WO2012088537A1 - System and method of vehicle operating condition management - Google Patents
System and method of vehicle operating condition management Download PDFInfo
- Publication number
- WO2012088537A1 WO2012088537A1 PCT/US2011/067271 US2011067271W WO2012088537A1 WO 2012088537 A1 WO2012088537 A1 WO 2012088537A1 US 2011067271 W US2011067271 W US 2011067271W WO 2012088537 A1 WO2012088537 A1 WO 2012088537A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- operating condition
- vehicle operating
- optimization
- speed
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 43
- 238000005457 optimization Methods 0.000 claims abstract description 58
- 230000005540 biological transmission Effects 0.000 claims abstract description 42
- 239000000446 fuel Substances 0.000 claims abstract description 40
- 239000013598 vector Substances 0.000 claims description 24
- 238000005096 rolling process Methods 0.000 claims description 13
- 230000004044 response Effects 0.000 claims description 3
- 238000004590 computer program Methods 0.000 claims 2
- 230000008901 benefit Effects 0.000 abstract description 7
- 230000006870 function Effects 0.000 description 15
- 230000008859 change Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013479 data entry Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/188—Controlling power parameters of the driveline, e.g. determining the required power
- B60W30/1882—Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K23/00—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K31/00—Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/10—Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
- B60W10/11—Stepped gearings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2552/00—Input parameters relating to infrastructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2555/00—Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
Definitions
- This disclosure relates to the economization of fuel consumption during vehicle operation. More particularly, this disclosure relates to balancing vehicle speed targets and gear selection to optimize fuel consumption.
- Speed regulation is effectuated by regulating fuel flow to the vehicle's engine by detecting deviation from the set-speed and adjusting the fuel flow to reduce or eliminate the deviation. If the speed regulating system detects an under-speed condition, such as might occur while the vehicle traverses up a hill, the system commands an increase in fuel flow to increase vehicle speed. Alternatively, if the system detects an over-speed condition, such as might occur while the vehicle traverses down a hill, the system commands a decrease in fuel flow to decrease vehicle speed.
- a method for vehicle operating condition management for a vehicle.
- the method includes accessing predetermined vehicle parameter data indicative of at least one predetermined vehicle parameter, the at least one predetermined vehicle parameter including at least one of vehicle mass, vehicle drag, vehicle rolling resistance, tire circumference, front area of vehicle, powertrain torque loss, and engine friction.
- the method further includes accessing road terrain data indicative of at least one road terrain element, the at least one road terrain element including at least one of speed limit changes, off ramp locations, fueling locations, road grade, air density and traffic congestion.
- the method further includes performing a first optimization wherein one or more vehicle optimization vectors are determined.
- the method additionally includes accessing current vehicle operating data indicative of at least one current vehicle operating condition, said at least one current vehicle operating condition including current vehicle speed, a lower vehicle speed target to be reached, travel time, and a distance to travel before reaching the lower vehicle speed target. And the method includes accessing the offline vehicle optimization vectors, determining vehicle power, and performing a second optimization wherein an optimized vehicle operating condition is determined, said the optimized vehicle operating condition comprising vehicle speed, the determining vehicle power being based on the current vehicle operating condition data and the terrain element data.
- the system additionally includes a vehicle operating condition module containing data indicative of at least one current vehicle operating condition, the at least one current vehicle operating condition including current vehicle speed, lower vehicle speed target to be reached, travel time, and distance to travel before reaching lower vehicle speed target to be reached.
- vehicle operating condition management module adapted to perform a first optimization wherein one or more vehicle optimization vectors are determined, determine vehicle power based on the current vehicle operating condition data and the road terrain element data, and perform a second optimization wherein an optimized vehicle operating condition is determined, the optimized vehicle operating condition comprising vehicle speed.
- Additional embodiments of the present disclosure provide a system and method for vehicle operating condition management to be implemented in computer programmable software and stored in computer readable media.
- FIG. 1 is a system diagram for a vehicle operating condition management system in accordance with an exemplary embodiment of the present disclosure
- FIG. 2 is an input/output flow diagram for a vehicle operating condition management module in accordance with an exemplary embodiment
- FIG. 3 is a flow diagram depicting method steps for vehicle operating condition management in accordance with an exemplary embodiment.
- like reference numbers and labels should be understood to refer to like elements, features, and structures.
- Exemplary embodiments of the systems and methods of the present disclosure are directed to determine appropriate vehicle operating condition references (such as target speed and gear references) to maximize the fuel economy potential of the vehicle over a given route while also considering imposed constraints such as route traverse time targets, maximum governed speed limits, etc.
- vehicle operating condition references such as target speed and gear references
- the present disclosure manages the engine map and transmission to provide a recommended vehicle operating condition that optimizes fuel consumption in transitioning from one vehicle state to a target state.
- One benefit of optimizing fuel management is increased freight efficiency in transporting cargo from source to destination.
- CEM Cycle Efficiency Management
- the CEM control processes focus on powertrain components such as engine, transmission, accessories, final drive, wheels and vehicle.
- the processes interface with the operator to provide guidance as to appropriate vehicle speed/power targets and transmission gear selection targets.
- the CEM module is useful in conditioning an operator to optimize behavior based on certain performance criteria.
- FIG. 1 is a system diagram for a vehicle operating condition management system 100 in accordance with an exemplary embodiment of the systems and methods of the present disclosure.
- System 100 is integrated into a vehicle 109, such as a truck or automobile, having an engine and transmission 1 1 1 including a plurality of gears into which the transmission can be shifted automatically by a transmission control unit 1 15 or manually by a driver of the vehicle.
- vehicle 109 such as a truck or automobile
- a transmission control unit 1 15 including a plurality of gears into which the transmission can be shifted automatically by a transmission control unit 1 15 or manually by a driver of the vehicle.
- predetermined vehicle parameters 1 10, current vehicle operating conditions 120, and terrain profile data/information 130 are input into a CEM module 101 via control area network (CAN) communications module 104 and then used by a vehicle operating condition management module 105 to determine a recommendation for a vehicle operating condition, such as establishing vehicle speed and transmission gear.
- CAN control area network
- CEM module 101 contains vehicle operating condition management module 105, and may also include a central processor and database. Communication equipment/modules 104 can be provided to enable input data, such as road terrain data, to be transmitted to the central processor for monitoring and control.
- CEM module 101 may include a vehicle parameter module 150 adapted to receive vehicle parameters 1 10, a vehicle operating condition module 160 adapted to receive current vehicle operating conditions 120, a road terrain module 170 adapted to receive road terrain element data 130 and an operator interface 180 to receive optional operator input 140.
- Exemplary embodiments provide for at least a portion of the road terrain data to be provided as GPS data to a GPS unit 131 , which can supply data in advance of an operation or forthcoming positions or in real-time as the vehicle is operated and route traversed.
- Alternate embodiments provide for road terrain data to be maintained in computer storage 103 and downloaded to the CEM module prior to the start of a trip or transmitted wirelessly over-the-air at any time, for example, by using cellular technology.
- the CEM module 101 enables operator input 140 in order to provide a degree of control for vehicle operators and thus improve driveability. In operation, the operator programs one or more preferences for how they desire the vehicle to behave during the course of the route.
- the operator can, amongst other things, specify such preferences as travel time 224 desired to traverse the route, distance to use in acquiring current vehicle operating conditions (distance interval), upper speed limit 225, and lower speed target or limit 223.
- Exemplary embodiments provide for managing the vehicle operating condition to optimize fuel consumption given the travel time constraint.
- Exemplary embodiments provide for the operator to specify preferences via display 107 that is adapted to, amongst other things, indicate optimized vehicle operating conditions to a vehicle operator.
- Exemplary embodiments provide for an engine control module (ECM) 102 to be separate from the CEM module 101 ; alternate embodiments provide for the CEM module 101 and the ECM 102 to form an integrated unit.
- modules 150, 160, 170, and 180 may be separate from CEM module 101.
- FIG. 2 is an input/output flow diagram for a vehicle operating condition management module 105 in accordance with an exemplary embodiment of the systems and methods of the present disclosure.
- FIG. 2 illustrates system inputs to vehicle operating condition management module 105, which processes the inputs to determine the vehicle operating condition, which includes, amongst other things, a transmission gear recommendation 250 and/or a vehicle speed recommendation 260.
- System inputs are received by CEM module 101 , which then enables vehicle operating condition management module 105 via an enable/disable signal 201.
- the enable/disable signal 201 provides for disabling the vehicle operating condition management system in response to an operator-initiated event.
- the vehicle parameter data 1 10 includes data signifying or representing, for example, vehicle mass 21 1, vehicle drag 212, vehicle rolling resistance 213, drive train resistive force at lower gear 214, tire circumference 215, vehicle front area 216, engine friction 217, powertrain torque loss 218, driveline ratio, and/or axle loading, which in exemplary embodiments provide three values corresponding to loading on the steer tire, drive tire and trailer tires.
- the driveline ratio comprises a secondary gearing used in mechanically coupling the transmission to the wheels and is available in certain but not all vehicles.
- Vehicle parameter data may include actual values of each of these parameters, such as a vehicle mass value, a drag value, and/or a rolling resistance value.
- Exemplary embodiments provide for engine friction data 217 to be supplied by an engine friction map look-up table (LUT) containing engine friction data obtained, for example, by engine performance measurements under various speed/torque combinations versus fuel consumed.
- the Engine friction map LUT embodies the relationship between engine torque, engine speed and engine fueling. Separate engine friction data is available for conditions when engine braking is enabled or when engine braking is disabled.
- Data indicative of at least one current vehicle operating condition 120 is also received as an input to the vehicle operating condition management module 105 via CEM module 101, for example, input to the vehicle operating condition module 160.
- the operating condition data 120 includes data signifying or representing current vehicle speed 221 , a lower vehicle speed target to be reached 222, and a distance to travel 223 before reaching/achieving the lower vehicle speed target, travel or trip time 224, upper speed limit 225, and gear 226.
- Exemplary embodiments provide for vehicle operating condition data to be acquired via a vehicle monitoring and positional system, such as a GPS unit 131 , and/or provided by the operator.
- Exemplary embodiments provide for operating condition and route terrain data to be dynamically acquired in real-time, or through "foresight" or look- ahead windows of a discrete distance, such as, for example, 2 miles.
- a discrete distance such as, for example, 2 miles.
- informational data is acquired and the system updated to, amongst other things,, correct for deviations from planned trip traversal, such as route deviations, changes in vehicle speed, changes in traffic patterns, etc.
- the window can be set at a predetermined default interval and/or can be adjustable by the operator. Window size is selected based upon desired data resolution and speed of processing.
- the road terrain element data 130 includes data signifying or representing speed limit changes 231 , off-ramp locations 232, fueling locations 233, road grade 234, air density 235, traffic patterns or congestion 236, position 237 and elevation 238.
- Exemplary embodiments provide for speed limit and road terrain data to be furnished by data vendors, such as, for example, E-Horizon TM and NAVTEQ Traffic TM systems; positional-based systems, such as a GPS, can provide data on vehicle position 237.
- Road terrain element data 130 such as route grade 234, elevation 238, speed limit changes 231 and fueling station locations 233 can be obtained ahead of time to provide a course snapshot of the entire route.
- Outputs from vehicle operating condition management module 105 include a determination of a recommended gear 250, recommended speed 260, and driver or operator score 270.
- FIG. 3 is a flow diagram depicting the steps of a method for vehicle operating condition management in accordance with an exemplary embodiment.
- the method includes two steps: first, an offline, i.e., first, coarse evaluation and optimization is performed over the full drive cycle/route; then second, during drive cycle execution, fine-tuned refinements are periodically achieved using a moving look-ahead window during an online, i.e., second, optimization.
- the vehicle's operating condition management system 100 Prior to deployment, the vehicle's operating condition management system 100 is initialized with known route and vehicle data, step 300.
- the system 100 can be initialized prior to the operator's arrival or initiated by an action by the operator, such as, for example, pressing a button on a user interface to start the optimization.
- An operator or an external source such as a central database, supplies the vehicle with a trip destination and planned route and trip time; known road terrain element data 130 are acquired via the operator, a database, or data vendor, as described above. Exemplary embodiments provide for the operator to enter vehicle parameters 1 10 and preferences for how the vehicle should behave on the route. Alternatively, or in conjunction with operator entry, vehicle parameters can be provided by a database containing vehicle information. Further, road terrain element data 130, such as route grade 234, speed limit changes 231 and fueling station locations 233 can be obtained ahead of time to provide an offline snapshot of the entire route.
- the data is then processed in a first, offline optimization to provide an estimate of the full cycle travel time 224 and fuel economy, along with vehicle operating condition vectors comprising an optimized course route velocity and gear state references, that is, vehicle optimization vectors.
- vehicle operating condition vectors comprising an optimized course route velocity and gear state references, that is, vehicle optimization vectors.
- Exemplary embodiments employ a weighting function in determining optimal speed to account for vehicle momentum during downhill and uphill sections of the route.
- the offline optimization employs a representation of the vehicle, which in exemplary embodiments uses standard vehicle modeling known to those of ordinary skill in the art.
- One implementation employs a model wherein fuel consumption over a given route is described through differential-algebraic relationships that are a function of, amongst other things, vehicle velocity and acceleration, gear, route grade, vehicle powertrain and engine parameters.
- the model is optimized for lowest cost by minimizing an estimate of fuel consumption over the entire route using trip time 224 as an operating constraint.
- This cost optimized vehicle model looks to select a vehicle speed and gear state as a function of the route in order to minimize fuel consumption.
- Exemplary embodiments minimize fuel consumption relative to vehicle speed and gear state by accessing an engine map.
- Power demanded by a vehicle is a function, primarily, of the vehicle operating condition, which, among other things, includes vehicle mass, vehicle speed, rolling resistance and transmission gear, coupled with the instantaneous road conditions (grade, drag, wind speed, air density, etc.). For example, if either the speed or grade drops by traveling at a lower speed or going downhill, less power will be required for the vehicle to traverse a given distance. Accounting for system inefficiencies, power can be translated into engine torque and the vehicle's system of gears translates vehicle speed to engine speed. Thus, by knowing power demand and vehicle speed, an appropriate transmission gear can be identified, which when coupled with engine speed and torque, a particular point on the engine map can be identified.
- a change in engine speed location on the engine map will require a change in engine torque to achieve the same output power. And for a given point on the engine map, a certain amount of fuel will be required. Thus, by changing the engine speed and toque point we are changing how much fuel is needed to provide the same output power. From realizing where we want to be on the engine map, an equivalent vehicle speed and transmission gear choice can be back- calculated. Accordingly, minimization of fuel consumption can be realized by traversing the engine map to find the appropriate engine speed and torque combination to satisfy the power demand and minimizes fuel consumption. Exemplary embodiments employ mathematical techniques to identify the minimum value of the cost function in traversing the engine map. Such mathematical minimization techniques are known to those of ordinary skill in the art and can include, for example, techniques such as Steepest Descent, Non-linear Programming, Genetic Algorithms, etc.
- Exemplary embodiments employ a continuously variable transmission (CVT) that can change steplessly through an infinite number of effective gear ratios; alternate embodiments employ a discrete geared transmission.
- CVT continuously variable transmission
- the results of the offline optimization are stored as vehicle operating condition vectors (vehicle optimization vectors) comprising reference speed and transmission gear recommendations associated with the pre-planned route.
- the vehicle operating condition management system 105 employs an online, fine optimization process, an exemplary embodiment of which is as follows. As the vehicle is underway, route information is obtained, step 310, via a vehicle monitoring and positional system, such as a GPS unit 131, and/or provided by the operator.
- Such route information confirms data obtained previously according to the planned route during offline optimization (step 300) and provides a basis for correction during unplanned route deviations as the route is driven.
- Exemplary embodiments provide for speed limit and road terrain data to be furnished by data vendors, such as, for example, E-Horizon TM and NAVTEQ Traffic TM systems, as described above.
- the vehicle operating condition management system 100 checks for the occurrence of a trip window, step 320, which is defined by a discrete distance. At each occurrence of a trip window the online optimization is performed.
- exemplary embodiments provide for operating condition and route terrain data to be dynamically acquired in real-time through "foresight" or look-ahead windows of a discrete distance, such as, for example, 2 miles.
- informational data is acquired and the system updated to, amongst other things, correct for deviations from the offline optimization.
- the size or distance of the look-ahead or trip window can be set at a default interval or adjustable by the operator.
- Window size is selected based upon the desired data resolution and speed of processing. Exemplary embodiments provide for offline optimization to run at a coarse distance resolution, for example, 0.5 miles, whereas the online optimization runs at a fine resolution, for example, 0.1 miles, within its defined look-ahead window.
- the online optimization process receives data from the offline optimization process to satisfy the objective of minimizing fuel consumption under the trip time constraint, step 330.
- Exemplary embodiments provide for determining new vehicle operating condition vectors comprising velocity and gear profiles as a function of distance for the entire route as data within two vectors determined during the offline optimization, and which are determined in view of the engine map to minimize fuel consumption.
- the velocity vector from the offline, coarse route is used to calculate the time required to travel the distance of a given "look-ahead" window during online optimization.
- each time the online optimization s performed it calculates a new velocity vector derived from the offline pre-planned route, thus ensuring that the trip time for the whole route will be satisfied.
- the online optimization is refreshed each time the defined "look-ahead" window distance is traversed.
- the online optimization employs a representation of the vehicle that follows that of the offline optimization and minimizes the cost function in a similar way, that is, by traversing the engine map. And as indicated above, the online optimization receives its data at a fine resolution over a discrete section of the route, that is, during the "look-ahead" window, within which the positional and road terrain information devices provide a stream of data that has been obtained in real-time. Outputs from the online optimization are recommended reference speed and transmission gear.
- step 340 data indicative of the current vehicle operating condition is accessed, step 340.
- Current vehicle operating conditions include, in addition travel time, the current vehicle speed, the lower speed target, the upper speed limit and current transmission gear.
- Exemplary embodiments provide for current vehicle speed to be obtained from instrumentation on the vehicle, such as, for example, a speedometer and/or a positional indicator, such as a GPS unit 131 , which provides a measure of change relative to position over time.
- Data indicative of road terrain elements is accessed, step 350.
- Road terrain elements include, but are not limited to route grade, speed limit changes, off-ramp locations, fueling station locations, air density, traffic patterns, position and elevation.
- Data indicative of predetermined vehicle parameters is accessed, step 360.
- Predetermined vehicle parameters include, but are not limited to, vehicle mass, vehicle drag, vehicle rolling resistance, resistive force at lower gear, tire circumference, vehicle front area, and engine map.
- Data indicative of road terrain elements and predetermined vehicle parameters are obtained primarily during system initialization, step 300, but can be updated or changed at any time by the operator or via network communication, such as wireless over-the-air transmissions, and during online optimization. [0026] During online optimization the power demand at the current state is determined, step 370.
- one of many formulations of power can be expressed as a function of vehicle velocity (v), air density (p), vehicle drag (C d ), vehicle front area (A), rolling resistance (C rr ), vehicle mass ( n), gravitational acceleration (g), and road grade (g), provided by Equation I:
- an appropriate transmission gear can be identified, which when coupled with engine speed and torque, determines a particular point on the engine map. As discussed above, by changing the engine speed and toque point we are changing how much fuel is needed to provide the same output power. By realizing where we want to be on the engine map, an equivalent vehicle speed and transmission gear choice can be back-calculated. Accordingly, minimization of fuel consumption can be realized by traversing the engine map to find the appropriate engine speed and torque to satisfy the power demand that minimizes fuel consumption, which is then translated into vehicle operating condition in terms of vehicle speed and gear, step 380. Thus, the online optimization determines new vehicle operating condition vectors over the engine map to minimize fuel consumption
- Outputs of the vehicle operating condition management module 105 include a determination of the vehicle operating condition, namely, a recommended gear 250, recommended speed 260, and driver or operator score 270.
- the driver score 270 provides a . measure of how well the vehicle operator maintains the vehicle at the recommended speed and gear.
- the determined vehicle operating conditions can then be communicated to a receiver, such as transmission control unit 1 15 and/or display 107, to effect the operating condition change, step 390.
- Exemplary embodiments provide for generating an electronic recommendation signal corresponding to the recommended vehicle operating conditions.
- Certain embodiments provide for the recommendation signal to be communicated to a transmission control unit, step 395, for automated control of the transmission and engine control unit (ECU) 102; other embodiments provide for the recommendation signal to be communicated to the operator via display 107 to facilitate manual action by the operator, step 393.
- Display 107 can be a touch-screen interface for convenient data entry and is adapted to, amongst other things, indicate optimized vehicle operating conditions to a vehicle operator.
- Exemplary embodiments provide for alternate modes of feedback to the operator, including audio signals, haptic feedback through throttle pedal, gear shifter and/or cruise control switches.
- Exemplary embodiments provide for recommendations to be made to the operator concerning throttle and brake control; that is, the display can convey instructions such as "press throttle recommended” or “lift off throttle recommended” or “press brake recommended” or “lift off brake recommended” or “coast recommended.”
- Exemplary embodiments provide for disabling the vehicle operating condition management system 100 in response to an operator-initiated event, such as, for example, as tapping the brakes or pressing the accelerator.
- Exemplary embodiments provide for module 105 to provide a recommendation for the operator to disable cruise control. This recommendation can be communicated via display 107.
- Disabling output signals include transmission gear, throttle and cruise control disable.
- the vehicle operating condition management system 100 access or gain control of the transmission gear system or transmission control unit. In such situations it is not feasible for the vehicle operating condition management system to provide a recommendation of the transmission gear.
- Exemplary embodiments provide for the vehicle operating condition management system to provide a recommendation of vehicle speed based on a fuel minimizing optimization that utilizes an engine map where speed is a variable of control. Alternate embodiments accommodate vehicles having manual transmissions. When the vehicle is operated with a manual transmission, the vehicle does not have a transmission control unit so there can be no automatic control of the transmission. In such an embodiment the recommended transmission gear is communicated to the operator via display 107 as discussed above.
- Exemplary embodiments provide a system for vehicle operating condition management for a vehicle.
- the system includes a vehicle parameter module containing data indicative of at least one predetermined vehicle parameter, the at least one predetermined vehicle parameter including at least one of vehicle mass, vehicle drag, vehicle rolling resistance, resistive force at lower gear, tire circumference, front area of vehicle, powertrain torque loss, and engine friction.
- the system further includes a road terrain element module containing data indicative of at least one road terrain element, the at least one road terrain element including at least one of speed limit changes, off ramp locations, fueling locations, road grade, air density and traffic congestion.
- the system additionally includes a vehicle operating condition module containing data indicative of at least one current vehicle operating condition, the at least one current vehicle operating condition including current vehicle speed, lower vehicle speed target to be reached, travel time, and distance to travel before reaching lower vehicle speed target to be reached.
- vehicle operating condition management module adapted to perform a first optimization wherein one or more vehicle optimization vectors are determined, determine vehicle power based on the current vehicle operating condition data and the road terrain element data, and perform a second optimization wherein an optimized vehicle operating condition is determined, the optimized vehicle operating condition comprising vehicle speed.
- Exemplary embodiments provide a system and method for vehicle operating condition management to be implemented in computer programmable software and stored in computer readable media. Such an embodiment would comprise a computer readable storage medium encoded with computer executable instructions, which, when executed by a processor, perform the method for vehicle operating condition management as disclosed above. Also, many aspects of the disclosure are described in terms of sequences of actions to be performed by elements of a computer system or other hardware capable of executing programmed instructions. It will be recognized that in each of the embodiments, the various actions could be performed by specialized circuits (e.g., discrete logic gates interconnected to perform a specialized function), by program instructions (software), such as program modules, being executed by one or more processors, or by a combination of both.
- specialized circuits e.g., discrete logic gates interconnected to perform a specialized function
- program instructions software
- the disclosure can additionally be considered to be embodied within any form of computer readable carrier, such as solid-state memory, magnetic disk, and optical disk containing an appropriate set of computer instructions, such as program modules, and data structures that would cause a processor to carry out the techniques described herein.
- a computer-readable medium would include the following: an electrical connection having one or more wires, magnetic disk storage, magnetic cassettes, magnetic tape or other magnetic storage devices, a portable computer diskette, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), or any other medium capable of storing information. It should be noted that the system of the present disclosure is illustrated and discussed herein as having various modules and units which perform particular functions.
- modules and units are merely schematically illustrated based on their function for clarity purposes, and do not necessarily represent specific hardware or software.
- these modules, units and other components may be hardware and/or software implemented to substantially perform their particular functions explained herein.
- the various functions of the different components can be combined or segregated as hardware and/or software modules in any manner, and can be useful separately or in combination.
- the various aspects of the disclosure may be embodied in many different forms, and all such forms are contemplated to be within the scope of the disclosure.
- the present disclosure manages the engine map and transmission to provide a recommended solution that optimizes fuel consumption in getting from one vehicle state to a target state.
- Other embodiments can be employed that optimize for maximum freight efficiency and other embodiments can be employed that optimize for minimum engine energy.
- the present disclosure may be changed, modified and further applied by those skilled in the art. Therefore, this disclosure is not limited to the detail shown and described previously, but also includes all such changes and modifications.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
- Traffic Control Systems (AREA)
- Control Of Transmission Device (AREA)
Abstract
A vehicle operating condition profile can be determined over a given route while also considering imposed constraints such as deviation from time targets, deviation from maximum governed speed limits, etc. Given current vehicle speed, engine state and transmission state, the present disclosure optimally manages the engine map and transmission to provide a recommended vehicle operating condition that optimizes fuel consumption in transitioning from one vehicle state to a target state. Exemplary embodiments provide for offline and online optimizations relative to fuel consumption. The benefit is increased freight efficiency in transporting cargo from source to destination by minimizing fuel consumption and maintaining drivability.
Description
SYSTEM AND METHOD OF VEHICLE OPERATING CONDITION MANAGEMENT
CROSS-REFERENCE TO RELATED APPLICATION
[001] This application claims the benefit of U.S. Provisional Application Nos. 61/426,988, filed December 23, 2010, and 61/432,736,. filed January 14, 201 1, each of which is hereby incorporated by reference in their entirety.
TECHNICAL FIELD
[002] This disclosure relates to the economization of fuel consumption during vehicle operation. More particularly, this disclosure relates to balancing vehicle speed targets and gear selection to optimize fuel consumption.
BACKGROUND
[003] As a vehicle traverses a given route, fuel economy can be significantly influenced by the way an operator selects vehicle speed. An aggressive operator that creates rapid transitions in speed while maintaining the maximum allowable speed limit through the route (legal, fleet owner imposed, etc.), will likely not achieve the maximum fuel economy potential of the route. Generally, vehicle operators rely upon speedometers and tachometers to inform themselves of their vehicle's current operating condition, with fuel purchase patterns providing some measure of economy. Speed regulating systems are occasionally employed that compare actual vehicle speed to pre-set values and such systems can be somewhat effective in monitoring and controlling vehicle performance over a given course. These speed regulating systems generally allow a vehicle operator to select a set-speed, and the system monitors actual vehicle speed in relation to the set-speed, controlling engine performance in order to maintain actual vehicle speed at the set-speed. Speed regulation is effectuated by regulating fuel flow to the vehicle's engine by detecting deviation from the set-speed and adjusting the fuel flow to reduce or eliminate the deviation. If the speed regulating system detects an under-speed condition, such as might occur while the vehicle traverses up a hill, the system commands an increase in fuel flow to increase vehicle speed. Alternatively, if the system detects an over-speed condition, such as
might occur while the vehicle traverses down a hill, the system commands a decrease in fuel flow to decrease vehicle speed.
SUMMARY
[004] According to some embodiments of the present disclosure, a method is provided for vehicle operating condition management for a vehicle. The method includes accessing predetermined vehicle parameter data indicative of at least one predetermined vehicle parameter, the at least one predetermined vehicle parameter including at least one of vehicle mass, vehicle drag, vehicle rolling resistance, tire circumference, front area of vehicle, powertrain torque loss, and engine friction. The method further includes accessing road terrain data indicative of at least one road terrain element, the at least one road terrain element including at least one of speed limit changes, off ramp locations, fueling locations, road grade, air density and traffic congestion. The method further includes performing a first optimization wherein one or more vehicle optimization vectors are determined. The method additionally includes accessing current vehicle operating data indicative of at least one current vehicle operating condition, said at least one current vehicle operating condition including current vehicle speed, a lower vehicle speed target to be reached, travel time, and a distance to travel before reaching the lower vehicle speed target. And the method includes accessing the offline vehicle optimization vectors, determining vehicle power, and performing a second optimization wherein an optimized vehicle operating condition is determined, said the optimized vehicle operating condition comprising vehicle speed, the determining vehicle power being based on the current vehicle operating condition data and the terrain element data.
[005] According to other embodiments of the present disclosure, a system is provided for vehicle operating condition management for a vehicle. The system includes a vehicle parameter module containing data indicative of at least one predetermined vehicle parameter, the at least one predetermined vehicle parameter including at least one of vehicle mass, vehicle drag, vehicle rolling resistance, tire circumference, front area of vehicle, powertrain torque loss, and engine friction. The system further includes a road terrain element module containing data indicative of at least one road terrain element, the at least one road terrain element including at least one of speed limit changes, off ramp locations, fueling locations, road grade, air density and
traffic congestion. The system additionally includes a vehicle operating condition module containing data indicative of at least one current vehicle operating condition, the at least one current vehicle operating condition including current vehicle speed, lower vehicle speed target to be reached, travel time, and distance to travel before reaching lower vehicle speed target to be reached. And the system includes a vehicle operating condition management module adapted to perform a first optimization wherein one or more vehicle optimization vectors are determined, determine vehicle power based on the current vehicle operating condition data and the road terrain element data, and perform a second optimization wherein an optimized vehicle operating condition is determined, the optimized vehicle operating condition comprising vehicle speed.
[006] Additional embodiments of the present disclosure provide a system and method for vehicle operating condition management to be implemented in computer programmable software and stored in computer readable media.
[007] The above and/or other aspects, features and/or advantages of various embodiments will be further appreciated in view of the following description in conjunction with the accompanying figures. Various embodiments can include and/or exclude different aspects, features and/or advantages where applicable. In addition, various embodiments can combine one or more aspect or feature of other embodiments where applicable. The descriptions of aspects, features and/or advantages of particular embodiments should not be construed as limiting other embodiments or the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[008] The above and/or other exemplary features and advantages of the preferred embodiments of the present disclosure will become more apparent through the detailed description of exemplary embodiments thereof with reference to the accompanying drawings, in which:
[009] FIG. 1 is a system diagram for a vehicle operating condition management system in accordance with an exemplary embodiment of the present disclosure;
[0010] FIG. 2 is an input/output flow diagram for a vehicle operating condition management module in accordance with an exemplary embodiment; and
[0011] FIG. 3 is a flow diagram depicting method steps for vehicle operating condition management in accordance with an exemplary embodiment.
[0012] Throughout the drawings, like reference numbers and labels should be understood to refer to like elements, features, and structures.
DETAILED DESCRIPTION
[0013] Exemplary embodiments of the present disclosure will now be described more fully with reference to the accompanying drawings. The matters exemplified in this description are provided to assist in a comprehensive understanding of various embodiments disclosed with reference to the accompanying figures. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the claimed inventions. Descriptions of well-known functions and constructions are omitted for clarity and conciseness. To aid in clarity of description, the terms "upper," "lower," "above," "below," "left" and "right," as used herein, provide reference with respect to orientation of the accompanying drawings and are not intended to be limiting.
[0014] In situations where a change in vehicle speed may occur, such as when approaching a speed limit change, road egress, traffic light or slowed traffic pattern, prior knowledge of the impending change can be used to minimize fuel consumption. Exemplary embodiments of the systems and methods of the present disclosure are directed to determine appropriate vehicle operating condition references (such as target speed and gear references) to maximize the fuel economy potential of the vehicle over a given route while also considering imposed constraints such as route traverse time targets, maximum governed speed limits, etc. Given a recommended vehicle speed target, current vehicle speed, engine state and transmission state, the present disclosure manages the engine map and transmission to provide a recommended vehicle operating condition that optimizes fuel consumption in transitioning from one vehicle state to a target state. One benefit of optimizing fuel management is increased freight efficiency in transporting cargo from source to destination.
[0015] To assist in the determination of appropriate operating condition references, applicants introduce a Cycle Efficiency Management (CEM) module that employs control processes to furnish an operator with anticipated and currently desired vehicle operational behavior to optimize fuel economy. The CEM control processes focus on powertrain components such as
engine, transmission, accessories, final drive, wheels and vehicle. The processes interface with the operator to provide guidance as to appropriate vehicle speed/power targets and transmission gear selection targets. The CEM module is useful in conditioning an operator to optimize behavior based on certain performance criteria.
[0016] FIG. 1 is a system diagram for a vehicle operating condition management system 100 in accordance with an exemplary embodiment of the systems and methods of the present disclosure. System 100 is integrated into a vehicle 109, such as a truck or automobile, having an engine and transmission 1 1 1 including a plurality of gears into which the transmission can be shifted automatically by a transmission control unit 1 15 or manually by a driver of the vehicle. Generally, predetermined vehicle parameters 1 10, current vehicle operating conditions 120, and terrain profile data/information 130 are input into a CEM module 101 via control area network (CAN) communications module 104 and then used by a vehicle operating condition management module 105 to determine a recommendation for a vehicle operating condition, such as establishing vehicle speed and transmission gear. The recommendation to change vehicle operating condition is based on an expected forthcoming change in a vehicle speed event and communicated to the vehicle operator and/or the vehicle systems, such as, for example, the vehicle engine control module and vehicle transmission. . In addition to other components, CEM module 101 contains vehicle operating condition management module 105, and may also include a central processor and database. Communication equipment/modules 104 can be provided to enable input data, such as road terrain data, to be transmitted to the central processor for monitoring and control. CEM module 101 may include a vehicle parameter module 150 adapted to receive vehicle parameters 1 10, a vehicle operating condition module 160 adapted to receive current vehicle operating conditions 120, a road terrain module 170 adapted to receive road terrain element data 130 and an operator interface 180 to receive optional operator input 140. Exemplary embodiments provide for at least a portion of the road terrain data to be provided as GPS data to a GPS unit 131 , which can supply data in advance of an operation or forthcoming positions or in real-time as the vehicle is operated and route traversed. Alternate embodiments provide for road terrain data to be maintained in computer storage 103 and downloaded to the CEM module prior to the start of a trip or transmitted wirelessly over-the-air at any time, for example, by using cellular technology. The CEM module 101 enables operator input 140 in order to provide a degree of control for vehicle operators and thus improve driveability. In
operation, the operator programs one or more preferences for how they desire the vehicle to behave during the course of the route. Using this control mode, the operator can, amongst other things, specify such preferences as travel time 224 desired to traverse the route, distance to use in acquiring current vehicle operating conditions (distance interval), upper speed limit 225, and lower speed target or limit 223. Exemplary embodiments provide for managing the vehicle operating condition to optimize fuel consumption given the travel time constraint. Exemplary embodiments provide for the operator to specify preferences via display 107 that is adapted to, amongst other things, indicate optimized vehicle operating conditions to a vehicle operator. Exemplary embodiments provide for an engine control module (ECM) 102 to be separate from the CEM module 101 ; alternate embodiments provide for the CEM module 101 and the ECM 102 to form an integrated unit. Likewise, modules 150, 160, 170, and 180 may be separate from CEM module 101.
[0017] FIG. 2 is an input/output flow diagram for a vehicle operating condition management module 105 in accordance with an exemplary embodiment of the systems and methods of the present disclosure. FIG. 2 illustrates system inputs to vehicle operating condition management module 105, which processes the inputs to determine the vehicle operating condition, which includes, amongst other things, a transmission gear recommendation 250 and/or a vehicle speed recommendation 260. System inputs are received by CEM module 101 , which then enables vehicle operating condition management module 105 via an enable/disable signal 201. The enable/disable signal 201 provides for disabling the vehicle operating condition management system in response to an operator-initiated event. Data indicative of at least one vehicle parameter 1 10 is received as an input to vehicle operating condition management module 105 via CEM module 101 , for example, input to the vehicle parameter module 150. The vehicle parameter data 1 10 includes data signifying or representing, for example, vehicle mass 21 1, vehicle drag 212, vehicle rolling resistance 213, drive train resistive force at lower gear 214, tire circumference 215, vehicle front area 216, engine friction 217, powertrain torque loss 218, driveline ratio, and/or axle loading, which in exemplary embodiments provide three values corresponding to loading on the steer tire, drive tire and trailer tires. The driveline ratio comprises a secondary gearing used in mechanically coupling the transmission to the wheels and is available in certain but not all vehicles. When a driveline ratio is available then the ratio is considered by the downspeed coasting management module 105 in gearing recommendations
communicated to the transmission control unit 115. Vehicle parameter data may include actual values of each of these parameters, such as a vehicle mass value, a drag value, and/or a rolling resistance value. Exemplary embodiments provide for engine friction data 217 to be supplied by an engine friction map look-up table (LUT) containing engine friction data obtained, for example, by engine performance measurements under various speed/torque combinations versus fuel consumed. The Engine friction map LUT embodies the relationship between engine torque, engine speed and engine fueling. Separate engine friction data is available for conditions when engine braking is enabled or when engine braking is disabled. Data indicative of at least one current vehicle operating condition 120 is also received as an input to the vehicle operating condition management module 105 via CEM module 101, for example, input to the vehicle operating condition module 160. The operating condition data 120 includes data signifying or representing current vehicle speed 221 , a lower vehicle speed target to be reached 222, and a distance to travel 223 before reaching/achieving the lower vehicle speed target, travel or trip time 224, upper speed limit 225, and gear 226. Exemplary embodiments provide for vehicle operating condition data to be acquired via a vehicle monitoring and positional system, such as a GPS unit 131 , and/or provided by the operator. Exemplary embodiments provide for operating condition and route terrain data to be dynamically acquired in real-time, or through "foresight" or look- ahead windows of a discrete distance, such as, for example, 2 miles. In acquiring operating condition and route terrain data in discrete segments, as the vehicle moves through a unit distance interval, informational data is acquired and the system updated to, amongst other things,, correct for deviations from planned trip traversal, such as route deviations, changes in vehicle speed, changes in traffic patterns, etc. The window can be set at a predetermined default interval and/or can be adjustable by the operator. Window size is selected based upon desired data resolution and speed of processing. Data indicative of at least one road terrain element 130 is also received as an input to the vehicle operating condition management module 105 via CEM module 101, for example, to the road terrain module 170. The road terrain element data 130 includes data signifying or representing speed limit changes 231 , off-ramp locations 232, fueling locations 233, road grade 234, air density 235, traffic patterns or congestion 236, position 237 and elevation 238. Exemplary embodiments provide for speed limit and road terrain data to be furnished by data vendors, such as, for example, E-Horizon ™ and NAVTEQ Traffic ™ systems; positional-based systems, such as a GPS, can provide data on vehicle position 237.
Road terrain element data 130, such as route grade 234, elevation 238, speed limit changes 231 and fueling station locations 233 can be obtained ahead of time to provide a course snapshot of the entire route. Outputs from vehicle operating condition management module 105 include a determination of a recommended gear 250, recommended speed 260, and driver or operator score 270.
[0018] FIG. 3 is a flow diagram depicting the steps of a method for vehicle operating condition management in accordance with an exemplary embodiment. The method includes two steps: first, an offline, i.e., first, coarse evaluation and optimization is performed over the full drive cycle/route; then second, during drive cycle execution, fine-tuned refinements are periodically achieved using a moving look-ahead window during an online, i.e., second, optimization. Prior to deployment, the vehicle's operating condition management system 100 is initialized with known route and vehicle data, step 300. The system 100 can be initialized prior to the operator's arrival or initiated by an action by the operator, such as, for example, pressing a button on a user interface to start the optimization. An operator, or an external source such as a central database, supplies the vehicle with a trip destination and planned route and trip time; known road terrain element data 130 are acquired via the operator, a database, or data vendor, as described above. Exemplary embodiments provide for the operator to enter vehicle parameters 1 10 and preferences for how the vehicle should behave on the route. Alternatively, or in conjunction with operator entry, vehicle parameters can be provided by a database containing vehicle information. Further, road terrain element data 130, such as route grade 234, speed limit changes 231 and fueling station locations 233 can be obtained ahead of time to provide an offline snapshot of the entire route. The data is then processed in a first, offline optimization to provide an estimate of the full cycle travel time 224 and fuel economy, along with vehicle operating condition vectors comprising an optimized course route velocity and gear state references, that is, vehicle optimization vectors. Exemplary embodiments employ a weighting function in determining optimal speed to account for vehicle momentum during downhill and uphill sections of the route.
[0019] The offline optimization employs a representation of the vehicle, which in exemplary embodiments uses standard vehicle modeling known to those of ordinary skill in the art. One implementation employs a model wherein fuel consumption over a given route is described through differential-algebraic relationships that are a function of, amongst other things, vehicle
velocity and acceleration, gear, route grade, vehicle powertrain and engine parameters. The model is optimized for lowest cost by minimizing an estimate of fuel consumption over the entire route using trip time 224 as an operating constraint. This cost optimized vehicle model (cost function) looks to select a vehicle speed and gear state as a function of the route in order to minimize fuel consumption. Exemplary embodiments minimize fuel consumption relative to vehicle speed and gear state by accessing an engine map.
[0020] Power demanded by a vehicle is a function, primarily, of the vehicle operating condition, which, among other things, includes vehicle mass, vehicle speed, rolling resistance and transmission gear, coupled with the instantaneous road conditions (grade, drag, wind speed, air density, etc.). For example, if either the speed or grade drops by traveling at a lower speed or going downhill, less power will be required for the vehicle to traverse a given distance. Accounting for system inefficiencies, power can be translated into engine torque and the vehicle's system of gears translates vehicle speed to engine speed. Thus, by knowing power demand and vehicle speed, an appropriate transmission gear can be identified, which when coupled with engine speed and torque, a particular point on the engine map can be identified. A change in engine speed location on the engine map will require a change in engine torque to achieve the same output power. And for a given point on the engine map, a certain amount of fuel will be required. Thus, by changing the engine speed and toque point we are changing how much fuel is needed to provide the same output power. From realizing where we want to be on the engine map, an equivalent vehicle speed and transmission gear choice can be back- calculated. Accordingly, minimization of fuel consumption can be realized by traversing the engine map to find the appropriate engine speed and torque combination to satisfy the power demand and minimizes fuel consumption. Exemplary embodiments employ mathematical techniques to identify the minimum value of the cost function in traversing the engine map. Such mathematical minimization techniques are known to those of ordinary skill in the art and can include, for example, techniques such as Steepest Descent, Non-linear Programming, Genetic Algorithms, etc.
[0021] Exemplary embodiments employ a continuously variable transmission (CVT) that can change steplessly through an infinite number of effective gear ratios; alternate embodiments employ a discrete geared transmission. The results of the offline optimization are stored as
vehicle operating condition vectors (vehicle optimization vectors) comprising reference speed and transmission gear recommendations associated with the pre-planned route.
[0022] During travel, pre-planned routes are subject to operator change as road conditions, weather, traffic, and other unexpected situations arise that necessitate route deviation. Such deviations cause error in the offline optimization that was executed during system initialization, step 300. Deviations that impact vehicle speed, such as traffic patterns, are limiting conditions that are operationally akin to a speed limit constraint. To account for off-nominal deviations and other conditions that occur in real-time, the vehicle operating condition management system 105 employs an online, fine optimization process, an exemplary embodiment of which is as follows. As the vehicle is underway, route information is obtained, step 310, via a vehicle monitoring and positional system, such as a GPS unit 131, and/or provided by the operator. Such route information confirms data obtained previously according to the planned route during offline optimization (step 300) and provides a basis for correction during unplanned route deviations as the route is driven. Exemplary embodiments provide for speed limit and road terrain data to be furnished by data vendors, such as, for example, E-Horizon ™ and NAVTEQ Traffic ™ systems, as described above.
[0023] As the route is traversed, the vehicle operating condition management system 100 checks for the occurrence of a trip window, step 320, which is defined by a discrete distance. At each occurrence of a trip window the online optimization is performed. As discussed above, exemplary embodiments provide for operating condition and route terrain data to be dynamically acquired in real-time through "foresight" or look-ahead windows of a discrete distance, such as, for example, 2 miles. In acquiring operating condition and route terrain data in discrete segments as the vehicle moves through a unit distance, informational data is acquired and the system updated to, amongst other things, correct for deviations from the offline optimization. The size or distance of the look-ahead or trip window can be set at a default interval or adjustable by the operator. Window size is selected based upon the desired data resolution and speed of processing. Exemplary embodiments provide for offline optimization to run at a coarse distance resolution, for example, 0.5 miles, whereas the online optimization runs at a fine resolution, for example, 0.1 miles, within its defined look-ahead window.
[0024] The online optimization process receives data from the offline optimization process to satisfy the objective of minimizing fuel consumption under the trip time constraint, step 330.
Exemplary embodiments provide for determining new vehicle operating condition vectors comprising velocity and gear profiles as a function of distance for the entire route as data within two vectors determined during the offline optimization, and which are determined in view of the engine map to minimize fuel consumption. For example, the velocity vector from the offline, coarse route is used to calculate the time required to travel the distance of a given "look-ahead" window during online optimization. Thus, each time the online optimization s performed it calculates a new velocity vector derived from the offline pre-planned route, thus ensuring that the trip time for the whole route will be satisfied. The online optimization is refreshed each time the defined "look-ahead" window distance is traversed. The online optimization employs a representation of the vehicle that follows that of the offline optimization and minimizes the cost function in a similar way, that is, by traversing the engine map. And as indicated above, the online optimization receives its data at a fine resolution over a discrete section of the route, that is, during the "look-ahead" window, within which the positional and road terrain information devices provide a stream of data that has been obtained in real-time. Outputs from the online optimization are recommended reference speed and transmission gear.
[0025] During an online optimization "look-ahead" window, data indicative of the current vehicle operating condition is accessed, step 340. Current vehicle operating conditions include, in addition travel time, the current vehicle speed, the lower speed target, the upper speed limit and current transmission gear. Exemplary embodiments provide for current vehicle speed to be obtained from instrumentation on the vehicle, such as, for example, a speedometer and/or a positional indicator, such as a GPS unit 131 , which provides a measure of change relative to position over time. Data indicative of road terrain elements is accessed, step 350. Road terrain elements include, but are not limited to route grade, speed limit changes, off-ramp locations, fueling station locations, air density, traffic patterns, position and elevation. Data indicative of predetermined vehicle parameters is accessed, step 360. Predetermined vehicle parameters include, but are not limited to, vehicle mass, vehicle drag, vehicle rolling resistance, resistive force at lower gear, tire circumference, vehicle front area, and engine map. Data indicative of road terrain elements and predetermined vehicle parameters are obtained primarily during system initialization, step 300, but can be updated or changed at any time by the operator or via network communication, such as wireless over-the-air transmissions, and during online optimization.
[0026] During online optimization the power demand at the current state is determined, step 370. In exemplary embodiments, one of many formulations of power, as would be known to those of ordinary skill in the art, can be expressed as a function of vehicle velocity (v), air density (p), vehicle drag (Cd), vehicle front area (A), rolling resistance (Crr), vehicle mass ( n), gravitational acceleration (g), and road grade (g), provided by Equation I:
Power = {— pCdAv2 -3- Crrmg cos(0) + mg sin (0)}v Equation I
[0027] Knowing power demand and vehicle speed, an appropriate transmission gear can be identified, which when coupled with engine speed and torque, determines a particular point on the engine map. As discussed above, by changing the engine speed and toque point we are changing how much fuel is needed to provide the same output power. By realizing where we want to be on the engine map, an equivalent vehicle speed and transmission gear choice can be back-calculated. Accordingly, minimization of fuel consumption can be realized by traversing the engine map to find the appropriate engine speed and torque to satisfy the power demand that minimizes fuel consumption, which is then translated into vehicle operating condition in terms of vehicle speed and gear, step 380. Thus, the online optimization determines new vehicle operating condition vectors over the engine map to minimize fuel consumption
[0028] Outputs of the vehicle operating condition management module 105 include a determination of the vehicle operating condition, namely, a recommended gear 250, recommended speed 260, and driver or operator score 270. The driver score 270 provides a . measure of how well the vehicle operator maintains the vehicle at the recommended speed and gear. The determined vehicle operating conditions can then be communicated to a receiver, such as transmission control unit 1 15 and/or display 107, to effect the operating condition change, step 390. Exemplary embodiments provide for generating an electronic recommendation signal corresponding to the recommended vehicle operating conditions. Certain embodiments provide for the recommendation signal to be communicated to a transmission control unit, step 395, for automated control of the transmission and engine control unit (ECU) 102; other embodiments provide for the recommendation signal to be communicated to the operator via display 107 to facilitate manual action by the operator, step 393. Display 107 can be a touch-screen interface for convenient data entry and is adapted to, amongst other things, indicate optimized vehicle
operating conditions to a vehicle operator. Exemplary embodiments provide for alternate modes of feedback to the operator, including audio signals, haptic feedback through throttle pedal, gear shifter and/or cruise control switches. Exemplary embodiments provide for recommendations to be made to the operator concerning throttle and brake control; that is, the display can convey instructions such as "press throttle recommended" or "lift off throttle recommended" or "press brake recommended" or "lift off brake recommended" or "coast recommended." Exemplary embodiments provide for disabling the vehicle operating condition management system 100 in response to an operator-initiated event, such as, for example, as tapping the brakes or pressing the accelerator. Exemplary embodiments provide for module 105 to provide a recommendation for the operator to disable cruise control. This recommendation can be communicated via display 107. Disabling output signals include transmission gear, throttle and cruise control disable.
[0029] Occasionally it is not convenient for the vehicle operating condition management system 100 to access or gain control of the transmission gear system or transmission control unit. In such situations it is not feasible for the vehicle operating condition management system to provide a recommendation of the transmission gear. Exemplary embodiments provide for the vehicle operating condition management system to provide a recommendation of vehicle speed based on a fuel minimizing optimization that utilizes an engine map where speed is a variable of control. Alternate embodiments accommodate vehicles having manual transmissions. When the vehicle is operated with a manual transmission, the vehicle does not have a transmission control unit so there can be no automatic control of the transmission. In such an embodiment the recommended transmission gear is communicated to the operator via display 107 as discussed above.
[0030] Exemplary embodiments provide a system for vehicle operating condition management for a vehicle. The system includes a vehicle parameter module containing data indicative of at least one predetermined vehicle parameter, the at least one predetermined vehicle parameter including at least one of vehicle mass, vehicle drag, vehicle rolling resistance, resistive force at lower gear, tire circumference, front area of vehicle, powertrain torque loss, and engine friction. The system further includes a road terrain element module containing data indicative of at least one road terrain element, the at least one road terrain element including at least one of speed limit changes, off ramp locations, fueling locations, road grade, air density and traffic congestion. The system additionally includes a vehicle operating condition module containing
data indicative of at least one current vehicle operating condition, the at least one current vehicle operating condition including current vehicle speed, lower vehicle speed target to be reached, travel time, and distance to travel before reaching lower vehicle speed target to be reached. And the system includes a vehicle operating condition management module adapted to perform a first optimization wherein one or more vehicle optimization vectors are determined, determine vehicle power based on the current vehicle operating condition data and the road terrain element data, and perform a second optimization wherein an optimized vehicle operating condition is determined, the optimized vehicle operating condition comprising vehicle speed.
[0031] Exemplary embodiments provide a system and method for vehicle operating condition management to be implemented in computer programmable software and stored in computer readable media. Such an embodiment would comprise a computer readable storage medium encoded with computer executable instructions, which, when executed by a processor, perform the method for vehicle operating condition management as disclosed above. Also, many aspects of the disclosure are described in terms of sequences of actions to be performed by elements of a computer system or other hardware capable of executing programmed instructions. It will be recognized that in each of the embodiments, the various actions could be performed by specialized circuits (e.g., discrete logic gates interconnected to perform a specialized function), by program instructions (software), such as program modules, being executed by one or more processors, or by a combination of both. Moreover, the disclosure can additionally be considered to be embodied within any form of computer readable carrier, such as solid-state memory, magnetic disk, and optical disk containing an appropriate set of computer instructions, such as program modules, and data structures that would cause a processor to carry out the techniques described herein. A computer-readable medium would include the following: an electrical connection having one or more wires, magnetic disk storage, magnetic cassettes, magnetic tape or other magnetic storage devices, a portable computer diskette, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), or any other medium capable of storing information. It should be noted that the system of the present disclosure is illustrated and discussed herein as having various modules and units which perform particular functions. It should be understood that these modules and units are merely schematically illustrated based on their function for clarity purposes, and do not necessarily represent specific hardware or software. In this regard, these
modules, units and other components may be hardware and/or software implemented to substantially perform their particular functions explained herein. The various functions of the different components can be combined or segregated as hardware and/or software modules in any manner, and can be useful separately or in combination. Thus, the various aspects of the disclosure may be embodied in many different forms, and all such forms are contemplated to be within the scope of the disclosure.
[0032] While various embodiments in accordance with the present disclosure have been shown and described, it is understood that the disclosure is not limited thereto. For example, the present disclosure manages the engine map and transmission to provide a recommended solution that optimizes fuel consumption in getting from one vehicle state to a target state. Other embodiments can be employed that optimize for maximum freight efficiency and other embodiments can be employed that optimize for minimum engine energy. Further, the present disclosure may be changed, modified and further applied by those skilled in the art. Therefore, this disclosure is not limited to the detail shown and described previously, but also includes all such changes and modifications.
Claims
1. A method for vehicle operating condition management for a vehicle, comprising: accessing predetermined vehicle parameter data indicative of at least one predetermined vehicle parameter, said at least one predetermined vehicle parameter including at least one of vehicle mass, vehicle drag, vehicle rolling resistance, tire circumference, front area of vehicle, powertrain torque loss, and engine friction;
accessing road terrain data indicative of at least one road terrain element, said at least one road terrain element including at least one of speed limit changes, off ramp locations, fueling locations, road grade, air density and traffic congestion;
performing a first optimization, wherein one or more vehicle optimization vectors are determined;
accessing current vehicle operating data indicative of at least one current vehicle operating condition, said at least one current vehicle operating condition including current vehicle speed, a lower vehicle speed target to be reached, travel time, and a distance to travel before reaching the lower vehicle speed target;
accessing the offline vehicle optimization vectors;
determining vehicle power based on the current vehicle operating condition data and the terrain element data; and
performing a second optimization wherein an optimized vehicle operating condition is determined, said optimized vehicle operating condition comprising vehicle speed.
2. The method of claim 1 , further comprising generating an electronic recommendation signal corresponding to said determined optimized vehicle operating condition and
communicating said determined optimized vehicle operating condition to a receiver.
3. The method of claim 2, wherein said receiver comprises a transmission control unit.
4. The method of claim 2, wherein said receiver comprises an engine control module.
5. The method of claim 2, wherein said receiver comprises a display adapted to indicate the optimized vehicle operating condition to a vehicle operator.
6. The method of claim 5, wherein said display comprises a touch-screen interface.
7. The method of claim 1 , wherein at least one of said data indicative of at least one current vehicle operating condition is provided by a vehicle operator.
8. The method of claim 1 , wherein said optimized vehicle operating condition further comprises a transmission gear.
9. The method of claim 1 , wherein said determining vehicle power comprises determining a product of current vehicle speed with a sum of a product of a function of said vehicle drag, air density, front area of vehicle and said current vehicle speed and a product of a function of said vehicle rolling resistance, vehicle mass and said road grade and a product of a function of said vehicle mass and said road grade.
10. The method of claim 1 , wherein said performing the offline optimization comprises solving vehicle operating condition vectors over an engine map to minimize fuel consumption incorporating the travel time operating condition.
11. The method of claim 10, wherein said performing the online optimization comprises accessing the offline vehicle optimization vectors and determining new vehicle operating condition vectors over said engine map to minimize fuel consumption.
12. The method of claim 1 , wherein said current vehicle operating condition data is acquired in real-time through a foresight window of a discrete distance interval.
13. The method of claim 12, wherein said distance interval is predetermined.
14. The method of claim 12, wherein said distance interval is provided by the operator.
15. The method of claim 9, wherein said power is determined according to the equation Power = ^pCdAv2 4- Q.rw g co,s(0) + mg sin(f?)}f .
16. A system adapted for vehicle operating condition management for a vehicle, comprising: a vehicle parameter module containing data indicative of at least one predetermined vehicle parameter, said at least one predetermined vehicle parameter including at least one of vehicle mass, vehicle drag, vehicle rolling resistance, tire circumference, front area of vehicle, powertrain torque loss, and engine friction;
a road terrain element module containing data indicative of at least one road terrain element, said at least one road terrain element including at least one of speed limit changes, off ramp locations, fueling locations, road grade, air density and traffic congestion;
a vehicle operating condition module containing data indicative of at least one current vehicle operating condition, said at least one current vehicle operating condition including current vehicle speed, a lower vehicle speed target to be reached, travel time, and a distance to travel before reaching the lower vehicle speed target; and
a vehicle operating condition management module adapted to:
perform a first optimization wherein one or more vehicle optimization vectors are determined;
determine vehicle power based on the current vehicle operating condition data and the road terrain element data; and
perform a second optimization wherein an optimized vehicle operating condition is determined, said optimized vehicle operating condition comprising vehicle speed.
17. The system of claim 16, wherein said vehicle operating condition management module is adapted to generate an electronic recommendation signal corresponding to said determined optimized vehicle operating condition.
18. The system of claim 17, further indicating a receiver adapted to receive said electronic recommendation signal.
19. The system of claim 18, wherein said receiver comprises a transmission control unit.
20. The system of claim 18, wherein said receiver comprises an engine control module.
21. The system of claim 18, wherein said receiver comprises a display adapted to indicate the optimized vehicle operating condition to a vehicle operator.
22. The system of claim 21 , wherein said display comprises a touch-screen interface.
23. The system of claim 16, wherein at least one of said data indicative of at least one current vehicle operating condition is provided by a vehicle operator.
24. The system of claim 16, wherein said optimized vehicle operating condition further comprises a transmission gear.
25. The system of claim 16, wherein said determined vehicle power comprises determining a product of current vehicle speed with a sum of a product of a function of said vehicle drag, air density, front area of vehicle and said current vehicle speed and a product of a function of said vehicle rolling resistance, vehicle mass and said road grade and a product of a function of said vehicle mass and said road grade.
26. The system of claim 16, wherein said offline optimization comprises solving vehicle operating condition vectors over an engine map to minimize fuel consumption incorporating the travel time operating condition.
27. The system of claim 26, wherein said online optimization comprises accessing the offline vehicle optimization vectors and determining new vehicle operating condition vectors over said engine map to minimize fuel consumption.
28. A computer program product comprising a computer useable medium having stored thereon computer-readable program code for vehicle operating condition management for a vehicle, the computer-readable program code comprising: computer-readable program code for accessing data indicative of at least one predetermined vehicle parameter, said predetermined vehicle parameter including at least one of vehicle mass, vehicle drag, rolling resistance, tire circumference, front area of vehicle, powertrain torque loss, and engine friction;
computer-readable program code for accessing data indicative of at least one road terrain element, said at least one road terrain element including at least one of speed limit changes, off ramp locations, fueling locations, road grade, air density and traffic congestion;
computer-readable code for performing a first optimization, wherein one or more vehicle optimization vectors are determined;
computer-readable program code for accessing data indicative of at least one current vehicle operating condition, said vehicle operating condition including current vehicle speed, lower vehicle speed target to be reached, travel time, and distance to travel before reaching lower vehicle speed target to be reached;
computer-readable program code for accessing the offline vehicle optimization vectors; computer-readable program code for determining vehicle power based on the current vehicle operating condition data and road terrain element data;
computer-readable program code for performing a second optimization wherein an optimized vehicle operating condition is determined, said optimized vehicle operating condition comprising vehicle speed; and
computer-readable program code for communicating said optimized vehicle operating condition to a receiver.
29. The computer program product of claim 28, further comprising computer-readable program code for disabling the vehicle operating condition management program code in response to an operator-initiated event.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112011104561.1T DE112011104561B4 (en) | 2010-12-23 | 2011-12-23 | Device and method for managing a vehicle operating state |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201061426988P | 2010-12-23 | 2010-12-23 | |
US61/426,988 | 2010-12-23 | ||
US201161432736P | 2011-01-14 | 2011-01-14 | |
US61/432,736 | 2011-01-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012088537A1 true WO2012088537A1 (en) | 2012-06-28 |
Family
ID=46314514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/067271 WO2012088537A1 (en) | 2010-12-23 | 2011-12-23 | System and method of vehicle operating condition management |
Country Status (3)
Country | Link |
---|---|
US (1) | US9162679B2 (en) |
DE (1) | DE112011104561B4 (en) |
WO (1) | WO2012088537A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014027111A1 (en) * | 2012-08-16 | 2014-02-20 | Jaguar Land Rover Limited | Vehicle speed control system |
WO2014026987A1 (en) * | 2012-08-16 | 2014-02-20 | Jaguar Land Rover Limited | System and method for controlling the speed of vehicle |
EP2848483A1 (en) * | 2013-08-23 | 2015-03-18 | 2236008 Ontario Inc. | Vehicle energy management |
CN106004862A (en) * | 2016-05-18 | 2016-10-12 | 江苏大学 | Traffic intersection heavy truck automatic braking control method based on internet of vehicles |
WO2017196921A1 (en) * | 2016-05-10 | 2017-11-16 | Dana Limited | Control strategies for hybrid electric powertrain configurations with a ball variator |
IT201700073748A1 (en) * | 2017-06-30 | 2018-12-30 | Univ Degli Studi Di Salerno | METHOD AND SYSTEM FOR OBTAINING REFERENCE SIGNALS FOR VEHICLE CONTROL SYSTEMS AND ITS CONTROL SYSTEM |
FR3071197A1 (en) * | 2017-09-15 | 2019-03-22 | Psa Automobiles Sa | METHOD FOR DETERMINING A SPEED SETTING TO MINIMIZE THE ENERGY CONSUMPTION OF A VEHICLE |
CN109923566A (en) * | 2016-09-15 | 2019-06-21 | 法国大陆汽车公司 | Method for determining motor vehicle speed curve |
WO2019121422A1 (en) * | 2017-12-21 | 2019-06-27 | Renault S.A.S | System for calculating the minimum torque at the wheel of a motor vehicle and system for determining the moment at which the foot is lifted from the accelerator using such a calculation system |
US11787420B2 (en) | 2019-11-11 | 2023-10-17 | Rahul Jindal | Method and system to predict variation in mileage of a vehicle as per fuel in fuel tank, fuel density, tire air pressure and to optimize it |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112010003789T5 (en) * | 2009-09-24 | 2012-11-29 | Mitsubishi Electric Corporation | DRIVING PATTERN GENERATION DEVICE |
SE535422C2 (en) * | 2010-06-23 | 2012-07-31 | Scania Cv Ab | Method and module for controlling the speed of a vehicle |
US9428124B2 (en) * | 2011-05-03 | 2016-08-30 | Savannah Nuclear Solutions, Llc | Haptic seat for fuel economy feedback |
KR101316017B1 (en) * | 2011-11-14 | 2013-10-10 | 현대자동차주식회사 | Eco-driving information method and device |
SE536264C2 (en) * | 2011-12-22 | 2013-07-23 | Scania Cv Ab | Method and module for controlling the speed of a vehicle through simulation |
WO2013095237A1 (en) | 2011-12-22 | 2013-06-27 | Scania Cv Ab | Method and module for controlling a vehicle's speed based on rules and/or costs |
WO2013114624A1 (en) * | 2012-02-03 | 2013-08-08 | トヨタ自動車株式会社 | Deceleration factor estimation device and drive assistance device |
US20140310379A1 (en) * | 2013-04-15 | 2014-10-16 | Flextronics Ap, Llc | Vehicle initiated communications with third parties via virtual personality |
GB2508459B (en) * | 2012-08-16 | 2015-01-21 | Jaguar Land Rover Ltd | System and method for controlling vehicle speed to enhance occupant comfort |
GB2505023B (en) * | 2012-08-16 | 2015-01-14 | Jaguar Land Rover Ltd | System and method for controlling the speed of a vehicle using vehicle configuration |
US20140236457A1 (en) * | 2013-02-20 | 2014-08-21 | Xiamen King Long United Automotive Industry Co., Ltd. | Engine providing a self-adjusting system and a method to save fuel in accordance with a practical driving state of a vehicle |
US9194309B2 (en) | 2013-02-21 | 2015-11-24 | Cummins Intellectual Properties, Inc. | System and method for route identification using a low cost GPS system |
US9802597B2 (en) * | 2013-03-11 | 2017-10-31 | Cummins Intellectual Properties, Inc. | System and method of vehicle transient torque management |
GB2511867B (en) * | 2013-03-15 | 2016-07-13 | Jaguar Land Rover Ltd | Vehicle speed control system and method |
GB201420988D0 (en) * | 2014-11-26 | 2015-01-07 | Tomtom Telematics Bv | Apparatus and method for vehicle economy improvement |
ITUB20155119A1 (en) * | 2015-11-03 | 2017-05-03 | Ferrari Spa | METHOD AND ASSISTANCE SYSTEM TO DRIVE A VEHICLE |
US10000214B2 (en) | 2015-12-21 | 2018-06-19 | Cummins Inc. | Vehicle controls including dynamic vehicle parameter determination |
US10121376B2 (en) * | 2016-10-05 | 2018-11-06 | Ford Global Technologies, Llc | Vehicle assistance |
KR102322924B1 (en) * | 2017-06-02 | 2021-11-08 | 현대자동차주식회사 | Vehicle and method for controlling vehicle |
US10576978B2 (en) | 2017-12-06 | 2020-03-03 | Cummins, Inc. | System and method for predictive engine and aftertreatment system control |
US11001248B2 (en) | 2018-10-08 | 2021-05-11 | GM Global Technology Operations LLC | Method for enhancing powertrain efficiency and driveline quality through dynamic mission planning optimization |
KR102575724B1 (en) * | 2018-11-14 | 2023-09-08 | 현대자동차주식회사 | Apparatus for controlling hybrid vehicle and method thereof |
GB201900477D0 (en) | 2019-01-14 | 2019-02-27 | Rolls Royce Plc | Optimisation method |
US11067015B2 (en) | 2019-05-31 | 2021-07-20 | Cummins Inc. | Systems and methods for cylinder deactivation operation in response to route conditions |
EP4427997A1 (en) * | 2023-03-09 | 2024-09-11 | Volvo Truck Corporation | Method for operating a vehicle, vehicle operated by such a method, operating system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5394331A (en) * | 1990-11-26 | 1995-02-28 | General Motors Corporation | Motor vehicle engine control method |
US6356831B1 (en) * | 2000-02-04 | 2002-03-12 | Ford Global Technologies, Inc. | Optimization method for shifting gears in a lean capable multi-mode engine with a manual transmission |
US20040239488A1 (en) * | 2003-06-02 | 2004-12-02 | General Motors Corporation | Disabling vehicle with in-vehicle telematics unit |
US20050274553A1 (en) * | 2004-06-09 | 2005-12-15 | Salman Mutasim A | Predictive energy management system for hybrid electric vehicles |
US20080249667A1 (en) * | 2007-04-09 | 2008-10-09 | Microsoft Corporation | Learning and reasoning to enhance energy efficiency in transportation systems |
US20100228404A1 (en) * | 2009-03-06 | 2010-09-09 | Link Ii Charles M | Method and system for configuring and provisioning a vehicle |
Family Cites Families (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4368509A (en) | 1979-08-24 | 1983-01-11 | Li Chou H | Self-optimizing machine and method |
US4459671A (en) | 1981-10-30 | 1984-07-10 | Teass Garnette S | Fuel management control system |
KR940009849B1 (en) | 1990-04-17 | 1994-10-18 | 미쓰비시덴키가부시키가이샤 | Auto-transmission control device |
KR950028978A (en) | 1994-04-06 | 1995-11-22 | 전성원 | Shift pattern control device and method for steep slope and steep curve |
JPH09277847A (en) | 1996-04-11 | 1997-10-28 | Toyota Motor Corp | Engine brake control device for hybrid vehicle |
DE19637209B4 (en) | 1996-09-12 | 2006-12-14 | Siemens Ag | A method of controlling the powertrain of a motor vehicle and integrated powertrain control |
US5954781A (en) | 1997-03-10 | 1999-09-21 | Tas Distributing Co., Inc. | Method and apparatus for optimizing vehicle operation |
US6436005B1 (en) * | 1998-06-18 | 2002-08-20 | Cummins, Inc. | System for controlling drivetrain components to achieve fuel efficiency goals |
US6349253B1 (en) * | 1998-11-13 | 2002-02-19 | Cummins Engine, Inc. | System and method for controlling downhill vehicle operation |
US6154658A (en) | 1998-12-14 | 2000-11-28 | Lockheed Martin Corporation | Vehicle information and safety control system |
US6374173B1 (en) | 1999-05-28 | 2002-04-16 | Freightliner Llc | Terrain adaptive cruise control |
US6718425B1 (en) | 2000-05-31 | 2004-04-06 | Cummins Engine Company, Inc. | Handheld computer based system for collection, display and analysis of engine/vehicle data |
US8914300B2 (en) | 2001-08-10 | 2014-12-16 | Rockwell Automation Technologies, Inc. | System and method for dynamic multi-objective optimization of machine selection, integration and utilization |
US7028793B2 (en) | 2002-02-08 | 2006-04-18 | Green Vision Technology, Llc | Internal combustion engines for hybrid powertrain |
US9233696B2 (en) | 2006-03-20 | 2016-01-12 | General Electric Company | Trip optimizer method, system and computer software code for operating a railroad train to minimize wheel and track wear |
US6990401B2 (en) | 2002-10-04 | 2006-01-24 | Daimlerchrysler Ag | Predictive speed control for a motor vehicle |
US7495549B2 (en) * | 2003-03-28 | 2009-02-24 | Acres John F | Integrated power, lighting, and instrumentation system for bicycles |
JP2004334714A (en) | 2003-05-09 | 2004-11-25 | Yamaha Motor Co Ltd | Parameter optimization method, parameter optimization device, parameter optimization program, and sailing control device |
US20050228553A1 (en) | 2004-03-30 | 2005-10-13 | Williams International Co., L.L.C. | Hybrid Electric Vehicle Energy Management System |
US20050284441A1 (en) | 2004-06-23 | 2005-12-29 | Zhengbai Liu | Strategy for fueling a diesel engine by selective use of fueling maps to provide HCCI, HCCI+CD, and CD combustion modes |
US8032276B2 (en) | 2004-12-07 | 2011-10-04 | Geotab, Inc. | Apparatus and method for optimally recording geographical position data |
US7849031B2 (en) | 2004-12-22 | 2010-12-07 | Hntb Holdings Ltd. | Optimizing traffic predictions and enhancing notifications |
US7267086B2 (en) | 2005-02-23 | 2007-09-11 | Emp Advanced Development, Llc | Thermal management system and method for a heat producing system |
US7387029B2 (en) | 2005-09-23 | 2008-06-17 | Velocomp, Llp | Apparatus for measuring total force in opposition to a moving vehicle and method of using |
US7600826B2 (en) | 2005-11-09 | 2009-10-13 | Ford Global Technologies, Llc | System for dynamically determining axle loadings of a moving vehicle using integrated sensing system and its application in vehicle dynamics controls |
US8712650B2 (en) * | 2005-11-17 | 2014-04-29 | Invent.Ly, Llc | Power management systems and designs |
US7925426B2 (en) | 2005-11-17 | 2011-04-12 | Motility Systems | Power management systems and devices |
US8768543B2 (en) * | 2006-03-20 | 2014-07-01 | General Electric Company | Method, system and computer software code for trip optimization with train/track database augmentation |
US9201409B2 (en) | 2006-03-20 | 2015-12-01 | General Electric Company | Fuel management system and method |
JP2008012975A (en) | 2006-07-04 | 2008-01-24 | Xanavi Informatics Corp | Vehicle traveling control system |
JP5018356B2 (en) | 2006-11-22 | 2012-09-05 | 日産自動車株式会社 | Shift control device for automatic transmission |
US7967711B2 (en) | 2006-11-28 | 2011-06-28 | GM Global Technology Operations LLC | Highly configurable hybrid powertrain and control system therefor |
US7899584B2 (en) | 2007-02-28 | 2011-03-01 | Caterpillar Inc. | Method of controlling a vehicle based on operation characteristics |
US8050856B2 (en) | 2007-04-18 | 2011-11-01 | Chrysler Group Llc | Methods and systems for powertrain optimization and improved fuel economy |
US20090005974A1 (en) | 2007-06-29 | 2009-01-01 | Gm Global Technology Operations, Inc. | Fuel cost predictor system |
WO2009039454A1 (en) | 2007-09-20 | 2009-03-26 | Shai Agassi | Electric vehicle network |
US8406970B2 (en) | 2007-11-03 | 2013-03-26 | GM Global Technology Operations LLC | Method for stabilization of optimal input speed in mode for a hybrid powertrain system |
US20090276267A1 (en) | 2008-05-05 | 2009-11-05 | Mr. Nir PADAN | Apparatus and method for handling weight data related to transportation |
JP2010003013A (en) * | 2008-06-18 | 2010-01-07 | Aisin Aw Co Ltd | Driving support device, driving support method and driving support program |
US8374781B2 (en) | 2008-07-09 | 2013-02-12 | Chrysler Group Llc | Method for vehicle route planning |
DE102008035944B4 (en) | 2008-07-31 | 2012-12-06 | Man Truck & Bus Ag | Method for optimizing the driving operation of a motor vehicle |
EP2221581B1 (en) * | 2009-02-18 | 2017-07-19 | Harman Becker Automotive Systems GmbH | Method of estimating a propulsion-related operating parameter |
US20100287073A1 (en) | 2009-05-05 | 2010-11-11 | Exxonmobil Research And Engineering Company | Method for optimizing a transportation scheme |
US8346456B2 (en) | 2009-06-10 | 2013-01-01 | Daimler Ag | Method and apparatus for controlling traveling speed of a vehicle |
US8548660B2 (en) * | 2009-09-11 | 2013-10-01 | Alte Powertrain Technologies, Inc. | Integrated hybrid vehicle control strategy |
DE112011104550B4 (en) | 2010-12-23 | 2024-07-25 | Cummins Intellectual Property, Inc. | SYSTEM AND METHOD FOR VEHICLE SPEED-BASED OPERATING COST OPTIMIZATION |
-
2011
- 2011-12-23 US US13/336,959 patent/US9162679B2/en active Active
- 2011-12-23 DE DE112011104561.1T patent/DE112011104561B4/en active Active
- 2011-12-23 WO PCT/US2011/067271 patent/WO2012088537A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5394331A (en) * | 1990-11-26 | 1995-02-28 | General Motors Corporation | Motor vehicle engine control method |
US6356831B1 (en) * | 2000-02-04 | 2002-03-12 | Ford Global Technologies, Inc. | Optimization method for shifting gears in a lean capable multi-mode engine with a manual transmission |
US20040239488A1 (en) * | 2003-06-02 | 2004-12-02 | General Motors Corporation | Disabling vehicle with in-vehicle telematics unit |
US20050274553A1 (en) * | 2004-06-09 | 2005-12-15 | Salman Mutasim A | Predictive energy management system for hybrid electric vehicles |
US20080249667A1 (en) * | 2007-04-09 | 2008-10-09 | Microsoft Corporation | Learning and reasoning to enhance energy efficiency in transportation systems |
US20100228404A1 (en) * | 2009-03-06 | 2010-09-09 | Link Ii Charles M | Method and system for configuring and provisioning a vehicle |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9908528B2 (en) | 2012-08-16 | 2018-03-06 | Jaguar Land Rover Limited | Vehicle speed control system |
WO2014026987A1 (en) * | 2012-08-16 | 2014-02-20 | Jaguar Land Rover Limited | System and method for controlling the speed of vehicle |
AU2013303992B2 (en) * | 2012-08-16 | 2016-02-04 | Jaguar Land Rover Limited | Vehicle speed control system |
US10597032B2 (en) | 2012-08-16 | 2020-03-24 | Jaguar Land Rover Limited | Vehicle speed control system |
US9493160B2 (en) | 2012-08-16 | 2016-11-15 | Jaguar Land Rover Limited | Vehicle speed control system |
US9682706B2 (en) | 2012-08-16 | 2017-06-20 | Jaguar Land Rover Limited | System and method for controlling the speed of a vehicle |
WO2014027111A1 (en) * | 2012-08-16 | 2014-02-20 | Jaguar Land Rover Limited | Vehicle speed control system |
EP2848483A1 (en) * | 2013-08-23 | 2015-03-18 | 2236008 Ontario Inc. | Vehicle energy management |
US9557746B2 (en) | 2013-08-23 | 2017-01-31 | 2236008 Ontario Inc. | Vehicle energy management |
WO2017196921A1 (en) * | 2016-05-10 | 2017-11-16 | Dana Limited | Control strategies for hybrid electric powertrain configurations with a ball variator |
CN106004862A (en) * | 2016-05-18 | 2016-10-12 | 江苏大学 | Traffic intersection heavy truck automatic braking control method based on internet of vehicles |
CN109923566A (en) * | 2016-09-15 | 2019-06-21 | 法国大陆汽车公司 | Method for determining motor vehicle speed curve |
CN109923566B (en) * | 2016-09-15 | 2023-07-21 | 法国大陆汽车公司 | Method for determining a speed profile of a motor vehicle |
IT201700073748A1 (en) * | 2017-06-30 | 2018-12-30 | Univ Degli Studi Di Salerno | METHOD AND SYSTEM FOR OBTAINING REFERENCE SIGNALS FOR VEHICLE CONTROL SYSTEMS AND ITS CONTROL SYSTEM |
WO2019003187A1 (en) * | 2017-06-30 | 2019-01-03 | Universita' Degli Studi Di Salerno | Method and system for obtaining reference signals for vehicles control systems and corresponding control system |
US11273827B2 (en) | 2017-06-30 | 2022-03-15 | Universit A' Degli Studi Di Salerno | Method and system for obtaining reference signals for vehicles control systems and corresponding control system |
JP7253260B2 (en) | 2017-06-30 | 2023-04-06 | ユニベルシタ デッリ スツディ ディ サレルノ | Method and System for Acquiring Reference Signals for Vehicle Control Systems and Corresponding Control Systems |
JP2020525357A (en) * | 2017-06-30 | 2020-08-27 | ユニベルシタ デッリ スツディ ディ サレルノUniversita’ Degli Studi Di Salerno | Method and system for obtaining a reference signal for a vehicle control system and corresponding control system |
FR3071197A1 (en) * | 2017-09-15 | 2019-03-22 | Psa Automobiles Sa | METHOD FOR DETERMINING A SPEED SETTING TO MINIMIZE THE ENERGY CONSUMPTION OF A VEHICLE |
CN111801259A (en) * | 2017-12-21 | 2020-10-20 | 雷诺股份公司 | System for calculating the minimum torque at the wheels of a motor vehicle and system for determining the moment of foot lift from the accelerator using such a calculation system |
FR3075958A1 (en) * | 2017-12-21 | 2019-06-28 | Renault S.A.S | SYSTEM FOR CALCULATING THE MINIMUM TORQUE TO THE WHEEL OF A MOTOR VEHICLE AND SYSTEM FOR DETERMINING THE INSTANT FLOOR LIFTING INSTANT USING SUCH A COMPUTING SYSTEM |
WO2019121422A1 (en) * | 2017-12-21 | 2019-06-27 | Renault S.A.S | System for calculating the minimum torque at the wheel of a motor vehicle and system for determining the moment at which the foot is lifted from the accelerator using such a calculation system |
CN111801259B (en) * | 2017-12-21 | 2024-04-16 | 雷诺股份公司 | System for calculating the minimum torque at the wheels of a motor vehicle and system for determining the moment of lifting of a foot from an accelerator using such a calculation system |
US11787420B2 (en) | 2019-11-11 | 2023-10-17 | Rahul Jindal | Method and system to predict variation in mileage of a vehicle as per fuel in fuel tank, fuel density, tire air pressure and to optimize it |
Also Published As
Publication number | Publication date |
---|---|
US20120197501A1 (en) | 2012-08-02 |
DE112011104561T5 (en) | 2013-11-07 |
US9162679B2 (en) | 2015-10-20 |
DE112011104561B4 (en) | 2024-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9162679B2 (en) | System and method of vehicle operating condition management | |
US8452509B2 (en) | System and method of vehicle speed-based operational cost optimization | |
US8731788B2 (en) | System and method of speed-based downspeed coasting management | |
KR101607248B1 (en) | Method and module for controlling a vehicle's speed based on rules and/or costs | |
US8214122B2 (en) | Energy economy mode using preview information | |
KR101601891B1 (en) | Method and module for determining of reference values for a vehicle control system | |
EP2794379B1 (en) | Method and module for controlling a vehicle's speed based on rules and/or costs | |
KR101601890B1 (en) | Method and module for determining of at least one reference value for a vehicle control system | |
EP2440422B1 (en) | Module in a vehicle control system | |
US9043114B2 (en) | Module for determining of reference values for a vehicle control system | |
KR101604063B1 (en) | Method and module for determining of at least one reference value for a vehicle control system | |
US20120083984A1 (en) | Method and module for determining of velocity reference values for a vehicle control system | |
US20130151106A1 (en) | Method and module for controlling a vehicle's speed | |
KR101572997B1 (en) | Module and method pertaining to mode choice when determining reference values | |
EP1885576A1 (en) | Cruise control for a motor vehicle | |
SE541221C2 (en) | A method for determining a desired gap between a motor vehicle and a lead vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11851561 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112011104561 Country of ref document: DE Ref document number: 1120111045611 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11851561 Country of ref document: EP Kind code of ref document: A1 |