図面のFIG.1を参照すると、往復動型内燃エンジンのクランクシャフトを支持するベアリングは、内燃エンジンのシリンダブロック1に形成されたバルクヘッド2と、バルクヘッド2にボルト52,53で固定されるベアリングキャップ11とで構成される。
Fig. Of the drawing. Referring to FIG. 1, a bearing for supporting a crankshaft of a reciprocating internal combustion engine includes a bulkhead 2 formed in a cylinder block 1 of the internal combustion engine, and a bearing cap 11 fixed to the bulkhead 2 with bolts 52 and 53. Consists of.
軽量化のためシリンダブロック1の本体はバルクヘッド2を含めて軽量化のため鉄系材料よりも軽量なアルミニウム合金またはアルミニウム材で形成される。バルクヘッド2はシリンダブロック1内に複数の各気筒を分かつ隔壁として機能する。
The body of the cylinder block 1 including the bulkhead 2 is made of an aluminum alloy or aluminum material that is lighter than an iron-based material for weight reduction. The bulkhead 2 functions as a partition wall for dividing each cylinder into a cylinder block 1.
内燃エンジンの稼働状態において、バルクヘッド2は鉛直方向の壁面を構成する。バルクヘッド2の下端3は水平な直線をなし、下端3の略中央に半円形の切欠4が形成されている。シリンダブロック1は例えば複数の気筒を一列に並べた直列多気筒エンジン用のシリンダブロックである。
In the operating state of the internal combustion engine, the bulkhead 2 constitutes a vertical wall surface. The lower end 3 of the bulkhead 2 forms a horizontal straight line, and a semicircular cutout 4 is formed at the approximate center of the lower end 3. The cylinder block 1 is, for example, a cylinder block for an in-line multi-cylinder engine in which a plurality of cylinders are arranged in a row.
バルクヘッド2には鋳鉄のような鉄系材料で構成されたベアリングキャップ11が固定される。ベアリングキャップ11は矩形の厚板状をなす。ベアリングキャップ11のバルクヘッド2との接合面12には、切欠4に対応する半円形の切欠13が形成される。
The bearing cap 11 made of an iron-based material such as cast iron is fixed to the bulkhead 2. The bearing cap 11 has a rectangular thick plate shape. A semicircular cutout 13 corresponding to the cutout 4 is formed on the joint surface 12 of the bearing cap 11 with the bulkhead 2.
ベアリングキャップ11は切欠4と13が相対して円形の軸受孔51を形成する位置でバルクヘッド2の下端3に固定される。クランクシャフトは軸受孔51に装着されるジャーナルベアリングとジャーナルベアリングに供給される潤滑油を介して回転自由に支持される。
The bearing cap 11 is fixed to the lower end 3 of the bulkhead 2 at a position where the notches 4 and 13 are opposed to form a circular bearing hole 51. The crankshaft is rotatably supported via a journal bearing mounted in the bearing hole 51 and lubricating oil supplied to the journal bearing.
ベアリングキャップ11のバルクヘッド2への固定は一対のボルト52と53によって行われる。このために、ベアリングキャップ11の切欠13の両側にボルト挿通孔14と15が形成される。また、バルクヘッド2にはボルト52と53が螺合するねじ孔5と6が形成される。
The bearing cap 11 is fixed to the bulkhead 2 by a pair of bolts 52 and 53. For this purpose, bolt insertion holes 14 and 15 are formed on both sides of the notch 13 of the bearing cap 11. Further, screw holes 5 and 6 into which the bolts 52 and 53 are screwed are formed in the bulk head 2.
ボルト52をボルト挿通孔14に貫通させてねじ孔5に締め付け、ボルト53をボルト挿通孔15に貫通させてねじ孔6に締め付けることで、ベアリングキャップ11はバルクヘッド2の下端3に固定される。
The bearing cap 11 is fixed to the lower end 3 of the bulkhead 2 by passing the bolt 52 through the bolt insertion hole 14 and tightening it into the screw hole 5 and passing the bolt 53 through the bolt insertion hole 15 and tightening it into the screw hole 6. .
ベアリングキャップ11のバルクヘッド2との接合面12と、接合面12と反対側、すなわち図中下側に位置する頂面19と、接合面12と頂面19とを接続する側面33と34を有する。頂面19にはボルト52の頭部52aとボルト53の頭部53aが下方から当接する。
The joint surface 12 of the bearing cap 11 with the bulkhead 2, the top surface 19 opposite to the joint surface 12, that is, the lower surface in the figure, and the side surfaces 33 and 34 that connect the joint surface 12 and the top surface 19. Have. The head 52a of the bolt 52 and the head 53a of the bolt 53 abut on the top surface 19 from below.
FIG.2を参照すると、ベアリングキャップ11は、切欠13を形成する、半割りの円筒状部位21と、円筒状部位21の下方に連続する台状部位31とからなり、全体として左右対称に形成されている。
FIG. 2, the bearing cap 11 is composed of a half-cut cylindrical portion 21 that forms the notch 13 and a base-like portion 31 that continues below the cylindrical portion 21, and is formed symmetrically as a whole. Yes.
円筒状部位21には側面33と34から水平方向かつクランクシャフトに直交する向き、すなわち図の左右の方向に大きく張り出した張り出し部25と26が形成される。なお、張り出し部25と26に対応する接合面12のクランクシャフト軸方向の寸法は、接合面12のその他の部位と同じである。張り出し部25と26は、ベアリングキャップ11のバルクヘッド2との接合面12を水平方向両側に拡大し、ベアリングキャップ11とバルクヘッド2との接合面積を増大させる役割をもつ。
The cylindrical portion 21 is formed with overhang portions 25 and 26 that protrude from the side surfaces 33 and 34 in the horizontal direction and perpendicular to the crankshaft, that is, in the left and right directions in the figure. The dimensions of the joint surface 12 corresponding to the overhang portions 25 and 26 in the crankshaft axial direction are the same as other portions of the joint surface 12. The overhang portions 25 and 26 expand the joint surface 12 of the bearing cap 11 to the bulkhead 2 on both sides in the horizontal direction, and increase the joint area between the bearing cap 11 and the bulkhead 2.
ベアリングキャップ11とバルクヘッド2との接合面積の拡大は、両者間の接触面圧を低下させ、ベアリングキャップ11がバルクヘッド2に生起する応力を低減させる作用をもたらす。
The enlargement of the joint area between the bearing cap 11 and the bulkhead 2 reduces the contact surface pressure between them, and brings about the effect that the bearing cap 11 reduces the stress generated in the bulkhead 2.
また、張り出し部25と26の頂面19側に位置する台状部位31に補強部36と37が形成される。補強部36と37は側面33と34から張り出し部25と26と同方向に張り出す。補強部36と37の張り出し量は、張り出し部25と26の張り出し量より小さく設定される。ここで張り出し量は側面33と34から水平方向への突出量を意味する。補強部36と37は張り出し部25と26の剛性を高める役割をもつ。
Further, reinforcing portions 36 and 37 are formed on the base portion 31 located on the top surface 19 side of the overhang portions 25 and 26. The reinforcing portions 36 and 37 project from the side surfaces 33 and 34 in the same direction as the projecting portions 25 and 26. The overhang amounts of the reinforcing portions 36 and 37 are set smaller than the overhang amounts of the overhang portions 25 and 26. Here, the amount of overhang means the amount of protrusion from the side surfaces 33 and 34 in the horizontal direction. The reinforcing portions 36 and 37 have a role of increasing the rigidity of the overhang portions 25 and 26.
図の左側に位置する張り出し部25は、先端方向に向かって、すなわちクランクシャフトから遠ざかるにつれて、厚さを減じる。図の右側に位置する張り出し部26も先端方向に向かって、すなわちクランクシャフトから遠ざかるにつれて厚さを減じる。厚さの減少にともなって張り出し部25と26の下面は傾斜する。このように張り出し部25と26の厚さを変化させることで、張り出し部25と26の形成に伴うベアリングキャップ11の重量増を抑制するためである。補強部36と37は台状部位31の一部をなし、張り出し部25と26の傾斜した下面に結合する。
The overhanging portion 25 located on the left side of the figure decreases in thickness toward the tip, that is, away from the crankshaft. The overhanging portion 26 located on the right side of the figure also decreases in thickness toward the distal end, that is, away from the crankshaft. As the thickness decreases, the lower surfaces of the overhang portions 25 and 26 are inclined. This is because the thickness of the overhang portions 25 and 26 is changed in this way to suppress an increase in the weight of the bearing cap 11 due to the formation of the overhang portions 25 and 26. The reinforcing portions 36 and 37 constitute a part of the base portion 31 and are coupled to the inclined lower surfaces of the overhang portions 25 and 26.
このように、ベアリングキャップ11の側面33と34に補強部36と37を設けることで、張り出し量の大きな張り出し部25と26は十分な剛性を維持することができる。
Thus, by providing the reinforcing portions 36 and 37 on the side surfaces 33 and 34 of the bearing cap 11, the overhang portions 25 and 26 having a large overhang amount can maintain sufficient rigidity.
FIG.3を参照すると、ベアリングキャップ11の台状部位31には頂面19を拡大するように、側面33と34から図の左右の方向に張り出した補助的補強部81と82が形成される。補助的補強部81と82もベアリングキャップ11の剛性を高める役割をもつ。
FIG. Referring to FIG. 3, auxiliary reinforcing portions 81 and 82 projecting from the side surfaces 33 and 34 in the left and right directions in the figure are formed on the base portion 31 of the bearing cap 11 so as to enlarge the top surface 19. The auxiliary reinforcing portions 81 and 82 also serve to increase the rigidity of the bearing cap 11.
このようにして、このベアリングキャップ11は、側面33と34から水平方向に張り出した張り出し部25と26によりクランクシャフトからベアリングキャップ11を介してバルクヘッド2に生起する応力を低減する一方、側面33と34から同方向により小さな張り出し量のもとで張り出した補強部36と37が張り出し部25と26を支持して、ベアリングキャップ11の剛性を確保する。
In this way, the bearing cap 11 reduces the stress generated in the bulkhead 2 from the crankshaft through the bearing cap 11 by the overhang portions 25 and 26 projecting horizontally from the side surfaces 33 and 34, while the side surface 33. Reinforcing portions 36 and 37 projecting from the projecting portions 34 and 34 with a smaller projecting amount in the same direction support the projecting portions 25 and 26 and ensure the rigidity of the bearing cap 11.
したがって、このベアリングキャップ11によれば、内燃エンジンの運転中にクランクシャフトがベアリングキャップ11やバルクヘッド2に生起する応力を低減することができる。
Therefore, according to the bearing cap 11, it is possible to reduce the stress generated in the bearing cap 11 and the bulkhead 2 by the crankshaft during operation of the internal combustion engine.
FIGS.4-7を参照して、この発明の第2の実施形態を説明する。
Fig. A second embodiment of the present invention will be described with reference to 4-7.
この実施形態はベアリングキャップ複合体に関する。ベアリングキャップ複合体は、ベアリングキャップ11とベアリングキャップ保持部材としてのラダーフレーム71とを備える。ラダーフレーム71は、鉄系材料で構成されたベアリングキャップ11よりも軽くかつベアリングキャップ11よりも融点の低いアルミニウム合金などの金属材料で形成される。ベアリングキャップ11はラダーフレーム71に鋳込まれることで、一体のベアリングキャップ複合体を構成する。
This embodiment relates to a bearing cap composite. The bearing cap composite includes a bearing cap 11 and a ladder frame 71 as a bearing cap holding member. The ladder frame 71 is formed of a metal material such as an aluminum alloy that is lighter than the bearing cap 11 made of an iron-based material and has a lower melting point than the bearing cap 11. The bearing cap 11 is cast into the ladder frame 71 to constitute an integral bearing cap composite.
FIG.5を参照すると、ラダーフレーム71は、直列4気筒内燃エンジンに適用されるべく、平行に配置された5本の桟部材74の両端を一対の桁部材75と76で結合したラダー形状をなす。桟部材74はシリンダブロックに形成されるバルクヘッドの直下に位置するように配置される。このように構成されたラダーフレーム71を有するベアリングキャップ複合体は、桟部材74の数を変えることで。直列4気筒内燃エンジンに限らず、任意の気筒数の内燃エンジンに適用可能である。
FIG. Referring to FIG. 5, the ladder frame 71 has a ladder shape in which both ends of five cross members 74 arranged in parallel are coupled by a pair of beam members 75 and 76 to be applied to an in-line four-cylinder internal combustion engine. The crosspiece member 74 is disposed so as to be located immediately below the bulkhead formed in the cylinder block. The bearing cap complex having the ladder frame 71 configured as described above is obtained by changing the number of crosspiece members 74. The present invention is not limited to an in-line four-cylinder internal combustion engine, and can be applied to an internal combustion engine having an arbitrary number of cylinders.
FIG.4を参照すると、ベアリングキャップ11は水平方向外側に位置する桟部材74の一部であるキャップ延長部72と73の間に鋳込まれる。キャップ延長部72と73はラダーフレーム71の他の部位と同様にアルミニウム合金で形成される。ベアリングキャップ11をキャップ延長部72と73の間に鋳込むことで一体の厚板状の桟部材74が形成される。
FIG. Referring to FIG. 4, the bearing cap 11 is cast between cap extensions 72 and 73 which are part of a crosspiece member 74 located on the outer side in the horizontal direction. The cap extensions 72 and 73 are made of an aluminum alloy in the same manner as other portions of the ladder frame 71. By casting the bearing cap 11 between the cap extensions 72 and 73, an integral thick plate-like cross member 74 is formed.
再びFIG.5を参照すると、一対の桁部材75と76もアルミニウム合金で形成される。ラダーフレーム71には5個のベアリングキャップ11が鋳込まれる。
Again FIG. 5, the pair of girder members 75 and 76 are also formed of an aluminum alloy. Five bearing caps 11 are cast in the ladder frame 71.
FIGS.6と7を参照すると、ベアリングキャップ11は第1の実施形態と異なり、補助的補強部81と82を設けない。これは、ベアリングキャップ11の左右に結合するキャップ延長部72と73が補助的補強部81と82と同等以上の剛性強化作用をもたらすからである。
Fig. Referring to FIGS. 6 and 7, unlike the first embodiment, the bearing cap 11 does not include the auxiliary reinforcing portions 81 and 82. This is because the cap extensions 72 and 73 coupled to the left and right sides of the bearing cap 11 provide a rigidity enhancing action equal to or greater than that of the auxiliary reinforcing parts 81 and 82.
この実施形態によるベアリングキャップ11も第1の実施形態と同様に、円筒状部位21に側面33と34から水平方向かつクランクシャフトに直交する向き、すなわち図の左右の方向に大きく張り出した張り出し部25と26が形成される。また、張り出し部25と26の頂面19側に位置する台状部位31に補強部36と37が形成される。補強部36と37の張り出し量は、張り出し部25と26の張り出し量より小さく設定される。
Similarly to the first embodiment, the bearing cap 11 according to this embodiment also extends from the side surfaces 33 and 34 to the cylindrical portion 21 in a direction that is horizontal and orthogonal to the crankshaft, that is, a protruding portion 25 that protrudes in the left and right directions in the figure. And 26 are formed. Reinforcing portions 36 and 37 are formed on the base portion 31 located on the top surface 19 side of the overhang portions 25 and 26. The overhang amounts of the reinforcing portions 36 and 37 are set smaller than the overhang amounts of the overhang portions 25 and 26.
この実施形態においては、補強部36と37の形状が第1の実施形態と若干異なる。これについては後で説明する。
In this embodiment, the shapes of the reinforcing portions 36 and 37 are slightly different from those of the first embodiment. This will be described later.
このように、鉄系材料のベアリングキャップ11をアルミニウム合金のラダーフレーム71に鋳込むのは、ベアリングキャップ複合体の重量を軽くするためである。すなわち、ラダーフレーム71をベアリングキャップ11と同じ鉄系材料で構成する場合と比べて、ベアリングキャップ複合体の軽量化が可能になる。
Thus, the reason why the bearing cap 11 made of an iron-based material is cast into the aluminum alloy ladder frame 71 is to reduce the weight of the bearing cap composite. That is, the weight of the bearing cap composite can be reduced as compared with the case where the ladder frame 71 is made of the same iron-based material as the bearing cap 11.
ベアリングキャップ11をラダーフレーム71に鋳込む際に、鉄系材料のベアリングキャップ11と、アルミニウム合金のラダーフレーム71のキャップ延長部72と73との接合面が平面であると、両者を密着状態に保持することが難しい。一方、ベアリングキャップ11とキャップ延長部72と73とが密着していないと、ベアリングキャップ複合体の剛性が低下し、ベアリングキャップ複合体は十分な強度を保てなくなる。
When casting the bearing cap 11 into the ladder frame 71, if the joint surface between the bearing cap 11 made of ferrous material and the cap extension portions 72 and 73 of the ladder frame 71 made of aluminum alloy is flat, they are brought into close contact with each other. Difficult to hold. On the other hand, if the bearing cap 11 and the cap extensions 72 and 73 are not in close contact with each other, the rigidity of the bearing cap composite is lowered, and the bearing cap composite cannot maintain sufficient strength.
この実施形態においては、張り出し部25と26と補強部36と37を設けることで、ベアリングキャップ11とキャップ延長部72,73との密着性を高めている。ベアリングキャップ11とキャップ延長部72,73との密着性の強化は、ラダーフレーム71全体の剛性の強化をもたらす。
In this embodiment, by providing the overhang portions 25 and 26 and the reinforcing portions 36 and 37, the adhesion between the bearing cap 11 and the cap extension portions 72 and 73 is enhanced. The enhancement of the adhesion between the bearing cap 11 and the cap extensions 72 and 73 brings about an increase in the rigidity of the entire ladder frame 71.
ベアリングキャップ11には、クランクシャフトの回転に応じて軸受孔51を中心とした回転方向の荷重が作用する。張り出し部25と26と補強部36と37によってベアリングキャップ11とキャップ延長部72,73との密着性が強化されることで、この回転方向の荷重をキャップ延長部72と73で支持することが可能となる。
The load in the rotation direction centering on the bearing hole 51 acts on the bearing cap 11 according to the rotation of the crankshaft. Since the adhesion between the bearing cap 11 and the cap extension portions 72 and 73 is enhanced by the overhang portions 25 and 26 and the reinforcement portions 36 and 37, the load in the rotational direction can be supported by the cap extension portions 72 and 73. It becomes possible.
ベアリングキャップ11をキャップ延長部72と73に密着保持するために、この実施形態によるベアリングキャップ11は補強部36の下方の側面33に、補強部36と同方向へ突出する2個の突出部43と45を備える。同様に、補強部37の下方の側面34に、補強部37と同方向へ突出する2個の突出部44と46を備える。
In order to hold the bearing cap 11 in close contact with the cap extensions 72 and 73, the bearing cap 11 according to this embodiment has two projecting portions 43 projecting on the side surface 33 below the reinforcing portion 36 in the same direction as the reinforcing portion 36. And 45. Similarly, two projecting portions 44 and 46 projecting in the same direction as the reinforcing portion 37 are provided on the side surface 34 below the reinforcing portion 37.
好ましくは、突出部43と44は同形状とし、補強部36から垂直方向に等しい間隔で配置する。同様に、突出部44と46は同形状とし、補強部37から垂直方向に等しい間隔で配置する。
Preferably, the protrusions 43 and 44 have the same shape and are arranged at equal intervals in the vertical direction from the reinforcing portion 36. Similarly, the protrusions 44 and 46 have the same shape and are arranged at equal intervals from the reinforcing portion 37 in the vertical direction.
アルミニウム合金材料を用いてラダーフレーム71を鋳造するのに先立ち、鋳型の中にベアリングキャップ11を配置しておくことで、ラダープレーム71のキャップ延長部72に突出部43と45が食い込み、キャップ延長部73に突出部44と46が食い込んだ状態で、一体のベアリングキャップ複合体が形成される。キャップ延長部72に喰い込んだ突出部43と45は、ベアリングキャップ11とキャップ延長部72の接触面積を増大させ、キャップ延長部73に食い込んだ突出部44と46は、ベアリングキャップ11とキャップ延長部73の接触面積を増大させる。その結果、ベアリングキャップ11はラダーフレーム71に強固に密着する。
Prior to casting the ladder frame 71 using the aluminum alloy material, the protrusions 43 and 45 bite into the cap extension 72 of the ladder plate 71 by arranging the bearing cap 11 in the mold, and the cap extension. With the projecting portions 44 and 46 biting into the portion 73, an integral bearing cap composite is formed. The protrusions 43 and 45 that bite into the cap extension 72 increase the contact area between the bearing cap 11 and the cap extension 72, and the protrusions 44 and 46 that bite into the cap extension 73 become the bearing cap 11 and the cap extension. The contact area of the part 73 is increased. As a result, the bearing cap 11 is firmly attached to the ladder frame 71.
この実施形態では、ベアリングキャップ11の側面33に設ける補強部36と、側面34に設ける補強部37を第1の実施形態とは異なる寸法に設定する。すなわち、この実施形態において補強部36と37の垂直方向あるいは図の上下方向の寸法は第1の実施形態の補強部36,37より小さく設定される。また、補強部36と張り出し部25の間に水平方向に凹む凹部38を形成し、補強部37と張り出し部26の間に水平方向に凹む凹部39を形成する。
In this embodiment, the reinforcing portion 36 provided on the side surface 33 of the bearing cap 11 and the reinforcing portion 37 provided on the side surface 34 are set to dimensions different from those of the first embodiment. That is, in this embodiment, the dimensions of the reinforcing portions 36 and 37 in the vertical direction or the vertical direction in the figure are set smaller than the reinforcing portions 36 and 37 of the first embodiment. Further, a concave portion 38 that is recessed in the horizontal direction is formed between the reinforcing portion 36 and the protruding portion 25, and a concave portion 39 that is recessed in the horizontal direction is formed between the reinforcing portion 37 and the protruding portion 26.
さらに、この実施形態では補強部36と凹部38とがなす形状を突出部43と45に類似させる。同様に補強部37と凹部39とがなす形状を突出部44と46に類似させる。このような補強部36,37と突出部43-46の形状の類似性は、材質の異なる2つの部材であるベアリングキャップ11とキャップ延長部72,73との密着性をFIG.4の上下方向に関して均一化するうえで好ましい。
Furthermore, in this embodiment, the shape formed by the reinforcing portion 36 and the recessed portion 38 is made similar to the protruding portions 43 and 45. Similarly, the shape formed by the reinforcing portion 37 and the recessed portion 39 is made similar to the protruding portions 44 and 46. Such similarity in the shapes of the reinforcing portions 36 and 37 and the protruding portions 43 to 46 indicates that the adhesion between the bearing cap 11 and the cap extension portions 72 and 73 which are two members of different materials is as shown in FIG. 4 is preferable in order to equalize the vertical direction.
一方、補強部36と37の垂直方向あるいは図の上下方向の寸法を第1の実施形態の補強部36,37より小さくすると、ベアリングキャップ11それ自体の剛性は低下することになる。しかしながら、ベアリングキャップ複合体として考えると、ベアリングキャップ11の剛性の低下をキャップ延長部72と73が補うことになり、ベアリングキャップ複合体としての剛性は低下しない。
On the other hand, if the size of the reinforcing portions 36 and 37 in the vertical direction or the vertical direction in the figure is made smaller than that of the reinforcing portions 36 and 37 of the first embodiment, the rigidity of the bearing cap 11 itself is lowered. However, when considered as a bearing cap composite, the cap extensions 72 and 73 compensate for the decrease in rigidity of the bearing cap 11, and the rigidity as the bearing cap composite does not decrease.
このベアリングキャップ複合体によれば、鉄系部材のベアリングキャップ11とアルミニウム合金のキャップ延長部72、73との接合面積が拡大し、材質の異なる2つの部材の密着性が向上する。その結果、鉄芸部材のベアリングキャップ11と、ベアリングキャップ11を鋳込んだアルミニウム合金のラダーフレーム71とからなるベアリングキャップ複合体は、ベアリングキャップ11とキャップ延長部72、73との密着性が高く、全体的に高い剛性を備えることができる。
According to this bearing cap composite, the joint area between the bearing cap 11 of the iron-based member and the cap extensions 72 and 73 of the aluminum alloy is expanded, and the adhesion between two members of different materials is improved. As a result, the bearing cap composite including the bearing cap 11 of the ironing member and the aluminum alloy ladder frame 71 in which the bearing cap 11 is cast has high adhesion between the bearing cap 11 and the cap extensions 72 and 73. In general, high rigidity can be provided.
また、凹部38と39の形成により補強部36,37を突出部43-46と略同一形状としたので、ベアリングキャップ11とキャップ延長部72、73との鉛直方向での密着度を均一にすることができる。
Further, since the reinforcing portions 36 and 37 have substantially the same shape as the protruding portions 43-46 by forming the concave portions 38 and 39, the degree of close contact between the bearing cap 11 and the cap extension portions 72 and 73 in the vertical direction is made uniform. be able to.
さらに、補強部36と突出部43と44を側面33に沿ってFIG.4の上下方向にほぼ等間隔で配置し、補強部37と突出部44と46を側面34に沿って上下方向にほぼ等間隔で配置したので、ベアリングキャップ11とキャップ延長部72、73との鉛直方向での密着度をより一層均一化できる。
Further, the reinforcing portion 36 and the protruding portions 43 and 44 are arranged along the side surface 33 in FIG. 4, the reinforcing portion 37 and the projecting portions 44 and 46 are arranged at substantially equal intervals in the vertical direction along the side surface 34, so that the bearing cap 11 and the cap extension portions 72 and 73 are The degree of adhesion in the vertical direction can be made even more uniform.
凹部38と39は、ベアリングキャップ11とキャップ延長部72,73との接合面積を増大させる。この接合面積の増大も、材質の異なる2つの部材であるベアリングキャップ11とキャップ延長部72、73との密着性向上に寄与する。
The concave portions 38 and 39 increase the joint area between the bearing cap 11 and the cap extension portions 72 and 73. This increase in the bonding area also contributes to improving the adhesion between the bearing cap 11 and the cap extensions 72 and 73, which are two members of different materials.
FIGS.8-11を参照して、この発明の第3の実施形態を説明する。
Fig. A third embodiment of the present invention will be described with reference to 8-11.
FIGS.8と9を参照すると、この実施形態も第2の実施形態と同様に、鉄系材料のベアリングキャップ11を、ベアリングキャップ11より軽くかつ融点の低い例えばアルミニウム合金金蔵材料のラダーフレーム71に鋳込んだベアリングキャップ複合体を対象とする。
Fig. Referring to FIGS. 8 and 9, as in the second embodiment, in this embodiment, a bearing cap 11 made of an iron-based material is cast into a ladder frame 71 made of, for example, an aluminum alloy metal warehouse material that is lighter and has a lower melting point than the bearing cap 11. Targeting bearing cap composites.
FIGS.10と11を参照すると、ベアリングキャップ11には、第1の実施形態と同様の張り出し部25と26を設ける。また、張り出し部25と26の頂面19側に位置する台状部位31に補強部36と37が形成される。補強部36と37は側面33と34から張り出し部25と26と同方向に張り出す。補強部36と37の張り出し量は、張り出し部25と26の張り出し量より小さく設定される。張り出し量は側面33と34から水平方向への突出量を意味する。補強部36と37は張り出し部25と26の剛性を高める役割をもつ。
Fig. Referring to FIGS. 10 and 11, the bearing cap 11 is provided with overhangs 25 and 26 similar to those of the first embodiment. Reinforcing portions 36 and 37 are formed on the base portion 31 located on the top surface 19 side of the overhang portions 25 and 26. The reinforcing portions 36 and 37 project from the side surfaces 33 and 34 in the same direction as the projecting portions 25 and 26. The overhang amounts of the reinforcing portions 36 and 37 are set smaller than the overhang amounts of the overhang portions 25 and 26. The amount of overhang means the amount of protrusion in the horizontal direction from the side surfaces 33 and 34. The reinforcing portions 36 and 37 have a role of increasing the rigidity of the overhang portions 25 and 26.
ただし、この実施形態では、補強部36と37の上下方向の長さを第1の実施形態よりも短く設定する。また、第2の実施形態の凹部38と39は形成されない。
However, in this embodiment, the vertical lengths of the reinforcing portions 36 and 37 are set shorter than those in the first embodiment. Further, the recesses 38 and 39 of the second embodiment are not formed.
この実施形態によるベアリングキャップ11は第2の実施形態のベアリングキャップ11の変形に相当する。すなわち、この実施形態において、ベアリングキャップ11の側面33には水平方向外側に突出する突出部47が設けられる。ベアリングキャップ11の側面34には突出部48が設けられる。各側面33と34に設ける突出部47と48をこのように各1個に限定することで、第2の実施形態と比べてベアリングキャップ11の製造が容易になる。
The bearing cap 11 according to this embodiment corresponds to a deformation of the bearing cap 11 according to the second embodiment. That is, in this embodiment, the side surface 33 of the bearing cap 11 is provided with a protruding portion 47 that protrudes outward in the horizontal direction. A protrusion 48 is provided on the side surface 34 of the bearing cap 11. By limiting the protrusions 47 and 48 provided on the side surfaces 33 and 34 to one each in this way, the bearing cap 11 can be easily manufactured as compared with the second embodiment.
各1個の突出部47と48により、ベアリングキャップ11とキャップ延長部72,73との接合面積を確保するために、突出部47,48は補強部36,37より水平方向外側に大きく突出させる。言い換えれば、突出部47と48の張り出し量を補強部36と37より大きく設定する。突出部47と48はベアリングキャップ11の上下方向の中央部に設けることが望ましい。突出部47と48を中央部から上方あるいは下方へ偏った位置に設けると、ベアリングキャップ11とキャップ延長部72,73との密着度に上下方向で偏りが生じるからである。
In order to secure a bonding area between the bearing cap 11 and the cap extension portions 72 and 73 by the one protrusion portions 47 and 48, the protrusion portions 47 and 48 protrude more outward in the horizontal direction than the reinforcing portions 36 and 37. . In other words, the amount of protrusion of the projecting portions 47 and 48 is set larger than that of the reinforcing portions 36 and 37. The protrusions 47 and 48 are preferably provided at the center of the bearing cap 11 in the vertical direction. This is because if the protrusions 47 and 48 are provided at positions deviated upward or downward from the central portion, the degree of adhesion between the bearing cap 11 and the cap extension portions 72 and 73 is uneven in the vertical direction.
ただし、水平方向外側への張り出し量の少ない補強部36と37も、ベアリングキャップ11のキャップ延長部72、73との接合面積を増やすのに幾分かは寄与している。この寄与分を考慮して、突出部47と48をベアリングキャップ11の上下方向の中央部から若干下寄りに配置することは、ベアリングキャップ11とキャップ延長部72,73との密着度を上下方向に関して平均化するうえで好ましい。
However, the reinforcing portions 36 and 37 with a small amount of protrusion outward in the horizontal direction also contribute to some extent in increasing the joint area with the cap extension portions 72 and 73 of the bearing cap 11. Taking this contribution into account, disposing the protrusions 47 and 48 slightly below the center of the bearing cap 11 in the up-and-down direction can increase the degree of adhesion between the bearing cap 11 and the cap extensions 72 and 73 in the up-and-down direction. Is preferable for averaging.
この実施形態によっても第2の実施形態と同様の作用効果が得られる。
This embodiment can provide the same effects as those of the second embodiment.
この実施形態では、ベアリングキャップ11の側面33と34に各1個のみの突出部47と48を設けたので、側面33と34に複数43-46の突出部を設けた第2の実施形態と比べてベアリングキャップ11の加工が容易になる。
In this embodiment, since only one protrusion 47 and 48 is provided on each of the side surfaces 33 and 34 of the bearing cap 11, a plurality of 43-46 protrusions are provided on the side surfaces 33 and 34. In comparison, the processing of the bearing cap 11 is facilitated.
FIG.12を参照して、この発明の第2実施形態と第3実施形態によるベアリングキャップ複合体と、従来のベアリングキャップ構造とが、ベアリングキャップとバルクヘッドの接合面にもたらす応力を比較する。
FIG. Referring to FIG. 12, the stresses caused by the bearing cap composite according to the second and third embodiments of the present invention and the conventional bearing cap structure on the joint surface between the bearing cap and the bulkhead are compared.
内燃エンジンの運転中はベアリングキャップ11のバルクヘッド2との接合面12にボルト52、53による締め付け応力が作用する。他に、熱応力や残留応力が作用する。FIG.12のダイアグラムの横軸の「平均応力」は、これら応力の合計が内燃エンジン運転中に接合面12に作用する場合の平均の応力を意味する。
During operation of the internal combustion engine, the tightening stress by the bolts 52 and 53 acts on the joint surface 12 of the bearing cap 11 with the bulkhead 2. In addition, thermal stress and residual stress act. FIG. The “average stress” on the horizontal axis of the twelve diagrams means the average stress when the sum of these stresses acts on the joint surface 12 during operation of the internal combustion engine.
また、4ストロークサイクルエンジンの運転中には、サインカーブに近似して変動する変動応力が接合面12に作用する。ダイアグラムの横軸の「変動片振幅応力」はこの変動応力の振幅の半分を意味する。
Also, during operation of the 4-stroke cycle engine, a fluctuating stress that fluctuates in a manner that approximates a sine curve acts on the joint surface 12. “Variable piece amplitude stress” on the horizontal axis of the diagram means half of the amplitude of this variable stress.
ダイアグラムに示された右下がりのラインは、シリンダブロック1の耐久性を維持可能な境界線を表す。つまり、内燃エンジンの運転状態が境界線の上側にあればシリンダブロック1の耐久性を維持できない。ダイアグラムに「NG」と表示された領域がこの条件に該当する。内燃エンジンの運転状態が境界線の下側にあればシリンダブロック1の耐久性を維持し得る。ダイアグラムに「OK」と表示された領域がこの条件に該当する。
∙ The lower-right line shown in the diagram represents the boundary line that can maintain the durability of the cylinder block 1. That is, if the operating state of the internal combustion engine is above the boundary line, the durability of the cylinder block 1 cannot be maintained. An area labeled “NG” on the diagram corresponds to this condition. If the operating state of the internal combustion engine is below the boundary line, the durability of the cylinder block 1 can be maintained. An area labeled “OK” on the diagram corresponds to this condition.
従来のベアリングキャップを採用する内燃エンジンでは、運転状態が黒丸で示したように境界線の上側にあったとしても、この発明の第2または第3の実施形態によるベアリングキャップ複合体を採用することで、運転状態が図の四角や菱形に示すように、境界線の下側に来ることが期待される。したがって、この発明により、シリンダブロック1の耐久性を高めることができる。
In an internal combustion engine that employs a conventional bearing cap, the bearing cap composite according to the second or third embodiment of the present invention is employed even if the operating state is above the boundary line as indicated by the black circles. Therefore, it is expected that the driving state will be below the boundary line as shown by the squares and diamonds in the figure. Therefore, according to the present invention, the durability of the cylinder block 1 can be enhanced.
以上の説明に関して2010年12月27日を出願日とする日本国における特願2010-290315号、の内容をここに引用により合体する。
Regarding the above description, the contents of Japanese Patent Application No. 2010-290315, filed on December 27, 2010, are incorporated herein by reference.
以上、この発明をいくつかの特定の実施例を通じて説明してきたが、この発明は上記の各実施例に限定されるものではない。当業者にとっては、クレームの技術範囲でこれらの実施例にさまざまな修正あるいは変更を加えることが可能である。
Although the present invention has been described through some specific embodiments, the present invention is not limited to the above embodiments. Those skilled in the art can make various modifications or changes to these embodiments within the scope of the claims.
以上の第2及び第3の実施形態では、ベアリングキャップ11を、ベアリングキャップ11より軽くかつ融点の低い金属材料によるベアリング保持部材に鋳込んだベアリングキャップ複合体を形成している。ベアリング保持部材は複数の桟部材74と桟部材74の両端を結合する桁部材75と76からなるラダーフレーム71で構成される。そして、桟部材74をキャップ延長部72と73及びこれらの間に鋳込まれたベアリングキャップ11で構成している。
In the second and third embodiments described above, a bearing cap complex is formed by casting the bearing cap 11 into a bearing holding member made of a metal material that is lighter and has a lower melting point than the bearing cap 11. The bearing holding member is composed of a plurality of crosspiece members 74 and a ladder frame 71 including girder members 75 and 76 that connect both ends of the crosspiece members 74. And the crosspiece member 74 is comprised by the cap extension parts 72 and 73 and the bearing cap 11 cast between these.
しかしながら、ベアリングキャップ保持部材はラダーフレーム71に限定されず、さまざまな構成が可能である。例えば、キャップ延長部72と73の間にベアリングキャップ11を鋳込んだ桟部材74をベアリング保持部材とすることも可能である。この場合には、桟部材74はバルクヘッド2ごとに独立し、バルクヘッド2に個別に固定される。
However, the bearing cap holding member is not limited to the ladder frame 71, and various configurations are possible. For example, a crosspiece member 74 in which the bearing cap 11 is cast between the cap extension portions 72 and 73 can be used as the bearing holding member. In this case, the crosspiece 74 is independent for each bulkhead 2 and is individually fixed to the bulkhead 2.