WO2012086790A1 - Two-terminal led light-emitting device, and led illumination device provided with same - Google Patents

Two-terminal led light-emitting device, and led illumination device provided with same Download PDF

Info

Publication number
WO2012086790A1
WO2012086790A1 PCT/JP2011/079891 JP2011079891W WO2012086790A1 WO 2012086790 A1 WO2012086790 A1 WO 2012086790A1 JP 2011079891 W JP2011079891 W JP 2011079891W WO 2012086790 A1 WO2012086790 A1 WO 2012086790A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
terminal
emitting device
led element
circuit
Prior art date
Application number
PCT/JP2011/079891
Other languages
French (fr)
Japanese (ja)
Inventor
武田 立
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Publication of WO2012086790A1 publication Critical patent/WO2012086790A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators

Definitions

  • the present invention relates to a two-terminal LED light-emitting device and an LED lighting device including the same.
  • Patent Document 1 discloses two LED groups connected in parallel with opposite polarity to an AC source, and in an AC positive half cycle, Some are configured such that one of the LED groups is driven and the other half of the LED group is driven in the negative negative half cycle.
  • the present invention has been made in view of the above circumstances, and provides a technique related to a two-terminal LED light-emitting device that can reduce the number of components and thereby achieve a compact and low-cost light-emitting device. For the purpose.
  • the present invention employs the following means. That is, the present invention is formed by connecting first and second LED elements having different emission wavelength ranges, each of which is composed of one or more, in reverse polar parallel. It is a two-terminal LED light-emitting device formed by connecting a plurality of parallel LED element groups in series.
  • the two-terminal LED device according to the present invention is a parallel LED formed by connecting a first LED element and a second LED element having a light emission wavelength range different from that of the first LED element in reverse polar parallel.
  • An alternating current as a drive current may be supplied to each terminal of the two-terminal LED light emitting device.
  • the magnitude of the total value of the drive currents supplied to the first LED element and the second LED element in each positive and negative half cycle by alternating current is adjusted.
  • the chromaticity of white light emitted from the entire light emitting device is adjusted by adjusting the luminance of the white light emitted from the entire light emitting device and changing the supply ratio of the drive current to the first LED element and the second LED element. (Hue, color temperature) is adjusted.
  • the first LED element and the second LED element are connected in reverse polar parallel to each other to form a parallel LED element group, and a plurality of parallel LED element groups are arranged in series.
  • One connection wiring for connecting each of the parallel LED element groups can be provided, and the number of parts can be reduced. The effect of reducing the number of parts becomes more prominent as the number of parallel LED element groups included in the two-terminal LED light-emitting device increases, which contributes to the compactness (miniaturization) and cost reduction of the two-terminal LED light-emitting device. it can.
  • the first LED element and the second LED element in each parallel LED element group are reversed in the positive and negative half cycles in which the current for lighting (light emission) does not flow. Biased. If a large voltage or large current is generated in such a reverse bias state, the current flows backward through the LED element in the reverse bias state, and the LED element may be damaged.
  • a plurality of the parallel LED elements connected in series each having a two-terminal protection circuit including two Zener diodes connected in series by anode sharing or cathode sharing. The group was connected in parallel.
  • Zener diodes are connected in parallel to each parallel LED element group, reverse large voltages and large currents have occurred in the first and second LED elements in each of the positive and negative half cycles. In such a case, if one of the Zener diodes breaks down, a large current in the reverse direction can be caused to flow downstream, and the LED element can be prevented from being damaged.
  • the first LED elements are all connected to have the same polarity
  • the second LED elements are all connected to have the same polarity. good.
  • connecting all the first LED elements to the same polarity these can be controlled by a common control system.
  • connecting all the second LED elements to the same polarity these can be controlled by a common control system.
  • a constant current means for supplying a constant current to each of the parallel LED element groups may be further provided.
  • the present invention can also be understood as a dimming device for dimming any of the LED light emitting devices described above, and an illumination device (system) including the LED light emitting device and the dimming device.
  • LED is a concept including organic electroluminescence (Organic Electro-Luminescence: organic EL).
  • a technology capable of realizing a reduction in the number of components and thus making the light emitting device compact and cost-effective is provided. can do.
  • FIG. 1 is a diagram illustrating a first circuit configuration example of the LED light emitting device 10 according to the present embodiment.
  • the LED light emitting device 10 according to the present embodiment is a two-terminal LED device that emits white light by receiving and driving an alternating current from an alternating current power supply.
  • the two-terminal LED light-emitting device 10 includes two terminals (a pair of terminals) 101 and 102 and a plurality of parallel LED element groups 103 connected in series between the pair of terminals 101 and 102.
  • this parallel LED element group 103 a pair of LED elements having different emission wavelength ranges, that is, the first LED element 1031 and the second LED element 1032 are reversed in polarity (reverse polarity). It is formed by connecting in parallel. That is, the two-terminal LED light-emitting device 10 includes first and second LED elements 1031 and 1032 each having one or a plurality of first and second LED elements 1031 and 1032 having different emission wavelength ranges.
  • a plurality of parallel LED element groups 103 formed in reverse polar parallel connection are further connected in series.
  • the number of LED element groups 103 connected in series is not limited to a specific number.
  • the two-terminal LED light emitting device 10 in the present embodiment is connected so that the first LED elements 1031 have the same polarity, and the second LED elements 1032 have the same polarity. Connected to be.
  • An AC current supplied from an AC power source is passed between the two terminals 101 and 102 as a drive current for causing the first LED element 1031 and the second LED element 1032 included in the parallel LED element group 103 to emit light. Is done.
  • the first LED element 1031 and the second LED element 1032 are connected in parallel with each other in reverse polarity (that is, connected in reverse polar parallel), so that a positive current
  • one of the first LED element 1031 and the second LED element 1032 is turned on (emits light) and the other is turned off.
  • the two-terminal LED light emitting device 10 can be driven by an alternating current from an alternating current power source.
  • the first LED element 1031 and the second LED element 1032 are LED elements that emit white light having different spectra (the emission wavelength ranges are different).
  • each of the first LED element 1031 and the second LED element 1032 has an emission wavelength of 410 nm and a terminal voltage at a forward current of 3.5 V.
  • the first LED element 1031 is embedded with a phosphor that emits white light of about 5000 K (Kelvin) when stimulated (excited) with light having an emission wavelength of 410 nm.
  • the second LED element 1032 is embedded with a phosphor emitting white light of about 3000 K (Kelvin) when stimulated (excited) with light having an emission wavelength of 410 nm.
  • the excitation wavelength in the first LED element 1031 and the second LED element 1032 described above the chromaticity of the emitted white light (the chromaticity is a concept including hue, color temperature, etc., and the same applies hereinafter), terminal.
  • Each value such as voltage is an example, and may be changed as appropriate.
  • the magnitude of the total value of the drive current supplied to the first and second LED elements 1031 and 1032 is increased or decreased in each positive and negative half cycle by the AC power supply.
  • the luminance of white light emitted from the entire light emitting device is adjusted by changing the supply ratio of the drive current to the first and second LED elements 1031 and 1032.
  • each parallel LED element group 103 is of a two-terminal type, so that there is an advantage that only one connection wiring is required to connect them in series. . That is, according to the two-terminal LED light-emitting device 10, it has good light-emitting characteristics and the number of components of the two-terminal LED light-emitting device 10 can be reduced. This is advantageous for making the two-terminal LED light emitting device 10 compact (downsizing) and cost reduction.
  • FIG. 2 is a diagram illustrating a second circuit configuration example of the two-terminal LED light emitting device according to the present embodiment.
  • the two-terminal LED light-emitting device 10A is the same as the two-terminal LED light-emitting device 10 except that the configuration of the LED element group 103A directly connected to each other is different from the parallel LED element group 103 described with reference to FIG.
  • the parallel LED element group 103A has five first LED elements 1031 and five second LED elements 1032.
  • the first LED element 1031 and the second LED element 1032 are connected in parallel so as to have opposite polarities as in the first circuit configuration example (that is, connected in reverse polar parallel).
  • the two-terminal LED light emitting device according to the present invention includes one or a plurality of first LED elements 1031 and second LED elements 1032 in each LED element group. Can be included.
  • the number of the first LED elements 1031 and the second LED elements 1032 included in one parallel LED element group 103A can be changed as appropriate, and the first LED element 1031 and the second LED element 1032 can be changed. The number need not be the same.
  • FIG. 3 is a diagram illustrating a third circuit configuration example of the two-terminal LED light emitting device according to the present embodiment.
  • the two-terminal LED light-emitting device 10B according to this configuration example is common to the configuration of the two-terminal LED light-emitting device 10 described with reference to FIG. 1 except that the two-terminal LED light-emitting device 10B includes a two-terminal protection circuit 104 for preventing breakage of each LED element. is there.
  • the two-terminal protection circuit 104 is formed of a series circuit composed of two Zener diodes 1041 and 1042 (constant voltage diodes) whose cathodes are connected to each other. Connected in parallel.
  • a two-terminal protection circuit 104 including two Zener diodes 1041 and 1042 connected in series with a common cathode is connected in parallel to each parallel LED element group 103.
  • the directions of the two Zener diodes 1041 and 1042 to be connected may be reversed, that is, the anodes may be connected.
  • a two-terminal protection circuit 104 including two Zener diodes connected in series with the anode shared may be connected in parallel to each parallel LED element group 103.
  • the two-terminal protection circuit 104 according to the present embodiment includes the two Zener diodes 1041 and 1042 connected in series with opposite polarities, and the parallel LED element group 103 connected in series. Connected in parallel.
  • the two-terminal LED light-emitting device 10B connects the first LED element 1031 and the second LED element 1032 having a different emission wavelength range from the first LED element 1031 in reverse polar parallel.
  • the parallel LED element group 103 is connected in parallel.
  • the second LED element 1032 in each parallel LED element group 103 is in a reverse bias state. If the reverse bias is a large voltage or the positive current is a large current, the second LED element 1032 may flow backward, leading to damage of the second LED element 1032. On the other hand, when a positive current flows from the terminal 102 toward the terminal 101, the first LED element 1031 in each parallel LED element group 103 is reversely biased from the same viewpoint, and therefore the first LED element 1031 may be damaged.
  • the second LED element 1032 in each parallel LED element group 103 is damaged.
  • the Zener diode 1042 breaks down, and current flows to the terminal 102 side. This prevents the second LED element 1032 in each parallel LED element group 103 from being damaged.
  • the first LED element 1031 is protected not only from the reverse overvoltage breakdown with respect to the second LED element 1032 but also from the forward overvoltage breakdown caused by a large positive current flowing from the terminal 101 to the terminal 102. It is possible at the same time.
  • the Zener diode 1041 of the two-terminal protection circuit 104 breaks down and the current is Flow to the 101 side. This prevents the first LED element 1031 in each parallel LED element group 103 from being damaged.
  • the second LED element 1032 is protected not only from the reverse overvoltage breakdown with respect to the first LED element 1031 but also from the forward overvoltage breakdown caused by a large positive current flowing from the terminal 102 to the terminal 101. It is possible at the same time.
  • FIG. 4 is a diagram illustrating a fourth circuit configuration example of the two-terminal LED light-emitting device according to the present embodiment.
  • the two-terminal LED light emitting device 10C according to this configuration example includes a constant current circuit 20 (constant current means) for supplying a constant current to each of the parallel LED element groups.
  • reference numeral 20A denotes a first constant current circuit unit
  • reference numeral 20B denotes a second constant current circuit unit.
  • the first constant current circuit unit 20A is a circuit that limits the current to the second LED element 1032 in order to keep the current value supplied to the first LED element 1031 in each parallel LED element group 103 constant.
  • the second constant current circuit unit 20B is a circuit that limits the current to the first LED element 1031 in order to keep the current value supplied to the second LED element 1032 in each parallel LED element group 103 constant. is there.
  • the first constant current circuit unit 20A and the second constant current circuit unit 20B are connected in parallel with opposite polarity as illustrated.
  • Reference numerals D1 and D2 are backflow prevention diodes.
  • the constant current circuit 20 includes first and second constant current circuit units 20A and 20B, and diodes D1 and D2.
  • the first constant current circuit unit 20A includes two transistors Tr1A and Tr2A and two resistors R1A and R2A.
  • an alternating current is supplied from the alternating current power source to the two-terminal LED light emitting device 10C according to this configuration example, and a positive current flows from the terminal 101 to the terminal 102 in a positive half cycle, for example, the diode D1 has a forward bias.
  • a reverse bias is applied to the diode D2.
  • the alternating current flows on the first constant current circuit unit 20A side, but does not flow on the second constant current circuit unit 20B side.
  • the collector current of the transistor Tr1A increases (that is, when the current supplied to the first LED element 1031 increases)
  • the potential drop of the resistor R1A connected to the emitter side of the transistor Tr1A increases.
  • the transistor Tr2A is turned on.
  • the base current of the transistor Tr1A decreases, and as a result, the collector current of the transistor Tr1A decreases.
  • the collector current of the transistor Tr1A decreases, the reverse operation occurs, so that the collector current of the transistor Tr1A, that is, the current supplied to the first LED element 1031 is kept constant. become.
  • the second constant current circuit unit 20B has a configuration equivalent to that of the first constant current circuit unit 20A, and includes two transistors Tr1B and Tr2B and two resistors R1B and R2B.
  • the transistors Tr1B and Tr2B and the resistors R1B and R2B in the second constant current circuit unit 20B correspond to the transistors Tr1A and Tr2A and the resistors R1A and R2A in the first constant current circuit unit 20A, and have an equivalent function. It is.
  • the operation state of the second constant current circuit unit 20B will be described.
  • the collector current of the transistor Tr1B increases in a half cycle in which a positive current flows from the terminal 102 to the terminal 101 (that is, supplied to the second LED element 1032).
  • the potential drop of the resistor R1B connected to the emitter side of the transistor Tr1B increases, and the transistor Tr2B is turned on.
  • the base current of the transistor Tr1B decreases, and as a result, the collector current of the transistor Tr1B decreases.
  • the collector current of the transistor Tr1B decreases, the reverse action occurs, so that the collector current of the transistor Tr1B, that is, the current supplied to the second LED element 1032 is kept constant. become.
  • the two-terminal LED light emitting device 10C since the two-terminal LED light emitting device 10C according to the present configuration example includes the constant current circuit 20 for supplying a constant current to each of the parallel LED element groups 103, the first and second LED elements There is no possibility that 1031, 1032 will be damaged or deteriorated, or that the light emission characteristics will be deteriorated.
  • the constant current circuit 20 includes first and second constant current circuit units 20A and 20B, and diodes D1 and D2.
  • the two-terminal protection circuit 104 shown in FIG. 3 may be connected in parallel to the parallel LED element group 103. That is, the two-terminal LED light-emitting device 10C shown in FIG.
  • a two-terminal LED light emitting device 10C may be configured by combining the constant current circuit 20 with the two-terminal LED light emitting device 10B shown in FIG.
  • FIG. 5 is a diagram for explaining a modification of the constant current circuit in FIG. As shown in FIG. 5, instead of the constant current circuit 20 shown in FIG. 4, the constant current circuit 20 ′ shown in FIG. The current value supplied to the first and second LED elements 1031 and 1032 may be kept constant. In FIG. 4 and FIG. 5, the same reference numerals are assigned to common electronic components.
  • the constant current circuit 20 includes first and second constant current circuit portions 20A and 20B and diodes D1 and D2.
  • the first constant current circuit unit 20A and the second constant current circuit unit 20B are connected in series with opposite polarities. Further, two diodes D1 and D2 directly connected as opposite polarities are connected in parallel to the first and second constant current circuit units 20A and 20B. Further, as illustrated, a terminal formed between the first constant current circuit unit 20A and the second constant current circuit unit 20B and a terminal formed between the diode D1 and the diode D2 are connected by wiring. .
  • the constant current circuit 20 'having the above configuration is a circuit equivalent to the constant current circuit 20 described in FIG. That is, for example, when a positive current flows from the terminal 101 to the terminal 102 in the positive half cycle, the diode D1 is forward biased and the diode D2 is reverse biased. As a result, the current in this half cycle shunts (bypasses) the second constant current circuit unit 20B and flows through the first constant current circuit unit 20A. In this half cycle, the current supplied to the first LED element 1031 is kept constant by operating the first constant current circuit section 20A in the same manner as described in FIG.
  • the two-terminal protection circuit 104 shown in FIG. 3 may be connected in parallel to the parallel LED element group 103.
  • the two-terminal LED light-emitting device 10C shown in FIG. 5 is equivalent to a circuit in which the constant-current circuit 20 ′ is combined with the two-terminal LED light-emitting device 10 shown in FIG.
  • the two-terminal LED light-emitting device 10C shown in FIG. 3 may be combined with the constant-current circuit 20 ′ to form the two-terminal LED light-emitting device 10C.
  • CCD constant current diode
  • Current Regulative Diode or the like instead of the constant current circuits 20 and 20 ′ described in FIG. 4 and FIG. .
  • the transistor may be a bipolar transistor as shown in the figure, or the bipolar transistor may be replaced with a field effect transistor (FET).
  • FET field effect transistor
  • the diodes D1 and D2 may be omitted when an FET is used instead of the bipolar transistor.
  • the FET generates a small amount of heat and is suitable for connecting LED elements in parallel.
  • FIG. 6 is a diagram showing a fifth circuit configuration example of the two-terminal LED light-emitting device according to this embodiment.
  • FIG. 7 is a diagram illustrating a sixth circuit configuration example of the two-terminal LED light-emitting device according to this embodiment.
  • a two-terminal LED light-emitting device 10D shown in FIG. 6 includes two terminals 101 and 102, a first LED group 203 connected in parallel with the opposite polarity between the two terminals 101 and 102, and a second LED group 204. ing.
  • the first LED group 203 and the second LED group 204 constitute an LED light emitting unit.
  • Each of the first LED group 203 and the second LED group 204 includes one or more predetermined numbers of LED elements connected in series.
  • the number of LED elements constituting the first LED group 203 and the second LED group 204 can be set as appropriate. In addition, it is not an essential requirement that the number of LED elements constituting the first and second LED groups 203 and 204 is the same, and each of the first and second LED groups 203 and 204 is composed of a desired number of LED elements. can do.
  • the two-terminal LED light emitting device 10D when an alternating current is supplied between the terminals 101 and 102, one of the first LED group 203 and the second LED group 204 (for example, the first LED group 203) is a positive half cycle of the alternating current. Light is emitted, and the other (for example, the second LED group 204) emits light in a negative half cycle.
  • the two-terminal LED light-emitting device D can be driven with an alternating current from an alternating current source.
  • the first LED group 203 and the second LED group 204 may have the same light emission characteristics. Alternatively, the first and second LED groups 203 and 204 may have different spectral characteristics and may have different color temperatures and colors (light emission wavelength ranges).
  • the first and second LED groups 203 in each positive and negative cycle. , 204 the luminance of the LED light emitting unit can be adjusted by increasing / decreasing the total value of the drive currents supplied to. Further, by changing the ratio of the drive current to the first and second LED groups 203 and 204, it is possible to change the color temperature of light emission of the LED light emitting unit. Thereby, the color temperature of white light can be changed over a wide range, for example, from a light bulb color to daylight white.
  • the two-terminal LED light emitting device 10D further includes a first protection circuit 205 and a second protection circuit 206 that are connected in parallel to the first LED group 203 and the second LED group 204 between the terminals 101 and 102.
  • the protection circuit 205 includes a Zener diode 207 and a diode 208 having anodes connected to each other, and is connected in parallel to the first and second LED groups 203 and 204.
  • the protection circuit 206 includes a Zener diode 209 and a diode 210 whose cathodes are connected to each other, and are connected in parallel to the first and second LED groups 203 and 204.
  • the first LED group 203 when a positive current flows from the terminal 101 to the terminal 102, the first LED group 203 is in a state in which a reverse bias is applied. If this reverse bias is a large voltage or if the positive current is a large current, the current may flow backward through the first LED group 203 and the first LED group 203 may be damaged. This can also occur for the second LED group 204 when a positive current flows from the terminal 102 toward the terminal 102.
  • the Zener diode 207 breaks down before the first LED group 203 is damaged, and the current flows to the terminal 102 side. Shed. Thereby, damage to the first LED group 203 can be prevented.
  • the Zener diode 209 of the protection circuit 206 breaks down and the current flows to the terminal 101 side. To flow. Thereby, it is possible to prevent the second LED group 204 from being damaged.
  • the diodes 208 and 210 may be omitted.
  • the Zener diodes 207 and 209 are individually connected in parallel to the first LED group 203 and the second LED group 204.
  • the protection circuit 211 is formed of a series circuit including two Zener diodes 212 and 213 in which cathodes are connected to each other, and is connected in parallel to the first LED group 203 and the second LED group 204 between the terminals 101 and 102. ing. However, the directions of the two Zener diodes 212 and 213 to be connected may be reversed (the anodes may be connected to each other).
  • the first LED group 203 can be protected by the breakdown of the Zener diode 213 against a positive large current from the terminal 101 side.
  • the second LED group 204 can be protected by the breakdown of the Zener diode 212 against a negative large current (positive current flowing from the terminal 102 to the terminal 101) from the terminal 101 side.
  • FIGS. 8 and 9 show seventh and eighth circuit configuration examples of the two-terminal LED light-emitting device to which the protection circuit shown in FIGS. 6 and 7 can be applied, and a protection circuit for the two-terminal LED light-emitting devices 10F and 100G. An example to which 211 is applied is shown.
  • a plurality of parallel LED element groups 221 that are LED parallel circuits composed of a first LED 222 and a second LED 223 connected in parallel are connected in series between a pair of terminals 101 and 102.
  • Each of the first LED 222 and the second LED 223 includes at least one LED element.
  • the configurations of the first LED group 203 and the second LED group 204 can be applied to the configuration of the first LED 222 and the second LED 223.
  • the protection circuit 211 is connected in parallel to a plurality of parallel LED element groups 221 connected in series.
  • the first LED 222 is protected by the breakdown of the Zener diode 213 before each first LED 222 is damaged. Conversely, when a large current flows from the terminal 102 to the terminal 101, the Zener diode 212 breaks down, thereby preventing the second LEDs 223 from being damaged.
  • the two-terminal LED light-emitting device 10G shown in FIG. 9 is different in that a parallel LED element group 224 in which a plurality of first LEDs 222 and a plurality of second LEDs 223 are connected in parallel is applied instead of the parallel LED element group 221.
  • a parallel LED element group 224 in which a plurality of first LEDs 222 and a plurality of second LEDs 223 are connected in parallel is applied instead of the parallel LED element group 221.
  • the Zener diodes 212 and 223 may be individually provided for the LED parallel circuits 221 and 224.
  • the protection circuit 205,206 may be applied with respect to 2 terminal LED light-emitting device 10F, 10G.
  • the protection circuits 205 and 206 or the protection circuit 211 are provided, so that the first LED group 203 (first LED 222) and the first LED are between the terminal 101 and the terminal 102. Even when a large current in the reverse direction occurs with respect to one of the two LED groups 204 (second LED 223), the first LED group 203 (first LED 222) and the second LED group 204 (second LED 223) are protected by breakdown of the Zener diode, These damages can be prevented.
  • the LED circuit with the protection circuit in which the two-terminal LED light emitting device (LED circuit) and the protection circuit are integrated is schematically shown.
  • the protection circuit may be connected to the LED circuit as needed.
  • the constant current circuit 20 shown in FIG. 4 or the constant current circuit 20 ′ shown in FIG. 5 may be combined with the two-terminal LED light emitting device shown in FIGS.
  • a fuse is provided at a predetermined position between the terminal 101 and the terminal 102 (for example, between the terminal 101 and each LED (group)), and the fuse is blown when a large current is generated.
  • Each LED (group) may be protected.
  • FIG. 10 is a diagram illustrating a circuit configuration example of the light control device (color control device) according to the present embodiment.
  • any of the light emitting devices of the first to eighth circuit configuration examples described above can be suitably applied to the light control device Dm, and the white illumination light obtained by the light emission of the LED element included in the light emitting device can be used. Adjust the chromaticity (hue, color temperature).
  • the two-terminal LED light-emitting device 10 (first circuit configuration example) described in FIG. 1 is mounted on the dimming device Dm.
  • the two-terminal LED according to another circuit configuration example is described.
  • a light emitting device (10A to 10G) is incorporated.
  • the light control device Dm includes an AC power supply input terminal 1, a triac 30, a trigger diode 40, a time constant circuit 50, a hysteresis removal circuit 70, a protection circuit 80, and the like.
  • the AC power input terminal 1 is a terminal for supplying power from a commercial power supply (AC 100 V) into the dimming circuit, and includes a plug for connecting to the commercial power supply.
  • One of the AC power supply input terminals 1 is connected to the input terminal 101 of the two-terminal LED light emitting device 10.
  • the triac 30 is connected to the input terminal 102 of the two-terminal LED light-emitting device 10, and energizes the alternating current input from the alternating-current power supply input terminal 1 during the energization period during one alternating cycle for each parallel LED element group 103. To do. When the triac 30 is turned on (ignited) at a certain point in a half cycle, it continues to supply a positive or negative current to the terminal 102 until the half cycle ends.
  • the trigger diode 40 supplies the triac 30 with a trigger signal for the triac 30 to fire.
  • the time constant circuit 50 controls the timing at which the trigger diode 40 supplies a trigger signal to the triac 30.
  • the time constant circuit 50 includes a diode 51, a resistor 52, and a variable resistor 53 connected in series, a diode 61, a resistor 62, a variable resistor 63, and a capacitor (capacitor) 54 connected in series.
  • the trigger diode 40 is connected.
  • the variable resistors 53 and 63 are provided with an operation unit (such as a knob) for individually adjusting these resistance values.
  • the resistor 52, the variable resistor 53, and the capacitor 54 constitute a CR time constant circuit that charges the voltage applied to the trigger diode 40 in an AC positive half cycle (first half cycle).
  • the trigger diode 40 is turned on according to the determined time constant.
  • the diode 51 is a backflow prevention diode.
  • the resistor 62, the variable resistor 63, and the capacitor 54 constitute a CR time constant circuit that charges the applied voltage to the trigger diode 40 in the negative half cycle of the alternating current (second half of the cycle).
  • the trigger diode 40 is turned on according to a time constant determined by the value.
  • FIG. 11A shows a commercial power supply waveform applied to the dimming circuit according to the dimming device Dm
  • FIG. 11B shows a voltage applied to the trigger diode 40 (state of charge on the capacitor 54).
  • the alternating voltage of a sine curve is applied to the light control circuit of the light control apparatus Dm.
  • positive charging of the capacitor 54 of the time constant circuit 50 is started, and at a time t1 when the charge charged in the capacitor 54 reaches a predetermined amount, the trigger diode 40 triggers the trigger signal.
  • Is supplied to the triac 30, and the triac 30 is ignited to start supplying a positive current to the two-terminal LED light emitting device 10.
  • the triac 30 is ignited at a timing according to the time constant of the time constant circuit 50, and a drive current is supplied to the two-terminal LED light emitting device 10.
  • a hatched portion in FIG. 11A indicates a voltage (current) supplied to the two-terminal LED light-emitting device 10 in positive and negative half cycles.
  • the time constant varies depending on the resistance values of the variable resistors 53 and 63. That is, the smaller the resistance value of the variable resistor 53, the smaller the time constant and the earlier the timing at which the triac 30 is fired.
  • the light control device Dm can individually control (adjust) the energization time in the positive and negative half cycles.
  • the hysteresis removal circuit 70 is a circuit for removing the residual charge charged in the capacitor 54 before the end of the positive and negative half cycles of the alternating current to remove the hysteresis.
  • the protection circuit 80 is connected in parallel to the two-terminal LED light-emitting device 10 and the triac 30, and one end thereof is connected to the terminal 101 of the two-terminal LED light-emitting device 10, and one is grounded.
  • the protection circuit 80 includes Zener diodes 81 and 82, and when the impulse or surge occurs, it breaks down and protects the two-terminal LED light emitting device 10.
  • the operation units of the variable resistors 53 and 63 are operated to set each of these resistance values to the maximum value.
  • the plug of the AC power input terminal 1 is connected to a commercial power supply 100V (not shown).
  • an alternating voltage (alternating current) is supplied to the dimming circuit of the dimming device Dm.
  • each of the first and second LED elements 1031 and 1032 emits light intermittently in the latter half of each half cycle and feels lit dark to the human eye.
  • the first LED element 1031 emits light in the second half of the positive half cycle
  • the second LED element 1032 emits light in the second half of the negative half cycle.
  • the firing timing of the triac 30 is advanced, The average current value in the negative half cycle of the alternating current increases, and the human eye feels that it is lit slightly brighter. Further, if the resistance value is decreased by operating the operation section of the variable resistor 53 (for example, the dial knob (color tone operation knob) for operating the variable resistor 53), the average current in the positive half cycle of the AC current is reduced. The value increases and the human eye feels more lit.
  • the operation section of the variable resistor 63 for example, the dial knob (light amount operation knob) for operating the variable resistor 63
  • the firing timing of the triac 30 is advanced, The average current value in the negative half cycle of the alternating current increases, and the human eye feels that it is lit slightly brighter.
  • the operation section of the variable resistor 53 for example, the dial knob (color tone operation knob) for operating the variable resistor 53
  • the average current in the positive half cycle of the AC current is reduced. The value increases and the human eye feels more lit.
  • the 5000 K white light emitted from the first LED element 1032 occupies the main proportion of the entire luminance (light emission amount) of the light emitting device 10, it is more than when only the second LED element 1032 is turned on. Not only is it bright, it feels like the color temperature has risen.
  • the first and second LED elements 1031 and 1032 that emit white light having different chromaticities (hue and color temperature) are connected to each of the alternating currents. Since the variable resistors 53 and 63 corresponding to the half cycle can be individually controlled, the chromaticity of light emitted from the two-terminal LED light-emitting device 10 can be freely adjusted.
  • the LED lighting system LS a pair of power supply lines from a power source is connected to the light control device Dm, and the light control device Dm and the two-terminal LED light emitting device 10 are a pair of power supply lines (drive current supply lines).
  • the wiring structure is connected by.
  • a pair of lead-in wires are drawn from the power source (commercial power supply) to the installation position of the light control device Dm, and the installation position of the light control device Dm and the two-terminal LED light emitting device 10 It is suitably applied to a building in which a pair of two feeders is laid in advance between the installation arrangement of the two. In such a case, it can supply to the 2 terminal LED light-emitting device 10 adjusted with the control circuit mounted in the light modulation apparatus Dm.
  • FIG. 12 is a diagram showing an outline of the circuit configuration of the LED illumination system in the third embodiment
  • FIG. 13 is a diagram showing a configuration example of the control circuit shown in FIG.
  • FIG. 12 shows an electric wiring installation space (upper side of the virtual line 403) with a virtual line 403 represented by a two-dot chain line as a boundary, a light control device Dm (light control box) to which the electrical wiring is connected, and a two-terminal LED.
  • the installation space (below the virtual line 403) of the LED illumination system LS in which the light emitting device 10 is disposed is illustrated.
  • the electrical wiring installation space is usually provided in the wall or behind the ceiling, and is isolated from the installation space of the LED lighting system LS by the wall or ceiling.
  • a pair of lighting device blinking wires 402 that are led out from the commercial power source bus 400 are provided.
  • the lead-in wire 402 is connected to a pair of terminals T1 and T2 on the input side of the light control device Dm.
  • the dimmer Dm has a pair of terminals T3 and T4 on the output side, and the terminals T3 and T4 are connected to the lighting device power supply line 401 (401a and 410b).
  • a two-terminal LED light emitting device 10 having a pair of terminals 101 and 102 is connected to the illuminator device power supply line 401.
  • the two-terminal LED light emitting device 10 is the same as the LED light emitting device 10 described in the first and second embodiments.
  • the dimmer Dm receives AC voltage from a commercial power source supplied from the terminals T1 and T2.
  • the light control device Dm includes a full-wave rectification type DC power supply circuit (hereinafter abbreviated as “power supply circuit”) 412.
  • the light control device Dm can provide a stable DC power supply regardless of the conduction state of the load by the power supply circuit 412.
  • the power supply circuit 412 is connected to the control circuit 413 via DC power supply lines 414 and 415.
  • the power supply circuit 412 becomes a DC power supply that supplies a DC voltage of approximately 140 V through the feeder lines 414 and 415 when there is no load.
  • the control circuit 413 includes an operation amount detection unit 417 connected to the operation unit 416, a control device 420, and a drive device 430.
  • the drive device 430 includes a drive logic circuit (control circuit) 431 and a drive circuit 432 that is an H-type bridge circuit.
  • the output terminal of the drive circuit 432 is connected to the terminals T3 and T4, and is connected to the two-terminal LED light-emitting device 10 via the illuminator device power supply line 401.
  • the two-terminal LED light-emitting device 10 is as described in the first embodiment, but the first LED element 1031 and the second LED element 1032 having different emission wavelength ranges are reversed in polarity.
  • a plurality of parallel LED element groups 103 connected in parallel with each other (in reverse polarity) are connected in series.
  • the operation unit 416 is an operation device for performing adjustment (light control) of luminance (light emission amount) of light emitted from the two-terminal LED light-emitting device 10 and adjustment (color control) of chromaticity (hue, color temperature). . More specifically, the operation unit 416 includes a light adjustment operation dial 416A and a color adjustment operation dial 416B. The user can adjust the luminance (light emission amount) and chromaticity (hue, color temperature) of the two-terminal LED light emitting device 10 by rotating the dials 416A and 416B.
  • the operation amount detection unit 417 is a signal generator that outputs a signal corresponding to the rotation amount (rotation angle) of the dial, which is the operation amount of each operation dial 416A, 416B.
  • the operation amount detector 417 includes a variable resistor 417A whose resistance value varies according to the rotation amount (rotation angle) of the operation dial 416A and a resistance according to the rotation amount (rotation angle) of the operation dial 416B. And a variable resistor 417B whose value varies.
  • the operation amount detection unit 417 is connected to the power supply circuit 412 via the wiring 405.
  • a predetermined DC voltage (for example, a maximum of 5 V at no load) generated from the commercial AC power supply by the power supply circuit 412 is applied to the operation amount detection unit 417 via the wiring 405.
  • a voltage (for example, a maximum of 5 V) corresponding to the resistance value of the variable resistor 417A is generated on the wiring (signal line) 418 connecting the operation amount detection unit 417 and the control device 420.
  • a voltage (for example, a maximum of 5 V) corresponding to the resistance value of the variable resistor 417B is generated in the wiring (signal line) 419 connecting the operation amount detection unit 417 and the control device 420.
  • the operation amount detection unit 417 generates a signal voltage corresponding to each operation amount of the operation dials 416A and 416B.
  • a slide bar is applicable.
  • a voltage (signal) corresponding to the movement amount instead of the rotation amount is generated by the operation amount detection unit 417.
  • the operation amount detector 417 outputs a voltage corresponding to the variable resistance value as a control signal.
  • a rotary encoder that detects the rotation amount (rotation angle) of the operation dials 416A and 416B may be provided, and a pulse indicating the rotation amount of the rotary encoder may be input to the control device 420. In this case, installation of an analog / digital converter for converting a voltage into a digital value as described later can be omitted.
  • the control device 420 is a control circuit that combines an analog / digital converter (A / D converter), a microcomputer (microcomputer: MP), a register, a timer, a counter, and the like.
  • a / D converter analog / digital converter
  • MP microcomputer
  • the microcomputer for example, a microprocessor with a built-in memory whose master clock operates at an operating frequency (for example, 4 MHz) from a crystal oscillator (not shown) can be applied. However, it is not limited to this.
  • the microcomputer loads an operation program recorded in a built-in ROM (Read Only Memory) (not shown) into a RAM (Random Access Memory) (not shown), and executes processing according to the program.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the A / D converter of the control device 420 outputs a digital value of the voltage generated on the signal line 418, and the digital value is set in a register (not shown).
  • the A / D converter outputs a digital value of the voltage generated on the signal line 419, and the digital value is set in a register (not shown).
  • the timer and counter included in the control device 420 are driven by a ceramic oscillator 421 that oscillates at a desired self-excited oscillation frequency (for example, 1 MHz), and wiring 424 connecting the control device 420 and the drive logic circuit 431. From 425, a complementary pulse is self-excited and output at a preset timing. For example, the complementary pulse is set in advance so that the repetition frequency becomes a predetermined frequency.
  • the microcomputer of the control device 420 performs control pulse generation processing for generating a control pulse (control signal) according to the digital value (the operation amount of the operation dials 416A and 416B) set in each register, and drives the generated pulse to drive logic. Supply (output) to the circuit 431. Note that pulses (control signals) generated by the microcomputer are supplied to the drive logic circuit 431 through the wirings 424 and 425.
  • the drive logic circuit 431 receives pulses (control signals) supplied from the wirings 424 and 425, and controls on / off operations (switching operations) of the transistors (switching elements) TR1 to TR4 according to the control signals. That is, the control circuit 431 turns off the transistors TR1 to TR4 when there is no pulse input from the wirings 424 and 425. On the other hand, while the positive pulse from the wiring 424 is input, the control circuit 431 turns on the transistors TR1 and TR4 while turning off the transistors TR2 and TR3. As a result, a direct current supplied from the power supply circuit 412 through the wiring 414 flows through the transistor TR1 to the power supply line 401a and is consumed for lighting the first LED element 1031. Thereafter, the current flows through the power supply line 401b and the transistor TR4 to the wiring 415 (grounded).
  • the drive logic circuit 431 turns on the transistors TR1 and TR4 while turning on the transistors TR2 and TR3.
  • a direct current supplied from the power supply circuit 412 through the wiring 414 flows through the transistor TR2 to the wiring 401b and is consumed for lighting the second LED element 1032. Thereafter, the current flows through the wiring 401a and the transistor TR3 to the wiring 415 (grounded).
  • the two-terminal LED light emitting device 10 is alternately supplied with a positive drive current and a negative drive current, which are similar to the pulse (control signal) output from the control device 420.
  • alternating currents having different polarities are supplied as drive currents to the first LED element 1031 and the second LED element 1032.
  • FIG. 14 is a waveform explanatory diagram of the drive current supplied to the two-terminal LED light-emitting device 10 when performing luminance adjustment.
  • the driving device 430 in one cycle (period T0), the driving device 430 outputs a positive pulse during a period T1 during which a positive control signal is supplied and outputs a negative pulse during a period T2 during which a negative control signal is supplied. To do.
  • the microcomputer in the control device 420 adjusts the duty ratio by performing pulse width modulation (PWM) control.
  • PWM pulse width modulation
  • the average current supplied to the first LED element 1031 and the second LED element 1032 in the two-terminal LED light-emitting device 10 depends on the ON time of the pulse. That is, the average current value of the drive current supplied to the LED elements 1031 and 1032 in one cycle increases as the ON time of the positive and negative pulses increases. On the contrary, the average current value supplied to each LED element 1031 and LED element 1032 of the two-terminal LED light emitting device 10 becomes smaller as the duty ratio becomes smaller and the pulse ON time becomes smaller.
  • FIG. 14A shows a pulse when the duty ratio is 1.
  • FIG. 14B shows a state in which the duty ratio in the periods T1 and T2 is lowered as compared with the state shown in FIG. 14A by PWM control of the microcomputer.
  • FIG. 14 (c) shows a state where the duty ratio is further lowered than the state shown in FIG. 14 (b). In this case, the pulse widths t1 and t2 of the positive and negative pulses are further reduced as compared with the state shown in FIG.
  • FIGS. 14A to 14C show a state in which the operation dial 416A for dimming is sequentially operated so as to decrease (decrease) the luminance (light emission amount) of the two-terminal LED light-emitting device 10.
  • the microcomputer of the control device 420 decreases the duty ratio by PWM control, so that the pulse ON times t1 and t2 are shortened.
  • the average current supplied to each parallel LED element group 103 of the two-terminal LED light emitting device 10 decreases, and the brightness of the output light output from each parallel LED element group 103 decreases (the amount of light emission decreases).
  • the ratio of the pulse on-time t1, t2 in one cycle does not change here.
  • luminance (light emission amount) of output light can be increased / decreased, without changing the chromaticity (hue, color temperature) of the 2 terminal LED light-emitting device 10.
  • FIG. 15 is a waveform explanatory diagram of the drive current supplied to the two-terminal LED light-emitting device 10 when performing chromaticity adjustment.
  • FIGS. 15A to 15C show the pulse states when the operation dial 416B is operated. When the operation dial 416B is operated, the microcomputer of the control device 420 changes the number of positive and negative pulses in one cycle (period T0) without changing the pulse width at that time.
  • the pulse widths t1 and t2 in the positive and negative half cycles are the same, and the ratio of the pulse on-time in the positive and negative half cycles is 4: 3.
  • the ratio of the pulse ON time in the positive and negative half cycles is changed to 3: 4.
  • the ratio of the pulse ON time in the positive and negative half cycles is changed to 2: 5.
  • the repetition frequency T0 (self-excited oscillation frequency) for outputting the positive and negative pulses described above can be determined between 30 Hz and 50 kHz, for example, from the viewpoint of human eye sensitivity, prevention of switching loss, and noise generation. Preferably, it is 50 Hz to 400 Hz. More preferably, it is 50 or 60 Hz to 120 Hz.
  • the self-excited oscillation frequency can be determined independently from the commercial power supply frequency, but does not prevent the selection of the same frequency as the commercial power supply frequency.
  • the control circuit 413 in this embodiment is provided with integrating circuits 450 and 440.
  • the integration circuit 450 feeds back a voltage proportional to the average value of the positive current for driving the first LED element 1031 to the control device 420
  • the integration circuit 440 is a negative voltage for driving the second LED element 1032.
  • a voltage proportional to the average value of the current is fed back to the control device 420.
  • the control device 420 observes the feedback voltage of the integrating circuits 440 and 450 using an A / D converter and uses it for generating a control signal (pulse).
  • the microcomputer of the control device 420 starts an initialization operation by a known method, loads an operation program recorded in a built-in ROM (Read Only Memory) (not shown) into a RAM (Random Access Memory) (not shown), and follows the program. Process.
  • the following operations and operations of the light control device 410 are performed.
  • the user turns the operation dial (operation knob) 416A to the right, for example, and sets the luminance (light emission amount) of the illumination to the maximum
  • a DC voltage of maximum 5.0 volts is generated on the signal line 418.
  • the control device 420 reads the voltage generated on the signal line 418 by converting it into a digital signal with a built-in A / D converter, and controls the drive logic circuit 431 of the drive circuit 430 via the signal lines 424 and 425.
  • the drive logic circuit 431 drives the drive circuit (H-type bridge) 432 according to the control signal. At that time, the drive circuit 432 is driven at 50 Hz which is a preset self-oscillation frequency.
  • the control signal waveform at this time is as shown in FIG. 14A, and during the time t1, which is the ON time of the positive pulse (control signal), a positive current flows through the feeder line 401a and emits light from the two-terminal LED.
  • the first LED element 1031 in the device 10 is turned on.
  • a time t2 which is the ON time of a negative pulse (control signal)
  • a negative current flows through the power supply line 401b to light the second LED element 1032 in the two-terminal LED light emitting device 10.
  • an alternating current of approximately 50 Hz is passed through the power supply line 401, the first LED element 1031 and the second LED element 1032 in the two-terminal LED light emitting device 10 are alternately lit.
  • the ratio of the current flowing at time t1 (individual current) and the current flowing at time t2 (individual current) is generated by the first LED element 1031 and the second LED element 1032 in the two-terminal LED light emitting device 10. It will dominate the chromaticity of the combined light.
  • the emission color of the two-terminal LED light emitting device 10 is slightly bluish. The color is white.
  • the microcomputer of the control device 420 converts the voltage into a digital signal and reads it with a built-in A / D converter, controls the driving of the driving device 430, and supplies an alternating current to the LED lighting system LS.
  • the pulse waveform at this time is in the state shown in FIG. That is, the ratio of the on time of the positive pulse in the period T1 and the on time of the negative pulse in the period T2 does not change, but since the duty ratio is reduced, one pulse at the maximum luminance has a plurality of pulse groups.
  • the pulse width of the positive pulse and the pulse width of the negative pulse are the same. Accordingly, since the average current is smaller than that at the maximum luminance, the luminance of the output light from the first LED element 1031 and the second LED element 1032 in the two-terminal LED light emitting device 10 is lowered.
  • the control device 420 converts the voltage value by the A / D converter and reads it, and controls the driving device 430 according to the voltage value. That is, as shown in FIG. 14C, the control device 420 further decreases the duty ratio of positive and negative pulses in the periods T1 and T2. As a result, the ratio of the on time of the positive pulse in the period T1 to the on time of the negative pulse in the period T2 does not change, and the pulse width of each pulse is further reduced. Thereby, since the average current is further reduced as compared with the case of the central luminance, both the output light from the first LED element 1031 and the second LED element 1032 in the two-terminal LED light emitting device 10 has the darkest luminance.
  • the current waveform shown in FIG. 14B is slightly bluish white because the average current for the first LED element 1031 is large for the second LED element 1032.
  • the user rotates the operation dial (toning knob) 416B to the left (counterclockwise). Then, the DC voltage (for example, about 4 volts) generated in the signal line 419 is reduced to, for example, about 3.0 volts.
  • the microcomputer of the control device 420 reads the digital value of the DC voltage of the signal line 419 converted by the A / D converter, and changes the pulse waveform for controlling the driving device 430.
  • the microcomputer of the control device 420 changes the pulse waveform supplied to the drive logic circuit 431 of the drive device 430 from the state shown in FIG. 14B to the state shown in FIG. That is, in the state shown in FIG. 14B, the microcomputer sets the ratio of the ON time between the positive current (pulse) and the negative current (pulse), which was 5: 2, to 4 as shown in FIG. : Change to 3.
  • the average current supplied to the first LED element 1031 decreases and the average current supplied to the second LED element 1032 increases.
  • the emission color of the two-terminal LED light-emitting device 10 that is, the color temperature
  • the ratio of the on-time of the pulse in the positive and negative cycles changes, but the total value (total value of the average current) of the pulses in each of the positive and negative cycles does not change, so the luminance of the two-terminal LED light emitting device 10 changes. do not do.
  • the user rotates the operation dial (chromaticity knob) 416B to the left (counterclockwise) to the limit in order to change the color temperature to the reddish white having the lowest color temperature.
  • the DC voltage of the signal line 419 which was about 3.0 volts, decreases to about 1.0 volts.
  • the microcomputer of the control device 420 detects the DC voltage of the digitally converted signal line 419, the microcomputer changes the control signal (pulse) for driving the full bridge driver 250 via the drive logic circuit 220. That is, the microcomputer gives a control signal to the driving device 430 so that the waveform of the current flowing through the power supply line 401a changes from FIG. 15 (a) to FIG. 15 (c).
  • the average current of the first LED element 1031 further decreases, while the average current of the second LED element 1032 further increases.
  • the color temperature of the two-terminal LED light-emitting device 10 is further lowered to exhibit a strong reddish white color. At this time, the overall luminance of the two-terminal LED light emitting device 10 does not change.
  • alternating current from an alternating current power source such as a commercial power source is converted into direct current, and alternating current (period) of a desired frequency based on the self-excited oscillation frequency is converted from the direct current.
  • alternating current (period) of a desired frequency based on the self-excited oscillation frequency is converted from the direct current.
  • the luminance (brightness) can be adjusted without changing the chromaticity (hue, color temperature) of the combined light output from the two-terminal LED light emitting device 10. Further, it is possible to adjust chromaticity (hue, color temperature) without changing luminance (lightness).
  • the transistors shown in the drawings of the above embodiments may be bipolar transistors or may be replaced with field effect transistors (FETs).
  • FETs field effect transistors
  • the two-terminal LED light-emitting device, the light control device, and the LED lighting system (device) according to the present invention are not limited to the embodiments, and can include combinations thereof as much as possible.

Abstract

An LED light-emitting device (10) to which an alternating current functioning as a drive current is supplied via a pair of terminals (101, 102), wherein a plurality of groups of parallel LED elements (103) is connected in series, the groups of parallel LED elements (103) being formed by connecting, in parallel, the opposite poles of one or a plurality of first LED elements (1031) and second LED elements (1032) which have a light-emitting wavelength that differs from one other.

Description

2端子LED発光デバイス及びそれを備えたLED照明装置Two-terminal LED light-emitting device and LED lighting device including the same
 本発明は、2端子LED発光デバイス及びそれを備えたLED照明装置に関する。 The present invention relates to a two-terminal LED light-emitting device and an LED lighting device including the same.
 近年、白熱電球や蛍光灯に代わる照明機器として、発光ダイオード(LED(Light Emitting Diode)を用いた照明装置が普及しつつある。ここで、交流電源からの交流電流をLED発光デバイスに供給してLED素子を駆動させるLED駆動回路がある。例えば、特許文献1には、交流源に対して極性を逆にして並列接続された二つのLED群が開示され、交流の正の半サイクルにおいては、LED群の一方が駆動し、交流の負の半サイクルにおいては、LED群の他方が駆動するように構成されたものがある。 In recent years, lighting devices using light emitting diodes (LEDs) have been widely used as lighting devices to replace incandescent bulbs and fluorescent lamps. Here, alternating current from an alternating current power source is supplied to LED light emitting devices. There is an LED drive circuit that drives an LED element, for example, Patent Document 1 discloses two LED groups connected in parallel with opposite polarity to an AC source, and in an AC positive half cycle, Some are configured such that one of the LED groups is driven and the other half of the LED group is driven in the negative negative half cycle.
特開2008-263203号公報JP 2008-263203 A
 上記のような交流電源からの交流電流によって駆動するLED発光デバイスにおいては、LED素子同士を接続する接続配線の数も多くなりがちであり、その点に関しては改善の余地があると考えられる。本発明は、上記事情に鑑みてなされたものであって、部品点数の削減を実現し、以って発光デバイスのコンパクト化、低コスト化を実現可能な2端子LED発光デバイスに関する技術を提供することを目的とする。 In the LED light emitting device driven by the AC current from the AC power source as described above, the number of connection wirings for connecting the LED elements tends to increase, and there is room for improvement in this respect. The present invention has been made in view of the above circumstances, and provides a technique related to a two-terminal LED light-emitting device that can reduce the number of components and thereby achieve a compact and low-cost light-emitting device. For the purpose.
 上記課題を解決するため本発明は以下の手段を採用する。すなわち、本発明は、発光波長域が相互に異なる第一及び第二のLED素子であって夫々が一又は複数からなる第一及び第二のLED素子を逆極並列に接続して形成される並列LED素子群を、更に複数直列に接続してなる、2端子LED発光デバイスである。また、本発明に係る2端子LEDデバイスは、第一のLED素子と、前記第一のLED素子と発光波長域が異なる第二のLED素子とを逆極並列に接続して形成される並列LED素子群と、アノード共有又はカソード共有で直列に接続された二つのツェナーダイオードによる2端子保護回路と、を備え、前記2端子保護回路は、複数直列に接続された前記並列LED素子群に並列に接続されている。この2端子LED発光デバイスの各端子には、駆動電流としての交流電流が供給されても良い。 In order to solve the above problems, the present invention employs the following means. That is, the present invention is formed by connecting first and second LED elements having different emission wavelength ranges, each of which is composed of one or more, in reverse polar parallel. It is a two-terminal LED light-emitting device formed by connecting a plurality of parallel LED element groups in series. The two-terminal LED device according to the present invention is a parallel LED formed by connecting a first LED element and a second LED element having a light emission wavelength range different from that of the first LED element in reverse polar parallel. An element group, and a two-terminal protection circuit including two Zener diodes connected in series by sharing an anode or a cathode, wherein the two-terminal protection circuit is parallel to the parallel LED element group connected in series. It is connected. An alternating current as a drive current may be supplied to each terminal of the two-terminal LED light emitting device.
 このように構成される2端子LED発光デバイスでは、例えば、交流による正負の各半サイクルで第一のLED素子及び第二のLED素子に供給される駆動電流の合計値の大きさを調整することで発光デバイス全体として発する白色光の輝度を調整し、また、第一のLED素子及び第二のLED素子に対する駆動電流の供給比率を変更することで、発光デバイス全体として発する白色光の色度(色相、色温度)を調整することが行われる。 In the two-terminal LED light-emitting device configured in this way, for example, the magnitude of the total value of the drive currents supplied to the first LED element and the second LED element in each positive and negative half cycle by alternating current is adjusted. The chromaticity of white light emitted from the entire light emitting device is adjusted by adjusting the luminance of the white light emitted from the entire light emitting device and changing the supply ratio of the drive current to the first LED element and the second LED element. (Hue, color temperature) is adjusted.
 上記構成のように、第一のLED素子及び第二のLED素子を互いに逆極並列に接続して並列LED素子群を形成し、複数の並列LED素子群を直列に配置するようにしたので、並列LED素子群の各々を接続する接続用配線を一本とすることができ、部品点数の削減を実現することができる。そして、この部品点数の削減効果は、2端子LED発光デバイスに含まれる並列LED素子群の数が多いほど顕著となり、2端子LED発光デバイスのコンパクト化(小型化)、低コスト化に資することができる。 As in the above configuration, the first LED element and the second LED element are connected in reverse polar parallel to each other to form a parallel LED element group, and a plurality of parallel LED element groups are arranged in series. One connection wiring for connecting each of the parallel LED element groups can be provided, and the number of parts can be reduced. The effect of reducing the number of parts becomes more prominent as the number of parallel LED element groups included in the two-terminal LED light-emitting device increases, which contributes to the compactness (miniaturization) and cost reduction of the two-terminal LED light-emitting device. it can.
 2端子LED発光デバイスに交流電流が供給される場合、各並列LED素子群における第一のLED素子及び第二のLED素子は、点灯(発光)用の電流が流れない正負の半サイクルに、逆バイアスが掛けられた状態になる。このような逆バイアス状態において、大電圧や大電流が発生すると、逆バイアス状態となっている方のLED素子を電流が逆流し、当該LED素子が破損する虞がある。これに対して、本発明に係る2端子LED発光デバイスにおいては、アノード共有又はカソード共有で直列に接続された二つのツェナーダイオードによる2端子保護回路を備え、複数直列に接続された前記並列LED素子群に並列に接続するようにした。各並列LED素子群に対してツェナーダイオードが並列に接続されているので、正負の半サイクルの夫々において、第一のLED素子及び第二のLED素子に対する逆方向の大電圧・大電流が生じた場合には、ツェナーダイオードのいずれか一方が降伏することで、逆方向の大電流を下流側へ流し、LED素子の破損を防止することができる。 When an alternating current is supplied to the two-terminal LED light-emitting device, the first LED element and the second LED element in each parallel LED element group are reversed in the positive and negative half cycles in which the current for lighting (light emission) does not flow. Biased. If a large voltage or large current is generated in such a reverse bias state, the current flows backward through the LED element in the reverse bias state, and the LED element may be damaged. On the other hand, in the two-terminal LED light emitting device according to the present invention, a plurality of the parallel LED elements connected in series, each having a two-terminal protection circuit including two Zener diodes connected in series by anode sharing or cathode sharing. The group was connected in parallel. Since Zener diodes are connected in parallel to each parallel LED element group, reverse large voltages and large currents have occurred in the first and second LED elements in each of the positive and negative half cycles. In such a case, if one of the Zener diodes breaks down, a large current in the reverse direction can be caused to flow downstream, and the LED element can be prevented from being damaged.
 また、本発明の2端子LED発光デバイスにおいて、前記第一のLED素子同士は全て同一極性となるように接続され、且つ前記第二のLED素子同士は全て同一極性となるように接続されても良い。このように、全ての第一のLED素子を同一極性に接続することで、これらを共通の制御系統で制御することができる。同様に、全ての第二のLED素子を同一極性に接続することで、これらを共通の制御系統で制御することができる。 Further, in the two-terminal LED light emitting device of the present invention, the first LED elements are all connected to have the same polarity, and the second LED elements are all connected to have the same polarity. good. Thus, by connecting all the first LED elements to the same polarity, these can be controlled by a common control system. Similarly, by connecting all the second LED elements to the same polarity, these can be controlled by a common control system.
 また、本発明においては、前記並列LED素子群の各々に一定電流を供給するための定電流手段を更に備えるようにしても良い。これにより、各並列LED素子群における第一のLED素子及び第二のLED素子に破損や劣化等が起こったり、発光特性が悪化する虞がない。 In the present invention, a constant current means for supplying a constant current to each of the parallel LED element groups may be further provided. Thereby, there is no possibility that the first LED element and the second LED element in each parallel LED element group are damaged or deteriorated, and the light emission characteristics are not deteriorated.
 また、本発明は、上述の何れかのLED発光デバイスを調光するための調光装置、及びLED発光デバイスと調光装置を備えた照明装置(システム)として捉えることも可能である。また、本明細書において、LEDには、有機エレクトロルミネッセンス(Organic Electro-Luminescence:有機EL)を含む概念である。 The present invention can also be understood as a dimming device for dimming any of the LED light emitting devices described above, and an illumination device (system) including the LED light emitting device and the dimming device. Moreover, in this specification, LED is a concept including organic electroluminescence (Organic Electro-Luminescence: organic EL).
 本発明によれば、駆動電流としての交流電流が供給される2端子LED発光デバイスにおいて、部品点数の削減を実現し、以って発光デバイスのコンパクト化、低コスト化を実現可能な技術を提供することができる。 According to the present invention, in a two-terminal LED light emitting device to which an alternating current as a drive current is supplied, a technology capable of realizing a reduction in the number of components and thus making the light emitting device compact and cost-effective is provided. can do.
第一実施形態に係るLED発光デバイスの第一の回路構成例を示す図である。It is a figure which shows the 1st circuit structural example of the LED light-emitting device which concerns on 1st embodiment. 第一実施形態に係るLED発光デバイスの第二の回路構成例を示す図である。It is a figure which shows the 2nd circuit structural example of the LED light-emitting device which concerns on 1st embodiment. 第一実施形態に係るLED発光デバイスの第三の回路構成例を示す図である。It is a figure which shows the 3rd circuit structural example of the LED light-emitting device which concerns on 1st embodiment. 第一実施形態に係るLED発光デバイスの第四の回路構成例を示す図である。It is a figure which shows the 4th circuit structural example of the LED light-emitting device which concerns on 1st embodiment. 図4における定電流回路の変形例を説明するための図である。It is a figure for demonstrating the modification of the constant current circuit in FIG. 第一実施形態に係るLED発光デバイスの第五の回路構成例を示す図である。It is a figure which shows the 5th circuit structural example of the LED light-emitting device which concerns on 1st embodiment. 第一実施形態に係るLED発光デバイスの第六の回路構成例を示す図である。It is a figure which shows the 6th circuit structural example of the LED light-emitting device which concerns on 1st embodiment. 第一実施形態に係るLED発光デバイスの第七の回路構成例を示す図である。It is a figure which shows the 7th circuit structural example of the LED light-emitting device which concerns on 1st embodiment. 第一実施形態に係るLED発光デバイスの第八の回路構成例を示す図である。It is a figure which shows the 8th circuit structural example of the LED light-emitting device which concerns on 1st embodiment. 第二実施形態に係る白色LED調光装置の回路構成例を示す図である。It is a figure which shows the circuit structural example of the white LED light modulation apparatus which concerns on 2nd embodiment. (A)は、調光回路に印加される商用電源波形を示し、(B)は、トリガダイオードに印加される電圧を示す。(A) shows the commercial power supply waveform applied to the dimming circuit, and (B) shows the voltage applied to the trigger diode. 第三実施形態におけるLED照明システムの回路構成の概略を示す図である。It is a figure which shows the outline of the circuit structure of the LED illumination system in 3rd embodiment. 第三実施形態における制御回路の構成例を示す図である。It is a figure which shows the structural example of the control circuit in 3rd embodiment. 第三実施形態において輝度調整を行う際にLED発光デバイスに供給される駆動電流の波形説明図である。It is waveform explanatory drawing of the drive current supplied to LED light emitting device when performing brightness | luminance adjustment in 3rd embodiment. 第三実施形態において色度調整を行う際にLED発光デバイスに供給される駆動電流の波形説明図である。It is waveform explanatory drawing of the drive current supplied to LED light emitting device when performing chromaticity adjustment in 3rd embodiment.
 以下、図面を参照して本発明に係るLED発光デバイスの実施形態について説明する。実施形態の構成は例示であり、本発明は実施形態の構成に限定されない。 Hereinafter, embodiments of an LED light emitting device according to the present invention will be described with reference to the drawings. The configuration of the embodiment is an exemplification, and the present invention is not limited to the configuration of the embodiment.
<第一実施形態>
[第一の回路構成例]
 図1は、本実施形態に係るLED発光デバイス10の第一の回路構成例を示す図である。本実施形態に係るLED発光デバイス10は、交流電源からの交流電流の供給を受け、駆動することで白色光を発光する2端子LEDデバイスである。
<First embodiment>
[First circuit configuration example]
FIG. 1 is a diagram illustrating a first circuit configuration example of the LED light emitting device 10 according to the present embodiment. The LED light emitting device 10 according to the present embodiment is a two-terminal LED device that emits white light by receiving and driving an alternating current from an alternating current power supply.
 2端子LED発光デバイス10は、二つの端子(一対の端子)101,102と、これら一対の端子101,102間には、複数の並列LED素子群103が直列に接続されている。この並列LED素子群103は、発光波長域が相互に異なる一組のLED素子、すなわち第一のLED素子1031と第二のLED素子1032とが、その極性を逆にして(逆極性で)相互に並列接続することで形成されている。すなわち、2端子LED発光デバイス10は、発光波長域が相互に異なる第一及び第二のLED素子1031,1032であってそれぞれ一又は複数個からなる第一及び第二のLED素子1031,1032を逆極並列に接続して形成される並列LED素子群103を、更に複数直列に接続してなる。ここで、LED素子群103を直列に接続する数は特定の数に限定されるものではない。また、図示のように、本実施形態における2端子LED発光デバイス10は、第一のLED素子同士1031は全て同一極性となるように接続され、且つ第二のLED素子1032同士は全て同一極性となるように接続されている。 The two-terminal LED light-emitting device 10 includes two terminals (a pair of terminals) 101 and 102 and a plurality of parallel LED element groups 103 connected in series between the pair of terminals 101 and 102. In this parallel LED element group 103, a pair of LED elements having different emission wavelength ranges, that is, the first LED element 1031 and the second LED element 1032 are reversed in polarity (reverse polarity). It is formed by connecting in parallel. That is, the two-terminal LED light-emitting device 10 includes first and second LED elements 1031 and 1032 each having one or a plurality of first and second LED elements 1031 and 1032 having different emission wavelength ranges. A plurality of parallel LED element groups 103 formed in reverse polar parallel connection are further connected in series. Here, the number of LED element groups 103 connected in series is not limited to a specific number. Moreover, as shown in the figure, the two-terminal LED light emitting device 10 in the present embodiment is connected so that the first LED elements 1031 have the same polarity, and the second LED elements 1032 have the same polarity. Connected to be.
 二つの端子101,102間には、交流電源から供給される交流電流が、並列LED素子群103に含まれる第一のLED素子1031と第二のLED素子1032を発光させるための駆動電流として通電される。各並列LED素子群103において、第一のLED素子1031と第二のLED素子1032は、逆極性で相互に並列接続されている(すなわち、逆極並列に接続されている)ため、正の電流の通電時(交流の正の半サイクル)には第一のLED素子1031と第二のLED素子1032の一方が点灯(発光)し、他方は消灯する。そして、負の電流の通電時(交流の負の半サイクル)には、第一のLED素子1031と第二のLED素子1032の一方が消灯し、他方は点灯(発光)する。このように、2端子LED発光デバイス10は、交流電源からの交流電流で駆動させることができる。 An AC current supplied from an AC power source is passed between the two terminals 101 and 102 as a drive current for causing the first LED element 1031 and the second LED element 1032 included in the parallel LED element group 103 to emit light. Is done. In each parallel LED element group 103, the first LED element 1031 and the second LED element 1032 are connected in parallel with each other in reverse polarity (that is, connected in reverse polar parallel), so that a positive current During the energization (positive AC half cycle), one of the first LED element 1031 and the second LED element 1032 is turned on (emits light) and the other is turned off. When a negative current is applied (negative half cycle of alternating current), one of the first LED element 1031 and the second LED element 1032 is extinguished and the other is lit (emits light). Thus, the two-terminal LED light emitting device 10 can be driven by an alternating current from an alternating current power source.
 ここで、第一のLED素子1031と第二のLED素子1032は、互いに異なるスペクトルの白色光を発する(発光波長域が異なる)LED素子である。例えば、第一のLED素子1031及び第二のLED素子1032の夫々は、発光波長が410nmで、順方向電流のときの端子電圧は3.5Vである。また、第一のLED素子1031には、発光波長410nmの光で刺激(励起)すると約5000K(ケルビン)の白色を発光する蛍光体が埋め込まれている。一方、第二のLED素子1032には、発光波長410nmの光で刺激(励起)すると約3000K(ケルビン)の白色を発光する蛍光体が埋め込まれている。但し、上記した第一のLED素子1031及び第二のLED素子1032における励起波長、発光する白色光の色度(色度は、色相及び色温度等を含む概念であり、以下同様。)、端子電圧等の各値は例示であり、適宜変更なし得る。 Here, the first LED element 1031 and the second LED element 1032 are LED elements that emit white light having different spectra (the emission wavelength ranges are different). For example, each of the first LED element 1031 and the second LED element 1032 has an emission wavelength of 410 nm and a terminal voltage at a forward current of 3.5 V. The first LED element 1031 is embedded with a phosphor that emits white light of about 5000 K (Kelvin) when stimulated (excited) with light having an emission wavelength of 410 nm. On the other hand, the second LED element 1032 is embedded with a phosphor emitting white light of about 3000 K (Kelvin) when stimulated (excited) with light having an emission wavelength of 410 nm. However, the excitation wavelength in the first LED element 1031 and the second LED element 1032 described above, the chromaticity of the emitted white light (the chromaticity is a concept including hue, color temperature, etc., and the same applies hereinafter), terminal. Each value such as voltage is an example, and may be changed as appropriate.
 このように構成される2端子LED発光デバイス10では、交流電源による正負の各半サイクルで第一及び第二のLED素子1031,1032に供給される駆動電流の合計値の大きさを増減することで、発光デバイス全体として発する白色光の輝度を調整することができる。また、第一及び第二のLED素子1031,1032に対する駆動電流の供給比率を変更することで、発光デバイス全体として発する白色光の色度(色相、色温度)を調整することができる。 In the two-terminal LED light emitting device 10 configured in this way, the magnitude of the total value of the drive current supplied to the first and second LED elements 1031 and 1032 is increased or decreased in each positive and negative half cycle by the AC power supply. Thus, it is possible to adjust the luminance of white light emitted from the entire light emitting device. Moreover, the chromaticity (hue, color temperature) of the white light emitted as the whole light emitting device can be adjusted by changing the supply ratio of the drive current to the first and second LED elements 1031 and 1032.
 そして、本実施形態に係る2端子LED発光デバイス10のように、各並列LED素子群103を2端子形とすることで、これらを互いに直列接続する接続用配線が一本で済むという利点がある。つまり、2端子LED発光デバイス10によれば、良好な発光特性を有し、且つ、2端子LED発光デバイス10の部品点数を少なくすることができる。これにより、2端子LED発光デバイス10のコンパクト化(小型化)、低コスト化に有利である。 And, like the two-terminal LED light-emitting device 10 according to the present embodiment, each parallel LED element group 103 is of a two-terminal type, so that there is an advantage that only one connection wiring is required to connect them in series. . That is, according to the two-terminal LED light-emitting device 10, it has good light-emitting characteristics and the number of components of the two-terminal LED light-emitting device 10 can be reduced. This is advantageous for making the two-terminal LED light emitting device 10 compact (downsizing) and cost reduction.
[第二の回路構成例]
 次に、図2は、本実施形態に係る2端子LED発光デバイスの第二の回路構成例を示す図である。ここでは、図1で説明した第一の回路構成例との相違点を中心として説明する。2端子LED発光デバイス10Aでは、互いに直接接続されるLED素子群103Aの構成が図1で説明した並列LED素子群103と相違する点を除き、2端子LED発光デバイス10と同等である。
[Second circuit configuration example]
Next, FIG. 2 is a diagram illustrating a second circuit configuration example of the two-terminal LED light emitting device according to the present embodiment. Here, the description will focus on differences from the first circuit configuration example described in FIG. The two-terminal LED light-emitting device 10A is the same as the two-terminal LED light-emitting device 10 except that the configuration of the LED element group 103A directly connected to each other is different from the parallel LED element group 103 described with reference to FIG.
 並列LED素子群103Aは、第一のLED素子1031と第二のLED素子1032をそれぞれ五個ずつ有している。第一のLED素子1031と第二のLED素子1032とは、第一の回路構成例と同様に互いに逆極性となるよう並列接続されている(すなわち、逆極並列に接続されている)。図1及び図2に示す構成例から判るように、本発明に係る2端子LED発光デバイスは、各LED素子群には第一のLED素子1031と第二のLED素子1032を、それぞれ一又は複数個、含ませることができる。また、一の並列LED素子群103Aに含める第一のLED素子1031と第二のLED素子1032の数は適宜変更することができ、また、第一のLED素子1031と第二のLED素子1032の数を同数としなくとも良い。 The parallel LED element group 103A has five first LED elements 1031 and five second LED elements 1032. The first LED element 1031 and the second LED element 1032 are connected in parallel so as to have opposite polarities as in the first circuit configuration example (that is, connected in reverse polar parallel). As can be seen from the configuration examples shown in FIGS. 1 and 2, the two-terminal LED light emitting device according to the present invention includes one or a plurality of first LED elements 1031 and second LED elements 1032 in each LED element group. Can be included. In addition, the number of the first LED elements 1031 and the second LED elements 1032 included in one parallel LED element group 103A can be changed as appropriate, and the first LED element 1031 and the second LED element 1032 can be changed. The number need not be the same.
[第三の回路構成例]
 次に、図3は、本実施形態に係る2端子LED発光デバイスの第三の回路構成例を示す図である。本構成例に係る2端子LED発光デバイス10Bでは、各LED素子の破損を防ぐための2端子保護回路104を有する点を除いて、図1で説明した2端子LED発光デバイス10の構成と共通である。2端子保護回路104は、カソード同士が連結された二つのツェナーダイオード1041,1042(定電圧ダイオード)からなる直列回路で形成されており、端子101、102間において、各並列LED素子群103に対して並列接続されている。つまり、図示の構成例では、カソード共有で直列に接続された二つのツェナーダイオード1041,1042からなる2端子保護回路104が各並列LED素子群103に並列接続されている。但し、連結される二つのツェナーダイオード1041,1042の向きを逆向き、すなわちアノード同士が連結されても良い。つまり、アノード共有で直列に接続された二つのツェナーダイオードからなる2端子保護回路104を各並列LED素子群103に並列接続しても良い。以上より、本実施形態に係る2端子保護回路104は、極性を相互に逆にして直列に接続された二つのツェナーダイオード1041,1042を含み、且つ、直列接続された並列LED素子群103に対して並列に接続されている。つまり、本構成例に係る2端子LED発光デバイス10Bは、第一のLED素子1031と、第一のLED素子1031と発光波長域が異なる第二のLED素子1032とを逆極並列に接続して形成される並列LED素子群103と、アノード共有又はカソード共有で直列に接続された二つのツェナーダイオードを含む2端子保護回路104と、を備え、2端子保護回路104は、複数直列に接続された並列LED素子群103に対して並列に接続されている。
[Third circuit configuration example]
Next, FIG. 3 is a diagram illustrating a third circuit configuration example of the two-terminal LED light emitting device according to the present embodiment. The two-terminal LED light-emitting device 10B according to this configuration example is common to the configuration of the two-terminal LED light-emitting device 10 described with reference to FIG. 1 except that the two-terminal LED light-emitting device 10B includes a two-terminal protection circuit 104 for preventing breakage of each LED element. is there. The two-terminal protection circuit 104 is formed of a series circuit composed of two Zener diodes 1041 and 1042 (constant voltage diodes) whose cathodes are connected to each other. Connected in parallel. That is, in the illustrated configuration example, a two-terminal protection circuit 104 including two Zener diodes 1041 and 1042 connected in series with a common cathode is connected in parallel to each parallel LED element group 103. However, the directions of the two Zener diodes 1041 and 1042 to be connected may be reversed, that is, the anodes may be connected. That is, a two-terminal protection circuit 104 including two Zener diodes connected in series with the anode shared may be connected in parallel to each parallel LED element group 103. As described above, the two-terminal protection circuit 104 according to the present embodiment includes the two Zener diodes 1041 and 1042 connected in series with opposite polarities, and the parallel LED element group 103 connected in series. Connected in parallel. In other words, the two-terminal LED light-emitting device 10B according to this configuration example connects the first LED element 1031 and the second LED element 1032 having a different emission wavelength range from the first LED element 1031 in reverse polar parallel. A parallel LED element group 103 to be formed, and a two-terminal protection circuit 104 including two Zener diodes connected in series by sharing an anode or a cathode, a plurality of two-terminal protection circuits 104 are connected in series. The parallel LED element group 103 is connected in parallel.
 ここで、端子101から端子102へ向けて正の電流が流れるときには、各並列LED素子群103における第二のLED素子1032には逆方向バイアスがかかる状態となる。この逆方向バイアスが大電圧であったり、正の電流が大電流である場合には、第二のLED素子1032を逆流し、第二のLED素子1032の破損に繋がる可能性がある。一方、端子102から端子101へ向けて正の電流が流れるときには、同様の観点から各並列LED素子群103における第一のLED素子1031に逆方向バイアスがかかる状態となるため、第一のLED素子1031の破損に繋がる可能性がある。 Here, when a positive current flows from the terminal 101 toward the terminal 102, the second LED element 1032 in each parallel LED element group 103 is in a reverse bias state. If the reverse bias is a large voltage or the positive current is a large current, the second LED element 1032 may flow backward, leading to damage of the second LED element 1032. On the other hand, when a positive current flows from the terminal 102 toward the terminal 101, the first LED element 1031 in each parallel LED element group 103 is reversely biased from the same viewpoint, and therefore the first LED element 1031 may be damaged.
 これに対し、図3に示す第三の回路構成例では、例えば端子101から端子102へ正の大電流が流れる場合において、各並列LED素子群103における第二のLED素子1032が破損する前にツェナーダイオード1042が降伏し、電流を端子102側へ流す。これによって、各並列LED素子群103における第二のLED素子1032の破損が防止される。また、このような第二のLED素子1032に対する逆方向過電圧破壊のみならず、端子101から端子102へ正の大電流が流れることに起因した順方向過電圧破壊から第一のLED素子1031を保護することも同時に可能となっている。 On the other hand, in the third circuit configuration example shown in FIG. 3, for example, when a large positive current flows from the terminal 101 to the terminal 102, the second LED element 1032 in each parallel LED element group 103 is damaged. The Zener diode 1042 breaks down, and current flows to the terminal 102 side. This prevents the second LED element 1032 in each parallel LED element group 103 from being damaged. The first LED element 1031 is protected not only from the reverse overvoltage breakdown with respect to the second LED element 1032 but also from the forward overvoltage breakdown caused by a large positive current flowing from the terminal 101 to the terminal 102. It is possible at the same time.
 逆に、端子101から端子102へ負の大電流が流れる場合(端子102から端子101へ正の大電流が流れる場合)には、2端子保護回路104のツェナーダイオード1041が降伏して電流を端子101側へ流す。これによって、各並列LED素子群103における第一のLED素子1031の破損が防止される。また、このような第一のLED素子1031に対する逆方向過電圧破壊のみならず、端子102から端子101へ正の大電流が流れることに起因した順方向過電圧破壊から第二のLED素子1032を保護することも同時に可能となっている。 Conversely, when a large negative current flows from the terminal 101 to the terminal 102 (when a large positive current flows from the terminal 102 to the terminal 101), the Zener diode 1041 of the two-terminal protection circuit 104 breaks down and the current is Flow to the 101 side. This prevents the first LED element 1031 in each parallel LED element group 103 from being damaged. In addition, the second LED element 1032 is protected not only from the reverse overvoltage breakdown with respect to the first LED element 1031 but also from the forward overvoltage breakdown caused by a large positive current flowing from the terminal 102 to the terminal 101. It is possible at the same time.
[第四の回路構成例]
 次に、図4は、本実施形態に係る2端子LED発光デバイスの第四の回路構成例を示す図である。本構成例に係る2端子LED発光デバイス10Cにおいては、並列LED素子群の各々に一定電流を供給するための定電流回路20(定電流手段)を備える。ここでは、符号20Aは第一定電流回路部であり、符号20Bは第二定電流回路部である。第一定電流回路部20Aは、各並列LED素子群103における第一のLED素子1031に供給される電流値を一定に保つために第二のLED素子1032への電流制限を行う回路である。また、第二定電流回路部20Bは、各並列LED素子群103における第二のLED素子1032に供給される電流値を一定に保つために第一のLED素子1031への電流制限を行う回路である。第一定電流回路部20A及び第二定電流回路部20Bは、図示のように逆極性で並列に接続されている。また、符号D1、D2は、逆流防止用のダイオードである。定電流回路20は、第一及び第二定電流回路部20A,20B、とダイオードD1,D2を含む。
[Fourth circuit configuration example]
Next, FIG. 4 is a diagram illustrating a fourth circuit configuration example of the two-terminal LED light-emitting device according to the present embodiment. The two-terminal LED light emitting device 10C according to this configuration example includes a constant current circuit 20 (constant current means) for supplying a constant current to each of the parallel LED element groups. Here, reference numeral 20A denotes a first constant current circuit unit, and reference numeral 20B denotes a second constant current circuit unit. The first constant current circuit unit 20A is a circuit that limits the current to the second LED element 1032 in order to keep the current value supplied to the first LED element 1031 in each parallel LED element group 103 constant. The second constant current circuit unit 20B is a circuit that limits the current to the first LED element 1031 in order to keep the current value supplied to the second LED element 1032 in each parallel LED element group 103 constant. is there. The first constant current circuit unit 20A and the second constant current circuit unit 20B are connected in parallel with opposite polarity as illustrated. Reference numerals D1 and D2 are backflow prevention diodes. The constant current circuit 20 includes first and second constant current circuit units 20A and 20B, and diodes D1 and D2.
 第一定電流回路部20Aは、二つのトランジスタTr1A,Tr2Aと、二つの抵抗R1A,R2Aを含んで構成されている。本構成例に係る2端子LED発光デバイス10Cに交流電源から交流電流が供給され、例えば正の半サイクルで端子101から端子102へ向けて正の電流が流れる場合、ダイオードD1には順方向バイアスが掛かり、ダイオードD2には逆方向バイアスが掛かる。その結果、交流電流は第一定電流回路部20A側を流れるが、第二定電流回路部20B側には流れない。 The first constant current circuit unit 20A includes two transistors Tr1A and Tr2A and two resistors R1A and R2A. When an alternating current is supplied from the alternating current power source to the two-terminal LED light emitting device 10C according to this configuration example, and a positive current flows from the terminal 101 to the terminal 102 in a positive half cycle, for example, the diode D1 has a forward bias. As a result, a reverse bias is applied to the diode D2. As a result, the alternating current flows on the first constant current circuit unit 20A side, but does not flow on the second constant current circuit unit 20B side.
 そのときに、トランジスタTr1Aのコレクタ電流が増加すると(すなわち、第一のLED素子1031に供給される電流が増加すると)、トランジスタTr1Aのエミッタ側に接続されている抵抗R1Aの電位降下が大きくなり、トランジスタTr2Aがオンする。これにより、トランジスタTr1Aのベース電流が減少し、結果としてトランジスタTr1Aのコレクタ電流が減少する。一方、トランジスタTr1Aのコレクタ電流が減少した場合には、上記とは逆の作用が起こることで、トランジスタTr1Aのコレクタ電流、すなわち第一のLED素子1031に供給される電流は一定に保たれることになる。 At that time, when the collector current of the transistor Tr1A increases (that is, when the current supplied to the first LED element 1031 increases), the potential drop of the resistor R1A connected to the emitter side of the transistor Tr1A increases. The transistor Tr2A is turned on. As a result, the base current of the transistor Tr1A decreases, and as a result, the collector current of the transistor Tr1A decreases. On the other hand, when the collector current of the transistor Tr1A decreases, the reverse operation occurs, so that the collector current of the transistor Tr1A, that is, the current supplied to the first LED element 1031 is kept constant. become.
 一方、例えば負の半サイクルで端子102から端子101へ向けて正の電流が流れる場合、ダイオードD2には順方向バイアスが掛かり、ダイオードD1には逆方向バイアスが掛かるようになる。その結果、交流電流は第二定電流回路部20B側を流れ、第一定電流回路部20A側には流れない。ここで、第二定電流回路部20Bは、第一定電流回路部20Aと同等の構成であり、二つのトランジスタTr1B,Tr2Bと、二つの抵抗R1B,R2Bを含んで構成されている。これら第二定電流回路部20BにおけるトランジスタTr1B,Tr2B、抵抗R1B,R2Bは、第一定電流回路部20AにおけるトランジスタTr1A,Tr2A、抵抗R1A,R2Aに対応しており、同等の機能を有する電子部品である。 On the other hand, for example, when a positive current flows from the terminal 102 to the terminal 101 in the negative half cycle, the diode D2 is forward-biased and the diode D1 is reverse-biased. As a result, the alternating current flows on the second constant current circuit unit 20B side and does not flow on the first constant current circuit unit 20A side. Here, the second constant current circuit unit 20B has a configuration equivalent to that of the first constant current circuit unit 20A, and includes two transistors Tr1B and Tr2B and two resistors R1B and R2B. The transistors Tr1B and Tr2B and the resistors R1B and R2B in the second constant current circuit unit 20B correspond to the transistors Tr1A and Tr2A and the resistors R1A and R2A in the first constant current circuit unit 20A, and have an equivalent function. It is.
 第二定電流回路部20Bの作動状況を説明すると、端子102から端子101へ向けて正の電流が流れる半サイクルにおいてトランジスタTr1Bのコレクタ電流が増加すると(すなわち、第二のLED素子1032に供給される電流が増加すると)、トランジスタTr1Bのエミッタ側に接続されている抵抗R1Bの電位降下が大きくなり、トランジスタTr2Bがオンする。これにより、トランジスタTr1Bのベース電流が減少し、結果としてトランジスタTr1Bのコレクタ電流が減少する。一方、トランジスタTr1Bのコレクタ電流が減少した場合には、上記とは逆の作用が起こることで、トランジスタTr1Bのコレクタ電流、すなわち第二のLED素子1032に供給される電流は一定に保たれることになる。 The operation state of the second constant current circuit unit 20B will be described. When the collector current of the transistor Tr1B increases in a half cycle in which a positive current flows from the terminal 102 to the terminal 101 (that is, supplied to the second LED element 1032). As the current increases, the potential drop of the resistor R1B connected to the emitter side of the transistor Tr1B increases, and the transistor Tr2B is turned on. As a result, the base current of the transistor Tr1B decreases, and as a result, the collector current of the transistor Tr1B decreases. On the other hand, when the collector current of the transistor Tr1B decreases, the reverse action occurs, so that the collector current of the transistor Tr1B, that is, the current supplied to the second LED element 1032 is kept constant. become.
 このようにして、本構成例に係る2端子LED発光デバイス10Cは、並列LED素子群103の各々に一定電流を供給するための定電流回路20を備えたので、第一及び第二のLED素子1031,1032に破損や劣化等が起こったり、発光特性が悪化する虞がない。定電流回路20は、第一及び第二定電流回路部20A,20B、とダイオードD1,D2を含む。なお、図4に示す2端子LED発光デバイス10Cにおいては、並列LED素子群103に対して、図3に示した2端子保護回路104を並列に接続しても良い。つまり、図4に示した2端子LED発光デバイス10Cは、図1に示した2端子LED発光デバイス10に対して定電流回路20を組み合わせた回路に等価であるが、これに限られず、例えば、図3に示した2端子LED発光デバイス10Bに定電流回路20を組み合わせて2端子LED発光デバイス10Cを構成するようにしても良い。 Thus, since the two-terminal LED light emitting device 10C according to the present configuration example includes the constant current circuit 20 for supplying a constant current to each of the parallel LED element groups 103, the first and second LED elements There is no possibility that 1031, 1032 will be damaged or deteriorated, or that the light emission characteristics will be deteriorated. The constant current circuit 20 includes first and second constant current circuit units 20A and 20B, and diodes D1 and D2. In the two-terminal LED light emitting device 10 </ b> C shown in FIG. 4, the two-terminal protection circuit 104 shown in FIG. 3 may be connected in parallel to the parallel LED element group 103. That is, the two-terminal LED light-emitting device 10C shown in FIG. 4 is equivalent to a circuit in which the constant-current circuit 20 is combined with the two-terminal LED light-emitting device 10 shown in FIG. A two-terminal LED light emitting device 10C may be configured by combining the constant current circuit 20 with the two-terminal LED light emitting device 10B shown in FIG.
 図5は、図4における定電流回路の変形例を説明するための図である。図5に示すように、図4に示した定電流回路20に代えて、図5に示す定電流回路20’を2端子LED発光デバイス10Cに採用することで、各並列LED素子群103における第一及び第二のLED素子1031,1032に供給される電流値を一定に保持するようにしても良い。図4及び図5において共通の電子部品については同一符号を付す。定電流回路20’は、第一及び第二定電流回路部20A,20B、とダイオードD1,D2を含む。 FIG. 5 is a diagram for explaining a modification of the constant current circuit in FIG. As shown in FIG. 5, instead of the constant current circuit 20 shown in FIG. 4, the constant current circuit 20 ′ shown in FIG. The current value supplied to the first and second LED elements 1031 and 1032 may be kept constant. In FIG. 4 and FIG. 5, the same reference numerals are assigned to common electronic components. The constant current circuit 20 'includes first and second constant current circuit portions 20A and 20B and diodes D1 and D2.
 図5において、第一定電流回路部20Aと第二定電流回路部20Bは、相互に逆極性に且つ直列に接続されている。また、互いに逆極性として直接接続された二つのダイオードD1,D2が、これら第一及び第二定電流回路部20A,20Bに対して並列に接続されている。また、図示のように、第一定電流回路部20A及び第二定電流回路部20B間に形成された端子と、ダイオードD1及びダイオードD2間に形成された端子とが、配線によって結ばれている。 In FIG. 5, the first constant current circuit unit 20A and the second constant current circuit unit 20B are connected in series with opposite polarities. Further, two diodes D1 and D2 directly connected as opposite polarities are connected in parallel to the first and second constant current circuit units 20A and 20B. Further, as illustrated, a terminal formed between the first constant current circuit unit 20A and the second constant current circuit unit 20B and a terminal formed between the diode D1 and the diode D2 are connected by wiring. .
 上記構成による定電流回路20’は、図4で説明した定電流回路20と等価な回路である。すなわち、例えば正の半サイクルで端子101から端子102へ向けて正の電流が流れる場合、ダイオードD1には順方向バイアスが掛かり、ダイオードD2には逆方向バイアスが掛かる。その結果、この半サイクルにおける電流は第二定電流回路部20Bをシャント(バイパス)して第一定電流回路部20Aを流れる。そして、この半サイクルにおいて、第一定電流回路部20Aが図4で説明したのと同様に作動することで、第一のLED素子1031に供給される電流が一定に保たれるのである。 The constant current circuit 20 'having the above configuration is a circuit equivalent to the constant current circuit 20 described in FIG. That is, for example, when a positive current flows from the terminal 101 to the terminal 102 in the positive half cycle, the diode D1 is forward biased and the diode D2 is reverse biased. As a result, the current in this half cycle shunts (bypasses) the second constant current circuit unit 20B and flows through the first constant current circuit unit 20A. In this half cycle, the current supplied to the first LED element 1031 is kept constant by operating the first constant current circuit section 20A in the same manner as described in FIG.
 一方、例えば負の半サイクルで端子102から端子101へ向けて正の電流が流れる場合、ダイオードD2には順方向バイアスが掛かり、ダイオードD1には逆方向バイアスが掛かる。その結果、この半サイクルにおける電流は第一定電流回路部20Aをシャント(バイパス)して第二定電流回路部20Bを流れる。そして、この半サイクルにおいては、第二定電流回路部20Bが図4で説明したのと同様に作動することで、第二のLED素子1032に供給される電流が一定に保たれるのである。ここで、図5に示す2端子LED発光デバイス10Cにおいては、並列LED素子群103に対して、図3に示した2端子保護回路104を並列に接続しても良い。つまり、図5に示した2端子LED発光デバイス10Cは、図1に示した2端子LED発光デバイス10に対して定電流回路20’を組み合わせた回路に等価であるが、これに限られず、例えば、図3に示した2端子LED発光デバイス10Bに定電流回路20’を組み合わせて2端子LED発光デバイス10Cを構成するようにしても良い。なお、図4及び図5において説明した定電流回路20,20’の代わりに、定電流ダイオード(CRD, Current Regulative Diode)等を採用することで、同様の作用効果を実現するようにしても良い。また、図4及び図5において、トランジスタは図示のようなバイポーラトランジスタであっても良いし、このバイポーラトランジスタを電界効果トランジスタ(Field effect transistor、FET)に置き換えても良い。ダイオードD1、D2は、バイポーラトランジスタに替えてFETを用いる際には省略できる場合がある。FETは発熱量が少なく、LED素子を並列接続するのに好適である。 On the other hand, for example, when a positive current flows from the terminal 102 to the terminal 101 in the negative half cycle, the diode D2 is forward-biased and the diode D1 is reverse-biased. As a result, the current in this half cycle shunts (bypasses) the first constant current circuit unit 20A and flows through the second constant current circuit unit 20B. In this half cycle, the second constant current circuit unit 20B operates in the same manner as described with reference to FIG. 4, so that the current supplied to the second LED element 1032 is kept constant. Here, in the two-terminal LED light emitting device 10 </ b> C shown in FIG. 5, the two-terminal protection circuit 104 shown in FIG. 3 may be connected in parallel to the parallel LED element group 103. That is, the two-terminal LED light-emitting device 10C shown in FIG. 5 is equivalent to a circuit in which the constant-current circuit 20 ′ is combined with the two-terminal LED light-emitting device 10 shown in FIG. The two-terminal LED light-emitting device 10C shown in FIG. 3 may be combined with the constant-current circuit 20 ′ to form the two-terminal LED light-emitting device 10C. It should be noted that, by using a constant current diode (CRD, Current Regulative Diode) or the like instead of the constant current circuits 20 and 20 ′ described in FIG. 4 and FIG. . 4 and 5, the transistor may be a bipolar transistor as shown in the figure, or the bipolar transistor may be replaced with a field effect transistor (FET). The diodes D1 and D2 may be omitted when an FET is used instead of the bipolar transistor. The FET generates a small amount of heat and is suitable for connecting LED elements in parallel.
 図6は、本実施形態に係る2端子LED発光デバイスの第五の回路構成例を示す図である。図7は、本実施形態に係る2端子LED発光デバイスの第六の回路構成例を示す図である。 FIG. 6 is a diagram showing a fifth circuit configuration example of the two-terminal LED light-emitting device according to this embodiment. FIG. 7 is a diagram illustrating a sixth circuit configuration example of the two-terminal LED light-emitting device according to this embodiment.
 図6に示す2端子LED発光デバイス10Dは、二つの端子101、102と、二つの端子101、102間に極性を逆にして並列接続された第1LED群203と、第2LED群204とを備えている。第1LED群203及び第2LED群204とで、LED発光部を構成する。 A two-terminal LED light-emitting device 10D shown in FIG. 6 includes two terminals 101 and 102, a first LED group 203 connected in parallel with the opposite polarity between the two terminals 101 and 102, and a second LED group 204. ing. The first LED group 203 and the second LED group 204 constitute an LED light emitting unit.
 第1LED群203及び第2LED群204の夫々は、直列接続された1以上の所定数のLED素子からなる。第1LED群203及び第2LED群204を構成するLED素子の数は適宜設定可能である。また、第1及び第2LED群203、204を構成するLED素子の数が同数であることは必須の要件ではなく、第1及び第2LED群203,204の夫々は、所望数のLED素子から構成することができる。 Each of the first LED group 203 and the second LED group 204 includes one or more predetermined numbers of LED elements connected in series. The number of LED elements constituting the first LED group 203 and the second LED group 204 can be set as appropriate. In addition, it is not an essential requirement that the number of LED elements constituting the first and second LED groups 203 and 204 is the same, and each of the first and second LED groups 203 and 204 is composed of a desired number of LED elements. can do.
 2端子LED発光デバイス10Dは、端子101,102間に交流電流が供給された場合に、第1LED群203及び第2LED群204の一方(例えば第1LED群203)が交流電流の正の半サイクルで発光し、他方(例えば第2LED群204)が負の半サイクルで発光する。このように、2端子LED発光デバイスDは、交流源からの交流電流で駆動させることができる。 In the two-terminal LED light emitting device 10D, when an alternating current is supplied between the terminals 101 and 102, one of the first LED group 203 and the second LED group 204 (for example, the first LED group 203) is a positive half cycle of the alternating current. Light is emitted, and the other (for example, the second LED group 204) emits light in a negative half cycle. Thus, the two-terminal LED light-emitting device D can be driven with an alternating current from an alternating current source.
 第1LED群203と第2LED群204とは、同一の発光特性を有していても良い。或いは、第1及び第2LED群203,204は、異なるスペクトル特性を有し、色温度や色(発光波長域)が異なっていても良い。 The first LED group 203 and the second LED group 204 may have the same light emission characteristics. Alternatively, the first and second LED groups 203 and 204 may have different spectral characteristics and may have different color temperatures and colors (light emission wavelength ranges).
 例えば、第1LED群203と第2LED群204とが、夫々白色を発する白色光源であり、異なるスペクトルを発する(発光波長域が異なる)場合には、正負の各サイクルで第1及び第2LED群203,204に供給される駆動電流の合計値の大きさを増減することで、LED発光部の輝度を調整できる。また、第1及び第2LED群203,204への駆動電流の比率を変えることで、LED発光部の発光の色温度を変えることができる。これにより、白色光の色温度を例えば電球色から昼白色の広範囲に亘って変えることができる。 For example, when the first LED group 203 and the second LED group 204 are white light sources that emit white light and emit different spectra (light emission wavelength ranges are different), the first and second LED groups 203 in each positive and negative cycle. , 204, the luminance of the LED light emitting unit can be adjusted by increasing / decreasing the total value of the drive currents supplied to. Further, by changing the ratio of the drive current to the first and second LED groups 203 and 204, it is possible to change the color temperature of light emission of the LED light emitting unit. Thereby, the color temperature of white light can be changed over a wide range, for example, from a light bulb color to daylight white.
 2端子LED発光デバイス10Dは、さらに、端子101,102間で第1LED群203及び第2LED群204に対して並列接続された第1の保護回路205、及び第2の保護回路206を含んでいる。保護回路205は、アノード同士が連結されたツェナーダイオード207とダイオード208とを含み、第1及び第2LED群203、204に対して並列接続されている。一方、保護回路206は、カソード同士が連結されたツェナーダイオード209及びダイオード210を含み、第1及び第2LED群203、204に対して並列接続されている。 The two-terminal LED light emitting device 10D further includes a first protection circuit 205 and a second protection circuit 206 that are connected in parallel to the first LED group 203 and the second LED group 204 between the terminals 101 and 102. . The protection circuit 205 includes a Zener diode 207 and a diode 208 having anodes connected to each other, and is connected in parallel to the first and second LED groups 203 and 204. On the other hand, the protection circuit 206 includes a Zener diode 209 and a diode 210 whose cathodes are connected to each other, and are connected in parallel to the first and second LED groups 203 and 204.
 上記構成によれば、端子101から端子102へ向けて正の電流が流れるとき、第1LED群203には逆方向バイアスがかかる状態となる。この逆方向バイアスが大電圧であったり、正の電流が大電流である場合には、電流が第1LED群203を逆流し、第1LED群203が破損する可能性がある。これは、端子102から端子102へ向けて正の電流が流れるときに、第2LED群204についても起こり得る。 According to the above configuration, when a positive current flows from the terminal 101 to the terminal 102, the first LED group 203 is in a state in which a reverse bias is applied. If this reverse bias is a large voltage or if the positive current is a large current, the current may flow backward through the first LED group 203 and the first LED group 203 may be damaged. This can also occur for the second LED group 204 when a positive current flows from the terminal 102 toward the terminal 102.
 これに対し、2端子LED発光デバイス10Dでは、端子101から端子102へ正の大電流が流れる場合において、第1LED群203が破損する前に、ツェナーダイオード207が降伏し、電流を端子102側へ流す。これによって、第1LED群203の破損を防止することができる。 On the other hand, in the two-terminal LED light emitting device 10D, when a positive large current flows from the terminal 101 to the terminal 102, the Zener diode 207 breaks down before the first LED group 203 is damaged, and the current flows to the terminal 102 side. Shed. Thereby, damage to the first LED group 203 can be prevented.
 逆に、端子101から端子102へ負の大電流が流れる場合(端子102から端子101へ正の大電流が流れる場合)には、保護回路206のツェナーダイオード209が降伏して電流を端子101側へ流す。これによって、第2LED群204が破損することを防止することができる。なお、図6において、ダイオード208,210は省略されていても良い。この場合、ツェナーダイオード207,209が、個別に、第1LED群203及び第2LED群204に対して並列接続された状態となる。 Conversely, when a large negative current flows from the terminal 101 to the terminal 102 (when a large positive current flows from the terminal 102 to the terminal 101), the Zener diode 209 of the protection circuit 206 breaks down and the current flows to the terminal 101 side. To flow. Thereby, it is possible to prevent the second LED group 204 from being damaged. In FIG. 6, the diodes 208 and 210 may be omitted. In this case, the Zener diodes 207 and 209 are individually connected in parallel to the first LED group 203 and the second LED group 204.
 図7に示す保護回路211は、図6に示す保護回路205及び206の等価回路を示す。保護回路211は、カソード同士が連結された二つのツェナーダイオード212,213からなる直列回路で形成されており、端子101、102間において、第1LED群203及び第2LED群204に対して並列接続されている。但し、連結される二つのツェナーダイオード212,213の向きは逆であってもよい(アノード同士が連結されても良い)。 7 shows an equivalent circuit of the protection circuits 205 and 206 shown in FIG. The protection circuit 211 is formed of a series circuit including two Zener diodes 212 and 213 in which cathodes are connected to each other, and is connected in parallel to the first LED group 203 and the second LED group 204 between the terminals 101 and 102. ing. However, the directions of the two Zener diodes 212 and 213 to be connected may be reversed (the anodes may be connected to each other).
 図7に示す2端子LED発光デバイス10Eによれば、端子101側からの正の大電流に対しては、ツェナーダイオード213が降伏することで、第1LED群203を保護することができる。一方、端子101側からの負の大電流(端子102から端子101へ流れる正の電流)に対しては、ツェナーダイオード212が降伏することで、第2LED群204を保護することができる。 According to the two-terminal LED light emitting device 10E shown in FIG. 7, the first LED group 203 can be protected by the breakdown of the Zener diode 213 against a positive large current from the terminal 101 side. On the other hand, the second LED group 204 can be protected by the breakdown of the Zener diode 212 against a negative large current (positive current flowing from the terminal 102 to the terminal 101) from the terminal 101 side.
 図8、9は、図6、7に示した保護回路を適用し得る2端子LED発光デバイスの第七及び第八の回路構成例を示し、2端子LED発光デバイス10F,100Gに対し、保護回路211を適用した例が図示されている。 8 and 9 show seventh and eighth circuit configuration examples of the two-terminal LED light-emitting device to which the protection circuit shown in FIGS. 6 and 7 can be applied, and a protection circuit for the two-terminal LED light-emitting devices 10F and 100G. An example to which 211 is applied is shown.
 図8に示す2端子LED発光デバイス10Fは、一対の端子101、102間において、並列接続された第1LED222と第2LED223とからなるLED並列回路である並列LED素子群221が複数個直列接続されてなる。第1LED222及び第2LED223の夫々は、少なくとも1つのLED素子を含む。第1LED222及び第2LED223の構成は、第1LED群203、第2LED群204の構成を適用することが可能である。保護回路211は、直列接続された複数の並列LED素子群221に対して並列接続される。 In the two-terminal LED light emitting device 10F shown in FIG. 8, a plurality of parallel LED element groups 221 that are LED parallel circuits composed of a first LED 222 and a second LED 223 connected in parallel are connected in series between a pair of terminals 101 and 102. Become. Each of the first LED 222 and the second LED 223 includes at least one LED element. The configurations of the first LED group 203 and the second LED group 204 can be applied to the configuration of the first LED 222 and the second LED 223. The protection circuit 211 is connected in parallel to a plurality of parallel LED element groups 221 connected in series.
 2端子LED発光デバイス10Fによれば、端子101から端子102へ向けて大電流が流れる場合に、各第1LED222が破損する前に、ツェナーダイオード213が降伏することによって、第1LED222が保護される。逆に、端子102から端子101へ大電流が流れる場合には、ツェナーダイオード212が降伏することによって、各第2LED223の破損が防止される。 According to the two-terminal LED light emitting device 10F, when a large current flows from the terminal 101 to the terminal 102, the first LED 222 is protected by the breakdown of the Zener diode 213 before each first LED 222 is damaged. Conversely, when a large current flows from the terminal 102 to the terminal 101, the Zener diode 212 breaks down, thereby preventing the second LEDs 223 from being damaged.
 図9に示す2端子LED発光デバイス10Gは、複数の第1LED222と、複数の第2LED223とが並列接続された並列LED素子群224が並列LED素子群221の代わりに適用されている点で、2端子LED発光デバイス10Fと異なる。その他の点は、2端子LED発光デバイス10Fと同じであるので、詳細な説明は省略する。なお、ツェナーダイオード212、223は、各LED並列回路221、224に対して個別に設けられていても良い。また、2端子LED発光デバイス10F、10Gに対して保護回路211を適用した例を示したが、2端子LED発光デバイス10F、10Gに対して保護回路205,206が適用されていても良い。 The two-terminal LED light-emitting device 10G shown in FIG. 9 is different in that a parallel LED element group 224 in which a plurality of first LEDs 222 and a plurality of second LEDs 223 are connected in parallel is applied instead of the parallel LED element group 221. Different from the terminal LED light emitting device 10F. Since other points are the same as the two-terminal LED light-emitting device 10F, detailed description thereof is omitted. The Zener diodes 212 and 223 may be individually provided for the LED parallel circuits 221 and 224. Moreover, although the example which applied the protection circuit 211 with respect to 2 terminal LED light-emitting device 10F, 10G was shown, the protection circuit 205,206 may be applied with respect to 2 terminal LED light-emitting device 10F, 10G.
 上記2端子LED発光デバイス10D~Gによれば、保護回路205及び206又は保護回路211が設けられていることで、端子101と端子102との間に、第1LED群203(第1LED222)及び第2LED群204(第2LED223)の一方に対して逆方向の大電流が発生した場合にも、ツェナーダイオードの降伏によって第1LED群203(第1LED222)及び第2LED群204(第2LED223)を保護し、これらの破損を防止することができる。 According to the two-terminal LED light-emitting devices 10D to 10G, the protection circuits 205 and 206 or the protection circuit 211 are provided, so that the first LED group 203 (first LED 222) and the first LED are between the terminal 101 and the terminal 102. Even when a large current in the reverse direction occurs with respect to one of the two LED groups 204 (second LED 223), the first LED group 203 (first LED 222) and the second LED group 204 (second LED 223) are protected by breakdown of the Zener diode, These damages can be prevented.
 図6~9に示した例では、2端子LED発光デバイス(LED回路)と保護回路とが一体となった保護回路付きLED回路を模式的に示したが、LED回路と保護回路とは物理的に別体(チップ、パッケージ、モジュールなど)で形成され、必要に応じて保護回路がLED回路に接続されるようになっていても良い。また、図6~9に示した2端子LED発光デバイスに対して、図4に示した定電流回路20、あるいは図5に示した定電流回路20’を組み合わせても良い。 In the examples shown in FIGS. 6 to 9, the LED circuit with the protection circuit in which the two-terminal LED light emitting device (LED circuit) and the protection circuit are integrated is schematically shown. The protection circuit may be connected to the LED circuit as needed. Further, the constant current circuit 20 shown in FIG. 4 or the constant current circuit 20 ′ shown in FIG. 5 may be combined with the two-terminal LED light emitting device shown in FIGS.
 なお、上述までの2端子LED発光デバイスにおいて、端子101と端子102との所定位置(例えば端子101と各LED(群)との間)にヒューズを設け、大電流の発生時にヒューズが切れることで、各LED(群)が保護されるようにしても良い。 In the two-terminal LED light emitting device described above, a fuse is provided at a predetermined position between the terminal 101 and the terminal 102 (for example, between the terminal 101 and each LED (group)), and the fuse is blown when a large current is generated. Each LED (group) may be protected.
<第二実施形態>
 次に、第二実施形態について説明する。ここでは、第一実施形態において説明した各発光デバイスを、その制御装置である調光装置Dmに実装した場合の実施形態について例示的に詳しく説明する。図10は、本実施形態に係る調光装置(調色装置)の回路構成例を示す図である。図10において、調光装置Dmには、上述した第一乃至第八回路構成例の何れの発光デバイスも好適に適用することができ、発光デバイスの備えるLED素子の発光により得られる白色照明光の色度(色相、色温度)を調整する。ここでは、図1において説明した2端子LED発光デバイス10(第一の回路構成例)を調光装置Dmに実装する例を説明するが、これに代えて他の回路構成例に係る2端子LED発光デバイス(10A~10G)を組み込むようにしても勿論構わない。
<Second embodiment>
Next, a second embodiment will be described. Here, an embodiment in which each light emitting device described in the first embodiment is mounted on the light control device Dm that is the control device will be described in detail as an example. FIG. 10 is a diagram illustrating a circuit configuration example of the light control device (color control device) according to the present embodiment. In FIG. 10, any of the light emitting devices of the first to eighth circuit configuration examples described above can be suitably applied to the light control device Dm, and the white illumination light obtained by the light emission of the LED element included in the light emitting device can be used. Adjust the chromaticity (hue, color temperature). Here, an example will be described in which the two-terminal LED light-emitting device 10 (first circuit configuration example) described in FIG. 1 is mounted on the dimming device Dm. Instead, the two-terminal LED according to another circuit configuration example is described. Of course, it does not matter if a light emitting device (10A to 10G) is incorporated.
 本図において、2端子LED発光デバイス10の構成については既述のため、ここでの詳細な説明は割愛する。調光装置Dmは、交流電源入力端子1、トライアック30、トリガダイオード40、時定数回路50、ヒステリシス除去回路70、保護回路80等を有している。 In this figure, since the configuration of the two-terminal LED light-emitting device 10 has already been described, a detailed description thereof is omitted here. The light control device Dm includes an AC power supply input terminal 1, a triac 30, a trigger diode 40, a time constant circuit 50, a hysteresis removal circuit 70, a protection circuit 80, and the like.
 交流電源入力端子1は、商用電源(交流100V)からの電力を調光回路内に供給するための端子であり、商用電源に接続するためのプラグを含む。交流電源入力端子1の一方は、2端子LED発光デバイス10の入力端子101に接続されている。 The AC power input terminal 1 is a terminal for supplying power from a commercial power supply (AC 100 V) into the dimming circuit, and includes a plug for connecting to the commercial power supply. One of the AC power supply input terminals 1 is connected to the input terminal 101 of the two-terminal LED light emitting device 10.
 トライアック30は、2端子LED発光デバイス10の入力端子102に接続されており、各並列LED素子群103に対する交流1サイクル中の通電期間において、交流電源入力端子1のから入力された交流電流を通電する。トライアック30は、半サイクルの或る時点でオン(点弧)すると、当該半サイクルが終了するまで端子102に対して正又は負の電流を供給し続ける。 The triac 30 is connected to the input terminal 102 of the two-terminal LED light-emitting device 10, and energizes the alternating current input from the alternating-current power supply input terminal 1 during the energization period during one alternating cycle for each parallel LED element group 103. To do. When the triac 30 is turned on (ignited) at a certain point in a half cycle, it continues to supply a positive or negative current to the terminal 102 until the half cycle ends.
 トリガダイオード40は、トライアック30が点弧するためのトリガ信号をトライアック30に供給する。時定数回路50は、トリガダイオード40がトライアック30にトリガ信号を供給するタイミングを制御する。時定数回路50は、直列接続されたダイオード51,抵抗器52,及び可変抵抗器53と、直列接続されたダイオード61,抵抗器62,可変抵抗器63と、キャパシタ(コンデンサ)54とを有し、トリガダイオード40に接続されている。可変抵抗器53,63には、これらの抵抗値を個別に調整するための操作部(つまみなど)が設けられる。 The trigger diode 40 supplies the triac 30 with a trigger signal for the triac 30 to fire. The time constant circuit 50 controls the timing at which the trigger diode 40 supplies a trigger signal to the triac 30. The time constant circuit 50 includes a diode 51, a resistor 52, and a variable resistor 53 connected in series, a diode 61, a resistor 62, a variable resistor 63, and a capacitor (capacitor) 54 connected in series. The trigger diode 40 is connected. The variable resistors 53 and 63 are provided with an operation unit (such as a knob) for individually adjusting these resistance values.
 抵抗器52,可変抵抗器53及びキャパシタ54は、交流の正の半サイクル(サイクル前半)においてトリガダイオード40への印加電圧をチャージするCR時定数回路を構成し、これらの抵抗値及び容量値で決まる時定数に従ってトリガダイオード40をオンにする。ダイオード51は、逆流防止用のダイオードである。一方、抵抗器62,可変抵抗器63及びキャパシタ54は、交流の負の半サイクル(サイクル後半)においてトリガダイオード40への印加電圧をチャージするCR時定数回路を構成し、これらの抵抗値及び容量値で決まる時定数に従ってトリガダイオード40をオンにする。 The resistor 52, the variable resistor 53, and the capacitor 54 constitute a CR time constant circuit that charges the voltage applied to the trigger diode 40 in an AC positive half cycle (first half cycle). The trigger diode 40 is turned on according to the determined time constant. The diode 51 is a backflow prevention diode. On the other hand, the resistor 62, the variable resistor 63, and the capacitor 54 constitute a CR time constant circuit that charges the applied voltage to the trigger diode 40 in the negative half cycle of the alternating current (second half of the cycle). The trigger diode 40 is turned on according to a time constant determined by the value.
 図11(A)は、調光装置Dmに係る調光回路に印加される商用電源波形を示し、図11(B)は、トリガダイオード40に印加される電圧(キャパシタ54に対する電荷のチャージの様子)を示す。図11(A)に示すように、調光装置Dmの調光回路には、サインカーブの交流電圧が印加される。正の半サイクルにおいて、電圧印加の開始と同時に、時定数回路50のキャパシタ54に対する正のチャージが開始され、キャパシタ54にチャージされた電荷が所定量になる時間t1で、トリガダイオード40がトリガ信号をトライアック30に供給し、トライアック30が点弧し、2端子LED発光デバイス10に対する正の電流供給を開始する。図10の構成例において、交流の正の半サイクルでは、2端子LED発光デバイス10における端子101から端子102へ向けて正の電流が流れる。そのため、各並列LED素子群103における第一のLED素子1031のみが点灯(発光)し、第二のLED素子1032は消灯した状態に維持される。このような電流供給は半サイクルの終了まで継続される。一方、負の半サイクルでは、正の半サイクルと極性を反対にした同様の動作が行われ、時間t2でトライアック30が点弧し、負の電流が発光デバイス20に供給される。この場合、2端子LED発光デバイス10における端子102から端子101へ向けて正の電流が流れる。そのため、上記負の半サイクルにおいては、各並列LED素子群103における第二のLED素子1032のみが点灯(発光)し、第一のLED素子1031は消灯した状態に維持される。 11A shows a commercial power supply waveform applied to the dimming circuit according to the dimming device Dm, and FIG. 11B shows a voltage applied to the trigger diode 40 (state of charge on the capacitor 54). ). As shown to FIG. 11 (A), the alternating voltage of a sine curve is applied to the light control circuit of the light control apparatus Dm. In the positive half cycle, simultaneously with the start of voltage application, positive charging of the capacitor 54 of the time constant circuit 50 is started, and at a time t1 when the charge charged in the capacitor 54 reaches a predetermined amount, the trigger diode 40 triggers the trigger signal. Is supplied to the triac 30, and the triac 30 is ignited to start supplying a positive current to the two-terminal LED light emitting device 10. In the configuration example of FIG. 10, in an AC positive half cycle, a positive current flows from the terminal 101 to the terminal 102 in the two-terminal LED light-emitting device 10. Therefore, only the first LED element 1031 in each parallel LED element group 103 is turned on (emits light), and the second LED element 1032 is maintained in an extinguished state. Such current supply continues until the end of the half cycle. On the other hand, in the negative half cycle, a similar operation is performed with the polarity opposite to that of the positive half cycle, the triac 30 is ignited at time t 2, and a negative current is supplied to the light emitting device 20. In this case, a positive current flows from the terminal 102 to the terminal 101 in the two-terminal LED light emitting device 10. Therefore, in the negative half cycle, only the second LED element 1032 in each parallel LED element group 103 is turned on (emits light), and the first LED element 1031 is maintained in an extinguished state.
 このように、正負の各半サイクルで、時定数回路50の時定数に従ったタイミングでトライアック30が点弧し、2端子LED発光デバイス10に対して駆動電流を供給する。図11(A)の斜線部分が、正負の半サイクルで2端子LED発光デバイス10に供給される電圧(電流)を示す。時定数は、可変抵抗器53,63の抵抗値によって変化する。すなわち、可変抵抗器53の抵抗値が小さくなる程、時定数は小さくなり、トライアック30が点弧するタイミングが早まる。このように、可変抵抗器53,63の抵抗値を変化させることで、各並列LED素子群103に含まれる第一及び第二のLED素子1031,1032に対する半サイクル中の通電時間、すなわち電流値を可変にすることができる。可変抵抗器53,63の抵抗値は個別に操作可能である。よって、本実施形態に係る調光装置Dmでは、正負の半サイクルにおける通電時間を個別に制御(調整)することができる。 Thus, in each positive and negative half cycle, the triac 30 is ignited at a timing according to the time constant of the time constant circuit 50, and a drive current is supplied to the two-terminal LED light emitting device 10. A hatched portion in FIG. 11A indicates a voltage (current) supplied to the two-terminal LED light-emitting device 10 in positive and negative half cycles. The time constant varies depending on the resistance values of the variable resistors 53 and 63. That is, the smaller the resistance value of the variable resistor 53, the smaller the time constant and the earlier the timing at which the triac 30 is fired. In this way, by changing the resistance values of the variable resistors 53 and 63, the energization time during the half cycle for the first and second LED elements 1031 and 1032 included in each parallel LED element group 103, that is, the current value. Can be made variable. The resistance values of the variable resistors 53 and 63 can be individually operated. Therefore, the light control device Dm according to the present embodiment can individually control (adjust) the energization time in the positive and negative half cycles.
 ヒステリシス除去回路70は、交流の正負の半サイクルの終了までにキャパシタ54にチャージされた残留電荷を除去して、ヒステリシスを除去するための回路である。保護回路80は、2端子LED発光デバイス10及びトライアック30に対して並列接続されており、その一端は2端子LED発光デバイス10の端子101に接続され、一方は接地されている。保護回路80は、ツェナーダイオード81,82を有しており、インパルスやサージが発生したときに降伏して2端子LED発光デバイス10を保護する。 The hysteresis removal circuit 70 is a circuit for removing the residual charge charged in the capacitor 54 before the end of the positive and negative half cycles of the alternating current to remove the hysteresis. The protection circuit 80 is connected in parallel to the two-terminal LED light-emitting device 10 and the triac 30, and one end thereof is connected to the terminal 101 of the two-terminal LED light-emitting device 10, and one is grounded. The protection circuit 80 includes Zener diodes 81 and 82, and when the impulse or surge occurs, it breaks down and protects the two-terminal LED light emitting device 10.
 次に、調光装置Dmの動作例(操作例)について説明する。最初に、可変抵抗器53,63の操作部を操作して、これらの各抵抗値を最大値に設定する。交流電源入力端子1のプラグを図示しない商用電源100Vに接続する。すると、調光装置Dmの調光回路には、交流電圧(交流電流)が供給される状態となる。 Next, an operation example (operation example) of the light control device Dm will be described. First, the operation units of the variable resistors 53 and 63 are operated to set each of these resistance values to the maximum value. The plug of the AC power input terminal 1 is connected to a commercial power supply 100V (not shown). Then, an alternating voltage (alternating current) is supplied to the dimming circuit of the dimming device Dm.
 すると、2端子LED発光デバイス10(負荷)には、図11(A)の斜線で示す電流が流れる。これにより、第一及び第二のLED素子1031,1032の各々は、各半サイクルの後半部分で間欠的に発光し、人間の目には暗く点灯したように感じる。具体的には、正の半サイクルにおける後半部分で第一のLED素子1031が発光し、負の半サイクルにおける後半部分で第二のLED素子1032が発光する。 Then, the current indicated by the oblique lines in FIG. 11A flows through the two-terminal LED light emitting device 10 (load). As a result, each of the first and second LED elements 1031 and 1032 emits light intermittently in the latter half of each half cycle and feels lit dark to the human eye. Specifically, the first LED element 1031 emits light in the second half of the positive half cycle, and the second LED element 1032 emits light in the second half of the negative half cycle.
 ここで、可変抵抗器63の操作部(例えば、可変抵抗器63の操作用のダイヤルつまみ(光量操作用つまみ))を操作して抵抗値を減少させると、トライアック30の点弧タイミングが早まり、交流電流の負の半サイクルにおける平均電流値が増加し、人間の目にはやや明るく点灯したように感じる。さらに、可変抵抗器53の操作部(例えば、可変抵抗器53の操作用のダイヤルつまみ(色調操作用つまみ))を操作して抵抗値を減少させると、交流電流の正の半サイクルにおける平均電流値が増加し、人間の目にはさらに明るく点灯したように感じる。このとき、第一のLED素子1032から照射される5000Kの白色の発光が、発光デバイス10の輝度(発光量)全体の主要な割合を占めるので、第二のLED素子1032のみの点灯時よりも明るいだけでなく、色温度が上昇したように感じる。 Here, if the resistance value is decreased by operating the operation section of the variable resistor 63 (for example, the dial knob (light amount operation knob) for operating the variable resistor 63), the firing timing of the triac 30 is advanced, The average current value in the negative half cycle of the alternating current increases, and the human eye feels that it is lit slightly brighter. Further, if the resistance value is decreased by operating the operation section of the variable resistor 53 (for example, the dial knob (color tone operation knob) for operating the variable resistor 53), the average current in the positive half cycle of the AC current is reduced. The value increases and the human eye feels more lit. At this time, since the 5000 K white light emitted from the first LED element 1032 occupies the main proportion of the entire luminance (light emission amount) of the light emitting device 10, it is more than when only the second LED element 1032 is turned on. Not only is it bright, it feels like the color temperature has risen.
 以上説明したように、本実施形態に係る調光装置Dmによれば、異なる色度(色相、色温度)の白色光を発光する第一及び第二のLED素子1031,1032を、交流の各半サイクルに対応する可変抵抗器53,63で個別に制御できるので、2端子LED発光デバイス10から発せられる光の色度を自在に調整することができる。 As described above, according to the light control device Dm according to the present embodiment, the first and second LED elements 1031 and 1032 that emit white light having different chromaticities (hue and color temperature) are connected to each of the alternating currents. Since the variable resistors 53 and 63 corresponding to the half cycle can be individually controlled, the chromaticity of light emitted from the two-terminal LED light-emitting device 10 can be freely adjusted.
<第三実施形態>
 次に、第三実施形態について説明する。ここでは、第一実施形態において説明した各発光デバイスをLED照明システムLSに実装する形態について例示的に詳しく説明する。本実施形態におけるLED照明システムLSには、上述した第一乃至第八回路構成例の何れの発光デバイスも好適に適用することができる。ここでは、図1に示した2端子LED発光デバイス10(第一の回路構成例)をLED照明システムLSに実装する例を説明するが、これに代えて他の回路構成例に係る発光デバイス(10A~10G)を組み込むようにしても勿論構わない。
<Third embodiment>
Next, a third embodiment will be described. Here, the form which mounts each light-emitting device demonstrated in 1st embodiment in LED lighting system LS is demonstrated in detail exemplarily. Any of the light emitting devices of the first to eighth circuit configuration examples described above can be suitably applied to the LED lighting system LS in the present embodiment. Here, an example in which the two-terminal LED light-emitting device 10 (first circuit configuration example) shown in FIG. 1 is mounted on the LED illumination system LS will be described, but instead of this, a light-emitting device according to another circuit configuration example ( Of course, 10A to 10G) may be incorporated.
 次に、本実施形態に係るLED照明システムLSについて説明する。本LED照明システムLSは、調光装置Dmに電源からの二本一対の給電線が接続され、調光装置Dmと2端子LED発光デバイス10とが二本一対の給電線(駆動電流供給線)で接続される配線構造を有する。本実施形態に係る照明システムLSは、調光装置Dmの設置位置に電源(商用電源)から一対の引き込み線が引き込まれており、かつ、調光装置Dmの設置位置と2端子LED発光デバイス10の設置配置との間に、二本一対の給電線が予め敷設されている建築物に好適に適用される。このような場合には、調光装置Dmに搭載した制御回路で調整した2端子LED発光デバイス10に供給することができる。 Next, the LED lighting system LS according to this embodiment will be described. In this LED illumination system LS, a pair of power supply lines from a power source is connected to the light control device Dm, and the light control device Dm and the two-terminal LED light emitting device 10 are a pair of power supply lines (drive current supply lines). The wiring structure is connected by. In the illumination system LS according to the present embodiment, a pair of lead-in wires are drawn from the power source (commercial power supply) to the installation position of the light control device Dm, and the installation position of the light control device Dm and the two-terminal LED light emitting device 10 It is suitably applied to a building in which a pair of two feeders is laid in advance between the installation arrangement of the two. In such a case, it can supply to the 2 terminal LED light-emitting device 10 adjusted with the control circuit mounted in the light modulation apparatus Dm.
 図12は、第三実施形態におけるLED照明システムの回路構成の概略を示す図であり、図13は、図12に示した制御回路の構成例を示す図である。図12には、二点鎖線で表された仮想線403を境界として電気配線設置空間(仮想線403の上側)と、電気配線が接続される調光装置Dm(調光ボックス)及び2端子LED発光デバイス10が配置されるLED照明システムLSの設置空間(仮想線403の下側)とが図示されている。 FIG. 12 is a diagram showing an outline of the circuit configuration of the LED illumination system in the third embodiment, and FIG. 13 is a diagram showing a configuration example of the control circuit shown in FIG. FIG. 12 shows an electric wiring installation space (upper side of the virtual line 403) with a virtual line 403 represented by a two-dot chain line as a boundary, a light control device Dm (light control box) to which the electrical wiring is connected, and a two-terminal LED. The installation space (below the virtual line 403) of the LED illumination system LS in which the light emitting device 10 is disposed is illustrated.
 電気配線設置空間は、通常、壁内や天井裏に設けられ、壁や天井によってLED照明システムLSの設置空間と隔絶される。図12に示す例では、電気配線設置空間には、商用電源(例えば、交流100V,50Hz)が供給される一対の商用電源母線400と、一対の照明装置用給電線401(401a,401b)と、商用電源母線400から引き出された一対の照明装置点滅用の引き込み線402とが配線されている。 The electrical wiring installation space is usually provided in the wall or behind the ceiling, and is isolated from the installation space of the LED lighting system LS by the wall or ceiling. In the example shown in FIG. 12, in the electrical wiring installation space, a pair of commercial power buses 400 to which a commercial power source (for example, AC 100V, 50 Hz) is supplied, and a pair of lighting device power supply lines 401 (401a, 401b) A pair of lighting device blinking wires 402 that are led out from the commercial power source bus 400 are provided.
 引き込み線402は、調光装置Dmが有する入力側の一対の端子T1,T2と接続される。調光装置Dmは、出力側の一対の端子T3,T4を有しており、端子T3,T4は、照明装置用給電線401(401a,410b)と接続される。一方、照明器装置給電線401には、一対の端子101,102を有する2端子LED発光デバイス10が接続される。2端子LED発光デバイス10は、第一及び二実施形態で説明したLED発光デバイス10と同様である。 The lead-in wire 402 is connected to a pair of terminals T1 and T2 on the input side of the light control device Dm. The dimmer Dm has a pair of terminals T3 and T4 on the output side, and the terminals T3 and T4 are connected to the lighting device power supply line 401 (401a and 410b). On the other hand, a two-terminal LED light emitting device 10 having a pair of terminals 101 and 102 is connected to the illuminator device power supply line 401. The two-terminal LED light emitting device 10 is the same as the LED light emitting device 10 described in the first and second embodiments.
 調光装置Dmは、端子T1,T2から供給される商用電源からの交流電圧を受電する。調光装置Dmは、全波整流形の直流電源供給回路(以下、「電源回路」と略称する)412を有する。調光装置Dmは、この電源回路412により、負荷の導通状態に関わらず安定した直流電源を提供することができる。電源回路412は、直流電源供給線414,415を介して制御回路413に接続されている。商用交流電源が実効値100Vである場合には、電源回路412は、給電線414,415を介し、無負荷時に略140Vの直流電圧を供給する直流電源となる。 The dimmer Dm receives AC voltage from a commercial power source supplied from the terminals T1 and T2. The light control device Dm includes a full-wave rectification type DC power supply circuit (hereinafter abbreviated as “power supply circuit”) 412. The light control device Dm can provide a stable DC power supply regardless of the conduction state of the load by the power supply circuit 412. The power supply circuit 412 is connected to the control circuit 413 via DC power supply lines 414 and 415. When the commercial AC power supply has an effective value of 100 V, the power supply circuit 412 becomes a DC power supply that supplies a DC voltage of approximately 140 V through the feeder lines 414 and 415 when there is no load.
 図13に示すように、制御回路413は、操作部416に接続された操作量検出部417と、制御装置420と、駆動装置430とを備えている。駆動装置430は、駆動論理回路(制御回路)431と、H型ブリッジ回路である駆動回路432とを含む。駆動回路432の出力端子は、端子T3,T4に接続され、照明器装置給電線401を介して2端子LED発光デバイス10に接続されている。2端子LED発光デバイス10については、第一実施形態において説明した通りであるが、発光波長域が相互に異なる第一のLED素子1031と第二のLED素子1032とが、その極性を逆にして(逆極性で)相互に並列接続されてなる並列LED素子群103が複数個直列に接続されることで構成されている。 As shown in FIG. 13, the control circuit 413 includes an operation amount detection unit 417 connected to the operation unit 416, a control device 420, and a drive device 430. The drive device 430 includes a drive logic circuit (control circuit) 431 and a drive circuit 432 that is an H-type bridge circuit. The output terminal of the drive circuit 432 is connected to the terminals T3 and T4, and is connected to the two-terminal LED light-emitting device 10 via the illuminator device power supply line 401. The two-terminal LED light-emitting device 10 is as described in the first embodiment, but the first LED element 1031 and the second LED element 1032 having different emission wavelength ranges are reversed in polarity. A plurality of parallel LED element groups 103 connected in parallel with each other (in reverse polarity) are connected in series.
 操作部416は、2端子LED発光デバイス10が発する光の輝度(発光量)の調整(調光)と色度(色相、色温度)の調整(調色)を実施するための操作デバイスである。より具体的には、操作部416は、調光用の操作ダイヤル416Aと、調色用の操作ダイヤル416Bとを含んでいる。ユーザが各ダイヤル416A,416Bを回転させることにより、2端子LED発光デバイス10の輝度(発光量)及び色度(色相、色温度)を調整することができる。 The operation unit 416 is an operation device for performing adjustment (light control) of luminance (light emission amount) of light emitted from the two-terminal LED light-emitting device 10 and adjustment (color control) of chromaticity (hue, color temperature). . More specifically, the operation unit 416 includes a light adjustment operation dial 416A and a color adjustment operation dial 416B. The user can adjust the luminance (light emission amount) and chromaticity (hue, color temperature) of the two-terminal LED light emitting device 10 by rotating the dials 416A and 416B.
 操作量検出部417は、各操作ダイヤル416A,416Bの操作量であるダイヤルの回転量(回転角度)に応じた信号を出力する信号生成器である。本実施形態では、操作量検出部417は、操作ダイヤル416Aの回転量(回転角度)に応じて抵抗値が変動する可変抵抗器417Aと、操作ダイヤル416Bの回転量(回転角度)に応じて抵抗値が変動する可変抵抗器417Bとを含んでいる。操作量検出部417は、配線405を介して電源回路412と接続されている。操作量検出部417には、電源回路412で商用交流電源から生成された所定の直流電圧(例えば、無負荷時で最大5V)が配線405を介して印加される。 The operation amount detection unit 417 is a signal generator that outputs a signal corresponding to the rotation amount (rotation angle) of the dial, which is the operation amount of each operation dial 416A, 416B. In the present embodiment, the operation amount detector 417 includes a variable resistor 417A whose resistance value varies according to the rotation amount (rotation angle) of the operation dial 416A and a resistance according to the rotation amount (rotation angle) of the operation dial 416B. And a variable resistor 417B whose value varies. The operation amount detection unit 417 is connected to the power supply circuit 412 via the wiring 405. A predetermined DC voltage (for example, a maximum of 5 V at no load) generated from the commercial AC power supply by the power supply circuit 412 is applied to the operation amount detection unit 417 via the wiring 405.
 操作量検出部417と制御装置420とを結ぶ配線(信号線)418には、可変抵抗器417Aの抵抗値に応じた電圧(例えば、最大5V)が発生する。一方、操作量検出部417と制御装置420とを結ぶ配線(信号線)419には、可変抵抗器417Bの抵抗値に応じた電圧(例えば、最大5V)が発生する。このように操作量検出部417は、操作ダイヤル416A,416Bの各操作量に応じた信号電圧を発生する。 A voltage (for example, a maximum of 5 V) corresponding to the resistance value of the variable resistor 417A is generated on the wiring (signal line) 418 connecting the operation amount detection unit 417 and the control device 420. On the other hand, a voltage (for example, a maximum of 5 V) corresponding to the resistance value of the variable resistor 417B is generated in the wiring (signal line) 419 connecting the operation amount detection unit 417 and the control device 420. In this way, the operation amount detection unit 417 generates a signal voltage corresponding to each operation amount of the operation dials 416A and 416B.
 なお、操作ダイヤル416A,416Bに代えて、スライドバーが適用可能である。スライドバーが適用される場合、回転量の代わりの移動量に応じた電圧(信号)が操作量検出部417で生成される。また、操作量検出部417は、可変抵抗値に応じた電圧を制御信号として出力するようにしている。これに代えて、操作ダイヤル416A,416Bの回転量(回転角度)を検出するロータリーエンコーダが設けられ、ロータリーエンコーダの回転量を示すパルスが制御装置420に入力されるようにしても良い。この場合、後述するような、電圧をディジタル値に変換するアナログ/ディジタル変換器の設置が省略可能である。 In addition, it can replace with the operation dials 416A and 416B and a slide bar is applicable. When the slide bar is applied, a voltage (signal) corresponding to the movement amount instead of the rotation amount is generated by the operation amount detection unit 417. Further, the operation amount detector 417 outputs a voltage corresponding to the variable resistance value as a control signal. Instead, a rotary encoder that detects the rotation amount (rotation angle) of the operation dials 416A and 416B may be provided, and a pulse indicating the rotation amount of the rotary encoder may be input to the control device 420. In this case, installation of an analog / digital converter for converting a voltage into a digital value as described later can be omitted.
 制御装置420は、アナログ/ディジタル変換器(A/D変換器)、マイクロコンピュータ(マイコン:MP)、レジスタ、タイマ、カウンタ等を組み合わせた制御回路である。マイコンは、例えば、マスター・クロックが図示しない水晶発振子からの動作周波数(例えば4MHz)で動作するメモリ内蔵型マイクロプロセッサを適用することができる。但し、これに限定されるものではない。また、マイコンは、図示しない内蔵ROM(Read Only Memory)に記録された動作プログラムを図示しないRAM(Random Access Memory)にロードし、プログラムに従った処理を実行する。 The control device 420 is a control circuit that combines an analog / digital converter (A / D converter), a microcomputer (microcomputer: MP), a register, a timer, a counter, and the like. As the microcomputer, for example, a microprocessor with a built-in memory whose master clock operates at an operating frequency (for example, 4 MHz) from a crystal oscillator (not shown) can be applied. However, it is not limited to this. Further, the microcomputer loads an operation program recorded in a built-in ROM (Read Only Memory) (not shown) into a RAM (Random Access Memory) (not shown), and executes processing according to the program.
 制御装置420のA/D変換器は、信号線418に生じた電圧のディジタル値を出力し、そのディジタル値は図示しないレジスタにセットされる。また、A/D変換器は、信号線419に生じた電圧のディジタル値を出力し、そのディジタル値は図示しないレジスタにセットされる。また、制御装置420が備えるタイマ及びカウンタは、所望の自励発振周波数(例えば、1MHz)で発振するセラミック発振子421で駆動されており、制御装置420と駆動論理回路431とを結ぶ配線424,425から相補的パルスを、予め設定されたタイミングで自励出力する。この相補的パルスは、例えば、繰り返し周波数が所定の周波数となるように予め設定されている。 The A / D converter of the control device 420 outputs a digital value of the voltage generated on the signal line 418, and the digital value is set in a register (not shown). The A / D converter outputs a digital value of the voltage generated on the signal line 419, and the digital value is set in a register (not shown). The timer and counter included in the control device 420 are driven by a ceramic oscillator 421 that oscillates at a desired self-excited oscillation frequency (for example, 1 MHz), and wiring 424 connecting the control device 420 and the drive logic circuit 431. From 425, a complementary pulse is self-excited and output at a preset timing. For example, the complementary pulse is set in advance so that the repetition frequency becomes a predetermined frequency.
 制御装置420のマイコンは、各レジスタにセットされたディジタル値(操作ダイヤル416A,416Bの操作量)に応じて制御パルス(制御信号)を生成する制御パルス生成処理を行い、生成したパルスを駆動論理回路431に供給(出力)する。なお、マイコンが生成したパルス(制御信号)は、配線424,425を介して駆動論理回路431に供給される。 The microcomputer of the control device 420 performs control pulse generation processing for generating a control pulse (control signal) according to the digital value (the operation amount of the operation dials 416A and 416B) set in each register, and drives the generated pulse to drive logic. Supply (output) to the circuit 431. Note that pulses (control signals) generated by the microcomputer are supplied to the drive logic circuit 431 through the wirings 424 and 425.
 駆動論理回路431は、配線424,425からのパルス(制御信号)供給を受けて、当該制御信号に応じたトランジスタ(スイッチング素子)TR1~TR4のオン/オフ動作(スイッチング動作)を制御する。すなわち、制御回路431は、配線424及び425からのパルス入力がない場合には、トランジスタTR1~TR4をオフにする。一方、制御回路431は、配線424からの正のパルスが入力されている間、トランジスタTR1及びTR4をオンにする一方で、トランジスタTR2及びTR3をオフにする。これによって、電源回路412から配線414を通じて供給される直流電流がトランジスタTR1を通って給電線401aに流れ、第一のLED素子1031の点灯に消費される。その後、電流は給電線401b、トランジスタTR4を通って配線415へ流れる(接地される)。 The drive logic circuit 431 receives pulses (control signals) supplied from the wirings 424 and 425, and controls on / off operations (switching operations) of the transistors (switching elements) TR1 to TR4 according to the control signals. That is, the control circuit 431 turns off the transistors TR1 to TR4 when there is no pulse input from the wirings 424 and 425. On the other hand, while the positive pulse from the wiring 424 is input, the control circuit 431 turns on the transistors TR1 and TR4 while turning off the transistors TR2 and TR3. As a result, a direct current supplied from the power supply circuit 412 through the wiring 414 flows through the transistor TR1 to the power supply line 401a and is consumed for lighting the first LED element 1031. Thereafter, the current flows through the power supply line 401b and the transistor TR4 to the wiring 415 (grounded).
 これに対し、駆動論理回路431は、配線425からの負のパルスが入力されている間、トランジスタTR2及びTR3をオンにする一方で、トランジスタTR1及びTR4をオフにする。これによって、電源回路412から配線414を通じて供給される直流電流がトランジスタTR2を通って配線401bに流れ、第二のLED素子1032の点灯に消費される。その後、電流は配線401a,トランジスタTR3を通って配線415に流れる(接地される)。 On the other hand, while the negative pulse from the wiring 425 is input, the drive logic circuit 431 turns on the transistors TR1 and TR4 while turning on the transistors TR2 and TR3. Thus, a direct current supplied from the power supply circuit 412 through the wiring 414 flows through the transistor TR2 to the wiring 401b and is consumed for lighting the second LED element 1032. Thereafter, the current flows through the wiring 401a and the transistor TR3 to the wiring 415 (grounded).
 従って、2端子LED発光デバイス10には、制御装置420から出力されるパルス(制御信号)と相似形の、正の駆動電流と負の駆動電流とが交互に供給される。言い換えれば、第一のLED素子1031,第二のLED素子1032に対し、極性の異なる交流電流が駆動電流として供給される。 Therefore, the two-terminal LED light emitting device 10 is alternately supplied with a positive drive current and a negative drive current, which are similar to the pulse (control signal) output from the control device 420. In other words, alternating currents having different polarities are supplied as drive currents to the first LED element 1031 and the second LED element 1032.
 図14は、輝度調整を行う際に2端子LED発光デバイス10に供給される駆動電流の波形説明図である。本実施形態では、駆動装置430は、1サイクル(周期T0)において、正の制御信号を供給する期間T1に正のパルスを出力し、負の制御信号を供給する期間T2に負のパルスを出力する。調光用の操作ダイヤル416Aが操作されると、制御装置420におけるマイコンはパルス幅変調(PWM)制御を行う事で、デューティ比を調整する。 FIG. 14 is a waveform explanatory diagram of the drive current supplied to the two-terminal LED light-emitting device 10 when performing luminance adjustment. In the present embodiment, in one cycle (period T0), the driving device 430 outputs a positive pulse during a period T1 during which a positive control signal is supplied and outputs a negative pulse during a period T2 during which a negative control signal is supplied. To do. When the operation dial 416A for dimming is operated, the microcomputer in the control device 420 adjusts the duty ratio by performing pulse width modulation (PWM) control.
 ここで、2端子LED発光デバイス10における第一のLED素子1031,第二のLED素子1032に対して供給される平均電流は、パルスのオン時間に依存する。すなわち、正負のパルスのオン時間が大きい程、1サイクルにおいて各LED素子1031,1032に供給される駆動電流の平均電流値が上昇する。逆に、デューティ比が小さくなることでパルスのオン時間が小さくなる程、2端子LED発光デバイス10の各LED素子1031,LED素子1032に供給される平均電流値は小さくなる。 Here, the average current supplied to the first LED element 1031 and the second LED element 1032 in the two-terminal LED light-emitting device 10 depends on the ON time of the pulse. That is, the average current value of the drive current supplied to the LED elements 1031 and 1032 in one cycle increases as the ON time of the positive and negative pulses increases. On the contrary, the average current value supplied to each LED element 1031 and LED element 1032 of the two-terminal LED light emitting device 10 becomes smaller as the duty ratio becomes smaller and the pulse ON time becomes smaller.
 図14(a)は、デューティ比が1のときのパルスを示す。この場合には、正負のパルス供給期間T1,T2のそれぞれにおいて一つのパルスが出力される。また、図14(b)は、マイコンのPWM制御により期間T1,T2におけるデューティ比を、図14(a)に示す状態に比べて下げた状態を示す。デューティ比の変更によって、複数の正負のパルスが供給される状態となる。さらに、図14(c)は、図14(b)に示す状態より更にデューティ比を下げた場合の状態を示す。この場合、正負の各パルスにおけるパルス幅t1,t2は図14(b)の状態に比べて更に小さくなる。 FIG. 14A shows a pulse when the duty ratio is 1. FIG. In this case, one pulse is output in each of the positive and negative pulse supply periods T1 and T2. FIG. 14B shows a state in which the duty ratio in the periods T1 and T2 is lowered as compared with the state shown in FIG. 14A by PWM control of the microcomputer. By changing the duty ratio, a plurality of positive and negative pulses are supplied. Further, FIG. 14 (c) shows a state where the duty ratio is further lowered than the state shown in FIG. 14 (b). In this case, the pulse widths t1 and t2 of the positive and negative pulses are further reduced as compared with the state shown in FIG.
 図14(a)~(c)に示す例は、順次、調光用の操作ダイヤル416Aを2端子LED発光デバイス10の輝度(発光量)を低く(少なく)するように操作した様子を示す。このように、操作ダイヤル416Aが操作される場合には、制御装置420のマイコンがPWM制御によりデューティ比を下げることによって、パルスのオン時間t1,t2が短くなる。その結果、2端子LED発光デバイス10の各並列LED素子群103に供給される平均電流が低下し、各並列LED素子群103が出力する出力光の輝度が低くなる(発光量が少なくなる)。但し、ここでは、1サイクル(正の半サイクル期間T1と負の半サイクル期間T2)における、パルスのオン時間t1,t2の比は変わらない。これにより、2端子LED発光デバイス10の色度(色相、色温度)を変えることなく出力光の輝度(発光量)を増減することができる。 The examples shown in FIGS. 14A to 14C show a state in which the operation dial 416A for dimming is sequentially operated so as to decrease (decrease) the luminance (light emission amount) of the two-terminal LED light-emitting device 10. As described above, when the operation dial 416A is operated, the microcomputer of the control device 420 decreases the duty ratio by PWM control, so that the pulse ON times t1 and t2 are shortened. As a result, the average current supplied to each parallel LED element group 103 of the two-terminal LED light emitting device 10 decreases, and the brightness of the output light output from each parallel LED element group 103 decreases (the amount of light emission decreases). However, the ratio of the pulse on-time t1, t2 in one cycle (positive half cycle period T1 and negative half cycle period T2) does not change here. Thereby, the brightness | luminance (light emission amount) of output light can be increased / decreased, without changing the chromaticity (hue, color temperature) of the 2 terminal LED light-emitting device 10. FIG.
 図15は、色度調整を行う際に2端子LED発光デバイス10に供給される駆動電流の波形説明図である。操作ダイヤル416Bが操作された場合における、パルスの状態を図15(a)~(c)に示す。操作ダイヤル416Bが操作された場合、制御装置420のマイコンは、そのときのパルス幅を変更することなく、1サイクル(周期T0)における正負のパルス数を変更する。図15(a)において、正負の半サイクルにおけるパルス幅t1,t2は同じであり、正負の半サイクルにおけるパルスのオン時間の比は4:3である。 FIG. 15 is a waveform explanatory diagram of the drive current supplied to the two-terminal LED light-emitting device 10 when performing chromaticity adjustment. FIGS. 15A to 15C show the pulse states when the operation dial 416B is operated. When the operation dial 416B is operated, the microcomputer of the control device 420 changes the number of positive and negative pulses in one cycle (period T0) without changing the pulse width at that time. In FIG. 15A, the pulse widths t1 and t2 in the positive and negative half cycles are the same, and the ratio of the pulse on-time in the positive and negative half cycles is 4: 3.
 これに対し、図15(b)では、正負の半サイクルにおけるパルスのオン時間の比が3:4に変更されている。更に、図15(c)では、正負の半サイクルにおけるパルスのオン時間の比が2:5に変更されている。このような正負のサイクルにおけるパルスのオン時間の比を変更することによって、1サイクルにおける第一のLED素子1031及び第二のLED素子1032の点灯時間の比が変動する。これによって、第一のLED素子1031及び第二のLED素子1032のそれぞれ点灯により発せられる合成光の色度(色相、色温度)が変更される。 On the other hand, in FIG. 15B, the ratio of the pulse ON time in the positive and negative half cycles is changed to 3: 4. Further, in FIG. 15C, the ratio of the pulse ON time in the positive and negative half cycles is changed to 2: 5. By changing the ratio of the pulse ON time in such positive and negative cycles, the ratio of the lighting times of the first LED element 1031 and the second LED element 1032 in one cycle varies. As a result, the chromaticity (hue and color temperature) of the combined light emitted when each of the first LED element 1031 and the second LED element 1032 is turned on is changed.
 上述した正負のパルスを出力するための繰り返し周波数T0(自励発振周波数)は、人の目の感度や、スイッチング損失の防止、ノイズ発生の観点から、例えば、30Hz~50kHzの間で定め得る。好ましくは、50Hz~400Hzである。さらに好ましくは、50または60Hz~120Hzである。自励発振周波数は、商用電源周波数から独立して定めうるが、商用電源周波数と同じ周波数を選択することを妨げない。 The repetition frequency T0 (self-excited oscillation frequency) for outputting the positive and negative pulses described above can be determined between 30 Hz and 50 kHz, for example, from the viewpoint of human eye sensitivity, prevention of switching loss, and noise generation. Preferably, it is 50 Hz to 400 Hz. More preferably, it is 50 or 60 Hz to 120 Hz. The self-excited oscillation frequency can be determined independently from the commercial power supply frequency, but does not prevent the selection of the same frequency as the commercial power supply frequency.
 なお、図13に示したように、本実施形態における制御回路413には、積分回路450及び440が設けられている。積分回路450は、第一のLED素子1031を駆動するための正の電流の平均値に比例した電圧を制御装置420にフィードバックし、積分回路440は第二のLED素子1032を駆動するための負の電流の平均値に比例した電圧を制御装置420にフィードバックする。制御装置420は、積分回路440,450のフィードバック電圧をA/D変換器を用いて観測し、制御信号(パルス)の生成に利用する。 Note that as shown in FIG. 13, the control circuit 413 in this embodiment is provided with integrating circuits 450 and 440. The integration circuit 450 feeds back a voltage proportional to the average value of the positive current for driving the first LED element 1031 to the control device 420, and the integration circuit 440 is a negative voltage for driving the second LED element 1032. A voltage proportional to the average value of the current is fed back to the control device 420. The control device 420 observes the feedback voltage of the integrating circuits 440 and 450 using an A / D converter and uses it for generating a control signal (pulse).
 以下、調光装置Dmの動作例について説明する。主電源スイッチ411(図12を参照)が閉じられると、電源回路412による整流及び電圧変換動作が行われ、制御回路413に直流電源が供給される。制御装置420のマイコンは、公知の方法で初期化動作を開始し、図示しない内蔵ROM(Read Only Memory)に記録された動作プログラムを図示しないRAM(Random Access Memory)にロードし、プログラムに従った処理を行う。 Hereinafter, an operation example of the light control device Dm will be described. When the main power switch 411 (see FIG. 12) is closed, rectification and voltage conversion operations are performed by the power supply circuit 412, and DC power is supplied to the control circuit 413. The microcomputer of the control device 420 starts an initialization operation by a known method, loads an operation program recorded in a built-in ROM (Read Only Memory) (not shown) into a RAM (Random Access Memory) (not shown), and follows the program. Process.
 2端子LED発光デバイス10の輝度を調整する場合には、例えば以下のような操作及び調光装置410の動作が行われる。例えば、利用者(ユーザ)が操作ダイヤル(操作ツマミ)416Aを例えば右一杯にまわし、照明の輝度(発光量)を最大に設定すると、信号線418には最大5.0ボルトの直流電圧が発生する。制御装置420は、信号線418に生じた電圧を内蔵のA/D変換器でディジタル信号に変換して読み取り、駆動回路430の駆動論理回路431に対し、信号線424,425を介して制御信号を与える。駆動論理回路431は、制御信号に従って駆動回路(H型ブリッジ)432を駆動させる。その際、駆動回路432は、予め設定された自励発振周波数である50Hzで駆動される。 When adjusting the luminance of the two-terminal LED light emitting device 10, for example, the following operations and operations of the light control device 410 are performed. For example, when the user (user) turns the operation dial (operation knob) 416A to the right, for example, and sets the luminance (light emission amount) of the illumination to the maximum, a DC voltage of maximum 5.0 volts is generated on the signal line 418. To do. The control device 420 reads the voltage generated on the signal line 418 by converting it into a digital signal with a built-in A / D converter, and controls the drive logic circuit 431 of the drive circuit 430 via the signal lines 424 and 425. give. The drive logic circuit 431 drives the drive circuit (H-type bridge) 432 according to the control signal. At that time, the drive circuit 432 is driven at 50 Hz which is a preset self-oscillation frequency.
 このときの制御信号波形は、図14(a)に示す通りであり、正のパルス(制御信号)のオン時間である時間t1の間、 正の電流が給電線401aを流れて2端子LED発光デバイス10における第一のLED素子1031を点灯させる。一方、負のパルス(制御信号)のオン時間である時間t2の間、負の電流が給電線401bを流れて2端子LED発光デバイス10における第二のLED素子1032を点灯させる。そして、給電線401には、略50Hzの交流電流が通電するため、2端子LED発光デバイス10における第一のLED素子1031と第二のLED素子1032が交互に点灯する。 The control signal waveform at this time is as shown in FIG. 14A, and during the time t1, which is the ON time of the positive pulse (control signal), a positive current flows through the feeder line 401a and emits light from the two-terminal LED. The first LED element 1031 in the device 10 is turned on. On the other hand, during a time t2, which is the ON time of a negative pulse (control signal), a negative current flows through the power supply line 401b to light the second LED element 1032 in the two-terminal LED light emitting device 10. Then, since an alternating current of approximately 50 Hz is passed through the power supply line 401, the first LED element 1031 and the second LED element 1032 in the two-terminal LED light emitting device 10 are alternately lit.
 ここで、時間t1に流れる電流(個別電流)と、時間t2に流れる電流(個別電流)との比が2端子LED発光デバイス10における第一のLED素子1031と第二のLED素子1032により発せられる合成光の色度を支配することになる。図10(a)に示す状態では、色温度の高い第一のLED素子1031の点灯時間が第二のLED素子1032の点灯時間より長いため、2端子LED発光デバイス10の発光色は、やや青みがかった白色を呈する。 Here, the ratio of the current flowing at time t1 (individual current) and the current flowing at time t2 (individual current) is generated by the first LED element 1031 and the second LED element 1032 in the two-terminal LED light emitting device 10. It will dominate the chromaticity of the combined light. In the state shown in FIG. 10A, since the lighting time of the first LED element 1031 having a high color temperature is longer than the lighting time of the second LED element 1032, the emission color of the two-terminal LED light emitting device 10 is slightly bluish. The color is white.
 一方、利用者が操作ダイヤル(調光ツマミ)416Aを左方向にまわし、照明の輝度が中央値となるように設定することで、信号線418には約2.5ボルトの直流電圧が発生する。この場合、制御装置420のマイコンは、内蔵のA/D変換器で電圧をディジタル信号に変換して読み取り、駆動装置430の駆動を制御して、LED照明システムLSに対する交流電流を供給する。このときのパルス波形は、図14(b)に示す状態となる。すなわち、期間T1における正のパルスのオン時間と期間T2における負のパルスのオン時間との比は変わらないが、デューティ比が低下しているため、最大輝度時における一つのパルスが複数のパルス群となる。ここで、正のパルスのパルス幅と負のパルスのパルス幅は同じである。これによって、最大輝度時よりも平均電流が小さくなるので、2端子LED発光デバイス10における第一のLED素子1031と第二のLED素子1032からの出力光の輝度は低下する。 On the other hand, when the user turns the operation dial (dimming knob) 416A to the left and sets the illumination brightness to the median value, a DC voltage of about 2.5 volts is generated on the signal line 418. . In this case, the microcomputer of the control device 420 converts the voltage into a digital signal and reads it with a built-in A / D converter, controls the driving of the driving device 430, and supplies an alternating current to the LED lighting system LS. The pulse waveform at this time is in the state shown in FIG. That is, the ratio of the on time of the positive pulse in the period T1 and the on time of the negative pulse in the period T2 does not change, but since the duty ratio is reduced, one pulse at the maximum luminance has a plurality of pulse groups. It becomes. Here, the pulse width of the positive pulse and the pulse width of the negative pulse are the same. Accordingly, since the average current is smaller than that at the maximum luminance, the luminance of the output light from the first LED element 1031 and the second LED element 1032 in the two-terminal LED light emitting device 10 is lowered.
 その後、利用者が操作ダイヤル(調光ツマミ)416Aをさらに左方向にまわし、照明の輝度を最小値に設定する。すると、信号線418は約0.5ボルトの直流電圧が発生する。この場合、制御装置420のマイコンは、電圧値をA/D変換器で変換して読み取り、電圧値に応じた駆動装置430の制御を行う。すなわち、制御装置420は、図14(c)に示すように、期間T1及びT2における、正負のパルスのデューティ比をさらに下げる。これによって、期間T1における正のパルスのオン時間と期間T2における負のパルスのオン時間との比は変わらず、かつ各パルスのパルス幅が更に小さくなる。これにより、中央輝度時に比べて平均電流が更に小さくなるので、2端子LED発光デバイス10における第一のLED素子1031と第二のLED素子1032からの出力光は、共に最も暗い輝度となる。 After that, the user further turns the operation dial (dimming knob) 416A leftward to set the illumination brightness to the minimum value. Then, the signal line 418 generates a DC voltage of about 0.5 volts. In this case, the microcomputer of the control device 420 converts the voltage value by the A / D converter and reads it, and controls the driving device 430 according to the voltage value. That is, as shown in FIG. 14C, the control device 420 further decreases the duty ratio of positive and negative pulses in the periods T1 and T2. As a result, the ratio of the on time of the positive pulse in the period T1 to the on time of the negative pulse in the period T2 does not change, and the pulse width of each pulse is further reduced. Thereby, since the average current is further reduced as compared with the case of the central luminance, both the output light from the first LED element 1031 and the second LED element 1032 in the two-terminal LED light emitting device 10 has the darkest luminance.
 次に、2端子LED発光デバイス10の色度(色相、色温度)を調整する場合における利用者(ユーザ)の操作及び調光装置Dmの動作例について説明する。図14(b)に示す電流波形は、第一のLED素子1031に対する平均電流が第二のLED素子1032の平均電流が大きいため、やや青みがかった白色を呈することは先に述べた通りである。ここでは、図14(b)に示す電流波形が2端子LED発光デバイス10に供給されている状態から、利用者がケルビン温度の低いやや赤みがかった白色への変更を意図した場合について説明する。その場合、利用者は操作ダイヤル(調色ツマミ)416Bを左に(半時計方向に)回転させる。そうすると、信号線419に生じている直流電圧(例えば約4ボルト)が、例えば3.0ボルト程度に低下する。 Next, a user (user) operation and an operation example of the light control device Dm when adjusting the chromaticity (hue, color temperature) of the two-terminal LED light emitting device 10 will be described. As described above, the current waveform shown in FIG. 14B is slightly bluish white because the average current for the first LED element 1031 is large for the second LED element 1032. Here, a case where the user intends to change from a state in which the current waveform shown in FIG. 14B is supplied to the two-terminal LED light emitting device 10 to a slightly reddish white color with a low Kelvin temperature will be described. In this case, the user rotates the operation dial (toning knob) 416B to the left (counterclockwise). Then, the DC voltage (for example, about 4 volts) generated in the signal line 419 is reduced to, for example, about 3.0 volts.
 制御装置420のマイコンは、A/D変換器で変換された信号線419の直流電圧のディジタル値を読み取り、駆動装置430を制御するパルス波形を変更する。例えば、制御装置420のマイコンは、駆動装置430の駆動論理回路431に供給されるパルス波形を、図14(b)に示す状態から図15(a)に示す状態に変化させる。すなわち、マイコンは、図14(b)の状態において、5:2であった正の電流(パルス)と負の電流(パルス)におけるオン時間の比を、図15(a)に示すように4:3に変更する。これによって、第一のLED素子1031に供給される平均電流が減少し、第二のLED素子1032に供給される平均電流が増加する。この結果、2端子LED発光デバイス10の発光色、すなわち色温度はやや低下して赤みがかった白色を呈する。その際、正負のサイクルにおけるパルスのオン時間の比は変化するが、正負のサイクルの各々におけるパルスの合計値(平均電流の合計値)は変化しないので、2端子LED発光デバイス10の輝度は変化しない。 The microcomputer of the control device 420 reads the digital value of the DC voltage of the signal line 419 converted by the A / D converter, and changes the pulse waveform for controlling the driving device 430. For example, the microcomputer of the control device 420 changes the pulse waveform supplied to the drive logic circuit 431 of the drive device 430 from the state shown in FIG. 14B to the state shown in FIG. That is, in the state shown in FIG. 14B, the microcomputer sets the ratio of the ON time between the positive current (pulse) and the negative current (pulse), which was 5: 2, to 4 as shown in FIG. : Change to 3. As a result, the average current supplied to the first LED element 1031 decreases and the average current supplied to the second LED element 1032 increases. As a result, the emission color of the two-terminal LED light-emitting device 10, that is, the color temperature, is slightly lowered and presents a reddish white. At that time, the ratio of the on-time of the pulse in the positive and negative cycles changes, but the total value (total value of the average current) of the pulses in each of the positive and negative cycles does not change, so the luminance of the two-terminal LED light emitting device 10 changes. do not do.
 その後、利用者は、色温度の最も低い赤みがかった白色への変更を意図して、操作ダイヤル(色度ツマミ)416Bを左に(半時計方向に)限界まで回転させる。すると、約3.0ボルトだった信号線419の直流電圧は1.0ボルト程度に低下する。そして、制御装置420のマイコンは、ディジタル変換された信号線419の直流電圧を検出すると、駆動論理回路220を介してフルブリッジドライバ250を駆動する制御信号(パルス)を変更する。すなわち、マイコンは、給電線401aを流れる電流波形が図15(a)から図15(b)を経て図15(c)に変化するように、駆動装置430に制御信号を与える。これによって、第一のLED素子1031の平均電流がさらに減少する一方で、第二のLED素子1032の平均電流がさらに増加する。この結果、2端子LED発光デバイス10の色温度は更に低下して強い赤みがかった白色を呈する。なお、このときも2端子LED発光デバイス10の全体輝度は変化しない。 After that, the user rotates the operation dial (chromaticity knob) 416B to the left (counterclockwise) to the limit in order to change the color temperature to the reddish white having the lowest color temperature. Then, the DC voltage of the signal line 419, which was about 3.0 volts, decreases to about 1.0 volts. When the microcomputer of the control device 420 detects the DC voltage of the digitally converted signal line 419, the microcomputer changes the control signal (pulse) for driving the full bridge driver 250 via the drive logic circuit 220. That is, the microcomputer gives a control signal to the driving device 430 so that the waveform of the current flowing through the power supply line 401a changes from FIG. 15 (a) to FIG. 15 (c). As a result, the average current of the first LED element 1031 further decreases, while the average current of the second LED element 1032 further increases. As a result, the color temperature of the two-terminal LED light-emitting device 10 is further lowered to exhibit a strong reddish white color. At this time, the overall luminance of the two-terminal LED light emitting device 10 does not change.
 以上説明したように、本実施形態に係るLED照明システムLSによれば、商用電源のような交流電源からの交流を直流に変換し、その直流から自励発振周波数による所望の周波数の交流(周期T0毎に供給される正負の電流)を生成し、2端子LED発光デバイス10における第一のLED素子1031及び第二のLED素子1032の夫々に駆動電流として供給する。これによって、調光装置Dmの設計の自由度を高めることができる。また、本実施形態に係るLED照明システムLSによれば、2端子LED発光デバイス10から出力される合成光の色度(色相、色温度)を変えることなく輝度(明度)を調整することができ、また、輝度(明度)を変えることなく色度(色相、色温度)を調整することが可能である。 As described above, according to the LED lighting system LS according to the present embodiment, alternating current from an alternating current power source such as a commercial power source is converted into direct current, and alternating current (period) of a desired frequency based on the self-excited oscillation frequency is converted from the direct current. (Positive and negative currents supplied every T0) are generated and supplied as drive currents to the first LED element 1031 and the second LED element 1032 in the two-terminal LED light emitting device 10, respectively. Thereby, the freedom degree of design of the light control apparatus Dm can be raised. Further, according to the LED lighting system LS according to the present embodiment, the luminance (brightness) can be adjusted without changing the chromaticity (hue, color temperature) of the combined light output from the two-terminal LED light emitting device 10. Further, it is possible to adjust chromaticity (hue, color temperature) without changing luminance (lightness).
 以上、本発明の好適な実施形態を説明したが、本発明の本旨を逸脱しない範囲内において上記の実施形態には種々の変更を加え得る。例えば、上記各実施形態の各図に示したトランジスタはバイポーラトランジスタであっても良いし、電界効果トランジスタ(Field effect transistor、FET)に置き換えても良い。また、本発明に係る2端子LED発光デバイス、調光装置、LED照明システム(装置)は各実施形態に限られず、可能な限りこれらの組み合わせを含むことができる。 The preferred embodiments of the present invention have been described above, but various modifications can be made to the above embodiments without departing from the spirit of the present invention. For example, the transistors shown in the drawings of the above embodiments may be bipolar transistors or may be replaced with field effect transistors (FETs). In addition, the two-terminal LED light-emitting device, the light control device, and the LED lighting system (device) according to the present invention are not limited to the embodiments, and can include combinations thereof as much as possible.
1・・・交流電源入力端子
10,10A,10B,10C,10D,10E,10F,10G・・・発光デバイス
101,102・・・端子
103,103A・・・並列LED素子群
1031・・・第一のLED素子
1032・・・第二のLED素子
104・・・保護回路
20・・・定電流回路
20A・・・第一定電流回路部
20B・・・第二定電流回路部
30・・・トライアック
40・・・トリガダイオード
50・・・時定数回路
70・・・ヒステリシス除去回路
DESCRIPTION OF SYMBOLS 1 ... AC power supply input terminal 10, 10A, 10B, 10C, 10D, 10E, 10F, 10G ... Light emitting device 101, 102 ... Terminal 103, 103A ... Parallel LED element group 1031 ... No. One LED element 1032 ... second LED element 104 ... protection circuit 20 ... constant current circuit 20A ... first constant current circuit unit 20B ... second constant current circuit unit 30 ... Triac 40 ... Trigger diode 50 ... Time constant circuit 70 ... Hysteresis elimination circuit

Claims (4)

  1.  第一のLED素子と、前記第一のLED素子と発光波長域が異なる第二のLED素子とを逆極並列に接続して形成される並列LED素子群と、
     アノード共有又はカソード共有で直列に接続された二つのツェナーダイオードを含む2端子保護回路と、を備え、
     前記2端子保護回路は、複数直列に接続された前記並列LED素子群に並列に接続されている、2端子LED発光デバイス。
    A parallel LED element group formed by connecting a first LED element and a second LED element having a light emission wavelength range different from that of the first LED element in reverse polar parallel;
    A two-terminal protection circuit including two Zener diodes connected in series with anode sharing or cathode sharing,
    The two-terminal protection circuit is a two-terminal LED light-emitting device connected in parallel to the plurality of parallel LED element groups connected in series.
  2.  前記第一のLED素子同士は全て同一極性となるように接続され、且つ前記第二のLED素子同士は全て同一極性となるように接続されている、請求項1に記載の2端子LED発光デバイス。 The two-terminal LED light-emitting device according to claim 1, wherein the first LED elements are all connected to have the same polarity, and the second LED elements are all connected to have the same polarity. .
  3.  前記並列LED素子群の各々に一定電流を供給するための定電流手段を、更に備える、請求項1又は2に記載の2端子LED発光デバイス。 The two-terminal LED light emitting device according to claim 1 or 2, further comprising constant current means for supplying a constant current to each of the parallel LED element groups.
  4.  請求項1から3の何れか一項に記載の2端子LED発光デバイスを備えたLED照明装置。 An LED lighting apparatus comprising the two-terminal LED light-emitting device according to any one of claims 1 to 3.
PCT/JP2011/079891 2010-12-24 2011-12-22 Two-terminal led light-emitting device, and led illumination device provided with same WO2012086790A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-288952 2010-12-24
JP2010288952A JP2012138428A (en) 2010-12-24 2010-12-24 Two terminal led light-emitting device and led lighting device including the same

Publications (1)

Publication Number Publication Date
WO2012086790A1 true WO2012086790A1 (en) 2012-06-28

Family

ID=46314056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079891 WO2012086790A1 (en) 2010-12-24 2011-12-22 Two-terminal led light-emitting device, and led illumination device provided with same

Country Status (2)

Country Link
JP (1) JP2012138428A (en)
WO (1) WO2012086790A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198791A (en) * 2013-03-22 2013-07-10 深圳市天微电子有限公司 Light-emitting diode (LED) display device
CN105333371A (en) * 2015-11-18 2016-02-17 上海瑞丰光电子有限公司 LED light emitting device
EP3199862A1 (en) * 2016-01-26 2017-08-02 Insta GmbH Illumination module system and light made up of same
CN110300478A (en) * 2019-06-26 2019-10-01 江门市蓬江区天利新科技有限公司 A kind of control circuit of reversible LED Christmans light string

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2801241A1 (en) * 2012-01-06 2014-11-12 Koninklijke Philips N.V. Electrical device and method for compensating an effect of an electrical current of a load, in particular an led unit, and driver device for driving a load, in particular an led unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016290A (en) * 2000-06-28 2002-01-18 Toshiba Lighting & Technology Corp Led light source device
JP2007173548A (en) * 2005-12-22 2007-07-05 Rohm Co Ltd Light-emitting device and luminaire
JP2008218043A (en) * 2007-02-28 2008-09-18 Sharp Corp Led drive circuit and led light emitting device
JP2010182803A (en) * 2009-02-04 2010-08-19 Seiwa Electric Mfg Co Ltd Light-emitting apparatus
JP2010267857A (en) * 2009-05-15 2010-11-25 Panasonic Electric Works Co Ltd Led light source device and lighting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016290A (en) * 2000-06-28 2002-01-18 Toshiba Lighting & Technology Corp Led light source device
JP2007173548A (en) * 2005-12-22 2007-07-05 Rohm Co Ltd Light-emitting device and luminaire
JP2008218043A (en) * 2007-02-28 2008-09-18 Sharp Corp Led drive circuit and led light emitting device
JP2010182803A (en) * 2009-02-04 2010-08-19 Seiwa Electric Mfg Co Ltd Light-emitting apparatus
JP2010267857A (en) * 2009-05-15 2010-11-25 Panasonic Electric Works Co Ltd Led light source device and lighting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198791A (en) * 2013-03-22 2013-07-10 深圳市天微电子有限公司 Light-emitting diode (LED) display device
CN105333371A (en) * 2015-11-18 2016-02-17 上海瑞丰光电子有限公司 LED light emitting device
EP3199862A1 (en) * 2016-01-26 2017-08-02 Insta GmbH Illumination module system and light made up of same
CN110300478A (en) * 2019-06-26 2019-10-01 江门市蓬江区天利新科技有限公司 A kind of control circuit of reversible LED Christmans light string

Also Published As

Publication number Publication date
JP2012138428A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP5725736B2 (en) LED power supply device and LED lighting apparatus
WO2012042978A1 (en) Led illumination appliance and led illumination system
JP5665382B2 (en) LED power supply device and LED lighting apparatus
CN110062493B (en) Lighting fixture and lighting device for same
WO2008139365A1 (en) Driver device for leds
JP2009009817A (en) Illumination apparatus
JP2009004483A (en) Light-emitting diode drive circuit
WO2012086792A1 (en) Led light-emitting device, terminal number converter, and illumination device
JP5627712B2 (en) Method for supplying power to a light source, corresponding power supply unit and light source
WO2012086790A1 (en) Two-terminal led light-emitting device, and led illumination device provided with same
WO2013064973A1 (en) Self-adjusting lighting driver for driving lighting sources and lighting unit including self-adjusting lighting driver
JP4262565B2 (en) Lighting device
KR101435853B1 (en) Apparatus for driving light emitting diode
JP2016081812A (en) Dimming control unit, illumination system and equipment
JP5538078B2 (en) LED power supply
JP2012099337A (en) Light source lighting device and lighting system
JP2005197304A (en) Light emitting device
JPH11307815A (en) Collective led lamp for ac power source
JP2006216304A (en) Driving circuit
KR101338395B1 (en) Light device
JP2012138220A (en) Led illumination system
JP5834176B2 (en) Light emitting element lighting device and lighting fixture
JP2018147605A (en) Lighting device, lighting apparatus and electronic equipment
JP6481246B2 (en) Light emitting device control circuit and light emitting device
KR20150072125A (en) Lightening apparatus and method for driving the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852189

Country of ref document: EP

Kind code of ref document: A1