WO2012089108A1 - 信道码资源的分配方法和基站 - Google Patents

信道码资源的分配方法和基站 Download PDF

Info

Publication number
WO2012089108A1
WO2012089108A1 PCT/CN2011/084753 CN2011084753W WO2012089108A1 WO 2012089108 A1 WO2012089108 A1 WO 2012089108A1 CN 2011084753 W CN2011084753 W CN 2011084753W WO 2012089108 A1 WO2012089108 A1 WO 2012089108A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel code
channel
user
cell
scch
Prior art date
Application number
PCT/CN2011/084753
Other languages
English (en)
French (fr)
Inventor
郭房富
胡圣武
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2012089108A1 publication Critical patent/WO2012089108A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a method for allocating channel code resources and a base station.
  • FIG. 1 is a schematic diagram of a spanning tree structure of a 0 VSF channel code in the prior art. As shown in FIG. 1 , there are at most 16 spreading factors in a cell (Spreading Factor; SF) 16 channel code.
  • P-CPICH Primary Co bandit on Pilot Channel
  • 3GPP cylinder hereinafter referred to the 3 rd Generation Partner Project
  • P-CCPCH The Primary Common Control Physical Channel
  • the indicator channel (Acquisition Indicator Channel; AICH) and the paging indicator channel (Page Indication Channel; PIC) are each assigned an SF256 channel code and are a Secondary Common Control Physical Channel;
  • the following cartridges are called: S-CCPCH) Allocate a certain channel code resource.
  • E-DCH Enhanced Dedicated Channels
  • E-AGCH Absolute Grant Channel
  • E-DCH Hybrid Automatic Repeat Requests Automatic Repeat reQuest
  • ARQ E-DCH Hybrid ARQ Indicator Channel
  • E-HCH Relative Grant Channel E-DCH Relative Grant Channel; E-DCH Relative Grant Channel; RGCH
  • each E-AGCH needs to be assigned an SF256 channel code
  • each group of E-HICH/E-RGCH needs to be assigned an SF128 channel code.
  • HS-SCCH high-speed shared control channels
  • HS-PDSCH High-speed Physical Downlink Shared Channel
  • each HS-SCCH channel needs to allocate one SF128 channel code, and each HS-PDSCH channel can only use SF16 channel code. Therefore, the channel code that can be used for HS-PDSCH in one cell is theoretically up to 15, that is, SF(16, 1)-SF(16, 15).
  • Radio Network Controller Radio Network Controller
  • RNC Radio Network Controller
  • the channel code resource allocation method in the prior art allocates channel code resources for the HS-SCCH, or the E-AGCH and the E-HICH/E-RGCH, the corresponding channel code resources are statically allocated according to the RNC configuration requirements. As a result, there may be only 14 channel codes available for the HS-PDSCH, and the actual utilization rate of the channel code resources and the throughput rate of the users also decrease. Summary of the invention
  • An embodiment of the present invention provides a method for allocating a channel code resource and a base station, which dynamically allocates channel code resources for each channel in the cell according to actual conditions, improves the actual utilization rate of the channel code resources, and improves the throughput rate of the user.
  • an aspect of the present invention provides a method for allocating a channel code resource, include:
  • the channel code resource is allocated to the channel according to the occupancy of the channel code resource in the cell.
  • a base station including:
  • a receiving module configured to receive a resource configuration notification message sent by the radio network controller, where the resource configuration notification message carries information about a channel that requires configuration of a channel code resource;
  • an allocating module configured to allocate a channel code according to the channel of the channel code resource according to the occupation of the channel code resource in the cell.
  • a method for allocating a channel code resource and a base station after receiving a resource configuration notification message sent by the RNC, the base station allocates a channel according to the occupancy of the channel code resource in the cell to each channel in the cell.
  • the present embodiment solves the defect that the allocated channel code resources are not used due to the fixed allocation of channel code resources in the prior art, and the channel code resources cannot be used by other channels, and the implementation is solved by the on-demand allocation of the channel code resources.
  • the channel code resources are dynamically allocated to each channel in the cell, which improves the actual utilization of the channel code resources and improves the throughput of the user.
  • FIG. 1 is a schematic diagram of a spanning tree structure of a 0 VS F channel code in the prior art
  • Embodiment 1 is a flowchart of Embodiment 1 of a method for allocating a channel code resource according to the present invention
  • Embodiment 3 is a flowchart of Embodiment 2 of a method for allocating a channel code resource according to the present invention
  • FIG. 4 is a flowchart of Embodiment 3 of a method for allocating a channel code resource according to the present invention
  • 5 is a flowchart of Embodiment 4 of a method for allocating a channel code resource according to the present invention
  • FIG. 6 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention
  • FIG. 7 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention. detailed description
  • Step 201 A base station receives wireless a resource configuration notification message sent by the network controller, where the resource configuration notification message carries an HS-SCCH, an E-AGCH, or an E-HICH/E-RGCH 0 that requires configuration of a channel code resource.
  • the RNC when the channel code resource needs to be allocated to each channel in the cell, the RNC sends a resource configuration notification message to the base station, and the resource configuration notification message informs the base station to configure the channel code resource of each channel in the cell.
  • the resource configuration notification message each channel that requires configuration of a channel code resource, including an HS-SCCH, or an E-AGCH, or an E-HICH/E-RGCH 0 , may be known to those skilled in the art, for the HSUPA cell.
  • each E-AGCH needs to be assigned one SF256 channel code, and each group of E-HICH/E-RGCH needs to allocate one SF128 channel code;
  • Each HS-SCCH needs to allocate one SF128 channel code, and each HS-PDSCH needs to allocate one SF16 channel code.
  • the base station obtains, according to the received resource configuration notification message, each channel that needs to configure the channel code resource, which may be the HS-SCCH or the E-AGCH in the above channel, or may be E-HICH/E-RGCH 0
  • Step 202 The base station allocates a channel code on demand according to the occupancy condition of the channel code resource in the cell to the HS-SCCH, the E-AGCH, or the E-HICH/E-RGCH in the cell.
  • the base station After receiving the resource configuration notification message, the base station does not directly configure a corresponding number of channel codes for each channel according to the number of channel codes required by the resource configuration notification message in the prior art, but according to the occupation of channel code resources in the cell.
  • the channel code is allocated to each channel as needed, that is, the channel code resource is allocated according to actual needs.
  • the occupancy of the channel code resource here may include the scheduling situation of the user in the cell, the number of users in the cell, etc., which may be set by the operator or the user at the initial stage of cell establishment. In this way, the channel code resource can be fully utilized, and the defect that the allocated channel code resource is not used due to the fixed allocation of the channel code resource in the prior art and the other channel cannot use the channel code resource does not occur.
  • the channel code resources allocated to the HS-SCCH, E-AGCH or E-HICH/E-RGCH occupy the channel code on one channel code tree, such as SF (16, 0), and the channel code resources on the remaining channel code trees are It can be used as the HS-PDSCH, so that the cell can use up to the theoretical limit of the number of codewords used as the HS-PDSCH. For example, up to 15 HS-PDSCH codewords can be used, which increases the channel code resources that can be used in the cell. Increased user throughput.
  • the present embodiment provides a method for allocating a channel code resource. After receiving a resource configuration notification message sent by the RNC, the base station allocates a channel code to each channel in the cell according to the occupancy of the channel code resource in the cell.
  • the embodiment solves the defect that the allocated channel code resource is not used due to the fixed allocation of the channel code resource in the prior art, and the other channel cannot use the channel code resource by the on-demand allocation of the channel code resource, and realizes the defect according to the actual situation.
  • the actual utilization rate of the channel code resources is improved, and the throughput of the user is improved.
  • FIG. 3 is a flowchart of Embodiment 2 of a method for allocating a channel code resource according to the present invention. As shown in FIG. 2, this embodiment provides a method for allocating a channel code resource, and the embodiment is specifically applied to a channel of a channel in a HSDPA cell.
  • the code resource allocation, the method provided in this embodiment may specifically include the following steps Step:
  • Step 301 The base station receives a resource configuration notification message sent by the RNC, where the resource configuration notification message carries an HS-SCCH that requires configuration of a channel code resource.
  • the embodiment is specifically directed to the HSDPA cell, and the channel required to configure the channel code resource carried in the resource configuration notification message sent by the RNC may be the HS-SCCH.
  • Step 302 The base station allocates a channel code for the HS-SCCH in the cell on the first channel code tree in the channel code group.
  • the base station may allocate a channel code to the HS-SCCH in the cell at least in the first channel code tree in the channel code group.
  • the base station first allocates a channel code on the first channel code tree.
  • the channel code group in this embodiment may be specifically a channel code group with a spreading factor of 16, that is, a channel code group composed of SF16 channel codes, and the first channel code tree in the channel code group may be specifically SF ( 16, 0).
  • the communication channel code tree channel code group SF16 in accordance with the order may SF (16, 0), SF (16, 1), SF (16, 2) ...
  • the SCCH allocates a channel code resource, it first allocates an SF128 channel code to the HS-SCCH on the SF (16, 0) instead of directly configuring the required number of channel codes in the prior art.
  • Step 303 The base station allocates a channel code for the HS-SCCH and the HS-PDSCH in the cell according to the scheduling situation of the user in the cell and the use of the channel code group by the HS-SCCH.
  • the base station allocates channel code resources for other HS-SCCHs and HS-PDSCHs in the cell according to the scheduling situation of the users in the cell and the usage of the channel code groups by the HS-SCCH, except for the HS-SCCH allocated in the above step 302.
  • the channel codes of other HS-SCCHs are preferentially allocated in the first channel code tree, that is, SF128 on SF (16, 0). When there is no idle channel code on SF (16, 0), the channel is selected again.
  • the next channel code tree of the first channel code tree in the code group, ie SF128 on SF (16, 1), is allocated.
  • the foregoing step 303 in this embodiment may specifically adopt the following implementation manner: when the scheduled user is the current transmission time interval (Transmi ss ion Time Interva l ; When the first scheduled user in the TTI is called, if the user can use the channel code on the first channel code tree, the user is allocated on the first channel code tree.
  • the scheduled user is the first scheduled user within the current transmission time interval TTI
  • the first channel code tree if the user cannot use the channel code on the first channel code tree, then the first channel code tree
  • the HS-SCCH channel code is assigned to the user on the next channel code tree
  • the HS-PDSCH channel code is assigned to the user on at least a third channel code tree in the channel code group.
  • one TTI may be a 2 ms time interval, and each TTI may schedule multiple users, and each HS-SCCH and a plurality of HS_PDSCHs need to be allocated for each scheduled user.
  • the scheduling order of the users in each TTI is based on the priority order determined by the scheduling algorithm, that is, each user is scheduled according to a preset priority order. For the first scheduled user in the current 2ms TTI, this embodiment configures the HS-SCCH and the HS-PDSCH for the data transmission of the user, because the previous channel code is already the HS-SCCH in the first channel code.
  • An SF128 channel code is allocated on the tree SF (16, 0).
  • HS-SCCH number indicates that the HS-SCCH used by this user is the multiple configured by the network side.
  • the user is configured to be in the non-64QAM mode and the user is successfully scheduled in the previous TTI, the HS-SCCH obtained by the previous TTI of the user is sub-divided to the user. Therefore, the HS-SCCH used by the user at each TTI is subject to certain constraints, not using any of the configured HS-SCCHs.
  • the user is assigned an HS-SCCH channel code of SF128 on SF (16, 0).
  • the HS-SCCH only occupies one channel code on the SF (16, 0), but does not occupy the remaining channel code tree SF (16, 1) - SF (16, 15)
  • the HS-PDSCH channel code can be allocated to the user on at least the second channel code tree SF (16, 1).
  • the principle of allocating channel codes is sequentially allocated in order, and one user may need to configure multiple HS-PDSCH channels, if two HS-PDSCHs are configured, then at SF (16, 1) and SF (16, 2) The HS-PDSCH channel code is assigned to the user, and so on. It can be seen that the maximum allowable user to use 15 HS-PDSCH codewords at this time achieves the theoretical codeword limit. If the first scheduled user cannot use the channel code on SF (16,0), then the HS-SCCH channel code is assigned to the user on SF (16,1). Since both SF (16, 0) and SF (16, 1) are occupied by the HS-SCCH at this time, the HS-PDSCH channel code is allocated to the user at least on the SF (16, 2).
  • the scheduled user is not the first scheduled user in the current TTI, if there is an idle HS-SCCH channel code on the first channel code tree, and the user can use the first channel
  • the HS-SCCH channel code is allocated to the user on the first channel code tree, and the user is on the channel code tree occupied by the user whose priority is not present.
  • the HS-PDSCH channel code is assigned.
  • the scheduled user is not the first scheduled user in the current TTI, if there is no idle HS-SCCH channel code on the first channel code group, then in the first channel code tree
  • the HS-SCCH channel code is assigned to the user on the next channel code tree, and the HS-PDSCH channel code is allocated to the user on the channel code tree occupied by the user not prior to the priority.
  • the priority order determined according to the existing scheduling algorithm is for the current 2 ms TTI.
  • the second scheduled user when allocating HS-SCCH and HS-PDSCH channel code resources, it needs to be configured by considering the channel code resources occupied by the first scheduled user. Specifically, after the allocation of the channel code resources of the first scheduled user is completed, if there is still an idle channel code on the first channel code tree SF (16, 0), and the second scheduled user can use The channel code on the SF (16, 0) assigns an HS-SCCH channel code to the second scheduled user on SF (16, 0).
  • the HS-SCCH of the first scheduled user has occupied SF (16, 0) at this time, its HS-PDSCH also occupies the corresponding channel code resources, which is assumed here as SF (16, 1) and SF (16). 2), when the HS-PDSCH channel code is allocated to the second scheduled user, the channel code tree is occupied by the user who is not prior to the priority, and the user with the highest priority is the first.
  • the HS-SCCH of the first scheduled user and the first scheduled user are all configured on the SF (16, 0), and the total number of available HS-PDSCH codewords in the current TTI cell is still 15.
  • the similar channel code resource allocation may be performed according to the method of the second scheduled user, and details are not described herein.
  • the embodiment provides a method for allocating a channel code resource.
  • the base station uses the user scheduling situation in the cell and the use of the channel code group by the HS-SCCH.
  • the case is that the channel code is allocated on demand by the HS-SCCH and the HS-PDSCH in the cell.
  • the channel code resource allocated due to the fixed allocation of the channel code resource in the prior art is not utilized by the on-demand allocation of the channel code resource.
  • the other channel can not use the defect of the channel code resource, and the channel code resource is dynamically allocated to each channel in the cell according to the actual situation, the actual utilization rate of the channel code resource is improved, and the throughput rate of the user is improved.
  • Embodiment 4 is a flowchart of Embodiment 3 of a method for allocating a channel code resource according to the present invention. As shown in FIG. 4, this embodiment provides a method for allocating a channel code resource, and this embodiment is specifically applied to a channel of a channel in an HSUPA cell.
  • the code resource allocation, the method provided in this embodiment may specifically include the following steps Step:
  • Step 401 The base station receives a resource configuration notification message sent by the RNC, where the resource configuration notification message carries an E-AGCH that requires configuration of a channel code resource.
  • the embodiment is specifically directed to the HSUPA cell, and the channel required to configure the channel code resource carried in the resource configuration notification message sent by the RNC may be an E-AGCH, and each E-AGCH needs to be allocated an SF256 channel code.
  • Step 402 The base station detects whether an HSUPA user exists in the cell, and if yes, step 403 is performed; otherwise, the step is continued.
  • the base station when multiple E-AGCHs are configured for a cell, the base station first detects whether there is currently an HSUPA user in the cell, and if yes, performs a subsequent channel code allocation step, otherwise, it is not required to allocate E- to the cell.
  • the AGCH channel code resource continues to perform this step until the HSUPA user is detected.
  • Step 403 Assign an E-AGCH channel code to the HSUPA user on the first channel code tree in the channel code group, and allocate the HS-PDSCH channel code to the user at least in the second channel code tree in the channel code group.
  • the base station allocates an E-AGCH channel code to all HSUPA users in the cell on the first channel code tree SF (16, 0) in the channel code group, the channel code is specific. Is an SF256 channel code on SF (16, 0). Since the SF (16, 0) is already occupied at this time, the base station allocates the HS-PDSCH channel code to the user at least on the second channel code tree SF (16, 1), so that the user is most available in this embodiment. The number of HS-PDSCH codewords is still 15.
  • the embodiment provides a method for allocating a channel code resource.
  • the base station After receiving the resource configuration notification message sent by the RNC, the base station allocates a channel according to the presence of the user in the cell to the E-AGCH in the cell.
  • the present embodiment solves the defect that the allocated channel code resources are not used due to the fixed allocation of channel code resources in the prior art, and the channel code resources cannot be used by other channels, and the implementation is solved by the on-demand allocation of the channel code resources. Dynamically allocate channel code resources for each channel in the cell according to actual conditions, and improve the actual utilization rate of channel code resources. Increased user throughput.
  • FIG. 5 is a flowchart of Embodiment 4 of a method for allocating a channel code resource according to the present invention. As shown in FIG. 5, this embodiment provides a method for allocating a channel code resource, and the embodiment is specifically applied to a channel of a channel in an HSUPA cell. The method provided in this embodiment may specifically include the following steps:
  • Step 501 The base station receives a resource configuration notification message sent by the RNC, where the resource configuration notification message carries an E-HICH/E-RGCH that requires configuration of a channel code resource.
  • the embodiment is specifically directed to the HSUPA cell, and the channel required to configure the channel code resource carried in the resource configuration notification message sent by the RNC may be E-HICH/E-RGCH, and each group
  • the E-HICH/E-RGCH needs to allocate one SF128 channel code, and usually a group of E-HICH/E-RGCH can support up to 20 HSUPA users.
  • Step 502 The base station detects whether an HSUPA user exists in the cell, and if yes, step 503 is performed; otherwise, the step is continued.
  • the base station when multiple E-HICH/E-RGCHs are configured for a cell, the base station first detects whether there is currently an HSUPA user in the cell, and if yes, performs a subsequent channel code allocation step, otherwise the The cell allocates E-HICH/E-RGCH channel code resources and continues to perform this step until the HSUPA user is detected.
  • Step 503 The base station allocates an E-HICH/E-RGCH channel code to the HSUPA user in the corresponding channel code tree according to the number of HSUPA users in the channel code group in the order of the channel code tree in the channel code group, and is not in the E-HICH.
  • the HS-PDSCH channel code is assigned to the user on the channel code tree occupied by /E-RGCH.
  • the base station When there are currently HSUPA users in the cell, and the number of HSUPA users does not exceed 20, since each group of E-HICH/E-RGCH supports a maximum of 20 users, the base station only needs to allocate a channel code for users in the cell. Specifically, the base station allocates an E-HICH/E-RGCH channel code for the HSUPA user on the first channel code tree in the order of the channel code tree in the channel code group, that is, on the SF (16, 0) The users in the cell are assigned an SF128 channel code.
  • the channel code tree for allocating the channel code is selected in the order of the channel code tree in the channel code group, and is selected according to the principle of front to back.
  • the base station needs to allocate two users in the cell.
  • the E-HICH/E-RGCH channel code specifically, the base station preferentially attempts to allocate two E-HICH/E-RGCH channels for the HSUPA user on the first channel code tree in the order of the channel code tree in the channel code group.
  • the code that is, two SF128 channel codes are allocated to users in the cell on SF (16, 0). If SF (16, 0) is occupied by other channels, then two SF128 channel codes are allocated to users in the cell on the SF (16, 1) in order, and so on.
  • the processing situation is similar to the above, and will not be described again.
  • the number of HSUPA users is 20, for example, those skilled in the art can understand that the maximum number of HSUPA users that can be supported when a group of E-HICH/E-RGCHs is other When the value is used, the criterion for determining the number of users also changes.
  • the present embodiment provides a method for allocating a channel code resource.
  • the base station determines the E-HICH/E-RGCH in the cell according to the presence of the user in the cell.
  • the channel code is allocated on demand; in this embodiment, the channel code resource allocated by the fixed allocation channel code resource in the prior art is not utilized by the on-demand allocation of the channel code resource, and the channel code resource cannot be used by other channels.
  • the defect realizes dynamically allocating channel code resources to each channel in the cell according to actual conditions, improves the actual utilization rate of the channel code resources, and improves the throughput rate of the user.
  • FIG. 6 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention. As shown in FIG. 6, this embodiment provides A base station may be specifically configured to perform the steps in the first embodiment of the foregoing method, and details are not described herein again.
  • the base station provided in this embodiment may specifically include a receiving module 601 and an allocating module 602.
  • the receiving module 601 is configured to receive a resource configuration notification message sent by the radio network controller, where the resource configuration notification message carries an HS-SCCH, an E-AGCH, or a request to configure a channel code resource.
  • the allocation module 602 is configured to allocate a channel code on demand according to the occupancy condition of the channel code resource in the cell for the HS-SCCH, E-AGCH or E-HICH/E-RGCH in the cell.
  • FIG. 7 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention. As shown in FIG. 7 , this embodiment provides a base station, which may specifically perform the steps in the second embodiment, the third embodiment, and the fourth embodiment. I won't go into details here.
  • the base station provided by this embodiment is based on the foregoing FIG. 6, and the allocation module 602 may specifically include a first allocation unit 612 and a second allocation unit 622.
  • the first allocating unit 612 is configured to allocate a channel code for the HS-SCCH in the cell on the first channel code tree in the channel code group.
  • the second allocating unit 622 is configured to allocate the HS-SCCH and the high-speed physical downlink shared channel HS-PDSCH in the cell according to the scheduling situation of the user in the cell and the usage of the channel code group by the HS-SCCH. Channel code.
  • the foregoing second allocating unit 622 may specifically include a first assigning subunit 6221 and a second assigning subunit 6222.
  • the first allocating sub-unit 6221 is configured to: when the scheduled user is the first scheduled user in the current transmission time interval TTI, if the user can use the channel code on the first channel code tree, And allocating an HS-SCCH channel code to the user on the first channel code tree, and allocating an HS-PDSCH channel code to the user on at least a second channel code tree in the channel code group; If the user cannot use the channel code on the first channel code tree, assign the HS-SCCH channel code to the user on the next channel code tree of the first channel code tree, and at least An HS-PDSCH channel code is allocated to the user on a third channel code tree in the channel code group.
  • the second allocation sub-unit 6222 is configured to: when the scheduled user is not the first scheduled user in the current TTI, if there is an idle HS-SCCH channel code on the first channel code tree, and the user When the channel code on the first channel code tree can be used, Allocating an HS-SCCH channel code to the user on the first channel code tree, and allocating an HS-PDSCH channel code to the user on a channel code tree occupied by a user not prior to the priority; If there is no idle HS-SCCH channel code on the first channel code group, the HS-SCCH channel code is allocated to the user on the second channel code tree in the channel code group, and is not prioritized The HS-PDSCH channel code is allocated to the user on the channel code tree occupied by the previous user.
  • the allocation module 602 in this embodiment may specifically include a first detecting unit 632 and a third allocating unit 642.
  • the first detecting unit 632 is configured to detect whether a high-speed uplink packet access HSUPA user exists in the cell.
  • the third allocating unit 642 is configured to allocate an E-AGCH channel code to the HSUPA user on the first channel code tree in the channel code group if the HSUPA user is present in the cell, and at least An HS-PDSCH channel code is allocated to the user on a second channel code tree in the channel code group.
  • the allocation module 602 in this embodiment may specifically include a second detecting unit 652 and a fourth allocating unit 662.
  • the second detecting unit 652 is configured to detect whether an HSUPA user exists in the cell.
  • the fourth allocating unit 662 is configured to: if the HSUPA user exists in the cell, use the channel code tree in the channel code group, according to the number of the HSUPA users, in the corresponding channel code tree, the HSUPA Assigning, by the user, the E-HICH/E-RGCH channel code, and allocating an HS-PDSCH channel code to the user on a channel code tree not occupied by the E-HICH/E-RGCH; wherein, the E- The number of HICH/E-RGCH channel codes is configured by the number of HSUPA users.
  • the present embodiment provides a base station, after receiving a resource configuration notification message sent by the RNC, the base station allocates a channel code to each channel in the cell according to the user situation in the cell.
  • the channel code resource is required on demand.
  • the allocation solves the defect that the allocated channel code resources are not used due to the fixed allocation of channel code resources in the prior art, and the other channel channels cannot use the channel code resources, thereby realizing dynamically allocating channels in the cell according to actual conditions.
  • the channel code resource improves the actual utilization of the channel code resource and improves the throughput of the user.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种信道码资源徘分配方法和基站,方法包括:接诖无陹网络控制器发送徘资源配臵通知消息,所屠资源配臵通知消息中携带要求配臵信道码资源徘信道徘信息;中据小区中徘信道资源占用情况为要求配臵信道码资源徘信道按需分配信道码。基站包括:接诖模块和分配模块。本发明实施例实现了中据实际情况来动态地为小区中丫信道分配信道码资源,提高了信道码资源徘实际利用率。

Description

信道码资源的分配方法和基站 本申请要求了 2010年 12月 27日提交的、 申请号为 201010613993.1、 发明名称为"信道码资源的分配方法和基站"的中国申请的优先权,其全部内 容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术, 尤其涉及一种信道码资源的分配方法和 基站。
背景技术
在宽带码分多址(Wideband Code Division Multiple Access; 以下筒 称: WCDMA)系统中, 通常利用正交可变扩频因子 ( Orthogonal Variable Spreading Factor; 以下筒称: 0VSF )信道码来实现系统带宽资源的动态 分配, 并保证同一小区发送给不同用户的信号之间的正交性, 即发送到不 同用户的信号之间不会相互干扰。 然而, 小区的信道码资源非常有限, 图 1 为现有技术中 0VSF信道码的生成树结构示意图, 如图 1所示, 一个小区中 最多只有 16条扩频因子 (Spreading Factor; 以下筒称: SF) 16信道码。
根据第三代合作伙伴计划 (the 3rd Generation Partner Project; 以 下筒称: 3GPP)协议中规定, 小区需要为主公共导频信道(Primary Co匪 on Pilot Channel; 以下筒称: P-CPICH ) 和主公共控制物理信道( Primary Common Control Physical Channel; 以下筒称: P-CCPCH )分配 SF(16, 0) 码树上的 SF256 信道码 SF(256, 0)和 SF(256, 1) , 为捕获指示信道 ( Acquisition Indicator Channel;以下筒称: AICH )和寻呼指示信道( Page Indication Channel; 以下筒称: PICH )各分配一个 SF256信道码, 并为 辅公共控制物理信道 ( Secondary Common Control Physical Channel; 以 下筒称: S-CCPCH) 分配一定的信道码资源。 对于高速上行链路分组接入 ( High Speed Uplink Packet Access; 以下筒称: HSUPA ) 小区来说, 可 以配置多条增强型专用信道 ( Enhanced Dedicated Channel; 以下筒称: E-DCH )绝对授权信道 ( E-DCH Absolute Grant Channel; 以下筒称: E-AGCH ) 和 E-DCH混合自动重传请求 ( Automatic Repeat reQuest; 以下筒称: ARQ ) 指示信道(E-DCH Hybrid ARQ Indicator Channel; 以下筒称: E-HICH ) /E-DCH相对授权信道( E-DCH Relative Grant Channel;以下筒称: E-RGCH ), 每条 E-AGCH需要分配一个 SF256信道码, 每组 E-HICH/ E-RGCH需要分配 一个 SF128 信道码。 对于高速下行链路分组接入 ( High Speed Downlink Packet Access; 以下筒称: HSDPA) 小区来说, 可以配置多条高速共享控 制信道 ( High Speed Shared Control Channel; 以下筒称: HS-SCCH )信 道以及高速物理下行共享信道 ( High Speed Physical Downlink Shared Channel; 以下筒称: HS-PDSCH ), 而每条 HS-SCCH信道需要分配一个 SF128 信道码, 每条 HS-PDSCH信道则只能使用 SF16信道码。 因此, 一个小区中 可以 用 于 HS-PDSCH 的信道码在理论上最多 为 15 个, 即 SF(16, 1)-SF(16, 15)。
在现有技术中, 当无线网络控制器(Radio Network Controller; 以 下筒称: RNC)通知小区配置多条 HS-SCCH、 或者 E-AGCH和 E-HICH/ E-RGCH 时, 为 RNC配置所要求的所有信道码资源。
因此, 现有技术中的信道码资源分配方法为 HS-SCCH、 或者 E-AGCH和 E-HICH/E-RGCH分配信道码资源时,完全按照 RNC配置要求来静态地分配相 应的信道码资源, 则导致 HS-PDSCH最多可用的信道码可能只有 14个, 信 道码资源的实际利用率和用户的吞吐率也下降。 发明内容
本发明实施例在于提供一种信道码资源的分配方法和基站, 实现根据 实际情况来动态地为小区中各信道分配信道码资源, 提高信道码资源的实 际利用率, 提高用户的吞吐率。
为了实现上述目的, 本发明一方面提供了一种信道码资源的分配方法, 包括:
接收无线网络控制器发送的资源配置通知消息, 该资源配置通知消息 中携带要求配置信道码资源的信道的信息;
根据小区中信道码资源的占用情况为所述要求配置信道码资源的信道 按需分配信道码。
本发明另一方面提供了一种基站, 包括:
接收模块, 用于接收无线网络控制器发送的资源配置通知消息, 资源 配置通知消息中携带要求配置信道码资源的信道的信息;
分配模块, 用于根据小区中的信道码资源的占用情况为要求配置信道 码资源的信道按需分配信道码。
本发明实施例提供的一种信道码资源的分配方法和基站, 通过基站在 接收到 RNC发送的资源配置通知消息后, 根据小区中的信道码资源的占用 情况为小区中各信道按需分配信道码; 本实施例通过信道码资源的按需分 配解决了现有技术中因固定分配信道码资源而导致分配的信道码资源不被 利用且其他信道也无法使用该信道码资源的缺陷, 实现了根据实际情况来 动态地为小区中各信道分配信道码资源, 提高了信道码资源的实际利用率, 提高了用户的吞吐率。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作筒单地介绍。 显而易见地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中 0 VS F信道码的生成树结构示意图;
图 1为本发明信道码资源的分配方法实施例一的流程图;
图 3为本发明信道码资源的分配方法实施例二的流程图;
图 4为本发明信道码资源的分配方法实施例三的流程图; 图 5为本发明信道码资源的分配方法实施例四的流程图; 图 6为本发明基站实施例一的结构示意图;
图 7为本发明基站实施例二的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合 本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整 地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的 实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 2为本发明信道码资源的分配方法实施例一的流程图, 如图 2所示, 本实施例提供了一种信道码资源的分配方法, 可以具体包括如下步骤: 步骤 201 ,基站接收无线网络控制器发送的资源配置通知消息, 所述资 源配置通知消息中携带要求配置信道码资源的 HS-SCCH、 E-AGCH 或者 E-HICH/E-RGCH0
在本实施例中, 当需要对小区中各信道分配信道码资源时, RNC向基站 发送一个资源配置通知消息, 通过该资源配置通知消息通知基站对小区中 的各信道的信道码资源进行配置。 具体地, 在该资源配置通知消息中可以 携带要求配置信道码资源的各信道, 包括 HS-SCCH , 或者 E-AGCH , 或者 E-HICH/E-RGCH0 本领域技术人员可知, 对于 HSUPA小区来说, 可能需要配 置多条 E-AGCH和 E-HICH/E-RGCH, 每条 E-AGCH需要分配一个 SF256信道 码, 每组 E-HICH/ E-RGCH需要分配一个 SF128信道码; 而对于 HSDPA小区 来说, 可能需要配置多条 HS-SCCH以及 HS-PDSCH, 每条 HS-SCCH需要分配 一个 SF128信道码, 每条 HS-PDSCH需要分配一个 SF16信道码。 本步骤为 基站根据接收到的资源配置通知消息来具体获取需要配置信道码资源的各 个信道, 可以为上述信道中的 HS-SCCH , 也可以为 E-AGCH , 还可以为 E-HICH/E-RGCH0
步骤 202, 基站根据小区中的信道码资源的占用情况为所述小区中的 所述 HS-SCCH、 所述 E-AGCH或者所述 E-HICH/E-RGCH按需分配信道码。
在接收到资源配置通知消息后, 基站未按照现有技术中资源配置通知 消息所要求的信道码数量为各信道直接静态地配置相应数量的信道码, 而 是根据小区中的信道码资源的占用情况来具体为各信道按需分配信道码, 即根据实际需要来分配信道码资源。 此处的信道码资源的占用情况可以包 括小区中用户的调度情况、 小区中用户的数量等, 其可以在小区建立初期 由运营商或用户来自行设定。 这样, 可以使得信道码资源得到充分的利用, 不会出现现有技术中因固定分配信道码资源而导致分配的信道码资源不被 利用且其他信道也无法使用该信道码资源的缺陷, 进而使得分配给 HS-SCCH, E-AGCH或者 E-HICH/E-RGCH的信道码资源占用一个信道码树上的 信道码, 如 SF (16,0) , 而其余信道码树上的信道码资源均可以用作 HS-PDSCH,使得小区最多可以使用用作 HS-PDSCH的码字个数达到理论极限, 如最多可以使用 15个 HS-PDSCH码字, 则增加了小区中可使用的信道码资 源, 提高了用户的吞吐率。
本实施例提供了一种信道码资源的分配方法, 通过基站在接收到 RNC 发送的资源配置通知消息后, 根据小区中的信道码资源的占用情况为小区 中各信道按需分配信道码; 本实施例通过信道码资源的按需分配解决了现 有技术中因固定分配信道码资源而导致分配的信道码资源不被利用且其他 信道也无法使用该信道码资源的缺陷, 实现了根据实际情况来动态地为小 区中各信道分配信道码资源, 提高了信道码资源的实际利用率, 提高了用 户的吞吐率。
图 3为本发明信道码资源的分配方法实施例二的流程图, 如图 2所示, 本实施例提供了一种信道码资源的分配方法, 本实施例具体应用于 HSDPA 小区中信道的信道码资源分配, 本实施例提供的方法可以具体包括如下步 骤:
步骤 301 ,基站接收 RNC发送的资源配置通知消息, 所述资源配置通知 消息中携带要求配置信道码资源的 HS-SCCH。
本实施例具体针对 HSDPA小区, 则 RNC发送的资源配置通知消息中携 带的要求配置信道码资源的信道可以为 HS-SCCH。
步骤 302, 基站在信道码组中的第一个信道码树上为小区中的 HS-SCCH 分配一条信道码。
本实施例中在为 HSDPA小区中的 HS-SCCH分配信道码资源时, 基站可 以至少在信道码组中的第一个信道码树上为该小区中的 HS-SCCH分配一条 信道码, 具体可以为基站先在第一个信道码树上分配一条信道码。 本实施 例中的信道码组可以具体为扩频因子为 16的信道码组, 即 SF16信道码组 成的信道码组,而该信道码组中的第一个信道码树则可以具体为 SF (16, 0)。 该信道码组 SF16中的信道码树按照顺序依次可以为 SF (16, 0)、 SF (16, 1)、 SF (16, 2) ...SF (16, 15) 0 本步骤在为 HS-SCCH 分配信道码资源时, 先在 SF (16, 0)上为 HS-SCCH分配一条 SF128信道码, 而非现有技术中直接配置 所要求数量的信道码。
步骤 303 ,基站根据小区中用户的调度情况和 HS-SCCH对信道码组的使 用情况为小区中的 HS-SCCH和 HS-PDSCH分配信道码。
基站再根据小区中用户的调度情况以及 HS-SCCH对信道码组的使用 情况来为小区中的其他 HS-SCCH以及 HS-PDSCH分配信道码资源, 除上述步 骤 302中分配信道码的 HS-SCCH外, 其他的 HS-SCCH的信道码优先在第一 信道码树, 即在 SF (16, 0)上的 SF128进行分配, 当 SF (16, 0)上无空闲信道 码时, 再选择在信道码组中第一信道码树的下一个信道码树, 即 SF (16, 1) 上的 SF128进行分配。
具体地, 本实施例中的上述步骤 303可以具体采用如下实施方式: 当 被调度的用户为当前传输时间间隔 (Transmi s s ion Time Interva l ; 以下 筒称: TTI ) 内的第一个被调度用户时, 若所述用户能使用所述第一个信道 码树上的信道码, 则在所述第一个信道码树上为所述用户分配 HS-SCCH信 道码, 且至少在所述信道码组中的第二个信道码树上为所述用户分配 HS-PDSCH信道码。 当被调度的用户为当前传输时间间隔 TTI 内的第一个被 调度用户时, 若所述用户不能使用所述第一个信道码树上的信道码, 则在 所述第一个信道码树的下一个信道码树上为所述用户分配 HS-SCCH信道码, 且至少在所述信道码组中的第三个信道码树上为所述用户分配 HS-PDSCH信 道码。
在本实施例中, 一个 TTI可以为 2ms时间间隔, 每个 TTI可以调度多 个用户, 且需要为每个被调度的用户分配一条 HS-SCCH 以及若干条 HS_PDSCH。 本实施例中每个 TTI 中用户的调度顺序基于调度算法确定的优 先级顺序, 即各个用户按照预设的优先级顺序被调度。 对于当前 2msTTI中 的第一个被调度用户来说, 本实施例在为该用户的数据传输配置 HS-SCCH 以及 HS-PDSCH时, 由于之前步骤 302 中已为 HS-SCCH在第一个信道码树 SF (16, 0)上分配一条 SF128 信道码, 则此时先判断该用户是否可以使用 SF (16,0)上的一条 HS-SCCH信道码。 此处对用户能否使用该信道码的判断 原则可以以 3GPP协议中对用户在每个 TTI上使用的 HS-SCCH的约束条件为 准, 3GPP 协议规定, 对于配置为 64 正交调幅 (Quadracture Ampl i tude Modulat ion; 以下筒称: QAM )且使用了非四相相移键控( Quaternary Phase Shif t Keying; 以下筒称: QPSK )调制方式的用户, 或者 Xms = 101的配置 为多输入多输出 ( Mul t iple Input Mul t iple Output ; 以下筒称: MIMO ) 和 64QAM的用户来说, 即单流 64QAM或者主流 64QAM以及辅流 QPSK, 需要 满足如下公式( 1 )所示的约束关系:
1 0-1-向下取整( P/8 ) *15l mod 2 = (HS-SCCH number) mod 2 ( 1 ) 其中, 0值和 P值分别表示此用户使用的 HS-PDSCH码字的起始位置和个数, HS-SCCH number 表示此用户使用的 HS-SCCH 是网络侧给其配置的多条 HS-SCCH中的第几条 HS-SCCH。 另外, 如果用户配置为非 64QAM模式且该用 户在前一个 TTI被成功调度, 则将此用户前一个 TTI获得的 HS-SCCH再分 给此用户。 因此, 用户在每个 TTI使用的 HS-SCCH是有一定约束条件的, 并非使用配置的 HS-SCCH中的任一条。
经过判断, 当该第一个被调度用户能使用 SF (16, 0)上的信道码时, 则 在 SF (16, 0)上为该用户分配一个 SF128的 HS-SCCH信道码。 此时, 对于第 一个被调度用户来说, HS-SCCH只占用 SF (16, 0)上的一个信道码, 而未占 用其余信道码树 SF (16, 1) -SF (16, 15) , 则可以至少在第二个信道码树 SF (16, 1)上为该用户分配 HS-PDSCH信道码。 由于分配信道码的原则为依照 顺序依次分配, 且一个用户可能需要配置多条 HS-PDSCH信道, 则如果配置 有两条 HS-PDSCH, 则在 SF (16, 1)和 SF (16, 2)上为该用户分配 HS-PDSCH信 道码, 以此类推。 由此可见, 此时最大允许该用户使用 15个 HS-PDSCH码 字, 达到理论上的码字极限。 如果第一个被调度用户不能使用 SF (16,0)上 的信道码时, 则在 SF (16,1)上为该用户分配 HS-SCCH 信道码。 由于此时 SF (16, 0)和 SF (16, 1)均被 HS-SCCH占用, 则至少在 SF (16, 2)上为该用户分 配 HS-PDSCH信道码。
当被调度的用户不为当前 TTI 内的第一个被调度用户时, 若所述第一 个信道码树上存在空闲的 HS-SCCH信道码, 且所述用户能使用所述第一个 信道码树上的信道码时, 则在所述第一个信道码树上为所述用户分配 HS-SCCH信道码,且在未被优先级在前的用户占用的信道码树上为所述用户 分配 HS-PDSCH信道码。 当被调度的用户不为当前 TTI内的第一个被调度用 户时, 若所述第一个信道码组上不存在空闲的 HS-SCCH信道码, 则在所述 第一个信道码树的下一个信道码树上为所述用户分配 HS-SCCH信道码, 且 在未被优先级在前的用户占用的信道码树上为所述用户分配 HS-PDSCH信道 码。
在本实施例中,按照现有调度算法确定的优先级顺序,对于当前 2msTTI 中第二个被调度用户来说,在为其分配 HS-SCCH和 HS-PDSCH信道码资源时, 需要考虑之前的第一个被调度用户所占用的信道码资源的情况来配置。 具 体地, 在完成第一个被调度用户的信道码资源的分配后, 如果第一个信道 码树 SF (16, 0)上仍存在空闲的信道码, 且该第二个被调度用户能使用该 SF (16, 0)上的信道码, 则在 SF (16, 0)上为该第二个被调度用户分配一条 HS-SCCH 信道码。 由于此时第一个被调度用户的 HS-SCCH 已经占用了 SF (16, 0) , 其 HS-PDSCH也占用了相应的信道码资源, 此处假设为 SF (16, 1) 和 SF (16,2) , 则为第二个被调度用户分配 HS-PDSCH信道码时, 在未被优先 级在前的用户占用的信道码树上进行分配, 此时的优先级在前的用户为第 一个被调度用户,而未被优先级在前的用户占用的信道码树则为 SF (16, 3) _ SF (16,15)。 由此可见, 第二个被调度用户最大可使用的 HS-PDSCH码字的 个数为 15减去第一个被调度用户所使用码字个数的差值, 即为 15-2=13 , 而由于第一个被调度用户和第个被调度用户的 HS-SCCH均配置在 SF (16, 0) 上, 则当前 TTI小区中整体最大可用的 HS-PDSCH码字个数仍为 15。 而对于 其他的用户, 如第三个被调度用户等, 可以依照上述第二个被调度用户的 方法来进行类似的信道码资源分配, 此处不再赘述。
本实施例提供了一种信道码资源的分配方法, 在 HSDPA小区中, 通过 基站在接收到 RNC发送的资源配置通知消息后, 根据小区中的用户调度情 况和 HS-SCCH对信道码组的使用情况为小区中 HS-SCCH和 HS-PDSCH按需分 配信道码; 本实施例通过信道码资源的按需分配解决了现有技术中因固定 分配信道码资源而导致分配的信道码资源不被利用且其他信道也无法使用 该信道码资源的缺陷, 实现了根据实际情况来动态地为小区中各信道分 配信道码资源,提高了信道码资源的实际利用率,提高了用户的吞吐率。
图 4为本发明信道码资源的分配方法实施例三的流程图, 如图 4所示, 本实施例提供了一种信道码资源的分配方法, 本实施例具体应用于 HSUPA 小区中信道的信道码资源分配, 本实施例提供的方法可以具体包括如下步 骤:
步骤 401 ,基站接收 RNC发送的资源配置通知消息, 所述资源配置通知 消息中携带要求配置信道码资源的 E-AGCH。
本实施例具体针对 HSUPA小区, 则 RNC发送的资源配置通知消息中携 带的要求配置信道码资源的信道可以为 E-AGCH,每条 E-AGCH需要分配一条 SF256信道码。
步骤 402 , 基站检测所述小区中是否存在 HSUPA用户, 如果是, 则执行 步骤 403 , 否则继续执行本步骤。
在本实施例中, 当为小区配置多条 E-AGCH时, 基站先检测该小区中当 前是否存在 HSUPA用户, 如果是, 则执行后续信道码分配的步骤, 否则不 需要为该小区分配 E-AGCH信道码资源,继续执行本步骤,直到检测到 HSUPA 用户。
步骤 403 , 在信道码组中的第一个信道码树上为 HSUPA用户分配一条 E-AGCH 信道码, 且至少在信道码组中的第二个信道码树上为用户分配 HS-PDSCH信道码。
当小区中当前存在 HSUPA用户时, 则基站在信道码组中的第一个信道 码树 SF (16, 0)上为该小区中的所有 HSUPA用户分配一条 E-AGCH信道码,该 信道码具体为 SF (16, 0)上的一条 SF256信道码。 由于此时 SF (16, 0)已被占 用,则基站至少在第二个信道码树 SF (16, 1)上为用户分配 HS-PDSCH信道码, 由此可见, 本实施例中用户最大可用的 HS-PDSCH码字的个数仍为 15个。
本实施例提供了一种信道码资源的分配方法, 在 HSUPA小区中, 通过 基站在接收到 RNC发送的资源配置通知消息后, 根据小区中用户的存在情 况为小区中 E-AGCH按需分配信道码; 本实施例通过信道码资源的按需分配 解决了现有技术中因固定分配信道码资源而导致分配的信道码资源不被利 用且其他信道也无法使用该信道码资源的缺陷, 实现了根据实际情况来动 态地为小区中各信道分配信道码资源,提高了信道码资源的实际利用率, 提高了用户的吞吐率。
图 5为本发明信道码资源的分配方法实施例四的流程图, 如图 5所示, 本实施例提供了一种信道码资源的分配方法, 本实施例具体应用于 HSUPA 小区中信道的信道码资源分配, 本实施例提供的方法可以具体包括如下步 骤:
步骤 501 ,基站接收 RNC发送的资源配置通知消息, 所述资源配置通知 消息中携带要求配置信道码资源的 E-HICH/E-RGCH。
本实施例具体针对 HSUPA小区, 则 RNC发送的资源配置通知消息中携 带的要求配置信道码资源的信道可以为 E-HICH/E-RGCH, 每组
E-HICH/E-RGCH需要分配一条 SF128信道码,且通常一组 E-HICH/E-RGCH最 多可以支持 20个 HSUPA用户。
步骤 502 , 基站检测所述小区中是否存在 HSUPA用户, 如果是, 则执行 步骤 503 , 否则继续执行本步骤。
在本实施例中, 当为小区配置多条 E-HICH/E-RGCH 时, 基站先检测该 小区中当前是否存在 HSUPA用户, 如果是, 则执行后续信道码分配的步骤, 否则不需要为该小区分配 E-HICH/E-RGCH信道码资源, 继续执行本步骤, 直到检测到 HSUPA用户。
步骤 503 ,基站以信道码组中信道码树的顺序,根据小区中 HSUPA用户 的数量在相应的信道码树上为 HSUPA用户分配 E-HICH/E-RGCH信道码, 且 在未被 E-HICH/E-RGCH占用的信道码树上为用户分配 HS-PDSCH信道码。
当小区中当前存在 HSUPA用户, 且该 HSUPA用户的数量未超过 20个 时, 由于每组 E-HICH/E-RGCH最多支持 20个用户, 则基站只需为该小区中 的用户分配一条信道码, 具体地, 基站以信道码组中信道码树的顺序, 在 第一个信道码树上为 HSUPA用户分配一条 E-HICH/E-RGCH信道码, 即在 SF (16, 0)上为该小区中的用户分配一条 SF128信道码。 此处以信道码组中 信道码树的顺序来选择分配信道码的信道码树为按照从前到后的原则选 择, 如果第一个信道码树未被占用, 则选择第一个信道码树, 若其被占用, 则依次选择下一个信道码树, 即第二个信道码树, 依次类推。 当小区中当 前存在 HSUPA用户, 且该 HSUPA用户的数量在 21到 40个之间时, 由于每 组 E-HICH/E-RGCH最多支持 20个用户, 则基站需为该小区中的用户分配两 条 E-HICH/E-RGCH信道码, 具体地, 基站以信道码组中信道码树的顺序, 优先尝试在第一个信道码树上为 HSUPA用户分配两条 E-HICH/E-RGCH信道 码, 即在 SF (16, 0)上为该小区中的用户分配两条 SF128信道码。 如果 SF (16, 0)被其他信道占用 , 则按照顺序优先在 SF (16, 1)上为该小区中的用 户分配两条 SF128信道码, 其他情况以此类推。 当小区中存在更多数量的 HSUPA用户来说, 其处理情况与上述类似, 不再赘述。 需要指出的是, 本实 施例中以支持 HSUPA用户的数量为 20个为例进行说明, 本领域技术人员可 以理解, 当一组 E-HICH/E-RGCH最多可以支持的 HSUPA用户的数量为其他 值时, 对于用户数量的判定基准也随之变化。
本实施例提供了一种信道码资源的分配方法, 在 HSUPA小区中, 通过 基站在接收到 RNC发送的资源配置通知消息后, 根据小区中用户的存在情 况为小区中 E-HICH/E-RGCH按需分配信道码; 本实施例通过信道码资源的 按需分配解决了现有技术中因固定分配信道码资源而导致分配的信道码资 源不被利用且其他信道也无法使用该信道码资源的缺陷, 实现了根据实际 情况来动态地为小区中各信道分配信道码资源, 提高了信道码资源的实 际利用率, 提高了用户的吞吐率。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
图 6为本发明基站实施例一的结构示意图, 如图 6所示, 本实施例提供 了一种基站, 可以具体执行上述方法实施例一中的各个步骤, 此处不再赘述。 本实施例提供的基站可以具体包括接收模块 601和分配模块 602。其中,接收 模块 601用于接收无线网络控制器发送的资源配置通知消息, 资源配置通知 消息中携带要求配置信道码资源的 HS-SCCH、 E-AGCH或者
E-HICH/E-RGCH。分配模块 602用于根据小区中的信道码资源的占用情况为 所述小区中的所述 HS-SCCH、 E-AGCH或者 E-HICH/E-RGCH按需分配信道 码。
图 7为本发明基站实施例二的结构示意图, 如图 7所示, 本实施例提供 了一种基站, 可以具体执行上述方法实施例二、 实施例三以及实施例四中的 各个步骤, 此处不再赘述。 本实施例提供的基站在上述图 6所示的基础之上, 分配模块 602可以具体包括第一分配单元 612和第二分配单元 622。 其中, 第一分配单元 612 用于在信道码组中的第一个信道码树上为小区中的所述 HS-SCCH分配一条信道码。第二分配单元 622用于根据所述小区中用户的调 度情况和所述 HS-SCCH对所述信道码组的使用情况为所述小区中的 HS-SCCH 和高速物理下行共享信道 HS-PDSCH分配信道码。
进一步地, 上述第二分配单元 622可以具体包括第一分配子单元 6221 和第二分配子单元 6222。 其中, 第一分配子单元 6221用于当被调度的用户 为当前传输时间间隔 TTI 内的第一个被调度用户时, 若所述用户能使用所 述第一个信道码树上的信道码, 则在所述第一个信道码树上为所述用户分 配 HS-SCCH信道码, 且至少在所述信道码组中的第二个信道码树上为所述 用户分配 HS-PDSCH信道码; 若所述用户不能使用所述第一个信道码树上的 信道码, 则在所述第一个信道码树的下一个信道码树上为所述用户分配 HS-SCCH信道码,且至少在所述信道码组中的第三信道码树个上为所述用户 分配 HS-PDSCH信道码。 第二分配子单元 6222用于当被调度的用户不为当 前 TTI 内的第一个被调度用户时, 若所述第一个信道码树上存在空闲的 HS-SCCH信道码, 且所述用户能使用所述第一个信道码树上的信道码时, 则 在所述第一个信道码树上为所述用户分配 HS-SCCH信道码, 且在未被优先 级在前的用户占用的信道码树上为所述用户分配 HS-PDSCH信道码; 若所述 第一个信道码组上不存在空闲的 HS-SCCH信道码, 则在所述信道码组中的 第二个信道码树上为所述用户分配 HS-SCCH信道码, 且在未被优先级在前 的用户占用的信道码树上为所述用户分配 HS-PDSCH信道码。
或者, 本实施例中的分配模块 602可以具体包括第一检测单元 632和 第三分配单元 642。 其中, 第一检测单元 632用于检测所述小区中是否存在 高速上行分组接入 HSUPA用户。 第三分配单元 642用于若所述小区中存在 所述 HSUPA用户, 则在所述信道码组中的第一个信道码树上为所述 HSUPA 用户分配一条 E-AGCH信道码, 且至少在所述信道码组中的第二个信道码树 上为所述用户分配 HS-PDSCH信道码。
或者, 本实施例中的分配模块 602可以具体包括第二检测单元 652和 第四分配单元 662。 其中, 第二检测单元 652用于检测所述小区中是否存在 HSUPA用户。 第四分配单元 662用于若所述小区中存在所述 HSUPA用户, 则 以所述信道码组中信道码树的顺序, 根据所述 HSUPA用户的数量在相应的 信道码树上为所述 HSUPA用户分配所述 E-HICH/E-RGCH信道码, 且在未被 所述 E-HICH/E-RGCH占用的信道码树上为所述用户分配 HS-PDSCH信道码; 其中, 所述 E-HICH/E-RGCH信道码的个数由所述 HSUPA用户的数量来配置。
本实施例提供了一种基站, 通过基站在接收到 RNC发送的资源配置通 知消息后, 根据小区中的用户情况为小区中各信道按需分配信道码; 本实 施例通过信道码资源的按需分配解决了现有技术中因固定分配信道码资源 而导致分配的信道码资源不被利用且其他信道也无法使用该信道码资源的 缺陷, 实现了根据实际情况来动态地为小区中各信道分配信道码资源, 提 高了信道码资源的实际利用率, 提高了用户的吞吐率。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述实施例所记载的技术方案进行修改, 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相 应技术方案的本质脱离本发明实施例技术方案的精神和范围。。

Claims

权利要求
1、 一种信道码资源的分配方法, 其特征在于, 包括:
接收无线网络控制器发送的资源配置通知消息, 所述资源配置通知消 息中携带要求配置信道码资源的信道的信息;
根据小区中信道码资源的占用情况为所述要求配置信道码资源的信道 按需分配信道码。
2、 根据权利要求 1所述的方法, 其特征在于, 所述资源配置通知消息 中携带要求配置信道码资源的信道包括以下之一或组合: 高速共享控制信 道 HS-SCCH, 增强型专用信道 E-DCH绝对授权信道 E-AGCH, E-DCH混合自动 重传请求 ARQ指示信道 /E-DCH相对授权信道 E-HICH/E-RGCH;
所述根据小区中信道码资源的占用情况为所述要求配置信道码资源的 信道按需分配信道码, 具体包括: 根据小区中的信道码资源的占用情况为 所述小区中的所述 HS-SCCH、 所述 E-AGCH或者所述 E-HICH/E-RGCH信道之 一或组合按需分配信道码。
3、 根据权利要求 2所述的方法, 其特征在于, 根据小区中的信道码资 源的占用情况为所述小区中的所述 HS-SCCH按需分配信道码包括:
在信道码组中的第一个信道码树上为小区中的所述 HS-SCCH分配一条 信道码;
根据所述小区中用户的调度情况和所述 HS-SCCH对所述信道码组的使用 情况为所述小区中的 HS-SCCH和高速物理下行共享信道 HS-PDSCH分配信道 码。
4、 根据权利要求 3所述的方法, 其特征在于, 所述根据所述小区中用 户的调度情况和所述 HS-SCCH对所述信道码组的使用情况为所述小区中的 HS-SCCH和 HS-PDSCH分配信道码包括:
当被调度的用户为当前传输时间间隔 TTI 内的第一个被调度用户时, 若所述用户能使用所述第一个信道码树上的信道码, 则在所述第一个信道 码树上为所述用户分配 HS-SCCH信道码, 且至少在所述信道码组中的第二 个信道码树上为所述用户分配 HS-PDSCH信道码; 若所述用户不能使用所述 第一个信道码树上的信道码, 则在所述第一个信道码树的下一个信道码树 上为所述用户分配 HS-SCCH信道码, 且至少在所述信道码组中的第三个信 道码树上为所述用户分配 HS-PDSCH信道码;
当被调度的用户不为当前 TTI内的第一个被调度用户时, 若所述第一个 信道码树上存在空闲的 HS-SCCH信道码, 且所述用户能使用所述第一个信道 码树上的信道码时, 则在所述第一个信道码树上为所述用户分配 HS-SCCH信 道码, 且在未被优先级在前的用户占用的信道码树上为所述用户分配 HS-PDSCH信道码; 若所述第一个信道码组上不存在空闲的 HS-SCCH信道码, 则在所述信道码组中的第二个信道码树上为所述用户分配 HS-SCCH信道码, 且在未被优先级在前的用户占用的信道码树上为所述用户分配 HS-PDSCH信 道码。
5、 根据权利要求 1-4任一项所述的方法, 其特征在于, 根据小区中的 信道码资源的占用情况为所述小区中的所述 E-AGCH按需分配信道码包括: 检测所述小区中是否存在高速上行分组接入 HSUPA用户;
若所述小区中存在所述 HSUPA用户, 则在信道码组中的第一个信道码 树上为所述 HSUPA用户分配一条 E-AGCH信道码, 且至少在所述信道码组中 的第二个信道码树上为所述用户分配 HS-PDSCH信道码。
6、 根据权利要求 1-5任一项所述的方法, 其特征在于, 根据小区中的 信道码资源的占用情况为所述小区中的所述 E-HICH/E-RGCH按需分配信道 码包括:
检测所述小区中是否存在 HSUPA用户;
若所述小区中存在所述 HSUPA用户, 则以信道码组中信道码树的顺序, 根据所述 HSUPA用户的数量在相应的信道码树上为所述 HSUPA用户分配所 述 E-HICH/E-RGCH信道码, 且在未被所述 E-HICH/E-RGCH 占用的信道码树 上为所述用户分配 HS-PDSCH信道码; 其中, 所述 E-HICH/E-RGCH信道码的 个数由所述 HSUPA用户的数量来配置。
7、 根据权利要求 3-6中任一项所述的方法, 其特征在于, 所述信道码 组为扩频因子为 16的信道码组。
8、 一种基站, 其特征在于, 包括:
接收模块, 用于接收无线网络控制器发送的资源配置通知消息, 所述 资源配置通知消息中携带要求配置信道码资源的信道的信息;
分配模块, 用于根据小区中信道码资源的占用情况为所述要求配置信 道码资源的信道按需分配信道码。
9根据权利要求 8所述的基站, 其特征在于, 所述资源配置通知消息中 携带要求配置信道码资源的信道包括以下之一或组合: 高速共享控制信道 HS-SCCH, 增强型专用信道 E-DCH绝对授权信道 E-AGCH, E-DCH混合自动重 传请求 ARQ指示信道 /E-DCH相对授权信道 E-HICH/E-RGCH;
所述分配模块, 具体用于根据小区中的信道码资源的占用情况为所述 小区中的所述 HS_SCCH、 所述 E-AGCH或者所述 E-HICH/E-RGCH信道之一或 组合按需分配信道码。
10、 根据权利要求 9所述的基站, 其特征在于, 所述分配模块包括: 第一分配单元, 用于在信道码组中的第一个信道码树上为小区中的所 述 HS-SCCH分配一条信道码;
第二分配单元, 用于根据所述小区中用户的调度情况和所述 HS-SCCH 对所述信道码组的使用情况为所述小区中的 HS-SCCH和高速物理下行共享 信道 HS-PDSCH分配信道码。
11、 根据权利要求 10所述的基站, 其特征在于, 所述第二分配单元包 括:
第一分配子单元, 用于当被调度的用户为当前传输时间间隔 TTI 内的 第一个被调度用户时, 若所述用户能使用所述第一个信道码树上的信道码, 则在所述第一个信道码树上为所述用户分配 HS-SCCH信道码, 且至少在所 述信道码组中的第二个信道码树上为所述用户分配 HS-PDSCH信道码; 若所 述用户不能使用所述第一个信道码树上的信道码, 则在所述第一个信道码 树的下一个信道码树上为所述用户分配 HS-SCCH信道码, 且至少在所述信 道码组中的第三信道码树个上为所述用户分配 HS-PDSCH信道码;
第二分配子单元, 用于当被调度的用户不为当前 TTI 内的第一个被调 度用户时, 若所述第一个信道码树上存在空闲的 HS-SCCH信道码, 且所述 用户能使用所述第一个信道码树上的信道码时, 则在所述第一个信道码树 上为所述用户分配 HS-SCCH信道码, 且在未被优先级在前的用户占用的信 道码树上为所述用户分配 HS-PDSCH信道码; 若所述第一个信道码组上不存 在空闲的 HS-SCCH信道码, 则在所述信道码组中的第二个信道码树上为所 述用户分配 HS-SCCH信道码, 且在未被优先级在前的用户占用的信道码树 上为所述用户分配 HS-PDSCH信道码。
12、 根据权利要求 8-11任一项所述的基站, 其特征在于, 所述分配模 块包括:
第一检测单元,用于检测所述小区中是否存在高速上行分组接入 HSUPA 用户;
第三分配单元, 用于若所述小区中存在所述 HSUPA用户, 则在信道码 组中的第一个信道码树上为所述 HSUPA用户分配一条 E-AGCH信道码, 且至 少在所述信道码组中的第二个信道码树上为所述用户分配 HS-PDSCH 信道 码。
13、 根据权利要求 8-12任一项所述的基站, 其特征在于, 所述分配模 块包括:
第二检测单元, 用于检测所述小区中是否存在 HSUPA用户; 第四分配单元, 用于若所述小区中存在所述 HSUPA用户, 则以信道码 组中信道码树的顺序, 根据所述 HSUPA用户的数量在相应的信道码树上为 所述 HSUPA 用户分配所述 E-HICH/E-RGCH 信道码, 且在未被所述 E-HICH/E-RGCH占用的信道码树上为所述用户分配 HS-PDSCH信道码;其中, 所述 E-HICH/E-RGCH信道码的个数由所述 HSUPA用户的数量来配置。
PCT/CN2011/084753 2010-12-27 2011-12-27 信道码资源的分配方法和基站 WO2012089108A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010613993.1 2010-12-27
CN2010106139931A CN102045727B (zh) 2010-12-27 2010-12-27 信道码资源的分配方法和基站

Publications (1)

Publication Number Publication Date
WO2012089108A1 true WO2012089108A1 (zh) 2012-07-05

Family

ID=43911382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084753 WO2012089108A1 (zh) 2010-12-27 2011-12-27 信道码资源的分配方法和基站

Country Status (2)

Country Link
CN (1) CN102045727B (zh)
WO (1) WO2012089108A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102045727B (zh) * 2010-12-27 2013-03-20 华为技术有限公司 信道码资源的分配方法和基站
ES2733824T3 (es) 2012-06-28 2019-12-03 Huawei Tech Co Ltd Sistema para ajustar la configuración de recursos, controlador de red de radio y estación base
CN103891348A (zh) 2012-09-29 2014-06-25 华为技术有限公司 高速媒体接入控制实体的重置方法及相关装置
CN103731839B (zh) * 2012-10-15 2019-01-25 中兴通讯股份有限公司 一种信道复用方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1633053A (zh) * 2003-12-22 2005-06-29 上海贝尔阿尔卡特股份有限公司 高速下行链路共享信道的信道码动态管理方法
CN1870806A (zh) * 2006-07-05 2006-11-29 华为技术有限公司 一种实现监测小区码资源的方法
WO2010124721A1 (en) * 2009-04-27 2010-11-04 Nokia Siemens Networks Oy Optimized resource allocation signaling on a physical downlink control channel
CN102045727A (zh) * 2010-12-27 2011-05-04 华为技术有限公司 信道码资源的分配方法和基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1633053A (zh) * 2003-12-22 2005-06-29 上海贝尔阿尔卡特股份有限公司 高速下行链路共享信道的信道码动态管理方法
CN1870806A (zh) * 2006-07-05 2006-11-29 华为技术有限公司 一种实现监测小区码资源的方法
WO2010124721A1 (en) * 2009-04-27 2010-11-04 Nokia Siemens Networks Oy Optimized resource allocation signaling on a physical downlink control channel
CN102045727A (zh) * 2010-12-27 2011-05-04 华为技术有限公司 信道码资源的分配方法和基站

Also Published As

Publication number Publication date
CN102045727B (zh) 2013-03-20
CN102045727A (zh) 2011-05-04

Similar Documents

Publication Publication Date Title
US8681708B2 (en) Method for allocating control channels, method for transmitting packet data and RNC for multi-carrier HSDPA
KR101145552B1 (ko) 무선 통신 시스템에서 다이나믹하게 직교 코드를 할당하는장치 및 방법
KR101648650B1 (ko) 업링크에서 harq 프로세스를 동적으로 할당하기 위한 방법 및 장치
RU2699233C2 (ru) Узел радиосвязи, беспроводное устройство и осуществляемые ими способы
CN102761968B (zh) 多用户设备的探测参考信号上行资源分配方法及基站
CN101345647B (zh) 高速上行分组数据传输的信道建立方法及网络控制器
KR101404292B1 (ko) 시분할 연동 코드 분할 다중 접속 상향 강화 시스템의 임의 접속 방법
US8180360B2 (en) Downlink traffic channel resource allocation method and data transmission method for multi-carrier HSDPA
EP2391170B1 (en) High speed uplink packet access method in multi-carrier time division synchronization code division multiple access system and corresponding system
CN101772173B (zh) Td-scdma系统中分配rrc连接频点的方法
EP2148548A2 (en) Method for connecting mobile station to base station, mobile station, base station, multi-carrier mobile communication system, and random access channel mapping method
JP2017516388A (ja) データ伝送の方法及び装置
US20140029553A1 (en) Method for uplink access and terminal device
WO2012089108A1 (zh) 信道码资源的分配方法和基站
US20140200021A1 (en) Interference Processing Method and Device
CN104025688A (zh) 组调度授权的方法、用户设备和无线网络控制器
WO2014153708A1 (zh) 通信方法、基站、用户设备和系统
CN101925138A (zh) 高速共享控制信道命令的发送方法及节点b
KR20150032901A (ko) 하이브리드 자동 재전송 요청 지시자 정보를 송신하는 방법 및 장치
WO2014063479A1 (zh) 无线通信方法、装置及系统
JP5568135B2 (ja) 制御情報の伝送方法及び基地局
CN102378348A (zh) 一种半持续调度模式下同步控制的方法和系统
WO2010083656A1 (zh) 一种载波控制方法、装置及系统
KR20060016024A (ko) 상향링크 패킷 데이터 서비스를 지원하는이동통신시스템에서 상향링크 전송율을 제어하는 방법 및장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854229

Country of ref document: EP

Kind code of ref document: A1