WO2012089010A1 - 应用于TrFO语音呼叫切换的速率调整方法及设备 - Google Patents

应用于TrFO语音呼叫切换的速率调整方法及设备 Download PDF

Info

Publication number
WO2012089010A1
WO2012089010A1 PCT/CN2011/083837 CN2011083837W WO2012089010A1 WO 2012089010 A1 WO2012089010 A1 WO 2012089010A1 CN 2011083837 W CN2011083837 W CN 2011083837W WO 2012089010 A1 WO2012089010 A1 WO 2012089010A1
Authority
WO
WIPO (PCT)
Prior art keywords
rate
message
handover
switching
mgw
Prior art date
Application number
PCT/CN2011/083837
Other languages
English (en)
French (fr)
Inventor
汪红星
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11852481.8A priority Critical patent/EP2574100B1/en
Publication of WO2012089010A1 publication Critical patent/WO2012089010A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1438Negotiation of transmission parameters prior to communication
    • H04L5/1446Negotiation of transmission parameters prior to communication of transmission speed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0019Control or signalling for completing the hand-off for data sessions of end-to-end connection adapted for mobile IP [MIP]

Definitions

  • Rate adjustment method and device applied to TrFO voice call switching.
  • the application is submitted to the Chinese Patent Office on December 28, 2010, and the application number is
  • the present invention relates to mobile communication technologies, and in particular, to a rate adjustment method and apparatus for TrFO voice call handover.
  • the A interface between the base station subsystem (BSS) of the 2G network and the core network of the Circuit Switched (CS) network also faces time division multiplexing (Time Division Multiplexing).
  • TDM Time Division Multiplexing
  • the A interface defines the IP bearer mode.
  • One of the methods is that the A interface carries the compression codec. This reduces the number of end-to-end codecs to improve voice quality and save transmission resources of the A interface.
  • compression codec for interface A, including multi-rate codec.
  • Multi-rate codec includes Adaptive Multi-Rate (AMR) codec and Adaptive Multi-Rate Wideband (Adaptive Multi-Rate Wideband).
  • AMR-WB Codec For multi-rate codecs, when establishing a call or handover, its initial rate needs to work in a lower rate mode.
  • Voice calls can be divided into Transcoder Free Operation (TrFO) voice calls and non-TrFO voice calls. TrFO voice calls refer to no codec resources on the voice call path. Non-TrFO voice calls refer to voice call paths. Decode resources.
  • TrFO voice calls refer to no codec resources on the voice call path.
  • Non-TrFO voice calls refer to voice call paths. Decode resources.
  • Embodiments of the present invention provide a rate adjustment method and device applied to TrFO voice call handover, which avoids a frame loss problem that may occur when a rate is not matched when switching to a TrFO call.
  • An embodiment of the present invention provides a rate adjustment method applied to TrFO voice call handover, including: receiving a message for handover, the handover forming a multi-rate codec TrFO call after handover; and using a multi-rate codec The switching side sends a message for adjusting the rate, so that the non-switching side adjusts the rate of the non-switching side to an initial rate after receiving the message for adjusting the rate.
  • the embodiment of the present invention provides a rate adjustment device applied to a TrFO voice call handover, including: a receiving module, configured to receive a message for handover, where the handover forms a TrFO call of a multi-rate codec after the handover; Transmitting, by the non-switching side adopting the multi-rate codec, a message for adjusting the rate, so that the non-handover side adjusts the rate of the non-handover side to an initial after receiving the message for adjusting the rate rate.
  • the embodiment of the present invention sends a message for adjusting the rate to the non-handover side by forming a TrFO call after the handover, the message may enable the non-switching side to adjust its own rate to the initial rate, due to the initial rate. It is a lower rate, and the rate after switching is also a lower rate. Therefore, rate matching before and after switching can be achieved to avoid frame loss.
  • FIG. 1 is a schematic flowchart of a method according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a system used in an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a handover procedure according to an embodiment of the present invention
  • Figure 5 is a schematic flowchart of a method according to a third embodiment of the present invention
  • Figure 6 is a schematic flowchart of a method according to a fourth embodiment of the present invention
  • Figure 7 is a schematic flowchart of a method according to a fifth embodiment of the present invention
  • Schematic diagram of the method of the sixth embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a device according to a seventh embodiment of the present invention.
  • Step 11 Receive a message for handover, where the handover forms a TrFO call of a multi-rate codec after handover;
  • Step 12 Send a message for adjusting the rate to the non-handover side adopting the multi-rate codec, so that the non-handover side adjusts the rate of the non-handover side to after receiving the message for adjusting the rate Initial rate.
  • the foregoing execution entity may be a media gateway (MGW) or a source base station controller (BSC), and the corresponding message for switching and the message for adjusting the rate are also different, and the specific content may be See the examples below.
  • MGW media gateway
  • BSC source base station controller
  • a message for adjusting the rate is sent to the non-handover side adopting the multi-rate codec, and the message may cause the non-switching side to adjust its own rate to the initial rate. Since the initial rate is a lower rate and the switched rate also uses a lower rate, rate matching before and after the switching can be implemented to avoid frame loss.
  • FIG. 2 is a schematic structural diagram of a system used in an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a handover process in an embodiment of the present invention.
  • the system for communication includes a first BSS 21 and a second BSS 22, a first Mobile Switch Center Server (MSC-S) 23 and a second MSC-S 24, a first MGW 25 and a second MGW. 26, and the Radio Network Controller (RNC) of the 3G network.
  • the first BSS 21, the first MSC-S 23, and the first MGW 25 serve the first endpoint
  • the second BSS 22, the second MSC-S 24, and the second MGW 26 serve the second endpoint.
  • the endpoint can be a mobile station (MS).
  • the interface between the BSS and the MGW and the MSC-S is the A interface
  • the interface between the MSC-S is the Nc interface
  • the interface between the MGW is the Nb interface
  • the interface between the MSC-S and the MGW is the Mc interface.
  • the interface between the MGW and the MSC-S and the RNC is Iu.
  • Different BSSs can also be managed under the same MSC-S and MGW.
  • the two ends of the call before the handover are respectively the T1 end and the T2 end, wherein the T2 end is a non-switching side, the T1 end is a switching side, and the T1 end is switched to the T3 end.
  • the source BSC is the BSC corresponding to the T1 end
  • the target BSC is the BSC corresponding to the T3 end.
  • the two ends of the call are managed by the same MSC-S and the MGW.
  • the interface between the MSC-S and the interface between the MGWs can be used for message transmission.
  • the handover process of this embodiment includes:
  • Step 301 The source BSC sends a Handover Required message to the MSC-S.
  • Step 302 The MSC-S sends an ADD Termination Request message to the MGW, where the message is used by the MGW to add the switched endpoint T3.
  • Step 303 The MGW sends an ADD Termination Reply message to the MSC-S.
  • Step 304 The MSC-S sends a Handover Request message to the target BSC.
  • Step 306 The MSC-S sends a Handover Command message to the source BSC.
  • Step 307 The source BSC sends a Handover Command message to the MS.
  • Step 308 The MS sends a Handover Access message to the target BSC.
  • Step 309 The target BSC sends a Handover Detect message to the MSC-S.
  • Step 310 The MSC-S sends a modify (MOD) handover topology request message to the MGW.
  • MOD modify
  • Step 311 The MGW sends a modify (MOD) handover topology response message to the MSC-S.
  • MOD modify
  • Step 312 The MS sends a Handover Complete message to the target BSC.
  • Step 313 The target BSC sends a Handover Complete message to the MSC-S.
  • Step 314 The MSC-S sends a message (SUB Tl req ) to delete the endpoint to the MGW.
  • Full rate FR-AMR and half rate HR-AMR are two common AMR compatible codecs.
  • the full AMR refers to a Universal Mobile Telecommunications System (UMTS)-AMR2 codec that is FR-AMR or the same rate set as FR-AMR, where the rate set corresponding to the FR-AMR includes the following rate: 12.2 kbps, 7.4 kbps, 5.9 kbps, 4.75 kbps
  • the initial rate is the rate
  • the initial rate is the lowest rate
  • the initial rate is the next lowest rate, for example, 5.9 kbps in the rate set corresponding to the above FR-AMR.
  • T2 may work at 12.2 kbps before switching
  • T3 does not support 12.2 kbps after switching. If T2 does not slow down in advance, the rates of T2 and T3 are not matched, and because it is a TrFO call, there is no codec conversion resource. It is not possible to convert the rate of both, so it may cause frame loss.
  • Scenario 2 The T2 codec is full AMR, and the T3 codec is full AMR.
  • T3 is a new channel
  • the initial rate is required according to the existing protocol, and the initial rate is low. For example, before switching, ⁇ 2 works at 12.2 kbps, but the initial rate of T3 after switching is 5.9 kbps (second low rate), T2. It does not match the rate of T3. Because it is a TrFO call, there is no codec conversion resource, and the rate of the two cannot be converted, so frame loss may occur.
  • the non-switching side needs to be instructed to perform rate adjustment.
  • the call type before the handover is a TrFO call and a different execution subject.
  • different embodiments may be used. The following examples are given.
  • FIG. 4 is a schematic flowchart of a method according to a second embodiment of the present invention. This embodiment takes a non-TrFO call before handover as an example. Referring to FIG. 4, this embodiment includes:
  • Step 41 The MGW receives the message sent by the MSC-S for adding the switched endpoint.
  • Step 42 After the MGW determines that the handover is a non-TrFO call to a TrFO call, it determines whether there is a user plane (UP) on the non-switching side. If yes, step 43 is performed; otherwise, step 44 is performed.
  • UP user plane
  • Step 43 The MGW sends a Rate Control message to the non-switching side, where the rate control message is used to indicate that the non-switching side adjusts the rate to the initial rate.
  • the MGW may send a rate control message to the non-switching side through an Iu Asynchronous Transfer Mode (ATM) interface, an Iu IP interface, or a bearer independent call control protocol (BICC) Nb interface.
  • ATM Asynchronous Transfer Mode
  • Iu IP Iu IP
  • BICC bearer independent call control protocol
  • the rate control message can be sent to the non-switching side RNC through the Iu ATM interface.
  • the rate control message may be sent to the non-switching side RNC through the Iu IP interface; or the rate control message may be sent to the non-switching side MGW through the BICC Nb interface.
  • the non-switching side may perform corresponding processing according to the corresponding rate set. For details, refer to the foregoing description of the initial rate.
  • Step 44 Determine whether the voice activity detection (VAD) of the AMR is turned off. If it is off, go to step 45. Otherwise, go to step 46.
  • VAD voice activity detection
  • Step 45 The MGW sends a Code Mode Request (CMR) message to the non-switching side, where the CMR message is used to indicate that the non-switching side adjusts the rate to the initial rate.
  • CMR Code Mode Request
  • the non-switching side may perform corresponding processing according to the corresponding rate set. For details, refer to the foregoing description of the initial rate.
  • Step 46 The MGW may close the VAD, and then send a CMR message by using a voice frame, where the CMR message is used to indicate that the non-switching side adjusts the rate to the initial rate.
  • the MGW can also process according to the state it is in. For example, when the state is the silent period, the CMR message may be sent by using no data (NO_DATA) frame (specifically, no payload data), and the CMR message is used to indicate that the non-switching side adjusts the rate to the initial rate.
  • NO_DATA no data
  • the CMR message may be sent by using a voice frame or a silence frame, where the CMR message is used to indicate that the non-switching side adjusts the rate to the initial rate.
  • the non-switching side may perform corresponding processing according to the corresponding rate set. For details, refer to the foregoing description of the initial rate.
  • the MGW can send the corresponding AMR frame through the following interface: A-interface (A over IP) carrying the IP address, or the SIP Initiation Protocol with encapsulated ISUP (SIP-I) Nb interface .
  • A-interface A over IP
  • SIP-I SIP Initiation Protocol with encapsulated ISUP
  • the AMR frame includes a voice frame, a no data frame, and a silence frame.
  • the AMR frame may be sent to the BSC on the non-handover side through the A over IP interface; or the AMR frame may be sent to the MGW on the non-handover side through the SIP-I Nb interface.
  • steps 303-314 are continued.
  • a message for adjusting the rate is sent to the non-handover side, and the message may enable the non-handover side to adjust its own rate to the initial rate, since the initial rate is a lower rate, and the handover is performed.
  • the subsequent rate also uses a lower rate, so rate matching before and after switching can be achieved to avoid frame loss.
  • a handover failure may occur.
  • the original non-TrFO bearer connection needs to be maintained, and the MGW is required to request the non-switching side to adjust the AMR rate to the highest rate.
  • FIG. 5 is a schematic flowchart of a method according to a third embodiment of the present invention.
  • This embodiment takes a non-TrFO call before handover and a handover failure as an example.
  • this embodiment includes: Step 51: The handover fails after switching the adjustment initial rate.
  • the handover fails due to various reasons.
  • the MSC-S fails before receiving the Handover detect message.
  • Step 52 After the MGW learns that the handover fails, it determines whether there is an UP on the non-switching side. If yes, go to Step 53; otherwise, go to Step 54.
  • a timer is set in the MGW, and if the corresponding resource before the handover is not deleted within the time set by the timer, the handover failure can be known.
  • Step 53 The MGW sends a rate control message to the non-switching side, where the rate control message is used to indicate that the non-switching side adjusts its own rate to the highest rate.
  • the rate control message may also be sent to the non-switching side through the Iu ATM interface, the Iu IP interface, or the BICC Nb interface.
  • Step 54 The MGW sends an AMR frame to the non-switching side to send a CMR message, where the CMR message is used to indicate that the non-switching side adjusts its own rate to the highest rate.
  • the VAD when the maximum rate is adjusted, the VAD may not be opened or closed for differentiation processing.
  • the CMR message can also be sent to the non-switching side through the A over IP interface or the SIP-I Nb interface.
  • the non-switching side by controlling the non-switching side to adjust the rate to the highest rate after the handover fails, the original non-TrFO connection can be maintained, and the voice quality can be improved.
  • FIG. 6 is a schematic flowchart of a method according to a fourth embodiment of the present invention.
  • This embodiment is a TrFO call before handover, and the source BSC indicates that the non-switching side performs rate adjustment as an example. Due to the non-TrFO call, the core The network will terminate the message. The source BSC cannot send the rate-adjusted message to the MGW of the peer. However, if the switch is a TrFO call before the switch, the BSC can send the related message to the core network on the non-switching side. Therefore, referring to FIG. 6, the embodiment includes:
  • Step 61 The source BSC receives the handover command message.
  • Step 62 The source BSC sends a CMR message to the non-switching side, where the CMR message is used to indicate that the non-switching side adjusts the rate to the initial rate.
  • the VAD of AMR needs to be always open. Therefore, it can be processed as follows:
  • the CMR message can be sent using a no-data (NO-DATA) frame, the CMR message is used to indicate that the non-switching side adjusts the rate to the initial rate.
  • NO-DATA no-data
  • the CMR message may be sent by using a voice frame or a silence frame, where the CMR message is used to indicate that the non-switching side adjusts the rate to the initial rate.
  • the source BSC may send the CMR message to the non-switching side MGW through the A interface. After performing the above steps, you can continue to perform the other steps involved in the handover process, for example, proceed to steps 307-314.
  • a message for adjusting the rate is sent to the non-handover side, and the message may enable the non-handover side to adjust its own rate to the initial rate, since the initial rate is a lower rate, and the handover is performed.
  • the subsequent rate also uses a lower rate, so rate matching before and after switching can be achieved to avoid frame loss.
  • FIG. 7 is a schematic flowchart of a method according to a fifth embodiment of the present invention.
  • a TrFO call is performed before the handover, and the MGW instructs the non-switching side to perform rate adjustment as an example.
  • this embodiment includes:
  • Step 71 The MGW receives a message sent by the MSC-S for adding the switched endpoint. For details, see steps 301-302.
  • Step 72 After the MGW determines that the handover is switched from the TrFO call to the TrFO call, it determines whether there is a user plane (UP) on the non-switching side. If yes, step 73 is performed. Otherwise, step 74 is performed.
  • UP user plane
  • Step 73 The MGW sends a Rate Control message to the non-switching side, where the rate control message is used to indicate that the non-switching side adjusts the rate to the initial rate.
  • Step 74 The MGW sends a CMR message to the non-switching side, where the CMR message is used to indicate that the non-switching side adjusts the rate to the initial rate.
  • the VAD of AMR needs to be always open. Therefore, it can be processed as follows:
  • the CMR message can be sent using a no-data (NO-DATA) frame, the CMR message is used to indicate that the non-switching side adjusts the rate to the initial rate.
  • NO-DATA no-data
  • the CMR message may be sent by using a voice frame or a silence frame, where the CMR message is used to indicate that the non-switching side adjusts the rate to the initial rate.
  • the MGW can send the corresponding AMR frame through the following interface: an A interface (A over IP) carrying IP, or a SIP-I Nb interface.
  • the AMR frame may be sent to the BSC on the non-handover side through the A over IP interface; or the AMR frame may be sent to the MGW on the non-handover side through the SIP-I Nb interface.
  • steps 303-314 are continued.
  • a message for adjusting the rate is sent to the non-handover side, and the message may cause the non-switching side to adjust its own rate to the initial rate due to the initial speed.
  • the rate is lower, and the rate after switching is also lower. Therefore, rate matching before and after switching can be achieved to avoid frame loss.
  • the embodiment shown in FIG. 6 or FIG. 7 may fail to switch in the subsequent handover process.
  • the original TrFO bearer connection needs to be maintained, and the MGW is required to request the non-switching side. Adjust the AMR rate to the highest rate.
  • FIG. 8 is a schematic flowchart of a method according to a sixth embodiment of the present invention. This embodiment takes a TrFO call before handover and a handover failure as an example. Referring to Figure 8, this embodiment includes:
  • Step 81 The switch fails after switching the initial rate.
  • step 51 For details, see step 51.
  • Step 82 After obtaining the handover failure, the MGW forwards the rate change request message from the handover side to the non-handover side.
  • the system has self-rate adjustment capability, that is, the switching side sends a rate change request message to the non-switching side, and the rate change request message can gradually cause the non-switching side to adjust its own rate to the original rate. Therefore, the MGW can no longer intercept the rate change request message from the handover side and forward it.
  • the non-switching side by controlling the non-switching side to adjust the rate to the highest rate after the handover fails, the original TrFO connection can be maintained, and the voice quality can be improved.
  • FIG. 9 is a schematic structural diagram of a device according to a seventh embodiment of the present invention, including a receiving module 91 and a sending module 92.
  • the receiving module 91 is configured to receive a message for switching, where the switching forms a TrFO call of a multi-rate codec after switching.
  • the sending module 92 is configured to send a message for adjusting the rate to the non-switching side that uses the multi-rate codec, so that the non-switching side sends the rate of the non-switching side after receiving the message for adjusting the rate. Adjust to the initial rate.
  • the device may be an MGW, and the receiving module 91 is specifically configured to receive, after receiving the handover request message, the MSC-S sends a message for adding the switched endpoint.
  • the sending module 92 includes: a first unit 921 or a second unit 922; the first unit 921 is configured to send a rate control message if the non-switching side has UP; and the second unit 922 is configured to: if the non-switching side does not have an UP, Send a CMR message.
  • the second unit 922 is specifically used if the multi-rate mode
  • the CMR message is sent by using a voice frame; or if the VAD of the multi-rate mode is turned on, the VAD is turned off, and the CMR message is sent by using a voice frame after the VAD is turned off; or if the multi-rate mode is The VAD is opened and is in a silent period, and the CMR message is sent in a dataless frame; or, if the VAD of the multi-rate mode is on and in a non-silent period, the CMR message is sent using a voice frame or a silence frame.
  • the second unit 922 is specifically configured to send the CMR message by using a dataless frame if it is in a silent period; or, if it is in a non-silence period, using a voice frame or a silent frame. Describe the CMR message.
  • This embodiment may further include a holding module 93 for maintaining the original call bearer connection on the non-switching side.
  • the maintaining module 93 is specifically configured to: if the non-TrFO call is before the handover, and the non-switching side has the UP, send a rate control message for adjusting the rate to the highest rate to the non-switching side; or if the non-TrFO call is before the handover If the non-switching side has no UP, the AMR frame is used to send a message for adjusting the rate to the highest rate to the non-switching side; or, if the TrFO call is before the handover, the rate change request message from the switching side is forwarded to the non-switching side. .
  • the device is a BSC
  • the receiving module 91 is specifically configured to receive a handover command message sent by the MSC-S.
  • the sending module 92 is specifically configured to use the dataless frame if the system is in the silent period. Sending the CMR message to the non-handover side; or, if it is in the non-silence period, transmitting the CMR message to the non-handover side by using a voice frame or a silence frame.
  • a message for adjusting the rate is sent to the non-handover side, and the message may enable the non-handover side to adjust its own rate to the initial rate, since the initial rate is a lower rate, and the handover is performed.
  • the subsequent rate also uses a lower rate, so rate matching before and after switching can be achieved to avoid frame loss.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes The foregoing steps of the method embodiment; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种应用于TrFO语音呼叫切换的速率调整方法及设备。该方法包括接收用于切换的消息,所述切换在切换后形成TrFO呼叫;向非切换侧发送用于调整速率的消息,以使所述非切换侧在接收到所述用于调整速率的消息后将所述非切换侧的速率调整为初始速率。本发明实施例可以避免切换时的丟帧问题。

Description

应用于 TrFO语音呼叫切换的速率调整方法及设备 本申请要求于 2010 年 12 月 28 日提交中国专利局、 申请号为
201010623128.5、 发明名称为 "应用于 TrFO语音呼叫切换的速率调整方法及 设备" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及移动通信技术, 尤其涉及一种应用于 TrFO语音呼叫切换的速 率调整方法及设备。
背景技术
随着电信网络 IP 化的不断演进, 2G 网络的基站子系统 ( Base Station Subsystem, BSS ) 与电路交换域 ( Circuit Switched, CS )核心 网之间的 A接口也面临从时分复用 ( Time Division Multiplexing, TDM )承载 演进到 IP承载。 在 3GPP R8版本中, A接口定义了 IP承载方式, 其中一种方 式是 A接口承载压缩编解码, 这样可以降低端到端编解码次数, 以提升语音 质量且节省 A接口的传输资源。 A接口的压缩编解码存在多种类型, 其中包 括多速率编解码, 多速率编解码包括自适应多速率 (Adaptive Multi-Rate, AMR )编解码和宽带自适应多速率( Adaptive Multi-Rate Wideband, AMR-WB ) 编解码。 对于多速率编解码, 在建立呼叫或者切换时, 其初始速率需要工作在 较低速率模式下。 语音呼叫可以分为编解码无关操作 ( Transcoder Free Operation, TrFO )语 音呼叫和非 TrFO语音呼叫, TrFO语音呼叫是指语音呼叫路径上无编解码资 源, 非 TrFO语音呼叫是指语音呼叫路径上有编解码资源。 在发生切换后, 如果切换后采用多速率编解码的 TrFO语音呼叫, 并且, 如果采用多速率编解码的非切换侧在切换前采用的速率较高,由于切换后的初 始速率较低, 如果在切换时不进行速率相关处理, 则可能会造成丟帧。 发明内容
本发明实施例提供一种应用于 TrFO语音呼叫切换的速率调整方法及设 备, 避免切换成 TrFO呼叫时在速率不匹配时可能造成的丟帧问题。 本发明实施例提供一种应用于 TrFO语音呼叫切换的速率调整方法, 包括: 接收用于切换的消息, 所述切换在切换后形成多速率编解码的 TrFO呼叫; 向采用多速率编解码的非切换侧发送用于调整速率的消息,以使所述非切 换侧在接收到所述用于调整速率的消息后将所述非切换侧的速率调整为初始 速率。 本发明实施例提供一种应用于 TrFO语音呼叫切换的速率调整设备, 包括: 接收模块, 用于接收用于切换的消息, 所述切换在切换后形成多速率编解 码的 TrFO呼叫; 发送模块, 用于向采用多速率编解码的非切换侧发送用于调整速率的消 息,以使所述非切换侧在接收到所述用于调整速率的消息后将所述非切换侧的 速率调整为初始速率。
由上述技术方案可知, 本发明实施例通过在切换后形成 TrFO呼叫时, 向 非切换侧发送用于调整速率的消息,该消息可以使得非切换侧将自身的速率调 整为初始速率, 由于初始速率是较低速率, 而切换后的速率也采用较低速率, 因此, 可以实现切换前后的速率匹配, 避免丟帧。
附图说明 为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所 需要使用的附图作一简单地介绍,显而易见地, 下面描述中的附图是本发明的 一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。 图 1为本发明第一实施例的方法流程示意图; 图 2为本发明实施例采用的系统的结构示意图; 图 3为本发明实施例中的切换流程示意图; 图 4为本发明第二实施例的方法流程示意图; 图 5为本发明第三实施例的方法流程示意图; 图 6为本发明第四实施例的方法流程示意图; 图 7为本发明第五实施例的方法流程示意图; 图 8为本发明第六实施例的方法流程示意图;
图 9为本发明第七实施例的设备结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚, 下面将结合本发明 实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。基于本发明中 的实施例 ,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。 图 1为本发明第一实施例的方法流程示意图, 包括: 步骤 11 : 接收用于切换的消息, 所述切换在切换后形成多速率编解码的 TrFO呼叫; 步骤 12: 向采用多速率编解码的非切换侧发送用于调整速率的消息, 以使 所述非切换侧在接收到所述用于调整速率的消息后将所述非切换侧的速率调 整为初始速率。
其中, 上述的执行主体可以为媒体网关(Media Gateway, MGW )或者源 基站控制器( Base Station Controller, BSC ) , 对应的用于切换的消息以及用 于调整速率的消息也有所不同, 具体内容可以参见下述实施例。
本实施例通过在切换后形成多速率编解码的 TrFO呼叫时, 向采用多速率 编解码的非切换侧发送用于调整速率的消息,该消息可以使得非切换侧将自身 的速率调整为初始速率, 由于初始速率是较低速率, 而切换后的速率也采用较 低速率, 因此, 可以实现切换前后的速率匹配, 避免丟帧。
为了更好地理解本发明实施例 ,首先对本发明实施例中涉及的系统及切换 流程进行说明。 图 2为本发明实施例采用的系统的结构示意图, 图 3为本发明实 施例中的切换流程示意图。
参见图 2, 通信的系统包括第一 BSS21和第二 BSS 22, 第一移动交换中心 服务器( Mobile Switch Center Server, MSC-S ) 23和第二 MSC-S 24,第一 MGW 25和第二 MGW 26, 以及 3G网络的无线网络控制器( Radio Network Controller, RNC ) 27。 其中, 第一 BSS 21、 第一 MSC-S 23和第一 MGW 25为第一端点服 务, 第二 BSS 22、 第二 MSC-S 24和第二 MGW 26为第二端点服务。 其中, 端点 可以为移动台 ( Mobile Station, MS ) 。 BSS与 MGW及 MSC-S之间的接口为 A 接口, MSC-S之间的接口为 Nc接口, MGW之间的接口为 Nb接口, MSC-S与 MGW之间的接口为 Mc接口。 另夕卜, MGW及 MSC-S与 RNC之间的接口为 Iu接 不同的 BSS也可以在相同的 MSC-S和 MGW的管理下。
参见图 3 , 本实施例中, 殳切换前通话的两端分别为 T1端和 T2端, 其中 T2端为非切换侧, T1端为切换侧, 从 T1端切换到 T3端。 源 BSC为 T1端对应的 BSC, 目标 BSC为 T3端对应的 BSC。
本实施例以通话的两端在同一个 MSC-S及 MGW的管理下为例 , 对于在不 同的 MSC-S和 MGW时可以采用 MSC-S之间的接口以及 MGW之间的接口进行 消息传递。 本实施例的切换流程包括:
步骤 301 : 源 BSC向 MSC-S发送切换要求( Handover Required ) 消息。 步骤 302: MSC-S向 MGW发送添加端点请求( ADD Termination Request ) 消息, 该消息用于 MGW添加切换后的端点 T3。
步骤 303: MGW向 MSC-S发送添加端点响应( ADD Termination Reply )消 息。
步骤 304: MSC-S向目标 BSC发送切换请求( Handover Request ) 消息。 步骤 305: 目标 BSC向 MSC-S返回切换请求应答( Handover Request ACK ) 消息。
步骤 306: MSC-S向源 BSC发送切换命令 ( Handover Command ) 消息。 步骤 307: 源 BSC向 MS发送切换命令( Handover Command ) 消息。
步骤 308: MS向目标 BSC发送切换接入(Handover Access ) 消息。
步骤 309: 目标 BSC向 MSC-S发送切换检测 ( Handover Detect ) 消息。
步骤 310: MSC-S向 MGW发送修改(MOD )切换拓朴请求消息。
步骤 311: MGW向 MSC-S发送修改( MOD )切换拓朴应答消息。
步骤 312: MS向目标 BSC发送切换完成( Handover Complete ) 消息。 步骤 313: 目标 BSC向 MSC-S发送切换完成 ( Handover Complete ) 消息。 步骤 314: MSC-S向 MGW发送删除端点的消息 ( SUB Tl req ) 。
另外, 对一些参数进行说明:
1 )全速率 FR— AMR和半速率 HR— AMR是两种常见的 AMR兼容编解码。全 AMR是指编解码为 FR— AMR或者与 FR— AMR同速率集的通用移动通信系统 ( Universal Mobile Telecommunications System , UMTS ) — AMR2 , 其中 , FR— AMR对应的速率集包括如下速率: 12.2kbps、 7.4kbps、 5.9kbps、 4.75kbps„ 半 AMR是指编解码为 HR— AMR或者与 HR— AMR同速率集的 UMTS— AMR2,其中, HR— AMR对应的速率集包括如下速率: 7.4kbps、 5.9kbps, 4.75kbps„
2 )现有协议规定, 在建立呼叫或者切换时, 初始速率需要工作在低速率 模式下, 具体如下:
如果速率集只包括一个速率, 则初始速率为该速率;
如果速率集中包括 2或 3个速率, 则初始速率为最低速率;
如果速率集中包括 4个速率,则初始速率为次低速率,例如,上述 FR— AMR 对应的速率集中的 5.9kbps。
通过上述切换流程及参数说明, 如果切换后 T2和 T3形成 TrFO呼叫, 在如 下场景下可能会存在丟帧现象:
场景一: T2编解码为全 AMR, T3编解码为半 AMR。
由于切换前 T2可能工作在 12.2kbps, 但是切换后 T3是不支持 12.2kbps的, 如果 T2不提前降速, T2和 T3的速率是不匹配的, 又由于是 TrFO呼叫, 没有编 解码转换资源, 不能对两者的速率进行转换, 所以可能会造成丟帧。 场景二: T2编解码为全 AMR, T3编解码为全 AMR。
由于 T3为新建信道, 按照现有协议需要采用初始速率, 而初始速率较低, 例如, 当切换前 Τ2工作在 12.2kbps, 但是, 切换后 T3的初始速率是 5.9kbps (次 低速率) , T2和 T3的速率是不匹配的, 又由于是 TrFO呼叫, 没有编解码转换 资源, 不能对两者的速率进行转换, 所以可能会造成丟帧。
场景三: T2编解码为半 AMR, T3编解码为半 AMR。
类似对两者均为全 AMR的论述, T2和 T3的速率可能是不匹配的, 又由于 是 TrFO呼叫, 没有编解码转换资源, 不能对两者的速率进行转换, 所以可能 会造成丟帧。
基于上述描述, 当切换后的呼叫为 TrFO呼叫时, 需要指示非切换侧进行 速率调整, 根据切换前的呼叫类型是否为 TrFO呼叫及不同的执行主体, 可以 对应不同的实施例, 具体内容可以参见下述各实施例。
图 4为本发明第二实施例的方法流程示意图, 本实施例以切换前为非 TrFO 呼叫为例。 参见图 4, 本实施例包括:
步骤 41 : MGW接收 MSC-S发送的用于添加切换后的端点的消息。
具体内容可以参见步骤 301-302。
步骤 42: MGW判断出该次切换是由非 TrFO呼叫切换为 TrFO呼叫后, 判断 非切换侧是否有用户面 (UP ) , 若有, 则执行步骤 43 , 否则, 执行步骤 44。
其中, 如果 MGW中存在编解码转换资源, 则进行的呼叫为非 TrFO呼叫, 如果不存在编解码转换资源, 则进行的为 TrFO呼叫。 另外, 在两端通话时, 可以配置是采用闭合方式还是非闭合方式, 如果采用闭合方式则存在 UP, 否 则不存在 UP。 步骤 43: MGW向非切换侧发送速率控制 ( Rate Control ) 消息, 该速率控 制消息用于指示非切换侧将速率调整为初始速率。
MGW可以通过 Iu异步传输模式(Asynchronous Transfer Mode, ATM )接 口、 Iu IP接口或者与承载无关的呼叫控制协议 ( Bearer Independent Call Control protocol, BICC ) Nb接口向非切换侧发送速率控制消息。
例如, 当非切换侧属于 3G, 且接口承载方式为 ATM方式时, 则可以通过 Iu ATM接口向非切换侧的 RNC发送该速率控制消息; 或者, 当非切换侧属于 3G, 且接口承载方式为 IP方式时, 则可以通过 Iu IP接口向非切换侧的 RNC发 送该速率控制消息; 或者, 通过 BICC Nb接口向非切换侧的 MGW发送该速率 控制消息。
当非切换侧接收到该速率控制消息后 ,可以根据对应的速率集进行相应处 理, 具体可以参见上述对初始速率的说明。
步骤 44: 判断 AMR的语音激活检测 (Voice Activity Detection, VAD )是 否关闭, 如果关闭, 执行步骤 45, 否则, 执行步骤 46。
其中如果支持静音检测和生成静音帧, 则 VAD打开, 否则 VAD关闭。 步骤 45 : MGW向非切换侧采用语音帧发送编码模式请求 (Code Mode Request, CMR )消息, 该 CMR消息用于指示非切换侧将速率调整为初始速率。
当非切换侧接收到该 CMR消息后, 可以根据对应的速率集进行相应处理, 具体可以参见上述对初始速率的说明。
步骤 46: MGW可以关闭 VAD, 之后, 采用语音帧发送 CMR消息, 该 CMR 消息用于指示非切换侧将速率调整为初始速率。 或者, MGW也可以根据所处 状态进行处理。 例如, 当所处状态为静音期时, 可以采用无数据(NO— DATA )帧 (具体 为无净荷数据 )发送 CMR消息, 该 CMR消息用于指示非切换侧将速率调整为 初始速率。 或者, 如果所处状态为非静音期, 可以采用语音帧或者静音帧发送 CMR消息, 该 CMR消息用于指示非切换侧将速率调整为初始速率。
当非切换侧接收到该 CMR消息后, 可以根据对应的速率集进行相应处理, 具体可以参见上述对初始速率的说明。
在步骤 45、 46中, MGW可以通过如下接口发送对应的 AMR帧: 承载为 IP 的 A接口( A over IP ) ,或者 封装 ISUP的 SIP协议( Session Initiation Protocol with encapsulated ISUP, SIP-I ) Nb接口。 其中, AMR帧包括语音帧、 无数据帧和 静音帧。
例如, 可以通过 A over IP接口向非切换侧的 BSC发送该 AMR帧; 或者, 可 以通过 SIP-I Nb接口向非切换侧的 MGW发送该 AMR帧。
在执行完上述步骤之后,可以继续执行切换流程中涉及的其他步骤,例如, 再继续执行步骤 303-314。
本实施例通过在切换后形成 TrFO呼叫时, 向非切换侧发送用于调整速率 的消息, 该消息可以使得非切换侧将自身的速率调整为初始速率, 由于初始速 率是较低速率, 而切换后的速率也采用较低速率, 因此, 可以实现切换前后的 速率匹配, 避免丟帧。
另外,在后续切换流程中可能会发生切换失败的情况, 此时需要保持原有 的非 TrFO承载连接, 需要 MGW请求非切换侧调整 AMR速率到最高速率。
图 5为本发明第三实施例的方法流程示意图, 本实施例以切换前为非 TrFO 呼叫且发生切换失败为例。 参见图 5, 本实施例包括: 步骤 51 : 在切换调整初始速率后切换发生失败。
例如, 采用上述实施例指示非切换侧将速率调整为初始速率后,切换由于 各种原因出现切换失败。 如, 该 MSC-S在接收到切换检测 ( Handover detect ) 消息之前失败。
步骤 52: MGW在获知切换失败后, 判断非切换侧是否有 UP, 若有, 执行 步骤 53 , 否则执行步骤 54。
例如, MGW中设置一个定时器, 如果在该定时器设定的时间内其切换前 对应的资源没有被删除, 则可以获知切换失败。
步骤 53: MGW向非切换侧发送速率控制消息, 该速率控制消息用于指示 非切换侧将自身速率调整到最高速率。
另外, 该速率控制消息也可以通过 Iu ATM接口、 Iu IP接口或者 BICC Nb 接口向非切换侧发送。
步骤 54: MGW向非切换侧采用 AMR帧发送 CMR消息, 该 CMR消息用于 指示非切换侧将自身速率调整到最高速率。
本实施例中调整为最高速率时可以不对 VAD打开或者关闭进行区分处 理。
另夕卜, 该 CMR消息也可以通过 A over IP接口, 或者 SIP-I Nb接口发送给 非切换侧。
本实施例通过在切换失败后控制非切换侧再把速率调整到最高速率,可以 保持原有的非 TrFO连接, 可以提高语音质量。
图 6为本发明第四实施例的方法流程示意图, 本实施例以切换前为 TrFO呼 叫, 且由源 BSC指示非切换侧进行速率调整为例。 由于在非 TrFO呼叫时, 核心 网会对消息进行终结处理,源 BSC不能将调整速率的消息发送给对端的 MGW, 但是,如果切换前为 TrFO呼叫, BSC可以将相关消息发送给非切换侧的核心网。 因此, 参见图 6, 本实施例包括:
步骤 61 : 源 BSC接收切换命令消息。
具体内容可以参见步骤 301 -306。
步骤 62: 源 BSC向非切换侧发送 CMR消息, 该 CMR消息用于指示非切换 侧将速率调整为初始速率。
其中, 由于切换前为 TrFO呼叫, AMR的 VAD是需要始终打开的。 因此, 可以如下处理: 当所处状态为静音期时, 可以采用无数据(NO— DATA )帧发 送 CMR消息, 该 CMR消息用于指示非切换侧将速率调整为初始速率。 或者, 如果所处状态为非静音期,可以采用语音帧或者静音帧发送 CMR消息,该 CMR 消息用于指示非切换侧将速率调整为初始速率。
另外, 源 BSC可以具体通过 A接口向非切换侧的 MGW发送该 CMR消息。 在执行完上述步骤之后,可以继续执行切换流程中涉及的其他步骤,例如, 再继续执行步骤 307-314。
本实施例通过在切换后形成 TrFO呼叫时, 向非切换侧发送用于调整速率 的消息, 该消息可以使得非切换侧将自身的速率调整为初始速率, 由于初始速 率是较低速率, 而切换后的速率也采用较低速率, 因此, 可以实现切换前后的 速率匹配, 避免丟帧。
图 7为本发明第五实施例的方法流程示意图, 本实施例以切换前为 TrFO呼 叫, 且 MGW指示非切换侧进行速率调整为例。 参见图 7, 本实施例包括:
步骤 71: MGW接收 MSC-S发送的用于添加切换后的端点的消息。 具体内容可以参见步骤 301 -302。
步骤 72: MGW判断出该次切换是由 TrFO呼叫切换为 TrFO呼叫后, 判断非 切换侧是否有用户面 (UP ) , 若有, 则执行步骤 73, 否则, 执行步骤 74。
具体内容可以参见步骤 42。
步骤 73: MGW向非切换侧发送速率控制 ( Rate Control ) 消息, 该速率控 制消息用于指示非切换侧将速率调整为初始速率。
具体内容可以参见步骤 43。
步骤 74: MGW向非切换侧发送 CMR消息, 该 CMR消息用于指示非切换侧 将速率调整为初始速率。
其中, 由于切换前为 TrFO呼叫, AMR的 VAD是需要始终打开的。 因此, 可以如下处理: 当所处状态为静音期时, 可以采用无数据(NO— DATA )帧发 送 CMR消息, 该 CMR消息用于指示非切换侧将速率调整为初始速率。 或者, 如果所处状态为非静音期,可以采用语音帧或者静音帧发送 CMR消息,该 CMR 消息用于指示非切换侧将速率调整为初始速率。
另夕卜, MGW可以通过如下接口发送对应的 AMR帧: 承载为 IP的 A接口(A over IP ) , 或者 SIP-I Nb接口。
例如, 可以通过 A over IP接口向非切换侧的 BSC发送该 AMR帧; 或者, 可 以通过 SIP-I Nb接口向非切换侧的 MGW发送该 AMR帧。
在执行完上述步骤之后,可以继续执行切换流程中涉及的其他步骤,例如, 再继续执行步骤 303-314。
本实施例通过在切换后形成 TrFO呼叫时, 向非切换侧发送用于调整速率 的消息, 该消息可以使得非切换侧将自身的速率调整为初始速率, 由于初始速 率是较低速率, 而切换后的速率也采用较低速率, 因此, 可以实现切换前后的 速率匹配, 避免丟帧。
类似于切换前为非 TrFO呼叫的场景, 图 6或图 7所示的实施例可能在后续 切换流程中发生切换失败的情况, 此时需要保持原有的 TrFO承载连接, 需要 MGW请求非切换侧调整 AMR速率到最高速率。
图 8为本发明第六实施例的方法流程示意图, 本实施例以切换前为 TrFO呼 叫且发生切换失败为例。 参见图 8, 本实施例包括:
步骤 81 : 在切换调整初始速率后切换发生失败。
具体内容可以参见步骤 51。
步骤 82: MGW在获知切换失败后, 转发来自切换侧的速率变更请求消息 给非切换侧。
具体地, 由于 TrFO呼叫模式下, 系统具有自我速率调整能力, 即切换侧 会向非切换侧发送速率变更请求消息,该速率变更请求消息可以逐步使得非切 换侧将自身的速率调整到原有速率, 因此, MGW可以不再拦截来自切换侧的 速率变更请求消息, 而进行转发。
本实施例通过在切换失败后控制非切换侧再把速率调整到最高速率,可以 保持原有的 TrFO连接, 可以提高语音质量。
图 9为本发明第七实施例的设备结构示意图, 包括接收模块 91和发送模块 92;接收模块 91用于接收用于切换的消息, 所述切换在切换后形成多速率编解 码的 TrFO呼叫; 发送模块 92用于向采用多速率编解码的非切换侧发送用于调 整速率的消息,以使所述非切换侧在接收到所述用于调整速率的消息后将所述 非切换侧的速率调整为初始速率。 其中, 所述设备可以为 MGW, 所述接收模块 91具体用于接收 MSC-S在接 收到切换请求消息后, 发送的用于添加切换后的端点的消息。
所述发送模块 92包括: 第一单元 921或者第二单元 922; 第一单元 921用于 如果非切换侧有 UP, 则发送速率控制消息; 第二单元 922用于如果非切换侧没 有 UP, 则发送 CMR消息。
如果切换前为非 TrFO呼叫, 所述第二单元 922具体用于如果多速率模式的
VAD关闭, 则采用语音帧发送所述 CMR消息; 或者, 如果多速率模式的 VAD 打开,则关闭所述 VAD,在关闭所述 VAD之后采用语音帧发送所述 CMR消息; 或者, 如果多速率模式的 VAD打开且处于静音期, 则采用无数据的帧发送所 述 CMR消息; 或者, 如果多速率模式的 VAD打开且处于非静音期, 则采用语 音帧或者静音帧发送所述 CMR消息。
如果切换前为 TrFO呼叫, 所述第二单元 922具体用于如果处于静音期, 则 采用无数据的帧发送所述 CMR消息; 或者, 如果处于非静音期, 则采用语音 帧或者静音帧发送所述 CMR消息。
本实施例还可以包括保持模块 93, 用于保持非切换侧原有的呼叫承载连接。 保持模块 93具体用于: 如果切换前为非 TrFO呼叫, 且非切换侧有 UP, 则 向非切换侧发送用于将速率调整为最高速率的速率控制消息; 或者,如果切换 前为非 TrFO呼叫, 且非切换侧无 UP, 则向非切换侧采用 AMR帧发送用于将速 率调整为最高速率的消息; 或者, 如果切换前为 TrFO呼叫, 转发来自切换侧 的速率变更请求消息给非切换侧。
或者, 所述设备为 BSC, 所述接收模块 91具体用于接收 MSC-S发送的切换 命令消息。 所述发送模块 92具体用于如果处于静音期, 则所述采用无数据的帧 向非切换侧发送 CMR消息; 或者, 如果处于非静音期, 则采用语音帧或者静 音帧向非切换侧发送所述 CMR消息。
本实施例通过在切换后形成 TrFO呼叫时, 向非切换侧发送用于调整速率 的消息, 该消息可以使得非切换侧将自身的速率调整为初始速率, 由于初始速 率是较低速率, 而切换后的速率也采用较低速率, 因此, 可以实现切换前后的 速率匹配, 避免丟帧。
可以理解的是, 上述方法及设备中的相关特征可以相互参考。 另外, 上述 实施例中的 "第一" 、 "第二" 等是用于区分各实施例, 而并不代表各实施例 的优劣。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储 介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介 质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限 制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员 应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其 中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的 本质脱离本发明各实施例技术方案的精神和范围。

Claims

权利 要求 书
1、 一种应用于 TrFO语音呼叫切换的速率调整方法, 其特征在于, 包括: 接收用于切换的消息, 所述切换在切换后形成多速率编解码的 TrFO呼叫; 向采用多速率编解码的非切换侧发送用于调整速率的消息,以使所述非切 换侧在接收到所述用于调整速率的消息后将所述非切换侧的速率调整为初始 速率。
2、 根据权利要求 1所述的方法, 其特征在于, 所述接收用于切换的消息, 包括:
媒体网关 MGW接收移动交换中心服务器 MSC-S在接收到切换请求消息 后, 发送的用于添加切换后的端点的消息。
3、根据权利要求 2所述的方法, 其特征在于, 所述向采用多速率编解码的 非切换侧发送用于调整速率的消息, 包括:
如果非切换侧有用户面 UP, 则所述 MGW发送速率控制消息;
或者,
如果非切换侧没有 UP, 则所述 MGW发送编码模式请求 CMR消息。
4、 根据权利要求 3所述的方法, 其特征在于, 如果切换前为非 TrFO呼叫, 所述 MGW发送 CMR消息 , 包括:
如果多速率模式的语音激活检测 VAD关闭, 则所述 MGW采用语音帧发送 所述 CMR消息;
或者,
如果多速率模式的 VAD打开, 则所述 MGW关闭所述 VAD , 在关闭所述
VAD之后采用语音帧发送所述 CMR消息; 或者,
如果多速率模式的 VAD打开且处于静音期, 则所述 MGW采用无数据的帧 发送所述 CMR消息;
或者,
如果多速率模式的 VAD打开且处于非静音期, 则所述 MGW采用语音帧或 者静音帧发送所述 CMR消息。
5、 根据权利要求 3所述的方法, 其特征在于, 如果切换前为 TrFO呼叫, 所述 MGW发送 CMR消息 , 包括:
如果处于静音期, 则所述 MGW采用无数据的帧发送所述 CMR消息; 或者,
如果处于非静音期, 则所述 MGW采用语音帧或者静音帧发送所述 CMR消 息。
6、根据权利要求 1所述的方法, 其特征在于, 所述向采用多速率编解码的 非切换侧发送用于调整速率的消息之后, 如果切换失败, 所述方法还包括: 保持非切换侧原有的呼叫承载连接。
7、 根据权利要求 6所述的方法, 其特征在于, 所述保持非切换侧原有的呼 叫承载连接, 包括:
如果切换前为非 TrFO呼叫,且非切换侧有 UP,则 MGW向非切换侧发送用 于将速率调整为最高速率的速率控制消息;
或者,
如果切换前为非 TrFO呼叫, 且非切换侧无 UP, 则 MGW向非切换侧采用 AMR帧发送用于将速率调整为最高速率的消息; 或者,
如果切换前为 TrFO呼叫, MGW转发来自切换侧的速率变更请求消息给非 切换侧。
8、 根据权利要求 3或 7所述的方法, 其特征在于,
所述非切换侧有 UP, 则所述 MGW与所述非切换侧之间的接口包括: Iu
ATM接口、 Iu IP接口或者 BICC Nb接口;
和 /或,
所述非切换侧无 UP, 则所述 MGW与所述非切换侧之间的接口包括: 通过 IP承载的 A接口或者 SIP-I Nb接口。
9、 根据权利要求 1所述的方法, 其特征在于, 如果切换前为 TrFO呼叫, 所述接收用于切换的消息, 包括:
源 BSC接收 MSC-S发送的切换命令消息。
10、 根据权利要求 9所述的方法, 其特征在于, 所述向采用多速率编解码 的非切换侧发送用于调整速率的消息, 包括:
如果处于静音期, 则所述源 BSC采用无数据的帧向非切换侧发送 CMR消 息;
或者,
如果处于非静音期,则所述源 BSC采用语音帧或者静音帧向非切换侧发送 所述 CMR消息。
11、 一种应用于 TrFO语音呼叫切换的速率调整设备, 其特征在于, 包括: 接收模块, 用于接收用于切换的消息, 所述切换在切换后形成多速率编解 码的 TrFO呼叫; 发送模块, 用于向采用多速率编解码的非切换侧发送用于调整速率的消 息,以使所述非切换侧在接收到所述用于调整速率的消息后将所述非切换侧的 速率调整为初始速率。
12、 根据权利要求 11所述的设备, 其特征在于, 所述设备为 MGW, 所述 接收模块具体用于接收 MSC-S在接收到切换请求消息后,发送的用于添加切换 后的端点的消息。
13、 根据权利要求 12所述的设备, 其特征在于, 所述发送模块包括: 第一单元, 用于如果非切换侧有 UP, 则发送速率控制消息;
或者,
第二单元, 用于如果非切换侧没有 UP, 则发送 CMR消息。
14、 根据权利要求 13所述的设备, 其特征在于, 如果切换前为非 TrFO呼 叫, 所述第二单元具体用于如果多速率模式的 VAD关闭, 则采用语音帧发送 所述 CMR消息; 或者, 如果多速率模式的 VAD打开, 则关闭所述 VAD, 在关 闭所述 VAD之后采用语音帧发送所述 CMR消息;或者,如果多速率模式的 VAD 打开且处于静音期, 则采用无数据的帧发送所述 CMR消息; 或者, 如果多速 率模式的 VAD打开且处于非静音期, 则采用语音帧或者静音帧发送所述 CMR 消息。
15、 根据权利要求 13所述的设备, 其特征在于, 如果切换前为 TrFO呼叫, 所述第二单元具体用于如果处于静音期, 则采用无数据的帧发送所述 CMR消 息; 或者, 如果处于非静音期, 则采用语音帧或者静音帧发送所述 CMR消息。
16、 根据权利要求 11所述的设备, 其特征在于, 还包括:
保持模块, 用于保持非切换侧原有的呼叫承载连接。
17、 根据权利要求 16所述的设备, 其特征在于, 所述保持模块具体用于: 如果切换前为非 TrFO呼叫, 且非切换侧有 UP, 则向非切换侧发送用于将 速率调整为最高速率的速率控制消息; 或者,
如果切换前为非 TrFO呼叫, 且非切换侧无 UP, 则向非切换侧采用 AMR帧 发送用于将速率调整为最高速率的消息; 或者,
如果切换前为 TrFO呼叫, 转发来自切换侧的速率变更请求消息给非切换侧。
18、 根据权利要求 11所述的设备, 其特征在于, 所述设备为 BSC, 所述接 收模块具体用于接收 MSC-S发送的切换命令消息。
19、 根据权利要求 18所述的设备, 其特征在于, 所述发送模块具体用于 如果处于静音期, 则采用无数据的帧向非切换侧发送 CMR消息; 或者, 如果 处于非静音期, 则采用语音帧或者静音帧向非切换侧发送所述 CMR消息。
PCT/CN2011/083837 2010-12-28 2011-12-12 应用于TrFO语音呼叫切换的速率调整方法及设备 WO2012089010A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11852481.8A EP2574100B1 (en) 2010-12-28 2011-12-12 Rate adjustment method and apparatus applied to trfo voice call switching

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010623128.5A CN102142930B (zh) 2010-12-28 2010-12-28 应用于TrFO语音呼叫切换的速率调整方法及设备
CN201010623128.5 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012089010A1 true WO2012089010A1 (zh) 2012-07-05

Family

ID=44410185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083837 WO2012089010A1 (zh) 2010-12-28 2011-12-12 应用于TrFO语音呼叫切换的速率调整方法及设备

Country Status (3)

Country Link
EP (1) EP2574100B1 (zh)
CN (1) CN102142930B (zh)
WO (1) WO2012089010A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142930B (zh) * 2010-12-28 2014-05-07 华为技术有限公司 应用于TrFO语音呼叫切换的速率调整方法及设备
WO2016191989A1 (zh) * 2015-05-30 2016-12-08 华为技术有限公司 语音编码速率调整的方法和设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2059074A1 (en) * 2007-11-06 2009-05-13 Alcatel Lucent Method and apparatus for call handover in a telecommunications system
CN102142930A (zh) * 2010-12-28 2011-08-03 华为技术有限公司 应用于TrFO语音呼叫切换的速率调整方法及设备
CN102143544A (zh) * 2010-11-02 2011-08-03 华为技术有限公司 控制语音编码速率的方法、设备及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101212459B (zh) * 2006-12-28 2012-08-08 华为技术有限公司 控制媒体编码速率的方法、系统和设备
US8595018B2 (en) * 2007-01-18 2013-11-26 Telefonaktiebolaget L M Ericsson (Publ) Technique for controlling codec selection along a complex call path
WO2008098501A1 (fr) * 2007-02-02 2008-08-21 Huawei Technologies Co., Ltd. Procede, appareil et systeme de reglage de relevement gsm
CN101425836B (zh) * 2007-10-29 2013-06-05 华为技术有限公司 一种编码速率的控制方法和设备
ATE548884T1 (de) * 2008-02-11 2012-03-15 Nokia Siemens Networks Oy Verfahren und vorrichtungen zur codec-änderung bei laufenden anrufen auf ip-basierter a- schnittstelle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2059074A1 (en) * 2007-11-06 2009-05-13 Alcatel Lucent Method and apparatus for call handover in a telecommunications system
CN102143544A (zh) * 2010-11-02 2011-08-03 华为技术有限公司 控制语音编码速率的方法、设备及系统
CN102142930A (zh) * 2010-12-28 2011-08-03 华为技术有限公司 应用于TrFO语音呼叫切换的速率调整方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Out of band transcoder control", 3GPP TS 23.153 V9.1.0, 22 December 2010 (2010-12-22), XP050462240 *

Also Published As

Publication number Publication date
CN102142930A (zh) 2011-08-03
EP2574100A1 (en) 2013-03-27
CN102142930B (zh) 2014-05-07
EP2574100B1 (en) 2017-07-19
EP2574100A4 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
US11647428B2 (en) Communication terminal apparatus and communication method
RU2400937C2 (ru) СПОСОБ УПРАВЛЕНИЯ СКОРОСТЬЮ КОДЕКА, ЗАПРАШИВАЕМОГО УСТРОЙСТВОМ УПРАВЛЕНИЯ РЕСУРСОМ РАДИОСВЯЗИ ДЛЯ VoIP
JP4101842B2 (ja) 移動通信システムにおける音声データを伝送するための同期化方法及びシステム
KR101479393B1 (ko) 대역 내 신호들을 이용한 코덱 전개
KR101037341B1 (ko) 불연속 전송 기능을 향상시키는 방법 및 시스템
EP3535952A1 (en) Network core facilitating terminal interoperation
US8855123B2 (en) Gateway apparatus, method and system
WO2008098490A1 (fr) Méthode et appareil de modification de codecs audio
EP2635069A1 (en) Method, device, and system for controlling speech encoding rate
JP2018514114A (ja) 回線交換システムにおけるレート制御
US10911988B2 (en) Communication node, terminal, and communication control method
WO2009097803A1 (zh) 一种编码切换方法、系统和设备
WO2012089010A1 (zh) 应用于TrFO语音呼叫切换的速率调整方法及设备
WO2012130023A1 (zh) 一种提高语音通信方法及装置
US8396049B2 (en) Method and transcoder entity for tandem free operation in a telecommunication network
WO2016191989A1 (zh) 语音编码速率调整的方法和设备
WO2010028600A1 (zh) 用户面数据传输的方法和网络系统
US8649371B2 (en) Gateway device, communication system, and communication method
RU2366112C2 (ru) Выбор конфигурации режима кодека при операции без транскодирования
EP2311295A1 (en) Method and transcoder entity for tandem free operation in a telecommunication network
Bruhn et al. System aspects of the 3GPP evolution towards enhanced voice services
WO2009036698A1 (fr) Procédé, système et dispositif pour une transmission de données
KR20040011990A (ko) 통신 서비스 제어 방법 및 그를 위한 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852481

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011852481

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011852481

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE