 enters the idling state. As described above, in this embodiment, by using the elastic biasing force of the coil spring 139, the drive gear 133 and the spindle 117 can be easily set to a position where the power transmission from the drive gear 133 to the spindle 117 is released. It becomes possible. Further, the driving operation of the driving motor 111 is stopped by releasing the pulling operation of the trigger 109a.
 上記構成の動力伝達機構131によれば、駆動側部材を構成する駆動ギア133から被動側部材を構成するスピンドル117に動力が伝達される際に、これら駆動側部材と被動側部材は互いに離間状態とされて接触を伴わないため(非接触状態であるため)、動力伝達に係る磨耗の発生を確実に防止することができる。また、駆動側部材を構成する駆動ギア133と被動側部材を構成するスピンドル117とが非接触状態であるため、駆動側部材と被動側部材との間の芯ずれについて、駆動側部材及び被動側部材を同軸上に直に連結する作業工具に要求されるような高度な寸法精度が必要ないという利点を有する。また、各種の作業工具のうち、特にネジ締め作業に用いるネジ締め機に好適な動力伝達機構を実現することができる。 According to the power transmission mechanism 131 configured as described above, when power is transmitted from the drive gear 133 constituting the drive side member to the spindle 117 constituting the driven side member, the drive side member and the driven side member are separated from each other. Therefore, no contact is made (because it is a non-contact state), so that it is possible to reliably prevent the occurrence of wear related to power transmission. Further, since the drive gear 133 that constitutes the drive side member and the spindle 117 that constitutes the driven side member are in a non-contact state, the misalignment between the drive side member and the driven side member can be avoided. There is an advantage that a high degree of dimensional accuracy as required for a work tool for directly connecting members on the same axis is not required. Moreover, the power transmission mechanism suitable for the screwing machine especially used for screwing work among various work tools can be realized.
 上記実施の形態では、作業工具として電動スクリュドライバ101に本発明を適用する場合について記載したが、電動スクリュドライバ以外の作業工具に本発明を適用することもできる。別実施の形態の作業工具の一例については、図5~図7が参照される。図5には、別実施の形態の作業工具の一例として、被加工材の研削作業や研磨作業或いは切断作業等(「グラインダ作業」ともいう)を行うのに使用する電動式のグラインダ201(「ダイグラインダ」ともいう)の全体構成が示され、図6には、図5中のC領域の部分拡大図が示されている。また、図7には、図6中のD-D線に関する断面構造が示されている。 In the above embodiment, the case where the present invention is applied to the electric screw driver 101 as a work tool has been described. However, the present invention can also be applied to work tools other than the electric screw driver. Reference is made to FIGS. 5 to 7 for an example of a working tool according to another embodiment. FIG. 5 shows an example of a working tool according to another embodiment, which is an electric grinder 201 (““ grinder work ”) used to perform a grinding work, a grinding work, a cutting work, or the like (also referred to as“ grinding work ”). FIG. 6 shows a partially enlarged view of a region C in FIG. 5. FIG. 7 shows a cross-sectional structure taken along line DD in FIG.
 図5に示すように、電動ダイグラインダ201は、概括的に見て、本体部203、砥石219を主体として構成される。本体部203は、電動ダイグラインダ201の作業工具本体を構成している。砥石219は、本体部203の先端領域(図5中の右側)にスピンドル217を介して着脱自在に取り付けされる長尺状の工具(先端工具)として構成される。この砥石219は、電動ダイグラインダ201の一構成要素とされてもよいし、或いは電動ダイグラインダ201とは別個の構成要素とされてもよい。ここでいう砥石219が、本発明における「先端工具」に相当する。 As shown in FIG. 5, the electric die grinder 201 is composed mainly of a main body 203 and a grindstone 219 when viewed generally. The main body 203 constitutes a work tool main body of the electric die grinder 201. The grindstone 219 is configured as a long tool (tip tool) that is detachably attached to the tip region (right side in FIG. 5) of the main body 203 via a spindle 217. The grindstone 219 may be a component of the electric die grinder 201 or may be a component separate from the electric die grinder 201. The grindstone 219 here corresponds to the “tip tool” in the present invention.
 本体部203は、モータハウジング205及びギアハウジング207を主体として構成される。モータハウジング205は、少なくとも駆動モータ(「電動モータ」ともいう)211を収容するハウジング(収容体)として構成される。このモータハウジング205は、その外面が作業者によって把持されるグリップ部としての機能も併せ持つ。ギアハウジング207は、少なくとも動力伝達機構231を収容するハウジング(収容体)として構成される。ここでいう駆動モータ211が、本発明における「駆動モータ」に相当する。 The main body 203 is mainly composed of a motor housing 205 and a gear housing 207. The motor housing 205 is configured as a housing (housing body) that houses at least a drive motor (also referred to as “electric motor”) 211. The motor housing 205 also has a function as a grip part whose outer surface is gripped by an operator. The gear housing 207 is configured as a housing (accommodating body) that accommodates at least the power transmission mechanism 231. The drive motor 211 here corresponds to the “drive motor” in the present invention.
 スピンドル217は、ギアハウジング207に砥石219の長軸周りに回転自在に取り付けられている。このスピンドル217には、その前方側に砥石219を締め付け固定する固定部材218が設けられている。このスピンドル217は、砥石219を保持する機能を有し、且つ砥石219に直に連結された出力軸を構成している。また、本実施の形態では、このスピンドル217が駆動モータ211のモータ軸215と同軸上に配置されている。従って、ここでいうスピンドル217が、本発明における「被動側部材」及び「出力軸」に相当する。 The spindle 217 is attached to the gear housing 207 so as to be rotatable around the long axis of the grindstone 219. The spindle 217 is provided with a fixing member 218 that fastens and fixes the grindstone 219 on the front side thereof. The spindle 217 has a function of holding the grindstone 219 and constitutes an output shaft directly connected to the grindstone 219. In this embodiment, the spindle 217 is arranged coaxially with the motor shaft 215 of the drive motor 211. Therefore, the spindle 217 here corresponds to the “driven member” and the “output shaft” in the present invention.
 動力伝達機構231は、駆動モータ211の回転出力をスピンドル217及び砥石219に伝達する機能を果たす。図6に示すように、この動力伝達機構231は、駆動体233、磁石234、スピンドル217及び導体237を主体として構成されている。ここでいう動力伝達機構231が、本発明における「動力伝達機構」に相当する。 The power transmission mechanism 231 functions to transmit the rotational output of the drive motor 211 to the spindle 217 and the grindstone 219. As shown in FIG. 6, the power transmission mechanism 231 is mainly composed of a drive body 233, a magnet 234, a spindle 217, and a conductor 237. The power transmission mechanism 231 here corresponds to the “power transmission mechanism” in the present invention.
 駆動体233は、スピンドル217の後方側において、当該スピンドル217から離間して配置されている。この駆動体233は、モータ軸215に直に連結されており、モータ軸215周りに回転駆動される。また、この駆動体233は、径方向についてのラジアル荷重を受ける軸受241を介して相対回転自在に軸支されている。この駆動体233の前方側には、導体237と対向する対向面233aが形成され、この対向面233aには、前述の磁石134と同様の磁石234が複数埋設されている。各磁石234は、その前方側の端面が駆動体233の対向面233aと面一状となるように構成されている。 The driving body 233 is disposed on the rear side of the spindle 217 and is separated from the spindle 217. The drive body 233 is directly connected to the motor shaft 215 and is driven to rotate around the motor shaft 215. The drive body 233 is pivotally supported so as to be relatively rotatable via a bearing 241 that receives a radial load in the radial direction. On the front side of the driving body 233, a facing surface 233a facing the conductor 237 is formed, and a plurality of magnets 234 similar to the above-described magnet 134 are embedded in the facing surface 233a. Each magnet 234 is configured such that the front end surface thereof is flush with the facing surface 233a of the driving body 233.
 導体237は、スピンドル217の後方側の後端部217bに一体状に設けられている。この導体237は、前述の導体137と同様に、典型的には、アルミニウムや銅を含む非磁性体として構成され、駆動体233の対向面233aに向かい合う対向面237aを有する。ここでいう導体237が、本発明における「導体」に相当する。一方で、後端部217bに導体237が一体化されたスピンドル217は、その前方側の前端部217aが径方向のラジアル荷重を受ける軸受242を介して、またその後端部217bが径方向のラジアル荷重を受ける軸受243を介して相対回転自在に軸支されている。上記構成により、スピンドル217は、磁石234及び導体237が、前述の最小離間距離d1と同様の所定距離を隔てて配置された状態が常時に形成されるように、駆動体233から離間して配置されることとなる。 The conductor 237 is provided integrally with the rear end 217b on the rear side of the spindle 217. Similar to the conductor 137, the conductor 237 is typically configured as a nonmagnetic material containing aluminum or copper, and has a facing surface 237a facing the facing surface 233a of the driver 233. The conductor 237 here corresponds to the “conductor” in the present invention. On the other hand, the spindle 217 in which the conductor 237 is integrated with the rear end 217b has a front end 217a on the front side via a bearing 242 that receives a radial radial load, and the rear end 217b has a radial radial. It is supported so as to be relatively rotatable via a bearing 243 that receives a load. With the above configuration, the spindle 217 is disposed away from the driving body 233 so that the state in which the magnet 234 and the conductor 237 are always disposed at a predetermined distance similar to the aforementioned minimum separation distance d1 is formed. Will be.
 上記構成の駆動体233における磁石234の数及び配置態様については、図7が参照されるように、駆動体233の円形状の対向面233aに、当該対向面233aの周方向に等間隔で複数(図7に示す形態では8個)の磁石234が埋設されている。本実施の形態では特に、対向面233a側がN極の磁石234(図7中の「N」で示される磁石)と対向面233a側がS極の磁石234(図7中の「S」で示される磁石)とが交互に配置されている。このような構成によれば、駆動体233に対する導体237の回転動作の円滑化を図ることが可能となる。なお、磁石234の数や配置態様に関しては、必要に応じて適宜の変更が可能である。例えば、対向面233a側がN極或いはS極の1~7個の磁石234や、9個以上の磁石234を駆動体233に設ける構成を採用することもできる。 Regarding the number and arrangement of the magnets 234 in the driving body 233 having the above-described configuration, as shown in FIG. 7, a plurality of circular opposing surfaces 233a of the driving body 233 are arranged at equal intervals in the circumferential direction of the opposing surface 233a. Magnets 234 (eight in the form shown in FIG. 7) are embedded. Particularly in the present embodiment, the opposing surface 233a side is indicated by an N-pole magnet 234 (a magnet indicated by “N” in FIG. 7) and the opposing surface 233a side is indicated by an S-pole magnet 234 (“S” in FIG. 7). Magnets) are alternately arranged. According to such a configuration, it is possible to achieve smooth rotation of the conductor 237 relative to the drive body 233. Note that the number and arrangement of the magnets 234 can be appropriately changed as necessary. For example, a configuration in which 1 to 7 magnets 234 having N or S poles on the facing surface 233a side and nine or more magnets 234 are provided in the driving body 233 may be employed.
 上記構成の電動ダイグラインダ201の動作については、図6が参照される。図6に示すように、この電動ダイグラインダ201では、導体237の対向面237aと駆動体233の対向面233a(磁石234の端面)とが常時に所定の離間距離を隔てて配置されており、既に図4に示す前述の実施形態と同様に、駆動体233の動力がスピンドル217へと伝達可能な状態が形成されている。従って、実際にグラインダ作業を行うべく操作部材(図示省略)に操作によって駆動モータ211が駆動された際には、回転駆動状態の駆動体233の動力がスピンドル217へと伝達される動力伝達がなされる。この動力伝達は、駆動体233側の磁石234を導体237の対向面237aに沿って回転させて、導体237を磁石234の回転方向に回転させることによって生じるものである。 FIG. 6 is referred to for the operation of the electric die grinder 201 configured as described above. As shown in FIG. 6, in this electric die grinder 201, the opposing surface 237a of the conductor 237 and the opposing surface 233a of the driving body 233 (end surface of the magnet 234) are always arranged with a predetermined separation distance therebetween. Similar to the above-described embodiment shown in FIG. 4, a state in which the power of the driving body 233 can be transmitted to the spindle 217 is formed. Therefore, when the drive motor 211 is driven by an operation on an operation member (not shown) to actually perform the grinder work, power transmission is performed in which the power of the drive body 233 in the rotational drive state is transmitted to the spindle 217. The This power transmission is generated by rotating the magnet 234 on the drive body 233 side along the facing surface 237a of the conductor 237 and rotating the conductor 237 in the rotation direction of the magnet 234.
 具体的には、磁石234の回転によって導体237上を磁束が移動して、当該磁束が導体237を貫くことになるので、第1段階として、導体237にはフレミングの右手の法則に基づいて当該磁束に起因した誘導起電力が発生し、導体237に渦電流が流れる。導体237に渦電流が流れると、第2段階として、フレミングの左手の法則で渦電流と磁石234の磁束との間に導体237をその接線方向に引っ張る電磁力が発生し、これにより導体237は磁石134に引っ張られて、スピンドル117とともに磁石234の移動方向に回転することになる。なお、この際、前記の誘導起電力は導体237上を磁束が移動して当該磁束が導体237を貫く場合に発生するので、駆動軸235を中心とした導体237及びスピンドル217の回転速度は、磁石234及び駆動体233の回転速度よりも遅くなる。かくして、駆動モータ211の回転出力が、動力伝達機構231を介してスピンドル217及び砥石219に伝達され、回転駆動された砥石219によって実際のグラインダ作業が遂行されることとなる。 Specifically, the magnetic flux moves on the conductor 237 by the rotation of the magnet 234, and the magnetic flux penetrates the conductor 237. Therefore, as the first step, the conductor 237 is subjected to the right-hand rule of Fleming. An induced electromotive force due to the magnetic flux is generated, and an eddy current flows through the conductor 237. When an eddy current flows through the conductor 237, as a second stage, an electromagnetic force is generated that pulls the conductor 237 in the tangential direction between the eddy current and the magnetic flux of the magnet 234 according to Fleming's left-hand rule. It is pulled by the magnet 134 and rotates together with the spindle 117 in the moving direction of the magnet 234. At this time, since the induced electromotive force is generated when the magnetic flux moves on the conductor 237 and the magnetic flux penetrates the conductor 237, the rotational speeds of the conductor 237 and the spindle 217 around the drive shaft 235 are as follows. It becomes slower than the rotational speed of the magnet 234 and the driving body 233. Thus, the rotational output of the drive motor 211 is transmitted to the spindle 217 and the grindstone 219 via the power transmission mechanism 231 and the actual grinder work is performed by the grindstone 219 that is rotationally driven.
 一方で、グラインダ作業が終了して、駆動モータ211が駆動停止された場合には、ドライバビット217に対する駆動体233の相対回転動作、即ち導体237に対する磁石234の相対回転動作が停止されることによって、駆動体233からスピンドル217への動力伝達が停止される。 On the other hand, when the grinder operation is completed and the drive motor 211 is stopped, the relative rotation operation of the drive body 233 with respect to the driver bit 217, that is, the relative rotation operation of the magnet 234 with respect to the conductor 237 is stopped. The power transmission from the drive body 233 to the spindle 217 is stopped.
 上記構成の動力伝達機構231によれば、駆動側部材を構成する駆動体233から被動側部材を構成するスピンドル217に動力が伝達される際に、これら駆動側部材と被動側部材は互いに離間状態とされて接触を伴わないため、動力伝達に係る磨耗の発生を確実に防止することができる。また、駆動側部材を構成する駆動体233と被動側部材を構成するスピンドル217とが非接触状態であるため、駆動側部材と被動側部材との間の芯ずれについて、駆動側部材及び被動側部材を同軸上に直に連結する作業工具に要求されるような高度な寸法精度が必要ないという利点を有する。また、各種の作業工具のうち、特に被加工材の研削作業や研磨作業或いは切断作業等を行うダイグラインダに好適な動力伝達機構を実現することができる。 According to the power transmission mechanism 231 having the above configuration, when power is transmitted from the drive body 233 constituting the drive side member to the spindle 217 constituting the driven side member, the drive side member and the driven side member are separated from each other. Therefore, it is possible to reliably prevent the occurrence of wear associated with power transmission. Further, since the driving body 233 constituting the driving side member and the spindle 217 constituting the driven side member are not in contact with each other, the misalignment between the driving side member and the driven side member is caused by the driving side member and the driven side. There is an advantage that a high degree of dimensional accuracy as required for a work tool for directly connecting members on the same axis is not required. Moreover, it is possible to realize a power transmission mechanism suitable for a die grinder that performs a grinding work, a grinding work, a cutting work, or the like of a workpiece among various work tools.
〔他の実施形態〕
 なお、本発明は上記の実施の形態のみに限定されるものではなく、種々の応用や変形が考えられる。例えば、上記実施の形態を応用した次の各形態を実施することもできる。
[Other Embodiments]
In addition, this invention is not limited only to said embodiment, A various application and deformation | transformation can be considered. For example, each of the following embodiments to which the above embodiment is applied can be implemented.
 上記実施の形態の動力伝達機構113,213では、駆動側部材に磁石を配置する一方、被動側部材に導体を配置する場合について記載したが、本発明では、駆動側部材に導体を配置する一方、被動側部材に磁石を配置する構成を採用することもできる。 In the power transmission mechanisms 113 and 213 of the above-described embodiment, the case where the magnet is arranged on the driving side member and the conductor is arranged on the driven side member has been described. However, in the present invention, the conductor is arranged on the driving side member. A configuration in which a magnet is arranged on the driven member can also be adopted.
 また、上記実施の形態では、導体137,237を非磁性体として構成する場合について記載したが、必要に応じては当該導体を磁性体として構成することもできる。 In the above-described embodiment, the case where the conductors 137 and 237 are configured as nonmagnetic materials has been described. However, the conductors can also be configured as magnetic materials as necessary.
 また、上記実施の形態では、電動スクリュドライバ又は電動ダイグラインダの動力伝達機構に本発明を適用する場合について記載したが、これらの作業工具以外で、駆動モータの動力を先端工具に伝達するための動力伝達機構を有する作業工具に、本発明を適用することもできる。この場合、駆動モータは電動式以外に、エア駆動式のモータとして構成されてもよい。 Moreover, although the case where this invention was applied to the power transmission mechanism of an electric screwdriver or an electric die grinder was described in the said embodiment, in order to transmit the motive power of a drive motor to a tip tool other than these work tools. The present invention can also be applied to a work tool having a power transmission mechanism. In this case, the drive motor may be configured as an air-driven motor other than the electric motor.
101 電動スクリュドライバ
103 本体部
105 モータハウジング
107 ギアハウジング
108 ストッパ
109 ハンドグリップ
109a トリガ
110 駆動モータ
111 駆動モータ
115 モータ軸
117 スピンドル
117a 前端部
117b ビット挿入孔
117c 後端部
117d バネ収容孔
118 鋼球
119 ドライバビット
119a 細径部
121 軸受
123 ロケータ
131 動力伝達機構
133 駆動ギア
133a 対向面
134 磁石
135 駆動軸
135a 前端部
135b 後端部
137 導体
137a 対向面
139 コイルバネ
139a 前端部
139b 後端部
141,142,143,144 軸受
145 ストッパ
201 電動ダイグラインダ
203 本体部
205 モータハウジング
205 ギアハウジング
211 駆動モータ
217 スピンドル
217a 前端部
217b 後端部
218 固定部材
219 砥石
231 動力伝達機構
233 駆動体
233a 対向面
234 磁石
237 導体
237a 対向面
241,242,243 軸受
DESCRIPTION OF SYMBOLS 101 Electric screwdriver 103 Main part 105 Motor housing 107 Gear housing 108 Stopper 109 Hand grip 109a Trigger 110 Drive motor 111 Drive motor 115 Motor shaft 117 Spindle 117a Front end 117b Bit insertion hole 117c Rear end 117d Spring accommodation hole 118 Steel ball 119 Driver bit 119a Small diameter portion 121 Bearing 123 Locator 131 Power transmission mechanism 133 Driving gear 133a Opposing surface 134 Magnet 135 Driving shaft 135a Front end portion 135b Rear end portion 137 Conductor 137a Opposing surface 139 Coil spring 139a Front end portion 139b Rear end portions 141, 142, 143, 144 Bearing 145 Stopper 201 Electric die grinder 203 Main body 205 Motor housing 205 Gear housing 211 Drive motor 217 Spin End 217a Front end 217b Rear end 218 Fixing member 219 Grinding wheel 231 Power transmission mechanism 233 Driver 233a Opposing surface 234 Magnet 237 Conductor 237a Opposing surfaces 241, 242, 243 Bearing

Claims (5)

  1.  駆動モータと、前記駆動モータの動力を先端工具に伝達するための動力伝達機構とを有し、前記先端工具を介して被加工材に対し所定の加工作業を行う作業工具であって、
     前記動力伝達機構は、
     前記駆動モータによって回転駆動される駆動側部材と、
     前記先端工具を保持し、前記先端工具の長軸方向に関し前記駆動側部材から離間して配置され、且つ前記駆動側部材との間で相対回転が許容された被動側部材と、
     前記駆動側部材と前記被動側部材のうちのいずれか一方に設けられる磁石と、
     前記駆動側部材と前記被動側部材のうちの他方に設けられ、前記磁石から所定距離を隔てて配置される導体と、を含み、
     前記磁石及び前記導体が前記所定距離を隔てて配置された状態において、前記被動側部材に対する前記駆動側部材の相対回転動作の際、前記磁石の磁束に起因して前記導体に渦電流が流れることで、前記駆動側部材から前記被動側部材に動力が伝達される構成であることを特徴とする作業工具。
    A work motor having a drive motor and a power transmission mechanism for transmitting the power of the drive motor to a tip tool, and performing a predetermined machining operation on a workpiece through the tip tool,
    The power transmission mechanism is
    A drive side member that is rotationally driven by the drive motor;
    A driven-side member that holds the tip tool, is disposed apart from the drive-side member in the longitudinal direction of the tip tool, and is allowed to rotate relative to the drive-side member;
    A magnet provided on any one of the driving side member and the driven side member;
    A conductor provided on the other of the driving side member and the driven side member and disposed at a predetermined distance from the magnet,
    In a state where the magnet and the conductor are arranged at a predetermined distance, an eddy current flows through the conductor due to the magnetic flux of the magnet during the relative rotation operation of the driving side member with respect to the driven side member. Thus, the working tool is configured to transmit power from the driving side member to the driven side member.
  2.  請求項1に記載の作業工具であって、
     前記導体が非磁性体として構成され、前記駆動側部材及び前記被動側部材は、前記先端工具の長軸方向に相対移動可能とされ、且つ互いに離間する方向に付勢されていることを特徴とする作業工具。
    The work tool according to claim 1,
    The conductor is configured as a non-magnetic material, and the driving side member and the driven side member are relatively movable in a major axis direction of the tip tool and are biased in a direction away from each other. Work tool to do.
  3.  請求項1又は2に記載の作業工具であって、
     当該作業工具がネジ締め作業に用いるネジ締め機として構成され、
     前記動力伝達機構は、更に、前記被動側部材が前記駆動側部材に対して前記先端工具の長軸方向に移動可能となるように前記被動側部材を支持する支持機構と、前記駆動側部材と前記被動側部材とが互いに離間するような付勢力を生じる付勢機構を備え、
     前記被動側部材は、ネジ締め作業時に前記付勢機構の付勢力に抗して前記先端工具とともに前記駆動側部材に近接する方向に押し込まれることによって、前記磁石及び前記導体が前記所定距離を隔てて配置された状態が形成されることを特徴とする作業工具。
    The work tool according to claim 1 or 2,
    The work tool is configured as a screw tightening machine used for screw tightening work,
    The power transmission mechanism further includes a support mechanism that supports the driven member so that the driven member can move in the major axis direction of the tip tool with respect to the driving member, and the driving member. An urging mechanism for generating an urging force that separates the driven side members from each other;
    The driven side member is pushed in a direction close to the driving side member together with the tip tool against the biasing force of the biasing mechanism during the screw tightening operation, so that the magnet and the conductor are separated from each other by the predetermined distance. A working tool characterized in that a state of being arranged is formed.
  4.  請求項3に記載の作業工具であって、
     前記動力伝達機構は、前記駆動側部材に軸受を介して相対回転自在に取付けられたストッパを更に有し、
     前記被動側部材が前記駆動側部材に近接する方向に押し込まれたとき、前記被動側部材の長軸方向の端部が前記ストッパに当接し、これにより前記磁石及び前記導体が前記所定距離を隔てて配置された状態が形成されることを特徴とする作業工具。
    The work tool according to claim 3,
    The power transmission mechanism further includes a stopper attached to the drive side member via a bearing so as to be relatively rotatable,
    When the driven-side member is pushed in a direction approaching the driving-side member, an end of the driven-side member in the long axis direction comes into contact with the stopper, whereby the magnet and the conductor are separated from each other by the predetermined distance. A working tool characterized in that a state of being arranged is formed.
  5.  請求項1に記載の作業工具であって、
     前記駆動側部材は、前記駆動モータのモータ軸に直に連結され、前記被動側部材は、前記先端工具に直に連結された出力軸を構成し、また前記モータ軸と前記出力軸とが同軸上に配置された構成であり、
     前記被動側部材は、前記磁石及び前記導体が前記所定距離を隔てて配置された状態が常時に形成されるように、前記駆動側部材から離間して配置された構成であることを特徴とする作業工具。
    The work tool according to claim 1,
    The drive side member is directly connected to a motor shaft of the drive motor, the driven side member constitutes an output shaft directly connected to the tip tool, and the motor shaft and the output shaft are coaxial. Is the configuration placed above,
    The driven side member is configured to be spaced apart from the driving side member so that the state in which the magnet and the conductor are spaced apart from each other by a predetermined distance is always formed. Work tools.
PCT/JP2011/078961 2010-12-27 2011-12-14 Work tool WO2012090711A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-290454 2010-12-27
JP2010290454A JP2012135844A (en) 2010-12-27 2010-12-27 Work tool

Publications (1)

Publication Number Publication Date
WO2012090711A1 true WO2012090711A1 (en) 2012-07-05

Family

ID=46382824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078961 WO2012090711A1 (en) 2010-12-27 2011-12-14 Work tool

Country Status (2)

Country Link
JP (1) JP2012135844A (en)
WO (1) WO2012090711A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3501753A1 (en) * 2017-12-21 2019-06-26 Guido Valentini Hand guided and/or hand held electric or pneumatic power tool
WO2019167724A1 (en) * 2018-02-27 2019-09-06 株式会社マキタ Screwdriver

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6814979B2 (en) * 2017-02-24 2021-01-20 パナソニックIpマネジメント株式会社 Electric tool
JP6868808B2 (en) * 2017-09-26 2021-05-12 パナソニックIpマネジメント株式会社 Electric tool
JP7122666B2 (en) * 2020-12-04 2022-08-22 パナソニックIpマネジメント株式会社 Electric tool

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253854A (en) * 1992-03-12 1993-10-05 Ryobi Ltd Battery type screw driver
JPH09254046A (en) * 1996-03-26 1997-09-30 Matsushita Electric Works Ltd Electric driver
JP2004291136A (en) * 2003-03-26 2004-10-21 Matsushita Electric Works Ltd Magnetic impact tool
JP2006105210A (en) * 2004-10-01 2006-04-20 Usui Kokusai Sangyo Kaisha Ltd Eddy current coupling device
JP2006162047A (en) * 2004-12-10 2006-06-22 Usui Kokusai Sangyo Kaisha Ltd Control method of magnetic fan clutch
JP2007228735A (en) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd Torque transmission device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253854A (en) * 1992-03-12 1993-10-05 Ryobi Ltd Battery type screw driver
JPH09254046A (en) * 1996-03-26 1997-09-30 Matsushita Electric Works Ltd Electric driver
JP2004291136A (en) * 2003-03-26 2004-10-21 Matsushita Electric Works Ltd Magnetic impact tool
JP2006105210A (en) * 2004-10-01 2006-04-20 Usui Kokusai Sangyo Kaisha Ltd Eddy current coupling device
JP2006162047A (en) * 2004-12-10 2006-06-22 Usui Kokusai Sangyo Kaisha Ltd Control method of magnetic fan clutch
JP2007228735A (en) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd Torque transmission device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3501753A1 (en) * 2017-12-21 2019-06-26 Guido Valentini Hand guided and/or hand held electric or pneumatic power tool
US11325238B2 (en) 2017-12-21 2022-05-10 Guido Valentini Hand guided and/or hand held electric or pneumatic power tool
WO2019167724A1 (en) * 2018-02-27 2019-09-06 株式会社マキタ Screwdriver

Also Published As

Publication number Publication date
JP2012135844A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
WO2012090711A1 (en) Work tool
JP2004291138A (en) Magnetic impact tool
JP2012135845A (en) Work tool
US6841911B2 (en) Machine tool
EP2529895A1 (en) Power tool
US20090183887A1 (en) Power hand tool system with universal flexible shaft and method of operating
US9360064B2 (en) Power tool braking device
JP6403589B2 (en) Work tools
WO2013084655A1 (en) Power tool
US20130288581A1 (en) Portable Machine Tool
CN110325324B (en) Electric tool
US9816572B2 (en) Machine tool deceleration device
EP2402117B1 (en) Oil pulse rotary tool
WO2019150651A1 (en) Electrically powered tool
JP2013144340A (en) Electric power tool
JP5353380B2 (en) Electric tool
JP6952241B2 (en) Electric tool
CN101175610A (en) Motor driving tool machine with principal shaft braking/releasing device
CN101837558A (en) Electromagnetic workpiece clamping device for five-shaft linkage grinder
CN100537151C (en) Rotary tool driven by brushless motor
WO2013084554A1 (en) Electrically powered tool
JP2009072032A (en) Dc motor and electric tool with same
JP2001079725A (en) Tool holder
JP7122666B2 (en) Electric tool
TWM657457U (en) Wear-free blade-shaft braking control device for machine tool and machine tool equipment thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853069

Country of ref document: EP

Kind code of ref document: A1