WO2012090709A1 - Power control apparatus and distributed power supply system - Google Patents
Power control apparatus and distributed power supply system Download PDFInfo
- Publication number
- WO2012090709A1 WO2012090709A1 PCT/JP2011/078927 JP2011078927W WO2012090709A1 WO 2012090709 A1 WO2012090709 A1 WO 2012090709A1 JP 2011078927 W JP2011078927 W JP 2011078927W WO 2012090709 A1 WO2012090709 A1 WO 2012090709A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- distributed
- secondary battery
- output
- superimposed
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/466—Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/30—The power source being a fuel cell
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Definitions
- the present invention relates to a power control apparatus that controls a distributed power supply system and a distributed power supply system including the power control apparatus.
- the output power of various distributed power systems can be configured to reversely flow to the power system via the linkage point for the amount exceeding the load consumption.
- the power reversely flowed to the power system can be sold to the power company.
- the left side and the right side of the dotted line represent the power system side and the customer side (the power system formed in one consumer), respectively.
- the power system includes a power transmission line L (portion indicated by a thick line) connected to the power system at a cooperation point.
- the power transmission line L includes one or a plurality of power transmission lines L.
- a load is connected.
- the total power consumption of each load is defined as power consumption PLOAD .
- the solar cell system 101 and the cogeneration system 102 are respectively connected to the power system via the power transmission line L.
- the solar cell system 101 converts DC power generated by the solar cell 111 into AC power and outputs the AC power to the power transmission line L.
- the solar cell power conditioner 112 (power conditioner) converts the DC power obtained by the power generation of the solar cell 111 into AC and outputs it to the power transmission line L.
- the cogeneration system 102 converts the DC power obtained by the fuel cell 121 into AC power and outputs it to the power transmission line L.
- Cogeneration for power conditioner 122 a DC power obtained by power generation of the fuel cell 121 is converted into AC power, and outputs to the power transmission line L as the output power P FC.
- the cogeneration system 102 uses the exhaust heat in the power generation of the fuel cell 121 as a heat source of a heat pump water heater or a heat source of an air conditioner when performing a heating operation. These devices are referred to as exhaust heat utilization equipment 123.
- connection point B shown in FIG. 2 is downstream from the connection point of the solar cell system 101 (point A shown in FIG. 2).
- a power detection point 104 is provided at a position downstream of the point A in the power transmission line L and upstream of the point B.
- the threshold value TFC is set in the power generator 122 for cogeneration, and when the power P BUY becomes equal to or less than the threshold TFC, the output power P FC is reduced so that this state is eliminated.
- the power P BUY here is expressed by the following formula (1).
- the output power P FC is the power consumption P LOAD threshold value corresponding to that time - so as not to exceed (power P LOAD threshold TFC), said to be limited.
- the present invention is intended to provide a power control apparatus and a distributed power supply system that perform output restriction of a distributed power supply system and can perform the output restriction more appropriately.
- a power control apparatus uses the common coordination point as the power for each of a plurality of distributed power systems connected to a power system via a common interconnection point.
- the output of the distributed power supply system is limited in order from the preset lower priority order.
- the priority order of the secondary battery system is set to the lowest priority order. It is good also as composition to do.
- the priority order may be updated according to predetermined reference information. According to this configuration, it is easy to set the priority setting contents to be adapted to the situation at that time.
- the power control apparatus having the above configuration in which the secondary battery system is configured, more specifically, the priority is based on information on a remaining charge of the secondary battery. It is good also as a structure set based on.
- a power control device having the above configuration in which a cogeneration system having a power generation device is used. More specifically, the priority is a power that can be generated by the power generation device.
- a configuration may be set with reference to any one of the amount of hot water in the hot water storage tank in which hot water heated by the exhaust heat of the power generation device is stored and the temperature of the hot water storage tank.
- the priority order is more specifically described. May be configured with reference to information on the remaining amount of fuel supplied to the power generation device.
- the cogeneration system when the amount of hot water in the hot water tank does not reach a predetermined reference value, the cogeneration system may be set to the highest priority.
- the power control apparatus stores the priorities assigned to a plurality of distributed power supply systems that are linked so as to be able to superimpose AC power on the power system, and superimposes them on the power system from the plurality of distributed power supply systems. It is good also as a structure which outputs the signal which restrict
- the distributed power supply system may be configured to convert at least DC power output from any one of the generated power of the solar battery or the discharged power of the storage battery into AC power and superimpose it on the power system.
- the distributed power supply system is a distributed power supply system that is linked so that AC power can be superimposed on the power system.
- a control unit is provided that suppresses the amount of AC power to be superimposed on the power system when a signal that regulates the amount of AC power to be superimposed is input.
- the distributed power supply system regulates the amount of AC power superimposed on the power system in the distributed power system connected to the power system via a connection point and capable of superimposing AC power.
- a control unit that suppresses the amount of AC power superimposed on the power system when a signal to be input is input.
- the distributed power supply system is ordered with respect to the output restriction of the distributed power supply system, and the output restriction can be performed more appropriately.
- FIG. 1 is an explanatory diagram showing a form of a power system 9 according to the present embodiment.
- the left side and the right side of the dotted line represent the power system side (the power system provided by the power company) and the customer side (the power system 9 formed in one consumer), respectively.
- the consumer is a household or a business entity that has a power sales contract with an electric power company. Electricity trading with electric power companies will be performed separately for each consumer.
- the power system 9 includes a power transmission line L (a portion indicated by a thick line in FIG. 1) connected to a power system (system power supply).
- the power transmission line L is connected to one or a plurality of loads, for example, electric devices used in the customer. These loads operate using power supplied through the power transmission line L, that is, power supplied from a power system or a distributed power system connected to the power transmission line L as a power source.
- the total power consumption of each load may be expressed as power consumption PLOAD .
- the power system 9 includes a solar cell system 1, a cogeneration system (cogeneration system) 2, and a secondary battery system 3 as distributed power supply systems (systems that output power using a distributed power supply). As shown in FIG. 1, these distributed power supply systems are each connected to a power transmission line L and connected to a power system via a common connection point.
- the solar cell system 1 outputs electric power obtained by the solar cell 11 which is one of the distributed power sources to the power transmission line L.
- the solar cell 11 is formed of a solar cell panel or the like, and is a device that generates electric power by photoelectrically converting received sunlight. Further, the solar cell system 1 is provided with a solar cell power conditioner 12.
- the solar cell power conditioner 12 is connected to the power transmission line L, converts the DC power obtained by the power generation of the solar cell 11 into AC, and outputs the AC power toward the power transmission line L. Of this AC power, the power not consumed by the load flows backward to the power system. The amount of power flowing backward can be measured using a power detector (not shown) provided between point A on the power transmission line L and the power system.
- the cogeneration system 2 outputs electric power obtained by the fuel cell 21 that is one of the distributed power sources to the power transmission line L.
- the fuel cell 21 is a power generation device included in the cogeneration system 2, and generates power in a power generation possible range using fuel supplied in advance.
- the cogeneration system 2 is provided with a power generator 22 for cogeneration.
- Cogeneration for power conditioner 22 is connected to a power transmission line L, the DC power obtained by power generation of the fuel cell 21 is converted into AC power and outputs toward the power transmission line L as the output power P FC.
- the cogeneration system 2 is provided with a waste heat utilization facility 23.
- the waste heat utilization facility 23 can be utilized as a part of a heat source such as hot water supply or air conditioning by utilizing the waste heat in the power generation of the fuel cell 21.
- a heat source such as hot water supply or air conditioning
- hot water heated using the exhaust heat of the fuel cell 21 as an auxiliary heat source can be stored in a hot water storage tank 23a provided as one of the facilities.
- the secondary battery system 3 converts the DC power discharged by the secondary battery 31 that is one of the distributed power sources into AC power and outputs the AC power to the power transmission line L.
- the secondary battery 31 can be charged and discharged, and has superior output controllability (responsiveness) compared to the fuel cell 21 and the like. That is, according to the secondary battery 31, a quicker response can be made to a situation where a sudden output change is required.
- the secondary battery system 3 includes a secondary battery power conditioner 32.
- the secondary battery power conditioner 32 is connected to the power transmission line L, converts the DC power output from the secondary battery 31 to AC, and outputs the output power P BAT toward the power transmission line L.
- the secondary battery power conditioner 32 converts the alternating current power supplied from the power transmission line L into direct current and sends the secondary battery 31 to the secondary battery 31 when the secondary battery 31 is charged.
- each distributed power supply system (1 to 3) is supplied to the load via the power transmission line L. Moreover, when the sum total of the output power is excessive with respect to the load, the surplus part flows backward to the power system.
- connection points in the cogeneration system 2 and the secondary battery system 3 (points B and C shown in FIG. 1) with respect to the connection points with the power transmission lines L of the respective distributed power systems. Is provided on the downstream side (the side far from the power system) from the connection point (point A shown in FIG. 1) of the solar cell system 1.
- power detection points (4a, 4b) are provided at positions downstream of the point A and upstream of the points B and C.
- An electric power detection point (not shown) is provided between the point A and the system power supply so that the entire current flowing from the customer side to the electric power system can be detected.
- the electric power sales power can be obtained from the entire current, and is usually attached to the building as a power sales meter.
- the power P BUY represents the purchased power (the magnitude of the purchased power) in the power system 9 when the solar cell system 1 is not generating power.
- the power P BUY has a negative value, it can be said that the output power of the cogeneration system 2 or the secondary battery system 3 is flowing backward in the power system. Therefore, the amount of electric power in the reverse power flow can be controlled by changing the conversion amounts of the power generator 22 for cogeneration and the power converter 32 for the secondary battery.
- the fuel cell 21 is suitable for long-period adjustment because it requires time to change the amount of power generation, and the secondary battery 31 is suitable for short-period adjustment because it does not require time to change the amount of power generation.
- the power output to the power transmission line L is limited with a margin of.
- a threshold TFC corresponding to the cogeneration system 2 is set in the cogeneration power conditioner 22 by the controller 5 described later.
- the power generator 22 for cogeneration outputs power P so that this state is canceled when the power P BUY becomes equal to or less than the threshold value TFC (so that the power P BUY exceeds the threshold value TFC almost without excess or shortage). Restrict FC .
- a threshold value TBAT corresponding to the secondary battery system 3 is set in the secondary battery power conditioner 32 by the controller 5 described later. Then, the secondary battery power conditioner 32 outputs power P BAT so that this state is canceled when the power PBUY is equal to or less than the threshold value TBAT (so that the power P BUY exceeds the threshold value TBAT substantially without excess or shortage). To limit.
- the power system 9 is provided with a controller 5.
- the controller 5 is connected to each power conditioner of the distributed power supply system (in this embodiment, the cogeneration power conditioner 22 and the secondary battery power conditioner 32). The controller 5 can recognize which power conditioner itself has the priority order for setting the power output limit.
- the controller 5 determines the priority order for each of the cogeneration system 2 and the secondary battery system 3 based on the predetermined information, and sets the priority order for each power conditioner (22, 32).
- This "priority order" is an order set from the viewpoint of the importance or controllability of each distributed power supply system in the present situation, and it is set to a higher order as it is undesirable to limit the output. is there. It should be noted that various forms can be adopted as to what information the controller 5 determines the priority based on what information. Some specific examples of the form will be described again.
- the priority order is set by setting the above-described threshold values (TFC, TBAT) to each power conditioner (22, 32). It has come to be. That is, the controller 5 sets a higher threshold value in order from the distributed power supply system with the lowest priority. For example, when the priority order of the secondary battery system 3 is lower than that of the cogeneration system 2, the threshold value TFC for the cogeneration system 2 is set to 100W, and the threshold value TBAT for the secondary battery system 3 is set to 200W.
- the controller 5 may have a function of adjusting the output power of the cogeneration system 2 or the secondary battery system 3 in accordance with a user instruction or the like in addition to the function of setting a threshold value for each distributed power supply system.
- the controller 5 has a function of controlling the cogeneration system 2 and the secondary battery system 3 together with the cogeneration power conditioner 22 and the secondary battery power conditioner 32. That is, the controller 5, the cogeneration power conditioner 22, and the secondary battery power conditioner 32 form a power control device 6 that controls the cogeneration system 2 and the secondary battery system 3 as a whole. Further, the controller 5 is configured to be able to exchange signals with the outside of the power system 9 and can set respective threshold values from the outside. In addition, for easy explanation, the threshold value is set by the controller 5 in the cogeneration system 2 and the secondary battery system 3, but the threshold value may be set in the AC output of the solar cell power conditioner 12 of the solar cell system 1. The AC output is controlled at a power detection point between the point A and the system power supply.
- the controller 5 stores the priorities assigned to the plurality of distributed power systems linked so that the AC power can be superimposed on the power system, and the AC power to be superimposed on the power system from the plurality of distributed power systems. Based on the magnitude of the sum and a predetermined threshold, a signal for limiting the amount of AC power to be superimposed on the power system according to the priority order is output. Furthermore, this distributed power supply system further includes a configuration in which DC power output from at least one of the generated power of the solar battery or the discharged power of the storage battery is converted into AC power and superimposed on the power system.
- the controller 5 performs output restriction on these distributed power supply systems so that the output power in the cogeneration system 2 and the secondary battery system 3 does not exceed the threshold value and is supplied to the power transmission line L. Moreover, output limitation is performed so that the output power in the solar cell system 1 does not exceed the threshold and is supplied to the power system.
- output limitation is performed so that the output power in the solar cell system 1 does not exceed the threshold and is supplied to the power system.
- the threshold TFC is set to 100 W and the threshold TBAT is set to 200 W. From this, it can be said that the secondary battery system 3 has a lower priority than the cogeneration system 2.
- the output power P FC is 500 W
- the output power P BAT is 500 W
- the power consumption P LOAD (sum of power consumption of each load) is 2000 W (for convenience, the “initial state”)
- the power consumption P LOAD Suppose the case of decrease.
- the power P BUY is 1000 W, which exceeds the threshold value TFC and the threshold value TBAT, so that the output of the cogeneration system 2 and the secondary battery system 3 is not limited.
- the output power P BAT is finally limited to less than 300 W (for example, 299 W), and the state where the power P BUY exceeds the threshold value TBAT is maintained.
- the output power P FC is not particularly limited, and remains in the initial state of 500 W.
- the output power P BAT is limited so that the power P BUY does not become equal to or less than the threshold value TBAT.
- the output power P BAT is finally limited to substantially zero, and the output power P BAT cannot be reduced any further.
- the power P BUY decreases to the threshold value TFC. Therefore, as the power consumption P LOAD further decreases, the output power P FC is limited so that the power P BUY does not become equal to or less than the threshold value TFC. As a result, finally, the output power P BAT is limited to substantially zero, the output power P FC is limited to less than 400 W (for example, 399 W), and the state where the power P BUY exceeds the threshold TFC is maintained.
- the output of the secondary battery system 3 is limited until the sum of the output powers of the cogeneration system 2 and the secondary battery system 3 does not exceed the threshold value. Yes.
- the output of the secondary battery system 3 is first limited until the sum of the output powers of the cogeneration system 2 and the secondary battery system 3 does not exceed the threshold, and then the cogeneration is performed. System 2 output is limited.
- the power control device 6 has a low priority until the sum of the output powers of the cogeneration system 2 and the secondary battery system 3 does not exceed a threshold value (which varies depending on the power consumption P LOAD at that time). In this order, the output of the distributed power supply system is limited.
- This threshold value is power consumption P LOAD -threshold value TBAT until the output power P BAT becomes substantially zero, and thereafter power consumption P LOAD -threshold value TFC.
- the controller 5 advances the output restriction for only one distributed power supply system.
- the output restriction is similarly applied to only one distributed power supply system with the next lowest priority while maintaining this restricted state. Will continue.
- the power control device 6 performs such an operation until the total output power does not exceed the threshold value.
- the output power is controlled so that the AC output of the solar cell system 1 does not exceed the set threshold value.
- the generated power of the solar cell system 1 is supplied to the power system until this threshold is reached, and at the same time, the generated power of the cogeneration system 2 and the secondary battery system 3 is not supplied to the power system. Therefore, by changing the threshold value set in the solar cell system 1, it is possible to control the AC power that is reversely flowed to the power system. If a signal for setting the threshold value is sent from the outside to the controller 5, this reverse power flow is externally transmitted. The amount of power can be changed.
- a distributed power system including such a solar cell system 1 is linked to an electric power system so that AC power can be superimposed, and is superimposed on the electric power system according to the amount of electric power superimposed on the electric power system from a plurality of distributed power systems.
- a control unit that suppresses the amount of AC power superimposed on the power system is provided.
- the distributed power supply system including such a solar cell system 1 is connected to the power system via a connection point so that AC power can be superimposed, and regulates the amount of AC power superimposed on the power system.
- a signal is input, it has a control unit that suppresses the amount of AC power superimposed on the power system.
- the controller 5 sets priority for each of the distributed power supply systems based on the predetermined information.
- the mode in which the controller 5 sets the priority order (or the setting content is updated) the mode will be described below by taking the first to fourth modes as examples.
- the first form can be adopted when one of the plurality of distributed power supply systems is a secondary battery system (a secondary battery is used as a distributed power supply).
- the first form is a form in which the priority order of the secondary battery system is fixedly set to the lowest priority order. That is, in the power system 9, the controller 5 of the first form fixedly sets the priority order of the secondary battery system 3 to a lower order than the cogeneration system 2.
- the solar cell system 1 is not limited.
- the secondary battery 31 is superior in output controllability (responsiveness) compared to the fuel cell 21 and the like. That is, according to the secondary battery 31, even when a situation in which a sudden output change is required (for example, a situation in which the power consumption P LOAD suddenly decreases), a quicker response can be made. ing. Therefore, according to the first embodiment, the secondary battery system 3 is first subjected to output restriction, and the characteristics of the secondary battery 31 can be utilized. Furthermore, it is possible to extend the life of the fuel cell 21 by preventing the cogeneration system 2 from being subject to output restriction as much as possible and reducing the burden on the fuel cell 21.
- the power control device 6 can moderately suppress the output of the fuel cell 21 while the priority order of the secondary battery system 3 is set to a lower order than the cogeneration system 2. Also good. In this way, the output of the fuel cell 21 can be gradually changed while allowing the secondary battery system 3 to respond quickly to fine fluctuations in the power consumption of the load. As a result, it is possible to extend the life of the fuel cell 21 by reducing the burden on the fuel cell 21.
- the second form can be adopted when one of the plurality of distributed power supply systems is a secondary battery system (a secondary battery is used as a distributed power supply).
- a secondary battery is used as a distributed power supply.
- information on the remaining charge of the secondary battery is acquired as reference information, and the setting contents of the priority order are updated according to this reference information.
- the controller 5 of the second form monitors the remaining charge of the secondary battery 31.
- the controller 5 sets the priority order of the secondary battery system 3 to a lower order than the cogeneration system 2 while the remaining charge amount is less than or equal to the predetermined reference amount.
- the priority order of the battery system 3 is set higher than the cogeneration system 2.
- the solar cell system 1 is not limited.
- the secondary battery system 3 is first subjected to output restriction, It is possible to prevent the cogeneration system 2 from being subject to output restriction as much as possible.
- the secondary battery system 3 should not be subject to output restriction as much as possible. Is possible.
- the third mode may be employed when one of the plurality of distributed power supply systems is a cogeneration system (a power generation device such as a fuel cell or a gas engine is used as a distributed power supply).
- the third mode is information on the cogeneration system (for example, the power that can be generated by the power generator, the amount of hot water in the hot water tank in which hot water warmed by the exhaust heat of the power generator is stored, and the temperature of the hot water tank) Is set as reference information, and the priority setting content is updated according to the reference information.
- the controller 5 of the third form monitors the amount (or temperature) of hot water in the hot water tank 23a.
- the controller 5 sets the priority order of the cogeneration system 2 to a higher or higher order than the secondary battery system 3 while the amount of hot water (or temperature) is below a predetermined reference amount, and exceeds the reference amount.
- the priority order of the cogeneration system 2 is set lower than that of the secondary battery system 3.
- the solar cell system 1 is not limited.
- the cogeneration system It is possible to prevent 2 from being subject to output restriction as much as possible.
- the amount of hot water (or temperature) in the hot water storage tank 23a is relatively large, that is, a sufficient amount of hot water is secured in the hot water storage tank 23a (therefore, it is less necessary to supply hot water to the hot water storage tank 23a from now on).
- the importance of the battery 21 is considered to be low, it is possible to make the cogeneration system 2 subject to output restriction first and to prevent the secondary battery system 3 from being subject to output restriction as much as possible.
- the fourth mode can be employed when one of the plurality of distributed power systems is a cogeneration system (a power generation apparatus that generates power using fuel supplied in advance is a distributed power source).
- a cogeneration system a power generation apparatus that generates power using fuel supplied in advance is a distributed power source.
- information on the remaining amount of fuel supplied to the power generation apparatus is acquired as reference information, and the priority setting content is updated according to this reference information.
- the controller 5 of the fourth form monitors the remaining amount of fuel supplied to the fuel cell 21.
- the controller 5 sets the priority of the cogeneration system 2 to a lower order than the secondary battery system 3 while the remaining amount is equal to or less than the predetermined reference amount, and the cogeneration system 2 while the remaining amount exceeds the reference amount. 2 is set higher than the secondary battery system 3.
- the solar cell system is not limited.
- the cogeneration system 2 is first subjected to output restriction and the secondary battery system 3 can be formed. As a result, it is possible to prevent the output from being restricted.
- the remaining amount of fuel is relatively small (usually, the importance of the fuel cell 21 is considered to be low)
- the cogeneration system 2 is first subjected to output restriction and the secondary battery system 3 can be formed.
- the remaining amount of fuel is relatively large (usually, the importance of the fuel cell 21 is considered high)
- the power control device 6 sets priorities for each of the solar cell system 1, the cogeneration system 2, and the secondary battery system 3 (a plurality of distributed power supply systems) linked to the power system.
- a functional unit priority setting unit
- a functional unit power limiting unit that limits the output of the distributed power supply system so that the sum of the outputs of the cogeneration system 2 and the secondary battery system 3 does not exceed the respective thresholds. It is equipped with.
- the power limiting unit limits the output of the distributed power supply system in order from the lowest priority until the output does not exceed the above threshold.
- the controller 5 regarding the output restriction of the solar cell system 1, the cogeneration system 2, and the secondary battery system 3, it is determined in advance which distributed power supply system this output restriction is executed first. Can be performed more appropriately.
- the present invention can be similarly applied even when the number of distributed power supply systems subject to output restriction is three or more.
- the present invention can be used for a power system having a plurality of distributed power supply systems.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Provided is a power control apparatus for restricting the output of a plurality of distributed power supply systems to control the total output power, wherein the restriction of output can be executed more appropriately. The power control apparatus is configured so that priority is set for each of a plurality of distributed power supply systems connected to a power grid, and the output of each of the plurality of distributed power supply systems is restricted so that the total output of the plurality of distributed power supply systems will not exceed a threshold value, that is, the output of the plurality of distributed power supply systems is restricted one-by-one, starting from a power supply system having low priority, until a state wherein the total output does not exceed the threshold value is achieved.
Description
本発明は、分散電源システムを制御する電力制御装置および電力制御装置を備える分散電源システムに関する。
The present invention relates to a power control apparatus that controls a distributed power supply system and a distributed power supply system including the power control apparatus.
近年、各需要家において、分散電源システムを電力系統に連系させて利用するケースが増えている(例えば、特許文献1参照)。分散電源システムの種類としては、一例として、太陽電池が用いられている太陽電池システム、二次電池が用いられている二次電池システム、および、燃料電池またはガスエンジン等が用いられているコジェネレーションシステム(コジェネシステム)が挙げられる。
In recent years, there is an increasing number of cases in which each customer uses a distributed power supply system linked to a power system (for example, see Patent Document 1). As an example of the distributed power supply system, as an example, a solar cell system in which a solar cell is used, a secondary battery system in which a secondary battery is used, and a cogeneration in which a fuel cell or a gas engine is used System (cogeneration system).
各種の分散電源システムの出力電力については、負荷での消費を超える分は連携点を介して電力系統に逆潮流させるように構成することが可能である。特に太陽電池システムでは、電力系統へ逆潮流させた電力を電力会社へ売電することができる。
The output power of various distributed power systems can be configured to reversely flow to the power system via the linkage point for the amount exceeding the load consumption. In particular, in the solar cell system, the power reversely flowed to the power system can be sold to the power company.
しかしながら電力系統の運用上、分散電源システムから電力系統へ逆潮流させる電力を抑制する必要がある場合がある。
However, in the operation of the power system, there is a case where it is necessary to suppress the power that flows backward from the distributed power system to the power system.
そのため、分散電源システムによっては、出力電力の逆潮流が行われないようにしているものもあり、その一例について、図2を参照しながら、以下に説明する。
For this reason, some distributed power supply systems prevent output power from flowing backward, and an example thereof will be described below with reference to FIG.
図2において、点線の左側および右側が、それぞれ、電力系統側および需要家側(一需要家において形成された電力システム)を表している。図2に示すように、当該電力システムは、電力系統に連携点で接続されている電力伝送ラインL(太線で示す部分)を有しており、この電力伝送ラインLには、一または複数の負荷が接続される。なお各負荷の消費電力の総和を、消費電力PLOADとする。
In FIG. 2, the left side and the right side of the dotted line represent the power system side and the customer side (the power system formed in one consumer), respectively. As shown in FIG. 2, the power system includes a power transmission line L (portion indicated by a thick line) connected to the power system at a cooperation point. The power transmission line L includes one or a plurality of power transmission lines L. A load is connected. The total power consumption of each load is defined as power consumption PLOAD .
また当該電力システムにおいては、分散電源システムとして、太陽電池システム101およびコジェネシステム102が、それぞれ電力伝送ラインLを介して電力系統に連系している。
Further, in the power system, as the distributed power system, the solar cell system 101 and the cogeneration system 102 are respectively connected to the power system via the power transmission line L.
太陽電池システム101は、太陽電池111が発電する直流電力を、交流電力に変換して電力伝送ラインLへ出力する。太陽電池用パワコン112(パワーコンディショナ)は、太陽電池111の発電によって得られた直流電力を交流に変換し、電力伝送ラインLに向けて出力する。
The solar cell system 101 converts DC power generated by the solar cell 111 into AC power and outputs the AC power to the power transmission line L. The solar cell power conditioner 112 (power conditioner) converts the DC power obtained by the power generation of the solar cell 111 into AC and outputs it to the power transmission line L.
コジェネシステム102は、燃料電池121によって得られる直流電力を、交流電力に変換して電力伝送ラインLへ出力する。コジェネ用パワコン122は、燃料電池121の発電によって得られた直流電力を交流電力に変換し、出力電力PFCとして電力伝送ラインLへ出力する。なお、コジェネシステム102は、燃料電池121の発電における排熱を、ヒートポンプ式給湯器の熱源または暖房運転をする際の空調機の熱源に用いている。これらの機器を排熱利用設備123と称する。
The cogeneration system 102 converts the DC power obtained by the fuel cell 121 into AC power and outputs it to the power transmission line L. Cogeneration for power conditioner 122, a DC power obtained by power generation of the fuel cell 121 is converted into AC power, and outputs to the power transmission line L as the output power P FC. In addition, the cogeneration system 102 uses the exhaust heat in the power generation of the fuel cell 121 as a heat source of a heat pump water heater or a heat source of an air conditioner when performing a heating operation. These devices are referred to as exhaust heat utilization equipment 123.
なお、各分散電源システムの電力伝送ラインLとの接続点に関し、コジェネシステム102の接続点(図2に示すB点)は、太陽電池システム101の接続点(図2に示すA点)より下流側(電力系統から遠い側)に設けられている。そして電力伝送ラインLにおけるA点より下流側であって、B点より上流側の位置には、電力検出ポイント104が設けられている。
In addition, regarding the connection point with the power transmission line L of each distributed power supply system, the connection point of the cogeneration system 102 (point B shown in FIG. 2) is downstream from the connection point of the solar cell system 101 (point A shown in FIG. 2). On the side (the side far from the power system). A power detection point 104 is provided at a position downstream of the point A in the power transmission line L and upstream of the point B.
電力検出ポイント104における電力(検出値)である電力PBUYの情報は、コジェネ用パワコン122に伝送されるようになっている。また、コジェネ用パワコン122は、閾値TFCが設定されており、電力PBUYが閾値TFC以下となったとき、この状態が解消されるように出力電力PFCを減らすようになっている。
Information on the power P BUY that is the power (detected value) at the power detection point 104 is transmitted to the power generator 122 for cogeneration. Moreover, the threshold value TFC is set in the power generator 122 for cogeneration, and when the power P BUY becomes equal to or less than the threshold TFC, the output power P FC is reduced so that this state is eliminated.
なおここでの電力PBUYは、次の数式(1)式で表される。
The power P BUY here is expressed by the following formula (1).
このことから図2に示す電力システムにおいて、出力電力PFCは、そのときの消費電力PLOADに応じた閾値(消費電力PLOAD-閾値TFC)を超えないように、制限されると言える。
In the power system shown in FIG. 2 Therefore, the output power P FC is the power consumption P LOAD threshold value corresponding to that time - so as not to exceed (power P LOAD threshold TFC), said to be limited.
ところで今後、深夜電力利用の為に二次電池が普及すると、同じ需要家において、コジェネシステムと二次電池システムの両方を分散電源システムとして用いるケースが増えると予想され、同じ需要家において分散電源システムが複数設けられるケースが増えると予想される。
By the way, if secondary batteries become widespread for the use of late-night power, the use of both cogeneration systems and secondary battery systems as a distributed power system is expected to increase in the same consumer. It is expected that more cases will be provided.
ここで、分散電源システムが複数設けられる場合であっても、上記した電力システムに準じた形態を採用し、これらの分散電源システムの出力を制御することは可能である。すなわち、これらの分散電源システムの出力の総和が閾値を超えないように、当該分散電源システムの発電能力を制御することが可能である。
Here, even when a plurality of distributed power supply systems are provided, it is possible to adopt a form according to the above-described power system and control the outputs of these distributed power supply systems. That is, it is possible to control the power generation capability of the distributed power supply system so that the sum of the outputs of these distributed power supply systems does not exceed the threshold value.
しかし、この場合、出力制限がどの分散電源システムから先に実行されるか(出力制限の実行順序)が決まっていなければ、出力制限の実行に際して混乱が生じ易く、また出力制限の動作が複雑になること等が懸念される。また分散電源システムの種類によって、出力制限の行い易さ等に関わる特性が異なるため、これを考慮して出力制限の実行順序が決められていれば、出力制限をより効率的に行うことが可能となる。
However, in this case, unless the distributed power supply system in which the output restriction is executed first (the execution order of the output restriction) is not determined, confusion is likely to occur during the execution of the output restriction, and the operation of the output restriction is complicated. There is concern about becoming. In addition, characteristics related to ease of output restriction differ depending on the type of distributed power supply system, so if the execution order of output restriction is determined in consideration of this, output restriction can be performed more efficiently. It becomes.
本発明は上記した問題に鑑み、分散電源システムの出力制限を行うものであって、当該出力制限をより適切に行うことが可能となる電力制御装置および分散電源システムの提供を目的とする。
In view of the problems described above, the present invention is intended to provide a power control apparatus and a distributed power supply system that perform output restriction of a distributed power supply system and can perform the output restriction more appropriately.
上記目的を達成するため、本発明に係る電力制御装置は、電力系統に共通の連系点を介して接続されている複数の分散電源システムの各々に対して、前記共通の連携点を前記電力系統へ流れる電力が閾値を超えないように、予め設定された優先順位が低い方から順に、前記分散電源システムの出力を制限する構成とする。
In order to achieve the above object, a power control apparatus according to the present invention uses the common coordination point as the power for each of a plurality of distributed power systems connected to a power system via a common interconnection point. In order to prevent the power flowing to the system from exceeding the threshold value, the output of the distributed power supply system is limited in order from the preset lower priority order.
本構成によれば、複数の分散電源システムの出力制限に関し、この出力制限がどの分散電源システムから先に実行されるかが予め決められるため、当該出力制限をより適切に行うことが可能となる。
According to this configuration, regarding the output restriction of a plurality of distributed power supply systems, it is determined in advance which distributed power supply system this output restriction is executed first, so that the output restriction can be performed more appropriately. .
また、前記複数の分散電源システムのうちの一つが、二次電池システムである上記構成の電力制御装置として、より具体的には、前記二次電池システムの優先順位を、最も低い優先順位に設定する構成としてもよい。
In addition, as the power control device having the above configuration in which one of the plurality of distributed power systems is a secondary battery system, more specifically, the priority order of the secondary battery system is set to the lowest priority order. It is good also as composition to do.
また上記構成において、前記優先順位を、予め決められた参照情報に応じて、更新する構成としてもよい。本構成によれば、優先順位の設定内容を、そのときの状況に適応したものとすることが容易となる。
Further, in the above configuration, the priority order may be updated according to predetermined reference information. According to this configuration, it is easy to set the priority setting contents to be adapted to the situation at that time.
また、前記複数の分散電源システムのうちの一つが、二次電池システムである上記構成の電力制御装置として、より具体的には、前記優先順位は、前記二次電池の充電残量の情報に基づいて設定される構成としてもよい。
Further, as one of the plurality of distributed power supply systems, the power control apparatus having the above configuration in which the secondary battery system is configured, more specifically, the priority is based on information on a remaining charge of the secondary battery. It is good also as a structure set based on.
また、前記複数の分散電源システムのうちの一つが、発電装置を有したコジェネレーションシステムである上記構成の電力制御装置として、より具体的には、前記優先順位は、前記発電装置の発電可能電力、前記発電装置の排熱によって温められた湯が貯められる貯湯槽の湯量、および、前記貯湯槽の温度のうちの何れかの情報を参照して設定される構成としてもよい。
Moreover, as one of the plurality of distributed power systems, a power control device having the above configuration in which a cogeneration system having a power generation device is used. More specifically, the priority is a power that can be generated by the power generation device. A configuration may be set with reference to any one of the amount of hot water in the hot water storage tank in which hot water heated by the exhaust heat of the power generation device is stored and the temperature of the hot water storage tank.
また、前記複数の分散電源システムのうちの一つが、供給された燃料を用いて発電する発電装置を有したコジェネレーションシステムである上記構成の電力制御装置として、より具体的には、前記優先順位は、前記発電装置に供給された燃料の残量の情報を参照して設定される構成としてもよい。
More specifically, as the power control device having the above configuration, in which one of the plurality of distributed power supply systems is a cogeneration system having a power generation device that generates power using supplied fuel, the priority order is more specifically described. May be configured with reference to information on the remaining amount of fuel supplied to the power generation device.
また上記構成において、前記貯湯槽の湯量が予め決められた基準値に達していないときは、前記コジェネレーションシステムの優先順位が最も高い優先順位に設定される構成としてもよい。
In the above configuration, when the amount of hot water in the hot water tank does not reach a predetermined reference value, the cogeneration system may be set to the highest priority.
また、本発明に係る電力制御装置は、電力系統に交流電力を重畳可能に連携された複数の分散電源システムに付された優先順位を記憶し、これら複数の分散電源システムから前記電力系統に重畳される交流電力の総和と予め定めた閾値との大小に基づいて前記優先順位に応じて前記電力系統に重畳する交流電力の量を制限する信号を出力する構成としてもよい。
In addition, the power control apparatus according to the present invention stores the priorities assigned to a plurality of distributed power supply systems that are linked so as to be able to superimpose AC power on the power system, and superimposes them on the power system from the plurality of distributed power supply systems. It is good also as a structure which outputs the signal which restrict | limits the quantity of the alternating current power superimposed on the said electric power system according to the said priority based on the magnitude of the sum total of the alternating current power performed, and a predetermined threshold value.
また上記構成において、前記分散電源システムは、少なくとも太陽電池の発電電力または蓄電池の放電電力のいずれか一方から出力される直流電力を交流電力に変換して前記電力系統に重畳する構成としてもよい。
In the above configuration, the distributed power supply system may be configured to convert at least DC power output from any one of the generated power of the solar battery or the discharged power of the storage battery into AC power and superimpose it on the power system.
また、本発明に係る分散電源システムは、電力系統に交流電力を重畳可能に連携された分散電源システムにおいて、複数の分散電源システムから前記電力系統に重畳される電力量に応じて前記電力系統に重畳される交流電力の量を規制する信号を入力した際に前記電力系統へ重畳する交流電力の量を抑制する制御部を有する構成とする。
Moreover, the distributed power supply system according to the present invention is a distributed power supply system that is linked so that AC power can be superimposed on the power system. A control unit is provided that suppresses the amount of AC power to be superimposed on the power system when a signal that regulates the amount of AC power to be superimposed is input.
また、本発明に係る分散電源システムは、電力系統に連系点を介して接続されて交流電力を重畳可能に成された分散電源システムにおいて、前記電力系統に重畳される交流電力の量を規制する信号を入力した際に前記電力系統へ重畳する交流電力の量を抑制する制御部を有する構成とする。
The distributed power supply system according to the present invention regulates the amount of AC power superimposed on the power system in the distributed power system connected to the power system via a connection point and capable of superimposing AC power. A control unit that suppresses the amount of AC power superimposed on the power system when a signal to be input is input.
上述した通り、本発明に係る電力制御装置又は分散電源システムによれば、分散電源システムの出力制限に関し、分散電源システムに順序付けがされており出力制限をより適切に行うことが可能となる。
As described above, according to the power control device or the distributed power supply system of the present invention, the distributed power supply system is ordered with respect to the output restriction of the distributed power supply system, and the output restriction can be performed more appropriately.
本発明の実施形態について、各図面を参照しながら以下に説明する。
Embodiments of the present invention will be described below with reference to the drawings.
[電力システムの構成等について]
図1は、本実施形態に係る電力システム9の形態を示す説明図である。図1において、点線の左側および右側が、それぞれ、電力系統側(電力会社が提供している電力系統)および需要家側(一需要家において形成された電力システム9)を表している。なお、需要家は、電力会社との電力売買契約を結んでいる家庭または事業体などである。電力会社との電力売買は、需要家ごとに別個に行われることになる。 [About power system configuration]
FIG. 1 is an explanatory diagram showing a form of apower system 9 according to the present embodiment. In FIG. 1, the left side and the right side of the dotted line represent the power system side (the power system provided by the power company) and the customer side (the power system 9 formed in one consumer), respectively. The consumer is a household or a business entity that has a power sales contract with an electric power company. Electricity trading with electric power companies will be performed separately for each consumer.
図1は、本実施形態に係る電力システム9の形態を示す説明図である。図1において、点線の左側および右側が、それぞれ、電力系統側(電力会社が提供している電力系統)および需要家側(一需要家において形成された電力システム9)を表している。なお、需要家は、電力会社との電力売買契約を結んでいる家庭または事業体などである。電力会社との電力売買は、需要家ごとに別個に行われることになる。 [About power system configuration]
FIG. 1 is an explanatory diagram showing a form of a
図1に示すように、電力システム9は、電力系統(系統電源)に接続されている電力伝送ラインL(図1に太線で示す部分)を有している。電力伝送ラインLには、一または複数の負荷、例えばその需要家において利用される電気機器が接続される。これらの負荷は、電力伝送ラインLを通じて供給される電力、つまり電力伝送ラインLに接続された電力系統または分散電源システムから供給される電力を、電源として用いて動作する。なお、以下の説明において、各負荷の消費電力の総和を、消費電力PLOADと表すことがある。
As illustrated in FIG. 1, the power system 9 includes a power transmission line L (a portion indicated by a thick line in FIG. 1) connected to a power system (system power supply). The power transmission line L is connected to one or a plurality of loads, for example, electric devices used in the customer. These loads operate using power supplied through the power transmission line L, that is, power supplied from a power system or a distributed power system connected to the power transmission line L as a power source. In the following description, the total power consumption of each load may be expressed as power consumption PLOAD .
また、電力システム9は、分散電源システム(分散電源を用いて電力を出力するシステム)として、太陽電池システム1、コジェネレーションシステム(コジェネシステム)2、および二次電池システム3を有している。これらの分散電源システムは、図1に示すように、それぞれ電力伝送ラインLに接続され、共通の連系点を介して電力系統に連系して接続されている。
The power system 9 includes a solar cell system 1, a cogeneration system (cogeneration system) 2, and a secondary battery system 3 as distributed power supply systems (systems that output power using a distributed power supply). As shown in FIG. 1, these distributed power supply systems are each connected to a power transmission line L and connected to a power system via a common connection point.
太陽電池システム1は、分散電源の一つである太陽電池11によって得られる電力を、電力伝送ラインLへ出力する。太陽電池11は、太陽電池パネルなどから形成されており、受光した太陽光を光電変換することにより発電を行う装置である。また、太陽電池システム1には、太陽電池用パワコン12が設けられている。太陽電池用パワコン12は、電力伝送ラインLに接続されており、太陽電池11の発電によって得られた直流電力を交流に変換し、電力伝送ラインLに向けて出力する。この交流の電力のうち負荷で消費されなかった電力は、電力系統へ逆潮流するものである。この逆潮流する電力の量は電力伝送ラインL上のA点と電力系統との間に設けられる電力検出器(図示せず)を用いて測定することができる。
The solar cell system 1 outputs electric power obtained by the solar cell 11 which is one of the distributed power sources to the power transmission line L. The solar cell 11 is formed of a solar cell panel or the like, and is a device that generates electric power by photoelectrically converting received sunlight. Further, the solar cell system 1 is provided with a solar cell power conditioner 12. The solar cell power conditioner 12 is connected to the power transmission line L, converts the DC power obtained by the power generation of the solar cell 11 into AC, and outputs the AC power toward the power transmission line L. Of this AC power, the power not consumed by the load flows backward to the power system. The amount of power flowing backward can be measured using a power detector (not shown) provided between point A on the power transmission line L and the power system.
コジェネシステム2は、分散電源の一つである燃料電池21によって得られる電力を、電力伝送ラインLへ出力する。燃料電池21は、コジェネシステム2が有する発電装置であり、予め供給された燃料を用いて、発電可能な範囲での発電を行う。
The cogeneration system 2 outputs electric power obtained by the fuel cell 21 that is one of the distributed power sources to the power transmission line L. The fuel cell 21 is a power generation device included in the cogeneration system 2, and generates power in a power generation possible range using fuel supplied in advance.
また、コジェネシステム2には、コジェネ用パワコン22が設けられている。コジェネ用パワコン22は電力伝送ラインLに接続されており、燃料電池21の発電によって得られた直流電力を交流電力に変換し、出力電力PFCとして電力伝送ラインLに向けて出力する。
In addition, the cogeneration system 2 is provided with a power generator 22 for cogeneration. Cogeneration for power conditioner 22 is connected to a power transmission line L, the DC power obtained by power generation of the fuel cell 21 is converted into AC power and outputs toward the power transmission line L as the output power P FC.
また、コジェネシステム2には、排熱利用設備23が設けられている。排熱利用設備23は、燃料電池21の発電における排熱を利用して、給湯または空調などの熱源の一部として利用することを可能とする。排熱利用設備23によれば、例えば燃料電池21の排熱を補助熱源として温められた湯を、当該設備の一つとして設けられている貯湯槽23aに貯めることが可能となっている。
In addition, the cogeneration system 2 is provided with a waste heat utilization facility 23. The waste heat utilization facility 23 can be utilized as a part of a heat source such as hot water supply or air conditioning by utilizing the waste heat in the power generation of the fuel cell 21. According to the exhaust heat utilization facility 23, for example, hot water heated using the exhaust heat of the fuel cell 21 as an auxiliary heat source can be stored in a hot water storage tank 23a provided as one of the facilities.
二次電池システム3は、分散電源の一つである二次電池31が放電する直流電力を交流電力に変換して、電力伝送ラインLへ出力する。二次電池31は充放電が可能となっており、また、燃料電池21などに比べ、出力の制御性(応答性)に優れている。すなわち二次電池31によれば、急な出力変化が要求される状況にも、これに対してより迅速な応答が可能となっている。
The secondary battery system 3 converts the DC power discharged by the secondary battery 31 that is one of the distributed power sources into AC power and outputs the AC power to the power transmission line L. The secondary battery 31 can be charged and discharged, and has superior output controllability (responsiveness) compared to the fuel cell 21 and the like. That is, according to the secondary battery 31, a quicker response can be made to a situation where a sudden output change is required.
また二次電池システム3には、二次電池用パワコン32が設けられている。二次電池用パワコン32は、電力伝送ラインLに接続されており、二次電池31から出力される直流電力を交流に変換し、出力電力PBATとして電力伝送ラインLに向けて出力する。また、二次電池用パワコン32は、二次電池31の充電時には、電力伝送ラインLから供給される交流電力を直流に変換し、二次電池31に送出する。
The secondary battery system 3 includes a secondary battery power conditioner 32. The secondary battery power conditioner 32 is connected to the power transmission line L, converts the DC power output from the secondary battery 31 to AC, and outputs the output power P BAT toward the power transmission line L. The secondary battery power conditioner 32 converts the alternating current power supplied from the power transmission line L into direct current and sends the secondary battery 31 to the secondary battery 31 when the secondary battery 31 is charged.
各分散電源システム(1~3)の出力電力は、電力伝送ラインLを介して負荷に供給される。また、当該出力電力の総和が負荷に対して過剰である場合には、余剰分が電力系統へ逆潮流することになる。
The output power of each distributed power supply system (1 to 3) is supplied to the load via the power transmission line L. Moreover, when the sum total of the output power is excessive with respect to the load, the surplus part flows backward to the power system.
この逆潮流の量を制御するために、各分散電源システムの電力伝送ラインLとの接続点に関し、コジェネシステム2および二次電池システム3における接続点(図1に示す、B点およびC点)は、太陽電池システム1の接続点(図1に示すA点)より下流側(電力系統から遠い側)に設けられている。そして電力伝送ラインLにおける、A点より下流側であってB点およびC点より上流側の位置には、電力検出ポイント(4a、4b)が設けられている。尚、A点と系統電源との間に電力検出ポイント(図示せず)を設けて需要家側から電力系統へ流れる全体の電流を検出できるように構成されている。この全体の電流から売電電力を求めることができ、通常売電メータとして建屋に取り付けられている。
In order to control the amount of this reverse power flow, the connection points in the cogeneration system 2 and the secondary battery system 3 (points B and C shown in FIG. 1) with respect to the connection points with the power transmission lines L of the respective distributed power systems. Is provided on the downstream side (the side far from the power system) from the connection point (point A shown in FIG. 1) of the solar cell system 1. In the power transmission line L, power detection points (4a, 4b) are provided at positions downstream of the point A and upstream of the points B and C. An electric power detection point (not shown) is provided between the point A and the system power supply so that the entire current flowing from the customer side to the electric power system can be detected. The electric power sales power can be obtained from the entire current, and is usually attached to the building as a power sales meter.
電力検出ポイント4aにおける電力(検出値)である電力PBUY(上流側から下流側への方向を正とする)の情報は、コジェネ用パワコン22に伝送され、電力検出ポイント4bにおける電力(同じく、電力PBUY)の情報は、二次電池用パワコン32に伝送される。なお、電力PBUYは、太陽電池システム1は発電を行っていないときは、電力システム9における買電電力(買電されている電力の大きさ)を表している。
Information on the power P BUY that is the power (detected value) at the power detection point 4a (the direction from the upstream side to the downstream side is positive) is transmitted to the power generator 22 for cogeneration, and the power at the power detection point 4b (similarly, The information on the power P BUY ) is transmitted to the secondary battery power conditioner 32. The power P BUY represents the purchased power (the magnitude of the purchased power) in the power system 9 when the solar cell system 1 is not generating power.
ここで仮に電力PBUYが負の値となった場合には、コジェネシステム2もしくは二次電池システム3の出力電力が、電力系統に逆潮流していると言える。そこで、この逆潮流の電力量は、コジェネ用パワコン22および二次電池用パワコン32の変換量を変えることにより制御することができる。燃料電池21は、発電量の変更に時間を要するので長周期の調整に適し、二次電池31は発電量の変更に時間を要しないため短周期の調整に適しており、後述する通り、閾値の分の余裕を持たせて、電力伝送ラインLへの電力出力を制限するようになっている。
Here, if the power P BUY has a negative value, it can be said that the output power of the cogeneration system 2 or the secondary battery system 3 is flowing backward in the power system. Therefore, the amount of electric power in the reverse power flow can be controlled by changing the conversion amounts of the power generator 22 for cogeneration and the power converter 32 for the secondary battery. The fuel cell 21 is suitable for long-period adjustment because it requires time to change the amount of power generation, and the secondary battery 31 is suitable for short-period adjustment because it does not require time to change the amount of power generation. The power output to the power transmission line L is limited with a margin of.
より詳細には、コジェネ用パワコン22には、コジェネシステム2に対応する閾値TFCが、後述するコントローラ5によって設定される。そしてコジェネ用パワコン22は、電力PBUYが閾値TFC以下となったとき、この状態が解消されるように(電力PBUYが閾値TFCを、ほぼ過不足無く上回る状態となるように)出力電力PFCを制限する。
More specifically, a threshold TFC corresponding to the cogeneration system 2 is set in the cogeneration power conditioner 22 by the controller 5 described later. The power generator 22 for cogeneration outputs power P so that this state is canceled when the power P BUY becomes equal to or less than the threshold value TFC (so that the power P BUY exceeds the threshold value TFC almost without excess or shortage). Restrict FC .
また、二次電池用パワコン32には、二次電池システム3に対応する閾値TBATが、後述するコントローラ5によって設定される。そして二次電池用パワコン32は、電力PBUYが閾値TBAT以下となったときに、この状態が解消されるように(電力PBUYが閾値TBATを、ほぼ過不足無く上回るように)出力電力PBATを制限していく。
Further, a threshold value TBAT corresponding to the secondary battery system 3 is set in the secondary battery power conditioner 32 by the controller 5 described later. Then, the secondary battery power conditioner 32 outputs power P BAT so that this state is canceled when the power PBUY is equal to or less than the threshold value TBAT (so that the power P BUY exceeds the threshold value TBAT substantially without excess or shortage). To limit.
また、電力システム9には、コントローラ5が設けられている。コントローラ5は、分散電源システムの各パワコン(本実施形態では、コジェネ用パワコン22および二次電池用パワコン32)に接続される。コントローラ5は、電力の出力制限を設定する優先順位がどのパワコン自身にあるかを、認識することが可能となっている。
In addition, the power system 9 is provided with a controller 5. The controller 5 is connected to each power conditioner of the distributed power supply system (in this embodiment, the cogeneration power conditioner 22 and the secondary battery power conditioner 32). The controller 5 can recognize which power conditioner itself has the priority order for setting the power output limit.
コントローラ5は所定情報に基づいて、コジェネシステム2および二次電池システム3の各々に対する優先順位を決定し、各パワコン(22、32)に設定する。この「優先順位」は、現状での各分散電源システムの重要度または制御性等の観点から設定される順位であり、出力制限を加えることが望ましくないものほど、高い順位に設定されるものである。なお、コントローラ5が、どのような情報に基づいて、どのような方針で優先順位を決定するかについては、種々の形態を採用することが可能である。当該形態の具体例の幾つかについては、改めて説明する。
The controller 5 determines the priority order for each of the cogeneration system 2 and the secondary battery system 3 based on the predetermined information, and sets the priority order for each power conditioner (22, 32). This "priority order" is an order set from the viewpoint of the importance or controllability of each distributed power supply system in the present situation, and it is set to a higher order as it is undesirable to limit the output. is there. It should be noted that various forms can be adopted as to what information the controller 5 determines the priority based on what information. Some specific examples of the form will be described again.
なお、優先順位を設定する形態としては種々の形態が採用され得るが、本実施形態では、上記した閾値(TFC、TBAT)を各パワコン(22、32)に設定することにより、優先順位が設定されるようになっている。すなわち、コントローラ5は、優先順位の低い分散電源システムから順に、高い閾値を設定する。例えば、二次電池システム3がコジェネシステム2に比べて優先順位が低い場合、コジェネシステム2に対する閾値TFCは100Wに、二次電池システム3に対する閾値TBATは200Wに、それぞれ設定される。
Various forms can be adopted as the form for setting the priority order. In this embodiment, the priority order is set by setting the above-described threshold values (TFC, TBAT) to each power conditioner (22, 32). It has come to be. That is, the controller 5 sets a higher threshold value in order from the distributed power supply system with the lowest priority. For example, when the priority order of the secondary battery system 3 is lower than that of the cogeneration system 2, the threshold value TFC for the cogeneration system 2 is set to 100W, and the threshold value TBAT for the secondary battery system 3 is set to 200W.
このように、閾値を設定することにより優先順位を設定することが出来る理由については、後述の説明によって明らかとなる。なお、コントローラ5は、各分散電源システムに閾値を設定する機能に加え、ユーザの指示等に応じて、コジェネシステム2または二次電池システム3の出力電力を調節する機能を備えていても良い。
As described above, the reason why the priority order can be set by setting the threshold value will be clarified by the following description. The controller 5 may have a function of adjusting the output power of the cogeneration system 2 or the secondary battery system 3 in accordance with a user instruction or the like in addition to the function of setting a threshold value for each distributed power supply system.
上記したように、コントローラ5は、コジェネ用パワコン22および二次電池用パワコン32とともに、コジェネシステム2および二次電池システム3を制御する機能を有している。すなわち、コントローラ5、コジェネ用パワコン22、および二次電池用パワコン32は、全体として、コジェネシステム2および二次電池システム3を制御する電力制御装置6を形成している。また、コントローラ5は、電力システム9の外部と信号の授受が可能に構成されており、それぞれの閾値を外部から設定することが可能である。また、説明を容易にするため、コントローラ5による閾値の設定はコジェネシステム2及び二次電池システム3に行ったが、太陽電池システム1の太陽電池用パワコン12の交流出力に閾値を設定することも可能であり、交流出力の制御はA点と系統電源との間の電力検出ポイントで行われる。この場合、コントローラ5は、電力系統に交流電力を重畳可能に連携された複数の分散電源システムに付された優先順位を記憶し、これら複数の分散電源システムから電力系統に重畳される交流電力の総和と予め定めた閾値との大小に基づいて、優先順位に応じて電力系統に重畳する交流電力の量を制限する信号を出力する。更に、この分散電源システムは、少なくとも太陽電池の発電電力または蓄電池の放電電力のいずれか一方から出力される直流電力を交流電力に変換して電力系統に重畳する構成を更に備えることとなる。
As described above, the controller 5 has a function of controlling the cogeneration system 2 and the secondary battery system 3 together with the cogeneration power conditioner 22 and the secondary battery power conditioner 32. That is, the controller 5, the cogeneration power conditioner 22, and the secondary battery power conditioner 32 form a power control device 6 that controls the cogeneration system 2 and the secondary battery system 3 as a whole. Further, the controller 5 is configured to be able to exchange signals with the outside of the power system 9 and can set respective threshold values from the outside. In addition, for easy explanation, the threshold value is set by the controller 5 in the cogeneration system 2 and the secondary battery system 3, but the threshold value may be set in the AC output of the solar cell power conditioner 12 of the solar cell system 1. The AC output is controlled at a power detection point between the point A and the system power supply. In this case, the controller 5 stores the priorities assigned to the plurality of distributed power systems linked so that the AC power can be superimposed on the power system, and the AC power to be superimposed on the power system from the plurality of distributed power systems. Based on the magnitude of the sum and a predetermined threshold, a signal for limiting the amount of AC power to be superimposed on the power system according to the priority order is output. Furthermore, this distributed power supply system further includes a configuration in which DC power output from at least one of the generated power of the solar battery or the discharged power of the storage battery is converted into AC power and superimposed on the power system.
[出力制限に関する具体的事例について]
コントローラ5は、コジェネシステム2および二次電池システム3における出力電力が閾値を超えて電力伝送ラインLに供給されないように、これらの分散電源システムについての出力制限を行うようになっている。また、太陽電池システム1における出力電力が閾値を超えて電力系統へ供給されないように出力制限を行うようになっている。ここで当該出力制限がなされる仕組みについて、より理解容易とするため、以下に具体的事例を挙げて説明する。 [Specific examples of output restrictions]
Thecontroller 5 performs output restriction on these distributed power supply systems so that the output power in the cogeneration system 2 and the secondary battery system 3 does not exceed the threshold value and is supplied to the power transmission line L. Moreover, output limitation is performed so that the output power in the solar cell system 1 does not exceed the threshold and is supplied to the power system. Here, in order to make it easier to understand the mechanism of the output limitation, a specific example will be described below.
コントローラ5は、コジェネシステム2および二次電池システム3における出力電力が閾値を超えて電力伝送ラインLに供給されないように、これらの分散電源システムについての出力制限を行うようになっている。また、太陽電池システム1における出力電力が閾値を超えて電力系統へ供給されないように出力制限を行うようになっている。ここで当該出力制限がなされる仕組みについて、より理解容易とするため、以下に具体的事例を挙げて説明する。 [Specific examples of output restrictions]
The
ここでは、閾値TFCは100Wに、閾値TBATは200Wに、それぞれ設定されているとする。このことから、二次電池システム3は、コジェネシステム2に比べて優先順位が低いと言える。出力電力PFCが500W、出力電力PBATが500W、消費電力PLOAD(各負荷の消費電力の総和)が2000Wである状態(便宜的に、「初期状態」とする)において、消費電力PLOADが減少するケースを想定する。
Here, it is assumed that the threshold TFC is set to 100 W and the threshold TBAT is set to 200 W. From this, it can be said that the secondary battery system 3 has a lower priority than the cogeneration system 2. In a state where the output power P FC is 500 W, the output power P BAT is 500 W, and the power consumption P LOAD (sum of power consumption of each load) is 2000 W (for convenience, the “initial state”), the power consumption P LOAD Suppose the case of decrease.
なお電力PBUYについては、次の数式(2)が成立する。
The following formula (2) is established for the power P BUY .
従って、初期状態においては、電力PBUYは1000Wとなっており、閾値TFCおよび閾値TBATを上回っているため、コジェネシステム2や二次電池システム3の出力制限は行われない。
Therefore, in the initial state, the power P BUY is 1000 W, which exceeds the threshold value TFC and the threshold value TBAT, so that the output of the cogeneration system 2 and the secondary battery system 3 is not limited.
先ず第1事例として、消費電力PLOADが2000Wから1000Wにまで減少するケースを挙げる。この場合数式(2)から明らかな通り、消費電力PLOADが1200Wにまで減少した時点で、電力PBUYは閾値TBATまで低下している。そのためこの状態から更に消費電力PLOADが低下するにあたり、電力PBUYが閾値TBAT以下とならないように、出力電力PBATが制限されていく。
First, as a first example, a case where the power consumption P LOAD decreases from 2000 W to 1000 W will be given. In this case, as is clear from Equation (2), when the power consumption P LOAD is reduced to 1200 W, the power P BUY is reduced to the threshold value TBAT. Therefore, when the power consumption P LOAD further decreases from this state, the output power P BAT is limited so that the power P BUY does not become equal to or less than the threshold value TBAT.
その結果、最終的には、出力電力PBATは300W未満(例えば299W)に制限され、電力PBUYが閾値TBATを上回っている状態が維持される。なお出力電力PFCについては特に制限はなされず、初期状態である500Wのままである。
As a result, the output power P BAT is finally limited to less than 300 W (for example, 299 W), and the state where the power P BUY exceeds the threshold value TBAT is maintained. Note that the output power P FC is not particularly limited, and remains in the initial state of 500 W.
次に第2事例として、消費電力PLOADが2000Wから500Wにまで減少するケースを挙げる。この場合も第1事例と同様、消費電力PLOADが1200Wから更に低下するにあたり、電力PBUYが閾値TBAT以下とならないように、出力電力PBATが制限されていく。しかしこの制限が進んでいくと、出力電力PBATは最終的に略ゼロにまで制限され、出力電力PBATをこれ以上小さくすることが出来ない状態となる。
Next, as a second example, a case where the power consumption P LOAD decreases from 2000 W to 500 W will be given. Also in this case, as in the first example, when the power consumption P LOAD further decreases from 1200 W, the output power P BAT is limited so that the power P BUY does not become equal to or less than the threshold value TBAT. However, as this limitation proceeds, the output power P BAT is finally limited to substantially zero, and the output power P BAT cannot be reduced any further.
この状態から更に消費電力PLOADが低下すると、電力PBUYは閾値TFCまで低下する。そのため更に消費電力PLOADが低下するにあたり、電力PBUYが閾値TFC以下とならないように、出力電力PFCが制限されていく。その結果、最終的には、出力電力PBATは略ゼロに制限され、出力電力PFCは400W未満(例えば399W)に制限され、電力PBUYが閾値TFCを上回っている状態が維持される。
When the power consumption P LOAD further decreases from this state, the power P BUY decreases to the threshold value TFC. Therefore, as the power consumption P LOAD further decreases, the output power P FC is limited so that the power P BUY does not become equal to or less than the threshold value TFC. As a result, finally, the output power P BAT is limited to substantially zero, the output power P FC is limited to less than 400 W (for example, 399 W), and the state where the power P BUY exceeds the threshold TFC is maintained.
上記の説明から明らかな通り、第1事例の場合は、コジェネシステム2と二次電池システム3の出力電力の総和が閾値を超えない状態となるまで、二次電池システム3の出力が制限されている。
As is clear from the above description, in the case of the first case, the output of the secondary battery system 3 is limited until the sum of the output powers of the cogeneration system 2 and the secondary battery system 3 does not exceed the threshold value. Yes.
また第2事例の場合は、コジェネシステム2と二次電池システム3の出力電力の総和が、閾値を超えない状態となるまで、先ず二次電池システム3の出力が制限され、その次に、コジェネシステム2の出力が制限されている。
In the case of the second case, the output of the secondary battery system 3 is first limited until the sum of the output powers of the cogeneration system 2 and the secondary battery system 3 does not exceed the threshold, and then the cogeneration is performed. System 2 output is limited.
このように電力制御装置6は、コジェネシステム2と二次電池システム3の出力電力の総和が閾値(そのときの消費電力PLOAD等によって変動する)を超えない状態となるまで、優先順位の低い方から順に、当該分散電源システムの出力を制限していくようになっている。なおこの閾値については、出力電力PBATが略ゼロとなるまでは、消費電力PLOAD-閾値TBATとなっており、その後は、消費電力PLOAD-閾値TFCとなっている。
Thus, the power control device 6 has a low priority until the sum of the output powers of the cogeneration system 2 and the secondary battery system 3 does not exceed a threshold value (which varies depending on the power consumption P LOAD at that time). In this order, the output of the distributed power supply system is limited. This threshold value is power consumption P LOAD -threshold value TBAT until the output power P BAT becomes substantially zero, and thereafter power consumption P LOAD -threshold value TFC.
つまり、コントローラ5は、一つだけの分散電源システムを対象として出力の制限を進めていく。そして、この分散電源システムの出力電力が略ゼロにまで制限されたら、この制限の状態を維持したまま、その次に優先順位の低い一つだけの分散電源システムを対象として、同様に出力の制限を進めていく。電力制御装置6は、出力電力の総和が閾値を超えない状態となるまで、このような動作を実行する。これにより、同時に複数の分散電源システムの出力制限が進められる(制限の厳しさが変化する)ことはなく、出力制限の動作が複雑になることは回避される。
In other words, the controller 5 advances the output restriction for only one distributed power supply system. When the output power of this distributed power supply system is limited to approximately zero, the output restriction is similarly applied to only one distributed power supply system with the next lowest priority while maintaining this restricted state. Will continue. The power control device 6 performs such an operation until the total output power does not exceed the threshold value. Thereby, output restriction of a plurality of distributed power supply systems is not advanced at the same time (the severity of restriction changes), and it is avoided that the operation of output restriction becomes complicated.
また、太陽電池システム1の交流出力も同様に設定された閾値を超えないよう出力電力が制御される。太陽電池システム1の発電電力はこの閾値になるまで電力系統へ供給され、同時にコジェネシステム2と二次電池システム3の発電電力は電力系統へ供給されない。従って、太陽電池システム1に設定する閾値を変えることによって電力系統への逆潮流される交流電力を制御することができ、外部からコントローラ5に閾値を設定する信号を送れば、外部からこの逆潮流の電力量を変えることができるものである。例えば、このような太陽電池システム1を含む分散電源システムは、電力系統に交流電力を重畳可能に連携され、複数の分散電源システムから電力系統に重畳される電力量に応じて電力系統に重畳される交流電力の量を規制する信号が入力された際には、電力系統へ重畳する交流電力の量を抑制する制御部を有する。更に、このような太陽電池システム1を含む分散電源システムは、電力系統に連系点を介して接続されて交流電力を重畳可能に成され、電力系統に重畳される交流電力の量を規制する信号が入力された際には、電力系統へ重畳する交流電力の量を抑制する制御部を有する。
Also, the output power is controlled so that the AC output of the solar cell system 1 does not exceed the set threshold value. The generated power of the solar cell system 1 is supplied to the power system until this threshold is reached, and at the same time, the generated power of the cogeneration system 2 and the secondary battery system 3 is not supplied to the power system. Therefore, by changing the threshold value set in the solar cell system 1, it is possible to control the AC power that is reversely flowed to the power system. If a signal for setting the threshold value is sent from the outside to the controller 5, this reverse power flow is externally transmitted. The amount of power can be changed. For example, a distributed power system including such a solar cell system 1 is linked to an electric power system so that AC power can be superimposed, and is superimposed on the electric power system according to the amount of electric power superimposed on the electric power system from a plurality of distributed power systems. When a signal for regulating the amount of AC power to be input is input, a control unit that suppresses the amount of AC power superimposed on the power system is provided. Furthermore, the distributed power supply system including such a solar cell system 1 is connected to the power system via a connection point so that AC power can be superimposed, and regulates the amount of AC power superimposed on the power system. When a signal is input, it has a control unit that suppresses the amount of AC power superimposed on the power system.
[優先順位の設定に関する形態について]
先に説明した通り、コントローラ5は、所定情報に基づいて、分散電源システムの各々に対する優先順位を設定するようになっている。コントローラ5が、どのような方針で優先順位を設定するか(或いは、設定内容を更新するか)に関する形態について、第1形態~第4形態を例に挙げて以下に説明する。 [Types related to priority setting]
As described above, thecontroller 5 sets priority for each of the distributed power supply systems based on the predetermined information. With regard to the mode in which the controller 5 sets the priority order (or the setting content is updated), the mode will be described below by taking the first to fourth modes as examples.
先に説明した通り、コントローラ5は、所定情報に基づいて、分散電源システムの各々に対する優先順位を設定するようになっている。コントローラ5が、どのような方針で優先順位を設定するか(或いは、設定内容を更新するか)に関する形態について、第1形態~第4形態を例に挙げて以下に説明する。 [Types related to priority setting]
As described above, the
<第1形態>
第1形態は、複数の分散電源システムのうちの一つが、二次電池システム(二次電池を分散電源としたもの)である場合に採用され得る。第1形態は、二次電池システムの優先順位を、最も低い優先順位に固定的に設定する形態である。すなわち、電力システム9において、第1形態のコントローラ5は、二次電池システム3の優先順位を、コジェネシステム2より低い順位に固定的に設定する。太陽電池システム1は制限なしとする。 <First form>
The first form can be adopted when one of the plurality of distributed power supply systems is a secondary battery system (a secondary battery is used as a distributed power supply). The first form is a form in which the priority order of the secondary battery system is fixedly set to the lowest priority order. That is, in thepower system 9, the controller 5 of the first form fixedly sets the priority order of the secondary battery system 3 to a lower order than the cogeneration system 2. The solar cell system 1 is not limited.
第1形態は、複数の分散電源システムのうちの一つが、二次電池システム(二次電池を分散電源としたもの)である場合に採用され得る。第1形態は、二次電池システムの優先順位を、最も低い優先順位に固定的に設定する形態である。すなわち、電力システム9において、第1形態のコントローラ5は、二次電池システム3の優先順位を、コジェネシステム2より低い順位に固定的に設定する。太陽電池システム1は制限なしとする。 <First form>
The first form can be adopted when one of the plurality of distributed power supply systems is a secondary battery system (a secondary battery is used as a distributed power supply). The first form is a form in which the priority order of the secondary battery system is fixedly set to the lowest priority order. That is, in the
既に説明したように、二次電池31は燃料電池21等に比べ、出力の制御性(応答性)に優れている。すなわち二次電池31によれば、急な出力変化が要求される状況(例えば費電力PLOADが急激に減少した状況)が生じた際にも、これに対してより迅速な応答が可能となっている。そのため第1形態によれば、二次電池システム3が先に出力制限の対象となるようにし、このような二次電池31の特性を活かすことが可能となる。また更に、コジェネシステム2が出来るだけ出力制限の対象とならないようにし、燃料電池21の負担を減らすことで、燃料電池21の寿命を延ばすことが可能となる。
As already described, the secondary battery 31 is superior in output controllability (responsiveness) compared to the fuel cell 21 and the like. That is, according to the secondary battery 31, even when a situation in which a sudden output change is required (for example, a situation in which the power consumption P LOAD suddenly decreases), a quicker response can be made. ing. Therefore, according to the first embodiment, the secondary battery system 3 is first subjected to output restriction, and the characteristics of the secondary battery 31 can be utilized. Furthermore, it is possible to extend the life of the fuel cell 21 by preventing the cogeneration system 2 from being subject to output restriction as much as possible and reducing the burden on the fuel cell 21.
なお、電力制御装置6は、二次電池システム3の優先順位がコジェネシステム2より低い順位に設定された状態のまま、燃料電池21の出力を緩やかに抑制していくことが可能となっていても良い。このようにすれば、負荷の消費電力の細かな変動などに対して、二次電池システム3が迅速に応答するようにしつつ、燃料電池21の出力については緩やかに変化させることができる。その結果、燃料電池21の負担を減らすことで、燃料電池21の寿命を延ばすことが可能となる。
Note that the power control device 6 can moderately suppress the output of the fuel cell 21 while the priority order of the secondary battery system 3 is set to a lower order than the cogeneration system 2. Also good. In this way, the output of the fuel cell 21 can be gradually changed while allowing the secondary battery system 3 to respond quickly to fine fluctuations in the power consumption of the load. As a result, it is possible to extend the life of the fuel cell 21 by reducing the burden on the fuel cell 21.
<第2形態>
第2形態は、複数の分散電源システムのうちの一つが、二次電池システム(二次電池を分散電源としたもの)である場合に採用され得る。第2形態は、二次電池の充電残量の情報を参照情報として取得し、この参照情報に応じて優先順位の設定内容を更新する形態である。 <Second form>
The second form can be adopted when one of the plurality of distributed power supply systems is a secondary battery system (a secondary battery is used as a distributed power supply). In the second form, information on the remaining charge of the secondary battery is acquired as reference information, and the setting contents of the priority order are updated according to this reference information.
第2形態は、複数の分散電源システムのうちの一つが、二次電池システム(二次電池を分散電源としたもの)である場合に採用され得る。第2形態は、二次電池の充電残量の情報を参照情報として取得し、この参照情報に応じて優先順位の設定内容を更新する形態である。 <Second form>
The second form can be adopted when one of the plurality of distributed power supply systems is a secondary battery system (a secondary battery is used as a distributed power supply). In the second form, information on the remaining charge of the secondary battery is acquired as reference information, and the setting contents of the priority order are updated according to this reference information.
例えば電力システム9において、第2形態のコントローラ5は、二次電池31の充電残量を監視する。コントローラ5は、この充電残量が所定の基準量以下である間は、二次電池システム3の優先順位をコジェネシステム2より低い順位に設定し、当該基準量を越えている間は、二次電池システム3の優先順位をコジェネシステム2より高い順位に設定する。太陽電池システム1は制限なしとする。
For example, in the power system 9, the controller 5 of the second form monitors the remaining charge of the secondary battery 31. The controller 5 sets the priority order of the secondary battery system 3 to a lower order than the cogeneration system 2 while the remaining charge amount is less than or equal to the predetermined reference amount. The priority order of the battery system 3 is set higher than the cogeneration system 2. The solar cell system 1 is not limited.
これにより、二次電池31の充電残量が比較的少ない(通常、二次電池31の重要度が低いと考えられる)ときには、二次電池システム3が先に出力制限の対象となるようにし、コジェネシステム2が出来るだけ出力制限の対象とならないようにすることが可能となる。一方、二次電池31の充電残量が比較的多い(通常、二次電池31の重要度が高いと考えられる)ときには、二次電池システム3が出来るだけ出力制限の対象とならないようにすることが可能となる。
Thereby, when the remaining charge of the secondary battery 31 is relatively small (usually, the importance of the secondary battery 31 is considered low), the secondary battery system 3 is first subjected to output restriction, It is possible to prevent the cogeneration system 2 from being subject to output restriction as much as possible. On the other hand, when the remaining charge of the secondary battery 31 is relatively large (usually, the importance of the secondary battery 31 is considered high), the secondary battery system 3 should not be subject to output restriction as much as possible. Is possible.
<第3形態>
第3形態は、複数の分散電源システムのうちの一つが、コジェネシステム(燃料電池またはガスエンジン等の発電装置を分散電源としたもの)である場合に採用され得る。第3形態は、コジェネシステムに関する情報(例えば、発電装置の発電可能電力、発電装置の排熱によって温められた湯が貯められる貯湯槽の湯量(の残量)、および当該貯湯槽の温度のうちの何れか)を参照情報として取得し、この参照情報に応じて優先順位の設定内容を更新する形態である。 <Third form>
The third mode may be employed when one of the plurality of distributed power supply systems is a cogeneration system (a power generation device such as a fuel cell or a gas engine is used as a distributed power supply). The third mode is information on the cogeneration system (for example, the power that can be generated by the power generator, the amount of hot water in the hot water tank in which hot water warmed by the exhaust heat of the power generator is stored, and the temperature of the hot water tank) Is set as reference information, and the priority setting content is updated according to the reference information.
第3形態は、複数の分散電源システムのうちの一つが、コジェネシステム(燃料電池またはガスエンジン等の発電装置を分散電源としたもの)である場合に採用され得る。第3形態は、コジェネシステムに関する情報(例えば、発電装置の発電可能電力、発電装置の排熱によって温められた湯が貯められる貯湯槽の湯量(の残量)、および当該貯湯槽の温度のうちの何れか)を参照情報として取得し、この参照情報に応じて優先順位の設定内容を更新する形態である。 <Third form>
The third mode may be employed when one of the plurality of distributed power supply systems is a cogeneration system (a power generation device such as a fuel cell or a gas engine is used as a distributed power supply). The third mode is information on the cogeneration system (for example, the power that can be generated by the power generator, the amount of hot water in the hot water tank in which hot water warmed by the exhaust heat of the power generator is stored, and the temperature of the hot water tank) Is set as reference information, and the priority setting content is updated according to the reference information.
例えば電力システム9において、第3形態のコントローラ5は、貯湯槽23aの湯量(或いは温度)を監視する。そしてコントローラ5は、この湯量(或いは温度)が所定の基準量以下である間は、コジェネシステム2の優先順位を二次電池システム3より高い順位または最も高い順位に設定し、当該基準量を越えている間は、コジェネシステム2の優先順位を二次電池システム3より低い順位に設定する。太陽電池システム1は制限なしとする。
For example, in the power system 9, the controller 5 of the third form monitors the amount (or temperature) of hot water in the hot water tank 23a. The controller 5 sets the priority order of the cogeneration system 2 to a higher or higher order than the secondary battery system 3 while the amount of hot water (or temperature) is below a predetermined reference amount, and exceeds the reference amount. During the operation, the priority order of the cogeneration system 2 is set lower than that of the secondary battery system 3. The solar cell system 1 is not limited.
これにより、貯湯槽23aの湯量(或いは温度)が比較的少ないとき、すなわち、これから貯湯槽23aに湯を供給する必要性が高く、燃料電池21の重要度が高いと考えられるときに、コジェネシステム2が出来るだけ出力制限の対象とならないようにすることが可能となる。
Thereby, when the amount of hot water (or temperature) in the hot water storage tank 23a is relatively small, that is, when the necessity of supplying hot water to the hot water storage tank 23a is high and the importance of the fuel cell 21 is considered to be high, the cogeneration system It is possible to prevent 2 from being subject to output restriction as much as possible.
一方、貯湯槽23aの湯量(或いは温度)が比較的多いとき、すなわち、貯湯槽23aに十分な湯量が確保されており(よって、これから貯湯槽23aに湯を供給する必要性が低い)、燃料電池21の重要度が低いと考えられるときには、コジェネシステム2が先に出力制限の対象となるようにし、二次電池システム3が出来るだけ出力制限の対象とならないようにすることが可能となる。
On the other hand, when the amount of hot water (or temperature) in the hot water storage tank 23a is relatively large, that is, a sufficient amount of hot water is secured in the hot water storage tank 23a (therefore, it is less necessary to supply hot water to the hot water storage tank 23a from now on). When the importance of the battery 21 is considered to be low, it is possible to make the cogeneration system 2 subject to output restriction first and to prevent the secondary battery system 3 from being subject to output restriction as much as possible.
<第4形態>
第4形態は、複数の分散電源システムのうちの一つが、コジェネシステム(予め供給された燃料を用いて発電する発電装置を分散電源としたもの)である場合に採用され得る。第4形態は、発電装置に供給された燃料の残量の情報を参照情報として取得し、この参照情報に応じて優先順位の設定内容を更新する形態である。 <4th form>
The fourth mode can be employed when one of the plurality of distributed power systems is a cogeneration system (a power generation apparatus that generates power using fuel supplied in advance is a distributed power source). In the fourth mode, information on the remaining amount of fuel supplied to the power generation apparatus is acquired as reference information, and the priority setting content is updated according to this reference information.
第4形態は、複数の分散電源システムのうちの一つが、コジェネシステム(予め供給された燃料を用いて発電する発電装置を分散電源としたもの)である場合に採用され得る。第4形態は、発電装置に供給された燃料の残量の情報を参照情報として取得し、この参照情報に応じて優先順位の設定内容を更新する形態である。 <4th form>
The fourth mode can be employed when one of the plurality of distributed power systems is a cogeneration system (a power generation apparatus that generates power using fuel supplied in advance is a distributed power source). In the fourth mode, information on the remaining amount of fuel supplied to the power generation apparatus is acquired as reference information, and the priority setting content is updated according to this reference information.
例えば電力システム9において、第4形態のコントローラ5は、燃料電池21に供給された燃料の残量を監視する。そしてコントローラ5は、この残量が所定の基準量以下である間は、コジェネシステム2の優先順位を二次電池システム3より低い順位に設定し、当該基準量を越えている間は、コジェネシステム2の優先順位を二次電池システム3より高い順位に設定する。太陽電池システムは制限なしとする。
For example, in the power system 9, the controller 5 of the fourth form monitors the remaining amount of fuel supplied to the fuel cell 21. The controller 5 sets the priority of the cogeneration system 2 to a lower order than the secondary battery system 3 while the remaining amount is equal to or less than the predetermined reference amount, and the cogeneration system 2 while the remaining amount exceeds the reference amount. 2 is set higher than the secondary battery system 3. The solar cell system is not limited.
これにより、燃料の残量が比較的少ない(通常、燃料電池21の重要度が低いと考えられる)ときには、コジェネシステム2が先に出力制限の対象となるようにし、二次電池システム3が出来るだけ出力制限の対象とならないようにすることが可能となる。一方、燃料の残量が比較的多い(通常、燃料電池21の重要度が高いと考えられる)ときには、コジェネシステム2が出来るだけ出力制限の対象とならないようにすることが可能となる。
As a result, when the remaining amount of fuel is relatively small (usually, the importance of the fuel cell 21 is considered to be low), the cogeneration system 2 is first subjected to output restriction and the secondary battery system 3 can be formed. As a result, it is possible to prevent the output from being restricted. On the other hand, when the remaining amount of fuel is relatively large (usually, the importance of the fuel cell 21 is considered high), it is possible to prevent the cogeneration system 2 from being subject to output restriction as much as possible.
[その他]
上記した通り、電力制御装置6は、電力系統に連系している太陽電池システム1、コジェネシステム2および二次電池システム3(複数の分散電源システム)の各々に対して、優先順位を設定する機能部(優先順位設定部)と、コジェネシステム2および二次電池システム3の出力の総和が夫々の閾値を超えないように、当該分散電源システムの出力を制限する機能部(電力制限部)と、を備えている。そしてこの電力制限部は、出力が上述の閾値を超えない状態となるまで、優先順位の低い方から順に、当該分散電源システムの出力を制限していくようになっている。 [Others]
As described above, thepower control device 6 sets priorities for each of the solar cell system 1, the cogeneration system 2, and the secondary battery system 3 (a plurality of distributed power supply systems) linked to the power system. A functional unit (priority setting unit), and a functional unit (power limiting unit) that limits the output of the distributed power supply system so that the sum of the outputs of the cogeneration system 2 and the secondary battery system 3 does not exceed the respective thresholds. It is equipped with. The power limiting unit limits the output of the distributed power supply system in order from the lowest priority until the output does not exceed the above threshold.
上記した通り、電力制御装置6は、電力系統に連系している太陽電池システム1、コジェネシステム2および二次電池システム3(複数の分散電源システム)の各々に対して、優先順位を設定する機能部(優先順位設定部)と、コジェネシステム2および二次電池システム3の出力の総和が夫々の閾値を超えないように、当該分散電源システムの出力を制限する機能部(電力制限部)と、を備えている。そしてこの電力制限部は、出力が上述の閾値を超えない状態となるまで、優先順位の低い方から順に、当該分散電源システムの出力を制限していくようになっている。 [Others]
As described above, the
そのためコントローラ5によれば、太陽電池システム1、コジェネシステム2および二次電池システム3の出力制限に関し、この出力制限がどの分散電源システムから先に実行されるかが予め決められるため、当該出力制限をより適切に行うことが可能となっている。なお、本実施形態では、出力制限の対象となる分散電源システムの個数は3個以上の場合であっても、同様にして本発明を適用することが可能である。
Therefore, according to the controller 5, regarding the output restriction of the solar cell system 1, the cogeneration system 2, and the secondary battery system 3, it is determined in advance which distributed power supply system this output restriction is executed first. Can be performed more appropriately. In the present embodiment, the present invention can be similarly applied even when the number of distributed power supply systems subject to output restriction is three or more.
以上、本発明の実施形態について説明したが、本発明はこの内容に限定されるものではない。また本発明の実施形態は、本発明の主旨を逸脱しない限り、種々の変形を加えることが可能である。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this content. The embodiments of the present invention can be variously modified without departing from the gist of the present invention.
なお、本出願は、2010年12月28日出願の日本特許出願(特願2010-291572)に基づくものであり、その内容はここに参照として取り込まれる。
This application is based on a Japanese patent application (Japanese Patent Application No. 2010-291572) filed on Dec. 28, 2010, the contents of which are incorporated herein by reference.
本発明は、複数の分散電源システムを有する電力システム等に利用することができる。
The present invention can be used for a power system having a plurality of distributed power supply systems.
1 太陽電池システム
2 コジェネレーションシステム
3 二次電池システム
4a、4b 電力検出ポイント
5 コントローラ
6 電力制御装置
11 太陽電池
12 太陽電池用パワコン
21 燃料電池
22 コジェネ用パワコン
23 排熱利用設備
23a 貯湯槽
31 二次電池
32 二次電池用パワコン
L 電力伝送ライン DESCRIPTION OF SYMBOLS 1 Solar cell system 2 Cogeneration system 3 Secondary battery system 4a, 4b Electric power detection point 5 Controller 6 Electric power control apparatus 11 Solar cell 12 Solar cell power conditioner 21 Fuel cell 22 Cogeneration power conditioner 23 Waste heat utilization equipment 23a Hot water storage tank 31 Two Secondary battery 32 Power conditioner for secondary battery L Power transmission line
2 コジェネレーションシステム
3 二次電池システム
4a、4b 電力検出ポイント
5 コントローラ
6 電力制御装置
11 太陽電池
12 太陽電池用パワコン
21 燃料電池
22 コジェネ用パワコン
23 排熱利用設備
23a 貯湯槽
31 二次電池
32 二次電池用パワコン
L 電力伝送ライン DESCRIPTION OF SYMBOLS 1 Solar cell system 2 Cogeneration system 3
Claims (11)
- 電力系統に共通の連系点を介して接続されている複数の分散電源システムの各々に対して、前記共通の連携点を前記電力系統へ流れる電力が閾値を超えないように、予め設定された優先順位が低い方から順に、前記分散電源システムの出力を制限することを特徴とする電力制御装置。 For each of a plurality of distributed power systems connected to a power system via a common connection point, the power is set in advance so that the power flowing to the power system through the common cooperation point does not exceed a threshold value. The power control apparatus that limits the output of the distributed power supply system in descending order of priority.
- 請求項1に記載の電力制御装置であって、
前記複数の分散電源システムのうちの一つが、二次電池システムであり、
前記二次電池システムの優先順位を、最も低い優先順位に設定することを特徴とする電力制御装置。 The power control apparatus according to claim 1,
One of the plurality of distributed power systems is a secondary battery system,
The power control apparatus, wherein the priority order of the secondary battery system is set to the lowest priority order. - 請求項1に記載の電力制御装置であって、
前記優先順位を、予め決められた参照情報に応じて、更新することを特徴とする電力制御装置。 The power control apparatus according to claim 1,
The power control apparatus, wherein the priority order is updated according to predetermined reference information. - 請求項3に記載の電力制御装置であって、
前記複数の分散電源システムのうちの一つが、二次電池システムであり、
前記優先順位は、前記二次電池システムの充電残量の情報に基づいて設定されることを特徴とする電力制御装置。 The power control device according to claim 3,
One of the plurality of distributed power systems is a secondary battery system,
The power control apparatus according to claim 1, wherein the priority is set based on information on a remaining charge of the secondary battery system. - 請求項3に記載の電力制御装置であって、
前記複数の分散電源システムのうちの一つが、発電装置を有したコジェネレーションシステムであり、
前記優先順位は、前記発電装置の発電可能電力、前記発電装置の排熱によって温められた湯が貯められる貯湯槽の湯量、および、前記貯湯槽の温度のうちの何れかの情報を参照して設定されることを特徴とする電力制御装置。 The power control device according to claim 3,
One of the plurality of distributed power systems is a cogeneration system having a power generation device,
The priority is determined by referring to any information of the power that can be generated by the power generator, the amount of hot water stored in the hot water tank that stores hot water heated by the exhaust heat of the power generator, and the temperature of the hot water tank. A power control device that is set. - 請求項3に記載の電力制御装置であって、
前記複数の分散電源システムのうちの一つが、供給された燃料を用いて発電する発電装置を有したコジェネレーションシステムであり、
前記優先順位は、前記発電装置に供給された燃料の残量の情報を参照して設定されることを特徴とする電力制御装置。 The power control device according to claim 3,
One of the plurality of distributed power systems is a cogeneration system having a power generation device that generates electric power using supplied fuel,
The power control apparatus according to claim 1, wherein the priority is set with reference to information on a remaining amount of fuel supplied to the power generation apparatus. - 請求項5に記載の電力制御装置であって、
前記貯湯槽の湯量が予め決められた基準値に達していないときは、前記コジェネレーションシステムの優先順位が最も高い優先順位に設定されることを特徴とする電力制御装置。 The power control device according to claim 5,
When the amount of hot water in the hot water storage tank has not reached a predetermined reference value, the priority order of the cogeneration system is set to the highest priority order. - 電力系統に交流電力を重畳可能に連携された複数の分散電源システムに付された優先順位を記憶し、これら複数の分散電源システムから前記電力系統に重畳される交流電力の総和と予め定めた閾値との大小に基づいて前記優先順位に応じて前記電力系統に重畳する交流電力の量を制限する信号を出力することを特徴とする電力制御装置。 Stores the priorities assigned to a plurality of distributed power systems linked so that AC power can be superimposed on the power system, and sums the AC power to be superimposed on the power system from the plurality of distributed power systems and a predetermined threshold value And outputting a signal for limiting the amount of AC power to be superimposed on the power system according to the priority order.
- 請求項8に記載の電力制御装置であって、
前記分散電源システムは、少なくとも太陽電池の発電電力または蓄電池の放電電力のいずれか一方から出力される直流電力を交流電力に変換して前記電力系統に重畳する構成を備えることを特徴とする電力制御装置。 The power control apparatus according to claim 8, wherein
The distributed power system includes a configuration in which DC power output from at least one of generated power of a solar battery or discharged power of a storage battery is converted into AC power and superimposed on the power system. apparatus. - 電力系統に交流電力を重畳可能に連携された分散電源システムにおいて、複数の分散電源システムから前記電力系統に重畳される電力量に応じて前記電力系統に重畳される交流電力の量を規制する信号を入力した際に前記電力系統へ重畳する交流電力の量を抑制する制御部を有することを特徴とする分散電源システム。 A signal that regulates the amount of AC power superimposed on the power system in accordance with the amount of power superimposed on the power system from a plurality of distributed power systems in a distributed power system linked so that AC power can be superimposed on the power system A distributed power supply system comprising a control unit that suppresses an amount of alternating current power that is superimposed on the electric power system when the power is input.
- 電力系統に連系点を介して接続されて交流電力を重畳可能に成された分散電源システムにおいて、前記電力系統に重畳される交流電力の量を規制する信号を入力した際に前記電力系統へ重畳する交流電力の量を抑制する制御部を有することを特徴とする分散電源システム。 In a distributed power supply system connected to a power system via a connection point and capable of superimposing AC power, when a signal for regulating the amount of AC power superimposed on the power system is input to the power system A distributed power supply system comprising a control unit that suppresses the amount of alternating-current power to be superimposed.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-291572 | 2010-12-28 | ||
JP2010291572A JP2014045527A (en) | 2010-12-28 | 2010-12-28 | Power control unit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012090709A1 true WO2012090709A1 (en) | 2012-07-05 |
Family
ID=46382822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/078927 WO2012090709A1 (en) | 2010-12-28 | 2011-12-14 | Power control apparatus and distributed power supply system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2014045527A (en) |
WO (1) | WO2012090709A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014072929A (en) * | 2012-09-27 | 2014-04-21 | Kyocera Corp | Energy management system, control apparatus and control method |
EP2924840A4 (en) * | 2012-11-26 | 2015-12-23 | Panasonic Ip Man Co Ltd | Power supply system, power conversion apparatus, and measurement point switching apparatus |
WO2016024406A1 (en) * | 2014-08-11 | 2016-02-18 | 京セラ株式会社 | Power supply device, power supply system and power supply method |
EP3041109A4 (en) * | 2013-08-30 | 2017-04-26 | Kyocera Corporation | Distributed power supply system and power conditioner |
CN112292561A (en) * | 2018-01-24 | 2021-01-29 | 比姆全球公司 | Lamp stand with Electric Vehicle (EV) charger |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6416533B2 (en) * | 2014-07-29 | 2018-10-31 | 京セラ株式会社 | Power control system control method, power control system, and power control apparatus |
JP6584774B2 (en) * | 2014-12-25 | 2019-10-02 | 京セラ株式会社 | Power control system, power control apparatus, and power control method |
JP6522487B2 (en) * | 2015-11-27 | 2019-05-29 | 新電元工業株式会社 | Operation control device for power conditioner, operation control method, and operation control program |
JP6026713B1 (en) * | 2016-04-14 | 2016-11-16 | 三菱電機株式会社 | Power management system |
JP6846149B2 (en) * | 2016-09-29 | 2021-03-24 | 大和ハウス工業株式会社 | Power supply system |
JP6951849B2 (en) * | 2017-03-22 | 2021-10-20 | 大和ハウス工業株式会社 | Power supply system |
JP6996152B2 (en) * | 2017-08-04 | 2022-01-17 | 日新電機株式会社 | Energy management system |
JP7452967B2 (en) * | 2019-09-30 | 2024-03-19 | 大和ハウス工業株式会社 | power supply system |
JP7346211B2 (en) * | 2019-09-30 | 2023-09-19 | 大和ハウス工業株式会社 | power supply system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004282898A (en) * | 2003-03-14 | 2004-10-07 | Osaka Gas Co Ltd | Power supply and demand control system |
JP2004362787A (en) * | 2003-06-02 | 2004-12-24 | Hitachi Home & Life Solutions Inc | Fuel cell system with power storing means |
JP2005278231A (en) * | 2004-03-23 | 2005-10-06 | Osaka Gas Co Ltd | Power generation system |
JP2010273407A (en) * | 2009-05-19 | 2010-12-02 | Osaka Gas Co Ltd | Energy supply system |
-
2010
- 2010-12-28 JP JP2010291572A patent/JP2014045527A/en active Pending
-
2011
- 2011-12-14 WO PCT/JP2011/078927 patent/WO2012090709A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004282898A (en) * | 2003-03-14 | 2004-10-07 | Osaka Gas Co Ltd | Power supply and demand control system |
JP2004362787A (en) * | 2003-06-02 | 2004-12-24 | Hitachi Home & Life Solutions Inc | Fuel cell system with power storing means |
JP2005278231A (en) * | 2004-03-23 | 2005-10-06 | Osaka Gas Co Ltd | Power generation system |
JP2010273407A (en) * | 2009-05-19 | 2010-12-02 | Osaka Gas Co Ltd | Energy supply system |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014072929A (en) * | 2012-09-27 | 2014-04-21 | Kyocera Corp | Energy management system, control apparatus and control method |
EP2924840A4 (en) * | 2012-11-26 | 2015-12-23 | Panasonic Ip Man Co Ltd | Power supply system, power conversion apparatus, and measurement point switching apparatus |
EP3041109A4 (en) * | 2013-08-30 | 2017-04-26 | Kyocera Corporation | Distributed power supply system and power conditioner |
US10079491B2 (en) | 2013-08-30 | 2018-09-18 | Kyocera Corporation | Dispersed power supply system and power conditioner |
WO2016024406A1 (en) * | 2014-08-11 | 2016-02-18 | 京セラ株式会社 | Power supply device, power supply system and power supply method |
JPWO2016024406A1 (en) * | 2014-08-11 | 2017-04-27 | 京セラ株式会社 | Power supply device, power supply system, and power supply method |
US10541537B2 (en) | 2014-08-11 | 2020-01-21 | Kyocera Corporation | Power supply apparatus, power supply system, and power supply method |
CN112292561A (en) * | 2018-01-24 | 2021-01-29 | 比姆全球公司 | Lamp stand with Electric Vehicle (EV) charger |
Also Published As
Publication number | Publication date |
---|---|
JP2014045527A (en) | 2014-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012090709A1 (en) | Power control apparatus and distributed power supply system | |
WO2012101911A1 (en) | Power control device and power system | |
JPWO2011074330A1 (en) | Secondary battery control device and secondary battery control method | |
JP5940309B2 (en) | Power supply system and power supply device | |
JP2006191748A (en) | Collective power network system | |
JP5719716B2 (en) | Communication apparatus and communication method | |
US20140236368A1 (en) | Energy control system, energy control device, and energy control method | |
JP5373528B2 (en) | Power distribution equipment | |
JP4831510B2 (en) | Energy supply-demand balance adjustment system and energy supply-demand balance adjustment method | |
JP7386028B2 (en) | power supply system | |
JP5940263B2 (en) | Power control apparatus and power control method | |
JP5993082B1 (en) | Distributed power system, power conversion device, and power factor control method | |
JP6315431B2 (en) | Combined heat and power supply for adjustment | |
JP6783581B2 (en) | Power supply system | |
JP7259184B2 (en) | Power system and power controller | |
JP2014064450A (en) | Direct current power distribution system, system managing device, computer program, and power demand controlling device | |
JP2017085813A (en) | Power management device | |
JP2010041783A (en) | Power distribution system | |
JP2021057181A (en) | Power supply system | |
JP6050914B1 (en) | Distributed power system and power converter | |
JP2014214635A (en) | Cogeneration system | |
JP6428093B2 (en) | Power supply system | |
JP4402874B2 (en) | Fuel cell power supply system | |
JP6105476B2 (en) | Power generation system, control device, and power control method | |
JP7426279B2 (en) | power supply system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11854047 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11854047 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |